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Abstract

A limitation common to all sequential Monte Carlo algorithms

is the computational demand of accurately describing an arbitrary

distribution, which may preclude real-time implementation for some

systems. We propose using interpolation to construct a high accuracy

approximation to the importance density. The surrogate density can

then be efficiently evaluated in place of sampling the true importance

density, allowing for the propagation of a large number of particles at

reduced cost. Numerical examples are given demonstrating the utility

of the approach.

1 Introduction

Sequential Monte Carlo (SMC), also commonly referred to as particle filter-
ing, is a general solution to the recursive Bayesian estimation problem. The
first practically applicable SMC algorithm appeared in [17] under the name
bootstrap filter. Because the algorithm was both general and simple, many
variations soon appeared, some of the most successful of which are assembled
in [2].

SMC differs fundamentally from Kalman filtering [14] in how the distribu-
tion of the state is represented. Kalman filters propagate only the mean and
covariance of the state because Gaussian distributions are uniquely deter-
mined by their first two moments. In contrast, SMC algorithms approximate
arbitrary distributions with sets of weighted points called particles. A sig-
nificant shortcoming is computational cost, however; SMC algorithms trade
efficiency for generality. Often a large number of particles must be carried
to obtain an accurate representation of the distribution.
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Sampling from the importance density often comprises the most compu-
tationally expensive component of SMC. This can be cumbersome even in the
bootstrap filter, which uses the prior as its importance density, if the prior
is a complicated function to evaluate, e.g. a differential equation discretized
over multiple time steps. When using more sophisticated importance den-
sities such as local linearization approaches [11], sampling the density can
become expensive even for systems with simple evolutions.

For many SMC algorithms, sampling the importance density can be sep-
arated into two steps: a deterministic function evaluation followed by the
incorporation of a noise sample. It is usually the former which accounts for
most of the computational load. In our approach, rather than evaluating the
deterministic portion at each particle’s position, we evaluate it at a small set
of designed points (hereafter referred to as nodes), so as to construct an ac-
curate approximation to the true function (called an interpolant). Particles
can then be propagated by evaluating the interpolant and incorporating the
appropriate noise sample. Because the interpolant is inexpensive to evaluate,
a large number of particles can be efficiently propagated. Alternatively, by
alleviating the burden of carrying many particles, surplus computational re-
sources can be put towards higher resolution or more frequent sensing, both
of which can be bottlenecks in SMC applications.

As an example, consider the bootstrap filter applied to a dynamical sys-
tem whose state evolves according to a state space difference equation. One
iteration of the filter involves evaluating the system equations at each par-
ticle’s location, adding a process noise sample to the evolved particles, and
then adjusting the weights according to the likelihoods. In our approach,
the state equation is evaluated at special nodes to construct an interpolant,
which is evaluated at each particle’s location. Process noise is then incor-
porated into the location of each interpolated particle, and calculation of
weights is carried out as in the original bootstrap filter.

More broadly, one may view our approach as a parameterization of the
deterministic portion of the importance density which is used in place of the
actual importance density. In this paper we employ Barycentric Lagrange
polynomial interpolation [4, 9, 19], although any method is valid. We have
chosen to use Barycentric Lagrange polynomial interpolation for its speed and
stability, and because it lends itself to a formulation that is general over many
filter characteristics. Other approaches, such as splines and trigonometric
interpolation [34], should be considered if more appropriate to a particular
problem.

One-dimensional schemes are extended to multiple dimensions by Carte-
sian products; this approach suffers the ‘Curse of Dimensionality’, which
is that convergence slows exponentially with increasing dimension. Due to
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this fact, we expect that the new filter will provide computational gains in
situations with a relatively low number of dimensions but for which the im-
portance density is expensive to evaluate. Various multidimensional schemes
exist for exploiting dimensional structure, e.g. sparse grids [3,33] and dimen-
sion adaptivity [16], the use of which may extend the applicability of the new
filter to higher dimensions. However, there are many important problems of
the scale developed here, including target tracking [18], control and system
identification [1], and mobile robot localization [35].

The paper is organized as follows: Section 2 outlines interpolation and the
general recursive Bayesian estimation framework, and discusses some basic
SMC formulations. Section 3 details the new filter, and section 4 shows the
results of numerical simulations on two benchmark systems.

2 Background

In this section, we provide background material needed for explaining how
the interpolation filter is constructed, and for subsequently assessing its per-
formance.

2.1 Interpolation

Interpolation [9] is the approximation of function values using evaluations of
that function at other points (nodes) in the domain. For smooth functions,
polynomial based interpolation methods are attractive for their fast rates of
convergence. Here we use Barycentric Lagrange polynomial interpolation,
some strengths of which were relatively recently explored [4, 19]. We pre-
fer it over other methods for its numerical stability and, more significantly,
its speed - using n nodes, the interpolant can be evaluated in O(n) oper-
ations, and all quantities requiring greater than O(n) computation can be
precomputed. Furthermore, these precomputable quantities are function in-
dependent - regardless of how the importance density changes through time,
the only necessary online computations pertaining to interpolation are func-
tion evaluations at the nodes and O(n) evaluations of the interpolant. This
is not the case with Newton polynomial interpolation [9,34], for which O(n2)
calculations must be performed each time a new function is interpolated.

The primary criterion for polynomial interpolation schemes is that the
nodes have the asymptotic density 1/

√
1 − x2 as n → ∞. This distribution

prevents the weights of equation (1) below from differing in size exponen-
tially with n [4]. Node schemes satisfying this density are typically the roots
of orthogonal polynomials. Well-known sets of orthogonal polynomials are
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the Legendre and Chebyshev polynomials [29], and Legendre polynomials
with Stieltjes polynomial extension [12], the associated numerical integra-
tion schemes of which are Gaussian [8, 31], Clenshaw-Curtis [7], and Gauss-
Kronrod-Patterson quadratures [28], respectively. The latter two can be
generated in nested sequences, enabling more economical constructions in
certain multivariate schemes.

2.1.1 Barycentric Lagrange polynomial interpolation

For function f and node set χ = {χ1, ..., χn}, the one-dimensional barycentric
interpolation formula of the second form is given by

If
n [χ] (x) =

n
∑

i=1

bi

x − χi
f(χi)

n
∑

i=1

bi

x − χi

, bi =
n

∏

j=1

j 6=i

1

χi − χj
. (1)

The bi are referred to as barycentric weights. If
n [χ] is itself a polynomial

function, which is referred to as the interpolant.

2.1.2 Multivariate Interpolation

Univariate interpolation schemes can be extended in a general fashion to mul-
tiple dimensions via full grid tensor, or, for our purposes, Cartesian products.
Abstractly, the d-dimensional, level-n interpolant may be written

If
n[χ] = In1

⊗ · · · ⊗ Ind
[χ]. (2)

n = (n1, ..., nd) is a vector in the multivariate case; the interpolant may
have different resolutions in different dimensions, and it should if a priori
knowledge of the function suggests that not every dimension warrants the
same computational effort. The corresponding multivariate barycentric for-
mula of the second form for (2) is given by

If
n [χ] (x) =

nd
∑

id=1

cid
d (xd) × · · · ×

n1
∑

i1=1

ci1
1 (x1)f(χi1,...,id)

d
∏

j=1

nj
∑

ij=1

c
ij
j (xj)

,
(3)
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where

c
ij
j (xj) =

b
ij
j

xj − χ
ij
j

, j = 1, ..., d, ij = 1, ..., nj . (4)

The variables in (3) and (4) are written component-wise: xj is the jth com-

ponent of x, and χ
ij
j is the jth component of the node with multi-index

{i1, ..., id}. Although it is possible to write (3) as (1) using a single summa-
tion, the component-wise expression is more informative. Details for efficient
implementation can be found in [21].

The computational cost of evaluating If
n [χ] is O(

∏d
i=1 ni), which is the

total number of nodes; generally, this quantity increases exponentially with
dimension, and should be a consideration when deciding whether or not to
use interpolation.

Node placements can sometimes be made more effective in higher dimen-
sions by using different grid structures. Sparse grids [3, 15, 33] exploit weak
dimensional coupling, and tend to perform better than full grids in slightly
higher dimensions. Adaptive techniques such as [16] may further extend
performance; however, the computational overhead of an adaptive algorithm
may outweigh the gains from efficiently covering a space.

2.2 Recursive Bayesian Estimation

We are interested in the distribution of the state xk ∈ R
nx , k ∈ N conditioned

on all available measurements yi ∈ R
ny , i = 1, ..., k of the discrete dynamical

system

xk = fk(xk−1,wk)

yk = hk(xk,vk), (5)

where fk : R
nx × R

nw → R
nx and hk : R

nx × R
nv → R

ny are respectively the
state transition and measurement functions, and wk ∈ R

nw and vk ∈ R
nv are

independent, identically distributed process and measurement noise vectors.
The posterior distribution, p(xk|y1:k), can be expressed via Bayes rule as

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)

=
p(yk|xk)p(xk|y1:k−1)

∫

p(yk|xk)p(xk|y1:k−1)dxk

. (6)

The prior can be computed using p(xk|xk−1) and the posterior at time
k − 1 through the relation

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (7)
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p(xk|xk−1) is sampled by evaluating the system equations, and can be written

p(xk|xk−1) =
∫

δ(xk − fk(xk−1,wk))p(wk)dwk. (8)

This is the simulation component of SMC. Similarly, the conditional mea-
surement distribution p(yk|xk) is determined by the relationship

p(yk|xk) =
∫

δ(yk − hk(xk,vk))p(vk)dvk. (9)

The Kalman filter is an analytical solution to this problem when f and h

are linear and the state and noises have Gaussian distributions. In contrast,
SMC algorithms carry the statistics of xk in a set of weighted particles. Let
{xi

k, λ
i
k}, i = 1, ..., n be a set of particles x with weights λ at time k, such

that
∑

i λ
i
k = 1 for all k. This comprises a discrete probability mass function,

which can approximate p(xk|y1:k) such that

p(xk|y1:k) = lim
n→∞

n
∑

i=1

λi
kδ(xk − xi

k). (10)

2.3 Sequential Importance Sampling

At the foundation of SMC is the sequential importance sampling (SIS) algo-
rithm [2,11]. Importance sampling refers to how the weights in equation (10)
are determined. Ideally, samples would be drawn directly from p(xk|y1:k) to
build an approximation to itself; often, this is not possible. Suppose there is
another similar distribution q(xk|y1:k) with the same support as the poste-
rior and which is easy to sample; this is referred to as an importance density
(also proposal distribution). If the importance density is chosen such that
q(xk|y1:k) = q(xk|x1:k−1,y1:k)q(x1:k−1|y1:k−1), the weights can then be com-
puted using the update rule

λi
k = λi

k−1

p(yk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

1:k−1,y1:k)
. (11)

A convenient choice for q(xk|x1:k−1,y1:k) is the prior, p(xk|xi
k−1). When

using this importance density, the weight update simplifies to λi
k = λi

k−1p(yk|xi
k).

Algorithm: SIS

• Sample xi
k from q(xk|x1:k−1,y1:k).

• Compute λi
k for each xi

k using (11).
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• Normalize λi
k = λi

k/
∑

j λj
k.

While simple, this implementation is somewhat naive. The prior is in
many cases an inefficient choice for an importance density because it does
not utilize the most recent observation. Furthermore, for any importance
density, the same particles are used at each iteration, and often all weights
except that of one particle will approach zero, a phenomenon which has been
explained from a mathematical standpoint [23].

2.4 SMC algorithms

2.4.1 Sampling Importance Resampling

Resampling is a straightforward solution to the weight degeneracy problem
of the SIS filter [6, 17, 24]. Resampling eliminates particles with low weights
and replaces particles with large weights with multiple particles. Consider
the quantity Neff = 1/

∑n
i=1(λ

i)2; this is an approximate measure of how
balanced the weights are. The algorithm, called sampling importance re-
sampling (SIR), is identical to that of the SIS with an additional step: if
Neff < Nthr, resample the particles.

A common pitfall of SIR is for the distribution to collapse when process
noise is small, leading to a set of identical particles; this is known as sample
impoverishment.

2.4.2 Optimal and suboptimal importance densities

The optimal importance density, i.e. that which minimizes the variance of
each importance weight λi

k conditioned on xi
1:k−1 and y1:k, is q(xk|x1:k−1,y1:k) =

p(xk|xk−1,yk). The associated weight update is λi
k = λi

k−1p(yk|xi
k−1). This

density can be difficult to sample from, and furthermore the weight update
usually has no analytical form. An important case for which the optimal
importance density is easily implemented is when the observation equation
is linear and all noises are Gaussian. When noises are Gaussian but the
observation equation is nonlinear, it sometimes works well to linearize the
observation equation and construct a suboptimal approximation to the opti-
mal density; this is known as local linearization [11]. Consider the system

xk = fk(xk−1) + wk, wk ∼ N(0,Qk),

yk = hk(xk) + vk, vk ∼ N(0,Rk). (12)
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Let Hk = dhk(xk)
dxk

∣

∣

∣

xk=fk(xk−1)
, and define

Σ−1
k = Q−1

k + HT
k R−1

k Hk (13)

mk = Σk

(

Q−1
k f(xk−1) + H ′

kR
−1
k ×

(yk − hk(fk(xk−1)) + Hkfk(xk−1))) . (14)

The distribution N(mk,Σk) is an approximation to the optimal importance
density. In the case that hk is linear, the above expressions simplify to those
for the optimal importance density.

2.4.3 Regularization

Regularization [2, 25] addresses sample impoverishment by perturbing each
resampled particle’s position with samples from either an Epanechnikov (op-
timally) or Gaussian (simply) distribution. We use the acronym RPF to
denote the regularized particle filter in our numerical examples below.

Many other improvements to the basic SMC formulation exist [10,24,32],
e.g. Markov Chain Monte Carlo, Rao-Blackwellisation, and numerous tech-
niques for designing importance densities. We consider only those discussed
above for the purpose of demonstrating our approach, but note that most
others are compatible as well.

3 The Interpolation Particle Filter

3.1 Main Filter Algorithms

This section discusses the algorithm for the interpolation particle filter, which
we refer to as IPF. As stated in the introduction, the main insight is the
division of sampling from the importance density into a deterministic function
evaluation followed by the incorporation of a noise sample. By evaluating
the deterministic portion at interpolation nodes, a functional approximation
(the interpolant) is constructed, which can then be easily evaluated to allow
the propagation of a large number of particles at a reduced cost. We apply
the interpolation procedure of Section 2.1 in building the interpolant.

We assume that sampling from the importance density can be expressed
as the composition of functions, such that sampling at time k can be written
xk = uk(gk(xk−1),zk). gk is entirely deterministic and is subject to inter-
polation. zk is a noise sample, and uk is a function which incorporates zk

into a particle’s position at time k. Note that gk may also be a function of
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y1:k; because there is only one measurement per time step, there is no need
to interpolate over the space of measurements, and so we proceed as though
y1:k is implicit in the structure of gk.

The essence of our approach is as follows. A given number of nodes are
scaled so as to cover all particles at time k − 1. The deterministic portion
of the importance density gk is then evaluated at these nodes. Following
the procedure of Section 2.1, an interpolant is constructed and evaluated at
particle locations at time k − 1. The appropriate noise sample zk is then
incorporated into the position of the interpolated particles via the function
uk. We propose two IPF’s, one in which the interpolant is constructed every
iteration and is scaled to contain all particles, and another in which a single
interpolant is constructed over a fixed region and reused at each iteration.

In our notation, χj, j = 1, ..., nN refers exclusively to nodes and xi, i =
1, ..., nP to particles. Underscored symbols correspond to non-dimensional
quantities in the hypercube [−1, 1]d, where d is the dimension of xk, and
those not underscored refer to quantities in the system’s state space. The
absence of a superscript implies the entire set of nodes or particles. Fig. 1
gives a visualization of our first IPF algorithm, written as an algorithm below.

Algorithm: IPFa

Precompute

• Compute nodes {χj ∈ [−1, 1]d, j = 1, ..., nN} and barycentric weights
for the orthogonal polynomials used.

Online

• Compute the width of the particles at time k − 1:

Sk−1 =

a · diag
[

max
{

max
i=1,...,nP

xi
k−1 − min

i=1,...,nP

xi
k−1, b

}]

,

where both maximums and the minimum are taken independently for
each dimension of the state. Note that Sk−1 is a d×d matrix. Guidelines
on how the parameters a and b should be chosen are given in Section
3.2.

• Compute the center of the particles at time k − 1:

µk−1 =
1

2

(

max
i=1,...,nP

xi
k−1 + min

i=1,...,nP

xi
k−1

)

+ c,
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again with the maximum and minimum taken independently for each
dimension, so that µk−1 is a vector the same size as the state at time
k − 1. Again see Section 3.2 for guidelines on choosing c.

• Map the particles at time k − 1 to the hypercube [−1, 1]d:

xi
k−1 = 2S−1

k−1(x
i
k−1 − µk−1).

• Transform the precomputed nodes so that the interpolant’s domain
encompasses all particles at time k − 1:

χj
pre =

1

2
Sk−1χ

j + µk−1.

• Evaluate the deterministic portion of the importance density at trans-
formed node locations:

χ
j
post = gk(χ

j
pre).

• Evaluate the interpolant InN
[χpost] at particle locations at time k − 1.

Evaluate the interpolant at each particle’s location:

xi
k∗ = InN

[χpost](x
i
k−1).

InN
is defined in Section 2.1.

• Incorporate the appropriate noise sample into interpolated particles
with the function uk:

xi
k = uk(x

i
k∗,zk).

• Perform other SMC steps, e.g. compute weights and resample the
particles. Increment k and return to the first online step.

In the second implementation of the IPF, an interpolant is constructed
over a fixed region of the state space and reused at each iteration. This
formulation is applicable only to time-invariant systems with bounded state
spaces or trajectories that are expected to remain within a known region.
Strong confidence in the prescribed region is necessary, as any particle that
departs it will likely cause divergence. Note that this formulation requires
no online evaluation of the deterministic portion of the importance density,
only interpolation. We refer to this algorithm as the IPFb.
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Pre−interpolation
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1(1

,1
)

S
k−1

(2,2)
 

 

χj
pre

xi
k−1

µ
k−1

Post−interpolation

 

 

χj
post

xi
k*

Figure 1: Visualization of IPF interpolation procedure in two dimensions
with Legendre interpolation nodes and a = 1.1.

Algorithm: IPFb

Precompute

• Precompute nodes {χj ∈ [−1, 1]d, j = 1, ..., nN} and barycentric weights.

• Choose the center µ and width S of the interpolant’s domain.

• Map the nodes to the prescribed region:

χj
pre =

1

2
Sχj + µ.

• Evaluate the deterministic part of the importance density at the nodes:

χ
j
post = g(χj

pre).

Online

• Map the particles at time k − 1 to [−1, 1]d:

xi
k−1 = 2S−1(xi

k−1 − µ).

• Interpolate the particles:

xi
k∗ = InN

[χpost](x
i
k−1).
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• Incorporate the appropriate noise sample

xi
k = u(xi

k∗,zk).

• Perform other SMC steps. Increment k and return to the first online
step.

3.2 Numerical issues

The parameters a, b, and c are necessary for stability of the IPFa using
barycentric Lagrange polynomial interpolation. a is a scalar constant which
prevents scalings that result in points being interpolated on the boundary of
the interpolant’s domain. For Legendre or Stieltjes orthogonal polynomials,
this can lead to compromised numerical stability, and for Chebyshev, division
by zero. In our numerical examples, we set a = 1.01; any value slightly above
one is sufficient. Although it is possible for a particle in the interior of the
interpolant’s domain to coincide with a node, this is highly unlikely, and it
is not a scenario we prepare for.1

The parameters b and c prevent division by zero in the event of extreme
sample impoverishment. Because all particles are coincident in this case,
the interpolation region shrinks to a point and the S matrix, which must
be inverted, becomes singular. b fixes a minimum size for the interpolation
region and hence forces the S matrix (which is diagonal) to be invertible. c

addresses a second issue arising from sample impoverishment. Even if the size
of the interpolation region is greater than zero, all particles will be situated
in its exact center. Because the center of the interpolation region is a node
in most schemes, this leads to the same instability discussed in the previous
paragraph. Offsetting the location of the region by c prevents this failure.
In the implementations shown here we used bi = ci = 0.01, i = 1, ..., d. Note
that b and c, unlike a, affect the interpolation region additively, and so the
size of the region should be a factor in choosing these parameters.

Newton polynomial interpolation [9,29] handles interpolation on nodes in
a more natural fashion, and would eliminate the need for the parameters a

1An obvious solution is to recognize that a true evaluation is available when interpo-

lating on a node, and for many applications, this is sensible. Filtering often demands

real-time implementation, and the logical statements necessary to handle this scenario

add computational burden, particularly in higher dimensions. Furthermore, the loss in

accuracy from interpolating over a slightly larger domain is usually negligible.
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and c. However, since a and c impose no significant computational burden,
and because Newton interpolation introduces further numerical instabilities,
it is the authors’ opinion that barycentric Lagrange polynomial interpolation
is a superior choice for this setting.

3.3 Implementation

The IPF depends heavily on the particular importance density being used;
the algorithms of the previous section are intended to be general, and hence
omit details pertaining to specific implementations. In this section, some ex-
amples are described with the intention giving intuition on how to implement
interpolation for a variety of importance densities.

First consider the bootstrap filter [17]. The importance density is the
prior, which is composed of an evaluation of the state transition followed by
the incorporation of a process noise sample. Interpolation is used on the state
transition, and process noise is included afterwards as in the conventional
bootstrap filter. Filters using auxiliary variables [2, 30] pose no additional
complication because the prior is essentially being used twice, and hence
can be interpolated twice. As noted previously, features unrelated to the
importance density such as resampling and regularization [2, 25] have no
bearing on the interpolation component.

Now consider the (approximate) optimal importance density of Section
2.4.2 [11]. For the IPFa, both the mean mk and the square root of the
covariance

√
Σk can be interpolated. Note that because the covariance is

a function of the state, interpolating it does not increase the dimension of
the interpolant. For a nonlinear observation equation, this will be a time-
varying importance density due to the linearization about the state, and thus
the IPFb cannot be used in the same fashion as the IPFa. However, if the
state transition is time-invariant, an interpolant can then be constructed just
for it and used in (14), in place of the true state transition. Note that Σ−1

k

or Σk could be interpolated in place of
√

Σk, leaving the matrix inversion or
the matrix inversion and square root for after the interpolation. These can
be expensive operations, and by lumping them into the interpolant greater
efficiency is achieved.

In the formulation of Section 2.4.2, although both the mean and covari-
ance of each particle are being interpolated, they are both solely functions of
particle position. In the extended Kalman and unscented particle filters [36],
each particle carries a position and a covariance. Again both the mean and
covariance can be interpolated, but now both quantities are functions of the
mean and covariance at the previous time step as well. Because the determin-
istic portion of the importance density is a function of both these quantities,
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the interpolant must be constructed over the d + d(d + 1)/2 distinct states
of the mean and covariance - while feasible, applying interpolation to these
importance densities is somewhat impractical for systems with more than
one or two states.

3.4 Convergence

The IPF approximates conventional SMC algorithms in the sense that inter-
polating a function is an approximation to evaluating the function. Standard
interpolation convergence results including rates can be found in [9,13]. Typ-
ically, assuming the number of nodes is increased uniformly in all dimensions,
the errors of polynomial interpolation of smooth functions decay exponen-
tially as

max
x∋[−1,1]

|f(x) − In(x)| ≤ CK−n/d (15)

for some constants C and K > 1. The factor of d reflects the Curse of
Dimensionality, which is for our purposes is the exponential increase with
dimension of the number of points necessary to effectively sample a function
over a space. This fact reduces applicability in higher dimensions; we note
however that unlike similar approaches in [5] and [20], we are interpolating
solely over the hidden state and not the noise sample, resulting in a lower
dimensional approximation (e.g. half the dimension if there is independent
noise added to each state).

In our application, we are replacing gk with the interpolant InN
[χpost].

As nN approaches infinity, InN
[χpost] approaches gk according to (15), and

so drawing samples by evaluating uk(InN
[χpost](·), ·) is identical to drawing

samples from the original importance density in the limit of the number of
nodes.

Whether or not the estimated posterior asymptotically approaches the
true posterior is implementation dependent, as we can explain by dissecting
(11), the weight update. It is known that any importance density q may
be used, even a constant one [24], so long as it has the same support as
the true posterior, and hence an interpolated importance density is just as
much a valid importance density as that which it approximates. However,
the exact prior p(xk|xk−1) must be used in (11) for the weight update to be
correct. In some cases, the full importance density is expensive relative to
the prior, and it is then sensible to interpolate the importance density and
use the actual prior; this is done in example 4.1. Conversely, if the prior does
account for most of the computational load, one would want to interpolate
both the prior and the full importance density. If the interpolated prior
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is a good approximation to the true prior, using (11) with the substituted
approximation may still result in a strong filter. Furthermore, from a real-
world perspective, the prior used by the algorithm is almost never an exact
model of the actual system, and so there is little qualitative difference in
using an accurate approximation.

4 Numerical Examples

Two examples are considered here: the scalar, nonlinear system of [17] and
the Kraichnan-Orszag system [27, 37]. The first example demonstrates the
performance of the algorithm on a simple system with a complex importance
density, while the second example shows performance in on a system with an
expensive prior.

Conventional and interpolated versions of regularized and SIR particle
filters are compared. An ‘I’ is appended to each acronym when interpola-
tion has been used. The regularized filters sample from the prior p(xk|xk−1),
and the SIR filters use either the optimal or a linearization of the optimal
importance density. Nthr = n/3 was used as a resampling threshold, and
perturbations for regularization were sampled suboptimally from the appro-
priate Gaussian distributions [25].

In each example, small population filters are shown to provide compar-
isons on the basis of system evaluations and large population filters to demon-
strate the consistency of the interpolated filters with conventional filters. The
small population filters propagate the same number of particles as nodes used
by the interpolated filters (nN). The large population filters propagate nP

particles, the number of particles interpolated by the interpolated filters. In-
terpolated filters are written I{PF}-nN/nP , and the conventional filters are
written {PF}-n, where n is the number of particles propagated.

For each example, the mean of the mean absolute error over time is given:

Error =
1

T

T
∑

k=1

1

M

M
∑

i=1

|xi
k − xi

k|, (16)

where xi
k is the filter’s estimate of the conditional mean for the ith trial,

E[xi
k|yi

1:k], and xi
k is the true state for that trial. The mean over all trials of

the time taken for the online portion of each filter is given as a measure of
computational efficiency. M = 100 trials were performed for each example.
Times reported are for a standard desktop computer running Matlab.
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4.1 Scalar nonlinear system

Consider the following system studied in [17]:

xk =
xk−1

2
+

25xk−1

1 + x2
k−1

+ 8 cos(1.2(k − 1)) + wk,

yk =
x2

k

20
+ rk. (17)

wk and rk are zero-mean Gaussian noises with respective variances 10 and 1.
The initial state of the true system is x0 = 0.1, and the initial state used by
the filters was sampled from N(x0, 2). This system is highly nonlinear, and
additionally exhibits bimodal behavior if the measurement is greater than
zero.

In this example, nN = 15 Legendre nodes were used with nP = 100
interpolated particles. Table 1 summarizes the performances of the filters.

Table 1: Scalar nonlinear system errors
Filter x Time (s)
RPF-15 4.08 0.04
RPF-100 2.96 0.32
IRPF-15/100 3.15 0.74
SIR-15 3.66 0.22
SIR-100 2.83 1.46
ISIR-15/100 2.85 1.12

In the regularized filters, interpolation is only used for propagating the
state, and because the system equation is already inexpensive to evaluate,
no improvement is seen in efficiency. However, the locally linearized optimal
importance density is considerably more expensive to sample from than the
prior. By applying interpolation to the mean and the square root of the
covariance, the computational work is reduced by a factor of approximately
1/4. Although this is a modest improvement, it is nonetheless significant
when considering the nature of this example; because it is inexpensive to
evaluate, we expect that at least this level of improvement would be seen for
most other systems.
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4.2 Kraichnan-Orszag System

The equations for the Kraichnan-Orszag system [27,37] are given by:

ẋ1 = x2x3 + w1

ẋ2 = x1x3 + w2

ẋ3 = −2x1x2 + w3,
y = x + r.

(18)

Initial conditions of the true system are x(0) = [0, 1, 2]′, P0 = I3, and Gaus-
sian noises w and r both have zero-mean and covariance I3. Filter initial
conditions were sampled from N(x(0), I3). Fig. 2 shows trajectories through
time of each state for one realization. An Euler step was used with a time
step of dt = 0.001 and measurements taken at every 100dt. We note that
there are more efficient ways to design a standard SMC algorithm for this
system; however, our intention is to demonstrate the gains yielded by in-
terpolation on a system with a prior that is very expensive to sample from,
and to show that although now the weight update (11) is approximate, the
interpolated filter still performs quite well.
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Figure 2: A realization of the Kraichnan-Orszag system.

Because this system is a stochastic ordinary differential equation [22, 26]
discretized over multiple time steps between measurements, process noise be-
comes an issue. Rigorous application of the RPF is straightforward: the im-
portance density is the prior, so simply adding scaled samples of the process
noise to the simulated trajectories at each time step between measurements
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is sufficient. However, this importance density cannot be straightforwardly
separated into a deterministic and stochastic portion, and thus interpolation
cannot be rigorously applied. Instead we incorporate process noise heuris-
tically by adding to each particle post interpolation a zero-mean Gaussian
noise sample of variance dt2 · n2

s · Q, where ns is the number of time steps
between measurements. Both types of IPF are applied, and are denoted
IRPFa − 8/100 and IRPFb − 64/100. The former uses eight interpolation
nodes at each iteration, and latter precomputes a 64-node interpolant over
the fixed region [−4, 4] × [0, 4] × [−4, 4].

Implementing SIR with the optimal importance density poses additional
complications; one could augment the state vector with the process noise at
each time step, but this would drive the dimension of the system into the
hundreds. Instead we apply the above heuristic, using Q′ = dt2·n2

s ·Q in place
of Q in (13) and (14). This also makes the importance density separable,
allowing interpolation to be applied without any further heuristic. An SIR-
8, SIR-100, and an ISIRa − 8/100 were compared, with interpolation being
applied to the mean and the square root of the covariance in the ISIRa −
8/100.

Table 2 shows the mean over time of the mean absolute errors for this
example. The two IRPF’s perform comparably with the RPF-100, but with
drastic improvements in time, particularly for the IRPFb − 64/100. The
optimal importance density SIR-100 and ISIRa−8/100 filters perform nearly
identically, again with a near order of magnitude improvement in time for
the interpolated filter.

Table 2: Kraichnan-Orszag system errors
Filter x1 x2 x3 time (s)
RPF-8 0.68 0.47 0.97 1.84
RPF-100 0.32 0.22 0.46 23.01
IRPFa-8/100 0.34 0.28 0.44 2.59
IRPFb-64/100 0.35 0.29 0.46 1.40
SIR-8 0.42 0.35 0.58 1.54
SIR-100 0.22 0.20 0.28 19.28
ISIRa-8/100 0.21 0.20 0.27 3.80

5 Conclusion

We have presented an approach in which interpolation is used to construct an
inexpensive approximation to the importance density, which can be used in
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place of the true importance density, to propagate a large number of particles
at a reduced cost. The method yields significant improvements in efficiency
compared with several standard SMC algorithms, as demonstrated in two
examples. The computational gains are most appealing for systems with
expensive importance densities, but with few enough states that quadratures
are effective. These include nonlinear differential equations with infrequent
sampling.
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