
MIT Open Access Articles

McCormick-Based Relaxations of Algorithms

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Mitsos, Alexander, Benoit Chachuat, and Paul I. Barton. “McCormick-Based
Relaxations of Algorithms.” SIAM Journal on Optimization 20.2 (2009): 573-601. © 2009 Society
for Industrial and Applied Mathematics

As Published: http://dx.doi.org/10.1137/080717341

Publisher: Society for Industrial and Applied Mathematics

Persistent URL: http://hdl.handle.net/1721.1/52407

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/52407

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. OPTIM. c© 2009 Society for Industrial and Applied Mathematics
Vol. 20, No. 2, pp. 573–601

MCCORMICK-BASED RELAXATIONS OF ALGORITHMS∗

ALEXANDER MITSOS† , BENOÎT CHACHUAT‡, AND PAUL I. BARTON§

Abstract. Theory and implementation for the global optimization of a wide class of algorithms
is presented via convex/affine relaxations. The basis for the proposed relaxations is the systematic
construction of subgradients for the convex relaxations of factorable functions by McCormick [Math.
Prog., 10 (1976), pp. 147–175]. Similar to the convex relaxation, the subgradient propagation relies
on the recursive application of a few rules, namely, the calculation of subgradients for addition,
multiplication, and composition operations. Subgradients at interior points can be calculated for any
factorable function for which a McCormick relaxation exists, provided that subgradients are known
for the relaxations of the univariate intrinsic functions. For boundary points, additional assumptions
are necessary. An automated implementation based on operator overloading is presented, and the
calculation of bounds based on affine relaxation is demonstrated for illustrative examples. Two
numerical examples for the global optimization of algorithms are presented. In both examples a
parameter estimation problem with embedded differential equations is considered. The solution of
the differential equations is approximated by algorithms with a fixed number of iterations.

Key words. nonconvex optimization, global optimization, convex relaxation, subgradient, non-
smooth

AMS subject classifications. 65K05, 90C26, 90C30, 49M20

DOI. 10.1137/080717341

1. Introduction. The development of deterministic algorithms based on contin-
uous and/or discrete branch-and-bound [10, 17, 18] has facilitated the global optimiza-
tion of nonconvex programs. The basic principle of branch-and-bound, and related
algorithms such as branch-and-cut [19] and branch-and-reduce [27], is to bound the
optimal objective value between a lower bound and an upper bound. By branching on
the host set, these bounds become tighter and eventually converge. For minimization,
upper bounds are typically obtained via a feasible point or via a local solution of the
original program. For the lower bound, typically a convex or affine relaxation of the
nonconvex program is constructed and solved to global optimality via a convex solver.
Convex and concave envelopes or tight relaxations are known for a variety of simple
nonlinear terms [1, 33, 35], and this allows the construction of convex and concave re-
laxations for a quite general class of functions through several methods [21, 2, 33, 12].
Simple lower bounds from interval analysis are also widely used in global optimization,
e.g., [6, 7, 25]. Such bounds are often weaker but less computationally expensive to
evaluate than relaxation-based bounds. For instance, for a box-constrained problem,
no linear program (LP) or convex nonlinear program (NLP) needs to be solved.

The majority of the literature on global optimization considers nonconvex pro-
grams for which explicit functions are known for the objective and constraints. A more

∗Received by the editors March 1, 2008; accepted for publication (in revised form) December
16, 2008; published electronically May 22, 2009. This paper is based upon work supported by the
National Science Foundation under grant CTS-0521962.

http://www.siam.org/journals/siopt/20-2/71734.html
†Aachen Institute for Advanced Study in Computational Engineering Science, RWTH Aachen,

Germany (amitsos@alum.mit.edu). Financial support from the Deutsche Forschungsgemeinschaft
(German Research Association) through grant GSC 111 is gratefully acknowledged.

‡Department of Chemical Engineering, McMaster University, Hamilton, ON (bchachua@alum.
mit.edu).

§Corresponding author. Department of Chemical Engineering, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139 (pib@mit.edu).

573

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

574 A. MITSOS, B. CHACHUAT, AND P. I. BARTON

general case is that the objective function and/or constraints are calculated implicitly
by an algorithm, e.g., solution of a boundary value problem via the finite element
method. This article sets the foundations for the global optimization of such problems
by automatically constructing convex and/or affine relaxations of algorithms. This
concept is similar in principle to that of automatic differentiation (AD) [13] and
extends the applicability of global optimization algorithms considerably. If a function
is defined implicitly by an algorithm, the propagation of McCormick’s composition
result [21, 22] results in a (nonsmooth) convex relaxation of the function. In this
article the systematic propagation of subgradients is described without introducing
auxiliary variables. The calculation of subgradients allows the use of a nonsmooth
NLP solver to obtain the required lower bound. Alternatively, a linearization via the
subgradients can give an affine relaxation. Throughout this article the latter case is
applied to algorithms with a fixed number of iterations. The optimization problems
considered are box-constrained, and therefore, the affine relaxation requires a single
function and subgradient evaluation.

In addition to the optimization of algorithms, the proposed subgradient propa-
gation can be used in other areas of global optimization. Efficient solvers for convex
NLPs involving nonsmooth functions, such as bundle methods, have recently been de-
veloped, e.g., [20, 15], and the development given here would allow their application to
the lower bounding problem of global optimization when the McCormick relaxations
are employed. Due to the scalability and reliability of linear programming solvers,
linearization of a smooth reformulation via the introduction of auxiliary variables and
constraints has been successfully employed in nonlinear programs and mixed-integer
nonlinear programs (MINLPs) [35, 36, 34]. The results of this paper could also be
used for NLPs and MINLPs providing very cheap lower bounds, but the introduction
of auxiliary variables and constraints might furnish tighter relaxations [34, p. 128].
Therefore, the results proposed herein should be viewed as an alternative to and not
as a replacement for existing methods; as is demonstrated below, our proposal is bet-
ter than existing methods for some problems. However, no claim for superiority in
general is made.

It should be noted that the introduction of auxiliary variables is not always ad-
visable or possible. For instance, two recent proposals for the construction of upper
bounds for semi-infinite programs (SIPs) rely on the construction of a convex relax-
ation of the lower-level problem [11, 23]. One of the possibilities proposed in [23]
is to further relax the lower-level program by linearizations at arbitrary parameter
points. This is only advisable when the set of parameter vertices is easily calcu-
lated [23], which, in general, can only be done exactly when no auxiliary variables
are introduced. Moreover, the introduction of auxiliary variables makes the upper
bounding problem significantly more computationally expensive to solve. Another
area where using auxiliary variables seems intractable is the method by Singer and
Barton [30] to construct convex relaxations for the solutions of ordinary differential
equations (ODEs) dependent on parameters. Their method relies on linearizations to
convex and concave relaxations of the right-hand sides of the ODEs via McCormick’s
composition theorem and factorable presentation without the introduction of addi-
tional variables and constraints. In general, this gives a nonsmooth relaxation, and
therefore, the linearization requires the computation of subgradients.

Note at this point that, despite a superficial similarity, the subgradients proposed
in this article are very different from the construction of piecewise affine relaxations by
Wang and Chang [39, 40, 41]. In contrast to the results herein, Wang and Chang do
not consider convex relaxation prior to the linearization and do not use subgradient

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MCCORMICK-BASED RELAXATIONS OF ALGORITHMS 575

information. For the intended use in SIPs, piecewise linearization is not suitable
because the set of parameter vertices cannot be easily calculated. Also, the method
proposed by Wang and Chang does not seem applicable to the relaxation of algorithms.

In the remainder of this paper, first the theoretical framework of McCormick
relaxations as well as basic results on subgradients are summarized; these results
are from the literature. In section 3, additional theoretical results required for the
propagation of subgradients of the McCormick relaxations are developed, along with a
description of important points for application and illustrative examples; these results
are not available in the literature and are required for the relaxations of algorithms.
The results are given for a single subgradient as opposed to the entire subdifferential
to maintain consistency with the implementation. Presumably, all theoretical results
could be extended to the entire subdifferential, but there are severe complications
for implementation. In section 4, an automated implementation is described along
with illustrative examples. In section 5, the relaxation of algorithms is described in
more detail, and two simple numerical examples illustrate its potential. The paper is
concluded by discussing potential future work. To our best knowledge the material
presented in sections 3, 4, and 5 is original with the exception of subsection 4.1, which
gives a brief overview of AD.

2. Background. This section contains definitions of concepts used in what fol-
lows, as well as a summary of the existing literature results needed for the development
of the main results.

2.1. Definitions. Throughout the paper convex and concave relaxations are
considered.

Definition 2.1 (relaxation of functions). Given a convex set Z ⊂ R
n and a

function f : Z → R, a convex function fu : Z → R is a convex relaxation (or
convex underestimator) of f on Z if fu(z) ≤ f(z) for all z ∈ Z. Similarly, a concave
function fo : Z → R is a concave relaxation (or concave overestimator) of f on Z if
fo(z) ≥ f(z) for all z ∈ Z. The definitions for affine underestimator ful and affine
overestimator fol are analogous.

McCormick relaxations are applicable to factorable functions.
Definition 2.2 (factorable function). A function is factorable if it is defined by

a finite recursive composition of binary sums, binary products, and a given library of
univariate intrinsic functions.

Factorable functions cover a quite general class of functions. The simplest subclass
of factorable functions are those defined without recursion, e.g., g : Z → R, g(z) =
F1(f1(z)) + F2(f2(z))F3(f3(z)), where Z ⊂ R

n, F1, F2, F3 : R → R are from the
library of univariate intrinsic functions, and f1, f2, f3 : Z → R. For the application
of McCormick’s composition theorem, all functions (F1, F2, F3, f1, f2, f3) must have
known convex and concave relaxations as well as known enclosures for their ranges.

Definition 2.3 (McCormick relaxations). The relaxations of a factorable func-
tion that are formed via the recursive application of rules for the relaxation of univari-
ate composition, binary multiplication, and binary addition from convex and concave
relaxations of the univariate intrinsic functions, without the introduction of auxiliary
variables, are termed McCormick relaxations.

The aforementioned rules are described in detail in section 2.3.
McCormick relaxations are, in general, nonsmooth and, therefore, subgradients

are needed.
Definition 2.4 (subgradient). Let Z ⊂ R

n be a nonempty convex set, fu : Z →
R be convex, and fo : Z → R be concave. A vector su ∈ R

n is called a subgradient of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

576 A. MITSOS, B. CHACHUAT, AND P. I. BARTON

fu at z̄ ∈ Z if fu(z) ≥ fu(z̄) + (su)T(z− z̄) for all z ∈ Z. A vector so ∈ R
n is called

a subgradient of fo at z̄ ∈ Z if fo(z) ≤ fo(z̄) + (so)T(z − z̄) for all z ∈ Z.
Existence of subgradients on the interior of Z is guaranteed, and for differentiable

convex and concave functions, the unique subgradient is the gradient [4].
In addition to the well-known min and max functions, McCormick relaxations use

the mid function, which selects the middle value between three scalar arguments.
Definition 2.5 (mid function). Given three numbers α, β, γ ∈ R, the mid func-

tion is defined as

mid{α, β, γ} =

⎧⎪⎨
⎪⎩

α if β ≤ α ≤ γ or γ ≤ α ≤ β,

β if α ≤ β ≤ γ or γ ≤ β ≤ α,

γ if α ≤ γ ≤ β or β ≤ γ ≤ α.

2.2. Interval extensions. A necessary step in constructing convex relaxations
via the McCormick factorization is the recursive propagation of estimates of the ranges
of the factors. This is typically done via natural interval extensions, which are briefly
described here. For a thorough description of interval analysis, the reader is referred to
the literature, e.g., [24, 3]. The first step in computing the natural interval extension
is to decompose a given function into a finite recursive composition of elementary
operations (e.g., binary multiplication, binary addition) and intrinsic functions, such
as monomials or the exponential function; compare also the definition of a factorable
function. For each of the intrinsic functions and elementary operations, a rule is
available to construct the natural interval extension. For instance, in the addition of
two intervals, the lower bound of the sum is given by summing the two lower bounds
and the upper bound of the sum by summing the two upper bounds. In general,
natural interval extensions lead to an overestimation of the range, but in special
cases, such as monomials, an exact estimate is obtained.

2.3. McCormick relaxations. Constructing convex and concave relaxations of
factorable functions requires rules for the relaxation of sums, products, and univariate
composition. The sum of convex functions is convex, and the sum of concave functions
is concave. Therefore, convex and concave relaxations for the sum of two functions
can be easily constructed as stated in the following proposition.

Proposition 2.6 (relaxations of sums). Let Z ⊂ R
n be a nonempty convex set,

and g, g1, g2 : Z → R such that g(z) = g1(z) + g2(z). Let gu
1 , go

1 : Z → R be a convex
and concave relaxation of g1 on Z, respectively. Similarly, let gu

2 , go
2 : Z → R be a con-

vex and concave relaxation of g2 on Z, respectively. Then, gu, go : Z → R, such that

gu(z) = gu
1 (z) + gu

2 (z), go(z) = go
1(z) + go

2(z),

are, respectively, a convex and concave relaxation of g on Z.
Calculating relaxations for the product of two functions is somewhat more elabo-

rate, as shown in the following proposition, which follows from the convex and concave
envelopes of a bilinear function [21].

Proposition 2.7 (relaxations of products). Let Z ⊂ R
n be a nonempty convex

set, and g, g1, g2 : Z → R such that g(z) = g1(z) g2(z). Let gu
1 , go

1 : Z → R be a
convex and concave relaxation of g1 on Z, respectively. Similarly, let gu

2 , go
2 : Z →

R be a convex and concave relaxation of g2 on Z, respectively. Furthermore, let
gL
1 , gU

1 , gL
2 , gU

2 ∈ R such that

gL
1 ≤ g1(z) ≤ gU

1 for all z ∈ Z and gL
2 ≤ g2(z) ≤ gU

2 for all z ∈ Z.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MCCORMICK-BASED RELAXATIONS OF ALGORITHMS 577

Consider the following intermediate functions, α1, α2, β1, β2, γ1, γ2, δ1, δ2 : Z → R:

α1(z) = min
{
gL
2 gu

1 (z), gL
2 go

1(z)
}

, α2(z) = min
{
gL
1 gu

2 (z), gL
1 go

2(z)
}

,

β1(z) = min
{
gU
2 gu

1 (z), gU
2 go

1(z)
}

, β2(z) = min
{
gU
1 gu

2 (z), gU
1 go

2(z)
}

,

γ1(z) = max
{
gL
2 gu

1 (z), gL
2 go

1(z)
}

, γ2(z) = max
{
gU
1 gu

2 (z), gU
1 go

2(z)
}

,

δ1(z) = max
{
gU
2 gu

1 (z), gU
2 go

1(z)
}

, δ2(z) = max
{
gL
1 gu

2 (z), gL
1 go

2(z)
}

.

Then, α1, α2, β1, and β2 are convex on Z, while γ1, γ2, δ1, and δ2 are concave on
Z. Moreover, gu, go : Z → R, such that

gu(z) = max
{
α1(z) + α2(z) − gL

1 gL
2 , β1(z) + β2(z) − gU

1 gU
2

}
,

go(z) = min
{
γ1(z) + γ2(z) − gU

1 gL
2 , δ1(z) + δ2(z) − gL

1 gU
2

}
,

are, respectively, a convex and concave relaxation of g on Z.
McCormick [21, 22] provided a relaxation result for the composition of functions.

Note that, in deviation from these references, any convex/concave relaxation is allowed
here for the univariate function without restriction to the convex/concave envelope.

Theorem 2.8 (McCormick’s composition theorem). Let Z ⊂ R
n and X ⊂ R be

nonempty convex sets. Consider the composite function g = F ◦ f , where f : Z → R

is continuous, F : X → R, and let f(Z) ⊂ X. Suppose that a convex relaxation
fu : Z → R and a concave relaxation fo : Z → R of f on Z are known. Let
Fu : X → R be a convex relaxation of F on X, let F o : X → R be a concave
relaxation of F on X, let xmin ∈ X be a point at which Fu attains its infimum on
X, and let xmax ∈ X be a point at which F o attains its supremum on X. Then,
gu : Z → R,

gu(z) = Fu
(
mid

{
fu(z), fo(z), xmin

})
is a convex relaxation of g on Z, and go : Z → R,

go(z) = F o (mid {fu(z), fo(z), xmax})

is a concave relaxation of g on Z.
By definition fu(z) ≤ fo(z), and therefore,

mid
{
fu(z), fo(z), xmin

}
=

⎧⎪⎨
⎪⎩

fu(z) if xmin < fu(z),
fo(z) if xmin > fo(z),
xmin otherwise,

mid {fu(z), fo(z), xmax} =

⎧⎪⎨
⎪⎩

fu(z) if xmax < fu(z),
fo(z) if xmax > fo(z),
xmax otherwise.

Due to the presence of the mid function, the convex and concave relaxations con-
structed by application of Theorem 2.8 are not guaranteed to be smooth. This situa-
tion arises, e.g., when xmin ∈ int(fu(Z)) and is illustrated by the following example.

Example 2.1 (nonsmooth McCormick relaxation). Let

Z = {z ∈ R : −1 ≤ z ≤ 1}

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

578 A. MITSOS, B. CHACHUAT, AND P. I. BARTON

 0

 0.5

 1

 1.5

 2

 2.5

-1 -0.5 0 0.5 1

z

Original function
Convex underestimator

Fig. 2.1. Graphical illustration of Example 2.1.

and note that Z is a nonempty and convex set. Consider the function g : Z → R,
g(z) = ez3

, which can be written as the composition g = F ◦ f by choosing f(z) = z3,
X = [−1, 1], and F (x) = ex. A valid underestimator fu and overestimator fo of f on
Z are given by the αBB relaxations [2]:

fu(z) = z3 + 3
(
z2 − 1

)
, fo(z) = z3 − 3

(
z2 − 1

)
.

Furthermore, since the exponential function is convex, Fu(x) = F (x) = ex. Finally,
since the exponential function is increasing, xmin = −1. By application of Theo-
rem 2.8, a convex underestimator gu : Z → R of g on Z is given by

gu(z) = emid{z3+3(z2−1),z3−3(z2−1),−1} =

{
e−1 if z ≤ −1 +

√
3,

ez3+3(z2−1) otherwise,

which is clearly nonsmooth, as seen also in Figure 2.1.

2.4. Subgradients. Some results are now summarized for subgradients which
can be found in the literature, e.g., [26, 14, 15, 16] or are quite intuitive and can be
derived easily. The following proposition is based on Theorem D-4.1.1 from Hiriart-
Urruty and Lemaréchal [16].

Proposition 2.9 (addition rule for subgradients). Let Z ⊂ R
n be a nonempty

convex set. Suppose that fu
1 , fu

2 : Z → R are convex, su
1 is a subgradient of fu

1 at
z̄ ∈ Z, and su

2 is a subgradient of fu
2 at z̄. Then, the function fu

1 +fu
2 is convex on Z,

and su
1 + su

2 is a subgradient of fu
1 + fu

2 at z̄. Similarly, suppose that fo
1 , fo

2 : Z → R

are concave, so
1 is a subgradient of fo

1 at z̄ ∈ Z, and so
2 is a subgradient of fo

2 at z̄.
Then, the function fo

1 + fo
2 is concave on Z, and so

1 + so
2 is a subgradient of fo

1 + fo
2

at z̄.
For the following proposition, see also Theorem D-4.4.1 from Hiriart-Urruty and

Lemaréchal [16].
Proposition 2.10 (max and min rule for subgradients). Let Z ⊂ R

n be a
nonempty convex set. Suppose that α1, α2, β1, β2 : Z → R are convex, sα1 is a sub-
gradient of α1 at z̄ ∈ Z, sα2 is a subgradient of α2 at z̄, sβ1 is a subgradient of β1

at z̄, sβ2 is a subgradient of β2 at z̄, and a, b ∈ R are constants. Then, the function
gmax : Z → R

gmax(z) ≡ max{α1(z) + α2(z) − a, β1(z) + β2(z) − b}

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MCCORMICK-BASED RELAXATIONS OF ALGORITHMS 579

is convex on Z and
1. if α1(z̄) + α2(z̄) − a ≥ β1(z̄) + β2(z̄) − b, then a subgradient of gmax at z̄ is

given by sα1 + sα2 ;
2. if α1(z̄) + α2(z̄) − a ≤ β1(z̄) + β2(z̄) − b, then a subgradient of gmax at z̄ is

given by sβ1 + sβ2 .
Similarly, suppose that γ1, γ2, δ1, δ2 : Z → R are concave, sγ1 is a subgradient of γ1

at z̄ ∈ Z, sγ2 is a subgradient of γ2 at z̄, sδ1 is a subgradient of δ1 at z̄, sδ2 is a
subgradient of δ2 at z̄, and c, d ∈ R are constants. Then, the function gmin : Z → R

gmin(z) ≡ min{γ1(z) + γ2(z) − c, δ1(z) + δ2(z) − d}
is concave on Z and

1. if γ1(z̄) + γ2(z̄) − c ≤ δ1(z̄) + δ2(z̄) − d, then a subgradient of gmin at z̄ is
given by sγ1 + sγ2 ;

2. if γ1(z̄) + γ2(z̄) − c ≥ δ1(z̄) + δ2(z̄) − d, then a subgradient of gmin at z̄ is
given by sδ1 + sδ2 .

For the following proposition, see also Theorem D-4.1.1 from Hiriart-Urruty and
Lemaréchal [16].

Proposition 2.11 (scalar multiplication rule for subgradients). Suppose that
Z ⊂ R

n is a nonempty convex set, fu : Z → R is a convex function, su is a subgradient
of fu at z̄ ∈ Z, fo : Z → R is a concave function, so is a subgradient of fo at z̄, and
κ ∈ R is a constant. Then, the function α : Z → R,

α(z) =
{

κfu(z) if κ ≥ 0,
κfo(z) otherwise,

is convex on Z and
1. if κ ≥ 0, then κsu is a subgradient of α at z̄;
2. if κ < 0, then κso is a subgradient of α at z̄.

Similarly, the function β : Z → R

β(z) =
{

κfo(z) if κ ≥ 0,
κfu(z) otherwise,

is concave on Z and
1. if κ ≥ 0, then κso is a subgradient of β at z̄;
2. if κ < 0, then κsu is a subgradient of β at z̄.

The following lemma is based on Theorem D-4.3.1 from Hiriart-Urruty and
Lemaréchal [16].

Lemma 2.12 (subgradient rule for postcomposition with a function). Let X ⊂ R

and Z ⊂ R
n be nonempty convex sets and z̄ ∈ Z. Suppose that Fu, F o : X → R are,

respectively, a convex and concave function, and fu, fo : Z → R are, respectively, a
convex and concave function, with fu(Z) ⊂ X and fo(Z) ⊂ X. Consider xu, xo ∈ X
such that xu = fu(z̄) and xo = fo(z̄). Let σuu be a subgradient of Fu at xu, σuo be
a subgradient of Fu at xo, σou be a subgradient of F o at xu, σoo be a subgradient of
F o at xo, su be a subgradient of fu at z̄, and so be a subgradient of fo at z̄.

1. Suppose that Fu is nondecreasing. Then, the composite function Fu ◦ fu is
convex on Z, and σuusu is a subgradient of Fu ◦ fu at z̄.

2. Suppose that Fu is nonincreasing. Then, the composite function Fu ◦ fo is
convex on Z, and σuoso is a subgradient of Fu ◦ fo at z̄.

3. Suppose that F o is nonincreasing. Then, the composite function F o ◦ fu is
concave on Z, and σousu is a subgradient of F o ◦ fu at z̄.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

580 A. MITSOS, B. CHACHUAT, AND P. I. BARTON

4. Suppose that F o is nondecreasing. Then, the composite function F o ◦ fo is
concave on Z, and σooso is a subgradient of F o ◦ fo at z̄.

3. Subgradient propagation. In this section, the development and implemen-
tation of the recursive subgradient propagation through the McCormick relaxations
are presented.

3.1. Theoretical development. In order to employ Lemma 2.12 for the cal-
culation of subgradients of McCormick relaxations, the following intermediate result
will be used.

Lemma 3.1. Let X ⊂ R be a nonempty convex set.
1. Let fu : X → R be convex. Suppose that the infimum of fu on X is attained,

and xmin ∈ arg minx∈X fu(x). Then
(a) fu is nonincreasing for x ≤ xmin,
(b) fu is nondecreasing for x ≥ xmin.

2. Similarly, let fo : X → R be concave. Suppose that the supremum of fo on
X is attained, and xmax ∈ argmaxx∈X fo(x). Then
(a) fo is nondecreasing for x ≤ xmax,
(b) fo is nonincreasing for x ≥ xmax.

The proof is elementary.
Subgradient calculation for the composition theorem by McCormick is now pre-

sented. Note that by construction fu(z) ≤ fo(z) for all z ∈ Z, and therefore, the
three cases considered below cover all possibilities.

Theorem 3.2 (subgradients from McCormick’s composition). Suppose that Z ⊂
R

n is a nonempty convex set. Suppose further that Theorem 2.8 has been applied to
the composite function F ◦ f to obtain the convex relaxation gu : Z → R,

gu(z) = Fu(mid{fu(z), fo(z), xmin})

and the concave relaxation go : Z → R,

go(z) = F o(mid{fu(z), fo(z), xmax}).

Consider z̄ ∈ Z and xu, xo ∈ X such that xu = fu(z̄) and xo = fo(z̄). Suppose that
σuu is a subgradient of Fu at xu, σuo is a subgradient of Fu at xo, su is a subgradient
of fu at z̄, σou is a subgradient of F o at xu, σoo is a subgradient of F o at xo, and so

is a subgradient of fo at z̄. Then, a subgradient of gu at z̄ is given by
1. 0 if fu(z̄) ≤ xmin ≤ fo(z̄),
2. σuoso if fo(z̄) < xmin,
3. σuusu if xmin < fu(z̄),

and a subgradient of go at z̄ is given by
1. 0 if fu(z̄) ≤ xmax ≤ fo(z̄),
2. σooso if fo(z̄) < xmax,
3. σousu if xmax < fu(z̄).

Proof. From the McCormick construction, the function mid{fu(z), fo(z), xmin} ∈
X ∀z ∈ Z.

1. If fu(z̄) ≤ xmin ≤ fo(z̄), then Fu(mid{fu(z̄), fo(z̄), xmin}) = Fu(xmin), and
the result follows immediately because

Fu(xmin) ≤ Fu(mid{fu(z), fo(z), xmin}) for all z ∈ Z

by the definition of xmin, since mid{fu(z), fo(z), xmin} ∈ X .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MCCORMICK-BASED RELAXATIONS OF ALGORITHMS 581

2. If fo(z̄) < xmin, then from Lemma 3.1 part 1a, there exists a neighborhood of
fo(z̄) on which Fu is nonincreasing. Moreover, Fu(mid{fu(z̄), fo(z̄), xmin}) =
Fu(fo(z̄)). Therefore, the hypotheses of Lemma 2.12 part 2 are satisfied, and
σuoso is a subgradient of gu at z̄.

3. If xmin < fu(z̄), then from Lemma 3.1 part 1b there exists a neighborhood of
fu(z̄) on which Fu is nondecreasing. Moreover, Fu(mid{fu(z̄), fo(z̄), xmin}) =
Fu(fu(z̄)). Therefore, the hypotheses of Lemma 2.12 part 1 are satisfied, and
σuusu is a subgradient of gu at z̄.

The proof for the subgradients of go is analogous.
Note that in parts 2 and 3 in the above proof, Lemma 2.12 is only used for a

neighborhood; this is justified by an examination of the proof of Lemma 2.12.
A rule is also needed for the subgradients of the relaxation of a product of func-

tions.
Theorem 3.3 (multiplication rule for subgradients). Suppose that Z ⊂ R

n

is a nonempty convex set, and z̄ ∈ Z. Let g, g1, g2 : Z → R such that g(z) =
g1(z)g2(z). Let gu

1 , go
1 : Z → R be a convex and concave relaxation of g1 on Z,

respectively. Similarly, let gu
2 , go

2 : Z → R be a convex and concave relaxation of g2 on
Z, respectively. Furthermore, let gL

1 , gU
1 , gL

2 , gU
2 ∈ R such that

gL
1 ≤ g1(z) ≤ gU

1 for all z ∈ Z and gL
2 ≤ g2(z) ≤ gU

2 for all z ∈ Z.

Consider the following intermediate functions, α1, α2, β1, β2, γ1, γ2, δ1, δ2 : Z → R:

α1(z) = min
{
gL
2 gu

1 (z), gL
2 go

1(z)
}

, α2(z) = min
{
gL
1 gu

2 (z), gL
1 go

2(z)
}

,

β1(z) = min
{
gU
2 gu

1 (z), gU
2 go

1(z)
}

, β2(z) = min
{
gU
1 gu

2 (z), gU
1 go

2(z)
}

,

γ1(z) = max
{
gL
2 gu

1 (z), gL
2 go

1(z)
}

, γ2(z) = max
{
gU
1 gu

2 (z), gU
1 go

2(z)
}

,

δ1(z) = max
{
gU
2 gu

1 (z), gU
2 go

1(z)
}

, δ2(z) = max
{
gL
1 gu

2 (z), gL
1 go

2(z)
}

.

Then, α1, α2, β1, and β2 are convex on Z, and γ1, γ2, δ1, and δ2 are concave on Z.
The functions gu, go : Z → R, such that

gu(z) = max
{
α1(z) + α2(z) − gL

1 gL
2 , β1(z) + β2(z) − gU

1 gU
2

}
,

go(z) = min
{
γ1(z) + γ2(z) − gU

1 gL
2 , δ1(z) + δ2(z) − gL

1 gU
2

}
,

are, respectively, a convex and concave relaxation of g on Z.
Moreover, subgradients of α1, α2, β1, β2, γ1, γ2, δ1, δ2 at z̄ are given by

sα1 =

{
gL
2 sgu

1 if gL
2 ≥ 0,

gL
2 sgo

1 otherwise,
sα2 =

{
gL
1 sgu

2 if gL
1 ≥ 0,

gL
1 sgo

2 otherwise,

sβ1 =

{
gU
2 sgu

1 if gU
2 ≥ 0,

gU
2 sgo

1 otherwise,
sβ2 =

{
gU
1 sgu

2 if gU
1 ≥ 0,

gU
1 sgo

2 otherwise,

sγ1 =

{
gL
2 sgo

1 if gL
2 ≥ 0,

gL
2 sgu

1 otherwise,
sγ2 =

{
gU
1 sgo

2 if gU
1 ≥ 0,

gU
1 sgu

2 otherwise,

sδ1 =

{
gU
2 sgo

1 if gU
2 ≥ 0,

gU
2 sgu

1 otherwise,
sδ2 =

{
gL
1 sgo

2 if gL
1 ≥ 0,

gL
1 sgu

2 otherwise,

where sgu
1 , sgo

1 , sgu
2 , sgo

2 are, respectively, subgradients of gu
1 , go

1, gu
2 , go

2 at z̄.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

582 A. MITSOS, B. CHACHUAT, AND P. I. BARTON

Finally, a subgradient of gu at z̄ is given by
1. sα1 + sα2 if α1(z̄) + α2(z̄) − a ≥ β1(z̄) + β2(z̄) − b,
2. sβ1 + sβ2 if α1(z̄) + α2(z̄) − a ≤ β1(z̄) + β2(z̄) − b,

and a subgradient of go at z̄ is given by
1. sγ1 + sγ2 if γ1(z̄) + γ2(z̄) − c ≤ δ1(z̄) + δ2(z̄) − d,
2. sδ1 + sδ2 if γ1(z̄) + γ2(z̄) − c ≥ δ1(z̄) + δ2(z̄) − d.

Proof. Recall that by Proposition 2.7, gu and go are, respectively, a convex and
concave relaxation of g on Z. The calculation of subgradients for α1, α2, β1, β2,
γ1, γ2, δ1, δ2 follows directly from their definition and the properties of the min
and max functions. Finally, by Proposition 2.7, α1, α2, β1, and β2 are convex, and
Proposition 2.10 can be invoked to show the desired result for the subgradient of gu.
Similarly, by Proposition 2.7, γ1, γ2, δ1, and δ2 are concave, and Proposition 2.10 can
be again invoked to show the desired result for the subgradient of go.

3.2. Application. In the following, it is briefly discussed how to employ the
above presented results for the systematic propagation of subgradients of the convex
and concave relaxations of factorable functions. Similar to the McCormick relaxations,
a bounded convex set Z ⊂ R

n is assumed along with a real-valued factorable function
g : Z → R, that can be represented in such a way that all univariate functions have
known convex and concave relaxations as well as known enclosures for their ranges.
An implicit assumption in the construction of McCormick relaxations is that the
enclosure propagation is sufficiently tight that there is no domain violation for any
function. As Example 3.1 shows, in some cases additional information is required to
construct the relaxations.

Example 3.1 (domain violation). Consider Z = [−1, 1] and the factorable func-
tion g : Z → R, g(z) =

√|z| + z3. Let f : Z → R, f(z) = |z| + z3, and note f(Z) =
[0, 2]. The natural interval extension of |z| + z3 on Z gives [0, 1] + [−1, 1] = [−1, 2],
and the square root is not defined on this domain.

In the following, functions are assumed for which McCormick relaxations can be
constructed. Recall that existence of subgradients on the interior of Z is guaranteed
[4]. In order to calculate a subgradient at an interior point for a McCormick relax-
ation, the only additional requirement is that subgradients for the relaxations of the
univariate functions can be calculated for any interior point of their domain. The
combination of Proposition 2.9 and Theorems 3.2 and 3.3 provides a simple exten-
sion to the McCormick relaxations that allows the subgradient propagation for any
z̄ ∈ int(Z) without any further assumptions. For sums and products, the subgradi-
ents of the constituent functions are simply used to calculate a subgradient of the
composite function. The following proposition shows that in the composition F ◦ f of
Theorem 3.2, the subgradients of the relaxations of the univariate function are only
required for points in the interior of the domain of the univariate function. The trivial
case that the inner function is a constant is excluded.

Proposition 3.4. Consider the application of Theorem 3.2 for z̄ ∈ int(Z) and
assume that f is not a constant on Z.

1. If fo(z̄) < xmin, then fo(z̄) ∈ int(X).
2. If xmin < fu(z̄), then fu(z̄) ∈ int(X).
3. If fo(z̄) < xmax, then fo(z̄) ∈ int(X).
4. If xmax < fu(z̄), then fu(z̄) ∈ int(X).

As a consequence, subgradients of the univariate relaxations Fu, F o are only required
on int(X).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MCCORMICK-BASED RELAXATIONS OF ALGORITHMS 583

Proof. Only the first of the four cases is proved; the other three cases are analo-
gous. Let X = [xL, xU]. Since xmin ∈ [xL, xU] by fo(z̄) < xmin, it follows fo(z̄) < xU .
It now remains to show xL < fo(z̄).

Since fo is concave on Z and z̄ ∈ int(Z), there exists so such that for all z ∈ Z

fo(z) ≤ fo(z̄) + (so)T(z − z̄).

Since z̄ ∈ int(Z), there exists δ > 0 such that Nδ(z̄) ⊂ Z, where Nδ(z̄) denotes an
open neighborhood of z̄ with radius δ.

Suppose first that so �= 0, i.e., there exists i ∈ {1, . . . , n} such that so
i �= 0. Take

ẑ ∈ Z such that

ẑi = z̄i − sign(si) δ/2 and ẑj = z̄j ∀j ∈ {1, . . . , n} : j �= i.

Clearly, fo(ẑ) < fo(z̄). Since fo is an overestimator of f on Z, it follows f(ẑ) ≤ fo(ẑ).
Moreover, xL ≤ f(ẑ) by the definition of xL. Combining the last three inequalities,
xL < fo(z̄) is obtained.

Suppose now that so = 0. Then, for all z ∈ Z, it follows fo(z) ≤ fo(z̄), which
together with f(z) ≤ fo(z), gives

f(z) ≤ fo(z) ≤ fo(z̄) ∀z ∈ Z.

By definition xL ≤ f(z) for all z ∈ Z. Since by assumption f(Z) �= {xL}, there exists
ẑ ∈ Z such that (s.t.) xL < f(ẑ). Therefore, xL < f(ẑ) ≤ fo(z̄).

Recall that by Theorem 3.2, a subgradient to gu at z̄ is given by
1. 0 if fu(z̄) ≤ xmin ≤ fo(z̄),
2. σuoso if fo(z̄) < xmin,
3. σuusu if xmin < fu(z̄).

In the first case, the subgradients of Fu are not used. In the second case, fo(z̄) ∈
int(X), and therefore, σuo is a subgradient of Fu at a point in the interior of X . The
third case is analogous to the second. The subgradients of go are also analogous.

The calculation of subgradients at boundary points of Z may also be of interest.
For this case some additional assumptions are necessary. For instance, the square root
is a concave function with domain [0, +∞) which is differentiable on (0, +∞), but at
0, no subgradient exists. A sufficient condition is that all the convex and concave
relaxations of univariate functions are differentiable on their domains.

3.2.1. Affine relaxations. By the definition of the subgradient, it is clear that
with the usual notation and for some z̄ ∈ Z, the functions ful, fol : Z → R, such that

ful(z) ≡ fu(z̄) + (su)T(z − z̄) and fol(z) ≡ fo(z̄) + (so)T(z − z̄),

are, respectively, an affine underestimator and an affine overestimator of f on Z. As
described in the introduction, the calculation of these affine relaxations is one of the
goals of this paper. Similarly, to affine relaxations of smooth functions, the choice of
z̄ greatly affects how closely ful and fol approximate the original function. Moreover,
in the case where fu and/or fo are not differentiable at z̄, the choice of subgradient
also affects the approximation.

This linearization allows the calculation of computationally inexpensive bounds
for nonconvex optimization problems. Consider, for instance, a box-constrained prob-
lem minz∈[zL,zU] f(z), with the convex relaxation minz∈[zL,zU] f

u(z). Pick an arbitrary
point z̄ in the interior of Zand construct the further relaxation

ful,∗ = min
z∈[zL,zU]

ful(z),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

584 A. MITSOS, B. CHACHUAT, AND P. I. BARTON

which is a box-constrained problem with an affine objective function. Therefore, an
optimal solution point zul,∗ (nonunique in general) is given by

zul,∗
j =

{
zL

j if su
j ≤ 0,

zU
j otherwise,

j = 1, . . . , n.

The optimal solution value of the affine relaxation (lower bound to the nonconvex
optimization problem) is given by ful(zul,∗) with a small effort in addition to the
computation of a subgradient. This procedure is much cheaper than the solution of
the convex relaxation and comparable to evaluation of the natural interval extension.

Suppose further that the linearization is performed at a finite number of points
z̄i. The above relaxations allow the calculation of an optimal solution point and the
optimal solution value for each of a collection of box-constrained LPs

ful,i,∗ = min
z∈[zL,zU]

ful,i(z).

A valid lower bound to the nonconvex optimization problem is then given by
maxi ful,i,∗. Clearly, the choice of z̄i affects the tightness of the relaxations. Choosing
good points z̄i is outside the scope of this article.

The construction of upper bounds to maxz∈[zL,zU] f(z) is analogous by construct-
ing an affine relaxation maxz∈[zL,zU] f

ol(z). For general constraints, it is still possible
to calculate cheap lower bounds via a relaxation of the feasible set.

3.3. Illustrative example. In this subsection, the propagation of subgradients
is given for a simple function.

Example 3.2 (simple composite function). Let Z = [−1, 1]2, z̄ = 0, f : Z → R

such that f(z) = z1 + |z2|. Let X = [−1, 2] and F : X → R such that F (x) = x2.
An affine underestimator and an affine overestimator of g = F ◦ f , g(z) = (z1 +
|z2|)2 are constructed by linearizing the convex and concave relaxations obtained by
Theorem 2.8 at z̄ = 0. These are shown in Figure 3.1. Note that neither f nor g is
differentiable at z̄.

The inner function f is convex on Z, and therefore, fu : Z → R such that
fu(z) = z1 + |z2| is a convex relaxation of f on Z, and fo : Z → R such that
fo(z) = z1 + 1 is a concave relaxation of f on Z. A subgradient of fu at 0 is given
by su = (1, 0). Since fo is differentiable, its unique subgradient at 0 is given by
so = (1, 0). Since f(Z) = [−1, 2], it follows f(Z) ⊂ X .

The outer function F is convex on X , and therefore, Fu : X → R such that
Fu(x) = x2 is a convex relaxation of F on X , and F o : X → R such that F o(x) = 2+x
is a concave relaxation of F on X . Note that Fu and F o are, respectively, the convex
and concave envelope of F on Z. Moreover, xmin = 0 is the unique minimum of Fu

on X , and xmax = 2 is the unique maximum of F o on X . Since Fu is differentiable,
its unique subgradient is given by the derivative 2x. Similarly, the unique subgradient
of F o is 1.

By Theorem 2.8, gu : Z → R such that

gu(z) = Fu
(
mid

{
fu(z), fo(z), xmin

})
= (mid {z1 + |z2|, z1 + 1, 0})2

is a convex relaxation of g. Since z1 + 1 ≥ 0 for all z ∈ Z, it follows mid{z1 + |z2|,
z1 + 1, 0} = max{z1 + |z2|, 0}, and therefore, gu(z) = (max{z1 + |z2|, 0})2. Thus,
0 = fu(0) ≤ xmin ≤ fo(0) = 1, and therefore, by Theorem 3.2, a subgradient of gu

at 0 is given by 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MCCORMICK-BASED RELAXATIONS OF ALGORITHMS 585

-1
-0.5

 0
 0.5

 1

-1
-0.5

 0
 0.5

 1

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Original function
Convex relaxation

z1
z2

-1
-0.5

 0
 0.5

 1

-1
-0.5

 0
 0.5

 1

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Convex relaxation
Affine underestimator

z1
z2

-1 -0.5 0 0.5 1

-1
-0.5

 0
 0.5

 1

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Original function
Concave relaxation=affine overestimator

z1
z2

Fig. 3.1. Graphical illustration of Example 3.2.

By Theorem 2.8, go : Z → R such that

go(z) = Fu (mid {fu(z), fo(z), xmax}) = 2 + mid {z1 + |z2|, z1 + 1, 2}

is a concave relaxation of g. Since z1 + |z2| ≤ z1 + 1 ≤ 2 for all z ∈ Z, it follows
mid {z1 + |z2|, z1 + 1, 2} = z1 + 1, and therefore, go(z) = 3 + z1. In particular, 1 =
fo(0) < xmax = 2, and therefore, by Theorem 3.2, a subgradient of go at 0 is given
by 1 · (1, 0) = (1, 0).

4. Implementation. The application of the theory presented in section 3 is
both tedious and error-prone for all but the simplest problems, thus, making manual
derivation of the relaxations and their subgradients difficult. Fortunately, the theory
lends itself naturally to automation by a computer.

4.1. Background on automatic differentiation. AD [13] is a method to
evaluate numerically the derivative of a function specified by a computer program.
It exploits the fact that any computer program that implements a function, say,
y = f(x), x ∈ R

n, can be decomposed into a finite sequence of elementary (unary and
binary) operations, any one of which may be differentiated according to the basic rules
of calculus. These elementary derivatives are then combined in accordance with the
chain rule to evaluate some derivative information for f (such as tangents, gradients,
or the Jacobian matrix).

AD is most easily accomplished by the so-called forward mode, which augments
the algebra of real numbers to obtain a new arithmetic. Suppose, for simplicity, that
we want to differentiate the output variable y with respect to the first element x1.
To the result v of an elementary operation, a number v̇ ≡ ∂v

∂x1
is augmented, which

represents the numerical value of the derivative of that variable with respect to x1.
The basic unary and binary arithmetic operators for a pair (v, v̇) in the augmented
algebra can be extended by considering ordinary arithmetic for v, and first-order

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

586 A. MITSOS, B. CHACHUAT, AND P. I. BARTON

exp − ∧ 2

+

×

×

z1 z2

g(z1, z2)

v1 v2

v3 v4

v5

v6

v7

v̇1 v̇2

v̇3 v̇4

v̇5

v̇6

v̇7

Fig. 4.1. Computational graph for forward AD in Example 4.1.

differentiation arithmetic for v̇, e.g.,

(v, v̇) + (w, ẇ) = (v + w, v̇ + ẇ),
(v, v̇) · (w, ẇ) = (vw, v̇w + vẇ),

f((v, v̇)) = (f(v), f ′(v)v̇).

Clearly, the same procedure can be used to evaluate the derivative of y with respect
to the other variables x2, . . . , xn. In particular, the elemental derivatives v̇ can be
redefined to be vectors (rather than scalars) so as to evaluate several partial derivatives
at once. These considerations are illustrated by the following example.

Example 4.1 (forward mode of AD). Let Z = [−1, 3]× [−2, 3] and g : Z → R such
that g(z) = (exp(z1)− z2

2)z1z2. Treating y → −y2 as a univariate (concave) intrinsic
function, a decomposition of g into a sequence of unary and binary operations is as
follows:

v1 = z1 v2 = z2 v3 = exp(v1) v4 = −v2
2

v5 = v3 + v4 v6 = v1v5 v7 = v2v6

with g(z) = v7.
The derivatives of g are evaluated by differentiating each elementary operation in

the above code list. Since both the partial derivatives ∂g
∂z1

and ∂g
∂z2

are to be calculated,
the elementary derivatives v̇i are defined here to be vectors of size 2:

v̇1 = (1, 0) v̇2 = (0, 1) v̇3 = exp(v1)v̇1 v̇4 = −2 v2 v̇2

v̇5 = v̇3 + v̇4 v̇6 = v̇1v5 + v1v̇5 v̇7 = v̇2v6 + v2v̇6

with (∂g
∂x1

, ∂g
∂x2

) = v̇7. This procedure evaluates exact derivatives (within rounding
error).

A computational graph illustrating the evaluation of derivatives of g via the for-
ward mode of AD is shown in Figure 4.1.

4.2. Automatic relaxation and subgradient calculation. The evaluation
of convex/concave relaxations along with subgradients of these relaxations can be
automated in a similar way to the forward mode of AD. Given a factorable function,
a decomposition as a finite recursive composition of binary sums, binary products,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MCCORMICK-BASED RELAXATIONS OF ALGORITHMS 587

exp − ∧ 2

+

×

×

z1 z2

g(z1, z2)

v1 v2

v3 v4

v5

v6

v7

vL
1 , vu

1 , su
1

vU
1 , vo

1 , s
o
1

vL
2 , vu

2 , su
2

vU
2 , vo

2 , s
o
2

vL
3 , vu

3 , su
3

vU
3 , vo

3 , s
o
3

vL
4 , vu

4 , su
4

vU
4 , vo

4 , s
o
4

vL
5 , vu

5 , su
5

vU
5 , vo

5 , s
o
5

vL
6 , vu

6 , su
6

vU
6 , vo

6 , s
o
6

vL
7 , vu

7 , su
7

vU
7 , vo

7 , s
o
7

Fig. 4.2. Computational graph for bound, relaxation, and subgradient propagation in Example 4.2.

and univariate functions is first developed (see Definition 2.2), and intermediate vari-
ables are introduced for each of these elementary operations. Then, lower/upper
bounds, convex/concave relaxations, and subgradients of the convex/concave relax-
ations are calculated for each intermediate variable, in a recursive manner. To achieve
this, the algebra of real numbers is extended to a new arithmetic where 6 numbers
are now augmented to every intermediate variable v, hence, leading to the septu-
ple (v, vL, vU , vu, vo, su, so): the numbers vL, vU store lower and upper bounds on
the variable v; the numbers vu, vo store the values of the convex and concave re-
laxations; and the vectors su, so store subgradients of the convex and concave re-
laxations. The arithmetic operators are extended to the augmented algebra in the
following way:

• The rules to calculate lower and upper bounds for univariate functions and
binary sums and products are the same as those of natural interval extensions
[24].

• The rules to calculate convex and concave relaxations for univariate functions
and binary sums and products are given in Theorem 2.8 and Propositions 2.6
and 2.7, respectively. Moreover, convex/concave relaxations for a variety of
simple univariate functions, such as the exponential function or monomials,
can be found, e.g., in [1, 32, 35, 42].

• Finally, the rules to calculate subgradients for the aforementioned convex
and concave relaxations are those established earlier in Proposition 2.9 and
Theorems 3.2 and 3.3.

The recursive calculation of bounds, relaxations, and subgradients is illustrated by
the following example.

Example 4.2 (automatic relaxation and subgradient calculation). Consider the
same function g as in Example 4.1 for which a factorable representation has already
been given. The computations of bounds, relaxations, and subgradients are initialized
so as to reflect the choice of independent variables z1 and z2, their current values, and
their domain Z. We have vL

1 = −1, vU
1 = 3, vL

2 = −2, vU
2 = 3, vu

1 = vo
1 = z1,

vu
2 = vo

2 = z2, su
1 = so

1 = (1, 0), and su
2 = so

2 = (0, 1). Then the bounds, relaxations,
and subgradients are propagated as in the computational graph shown in Figure 4.2.
The details of this propagation are reported in Table 4.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

588 A. MITSOS, B. CHACHUAT, AND P. I. BARTON

A convex relaxation and a concave relaxation of g on Z are obtained as gu(z) = vu
7

and go(z) = vo
7 , respectively. These relaxations are shown in the upper and lower left

plots of Figure 4.3. Moreover, a subgradient of gu and a subgradient of go at z ∈ Z
are given by su = su

7 and so = so
7, respectively.

Table 4.1

vL
1 = −1 vU

1 = 3
vu
1 = z1 vo

1 = z1
su
1 = (1, 0) so

1 = (1, 0)

vL
2 = −2 vU

2 = 3
vu
2 = z2 vo

2 = z2
su
2 = (0, 1) so

2 = (0, 1)

vL
3 = exp

(
vL
1

)
vU
3 = exp

(
vU
1

)
vu
3 = exp

(
mid

{
vu
1 , vo

1 , vL
1

})
vo
3 =

exp
(

vU
1

)
−exp

(
vL
1

)
vU
1 −vL

1

(
mid

{
vu
1 , vo

1 , vU
1

}
− vL

1

)
+ exp

(
vL
1

)
xmin
3 = vL

1 xmax
3 = vU

1
xu
3 = vu

1 xo
3 = vo

1
σuu
3 = exp (xu

3) σuo
3 = exp (xo

3)

σou
3 =

exp
(

vU
1

)
−exp

(
vL
1

)
vU
1 −vL

1
σoo
3 =

exp
(

vU
1

)
−exp

(
vL
1

)
vU
1 −vL

1

su
3 =

⎧⎪⎨
⎪⎩

0 if xu
3 ≤ xmin

3 ≤ xo
3,

σuo
3 so

1 if xo
3 < xmin

3 ,

σuo
3 su

1 otherwise.

so
3 =

⎧⎪⎨
⎪⎩

0 if xu
3 ≤ xmax

3 ≤ xo
3,

σoo
3 so

1 if xo
3 < xmax

3 ,

σou
3 su

1 otherwise.

xmin
4 =

{
vL
2 if

∣∣∣vL
2

∣∣∣ ≥
∣∣∣vU

2

∣∣∣ ,

vU
2 otherwise.

xmax
4 = mid

(
0, vL

2 , vU
2

)
vL
4 = −(xmin

4)2 vU
4 = −(xmax

4)2

vu
4 =

−
(

vU
2

)2+
(

vL
2

)2

vU
2 −vL

2

(
mid

{
vu
2 , vo

2 , xmax
4

}
− vL

2

)
vo
4 = −

(
mid

{
vu
2 , vo

2 , xmin
4

})2

−
(

vL
2

)2

xu
4 = vu

2 xo
4 = vo

2

σuu
4 =

−
(

vU
2

)2+
(

vL
2

)2

vU
2 −vL

2
σuo
4 =

−
(

vU
2

)2+
(

vL
2

)2

vU
2 −vL

2
σou
4 = −2 vu

2 σoo
4 = −2 vo

2

su
4 =

⎧⎪⎨
⎪⎩

0 if xu
4 ≤ xmin

4 ≤ xo
4,

σuo
4 so

2 if xo
4 < xmin

4 ,

σuo
4 su

2 otherwise,

so
4 =

⎧⎪⎨
⎪⎩

0 if xu
4 ≤ xmax

4 ≤ xo
4,

σoo
4 so

2 if xo
4 < xmax

4 ,

σou
4 su

2 otherwise.

vL
5 = vL

3 + vL
4 vU

5 = vU
3 + vU

4
vu
5 = vu

3 + vu
4 vo

5 = vo
3 + vo

4
su
5 = su

3 + su
4 so

5 = so
3 + so

4

a = vL
1 vL

5 b = vU
1 vU

5

c = vU
1 vL

5 d = vL
1 vU

5

vL
6 = min{a, b, c, d} vU

6 = max{a, b, c, d}
IF vL

5 ≥ 0 THEN α1 = vL
5 vu

1 , sα1 = vL
5 su

1 ELSE α1 = vL
5 vo

1 , sα1 = vL
5 so

1

IF vL
1 ≥ 0 THEN α2 = vL

1 vu
5 , sα2 = vL

1 su
5 ELSE α2 = vL

1 vo
5 , sα2 = vL

1 so
5

IF vU
5 ≥ 0 THEN β1 = vU

5 vu
1 , sβ1 = vU

5 su
1 ELSE β1 = vU

5 vo
1 , sβ1 = vU

5 so
1

IF vU
1 ≥ 0 THEN β2 = vU

1 vu
5 , sβ2 = vU

1 su
5 ELSE β2 = vU

1 vo
5 , sβ2 = vU

1 so
5

IF vL
5 ≥ 0 THEN γ1 = vL

5 vo
1 , sγ1 = vL

5 so
1 ELSE γ1 = vL

5 vu
1 , sγ1 = vL

5 su
1

IF vU
1 ≥ 0 THEN γ2 = vU

1 vo
5 , sγ2 = vU

1 so
5 ELSE γ2 = vU

1 vu
5 , sγ2 = vU

1 su
5

IF vU
5 ≥ 0 THEN δ1 = vU

5 vo
1 , sδ1 = vU

5 so
1 ELSE δ1 = vU

5 vu
1 , sδ1 = vU

5 su
1

IF vL
1 ≥ 0 THEN δ2 = vL

1 vo
5 , sδ2 = vL

1 su
5 ELSE δ2 = vL

1 vu
5 , sδ2 = vL

1 su
5

IF α1 + α2 − a ≥ β1 + β2 − b THEN vu
6 = α1 + α2 − a, su

6 = sα1 + sα2

ELSE vu
6 = β1 + β2 − b, su

6 = sβ1 + sβ2

IF γ1 + γ2 − c ≤ δ1 + δ2 − d THEN vo
6 = γ1 + γ2 − c, so

6 = sγ1 + sγ2

ELSE vo
6 = δ1 + δ2 − d, so

6 = sδ1 + sδ2

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MCCORMICK-BASED RELAXATIONS OF ALGORITHMS 589
Table 4.1

continued.

a = vL
2 vL

6 b = vU
2 vU

6

c = vU
2 vL

6 d = vL
2 vU

6

vL
7 = min{a, b, c, d} vU

7 = max{a, b, c, d}
IF vL

6 ≥ 0 THEN α1 = vL
6 vu

2 , sα1 = vL
6 su

2 ELSE α1 = vL
6 vo

2 , sα1 = vL
6 so

2

IF vL
2 ≥ 0 THEN α2 = vL

2 vu
6 , sα2 = vL

2 su
6 ELSE α2 = vL

2 vo
6 , sα1 = vL

2 so
6

IF vU
6 ≥ 0 THEN β1 = vU

6 vu
2 , sβ1 = vU

6 su
2 ELSE β1 = vU

6 vo
2 , sβ1 = vU

6 so
2

IF vU
2 ≥ 0 THEN β2 = vU

2 vu
6 , sβ2 = vU

2 su
6 ELSE β2 = vU

2 vo
6 , sβ2 = vU

2 so
6

IF vL
6 ≥ 0 THEN γ1 = vL

6 vo
2 , sγ1 = vL

6 so
2 ELSE γ1 = vL

6 vu
2 , sγ1 = vL

6 su
2

IF vU
2 ≥ 0 THEN γ2 = vU

2 vo
6 , sγ2 = vU

2 so
6 ELSE γ2 = vU

2 vu
6 , sγ2 = vU

2 su
6

IF vU
6 ≥ 0 THEN δ1 = vU

6 vo
2 , sδ1 = vU

6 so
2 ELSE δ1 = vU

6 vu
2 , sδ1 = vU

6 su
2

IF vL
2 ≥ 0 THEN δ2 = vL

2 vo
6 , sδ2 = vL

2 su
6 ELSE δ2 = vL

2 vu
6 , sδ2 = vL

2 su
6

IF α1 + α2 − a ≥ β1 + β2 − b THEN vu
7 = α1 + α2 − a, su

7 = sα1 + sα2

ELSE vu
7 = β1 + β2 − b, su

7 = sβ1 + sβ2

IF γ1 + γ2 − c ≤ δ1 + δ2 − d THEN vo
7 = γ1 + γ2 − c, so

7 = sγ1 + sγ2

ELSE vo
7 = δ1 + δ2 − d, so

7 = sδ1 + sδ2

-1 -0.5 0 0.5 1 1.5 2 2.5 3 -2 -1 0 1 2 3

-200
-150
-100

-50
 0

 50
 100
 150

Original function
Convex relaxation

z1
z2 -1 -0.5 0 0.5 1 1.5 2 2.5 3 -2 -1 0 1 2 3

-300
-250
-200
-150
-100

-50
 0

 50
 100

Convex relaxation
Affine underestimator

z1
z2

-1 -0.5 0 0.5 1 1.5 2 2.5 3 -2 -1 0 1 2 3

-100
-50

 0
 50

 100
 150
 200
 250

Original function
Concave relaxation

z1
z2 -1 -0.5 0 0.5 1 1.5 2 2.5 3 -2 -1 0 1 2 3

-100
-50

 0
 50

 100
 150
 200
 250
 300
 350
 400

Concave relaxation
Affine overestimator

z1
z2

Fig. 4.3. Graphical illustration of Example 4.2.

Based on these relaxations and subgradients, an affine underestimator and an
affine overestimator of g can be constructed by linearization (see subsection 3.2.1).
One such affine underestimator and affine overestimator of g at z̄ = 0 are shown in
the upper and lower right plots of Figure 4.3. Observe, in particular, that neither the
convex relaxation gu nor the concave relaxation go are differentiable at z̄.

4.3. Implementation. From an implementation viewpoint, the evaluation of
relaxations and subgradients can be automated in two ways: operator overloading
and source code transformation [13]. In the source code transformation approach, a
compiler is used to transform the source code for a function into another source code
that includes statements for calculating the additional numbers (upper/lower bounds,
convex/concave relaxations, and subgradients) interleaved with the original instruc-
tions. Source code transformation can be implemented for all programming languages,
such as Fortran or C/C++. In the operator overloading approach, the implementer
defines class objects for which the assignment, standard operators of arithmetic, and
a collection of univariate intrinsic functions are overloaded via special language fa-
cilities to perform the desired calculation rules. The compiler is then responsible for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

590 A. MITSOS, B. CHACHUAT, AND P. I. BARTON

applying the appropriate operations based on the runtime-type identification of the
objects participating in expressions coded by the user so that no change in the orig-
inal source code for the function is required. Overloading is, by nature, myopic in
the sense that it does one operation at a time without any regard for the calculations
occurring before and after. Normally, source code transformation can be smarter by
performing some optimizations, such as reusing common subexpressions, but this im-
proved efficiency comes at the expense of a much more sophisticated implementation.
Because the primary motivation of this paper is to explore new algorithms and see
whether they merit further investigation, the simpler-to-implement alternative of op-
erator overloading approach is chosen. It is worth pointing out that for many small-
to medium-size problems, particularly those where the relaxation calculation does
not account for a high proportion of the runtime requirements, a simple overloading
approach is perfectly adequate.

The implementation, libMC, is written in C++ and comes as an open source
library [8]. In libMC, a new data type (class) for the program variables, named
McCormick, is introduced that contains fields for storing the upper/lower bounds,
convex/concave relaxations, and subgradients of the relaxations:

Class McCormick{
double _x; // current value
double _l; // lower bound
double _u; // upper bound
double _cv; // convex relaxation
double _cc; // concave relaxation
int _np; // number of independent variables
double* _dcvdp; // subgradient of convex relaxation
double* _dccdp; // subgradient of concave relaxation
...

}
libMC calculates the values of these fields simultaneously with the function values, in
accordance with the operations in the program. The operators for addition, subtrac-
tion, multiplication, and division are supported, as well as the standard exponential,
logarithmic, power, square root, and absolute value intrinsic functions. Note, how-
ever, that monomials of odd degree, such as y2n+1, are treated as bilinear terms of
the form y × y2n. Note also that the function y → y ln y, which is convex on [0, +∞)
and differentiable on (0, +∞), is supported as an intrinsic function. As just one ex-
ample, the operator * for the multiplication of a McCormick variable with a scalar is
implemented as follows:

McCormick operator*(const double scal, const McCormick &MC){
McCormick MCres;
if (scal >= 0){
// lower/upper bounds
MCres._l = scal * MC._l;
MCres._u = scal * MC._u;
// convex/concave relaxations
MCres._cv = scal * MC._cv;
MCres._cc = scal * MC._cc;
// convex/concave relaxation subgradients
for(int ip=0; ip<MCres._np; ip++){
MCres._dcvdp[ip] = scal * MC._dcvdp[ip];
MCres._dccdp[ip] = scal * MC._dccdp[ip];

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MCCORMICK-BASED RELAXATIONS OF ALGORITHMS 591

}
}
else{
// lower/upper bounds
MCres._l = scal * MC._u;
MCres._u = scal * MC._l;
// convex/concave relaxations
MCres._cv = scal * MC._cc;
MCres._cc = scal * MC._cv;
// convex/concave relaxation subgradients
for(int ip=0; ip<MCres._np; ip++){
MCres._dcvdp[ip] = scal * MC._dccdp[ip];
MCres._dccdp[ip] = scal * MC._dcvdp[ip];

}
}
return MCres;

}
An example illustrating the use of libMC is presented subsequently.
Example 4.3 (use of libMC). Consider the same function g as in Examples 4.1

and 4.2, for which values of lower/upper bounds, convex/concave relaxations, and
subgradients are to be evaluated at the point z̄ = 0 for z ∈ Z. First, the number of
independent variables is specified, and each independent variable is initialized:

McCormick::np(2);
McCormick Z1(-1., 3., 0., 0);
McCormick Z2(-2., 3., 0., 1);

Essentially, the first line states that the function has two independent variables. The
independent variables are indexed in the range {0, 1, . . . , np− 1} for ease of access to
the elements of the subgradients of the function g. The second line states that Z1 is a
variable of class McCormick, with range [−1, 3], current value 0, and index 0. Similarly,
the third line defines the variable Z2 to have range [−2, 3], current value 0, and index 1.

Next, the bounds, relaxations, and subgradients for g at z̄ are simply calculated
as

McCormick G = (exp(Z1)-pow(Z2,2))*Z1*Z2;
The resulting values for the lower and upper bounds are retrieved as

double GL = G.l();
double GU = G.u();

convex and concave relaxations as
double Gu = G.cv();
double Go = G.cc();

and a subgradient of each of these relaxations as
double* Su = G.dcvdp();
double* So = G.dccdp();
The current implementation of libMC allows only the propagation of a single

subgradient for the convex relaxation and of another subgradient for the concave
relaxation. To illustrate this limitation, consider the bilinear term g(z) = z1z2 on
Z = [zL, zU]. A convex relaxation of g on Z is gu(z) = max{z1z

L
2 +zL

1 z2−zL
1 zL

2 , z1z
U
2 +

zU
1 z2 − zU

1 zU
2 }, and the corresponding subdifferential of gu at a point z̄ such that

z̄1 = z̄2 is ∂gu(z̄) = conv{s1, s2}, with s1 = (zL
2 , zL

1) and s2 = (zU
2 , zU

1), where
conv denotes the convex hull. In this example, libMC returns either s1 or s2 as a
subgradient, depending on round-off errors.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

592 A. MITSOS, B. CHACHUAT, AND P. I. BARTON

-3

-2

-1

 0

 1

 2

 3

 4

 5

-1 -0.5 0 0.5 1

z

original function
natural interval extension underestimator

convex underestimator
concave overestimator

affine underestimator
affine overestimator

natural interval extension overestimator

Fig. 4.4. Graphical illustration of Example 4.4.

A possible extension of libMC would be to propagate multiple subgradients at a
point whenever nonsmoothness is detected in the relaxations. In particular, Theo-
rem 3.2 provides three possible subgradients at a point where the convex or concave
relaxation of a univariate function term is nonsmooth; likewise, Theorem 3.3 pro-
vides two possible subgradients at a point where the convex or concave relaxation of
a binary product term is nonsmooth. Then, noting that any convex combination of
subgradients at a point of a relaxation yields another valid subgradient at that point,
the user would be given the ability to choose among multiple possible subgradients.
Due to round-off errors, however, there is little chance that a point of nonsmoothness
between two or more smooth parts is hit at a generic argument z whose components
have been perturbed away from special values such as 0, 1, etc. For this reason, even
though the theory allows to propagate several subgradients, only a subset of the entire
subdifferential can be obtained in most practical problems.

4.4. Illustrative example. The following illustrative example is based on libMC
for the bound, relaxation, and subgradient calculations.

Example 4.4 (univariate function). Let Z = [−1, 1], z̄ = 0, and g(z) = |z|+z3−z,
with the global minimum 0 attained at z = 0 and the global maximum 1.0886 attained
at z = −0.8165.

Natural interval extensions of this function give a lower bound of −2 and an upper
bound of 3. The McCormick relaxation gives a lower bound of −1 attained at z = 0
and an upper bound of 2 also attained at z = 0. The implemented code calculates
(0) as a subgradient to gu at z̄ and (−1) as a subgradient to go at z̄. The (constant)
affine underestimator described in section 3.2.1 gives a lower bound of −1 and an
upper bound of 3 attained at z = −1.

As is seen in Figure 4.4, the affine underestimator is a constant, which is tighter
than the lower bound provided by the natural interval extensions for all z ∈ Z.
The affine overestimator is tighter than the upper bound provided by the natural
interval extensions for all z > −1 and equally tight for z = −1. A different choice of
subgradient would have given a tighter affine overestimator; for instance, (0) would
have given 2 as the overestimator.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MCCORMICK-BASED RELAXATIONS OF ALGORITHMS 593

5. Relaxations of algorithms. So far in all examples, the functions were ex-
plicitly known. However, the theoretical results developed here are directly applicable
also to functions calculated by algorithms. As discussed in the introduction, this prop-
agation of McCormick convex/concave relaxations and their subgradients allows the
relaxation and global optimization of certain algorithms. The class of algorithms con-
sidered here has two main restrictions. First, it is assumed that the algorithms take
a fixed number of iterations, known a priori. For instance, direct solvers for linear
equation systems satisfy this assumption, while the Newton–Raphson method for the
solution of nonlinear equation systems does not. The second restriction imposed is
that the algorithms consist of only addition/subtraction, multiplication/division, and
intrinsic functions (with known relaxations and enclosures). For instance, algorithms
with conditional statements (e.g., IF f < 0 THEN x = xL ELSE x = xU) are not yet
considered. An example of an algorithm that requires such conditional statements is
the bisection method for the solution of a nonlinear equation.

Building upon the theoretical framework described, libMC can be readily applied
to the relaxation of algorithms. To do so, the algorithm is encoded using the libMC
data structures (as opposed to the native data structures of common programming lan-
guages), and libMC evaluates the convex/concave relaxations as well as a subgradient.

5.1. Numerical examples. In this section the affine relaxation of two algo-
rithms with a fixed number of iterations is considered, namely, the solution of the
one-dimensional heat equation via finite differences and the solution of a nonlinear
ODE system via the explicit-Euler method. In both cases a nonconvex parameter
estimation problem is considered. Recall that efficient solvers for convex NLPs in-
volving nonsmooth functions have been recently developed, e.g., [20]. The results and
implementation presented here would facilitate global optimization using such solvers
in sophisticated global optimization algorithms such as branch-and-reduce. However,
this would raise several implementation issues. Therefore, the simpler case of affine
relaxations (see section 3.2.1) using function evaluations is, instead, considered in the
following using a simple branch-and-bound procedure.

The parameter estimations considered can be summarized as

min
p

nm∑
i=1

(y(p, qi) − ym(qi))
2

s.t. p ∈ [
pL,pU

]
,(5.1)

where the parameters p ∈ R
np are only subject to box constraints. The independent

variable q is time t or space x; qi refers to specific values of the independent variable at
which the measurements ym(qi) are obtained. The output variable y(p, qi) is evaluated
as a function of the parameters through an algorithm with a fixed number of iterations.
The dependence on the parameters is nonconvex and not known explicitly. The goal of
the parameter estimation is to find a parameter point that matches the measurements
in an optimal fashion. Here, for simplicity, the least-squares error objective function
is used as a metric of fit. Application to other objectives poses no theoretical or
algorithmic difficulties.

In both cases the state variables are given by the solution of an ODE system. The
state variables are discretized and calculated by a simple algorithm (i.e., an algorithm
with a fixed number of iterations). The output variable is a weighted sum of the state
variables. The procedures to calculate y(p, qi) are encoded in libMC, which evaluates
the convex/concave relaxations as well as a subgradient at a point p. The affine lower

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

594 A. MITSOS, B. CHACHUAT, AND P. I. BARTON

bound described in section 3.2.1 gives a lower bound to the optimal objective value
of (5.1). As a proof of concept, the lower bound is converged by a simple branch-and-
bound procedure in the parameters p with a best-bound node selection heuristic and
with bisection on the parameter range with the largest diameter. The midpoint of
each node is used for the linearization. Significant CPU savings could be achieved with
a more sophisticated branch-and-reduce algorithm. Also savings could be achieved if
a priori information on the state variable bounds were used, as is done in [30].

The commercial code BARON version 8.1.5 [28] available through GAMS version
22.8 [5] is used as a benchmark for the performance of the proposed algorithmic relax-
ations. The results are reproduced with BARON version 7.5 through GAMS version
22.2 and BARON version 8.1.1 through GAMS version 22.6, and no significant dif-
ferences between the three versions are found. BARON requires explicit functions,
and therefore, the discretized state variables are encoded as optimization variables
along with the equality constraints from the discretization of the ODEs relating them.
BARON implements a sophisticated branch-and-reduce algorithm based on the lin-
earization of a smooth convex relaxation using auxiliary variables [34]. By introducing
these auxiliary variables, the convex/concave relaxations can become tighter [34]. The
termination criteria of BARON are set to OPTCA = 10−6 and OPTCR = 10−6. This
ensures that the lower bound displayed is truly a lower bound. The resource limit is
set to 30 CPU minutes (RESLIM = 1800). Since BARON is largely a black-box solver
and the two methods are very different, the comparison is done in terms of the CPU
requirement (on a 64-bit Intel core2 DUO processor ULV7700 at 1.33GHz running
Linux 2.6.25). An obvious advantage of the lower bounding scheme proposed here
is the significantly smaller number of optimization variables. As shown by the re-
sults following, this advantage can result in drastically faster convergence of the lower
bound. BARON is a state-of-the-art deterministic global NLP solver, and therefore,
the comparison shows the promise of the proposed method. It should, however, be
noted that the problems have a special structure exploited by the proposed method;
no claim is made that the proposed affine relaxations outperform other approaches
such as the one implemented in BARON in general.

In addition, the proposed method is compared with BARON, using optimiza-
tion variables and equality constraints for the state variables, but without branch-
ing on the state variables. This can be interpreted as relaxation of algorithms with
auxiliary variables and to the best knowledge of the authors, it has not been pro-
posed in the literature. A validity proof of this approach follows similar arguments
as the proposed method and is omitted for brevity. The disadvantage compared to
the proposed method is that the size of the lower and upper bounding problems is
significantly larger. An advantage is potentially tighter relaxations. This selective
branching significantly reduces the computational requirements. Nevertheless, the
proposed method is significantly faster, in particular for the heat equation example.
The selective branching is implemented using the attribute .prior with a value of 0 for
the variables for which no branching should be performed; this attribute is specified
in the BARON options file.

The case studies have an imperfect match between model and measurement. In
both case studies finding a global minimum is relatively simple, e.g., through a mul-
tistart method, and the challenge for global optimization methods is to converge the
lower bound. Establishing that the lower bound is higher than the statistical test for
the fit proves that the mismatch is due to the model and not to a suboptimal pa-
rameter fit [31]. This is a major advantage of using global optimization techniques in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MCCORMICK-BASED RELAXATIONS OF ALGORITHMS 595

parameter estimation problems. Note that, by construction, for both BARON and the
McCormick relaxations, the lower bounds are always nonnegative. As a consequence,
parameter estimation problems with a perfect match between model and experiment
are not interesting regarding the convergence of the lower bound.

5.1.1. Heat equation. The one-dimensional heat equation with an affine heat
source term

(5.2)
d2T

dx2
= −q0(x) + q1(x)T

p

is linear in the state variable T . The thermal conductivity p is taken as the (single)
unknown parameter in the range p ∈ [0.01, 10]. Note that dividing by the thermal
conductivity results in better numerical behavior. To determine the dependence on
the position x ∈ [0, 1], two boundary conditions are needed. Here, the simplest case
of known temperature at the boundary points is taken:

T (x = 0) = 500 and T (x = 1) = 600.

The temperature-dependent heat source term q1(x) is taken as constant, i.e., q1(x) =
−1, while the temperature-independent heat source term is taken as

q0(x) =

{
35, 000 if x ∈ [0.5, 0.6],
−5, 000 otherwise.

This boundary value problem can be approximated by a discretization of the inde-
pendent variable. Here, an equidistant discretization into n−1 intervals is considered,
with n = 101. The state variable is discretized on this mesh as Ti, i = 1, . . . , n and
so is the x-dependent heat-source term q1. The central-difference formula is used for
the second derivative:

d2Ti

dx2
≈ Ti−1 − 2Ti + Ti+1

Δx2
, i ∈ {2, 3, . . . , n − 1},

where Δx = 1/(n − 1).
By introducing auxiliary variables for the discretized state variable, the approxi-

mated problem can be encoded as a regular NLP. BARON requires all variables and
functions to be bounded, and therefore, the temperature is restricted to Ti ∈ [0, 2000].
With this addition, the NLP satisfies all assumptions of BARON and can (at least
in principle) be solved for an arbitrary n. The resulting NLP has n − 1 variables.
Note also that BARON has sophisticated rules to tighten the range of the variables,
including constraint propagation.

The alternative considered here is to exploit the linearity of (5.2) in the variables
Ti:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

(
−2 − q1

2
p Δx2

)
1

1

(
−2 − q1

3
p Δx2

)
1

.
.

1

(
−2 − q1

n−1
p Δx2

)
1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T1
T2
T3
. . .
. . .

Tn−1
Tn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

500

− q0

p Δx2

− q0
p Δx2

. . .

. . .

− q0

p Δx2

600

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

596 A. MITSOS, B. CHACHUAT, AND P. I. BARTON

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 0.2 0.4 0.6 0.8 1

T

x

Data
Best fit

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 450 900 1350 1800

R
at

io
 o

f l
ow

er
 to

 u
pp

er
 b

ou
nd

CPU time in seconds

libMC
BARON uniform branching

BARON selective branching

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000

Fig. 5.1. Graphical illustration of heat equation example: data and best fit (left plot) and
convergence of lower bound (right plot). Note that in the right plot, both a semilogarithmic and a
linear plot are shown.

For a given value of p, this linear equation system can be solved by forward elimination
and back-substitution in O(n) operations. The storage requirement is less than 4n
intermediate variables. The solution vector T can then be used to calculate the
objective function in (5.1). This simple algorithm can be coded in libMC which, in
addition to the values of Ti, calculates their convex/concave relaxations on [pL,pU].
This allows the global optimization of the algorithm. This optimization problem has
a single variable. The bounds for the state variables are not used here.

The measurements Tm are generated with a different heat source term to simulate
the case where the model is not correct. The (xi, T

m
i) pairs used as data are given in

[8]: http://yoric.mit.edu/libMC/libmcheatexdata.txt. Finding a global minimum to
the parameter estimation is relatively simple. However, the fit is not satisfactory, as
can be seen in Figure 5.1. In a real-world application this would raise the question
if the fit is suboptimal or if the model cannot represent the data. A certificate of
optimality given by a global optimization algorithm can exclude the former case.

Figure 5.1 shows the ratio of lower bound to upper bound versus CPU time in
seconds for the three methods. Clearly, the relaxation of the algorithm is computa-
tionally far superior over introducing optimization variables for the discretized state.
In the proposed method the affine relaxation converges to the upper bound within 99%
in just 0.10 seconds and to 99.5% in just 0.12 seconds. In contrast BARON requires
95 seconds to reach 30.5% convergence and 87 seconds to reach 66% convergence.
After 1800 seconds BARON is still at 80% convergence. It should again be noted that
BARON is the state-of-the-art in general-purpose deterministic global optimization
algorithms, and therefore, this comparison shows the potential of algorithmic relax-
ation. The proposed method is significantly faster than selective branching, but the
difference is much smaller. When branching is not performed on the state variables,
BARON requires 3 seconds to reach 65% convergence and 16 seconds to reach 96%
convergence.

It should be noted that both the proposed method and BARON suffer from dis-
cretization error. To estimate the discretization error introduced, the heat conductiv-
ity p is fixed to its optimal value and the temperature predictions T (x) are compared
for n = 101 and n = 1001. The difference between the coarser and finer mesh are in
the order of 10%, which is much smaller than the error between the measurements
and model (more than 100%). Therefore, the discretization is deemed sufficiently fine,
especially in view of the high CPU requirement by BARON.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MCCORMICK-BASED RELAXATIONS OF ALGORITHMS 597

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.5 1 1.5 2

xI

t

Data
Best fit

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 300 600 900 1200 1500 1800

R
at

io
 o

f l
ow

er
 to

 u
pp

er
 b

ou
nd

CPU time in seconds

libMC
BARON uniform branching

BARON selective branching

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.001 0.01 0.1 1 10 100 1000

Fig. 5.2. Graphical illustration of kinetic mechanism example: data and best fit (left plot) and
convergence of lower bound (right plot). Note that in the right plot, both a semilogarithmic and a
linear plot are shown.

5.1.2. Kinetic mechanism. Here, an example from chemical kinetics is con-
sidered based on [37, 31, 29]. Mathematically, it is a nonlinear ODE system:

dxA

dt
= k1 xZ xY − xO2 (k2f + k3f)xA +

k2f

K2
xD +

k3f

K3
xB − k5 x2

A,

dxZ

dt
= −k1 xZ xY ,

dxY

dt
= −k1s xZ xY ,

dxD

dt
= k2f xA xO2 −

k2f

K2
xD,

dxB

dt
= k3f xO2 xA −

(
k3f

K3
+ k4

)
xB ,

xA(t = 0) = 0, xB(t = 0) = 0, xD(t = 0) = 0, xY (t = 0) = 0.4, xZ(t = 0) = 140,

with the constants T = 273, K2 = 46 e
6500

T −18, K3 = 2K2, k1 = 53, k1s = k1 × 10−6,
k5 = 0.0012, and xO2 = 0.002. The unknown parameters are k2f ∈ [10, 1200], k3f ∈
[10, 1200], and k4 ∈ [0.001, 40]. After scaling, the measurements are given in terms of
xI = xA + 2

21 xB + 2
21 xD (without introducing an additional variable). The (ti, xm

I,i)
pairs used as data are given in [8]: http://yoric.mit.edu/libMC/libmckinexdata.txt.
Finding a global minimum to the parameter estimation is relatively simple. The fit
is reasonably good, but for initial times, there is a significant discrepancy, as can
be seen in Figure 5.2, raising the question if the fit is suboptimal or if the model
cannot represent the data. A certificate of optimality given by a global optimization
algorithm can exclude the former case.

The explicit-Euler method can be used to approximate the solution of this initial-
value problem. The time is discretized in n equidistant intervals, and the state vari-
ables are discretized on this mesh. Here, n = 200 is used.

By introducing auxiliary variables for the discretized state variable, the approxi-
mated problem can be encoded as a regular NLP. BARON requires all variables and
functions to be bounded, and therefore, the states are restricted to xi ∈ [0, 140], i �= Y ,
and xY ∈ [0, 0.4]. With this addition, the NLP satisfies all assumptions of BARON
and can (at least in principle) be solved for an arbitrary n. The resulting NLP has
5n + 3 variables. Recall that BARON has sophisticated rules to tighten the range of
the variables.

The alternative considered here is to encode the explicit-Euler method in libMC,
which calculates the convex/concave relaxations of the state variables. This allows the
global optimization of the algorithm. This optimization problem has only three vari-
ables (the unknown parameters). The bounds for the state variables are not used here.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

598 A. MITSOS, B. CHACHUAT, AND P. I. BARTON

Recently, sophisticated global optimization algorithms for initial-value problems
have been proposed; see [9] for an overview. At this point it is, therefore, interesting
to compare these algorithms conceptually with the proposed relaxation of algorithms.
Both methods rely on discretization of the independent variable and on McCormick
relaxations. However, in the existing algorithms, relaxation is performed before the
discretization (done by the integrator), whereas here the relaxation is performed after
the discretization. Another difference is that here state bounds (via natural inter-
val extensions) and relaxations are obtained simultaneously, whereas in the existing
algorithms they are treated independently. An interesting observation is that the re-
laxation of algorithms provides a very simple alternative to the elaborate theory of [9].

Figure 5.2 shows the ratio of lower bound to upper bound versus CPU time in
seconds for the two methods. Again, the relaxation of the algorithm is computation-
ally superior over introducing optimization variables for the discretized state. In the
proposed method the affine relaxation converges to the upper bound within 75% in
just 0.012 seconds, to 80% in just 0.07 seconds, and to 90% in 11 seconds. In con-
trast BARON requires 37 seconds to furnish a positive lower bound (equal to 75% of
the upper bound) and 38 seconds to reach 90.5%. Moreover, the proposed method
shows continued (albeit slow) improvement, whereas BARON shows no improvement
between 44 and 1800 seconds. It should again be noted that BARON is the state-of-
the-art in general-purpose deterministic global optimization algorithms, and therefore,
this comparison shows the potential of algorithmic relaxation. The proposed method
is initially significantly faster than selective branching. When branching is not per-
formed on the state variables, BARON requires 19 seconds to reach 90% convergence.
After 557 seconds, BARON with selective branching reaches 95% convergence, which
is better than the proposed method. This is most likely due to the superior branching
strategy and range reduction implemented in BARON. Note also that the algorithm
used in [31] appears to be more efficient; this is expected, since it is a specialized
algorithm, uses a priori knowledge on the bounds, range reduction, and scaling of the
optimization variables.

It should be noted that both the proposed method and BARON suffer from dis-
cretization error. To estimate the discretization error introduced, the kinetic constants
k2f , k3f , and k4 are fixed to their optimal values, and xi(t) is compared with a back-
ward differentiation formula (BDF) method [38]. The difference between these two
integration methods is in the order of 10% for initial times and then falls very quickly
to approximately 1%. This difference is much smaller than the error between the mea-
surements and model (more than 100% for initial times). Therefore, the discretization
is deemed sufficiently fine, especially in view of the high CPU requirement.

6. Conclusions and future work. Theory, application, and implementation
for the computation of subgradients for McCormick relaxations were presented. This
systematic subgradient propagation allows the affine over- and underestimation of
factorable functions without the introduction of auxiliary variables. One potential
application is the calculation of very cheap lower bounds for box-constrained problems;
these bounds are often tighter than the bounds calculated by interval extensions with
a similar computational requirement. Moreover, the affine relaxations are quite tight
in the vicinity of the linearization points.

A limitation of the current implementation is that it cannot take advantage of the
tightest possible affine relaxation in the case of nonunique subgradients. In general,
it would be desirable to propagate the entire subdifferential or an easily character-
ized subset of it, as opposed to simply an element. This would facilitate a choice of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MCCORMICK-BASED RELAXATIONS OF ALGORITHMS 599

subgradients. Furthermore, it would be interesting to consider the option of code gen-
eration. Another possible extension of libMC would be to propagate the subgradients
of convex/concave relaxations via the reverse mode of AD (see, e.g., [13] for a general
introduction on the reverse mode of AD). In this approach, the calculation of sub-
gradients would be split into two steps: a forward sweep in which each intermediate
values along with the corresponding lower/upper bounds and convex/concave relax-
ations are computed, similar to the approach described in subsection 4.2; followed
by a reverse sweep in which the subgradients of the convex/concave relaxations are
computed. This approach would be particularly efficient for problems having many
independent variables and relatively few functions, e.g., in large-scale optimization
problems.

Additional future work of interest is the application of the subgradient computa-
tion presented to global optimization of NLPs with a branch-and-bound code; instead
of performing linearizations, it might be advantageous to directly solve the nons-
mooth nonlinear relaxation with nonsmooth NLP solvers, such as bundle methods,
e.g., [20, 15]; the proposed results provide the basis for the calculation of the sub-
gradients required by these solvers. Additional problems of interest are semi-infinite
programs and programs with differential equations embedded.

The proposed methodology sets the foundations for automatic convex relaxation
of any algorithm, enabling the global optimization of algorithms. This was demon-
strated on two simple algorithms with a fixed number of iterations. The computational
requirement was drastically smaller than the alternative of introducing auxiliary vari-
ables. The computational procedure described here can presumably be improved
significantly by using range reduction and employing nonlinear relaxations via nons-
mooth NLP solvers. The demonstrated potential of algorithmic relaxation motivates
future work in the relaxation of more general algorithms. In particular, it would be
interesting to consider algorithms with a problem-dependent number of iterations, not
known a priori. Such algorithms of interest include numerical integrators with error
control and nonlinear equation solvers. The relaxation of such algorithms can poten-
tially lead to global optimization of problems for which currently no algorithm exists,
e.g., dynamic optimization with differential-algebraic equation systems embedded.
There are several open challenges, including which algorithms can be sensibly relaxed
and how the convergence of the relaxation relates to the convergence of the algorithm.
It would be interesting to do a numerical and theoretical comparison of the proposed
relaxations with the relaxations obtained by the use of auxiliary variables for the global
optimization of general NLPs. No general claims can be made at this point, but the
proposed relaxations are expected to outperform existing methods for a subclass of
problems, e.g., those with many intermediate variables and few degrees of freedom.

Acknowledgments. We would like to thank Mehmet Yunt, Panayiotis Lemoni-
dis, and Ajay Selot for fruitful discussions. We are grateful to Cha Kun Lee for the
branch-and-bound code we derivatized. Finally, we would like to thank Nikolaos V.
Sahinidis for pointing out the possibility to use selective branching in BARON.

REFERENCES

[1] C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier, A global optimization method,
αBB, for general twice-differentiable constrained NLPs - I. Theoretical advances, Comput.
Chem. Eng., 22 (1998), pp. 1137–1158.

[2] C. S. Adjiman and C. A. Floudas, Rigorous convex underestimators for general twice-
differentiable problems, J. Global Optim., 9 (1996), pp. 23–40.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

600 A. MITSOS, B. CHACHUAT, AND P. I. BARTON

[3] G. Alefeld and G. Mayer, Interval analysis: Theory and applications, J. Comput. Appl.
Math., 121 (2000), pp. 421–464.

[4] D. P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999.
[5] A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A User’s Guide, The Scientific Press,

Redwood City, CA, 1988.
[6] R. P. Byrne and I. D. L. Bogle, Global optimisation of constrained non-convex programs

using reformulation and interval analysis, Comput. Chem. Eng., 23 (1999), pp. 1341–1350.
[7] R. P. Byrne and I. D. L. Bogle, Global optimization of modular process flowsheets, Ind. Eng.

Chem. Res., 39 (2000), pp. 4296–4301.
[8] B. Chachuat, libMC: A Numeric Library for McCormick Relaxation of Factorable Functions,

documentation and source code available at: http://yoric.mit.edu/libMC/.
[9] B. Chachuat, A. B. Singer, and P. I. Barton, Global methods for dynamic optimization

and mixed-integer dynamic optimization, Ind. Eng. Chem. Res., 45 (2006), pp. 8373–8392.
[10] J. E. Falk and R. M. Soland, An algorithm for separable nonconvex programming problems,

Manag. Sci., 15 (1969), pp. 550–569.
[11] C. A. Floudas and O. Stein, The adaptive convexification algorithm: A feasible point method

for semi-infinite programming, SIAM J. Optim., 18 (2007), pp. 1187–1208.
[12] E. P. Gatzke, J. E. Tolsma, and P. I. Barton, Construction of convex function relaxations

using automated code generation techniques, Optim. Eng., 3 (2002), pp. 305–326.
[13] A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentia-

tion, Frontiers Appl. Math., SIAM, Philadelphia, 2000.
[14] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms

I. Fundamentals, Springer-Verlag, Berlin, 1993.
[15] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms

II. Advanced Theory and Bundle Methods, Springer-Verlag, Berlin, 1993.
[16] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis, Grundlehren

Text Editions, Springer-Verlag, Berlin, 2001.
[17] R. Horst, A general class of branch-and-bound methods in global optimization with some new

approaches for concave minimization, J. Optim. Theory Appl., 51 (1986), pp. 271–291.
[18] R. Horst and H. Tuy, Global Optimization: Deterministic Approaches, 3rd ed., Springer-

Verlag, Berlin, 1996.
[19] P. Kesavan and P. I. Barton, Generalized branch-and-cut framework for mixed-integer non-

linear optimization problems, Comput. Chem. Eng., 24 (2000), pp. 1361–1366.
[20] M. M. Mäkelä and P. Neittaanmäki, Nonsmooth Optimization: Analysis and Algorithms

with Applications to Optimal Control, World Scientific, Singapore, 1992.
[21] G. P. McCormick, Computability of global solutions to factorable nonconvex programs: Part

I. Convex underestimating problems, Math. Program., 10 (1976), pp. 147–175.
[22] G. P. McCormick, Nonlinear Programming: Theory, Algorithms and Applications, John Wi-

ley and Sons, New York, 1983.
[23] A. Mitsos, P. Lemonidis, C. K. Lee, and P. I. Barton, Relaxation-based bounds for semi-

infinite programs, SIAM J. Optim., 19 (2008), pp. 77–113.
[24] R. Moore, Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.
[25] A. Neumaier, Complete search in continuous global optimization and constraint satisfaction,

Acta Numer., 13 (2004), pp. 271–369.
[26] R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series 28, Princeton University

Press, Princeton, NJ, 1970.
[27] H. S. Ryoo and N. V. Sahinidis, A branch-and-reduce approach to global optimization, J.

Global Optim., 8 (1996), pp. 107–138.
[28] N. Sahinidis and M. Tawarmalani, BARON. http://www.gams.com/solvers/baron.pdf.
[29] A. B. Singer, Global Dynamic Optimization, Ph.D. Thesis, Massachusetts Institute of Tech-

nology, Cambridge, MA, 2004, http://yoric.mit.edu/download/Reports/SingerThesis.pdf.
[30] A. B. Singer and P. I. Barton, Bounding the solutions of parameter dependent nonlinear

ordinary differential equations, SIAM J. Sci. Comput., 27 (2006), pp. 2167–2182.
[31] A. B. Singer, J. W. Taylor, P. I. Barton, and W. H. Green, Global dynamic optimization

for parameter estimation in chemical kinetics, J. Phys. Chem. A, 110 (2006), pp. 971–976.
[32] E. M. B. Smith and C. C. Pantelides, Global optimization of general process models, in Global

Optimization in Engineering Design, I. E. Grossmann, ed., Kluwer Academic Publishers,
Norwell, MA, 1996, pp. 355–386.

[33] E. M. B. Smith and C. C. Pantelides, A symbolic reformulation/spatial branch-and-bound
algorithm for the global optimisation of nonconvex MINLPs, Comput. Chem. Eng., 23
(1999), pp. 457–478.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MCCORMICK-BASED RELAXATIONS OF ALGORITHMS 601

[34] M. Tawarmalani and N. V. Sahinidis, Convexification and Global Optimization in Contin-
uous and Mixed-Integer Nonlinear Programming, Nonconvex Optim. Appl., Kluwer Aca-
demic Publishers, Norwell, MA, 2002.

[35] M. Tawarmalani and N. V. Sahinidis, Global optimization of mixed-integer nonlinear pro-
grams: A theoretical and computational study, Math. Program., 99 (2004), pp. 563–591.

[36] M. Tawarmalani and N. V. Sahinidis, A polyhedral branch-and-cut approach to global opti-
mization, Math. Program., 103 (2005), pp. 225–249.

[37] J. W. Taylor, G. Ehlker, H. H. Carstensen, L. Ruslen, R. W. Field, and W. H. Green,
Direct measurement of the fast, reversible addition of oxygen to cyclohexadienyl radicals
in nonpolar solvents, J. Phys. Chem. A, 108 (2004), pp. 7193–7203.

[38] J. Tolsma and P. I. Barton, DAEPACK: An open modeling environment for legacy models,
Ind. Eng. Chem. Res., 39 (2000), pp. 1826–1839.

[39] X. J. Wang, Global and Local Optimization Using Linear Bounding Functions, Ph.D. thesis,
University of California, Davis, CA, 1995.

[40] X. J. Wang and T. S. Chang, An improved univariate global optimization algorithm with
improved linear lower bounding functions, J. Global Optim., 8 (1996), pp. 393–411.

[41] X. J. Wang and T. S. Chang, A multivariate global optimization using linear bounding func-
tions, J. Global Optim., 12 (1998), pp. 383–404.

[42] J. M. Zamora and I. E. Grossmann, A branch and contract algorithm for problems with con-
cave univariate, bilinear and linear fractional terms, J. Global Optim., 14 (1999), pp. 217–
249.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

