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The Error Exponent of Variable-Length Codes Over
Markov Channels With Feedback
Giacomo Como, Serdar Yüksel, and Sekhar Tatikonda, Member, IEEE

Abstract—The error exponent of Markov channels with feed-
back is studied in the variable-length block-coding setting. Bur-
nashev’s classic result is extended to finite-state ergodic Markov
channels. For these channels, a single-letter characterization of the
reliability function is presented, under the assumption of full causal
output feedback, and full causal observation of the channel state
both at the transmitter and at the receiver side. Tools from sto-
chastic control theory are used in order to treat channels with in-
tersymbol interference (ISI). Specifically, the convex-analytic ap-
proach to Markov decision processes is adopted in order to handle
problems with stopping time horizons induced by variable-length
coding schemes.

Index Terms—Channel coding with feedback, error exponents,
finite-state Markov channels, Markov decision processes, variable-
length block codes.

I. INTRODUCTION

T HE role of feedback in channel coding is a long studied
problem in information theory. In 1956, Shannon [28]

proved that noiseless causal output feedback does not increase
the capacity of a discrete memoryless channel (DMC). Feed-
back, though, can help in improving the tradeoff between
reliability and delay of DMCs at rates below capacity. This
tradeoff is traditionally measured in terms of error exponents;
in fact, since Shannon’s work, much research has focused on
studying error exponents of channels with feedback. Burnashev
[6] found a simple exact formula for the reliability function
(i.e., the highest achievable error exponent) of a DMC with per-
fect causal output feedback in the variable-length block-coding
setting. The present paper deals with a generalization of Bur-
nashev’s result to a certain class of channels with memory.
Specifically, we shall provide a simple single-letter characteri-
zation of the reliability function of finite-state Markov channels
(FSMCs), in the general case when intersymbol interference
(ISI) is present. Under mild ergodicity assumptions, we will
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prove that, when one is allowed variable-length block coding
with perfect causal output feedback and causal state knowledge
both at the transmitter and at the receiver end, the reliability
function has the form

(1)

In (1), denotes the transmission rate, measured with respect
to the average number of channel uses. The capacity and the
coefficient are quantities which will be defined as solutions
of finite-dimensional optimization problems involving the sto-
chastic kernel describing the FSMC. The former will turn out
to equal the maximum, over all choices of the channel input
distributions as a function of the channel state, of the condi-
tional mutual information between channel input and the pair
of channel output and next channel state given the current state,
whose marginal distribution coincides with the induced ergodic
state measure (see (6)). The latter will instead equal the average,
with respect to the induced ergodic state measure, of the Kull-
back–Leibler information divergence between the joint channel
output and next state distributions associated to the pair of most
distinguishable choices of a channel input symbol as a function
of the current state (see (14)).

The problem of characterizing error exponents of memory-
less channels with feedback has been addressed in the infor-
mation theory literature in a variety of different frameworks.
Particularly relevant are the choice of block versus continuous
transmission, the possibility of allowing variable-length coding
schemes, and the way delay is measured. In fact, much more
than in the non-feedback case, these choices lead to very dif-
ferent results for the error exponent of DMCs, albeit not altering
the capacity value. In continuous transmission systems informa-
tion bits are introduced at the encoder, and later decoded, indi-
vidually. Continuous transmission with feedback was consid-
ered by Horstein [19], who was probably the first showing that
variable-length coding schemes can provide larger error expo-
nents than fixed-length ones. Recently, continuous transmission
with fixed delay has attracted renewed attention in the context
of anytime capacity [27]. In this paper, however, we shall re-
strict ourselves to block transmission, which is the framework
considered by the largest part of the previous literature.

In block transmission systems, the information sequence is
partitioned into blocks of fixed length which are then encoded
into channel input sequences. When there is no feedback,
these sequences need to be of a predetermined, fixed length.
When there is feedback, instead, the availability of common
information shared between transmitter and receiver makes it
possible to use variable-length schemes. Here, the transmission
time is allowed to dynamically depend on the channel output

0018-9448/$25.00 © 2009 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:09 from IEEE Xplore.  Restrictions apply. 



2140 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 5, MAY 2009

sequence. It is known that exploiting the possibility of using
variable-length block-coding schemes guarantees high gains
in terms of the attainable error exponent. In fact, Dobrushin
[13] showed that the sphere-packing upper bound still holds
for fixed-length block-coding schemes over symmetric DMCs
even when perfect output feedback is causally available to the
encoder (a generalization to nonsymmetric DMCs was ad-
dressed first in [18] and then in [31]). Even though fixed-length
block-coding schemes with feedback have been studied (see
[12], [39]), the aforementioned results pose severe constraints
on the performance such schemes can achieve. Moreover, no
closed form for the reliability function at all rates is known
for fixed-length block coding with feedback, but for the very
special class of symmetric DMCs with positive zero-error ca-
pacity (cf. [9, p. 199]). It is worth to mention that the situation
can be different for infinite-input channels. For the additive
white Gaussian noise channel (AWGNC) with average power
constraint, Shalkwijk and Kailath [30] proved that a doubly ex-
ponential error rate is achievable by fixed-length block codes.
However, when a peak power constraint to the input of an
AWGNC is added, then this phenomenon disappears, as shown
in [37]. At the same time it is also known that, if variable-length
coding schemes are allowed, then the sphere-packing exponent
can be beaten even when no output feedback is available but
for a single bit used only once. This situation is traditionally
referred to as decision feedback and was studied in [14] (see
also [9, p. 201]).

A very simple exact formula was found by Burnashev [6] for
the reliability function of DMCs with full causal output feed-
back in the case of variable-length block-coding schemes. Bur-
nashev’s analysis combined martingale theory arguments with
more standard information-theoretic tools. It is remarkable that
in this setting the reliability function is known, in a very simple
form, at any rate below capacity, in sharp contrast to what hap-
pens in most channel-coding problems for which the reliability
function can be exactly evaluated only at rates close to capacity.
Another important point is that the Burnashev exponent of a
DMC can dramatically exceed the sphere-packing exponent; in
particular, it approaches capacity with nonzero slope.

Thus, variable-length block-coding appears to be a natural
setting for transmission over channels with feedback. In fact,
it has already been considered by many authors after [6]. A
simple two-phase iterative scheme achieving the Burnashev ex-
ponent was introduced by Yamamoto and Itoh in [38]. More
recently, low-complexity variable-length block-coding schemes
with feedback have been proposed and analyzed in [25]. The
works [33] and [34] dealt with universality issues, addressing
the question whether the Burnashev exponent can be achieved
without exact knowledge of the statistics of the channel but only
knowing it belongs to a certain class of DMCs. In [2], a simplifi-
cation of Burnashev’s original proof [6] is proposed, while [23]
is concerned with the characterization of the reliability function
of DMCs with feedback and cost constraints. In [26], low-com-
plexity schemes for FSMCs with feedback are proposed. How-
ever, to the best of our knowledge, no extension of Burnashev’s
theorem to channels with memory has been considered so far.

The present work deals with a generalization of Burnashev’s
result to FSMCs. As an example, channels with memory, and

FSMCs in particular, model transmission problems where
fading is an important component, like in wireless communi-
cation. Information-theoretic limits of FSMCs both with and
without feedback have been widely studied in the literature: we
refer to the classic textbooks [15], [36] and references therein
for overview of the available literature (see also [16]). It is
known that the capacity is strongly affected by the hypothesis
about the nature of the channel state information (CSI) both
available at the transmitter and at the receiver side. In particular,
while output feedback does not increase the capacity when the
state is causally observable both at the transmitter and at the
receiver side (see [32] for a proof, first noted in [28]), it gen-
erally does so for different information patterns. In particular,
when the channel state is not observable at the transmitter, it is
known that feedback may help improving capacity by allowing
the encoder to estimate the channel state [32]. However, in this
paper only the case when the channel state is causally observed
both at the transmitter and at the receiver end will be consid-
ered. Our choice is justified by the aim to separate the study of
the role of output feedback in channel state estimation from its
effect in allowing better reliability versus delay tradeoffs for
variable-length block-coding schemes.

In [32], a general stochastic control framework for evaluating
the capacity of channels with memory and feedback has been in-
troduced. The capacity has been characterized as the solution of
a dynamic-programming average-cost optimality equation. Ex-
istence of a solution to such an equation implies information
stability [17]. Also lower bounds à la Gallager to the error expo-
nents achievable with fixed-length coding schemes are obtained
in [32]. In the present paper, we follow a similar approach in
order to characterize the reliability function of variable-length
block-coding schemes with feedback. Such an exponent will
be characterized in terms of solutions to certain Markov deci-
sion processes (MDPs). The main new feature posed by vari-
able-length schemes is that we have to deal with average cost op-
timality problems with a stopping time horizon, for which stan-
dard results in MDP theory cannot be used directly. We adopt
the convex-analytic approach [4] and use Hoeffding–Azuma in-
equality in order to prove a strong uniform convergence result
for the empirical measure process. (See [21] for results of a sim-
ilar flavor in the finite-state finite-action setting.) This allows us
to find sufficient conditions on the tails of a sequence of stop-
ping times for the solutions of the average-cost optimality prob-
lems to asymptotically converge to the solution of the corre-
sponding infinite-horizon problems, for which stationary poli-
cies are known to be optimal.

The rest of this paper is organized as follows. In Section II,
causal feedback variable-length block-coding schemes for
FSMCs are introduced, and capacity and reliability function
are defined as solution of optimization problems involving the
stochastic kernel describing the FSMC. The main result of the
paper is then stated in Theorem 1. In Section III, we prove an
upper bound to the reliability function of FSMCs with feedback
and variable-length block coding. The main result of that sec-
tion is contained in Theorem 2 which generalizes Burnashev’s
result [6]. Section IV is of a technical nature and deals with
Markov decision processes with stopping time horizons. Some
stochastic control techniques are reviewed and the main result
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is contained in Theorem 3 which is then used to prove that the
bound of Theorem 2 asymptotically coincides with the relia-
bility function (1). In Section V, a sequence of simple iterative
schemes based on a generalization of Yamamoto–Itoh’s idea
[38] is proposed and its performance is analyzed showing that
this sequence is asymptotically optimal in terms of attainable
error exponents. Finally, in Section VI, an explicit example is
studied. Section VII presents some conclusions and points out
to possible topics for future research.

II. STATEMENT OF THE PROBLEM AND MAIN RESULT

A. Stationary Ergodic Markov Channels

Throughout the paper , , will, respectively, denote
channel input, output, and state spaces. All are assumed to be
finite.

Definition 1: A stationary Markov channel is described by:
• a stochastic kernel consisting of a family

of joint probability measures over , indexed by ele-
ments of and ;

• an initial state distribution in .

As it will become clear, the quantity corre-
sponds to the conditioned joint probability that the next state
is and the current output is , given that the current state is

and the current input is .
For a channel as in Definition 1, let

be the -marginals and the -marginals, respectively. A
Markov channel is said to have no ISI if, conditioned on the
current state, the next state is independent from the current
input and output, i.e., if the stochastic kernel factorizes as

(2)

We shall consider the associated stochastic kernels
and where, for the states , the output

, and the input distribution

(3)

We shall use the notation

(4)

for the state-transition stochastic matrix induced by a map
(the latter will be referred to as a deterministic sta-

tionary policy). With a common abuse of notation, for any map
we shall write in place of .1

Throughout the paper we shall restrict ourselves to FSMCs
satisfying the following ergodicity assumption.

Assumption 1: For every the stochastic matrix
is irreducible, i.e., for every there exists some

such that , where denotes the product
of with itself times.

Assumption 1 can be relaxed or replaced by other equivalent
assumptions. Here, we limit ourselves to observe that it involves
the -marginals of the Markov channel only. Moreover,
it is easily testable, since it requires a finite number of finite di-
rected graphs to be strongly connected. Since taking a convex
combination does not reduce the support, Assumption 1 guaran-
tees that for every deterministic stationary policy
the stochastic matrix is irreducible. Then, the Perron–Frobe-
nius theorem [10, p. 58], guarantees that has a unique sta-
tionary distribution in which will be denoted by .

B. Capacity of Ergodic FSMCs

To any ergodic FSMC we associate the mutual information
cost function

(5)

and define its capacity as

(6)

In the definitions (5) and (6), the terms and
, respectively, denote the mutual information be-

tween and the pair when , and the conditional
mutual information (see [8]) between and the pair
given , where is an -valued random variable (r.v.) whose
marginal distribution is given by the stationary measure ,
is an -valued r.v. whose conditional distribution given is
described by the policy , while and are, respectively, an

-valued r.v. and a -valued r.v. whose joint conditional dis-
tribution given and is described by the stochastic kernel

. Observe that the mutual information cost func-
tion is continuous over 2 and takes values in the
bounded interval .

The quantity defined above is known to equal the capacity
of the ergodic Markov channel we are considering when per-
fect causal CSI is available at both transmission ends, with or

1Here and throughout the paper, for a measure space ����� we shall denote
Dirac’s delta probability measure centered in a point � � � by � , i.e., for
� � �, � ��� � � if � � �, and � ��� � � if � �� �.

2Throughout the paper, finite sets will be considered equipped with the com-
plete topology, finite-dimensional spaces equipped with the Euclidean topology,
and product spaces with the product topology. Hence, for instance, the conti-
nuity of the function � � � � ��� �� is equivalent to the continuity of the
functions ��� �� ��	� ���� over the simplex ��� �, for all 	 � � .

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:09 from IEEE Xplore.  Restrictions apply. 



2142 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 5, MAY 2009

without output feedback [32]. It is important to observe that,
due to the presence of ISI the policy plays a dual role in the
optimization problem (5) since it affects both the mutual infor-
mation cost as well as the
ergodic channel state distribution with respect to which the
former is averaged.

In the case when there is no ISI, i.e., when (2) is satisfied, this
phenomenon disappears. In fact, since the invariant measure
is independent from the policy , we have that (6) reduces to

(7)

where in the rightmost side of (7), , coin-
cides with the capacity of the DMC with input , output , and
transition probabilities . The simplest case of FSMCs
with no ISI is obtained when the state sequence is an indepen-
dent and identically distributed (i.i.d.) exogenous process, i.e.,
when

In this case, (6) reduces to the capacity of a DMC with input
space —the set of all maps from to , output
space —the Cartesian product of and , and
transition probabilities given by

(8)

where . Observe the difference with respect to the
case when the state is causally observed at the transmitter only,
whose capacity was first found in [29]. While the input spaces
of the equivalent DMCs do coincide, the output space is larger,
as we assume that the state is causally observable also at the
receiver end.

Finally, notice that, when the state space is trivial (i.e., when
), (6) reduces to the well-known formula for the capacity

of a DMC.

C. Burnashev Coefficient of FSMCs

Consider now the cost function

(9)

where denotes the Kullback-Leibler information di-
vergence between two probability measures and . For each

, it is useful to consider the set

(10)

of all channel state and output pairs which can be achieved from
the state , and the quantity

(11)

Observe that iff there exists a pair which
is reachable from by some but not all possible inputs . It
follows that the cost function is bounded and continuous over

if and only if

(12)

is strictly positive, i.e.,

(13)

Define the Burnashev coefficient of a Markov channel as

(14)

Notice that is finite iff (13) holds.
Moreover, a standard convexity argument allows one to

argue that both the suprema in (9) and in (14) are achieved
in some corner points of the simplex . More pre-
cisely, for (9), this follows immediately from the convexity
of the Kullback–Leibler divergence in [8,
Theorem 2.7.2], and the linearity of in . For (14),
one can invoke [5, Lemma 5.3] guaranteeing the convexity of

in , and again observe that
is linear in . Hence, we have

(15)

where the maximum is taken over all functions .
Similarly to what has been already noted for the role of the

policy in the optimization problem (6), it can be observed that,
due to the presence of ISI, the map has a dual effect in the
maximization in (15) since it affects both the Kullback–Leibler
information divergence cost

and the ergodic state measure . Notice the asymmetry with
the role of the map whose associated invariant state measure
instead does not come into the picture at all in the definition
of the coefficient . Once again, in the absence of ISI, (15)
simplifies to

We observe that in the memoryless case (i.e., when )
the coefficient coincides with the Kullback–Leibler informa-
tion divergence between the output measures associated to the
pair of most distinguishable inputs, the quantity originally de-
noted with the symbol in [6]. When the state space is non-
trivial , and the channel state process forms an i.i.d.
sequence independent from the channel input, then the Burna-
shev coefficient reduces to that of the equivalent DMC with
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enlarged input space , output space , and
transition probabilities defined in (8).

D. Causal Feedback Encoders, Sequential Decoders, and
Main Result

We now introduce the class of coding schemes we wish to
consider. A schematic representation of the information patterns
is reported in Fig. 1.

Definition 2: A causal feedback encoder is the pair of a finite
message set and a sequence of maps

(16)

With Definition 2, we are implicitly assuming that perfect
channel state knowledge as well as perfect output feedback are
available at the encoder side.

Given a stationary Markov channel and a causal feedback en-
coder as in Definition 2, we shall consider a probability space

. The corresponding expectation operator will be de-
noted by , while, for an event , will denote
the complementary event, and will denote its
indicator function, defined by if ,
if . We assume that the following r.v.’s are defined over

:
• -valued r.v. describing the message to be transmitted;
• a sequence of -valued r.v.’s (the channel input

sequence);
• a sequence of -valued r.v.’s (the channel output

sequence);
• a sequence of -valued r.v.’s (the channel state

sequence).
We shall consider the time ordering3

and assume that -a.s.

(17)

It is convenient to introduce the following notation for the
observation available at the encoder and decoder side. For every

we define the -fields , describing the
feedback observation available at the encoder side, and

, describing the observation available at the decoder.
Notice that the full observation available at the encoder at time

is . Clearly

(18)

In particular, we end up with two nested filtrations:
and .

3Different time orderings would lead to similar results: for instance, the time
ordering��� �� � � � � �� � � � � � � � � can be handled by considering the
stochastic kernel �� ��� ��� � 	�� describing the joint probability distribution
of the current state and output given the previous state and the current input.

Fig. 1. Information patterns for variable-length block-coding schemes on an
FSMC with causal feedback and CSI.

Observe that, while the space and the filtrations
and depend on the message set and on the channel state,
input and output sets , and only,4 the probability mea-
sure does depend on the stochastic kernel describing the
channel, as well as on the encoder . Many of the statements
in this paper will be meant to hold -almost surely, thought this
may not always be explicitly stated.

Definition 3: A transmission time is a stopping time for
the receiver filtration , i.e., it is -valued r.v. such
that the event is -measurable for each time .

Definition 4: A sequential decoder for a causal feedback en-
coder as in (16) is a sequence of maps

(19)

For a transmission time and a sequential decoder , the
estimated message is

(20)

Notice that with Definitions 3 and 4 we are assuming that perfect
causal state knowledge is available at the receiver. In particular,
the fact that the transmitter’s feedback and the receiver’s obser-
vation patterns are nested allows one to use a variable-length
scheme.

The triple consisting of a causal feedback encoder
, a transmission time , and a sequential decoder , is called

a variable-length block-coding scheme. Its error probability is
given by

Following Burnashev’s approach we shall consider the expected
decoding time as a measure of the delay of the scheme

and accordingly define its rate as

We are now ready to state our main result. It is formulated
in an asymptotic setting, considering infinite sequences of vari-
able-length block-coding schemes with asymptotic average rate
below capacity and vanishing error probability.

Theorem 1: For any in
1) any infinite sequence of variable-length

block-coding schemes5 such that

(21)

4Indeed, with no loss of generality � can be identified with��� �� �
� , and the r.v.’s ������������� can be identified with the standard projections
to � , � , � , and � respectively.

5Here the sequence index 
 should not be confused with the time index �, nor
with the average block length �� �.
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satisfies

(22)
2) there exists an infinite sequence of vari-

able-length block-coding schemes satisfying (21) and such
that:
• if

(23)

• if

(24)

Observe that Burnashev’s original result [6] for DMCs can
be recovered as a particular case of Theorem 2 when the state
space is trivial, i.e., .

Notice that, when , the first point of Theorem 2
becomes trivial, while the second point tells us that feedback
coding schemes with zero-error probability exist. As it will be-
come clear in Section V, the reason is that iff there
exist two states and , two inputs and and an output

such that and : this
makes it possible to build a sequence of binary coding schemes
whose error probability conditioned on the transmission of one
of the two codewords is identically zero, while the error proba-
bility conditioned on the transmission of the other codeword is
asymptotically vanishing.

III. AN UPPER BOUND ON THE ACHIEVABLE ERROR EXPONENT

The aim of this section is to provide an upper bound on the
error exponent of an arbitrary variable-length block-coding
scheme. A first observation is that, without any loss of gen-
erality, we can restrict ourselves to the case when is finite,
since otherwise the claim (22) is trivially true. The main re-
sult of this section is contained in Theorem 2 whose proof
will pass through a series of intermediate steps, contained in
Lemmas 1–5. The results of this section generalize those in [2],
[6], [23], [33], and [34] to Markov channels, and the proofs we
present are close in spirit to the arguments developed in these
references.

The main idea, borrowed from [6], is to obtain two different
upper bounds for the error probability. Differently from [6],
[23], [33], and [34], we will follow an approach similar to the
one proposed in [2] and look at the behavior of the maximum
a posteriori (MAP) error probability, rather than that of the a
posteriori entropy. The aforementioned bounds correspond to
two distinct phases which can be recognized in any sequential
transmission scheme and will be the content of Sections III-A
and III-B. The first one is provided in Lemma 2, whose proof
is based on an application of Fano’s inequality combined with
a martingale argument invoking Doob’s optional stopping the-
orem. The second bound is given by Lemma 4, whose proof
combines the use of the log-sum inequality with another appli-
cation of Doob’s optional stopping theorem. In Section III-C,
these two bounds will be combined obtaining Theorem 2.

A. A First Bound on the Error Probability

Suppose we are given a causal feedback encoder
as in (16) and a transmission time as

in Definition 3. The goal is to find a lower bound for the error
probability , where is an arbitrary sequential
decoder for and . Our arguments here closely parallel those
developed in [2, Sec. IV] in the memoryless case.

It will be convenient to define for every time the -field
describing the encoder’s feedback observation at

time . will denote the corresponding filtration.
Let

be, respectively, the conditioned probability distribution of the
message and the MAP error probability given the feedback
observation at time . Clearly, both and are -mea-
surable r.v.’s.

For each time , let us consider the classes of decoders
, ,

differing because of the possible dependence on the state .
It is a well-known fact that the decoder minimizing the error
probability over is the maximum MAP one, defined by6

(25)

Since , it follows that, for any decoder , we
have

The preceding discussion naturally generalizes from the
fixed-length setting to the sequential one. Given a transmission
time , observe that, since for every , is also
stopping time for the filtration and . It follows
that the error probability of any variable-length block-coding
scheme is lower-bounded by that of , where

is the sequential MAP decoder defined in (25).
Therefore, we can conclude that

(26)

for any variable-length block-coding scheme .
In the sequel, we shall obtain lower bounds for the right-hand

side of (26). In particular, since is uniformly distributed over
the message set and is independent from the initial state ,
we have that for each message

, so that . Moreover, we have the
following recursive lower bound for .

Lemma 1: Given any causal feedback encoder , -a.s.

Proof: See the Appendix.

6We shall use the convention for the operator ������ to arbitrarily assign
one of the optimizing values in case of nonuniqueness.
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For every in , we consider the r.v.

(27)

describing the first time before when the MAP error proba-
bility goes below . It is immediate to verify that is a stopping
time for the filtration . Moreover, the event implies
the event , so that an application of the Markov in-
equality and (26) give us

We introduce the following notation for the a posteriori en-
tropy:

Observe that, since the initial state is independent from the
message , then

From Fano’s inequality [8, Theorem 2.11.1, p. 39] it follows
that, the event implies that

Hence, since , the expected value of can be
bounded from above as follows:

(28)

We now introduce, for every time , a -valued r.v.
describing the channel input distribution induced by the causal
encoder at time

(29)

Notice that is an -measurable r.v., i.e., equivalently, it is a
function of the pair .

The following result relates three relevant quantities charac-
terizing the performances of any variable-length block-coding
scheme: the cardinality of the message set , the error prob-
ability of the coding scheme, and the mutual information cost
(5) incurred up to the stopping time

(30)

Lemma 2: For any variable-length block-coding scheme
and any , we have

(31)

Proof: See the Appendix .

B. A Lower Bound to the Error Probability of a Composite
Binary Hypothesis Test

We now consider a particular binary hypothesis testing
problem which will arise while proving the main result, and
provide a lower bound on its error probability. The steps here
are similar to those in [2, Sec.III] and [34, Sec.III].

Suppose we are given a causal feedback encoder
. Consider a nontrivial binary partition of

the message set

(32)

a stooping time for the filtration , and a sequential binary
hypothesis test between the
two hypothesis and . Following the
common statistical terminology, we shall call a composite test
since it must decide between two classes of probability laws for
the process rather than between two single laws. Define

For every , we define the -valued random variables
and by

The r.v. (resp., ) represents the channel input distribution
at time induced by the encoder when restricted to the mes-
sage subset (resp., ). Notice that

For and , define the -conditioned prob-
ability distribution of the channel state
and output pair given

Observe that both the random measures and put mass

only on those sequences such that and
.

Let now be another stopping time for the filtration , such
that . Then, and are well defined as -mea-
surable random measures on the -field . Therefore, we can
consider their Kullback–Leibler information divergences
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(33)

Observe that both and are -measurable r.v.’s.
In the special case, when both and are deterministic con-

stants, an application of the log-sum inequality would show that,
for , can be bounded from above by the -condi-
tional expected value of the sum of the information divergence
costs incurred from time to . It turns out
that the same is true in our setting where both and are stop-
ping times for the filtration , as stated in the following lemma,
whose proof requires, besides an application of the log-sum in-
equality, a martingale argument invoking Doob’s optional stop-
ping theorem.

Lemma 3: Let and be stopping times for the filtration
such that , and consider a nontrivial binary partition of
the message set as in (32). Then, for

(34)

Proof: See the Appendix.

Suppose now that is a -measurable random variable
taking values in , the class of nontrivial proper sub-
sets of the message set . In other words, we are assuming that

is a random subset of the message set , deterministically
specified by the pair . The following result provides
a lower bound on the error probability of the binary test con-
ditioned on the -field :

Lemma 4: Let be any causal encoder, and and be stop-
ping times for the filtration such that . Then, for every

-valued -measurable r.v. , we have

(35)

where .
Proof: See the Appendix.

C. Burnashev Bound for Markov Channels

Lemma 5: Let be a causal feedback encoder and a
transmission time. Then, for every there exists
a -measurable random subset of the message set ,
whose a posteriori error probability satisfies

(36)

Proof: See the Appendix.

To a causal encoder and a transmission time , for every
we associate the quantity

(37)

equal to the maximum, over all possible choices of a nontrivial
partition of the message set as a deterministic function of the
joint channel state output process stopped at the in-
termediate time , of the averaged sum of the information diver-
gence costs incurred between times

and . Intuitively measures the maximum error ex-
ponent achievable by the encoder when transmitting a binary
message between times and .

Based on Lemmas 2 and 4, we will now prove the main result
of this section, consisting in an upper bound on the largest error
exponent achievable by variable-length block-coding schemes
with perfect causal state knowledge and output feedback.

Theorem 2: Consider a variable-length block-coding scheme
. Then, for every in

(38)

where

(39)

Proof: Let be a -measurable subset of the message
set satisfying (36). We define the binary sequential decoder

, where

We can lower-bound the error probability of the com-
posite hypothesis test conditioned on using Lemma 4
and (36), obtaining

Observe that the error event of the decoder is implied by
the error event of , so that in particular

Since the function is decreasing and convex on the
interval , we get
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(40)

the last inequality in (40) following from the Jensen inequality.
The claim now follows by taking a linear combination of (40)
and (31).

In the memoryless case , Burnashev’s original result
(see [6, Sec. 4.1], or [2, eq. (12)]) can be recovered from (38) by
optimizing over the channel input distributions , , and .

In order to prove Part 1 of Theorem 1 it remains to con-
sider infinite sequences of variable-length coding schemes with
vanishing error probability and to show that asymptotically the
upper bound in (38) reduces to the Burnashev exponent .
This involves new technical challenges which will be the object
of next section.

IV. MARKOV DECISION PROCESSES WITH STOPPING TIME

HORIZONS

In this section, we shall recall some concepts about Markov
decision processes which will allow us to asymptotically esti-
mate the terms and , respectively, in terms
of the capacity , defined in (6), and the Burnashev coefficient

, defined in (14), of the FSMC.
The main idea consists in interpreting the maximization of

and as stochastic control problems with av-
erage-cost criterion [1]. The control is the channel input distri-
bution chosen as a function of the available feedback informa-
tion and the controller is identified with the encoder. The main
novelty these problems present with respect to those tradition-
ally addressed by MDP theory consists in the fact that, as a
consequence of considering variable-length coding schemes, we
shall need to deal with the situation when the horizon is neither
finite (in the sense of being a deterministic constant) nor infinite
(in the sense of being concerned with the asymptotic normalized
average running cost), but rather it is allowed to be a stopping
time. In order to handle this case, we adopt the convex-analytic
approach, a technique first introduced by Manne in [20] (see
also [11]) for the finite-state finite-action setting, and later de-
veloped in great generality by Borkar [4].

In Section IV-A, we shall first reformulate the problem of
optimizing the terms and with respect to
the causal encoder . Then, we present a brief review of the
convex-analytic approach to Markov decision problems in Sec-
tion IV-B, presenting the main ideas and definitions. In Sec-
tion IV-C, we will prove a uniform convergence theorem for
the empirical measure process and use this result to treat the
asymptotic case of the average-cost problem with stopping time
horizon. The main result of this section is contained in Theorem
3, which is then applied in Section IV-D together with Theorem
2 in order to prove Part 1 of Theorem 1.

A. Markov Decision Problems With Stopping Time Horizons

We shall consider a controlled Markov chain over , with
compact control space , the space of channel input
distributions. Let be a continuous (and thus

bounded, since is compact) cost function; in our
application will coincide either with the mutual information
cost defined in (5) or with the information divergence cost
defined in (9). We prefer to consider the general case in order to
deal with both problems at once.

The evolution of the system is described by a state sequence
, an output sequence and a control sequence
. If at time the system is in state in , and a

control in is chosen according to some policy, then
a cost is incurred and the system produces the output

in and moves to next state in according
to the stochastic kernel , defined in (3). Once the
transition into next state has occurred, a new action is taken and
the process is repeated.

At time , the control is allowed to be an -measurable
r.v., where is the encoder’s feedback ob-
servation at time ; in other words we are assuming that

for some map

We define a feasible policy as an infinite sequence of such
maps. Once a feasible policy has been chosen, a joint proba-
bility distribution for state, control and output sequences is
well defined; we will denote by the corresponding expecta-
tion operator.

Let be a stopping time for the filtration (recall
that describes the encoder’s feedback and state in-
formation at time ), and consider the following optimization
problem: maximize

(41)

over all feasible policies such that is finite.
Clearly, in the special case when is almost surely constant

(41) reduces to the standard finite-horizon problem which is
usually solved with dynamic-programming tools. Another spe-
cial case is when is geometrically distributed and independent
of the processes , , and . In this case, (41) reduces to the
so-called discounted problem which has been widely studied in
the stochastic control literature [1]. However, what makes the
problem nonstandard is that in (41) is allowed to be an arbi-
trary stopping time for the filtration , typically dependent on
the processes , , and .

B. The Convex-Analytic Approach

We review some of the ideas of the convex-analytic approach
following [4].

A feasible policy is said to be stationary if the current con-
trol depends on the current state only and is independent from
the past state and output history and of the time, i.e., there ex-
ists a map such that for all .
We shall identify a stationary policy as above with the map

itself. It has already been noted in Section II-A that, for
every stationary policy , the stochastic matrix describing
the state transition probabilities under (see (4)) is irreducible,
so that existence and uniqueness of a stationary distribution
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in are guaranteed. It follows from the Perron–Frobenious
theorem [10] that, if a stationary policy is used, then the nor-
malized running cost converges -al-
most surely to the ergodic average . De-
fine

(42)

Observe that the optimization in the right-hand side of (42) has
the same form of those in the definitions (5) and (14) of the ca-
pacity and the Burnashev coefficient of an ergodic FSMC. No-
tice that compactness of the space of all stationary policies
and continuity of the cost and of the invariant mea-
sure as functions of the stationary policy guarantee the
existence of maximizer in (42).

We now consider stationary randomized policies. These
are defined as maps , where denotes the
space of probability measures on , equipped with its Prohorov
topology, i.e., the topology induced by weak convergence (see
[3, Ch. 2]). If is a stationary randomized policy, we shall use
the notation for the probability measure in asso-
ciated by to the state . To any stationary randomized
policy , the following control strategy is associated: if at time

the state is , then the control is randomly chosen in the
control space with conditional distribution given the avail-
able information equal to . Observe
that there are two levels of randomization. The control space
itself has already been defined as the space of channel input
probability distributions , while the strategy associated to
the stationary randomized policy chooses a control at random
with conditional distribution in .
Of course, randomized stationary policies are a generalization
of deterministic stationary policies, since to any deterministic
stationary policy it is possible to associate the
randomized policy . To any randomized sta-
tionary policy we associate the stochastic matrix
describing the associated state transition probabilities

(43)

Similarly to the case of stationary deterministic policies, it is not
difficult to conclude that, since can be written as a convex
combination of a finite number of stochastic matrices , with

, all of which are irreducible, then itself is irre-
ducible and thus admits a unique invariant state distribution
in .

Now, consider the space of joint probability measures
; we shall denote the action of on a continuous

function by

The following definition of occupation measure is at the heart
of the convex-analytical approach.

Definition 5: For every stationary (randomized) policy
, the occupation measure of is in

defined by

where in is the invariant measure of the stochastic
matrix , while is the space of bounded continuous
maps from to .

The occupation measure can be viewed as the long-time
empirical frequency of the joint state–control process governed
by the stationary (randomized) policy . In fact, for every time

, we can associate to the controlled Markov process the empir-
ical measure which is a -valued r.v. sample-path-
wise defined by

(44)

Observe that is a probability measure on the product space
, and is itself an r.v. since it is defined as a function of the

joint state control random process .
If the process is controlled by a stationary (randomized)

policy and the initial state is distributed accordingly to ,
then, for any continuous function , the time
average converges almost surely to the ergodic average

the by the ergodic theorem. Therefore, at least in this case, we
have

-a.s. (45)

where the convergence of the empirical measure sequence
to the occupation measure is intended in the weak sense.7

We shall denote by the set of the occupation measures
associated to all the stationary randomized policies, i.e.,

(46)

and by the set of all occupation measures associated to sta-
tionary deterministic policies

It is known (see [4]) that both and are closed subsets of
. Moreover, is convex and coincides with the set

of extreme points of (see Fig. 2). Furthermore, it is possible
to characterize as the set of zeros of the continuous linear
functional

8 i.e. (see [4])

(47)

7Recall that a sequence of probability measures ���� � on a topolog-
ical space � is said to be weakly convergent to some ��� � ���� if
��� �������� ��� � ����������� for all bounded and continuos test
functions � � � ���.

8Here ���������� � �������� ���� denotes the �-marginal of ��� evaluated
in �.
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Fig. 2. A schematic representation of the optimization problem (3). The large
triangular space is the infinite-dimensional Prohorov space ������. Its gray-
shaped subset represents the close convex set� of all occupation measures. The
set of extreme points of � is � and corresponds to the set of all occupation
measures associated to stationary deterministic policies. The optimal value of
the linear functional ��� �� ����� �� happens to be achieved on � and thus cor-
responds to the occupation measure ��� associated to an optimal deterministic
stationary policy � � � 	���
 �.

In fact, it is possible to think of 9 as a measure of how
far the -marginal of a measure in is from being
invariant for the state process.

If one were interested in optimizing the infinite-horizon run-
ning average cost

over all (randomized) stationary policies , then (45)–(47)
would immediately lead to the following linear programming
problem:

We notice that, since is compact and is finite, is
compact in the Prohorov metric [3] (i.e., sequentially compact
under weak convergence). Thus, both and are compact.
Hence, since the map

is continuous (in the Prohorov topology), it achieves its maxima
both on and . Moreover, such a map is linear so that these
maxima do coincide, i.e., the maximum over is achieved in
an extreme point (see Fig. 3). Thus, we have the following chain
of equalities:

(48)

Hence, the optimal occupation measure is induced by a sta-
tionary deterministic policy , and is therefore given by

9Here and throughout the rest of the paper ����� �� ��� �� � will denote
the � -norm of a vector ��� .

Fig. 3. One epoch in the generalized Yamamoto–Itoh scheme: A total length
	 is divided into two phases: a transmission one of length �	 � 
	� and a
confirmation one of length �	 � ��		 
�	�.

where is the invariant state distribution induced by
the policy . Observe that in the last term in (48), both the con-
straints and the object functionals are linear. This indicates (in-
finite-dimensional) linear programming as a possible approach
for computing , alternative to the dynamic programming ones
based on policy or value iteration techniques [1], [4]. Moreover,
it points out to an easy way to generalize the theory taking into
account average cost constraints (see [23] where the Burnashev
exponent of DMCs with average cost constraints is studied). In
fact, in the convex-analytic approach these merely translate into
additional constraints for the linear program.

C. An Asymptotic Solution to Markov Decision Problems With
a Stopping Time Horizon

It is known that, under the ergodicity and continuity assump-
tions we have made, defined in (42) is the sample-path op-
timal value for the infinite horizon problem with cost not only
over the set of all stationary policies, but also over the larger set
of all feasible policies (actually over all admissible policies, see
[4]). This means that, for every feasible policy

-a.s. (49)

For a sequence of admissible policies , let and
denote the probability and expectation operators induced by

. It is known that

(50)

i.e., the limit of the optimal values of finite horizon problems co-
incides with infinite horizon optimal value. Inequality (50) can
be proven by using dynamic programming arguments based on
the Bellman principle of optimality. As shown in [32], (50) is
useful in characterizing the capacity of channels with memory
and feedback with fixed-length codes. Actually, a much more
general result than (50) can be proved, as explained in the se-
quel.

In the convex-analytic approach, the key point in the proof
of (49) consists in showing that, under any, not necessarily sta-
tionary, feasible policy , the empirical measure process
as defined in (44) converges -almost surely to the set . The
way this is usually proven is by using a martingale central limit
theorem in order to show that the finite-dimensional process

converges to almost surely. The following is a stronger
result, providing an exponential upper bound on the tails of the
random sequence .
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Lemma 6: For every , and for every feasible policy

(51)

Proof: See the Appendix.

We emphasize the fact that the bound (51) is uniform with
respect to the choice of the feasible policy . It is now pos-
sible to drive conclusions on the tails of the running average
cost based on (51). The core idea is the fol-
lowing. From (44), we can rewrite the normalized running cost
as

Since the map is continuous over , and
, we have that, whenever is close

to the set , the quantity cannot be much larger than
. It follows that, if with high probability is close enough

to , then with high probability cannot be much larger
than . In order to show that with high probability is close
to , we want to use (51). In fact, if for some in
the quantity is very small, then is necessarily close to

. More precisely, we define the function

Clearly, is nondecreasing and . Moreover, we
have the following result.

Lemma 7: The map is upper semicontinuous (i.e.,
)

Proof: See the Appendix.

Let us now introduce the random process

Clearly, the process is sample-path-wise nonincreasing
in .

Lemma 8: Let be a sequence of feasible policies, and
be a sequence of stopping times10 such that for every

, while

(52)

Then

(53)

Proof: See the Appendix.

The following result can be considered as an asymptotic es-
timate of (41). It consists in a generalization of (50) from a de-
terministic increasing sequence of time horizons to a sequence
of stopping times satisfying (52).

10All the � are assumed to be stopping times with respect to the filtration
� , i.e., we assume that the event �� � �� is � -measurable for all � and �,
where we recall that � � ����� ���� �.

Theorem 3: Let be a sequence of feasible policies,
and be a sequence of stopping times such that for every

, while (52) holds true. Then

(54)

Proof: Let us fix an arbitrary , and for define
the event .

By applying Lemma 8, we obtain

where . From (53) we get

Therefore, (54) follows from the arbitrariness of ,
and the fact that, as a consequence of Lemma 7, we have

.

D. An Asymptotic Upper Bound on the Error Exponent of a
Sequence of Variable-Length Block-Coding Schemes

We are now ready to step back to the problem of estimating
the error exponent of variable-length block-coding schemes
over FSMCs. We want to combine the result in Theorem 2 with
that in Theorem 3 in order to finally prove Part 1 of Theorem 1.

Let be a sequence of variable-length
block-coding schemes satisfying (21). Our goal is to prove that

(55)

A first simple conclusion which can be drawn from Theorem 2,
using the crude bounds

is that

(56)

Thus, the error probability does not decay to zero faster than
exponentially with the expected transmission time .

Authorized licensed use limited to: MIT Libraries. Downloaded on November 23, 2009 at 17:09 from IEEE Xplore.  Restrictions apply. 



COMO et al.: THE ERROR EXPONENT OF VARIABLE-LENGTH CODES OVER MARKOV CHANNELS WITH FEEDBACK 2151

The core idea to prove (55) consists in introducing a sequence
of positive reals and showing that both

(57)

(where denotes the MAP error probability of the encoder
given the observation ) and diverge in the

sense of satisfying (52). The sequence needs to be carefully
chosen: we want it to be asymptotically vanishing in order to
guarantee that diverges, but not too fast since otherwise

would not diverge. It turns out that one possible
good choice is

It is immediate to verify that, if ,

then

(58)

Lemma 9: Let be a sequence of variable-
length block-coding schemes satisfying (21). For every ,
define as in (57). Then

(59)

Moreover, for any choice of a -valued -measurable r.v.
such that

we have

(60)

Proof: See the Appendix.

Thanks to (59), we can apply Theorem 3 to the mutual infor-
mation cost obtaining

(61)

Similarly, (60) allows us to apply Theorem 3 to the information
divergence cost , obtaining

(62)

Therefore, by applying (61) and (62) first, and then Theorem 2,
we get

where and are defined as in (39), and the last step follows
from (58). Hence, we have proved (22).

V. AN ASYMPTOTICALLY OPTIMAL SCHEME

In this section, we propose and analyze a sequence of
variable-length block-coding schemes with feedback asymptot-
ically achieving the Burnashev exponent , thus proving
Part 2 of Theorem 2.

The proposed scheme can be viewed as a generalization of
the one introduced by Yamamoto and Itoh in [38] and consists
of a sequence of epochs. Each epoch is made up of two distinct
fixed-length transmission phases, respectively named commu-
nication and confirmation phase (see Fig. 3). In the communi-
cation phase, the message to be sent is encoded through a block
code and transmitted over the channel. At the end of this phase,
the decoder makes a tentative decision about the message sent
based on the observation of the channel outputs and of the state
sequence. As perfect causal feedback is available at the encoder,
the result of this decision is known at the encoder. In the confir-
mation phase, a binary message, acknowledging the decoder’s
estimation if it is correct, or denying it if it is wrong, is sent
by the encoder through a fixed-length repetition code function.
The decoder performs a binary hypothesis test in order to decide
whether a deny or an acknowledge message has been sent. If an
acknowledge is detected, the transmission halts, while if a deny
is detected the system restarts with a new epoch, transmitting
the same message with the same protocol.

More precisely, we design our scheme as follows. Given a
design rate in , let us fix an arbitrary in .
For every in , consider a message set of cardinality

and two block lengths and , respec-
tively defined as , .

Fixed-length block coding for the communication phase:
It is known from previous works (see [32] for instance) that the
capacity of the stationary Markov channel we are considering
is achievable by fixed-length block-coding schemes. Thus, since
the rate of the communication phase is kept below capacity

there exists a sequence of causal encoders
with , and

a corresponding sequence of fixed-length- decoders
(notice that is the sequence index while is the block
length) with error probability asymptotically vanishing in

(see [32, Theorem 5.3, special case of Sec. 8.1.2]). More
precisely, since the state space is finite, the pair and

can be designed in such a way that the probability
of error conditioned on the

transmission of any message in and of an initial state
approaches zero uniformly with respect both to and , i.e.,

(63)

The triple will be used in the first phase of each
epoch of our iterative transmission scheme.
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Binary hypothesis test for the confirmation phase: For the
second phase, instead, we consider a causal binary input encoder

based on the optimal stationary policies of the maximiza-
tion problem (15). More specifically, for , define

where are such that

Suppose that a confirmation message is sent.
Then it is easy to verify that the pair sequence
forms a Markov chain over the space of the achievable channel
state output pairs

(64)

with transition probability matrix

It follows that a decoder for performs a binary hypothesis
test between two Markov chain hypotheses. Notice that for both
chains the transition probabilities do not de-
pend on the second component of the past state, but on its
first component only, as well as on the full future state .

When the coefficient is finite, as a consequence of Assump-
tion 1 and (13), we have that the stochastic matrix is irre-
ducible over , with ergodic measure given by

Using known results on binary hypothesis tests for irreducible
Markov chains (see [5], [24] and [10, pp. 72–82]) it is possible
to show that a decoder

can be chosen in such a way that, asymptotically in , its type-
error probability achieves the exponent (recall (15))

while its type- error probability is vanishing. More specifically,
since the state space is finite, we have that, defining as the
maximum over all possible initial states of the error probability

of the pair conditioned on the transmission of a
confirmation message , i.e.,

we have

(65)

When the coefficient is infinite, then the stochastic matrix
is irreducible over the set of reachable state output pairs

(this is because, by Assumption 1 all states are reachable,
while by (10) every state output pair in is reachable
from ), and there exists at least two pairs and
in such that while .
It follows that a sequence of binary tests , with

, can be designed such that

(66)

Such a sequence of tests is given for instance by defining
equal to if and only if the -tuple contains a

symbol followed by a .

Once fixed , , , and , the iterative protocol
described above defines a variable-length block-coding scheme

. As mentioned above, the scheme consists of
a sequence of epochs, each of fixed length ; in particular, we
have

where

is a positive integer valued r.v. describing the number of epochs
occurred until transmission halts.

The following result characterizes the asymptotic perfor-
mance of the sequence of schemes . Its proof
uses arguments similar to those in [34, Sec.III-B].

Theorem 4: For every design rate in , and every in
, it holds that

(67)

and
• if

(68)

• if

(69)

Proof: We introduce the following notation. First, for every

• is the
error event in the communication phase of the th epoch;
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• is the
error event in confirmation phase of the th epoch.

Clearly, we have

The transmission halts at the end of the first epoch in which
an acknowledge message is detected at the end of the confir-
mation phase, i.e., the first time either a correct transmission in
the communication phase is followed by the successful trans-
mission of an acknowledge message in the confirmation phase,
or an incorrect transmission in the communication phase is fol-
lowed by an undetected transmission of a deny message in the
confirmation phase. It follows that we can rewrite as

We claim that

(70)

Indeed, (70) can be shown by induction. It is clearly true for
. Suppose it is true for some in ; then

Thus, is stochastically dominated by the sum of a constant
plus an r.v. with geometric distribution of parameter

. It follows that its expected value can be bounded

Hence, from (63) and (65) we have

(71)

From (71) it immediately follows that

Moreover, transmission ends with an error if and only if an
error happens in the communication phase followed by a type-
error in the confirmation phase, so that, the error probability of
the overall scheme can be bounded as fol-
lows:

Fig. 4. an FSMC with binary state space � � ����� and binary input/output
space� � � � ��� ��: notice that the state transition probabilities are allowed
to depend on the current input (ISI).

(72)

where . When is infinite, (72) directly
implies (69). When is finite, from (63), (65), (71), and (72) it
follows that

which proves (68).

It is clear that (23) follows from (68) and the arbitrariness of
in , so that Part 2 of Theorem 2 is proved.
We end this section with the following observation. It fol-

lows from (70) that the probability that the proposed transmis-
sion scheme halts after more than one epoch is bounded by

, a term which is vanishing asymptotically with .
Then, even if the transmission time is variable, it exceeds with
probability which is asymptotically small in . As also observed
in [23] for memoryless channels, this is a desirable property
from a practical viewpoint. Observe the difference with respect
to the fixed-length block-coding setting, when the transmission
time is required to be almost surely constant for all fixed :
in this case, as already mentioned in Section I, the error expo-
nent with feedback is upper-bounded by the sphere-packing ex-
ponent (see [13], [31]).

VI. AN EXPLICIT EXAMPLE

We consider an FSMC as in Fig. 4, with state space
, input and output spaces , and sto-

chastic kernel given by:
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where , and .
For any stationary policy , the ergodic state
measure associated to can expressed explicitly

where and
. The mutual information costs are

given by

denoting the binary entropy function. The information diver-
gence costs instead are given by

where, for in

In Figs. 5 and 6, the special case when , ,
, and is studied as

a function of the parameter in . In particular, in Fig.
5 the capacity and the optimal policy are plotted
as a function of . Notice that for , the channel has
no ISI and actually coincides with a memoryless Gilbert–Elliot
channel: for that value, the optimal policy chooses the uniform
distribution both in the good state as well as in the bad state

. For values of below (resp., beyond ), instead, the
optimal policy puts more mass on the input symbol (resp., the
symbol ) both in state and state , and it is more unbalanced
in state . In Fig. 6, the Burnashev coefficient of the channel
is plotted as a function of the parameter , as well as the the
values of the ergodic Kullback–Leibler cost corresponding to
the four possible policies . Observe as
the minimum value of is achieved for ; in that case,
all the four nontrivial policies give the same value of the
Kullbak–Leibler cost.

Finally, it is worth to consider the simple non-ISI case when
. In this case, the state ergodic measure

is the uniform one on . Notice that by a basic convexity
argument we get that its capacity and Burnashev coefficient

satisfy

(73)

(74)

Fig. 5. In the top graph, the capacity of the FSMC of Fig. 4 for values of the
parameters � � �����, � � ���, � � �� � � ���, � � �� � � � ,
is plotted as a function of � in ��� ��. In the bottom graph, for the same values
of the parameters, the optimal policy ��� � ���	����������� is plotted as
a function of � in �����.

Fig. 6. The thick solid line is a plot of the Burnashev coefficient 
 (evaluated
with natural log base) of the FSMC of Fig. 4 for the same values of the param-
eters as in Fig. 5.

In (73) and (74), and correspond, respectively, to the
capacity and the Burnashev coefficient of memoryless binary
symmetric channel with crossover probability equal to the er-
godic average of the crossover probabilities and . Such a
channel is introduced in practice when channel interleavers are
used in order to apply to FSMCs coding techniques designed for
DMCs. While this approach reduces the decoding complexity,
it is well known that it reduces the achievable capacity (73)
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(see [16]). Inequality (74) shows that this approach causes also
a significant loss in the Burnashev coefficient of the channel.

VII. CONCLUSION

In this paper, we studied the error exponent of FSMCs with
feedback. We have proved an exact single-letter characteriza-
tion of the reliability function for variable-length block-coding
schemes with perfect causal output feedback, generalizing the
result obtained by Burnashev [6] for memoryless channels. Our
assumptions are that the channel state is causally observable
both at the encoder and the decoder and the stochatic kernel de-
scribing the channel satisfies some mild ergodicity properties.

As a first topic for future research, we would like to extend
our result to the case when the state is either observable at the
encoder only or it is not observable at either side. We believe
that the techniques used in [32] in order to characterize the ca-
pacity of FSMCs with state not observable may be adopted to
handle our problem as well. The main idea consists in studying
a partially observable Markov decision process and reduce it
to a fully observable one with a larger state space. However,
an extension of the results of in Section IV is needed, as there
we explicitly exploited the finiteness of the state space in our
proofs. Finally, it would be interesting to consider the problem
of finding universal schemes which do not require exact knowl-
edge of the channel statistics but use feedback in order to esti-
mate them.

APPENDIX

For the reader’s convenience, all statements are repeated be-
fore their proof.

For we will use the notation ,
for the conditioned probability distri-

bution of the pair given the feedback observation
. Since, due to the assumption (17) on the causality

of the channel and of the encoder, and
are conditionally independent given , for all an
application of the Bayes rule gives us

(75)

Lemma 1: Given any causal feedback encoder , for every

a.s.

Proof: From (17) it follows that, for channel state/output
pair to be observed with nonzero probability after the
state , it is necessary that , where the
is the set of channel state and output pairs which are reachable
from the state —see (10). It follows that, almost surely, for all
time and for any message in

Since , using (75) and the inequality above, we
have

Let . It follows that

thus showing the claim.

Lemma 2: For any variable-length block-coding scheme
and any , we have

Proof: We introduce the r.v.’s

First, we prove that is a martingale. Indeed,
is -measurable, since is, and so do both and for
every . Using (75), it follows that

Hence

Second, we observe that has uniformly bounded incre-
ments since
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Therefore, we can apply Doob’s optional sampling theorem
[35, Theorem 10.10, p. 100], concluding that

(76)

Finally, combining (76) with (28), we obtain

which completes the proof.

Lemma 3: Let and be stopping times for the filtration
such that , and consider a nontrivial binary partition of

the message set as in (32). Then, for

(77)

Proof: We will prove the claim for . Define 11

With probability one, the pair belongs to the
achievable set , so that, for

As a consequence we have

(78)

Now, for , , and , define the r.v.

11With the convention ��� ��� �� �.

Then, by recalling the definition (9) of the cost , applying the
log–sum inequality [8, p. 29], we have, for

(79)

From (79), it follows that, if we define

then is a submartingale with respect to the condi-
tioned probability measure . Moreover, it follows
from (78) (recall that we are assuming and that this is
equivalent to the boundedness of the Burnashev coefficient )
that has uniformly bounded increments

Thus, since , Doob’s optional stopping theorem [35, The-
orem 10.10] can be applied yielding

(80)

Then the claim follows from (80), upon showing that for every

(81)

In fact, (81) can be verified by induction. It holds true for ,
since 12 is independent from and so .
Moreover, assume that (81) holds true for some . Then, we
have defined in the equation at the top of the page,
thus proving (81).

12We use the convention for an empty summation to equal zero.
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Lemma 4: Let be any causal encoder, and and be
stopping times for the filtration such that . Then, for
every -valued -measurable r.v. , we have

where .
Proof: First we will prove the statement when is a

fixed, nontrivial subset of the message set . For ,
define . We shall now upper-
bound defined in (33). From the log–sum inequality it fol-
lows that

We have . From Lemma 3
it follows that

(82)

An analogous derivation leads to

(83)

By averaging (82) and (83) with respect to the posterior distri-
bution of given , we get

and the claim follows upon observing that

Lemma 5: Let be a causal feedback encoder and a
transmission time. Then, for every there ex-
ists a -measurable random subset of the message set ,
whose a posteriori error probability satisfies

Proof: Suppose first that . Then, since clearly
, by Lemma 1 we have

It follows that, if we define and
, we have

If instead , the a posteriori probability of any mes-
sage in at time satisfies . Then
it is possible to construct in the following way. Intro-
duce an arbitrary labeling of .
For any , define . Set

, and define
, . Then, clearly ,

while

Lemma 6: For every , and for every feasible policy

Proof: Let us fix an arbitrary admissible policy . For every
in consider the following random process

We have

It is immediate to check that is -measurable. Moreover

so that is a martingale. Moreover, has
uniformly bounded increments since , while

where for . It follows that we can apply Ho-
effding–Azuma inequality [22], obtaining
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By simply applying a union bound, we can argue that

which concludes the proof.

Lemma 7: The map is upper semicontinuous (i.e.,
).

Proof: As is nondecreasing, with no loss of generality
we can restrict ourselves to consider the case when , so
that exists. Since is compact, the Prohorov
space is compact as well [3]. Thus, since the map

is continuous, the sublevel is
compact. It follows that for every there exists in
such that and

Since is compact, we can extract a converging sub-
sequence ; define . Clearly

It follows that

thus proving the claim.

Lemma 8: Let be a sequence of stopping times for
the filtration and be a sequence of feasible policies
such that for every and (52) holds true. Then

Proof: For every , using a union bound estimation
and (51) we get

(84)

It follows that for every in we have for the events

Thus, it follows from (52) that

and by the arbitrariness of in we get the claim.

Lemma 9: Let be a sequence of vari-
able-length block-coding schemes satisfying (21). For every

, define as in (57). Then

Moreover, for any choice of a -valued -measurable r.v.
such that

we have

Proof: From Lemma 1, we have that -a.s.

For , define the events ,
,
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It follows that

thus showing (60).
In order to show (59), suppose first that . Then

(85)

For every fixed in , define the event .
From (60) and (84), it follows that
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