MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Algebraic Algorithms for Matching and Matroid Problems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Harvey, Nicholas J. A. “"Algebraic Algorithms for Matching and Matroid Problems.”
SIAM Journal on Computing 39.2 (2009): 679-702. © 2009 Society for Industrial and Applied
Mathematics

As Published: http://dx.doi.org/10.1137/070684008
Publisher: Society for Industrial and Applied Mathematics
Persistent URL: http://hdl.handle.net/1721.1/52443

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher’s policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

I I I .
I I Massachusetts Institute of Technology


https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/52443

SIAM J. COMPUT. (© 2009 Society for Industrial and Applied Mathematics
Vol. 39, No. 2, pp. 679-702

ALGEBRAIC ALGORITHMS FOR MATCHING AND MATROID
PROBLEMS*
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Abstract. We present new algebraic approaches for two well-known combinatorial problems:
nonbipartite matching and matroid intersection. Our work yields new randomized algorithms that
exceed or match the efficiency of existing algorithms. For nonbipartite matching, we obtain a simple,
purely algebraic algorithm with running time O(n*) where n is the number of vertices and w is the
matrix multiplication exponent. This resolves the central open problem of Mucha and Sankowski
(2004). For matroid intersection, our algorithm has running time O(nr*~1!) for matroids with n
elements and rank r that satisfy some natural conditions.
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1. Introduction. The nonbipartite matching problem—finding a largest set of
disjoint edges in a graph—is a fundamental problem that has played a pivotal role in
the development of graph theory, combinatorial optimization, and computer science
[50]. For example, Edmonds’ seminal work on matchings [14, 15] inspired the defini-
tion of the class P and launched the field of polyhedral combinatorics. The matching
theory book [38] gives an extensive treatment of this subject and uses matchings as a
touchstone to develop much of the theory of combinatorial optimization.

The matroid intersection problem—finding a largest common independent set in
two given matroids—is another fundamental optimization problem, originating in the
pioneering work of Edmonds [17, 19]. This work led to significant developments con-
cerning integral polyhedra [49], submodular functions [21], and convex analysis [44].
Algorithmically, matroid intersection is a powerful tool that has been used in various
areas such as approximation algorithms [4, 31, 26], mixed matrix theory [43], and
network coding [30].

1.1. Matching algorithms. The literature for nonbipartite matching algorithms
is quite lengthy. Table 1 provides a brief summary; further discussion can be found in
[49, section 24.4]. As one can see, there was little progress from 1975 until 2004, when
an exciting development of Mucha and Sankowski [42] gave a randomized algorithm
to construct a maximum matching in time O(n*), where w < 2.38 is the exponent
indicating the time to multiply two n x n matrices [8]. A nice exposition of their
algorithm is in Mucha’s thesis [41].

Unfortunately, most of the algorithms mentioned above are quite complicated; the
algorithms of Edmonds and Rabin—Vazirani are perhaps the only exceptions. For ex-
ample, the Micali—Vazirani algorithm was not formally proven correct until much later
[563]. The Mucha—Sankowski algorithm relies on a nontrivial structural decomposition
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680 NICHOLAS J. A. HARVEY

TABLE 1
A summary of algorithms for the monbipartite matching problem. The quantities n and m,
respectively, denote the number of vertices and edges in the graph.

Authors Year Running time
Edmonds [15] 1965 O(n’m
Even and Kariv [20] 1975 (min {n??®, y/nmlogn}
Micali and Vazirani [39] 1980 O(y/nm

)
)
)
Rabin and Vazirani [47] 1989 O(n¥th)
Goldberg and Karzanov [27] | 2004 | O(y/nm 10g(n2/m)/ logn)
Mucha and Sankowski [42] 2004 n)
Sankowski [48] 2005 O( “’)

)

This paper O(n¥

TABLE 2
A summary of linear matroid algorithms for the matroid intersection problem. The quantities
n and r, respectively, denote the number of columns and rows of the given matriz.

Authors Year | Running time
Cunningham [10] 1986 O(nr?logr)
Gabow and Xu [22, 23] | 1989 O(nr!-62)
This paper O(nrv—1)

of graphs called the “canonical partition” and uses sophisticated dynamic connectivity
data structures to maintain this decomposition online. Mucha writes [41, section 6]:

[The nonbipartite] algorithm is quite complicated and heavily relies on
graph-theoretic results and techniques. It would be nice to have a strictly
algebraic, and possibly simpler, matching algorithm for general graphs.

Interestingly, for the special case of bipartite graphs, Mucha and Sankowski give a sim-
ple algorithm that amounts to performing Gaussian elimination lazily. Unfortunately,
this technique seems to break down for general graphs, leading to the conjecture that
there is no O(n*) matching algorithm for nonbipartite graphs that uses only lazy
computation techniques [41, section 3.4].

1.2. Matroid intersection algorithms. The discussion of matroids in this
section is necessarily informal since we defer the formal definition of matroids until
section 4. Generally speaking, algorithms involving matroids fall into two classes.

e QOracle algorithms. These algorithms access the matroid via an oracle which an-
swers queries about its structure.

e Linear matroid algorithms. These algorithms assume that a matroid is given as
input to the algorithm as an explicit matrix which represents the matroid.

Linear matroid algorithms only apply to a subclass of matroids known as linear ma-
troids, but most useful matroids indeed lie in this class.

Tables 2 and 3 provide a brief summary of the existing algorithms for matroid
intersection. It should be noted that the Gabow—Xu algorithm achieves the running
time of O(nr1:5%) by using the O(n?-3®) matrix multiplication algorithm of Copper-
smith and Winograd [8]. However, this bound seems somewhat unnatural: for square
matrices their running time is O(n??), although one would hope for a running time

of O(n?3%).

1.3. Our results. In this paper, we present new algebraic approaches for the
problems mentioned above.
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ALGEBRAIC ALGORITHMS FOR MATCHING AND MATROIDS 681

TABLE 3
A summary of oracle algorithms for the matroid intersection problem. The quantities n and
r, respectively, denote the number of elements and rank of the matroid; they are analogous to the
quantities n and r mentioned in Table 2.

Authors Year | Number of oracle queries
Edmonds [16]* 1968 not stated
Aigner and Dowling [1] | 1971 O(nr?)
Tomizawa and Iri [51] 1974 not stated
Lawler [35] 1975 O(nr?)
Edmonds [19] 1979 not stated
Cunningham [10] 1986 O(nrl?)

'Edmonds [16] gives an efficient algorithm for the matroid par-
tition problem. As was shown in Edmonds [17, 18], this implies
an efficient algorithm for the matroid intersection problem.

Nonbipartite matching. We present a purely algebraic, randomized algorithm for
constructing a maximum matching in O(n®) time. The algorithm is conceptually
simple—it uses lazy updates and does not require sophisticated data structures or
subroutines other than a black-box algorithm for matrix multiplication/inversion.
Therefore our work resolves the central open question of Mucha and Sankowski [42]
and refutes the conjecture [41] that no such lazy algorithm exists.

Our algorithm is based on a simple divide-and-conquer approach. The key insight
is, adding an edge to the matching involves modifying two symmetric entries of a
certain matrix. (See section 3 for further details.) These entries may be quite far
apart in the matrix, so a lazy updating scheme that only updates “nearby” matrix
entries will fail. We overcome this difficulty by traversing the matrix in a novel manner
such that symmetric locations are nearby in our traversal, even if they are far apart
in the matrix.

Matroid intersection. We present a linear matroid algorithm for the matroid in-
tersection problem that uses only O(nr“~1) time. Whereas most existing matroid
algorithms use augmenting path techniques, ours uses an algebraic approach. Several
previous matroid algorithms also use algebraic techniques [2, 37, 45]. This approach
requires that the given matroids are linear and additionally requires that the two
matroids can be represented as matrices over the same field. These assumptions will
be discussed further in section 4.

2. Preliminaries.

2.1. Notation. The set of integers {1,...,n} is denoted by [n]. If J is a set,
J + i denotes J U {i}. The notation X UY denotes the union of sets X and Y and
asserts that this is a disjoint union, i.e., X NY = 0.

If M is a matrix, a submatrix containing rows S and columns 7' is denoted
M][S,T]. A submatrix containing all rows (resp., columns) is denoted M [, T] (resp.,
M]IS,*]). A submatrix M[S,T] is sometimes written as Mg when this enhances
legibility. The ith row (resp., column) of M is denoted M, . (resp., M, ;). The entry
of M in row 7 and column j is denoted M; ;.

2.2. Assumptions and conventions. We assume a randomized computational
model, in which algorithms have access to a stream of independent, unbiased coin
flips. All algorithms presented in this paper are randomized, even if this is not stated
explicitly. Furthermore, our computational model assumes that arithmetic operations
all require a single time step, even if we work with an extension field of the given field.
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682 NICHOLAS J. A. HARVEY

A Monte Carlo algorithm is an algorithm whose output may be incorrect with
some (bounded) probability but whose running time is not a random variable. A Las
Vegas algorithm is one whose output is always correct but whose running time is a
random variable with bounded expectation.

The value w is a real number defined as the infimum of all values ¢ such that
multiplying two n X n matrices requires O(n¢) time. We say that matrix multiplication
requires O(n*) time although, strictly speaking, this is not accurate. Nevertheless,
this inaccuracy justifies the following notational convention: we will implicitly ignore
polylog(n) factors in expressions of the form O(n®).

2.3. Facts from linear algebra. We will use the following basic facts from
linear algebra. Some proofs can be found in Appendix A.1.

Let F be a field, let Flzq,..., ] be the ring of polynomials over F in indeter-
minates {z1,...,Zm,}, and let F(z1,...,2,,) be the field of rational functions over F
in these indeterminates. A matrix with entries in Flxy, ..., 2] or F(aq, ..., 2y, ) will
be called a matriz of indeterminates. A matrix M of indeterminates is said to be
nonsingular if its determinant is not the zero function. In this case, M ~! exists and
it is a matrix whose entries are in F(x1,...,2,,). The entries of M ! are given by

(2.1) (M™");; = (=1)""7 - det Mgeyj,i) / det M,

where Mge)(;,:) denotes the submatrix obtained by deleting row j and column i. Given
a matrix of indeterminates, our algorithms will typically substitute values in F for the
indeterminates. So for much of the discussion below, it suffices to consider ordinary
numeric matrices over F.

The following useful fact is fundamental to many of our results.

FacT 2.1 (Sherman—Morrison-Woodbury formula). Let M be an n x n matriz,
U be an n x k matriz, and V be a k x n matriz. Suppose that M is nonsingular.
Then

o M +UVT is nonsingular iff I + VMU is nonsingular,
o if M +UVT is nonsingular, then

M+UuvhH)y™t = Mt - MU +VIMTTU)TT VT ML

The subsequent sections will not use Fact 2.1 directly, but rather the following
convenient corollary.

COROLLARY 2.2. Let M be a nonsingular matriz and let N be its inverse. Let M
be a matrix which is identical to M except that M&s # Ms s. Then M is nonsingular

iff
det (I + (Ms,s — Ms,s) - Ns,s) # O.
If M is nonsingular, then
~ 1 ~ —1 ~
M~' = N — N,s(I+ (Mss —Mss)Ns,s) (Ms,s — Ms,s) Ns,x.

FacT 2.3 (Schur complement). Let M be a square matriz of the form

51 52
tERIC!
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where Z is square. If Z is nonsingular, the matriz C := W — XZ~'Y is known
as the Schur complement of Z in M. The Schur complement satisfies many useful
properties, two of which are the following:

o det M = detZ - detC.

o Let Cy p be a mazimum rank square submatriz of C; i.e., |A| = |B| = rank C and
Ca,p 1is nonsingular. Then Maus, Bus, S a mazimum rank square submatriz of
M.

A matrix M is called skew-symmetric if M = —MT. Note that the diagonal
entries of a skew-symmetric matrix are necessarily zero.

Fact 2.4. Let M be an n X n skew-symmetric matriz. If M is nonsingular, then
M~ is also skew-symmetric.

Algorithms. We conclude this section by considering the algorithmic efficiency of
operations on matrices with entries in a field F. As mentioned above, we assume that
two n X n matrices can be multiplied in O(n*) time. This same time bound suffices
for the following operations.

e Determinant. Given an n X n matrix M, compute det M.

e Rank. Given an n X n matrix M, compute rank M.

Inversion. Given a nonsingular n x n matrix M, compute M L.

Maz-rank submatriz. Given an n x n matrix M, compute sets A and B such that
MTJA, B] is nonsingular and |A| = |B| = rank M.

Consider now the problem of rectangular matrix multiplication. For example, one
could multiply an r X n matrix A by an n X r matrix B, where r < n. This can be
accomplished by partitioning A and B into blocks of size r x r, multiplying the ith
block of A by the ith block of B via an O(r*) time algorithm, then finally adding these
results together. Since [n/r] multiplications are performed, the total time required
is O(nr“~1). This basic technique will frequently be used in the subsequent sections.
More sophisticated rectangular matrix multiplication algorithms [7] do exist, but they
will not be considered herein.

3. Nonbipartite matching.

3.1. Preliminaries. Let G = (V, E)) be a graph with |V| = n, and let M be the
set of all perfect matchings of G. A lot of information about M is contained in the
Tutte matriz T of G. This is defined as follows. For each edge {u,v} € E, associate
an indeterminate tr, . Then 7" is an n x n matrix where T, , is +t, .y if {u,v} € E
and 0 otherwise. The signs are chosen such that 7" is skew-symmetric.

We now describe an important polynomial associated with the Tutte matrix. The
Pfaffian of T is defined as

P{(T) := ngn(u)- H Tuv,

pneEM {u,v}eMm

where sgn(u) € {—1,1} is a sign whose precise definition is not needed for our pur-
poses. Tutte showed many nice properties of T', one of which is the following fact.

FacT 3.1 (see Tutte [52]). G has a perfect matching iff T is nonsingular.

Proof. This follows from the (previously known) fact that det(7) = Pf(T)2. See,
e.g., Godsil [25]. O

This is a useful characterization, but it does not directly imply an efficient algo-
rithm to test if G has a perfect matching. The issue is that Pf(7") has a monomial
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684 NICHOLAS J. A. HARVEY

for every perfect matching of G, of which there may be exponentially many. In this
case det T" also has exponential size, and so computing it symbolically is inefficient.
Fortunately, Lovész [37] showed that the rank of T is preserved with high proba-
bility after randomly substituting nonzero values from a sufficiently large field for the
indeterminates. Let us argue the full-rank case more formally. Suppose that G has a
perfect matching. Then, over any field, Pf(7T') is a nonzero polynomial of degree n /2.
It follows that detT is a nonzero polynomial of degree n, again over any field. The
Schwartz—Zippel lemma [40, Theorem 7.2] shows that if we evaluate this polynomial

at a random point in IE‘!ZE| (i.e., pick each tg, . € F, independently and uniformly),
then the evaluation is zero with probability at most n/q. Therefore the rank is pre-
served with probability at least 1 — n/q. If we choose ¢ > 2n, the rank is preserved
with probability at least 1/2. We may obtain any desired failure probability A by
performing log A independent trials.

After this numeric substitution, the rank of the resulting matrix can be computed
in O(n¥) time. If the resulting matrix has full rank, then G definitely has a perfect
matching. Otherwise, we assume that G does not have a perfect matching. This
discussion shows that there is an efficient, randomized algorithm to test if a graph
has a perfect matching (with failure probability at most n/q). The remainder of this
section considers the problem of constructing a perfect matching, if one exists.

3.2. A self-reducibility algorithm. Since Lovész’s approach allows one to
efficiently test if a graph has a perfect matching, one can use a self-reducibility ar-
gument to actually construct a perfect matching. Such an argument was explicitly
stated by Rabin and Vazirani [47]. The algorithm deletes as many edges as possible
subject to the constraint that the remaining graph has a perfect matching. Thus,
at the termination of the algorithm, the remaining edges necessarily form a perfect
matching.

The first step is to construct 7', then to randomly substitute values for the inde-
terminates from a field of size g, where ¢ will be chosen below. If T' does not have full
rank, then the algorithm halts and announces that the graph has no perfect matching.
Otherwise, it examines the edges of the graph one by one. For each edge {r, s}, we
temporarily delete it and test if the resulting graph still has a perfect matching. If
so, we permanently delete the edge; if not, we restore the edge.

When temporarily deleting an edge, how do we test if the resulting graph has a
perfect matching? This is done again by Lovész’s approach. We simply set T} s =
T, = 0, then test whether T still has full rank. The Schwartz—Zippel lemma again
shows that this test fails with probability at most n/q, even without choosing new
random numbers.

Since there are fewer than n? edges, a union bound shows that the failure prob-
ability is less than n®/q. If the random values are chosen from a field of size at
least n®/§, then the overall failure probability is at most §. The time for each rank
computation is O(n*), so the total time required by this algorithm is O(n“*2). As
mentioned earlier, we may set § = 1/2 and obtain any desired failure probability A
by performing log A independent trials.

3.3. An algorithm using rank-2 updates. The self-reducibility algorithm
can be improved to run in O(n*) time. To do so, we need an improved method to
test if an edge can be deleted while maintaining the property that the graph has a
perfect matching. This is done by applying Corollary 2.2 to the matching problem as
follows.
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Suppose that we have computed the inverse of the Tutte matrix N := T—!. Let
G denote the graph where edge {r, s} has been deleted. We wish to decide if G still
has a perfect matching. This can be decided (probabilistically) as follows. Let T be
the matrix which is identical to T except that Ts.g = 0, where S = {r,s}. We will
test if 7' is nonsingular. By Corollary 2.2 and Fact 2.4, this holds iff the following
determinant is nonzero:

10 0 T 0 N\ 1+T, 5N,
det <(O 1>_(_TT,S O ).(_NHS O >> N det< 1+Tr,s Nr,s) '

Thus T is nonsingular iff (147 s N, 5)? # 0. So, to decide if edge {r, s} can be deleted,
we simply test if N, s = —1/T, 5. The probability that this test fails (i.e., if G has
a perfect matching but T is singular) is at most n/q, again by the Schwartz—Zippel
lemma.

After deleting an edge {r,s} the matrix N must be updated accordingly. By
Corollary 2.2, we must set

1
1+ Tr,s Nr,s
1+Tr,sNr,s> Ts s Ng «.

This computation takes only O(n?) time, since it is a rank-2 update.

The algorithm examines each edge, decides if it can be deleted, and, if so, performs
the update described above. The main computational work of the algorithm is the
updates. There are O(n?) edges, so the total time required is O(n*). As in section 3.2,
if the random values are chosen from a field of size at least n®/§, then the overall failure
probability is at most 9.

(3.1) N = N + N*,S<

3.4. A recursive algorithm. In this section, we describe an improvement of
the previous algorithm which requires only O(n®) time. The key idea is to examine
the edges of the graph in a particular order, with the purpose of minimizing the cost
of updating N. The ordering is based on a recursive partitioning of the graph which
arises from the following observation.

CLAIM 3.2. Let R and S be disjoint subsets of V.. Define the following subsets of
edges:

E[R] = {{u,v} : u,v € R, and {u,v} € E },
E[R,S] = {{u,v} :ueRveS, and {u,v} € E }.
Suppose that R = R URy and S = S1USy. Then
E[S] = E|[S1] U E[S2] U E[Sy, S,
E[R,S] = E[R1,51] U E[Ry,S2] U E[R2,S51] U E[R2, Ss].

The pseudocode in Algorithm 1 examines all edges of the graph by employing
the recursive partitioning of Claim 3.2. At each base of the recursion, the algorithm
examines a single edge {r, s} and decides if it can be deleted, via the same approach
as the previous section: by testing if N, s # —1/T, ;. As long as we can ensure that
Ny s = (T’l)nS in each base of the recursion then the algorithm is correct: the matrix
T remains nonsingular throughout the algorithm and, at the end, N has exactly one
nonzero entry per row and column (with failure probability n3/d).

Algorithm 1 ensures that N, s = (T71), s in each base case by updating N when-
ever an edge is deleted. However, the algorithm does not update IV all at once, as
(3.1) indicates one should do. Instead, it only updates portions of N that are needed
to satisfy the following two invariants.
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686 NICHOLAS J. A. HARVEY

ALGORITHM 1. FINDPERFECTMATCHING constructs a perfect matching of the graph G.
The probability of failure is at most & if the field F has cardinality at least |V|*/§. DELE-
TEEDGESWITHIN deletes any edge {r,s} with both r,s € S, subject to the constraint that the
graph still has a perfect matching. DELETEEDGESCROSSING deletes any edge {r, s} withr € R
and s € S, subject to the constraint that the graph still has a perfect matching. Updating N
requires O(|S|*) time; details are given below.

FINDPERFECTMATCHING(G = (V, E))
Let T be the Tutte matrix for G
Replace the variables in T" with random values from field F
If T is singular, return “no perfect matching”
Compute N := T~ 1
DELETEEDGESWITHIN(V)
Return the set of remaining edges

DELETEEDGESWITHIN(S)
If |S| = 1 then return
Divide S in half: S =51 US>
For i € {1,2}
DELETEEDGESWITHIN(S;)
Update NS, S]
DELETEEDGESCROSSING(.S1, S2)

DELETEEDGESCROSSING(R, S)
If |R| = 1 then
Let re Rand s € S
IfT,s #0and N, s # —1/Tr s then
> Edge {r, s} can be deleted
Set Trs =Ts» =0
Update N[RUS, RUS]
Else
Divide R and S each in half: R=R1 U Rz and S = S1 US>
For ¢ € {1,2} and for j € {1, 2}
DELETEEDGESCROSSING (R;,S5;)
Update N[RUS, RUS]

1. DELETEEDGESWITHIN(S) initially has N[S,S] = T1[S,S]. It restores this
property after each recursive call to DELETEEDGESWITHIN(SS;) and after call-
ing DELETEEDGESCROSSING (S, S2).

2. DELETEEDGESCROSSING(R, S) initially has N[RUS, RUS] = T~1[RUS, RUS].
It restores this property after deleting an edge, and after each recursive call
to DELETEEDGESCROSSING(R;, S;).

To explain why invariant 1 holds, consider executing DELETEEDGESWITHIN(S).
We must consider what happens whenever the Tutte matrix is changed, i.e., whenever
an edge is deleted. This can happen when calling DELETEEDGESWITHIN(S;) or
DELETEEDGESCROSSING(S7, S2).

First, suppose the algorithm has just recursed on DELETEEDGESWITHIN(SY).
Let T denote the Tutte matrix before the recursion and let T’ denote the Tutte matrix
after the recursion (i.e., incorporating any edge deletions that occurred during the
recursion). Note that 7' and T differ only in that A = T[Sy, S1] — T[S1, S1] may
be nonzero. Since the algorithm ensures that the Tutte matrix is always nonsingular,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



ALGEBRAIC ALGORITHMS FOR MATCHING AND MATROIDS 687
Corollary 2.2 shows that
Til = Til - (Tﬁl)*7s1 : (I+ A (T71)517S1)

Restricting to the set S, we have

—1

(T Nss = (T s,s — (T Nss - (T+A- (T Nsys) -A(T Vs,s.
Let N refer to that matrix’s value before the recursion. To restore invariant 1, we
must compute the following new value for N[S, S]:

-1
(3.2) Ngss = Nss — Nss,-(I+A-Ng,5,) -A-Ng,s.

The matrix multiplications and inversions in this computation all involve matrices of
size at most |S| x S|, so O(]|S|¥) time suffices.

Next, suppose that the algorithm has just called DELETEEDGESCROSSING (S, S2)
at the end of DELETEEDGESWITHIN(S). Invariant 2 ensures that

NI[S,S] = N[S1US2,81USy] = TS USs,S1USy = TS, 9]

at the end of DELETEEDGESCROSSING(S1, S2), and thus invariant 1 holds at the end
of DELETEEDGESWITHIN(S).

Similar arguments show how to compute updates such that invariant 2 holds.
After deleting an edge {r, s}, it suffices to perform the following update:

an = an ' (]- - TnsNr,s)/(l + TT,SNT7S)7

3.3
( ) Ns,r = = Nr7s~

After recursively calling DELETEEDGESCROSSING(R;, S;), we perform an update as
follows. Let T denote the Tutte matrix before the recursion, let T' denote the Tutte

matrix after the recursion, and let A := (T —T)R,us,,r,us,;- Then we set
Nrus,RuUS
-1
(3.4) := Ngus,rus — Nrus,rus, - (I + A« Ng,us,rius;) A Nrus,,Rus-

This shows that the algorithm satisfies the stated invariants.

Analysis. Let f(n) and g(n), respectively, denote the running time of the func-
tions DELETEEDGESWITHIN(S) and DELETEEDGESCROSSING(R, S), wheren = |R| =
|S]. As argued above, updating N requires only O(|S]¥) time, so we have

f(n) = 2-f(n/2) + g(n) + O(n®),
g(n) = 4-9(n/2) + O(n).

By a standard analysis of divide-and-conquer recurrence relations [9], the solutions of
these recurrences are g(n) = O(n*) and f(n) = O(n").

As argued in section 3.3, each test to decide whether an edge can be deleted fails
with probability at most n/q, and therefore the overall failure probability is at most
n?/q. Therefore setting ¢ > n3/J ensures that the algorithm fails with probability at
most 4.
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688 NICHOLAS J. A. HARVEY

3.5. Extensions.

Mazximum matching. Algorithm 1 is a Monte Carlo algorithm for finding a per-
fect matching in a nonbipartite graph. If the graph does not have a perfect matching,
then T is singular and the algorithm reports a failure. An alternative solution would
be to find a maximum cardinality matching. This can be done by existing techniques
[47, 41], without increasing the asymptotic running time. Let Tg s be a maximum
rank square submatrix of T i.e., |R| = |S| = rankT and Tg g is nonsingular. Since
T is skew-symmetric, it follows that Ts s is also nonsingular [47, p. 560]. Further-
more, a perfect matching for the subgraph induced by S gives a maximum cardinality
matching in G.

This suggests the following algorithm. Randomly substitute values for the inde-
terminates in 7" from F,. The submatrix T g remains nonsingular with probability
at least n/q. Find a maximum rank submatrix of T'; without loss of generality, it is
Tr,s. This can be done in O(n*) time. Now apply Algorithm 1 to obtain a matching
containing all vertices in S. This matching is a maximum cardinality matching of the
original graph.

Las Vegas. The algorithms presented above are Monte Carlo. They can be made
Las Vegas by constructing an optimum dual solution—the Edmonds—Gallai decompo-
sition [49, p. 423]. Karloff [33] showed that this can be done by algebraic techniques,
and Cheriyan [5] gave a randomized algorithm using only O(n*) time. If the dual
solution agrees with the constructed matching, then this certifies that the matching
indeed has maximum cardinality. We may choose the field size g so that both the
primal algorithm and dual algorithm succeed with constant probability. Thus, the
expected number of trials before this occurs is a constant, and hence the algorithm
requires O(n®) time in expectation.

4. Matroid intersection. This section is organized as follows. First, in sec-
tion 4.1, we define matroids and some relevant terminology. Section 4.2 gives an
overview of our algorithmic approach. Section 4.3 fills in some details by introducing
some tools from linear algebra. Section 4.4 shows how these tools can be used to
give an efficient algorithm for matroids of large rank. That algorithm is then used as
a subroutine in the algorithm of section 4.5, which requires only O(nr*~!) time for
matroids on n elements with rank r. Some proofs can be found in the appendix.

4.1. Definitions. Matroids were first introduced by Whitney [55] and others in
the 1930s. Many excellent texts contain an introduction to the subject [6, 36, 43, 46,
49, 54]. We review some of the important definitions and facts below.

A matroid is a combinatorial object defined on a finite ground set S. The cardi-
nality of S is typically denoted by n. There are several important ancillary objects
related to matroids, any one of which can be used to define them. Below we list
those objects that play a role in this paper, and we use “base families” as the central
definition.

Base family. This nonempty family B C 2° satisfies the axiom:

Let B1,Bs € B. For each © € By \ Ba, there exists y € By \ By such
that By —x +y € B.

A matroid can be defined as a pair M = (S, B), where B is a base family over S.

A member of B is called a base. It follows from the axiom above that all bases

are equicardinal. This cardinality is called the rank of the matroid M, typically

denoted by 7.
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Independent set family. This family Z C 2° is defined as
T = {I:ICBforsomeBebB}.

A member of 7 is called an independent set. Any subset of an independent set is
clearly also independent, and a maximum-cardinality independent set is clearly a
base. The independent set family can also be characterized as a nonempty family
T C 29 satisfying

e ACBand BeZT — AeT;
e AcTand BeT and |A| <|B|] = Jbe B\ A such that A+beT.

Rank function. This function, r : 25 — N, is defined as

(T = 1| VT CS.

max
I€Z, ICT

A maximizer of this expression is called a base for T in M. A set I is independent

iff r(I) = |I|.

Since all of the objects listed above can be used to characterize matroids, we
sometimes write M = (5,7), or M = (S5,Z,B), etc. To emphasize the matroid
associated with one of these objects, we often write Bz, mMm, etc.

A linear representation over F of a matroid M = (5,7) is a matrix @ over F with
columns indexed by S, satisfying the condition that Q[*, I] has full column-rank iff
I € 7. There do exist matroids which do not have a linear representation over any
field. However, many interesting matroids can be represented over some field; such
matroids are called linear matroids.

One important operation on matroids is contraction. Let M = (S, B) be a ma-
troid. Given a set T' C S, the contraction of M by T, denoted by M/T, is defined as
follows. Its ground set is S\ T. Next, fix a base By for T in M; i.e., By C T and
rm(Br) = rm(T). The independent sets of M /T are, for any I C S\ T,

(4.1) Ielyyyr <= IUBrelIm.
One may easily see that the base family of M /T is

Byyr = {BCS\T:BUBrcBum}.
The rank function of M/T satisfies
(4.2) rvyr(X) = rm(XUT) —rm(T).

The following fact is well known. A proof is given in Appendix A.2.
Fact 4.1. Let Q be a linear representation of a matroid M = (S,B). Let T C S
be arbitrary, and let Q[A, B] be a mazimum-rank square submatriz of Q[*,T]. Then

Q[Za_] - Q[Zv B] ’ Q[AvB]_l ! Q[Av_]

is a linear representation of M/T.

Matroid intersection. Suppose two matroids My = (S, By) and My = (S5, B2) are
given. A set B C S is called a common base if B € B; N By. A common independent
set (or an intersection) is a set I € I3 N Zy. The matroid intersection problem is
to construct a common base of M; and Ms. The decision version of the problem is
to decide whether a common base exists. The optimization version of the problem
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is to construct an intersection of M; and My with maximum cardinality. Edmonds
[17] proved the following important min-max relation which gives a succinct certificate
of correctness for the matroid intersection problem.

FacT 4.2 (matroid intersection theorem). Let My = (S,Z1,r1) and My =
(S,Za,72) be given. Then

(max |1 = min (r(4) +r2(S\ 4)).

Assumptions. In general, specifying a matroid requires space that is exponential
in the size of the ground set; see [34] and [54, section 16.6]. In this case, many matroid
problems trivially have an algorithm whose running time is polynomial in the input
length. This observation motivates the use of the oracle model for matroid algorithms.
However, most of the matroids arising in practice actually can be stored in space that
is polynomial in the size of the ground set. The broadest such class is the class of
linear matroids, mentioned above.

The algebraic approach used in this paper works only for linear matroids, as do
some existing algorithms [2, 3, 37, 45]. One additional assumption is needed, as in this
previous work. We assume that the given pair of matroids are represented as matrices
over the same field. Although there exist matroids for which this assumption cannot be
satisfied (e.g., the Fano and non-Fano matroids), this assumption is valid for the vast
majority of matroids arising in applications. For example, the regular matroids are
those that are representable over all fields; this class includes the graphic, cographic,
and partition matroids. Many classes of matroids are representable over all but finitely
many fields; these include the uniform, matching, and transversal matroids, as well
as deltoids and gammoids [49]. Our results apply to any two matroids from the union
of these classes.

4.2. Overview of algorithms. We now give a high-level overview of the al-
gorithms. First, some notation and terminology are needed. Let M; = (S, B;) and
M, = (S, Bz). Our algorithms will typically assume that M; and My have a common
base; the goal is to construct one. Any subset of a common base is called an extensible
set. If J is extensible, i € S\ J, and J + i is also extensible, then i is called allowed
(relative to J).

The general idea of our algorithm is to build a common base incrementally. For
example, suppose that {by,...,b,.} is an arbitrary common base. Then

e () is extensible,

e by is allowed relative to 0,

e by is allowed relative to {b1},

e b3 is allowed relative to {b1, b2}, etc.

So building a common base is straightforward, so long as we can test whether an
element is allowed, relative to the current set J. This strategy is illustrated in Algo-
rithm 2. The following section provides linear algebraic tools that we will later use to
test whether an element is allowed.

4.3. Formulation using linear algebra. Suppose that each M; = (5, B;) is
a linear matroid representable over a common field F. Let r; : S — N be the rank
function of M;. Let Q1 be an r X n matrix whose columns represent M; over F and
let Q2 be an n x r matrix whose rows represent My over F.
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ALGORITHM 2. A general overview of our algorithm for constructing a common base of
two matroids M1 and Ms.

MATROIDINTERSECTION (M1, M3)
Set J =10
For each i € S, do
Invariant: J is extensible
Test if ¢ is allowed (relative to J)
If so, set J := J+1

For each J C S, we define a diagonal matrix T'(J) as

0 ifieJ
T(J)ii = 1 Z s
ti ifigJ,
where each t; is an indeterminate. Next, define the matrix
Q1
4.3 Z(J) = .
(13) @ = (g, 11

For simplicity, we will let T = T'(0) and Z = Z(0). Let A\(J) denote the maximum
cardinality of an intersection in the contracted matroids M;/J and Msy/J, which
were defined in section 4.1.

THEOREM 4.3. For any J C S, we have rank Z(J) = n+ri(J) +r2(J) — |J| +
A(J).

Proof. See Appendix A.3. O

For the special case J = (), this result was stated by Geelen [24] and follows
from the connection between matroid intersection and the Cauchy—Binet formula,
as noted by Tomizawa and Iri [51]. See also Murota [43, Remark 2.3.37]. Building
on Theorem 4.3, we obtain the following result which forms the foundation of our
algorithms. Let us now assume that both M; and M; have rank r. That is, r =
7’1(5) = TQ(S).

THEOREM 4.4. Suppose that A()) = r, i.e., M1 and Mz have a common base.
For any J C S (not necessarily an intersection), Z(J) is nonsingular iff J is an
intersection and is extensible.

Proof. See Appendix A.4. O

The preceding theorems lead to the following lemma which characterizes allowed
elements. Here, we identify the elements of S with the rows and columns of the
submatrix 7'(J) in Z(J).

LEMMA 4.5. Suppose that J C S is an extensible set and that i € S\ J. The
element i is allowed iff (Z(J)™ )i #t; "

Proof. By Theorem 4.4, our hypotheses imply that Z(J) is nonsingular. Then
element i is allowed iff Z(J + ¢) is nonsingular, again by Theorem 4.4. Note that
Z(J +1i) is identical to Z(J) except that Z(J +1i);; = 0. Corollary 2.2 implies that
Z(J + 1) is nonsingular iff

det (1 — Z(D)ii - (Z(J)*l)m.) £ 0.

Definition (4.3) shows that Z(J);; = t;, so the proof is complete. O
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The structure of the matrix Z will play a key role in our algorithms below. Let
Y denote the Schur complement of T in Z, i.e., Y = —Q1 - T~ - Q2. One may verify
(by multiplying with Z) that

_ y-! —Y 1@ -T!
1 _ 1
(44) Z - <_T—1 . Q2 . Y—l T—l + T—l . Q2 . Y—l 'Ql 'T_l) .

Our algorithms cannot directly work with the matrix Z(.J) since its entries contain
indeterminates. A similar issue was encountered in section 3: for example, det Z(J)
is a polynomial which may have exponential size. This issue is again resolved through
randomization. Suppose that Z(J) is nonsingular over F, i.e., det Z(J) is a nonzero
polynomial with coefficients in F. Suppose that F = F,. is finite and let ¢’ > c.
Evaluate det Z(J) at a random point over the extension field F .. by picking each
ti € F e unif/ormly at random. This evaluation is zero with probability at most n/q,
where ¢ = p°, as shown by the Schwartz—Zippel lemma [40]. This probability can
be made arbitrarily small by choosing ¢ as large as desired. If F is infinite, then we
simply need to choose each ¢; uniformly at random from a subset of F of size q.

4.4. An algorithm for matroids of large rank. This section presents an
algorithm which behaves as follows. It is given two matrices Q1 and @2 over F
representing matroids M; and Ms, as in the previous section. The algorithm will
decide whether the two matroids have a common base and, if so, construct one. The
algorithm requires time O(n“) and is intended for the case r = ©(n).

The algorithm maintains an extensible set J, initially empty, and it computes
Z(J)~! to help decide which elements are allowed. As elements are added to J, the
matrix Z(J)~! must be updated accordingly. A recursive scheme is used to do this,
as in the matching algorithm of section 3. Pseudocode is shown in Algorithm 3.

First let us argue the correctness of the algorithm. The base cases of the algorithm
examine each element of the ground set in increasing order. For each element i, the
algorithm decides whether i is allowed relative to J using Lemma 4.5; if so, i is added
to J. Thus the behavior of Algorithm 3 is identical to Algorithm 2, and its correctness
follows.

The algorithm decides whether i is allowed by testing whether (Z(J)™1);; # t;.
(Note that invariant 2 ensures that N;; = (Z(J)™!);,;.) Lemma 4.5 shows that this
test is correct when the t;’s are indeterminates. When the t;’s are random numbers,
the probability that this test fails (i.e., i is allowed but (Z(J)™1);; = t;) is at most
n/q, again by the Schwartz—Zippel lemma. By a union bound over all elements, the
probability of failure is at most & so long as ¢ > n?/.

We now complete the description of the algorithm by explaining how to com-
pute the matrix M = (Z(J U J1)™1)s,.s, during the recursive step. First, note that
Ns,.5, = (Z(J)™Y)s,.5,- Next, note that Z(J U Jy) is identical to Z(J) except that
Z(JUJ1)g, .5, = 0. It follows from Corollary 2.2 that

Z(JUJ)™?
-1
:Z(‘])_l + (Z(J)_l)*JI (I - Z(J)J1,J1 (Z('])_l)(]l)‘]l) Z(J)J1,J1 (Z(J)_l)Jl,*'
Thus
-1
(Z(JU Jl)_1)52)52 = Ngs,.5, + Ns,.1, (I— 25,0 NJth) Z5.0 Nj s,

The matrix M is computed according to this equation, which requires time at most
O(]S|“) since all matrices have size at most |S| x |S].
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ALGORITHM 3. A recursive algorithm to compute a common base of two matroids My =
(S,B1) and M2 = (S, B2), where n = |S| and the rank r = ©(n).

MATROIDINTERSECTION(M1,M3)
Let S ={1,...,n} be the ground set of M; and M
Construct Z and assign random values to the indeterminates t¢1,...,t,
Compute N := (Z7')s,s
J = BUILDINTERSECTION(S, (), N)
Return J

BUILDINTERSECTION(S = {a,...,b}, J, N)
Invariant 1: J is an extensible set
Invariant 2: N = (Z(J)_l)ss
If |S| > 2 then ’
Partition S into S1 = {a,..., [ 22|} and Sy = {|%E2|+1,...,b}
J1 = BUILDINTERSECTION(S1, J, Ns,,s,)
Compute M := (Z(J U .]1)71)52 s, as described below
J2 = BUILDINTERSECTION(S2, J U Ji, M)
Return J1 U J2
Else
This is a base case: S consists of a single element i =a =b
If Ni; #t7" (ie., element i is allowed) then
Return {i}
Else
Return 0

We now argue that this algorithm requires O(n*) time. The work is dominated
by the matrix computations. Computing the initial matrix Z~! clearly takes O(n*)
time since Z has size (n+7r) X (n+r). As shown above, computing M requires time
O(]S]¥). Thus the running time of BUILDINTERSECTION is given by the recurrence

f(n) = 2-f(n/2)+0O(n*),
which has solution f(n) = O(n%).

4.5. An algorithm for matroids of any rank. This section builds upon the
algorithm of the previous section and obtains an algorithm with improved running
time when r = o(n). The high-level idea is as follows: partition the ground set S into
parts of size r, then execute the BUILDINTERSECTION subroutine from Algorithm 3
on each of those parts. For each part, executing BUILDINTERSECTION requires O(r*)
time. Since there are n/r parts, the total time required is O(nr*~1). More detailed
pseudocode is given in Algorithm 4.

Algorithm 4 is correct for the same reasons that Algorithm 3 is: each element ¢ is
examined exactly once, and the algorithm decides if 7 is allowed relative to the current
set J. Indeed, all decisions made by Algorithm 4 are performed in the BUILDINTER-
SECTION subroutine, which was analyzed in the previous section. Correctness follows
immediately, and again the failure probability is 6 so long as ¢ > n?/4.

Let us now analyze the time required by Algorithm 4. First, let us consider the
matrix Y, which is computed in order to later compute the matrix N. Since T is
diagonal, Q17! can be computed in O(nr) time. Since Q7' has size r x n and
Q2 has size n x r, their product can be computed in time O(nr*~1).

Now let us consider the time for each loop iteration. Each call to the function
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ALGORITHM 4. The algorithm to compute a common base of two matroids My = (S, B1)
and M2 = (S, 82)

MATROIDINTERSECTION(M1,M3)

Construct Z and assign random values to the indeterminates ¢1,...,t,
Compute Y := —Q177'Q2 (used below for computing N)

Partition S = S1U---US,, ., where |S;| =7

Set J := 0

Fori=1ton/r do
Compute N := (Z(J) Y)s,.s;
J' = BUILDINTERSECTION(S;,J,N)
Set J :== JuJ’

Return J

BUILDINTERSECTION requires O(r*) time, as argued in the previous section. The
following claim shows that computing the matrix N also requires O(r*) time. Thus,
the total time required by all loop iterations is (n/r) - O(r*) = O(nr*~1). Thus
Algorithm 4 requires O(nr*~1) time in total.

CLAIM 4.6. In each loop iteration, the matrix N can be computed in O(r*) time.

To prove this, we need another claim.

CrLamM 4.7. Suppose that the matrix Y has already been computed. For any
A,B C S with |A] < r and |B| < r, the submatriz (Z=')a 5 can be computed in
O(rv) time.

Proof. As shown in (4.4), we have

(Z Nss =T — T QY QT
Thus,
(Z Nas = Tag + (T7'Q2)axY (1T ) n.

The submatrices (T71Q2) 4« and (Q1T~ 1), 5 can be computed in O(r?) time since
T is diagonal. The remaining matrices have size at most r x r, so all computations
require at most O(r¥) time. O

Proof of Claim 4.6. Note that Z(J) is identical to Z except that Z(J)s; =0. It
follows from Corollary 2.2 that

1
Z) =z (27 (I_ZJ,J(Z_l)J,J) Z3,0(Z7") s

Thus,
—1
45) (Z(N) g5 = (@ Nsisi+(Z7 )50 (I—ZJ,J(Z_l)J,J) Z3,5(Z7 ) s,

By Claim 4.7, the submatrices (Z71)s, s, (Z7Y)s,,7, (Z7) 7, and (Z71) 5 5, can all
be computed in O(r*) time. Thus the matrix N = (Z(J)™!) can be computed

S8
in O(r*) time, as shown in (4.5). O
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4.6. Extensions.

4.6.1. Maximum cardinality intersection. The algorithms presented in the
previous sections construct a common base of the two given matroids, if one exists.
If the matroids do not have a common base, then the matrix Z is singular and the
algorithm reports a failure. An alternative solution would be to find a maximum
cardinality intersection rather than a common base. Algorithm 4 can be adapted for
this purpose, while retaining the running time of O(nr*~1!). We will use the same
approach used in section 3 to get a maximum matching algorithm: restrict attention
to a maximum-rank submatrix of Z.

Suppose the two given matroids M; = (S,B8;1) and My = (S, B3) do not have a
common base. By Theorem 4.3, rank Z = n+ )\, where \ is the maximum cardinality
of an intersection of the two given matroids. Since T is nonsingular, Fact 2.3 shows
that there exists a row-set A and column-set B, both disjoint from .S, such that
|A| = |B| = rank Z — n and Zays, pus is nonsingular. The matrix Zaus,pus has the
following form:

B S
Zaus,pus = A ( Q1[A, ] )
S Qg[*,B] T

Now Algorithm 4 can be used to find a common base J for the matroids M4,
corresponding to Q1[A, x|, and Mp, corresponding to Qz[*, B]. Then @Q1[A4, J] has
full column rank, which certainly implies that Q1 [*, J] does too, so J € Z;. Similarly,
J € Is. Since

|J| = |A] = rankZ —n = A,

then |J]| is a maximum cardinality intersection for My and M.

To analyze the time required by this algorithm, it suffices to focus on the time
required to construct the sets A and B. Let Y = —Q17T'Q2 be the Schur complement
of T'in Z. By Fact 2.3, if Y4 p is a maximum-rank square submatrix of Y, then A and
B give the desired sets. As remarked earlier, Y can be computed in O(nr*~1) time,
and a maximum-rank square submatrix can be found in O(r*) time. This shows that
a maximum cardinality intersection can be constructed in O(nr*~1!) time.

4.6.2. A Las Vegas algorithm. The algorithms presented above are Monte
Carlo. In this section, we show that they can be made Las Vegas by constructing an
optimal dual solution, i.e., a minimizing set A in Fact 4.2. This dual solution can also
be constructed in O(nr*~1) time. If an optimal dual solution is constructed, then
this certifies that the output of the algorithm is correct. Since this event occurs with
constant probability, the expected number of trials before this event occurs is only a
constant.

To construct a dual solution, we turn to the classical combinatorial algorithms for
matroid intersection, such as Lawler’s algorithm [36]. Expositions can also be found
in Cook et al. [6] and Schrijver [49]. Given an intersection, this algorithm searches
for augmenting paths in an auxiliary graph. If an augmenting path is found, then the
algorithm constructs a larger intersection. If no such path exists, then the intersection
has maximum cardinality and an optimal dual solution can be constructed.

The first step is to construct a (purportedly maximum) intersection J using the
algorithm of section 4.6.1. We then construct the auxiliary graph for J and search for
an augmenting path. If one is found, then J is not optimal, due to the algorithm’s
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unfortunate random choices; this happens with only constant probability. Otherwise,
if there is no augmenting path, then we obtain an optimal dual solution. It remains
to show that we can construct the auxiliary graph and search for an augmenting path
in O(nr=1) time.

The auxiliary graph is defined as follows. We have two matroids My = (S,Z;)
and My = (5,75), and an intersection J € Z; NZy. The auxiliary graph is a directed,
bipartite graph G = (V, A) with bipartition V = J U (S\J). The arcs are A = A; U As,
where

A = {(zyy)ryed,agJ, and J—y+azel},

Ay = {(y,x):yedJ,z¢gJ, and J—y+zely}.

There are two distinguished subsets X7, Xo C S\ J, defined as follows:
X, = {z:2¢J and JHzey},
Xo = {xz:2¢J and J+zecly}.

It is possible that X; N X3 # (). Any minimum-length path from X; to X3 is an
augmenting path. So J is a maximum cardinality intersection iff G has no directed
path from X3 to Xo. When this holds, the set U of vertices which have a directed path
to Xy satisfies |J| = r1(U) +r2(S\ U), so U is an optimum dual solution. Schrijver
[49, p. 706] gives proofs of these statements.

Since the auxiliary graph has only n vertices and O(nr) arcs, we can search for a
path from X; to Xz in O(nr) time.

CLAIM 4.8. The auxiliary graph can be constructed in O(nr*=1) time.

Proof. Since J € Ij, the submatrix Q1[*,J] has full column-rank. Let Q1[I, J]
be a nonsingular square submatrix, and let C' be the Schur complement of Q4[1, J] in
Q1. Fact 4.1 implies that C' is a linear representation of M /J, and thus J +1i € I
iff C, ; # 0. Thus we will add ¢ to X iff C,; contains a nonzero entry.

As in the proof of Fact 4.1 in Appendix A.2, let us decompose

J

(v

w0
M= <—YW1 I)'

Then M - @1 is a linear representation of M;. Consider the decomposition

Q =

~l o~
N <
N—

and define

J X1 JU Xy
(4.6) M-Q =1 ( 1 W_lX*7X1 W_lX*7X_1 )
T 0 Ci.x, 0

Clearly Q1[*, J—i+j] has full column-rank iff (M-Q1)[*, J—i+j] has full column-rank.
For j € JU X3, it is clear from (4.6) that the latter condition holds iff (M -Q1),; # 0.
The arcs in A; are constructed as follows. For any = € X7, we have J 4+ x € 7y,
which implies that J +x —y € Z; Yy € J. Thus (z,y) € A; Vo € X; and y € J. For
any x € S\ (JUXy1), we have (z,y) € Ay iff (M - Q1);,; # 0, as argued above.
The computational cost of this procedure is dominated by the time to compute

M - Q1, which clearly takes O(nr“~!) time. A symmetric argument shows how to
build X5 and As. a
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5. Discussion. This paper leaves open several questions.

e A common generalization of nonbipartite matching and matroid intersection is
the matroid matching problem [36, 38, 49]. It seems likely that our matching
and matroid intersection algorithms can be combined and extended to solve this
problem as well, when the given matroids are linear.

e As mentioned earlier, there exist fast algorithms for rectangular matrix multipli-
cation [7]. Can these be used to obtain a faster algorithm for matroid intersection?

e Do Theorems 4.3 and 4.4 have other applications?

Another common generalization of nonbipartite matching and matroid intersec-
tion is the basic path-matching problem [12, 13, 11] (or independent even factor
problem [11, 32]). The techniques presented herein can be extended to solve that
problem, when the given matroids are linear. A sketch of the argument was given
in a preliminary version of this paper [29]. For the sake of brevity, we omit further
discussion of this topic.

Appendix. Additional proofs.

A.1. Facts from linear algebra. This section proves the basic facts that are

given in section 2.
Proof of Fact 2.1. Note that

I (1 VT (T VTN _ (I VIMY\ (T+VTM~'U
-U I M+UVT) “\-U M)~ I -U M)
Taking determinants shows that det(M + UVT) = det(I + VT M ~1U) - det(M). This

proves the first claim.
The second claim follows since

(M—l ~MTWU + VTM—lU)—lvTM—l) : (M + UVT)
= I+ M*lU(I — [+ VMU - (T + VTMflU)*lvTMflU) VT
— [+ MWUI+ VM) ! ((1 FVTMD) T - VTM—lU) VT

as required. This proof of the second claim is well known and may be found in Golub
and Van Loan [28, section 2.1.3]. o
Proof of Corollary 2.2. Let us write M = M + UV, where

S S S S
M:E(Ms,s M&g), Mzg(Ms,g Mss),
SA\Mgg Mgz S\Mgg Mgy
S —
S S
U=S8/I\, VT = - .
5 (o) S (Mss=Mss 0)

Then Fact 2.1 shows that M is nonsingular iff 7 + VT MU is nonsingular. Using
the definition of N, V', and U, we get

I+VTNU = I+ (Mss— Ms,s)Ng.s.
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Furthermore, Fact 2.1 also shows that

Mt =N - NUI+V'NU)'VTN
= N — Nos(I+ (Mgs— MS7S)NS7S)71 (Ms,s — Ms,s) N,

as required. 0
Proof of Fact 2.3. Note that

(A1) W-Xz7ly o\ _ (I -Xz7! (WX 1 0
' 0 z) —\0 I Y Z -Z7Y%Y I)°
~—_——— ~—_——
N1 N2
Taking the determinant of both sides gives
det (W —XZ7'Y)-detZ = det M,

since det N7 = det N = 1. This proves the first property.
Furthermore, since N; and N5 have full rank, we have

(A.2) rank M = rank (W — XZ7'Y) +rankZ = rankC + |Ss].

Now suppose that C4 p is nonsingular with |A| = |B| = rank C. Then we have

(A3) OA,B 0 N I —XA7*Z_1 ) WA,B XA)* ) I 0
) 0 Z) — \o I Y. B Z —Z_1Y*7B 1)

It follows from (A.2) and (A.3) that
rank M = rankC +rankZ = rankCy p+rankZ = rank Mayus,,BusS.,

which proves the second property. 0
Proof of Fact 2.4. Suppose that M ! exists. Then

(M~ Diy = (M) = (M) = (M) M) = = (M),
as required. 0

A.2. Proof of Fact 4.1. Let us write () as

B B
Q=4 ( W X )

A\Y Z
For any nonsingular matrix M, the matrix M - @ is also a linear representation of M.
We choose

w1 0
M= <—YW1 1 ) ’

so that
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Note that C' := Z — YW 1X is the Schur complement of Q[A, B] in Q. Fact 2.3
shows that C[A’, B'] is a maximum-rank square submatrix of C iff QAU A’, BU B’
is a maximum-rank square submatrix of ). In other words,

{B'C S\T : C[,B] has full column-rank }
= {B'CS\T : Q[+, BUB'] has full column-rank },
(B'CS\T:BUB B},

where B is the base family of M. This family of sets is precisely By 7, so C [*,T] is
a linear representation of M/T. Since

C[*v ] = Q[AvT] - Q[Zv B] ’ Q[A,B]71 'Q[Aa_]a
the claim is proven.

A.3. Proof of Theorem 4.3. By applying elementary row and column opera-
tions (as in the proof of Fact 4.1 in Appendix A.2), we may transform Z(J) into the
form

Qf QY
~ J
Z(J) = 01 Qi ;
Q4 Qf T(J)77

where Q{ has full row-rank, @3 has full column-rank, Q7 is a linear representation
of M;/J, and Qf is a linear representation of My/.J. Then we have

rank Z(J) = rankZ(J) = ri(J) +ro(J) +rank Z(J),

where

. B Q7
w9 = <Q§ T(J)lzj)'

By the previously known special case of Theorem 4.3 due to Tomizawa and Iri [51],
we have

rank Z(J) = |[J[+A(J) = n—|J]| + \(J).
Thus we have
rank Z(J) = r1(J) +r2(J) +n — |J| + A(J),

as required.

A.4. Proof of Theorem 4.4.

CramM A.1. Let J be an intersection of My and Ma. J is extensible iff A\(0) =
() +|J].

Proof. Suppose that J is an extensible intersection. This means that there exists
an intersection I with J C I and |I| = A(0). Since J € Z;, it is a base for itself in
M;. Thus, (4.1) shows that I\ J € Zyy, /s for both i, implying that X\(J) > |1\ J| =
A(0) —|J].
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To show the reverse inequality, let I be a maximum cardinality intersection of
M, /J and My/J. So |I| = A(J). Then I U J is an intersection of M; and Ma,
showing that A(@) > A(J) + |J|. This establishes the forward direction.

Now suppose that A(J) = A(@) —|J|. Then there exists an intersection I of M /J
and My/J with |I| = A(@) — |J|. Then I U J is an intersection of M; and My, of
cardinality ||+ |J| = A(@). This shows that J is contained in a maximum cardinality
intersection of M; and Ms, and therefore is extensible. O

CLamM A.2. Assume that My and My have the same rank r. For any set J C S,
we have A(J) <1 —max;ecqq 0y 7i(J).

Proof. Note that A(J) is at most the rank of M;/J, which is r — r;(J). O

Suppose that J is an extensible intersection. This implies that r1(J) = |J| and
ro(J) = |J| and A(J) = A(0) — |J|, by Claim A.1. Theorem 4.3 then shows that

rank Z(J) = n+ri(J)+r2(J) —|J| + A(J)
n+[J|+ |J| = |J] + X(0) — | ]|

= n+r,

and hence Z(J) is nonsingular as required.
We now argue the converse. Clearly ro(J) < [J| and, by Claim A.2, we have
AJ)+ 71 (J) <r. Thus
rank Z(J) = n+nri(J)+r2(J) = [J| + A(J)
n+ (ri(J) + A(J)) + (r2(J) = |J])
< n—+r.

If Z(J) is nonsingular, then equality holds, so we have ro(J) = |J| and r(J) +
A(J) = r. By symmetry, we also have r1(J) = |J|, implying that J is an intersection.
Altogether this shows that |J| + A(J) = r, implying that J is extensible.
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