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The Effect of Amplitude (Power) Variations on Beam
Combining Efficiency for Phased Arrays

Tso Yee Fan, Senior Member, IEEE

Abstract—In coherent beam combining (phased arrays), control
of the relative amplitudes (powers) of array elements is needed to
maximize the beam combining efficiency. Here, simple expressions
are derived for the efficiency in approaches that use interferometric
combiners such as diffractive optical elements or fiber couplers.
The beam combining efficiency is relatively insensitive to small
power errors. In the case of dropped elements, the efficiency is
equal to the fraction of operating elements. The beam combining
efficiency is equivalent to the Strehl ratio for a tiled aperture.

Index Terms—Laser arrays, optical arrays, phased arrays.

I. INTRODUCTION

COHERENT beam combining (phased arrays) is becoming
increasingly of interest as an approach for increasing the

power and brightness from arrays of lasers [1]. While it is widely
recognized that phase control is important for efficient combin-
ing, amplitude control is also important. The effect on efficiency
of phase-control errors has been previously analyzed [2], [3];
here, an analysis of the effect of amplitude (power) control er-
rors is presented, with the result that amplitude variations among
the elements are not strong drivers of combining inefficiency.
A simple expression is derived for the efficiency, which gives
physical insight, similar to simple expressions that are often
used to describe the effect of phase errors. In the limit that only
some fraction of the laser array is operational, the beam com-
bining efficiency (assuming the phase errors are 0) is simply
equal to the fraction of the array that is operational. Although
amplitude-control errors are not strong drivers of beam combin-
ing efficiency, this is a less favorable situation than wavelength
beam combining, in which amplitude control has no effect on
beam combining efficiency [1].

Coherent beam combining approaches can be generally
classed between tiled-aperture and filled-aperture implemen-
tations. In the former, the array element outputs are placed spa-
tially adjacent to each other and interfere with each other in the
far field. In the latter, the outputs are overlapped at an interfer-
ometric beam combiner (such as a holographic beam splitter or
an N × N fiber coupler). There is an equivalence between these
two approaches, with the difference being whether the interfer-
ence occurs in the near field or far field. The analysis presented
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Fig. 1. Interferometric combining of laser beams. P0 is the power in the com-
bined beam and Ps is the power scattered in other directions. (Left) Combining
two beams at a 50/50 beam splitter. (Right) Combining of multiple beams.

here is based on filled-aperture implementations, but the beam
combining efficiency is entirely equivalent to the Strehl ratio for
a tiled-aperture implementation.

II. TWO-ELEMENT BEAM COMBINING EFFICIENCY

Consider the simplest case of beam combining pertaining
to two elements at a 50/50 beam splitter, as shown in Fig. 1.
Two beams are incident with powers P1 and P2 with the beam-
combined output having power P0 . The power out of the unde-
sired port is Ps . It is assumed that the incident beams are coherent
with respect to each other and that they are mode-matched. The
output power is [2]

P0 =
1
2
|
√

P1 exp(jφ) +
√

P2 exp(−jφ)|2 . (1)

Here j = (−1)1/2 and φ is the relative phase. Here, φ is
defined such that φ = 0 results in constructive interference at
the output. Consequently, the beam combining efficiency η,
which is the ratio of P0 to the sum of the input powers, is given
by

η =
P0

P1 + P2
=

1
2
|
√

P1 exp(jφ) +
√

P2 exp(−jφ)|2
P1 + P2

. (2)

The total input power can be normalized to P1 + P2 = 2 where
P1 = 1 + ∆ and P2 = 1 − ∆, with ∆ being the difference in
power from the average. For equal input powers, ∆ = 0, and for
one of the inputs being 0, ∆ = 1. For φ = 0, (2) can be rewritten
as

η(φ = 0) = ηa =
1
4
(√

1 + ∆ +
√

1 − ∆
)2

. (3)

In the limit of small ∆, (3) can be series-expanded, and by re-
taining up through square terms in ∆, ηa can be approximated as

ηa ≈ 1 − ∆2

4
. (4)

Fig. 2 shows the efficiency as a function of ∆ for both the
exact and approximate solutions in (3) and (4), respectively. The
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Fig. 2. Two-element beam combining efficiency as a function of ∆ for φ = 0.
The approximation of (4) is the dashed line, and the exact solution of (3) is the
solid line.

approximation is very good up to ∆ of around 0.6. For ∆ = 0.6
(representing a ratio of P1/P2 of 4), the beam combining effi-
ciency is still 0.9 showing that relatively large power differences
can be tolerated while still maintaining good beam combining
efficiency.

III. GENERALIZATION TO N ELEMENTS FOR SMALL POWER

VARIATIONS AMONG ELEMENTS

The results of (2)–(4) can be generalized to N elements
by considering the optical interferometric beam combiner as a
multiport system using the scattering matrix formalism [4], [5]
be it a holographic optical element [6], [7], a tree of 50/50 beam
splitters [8], [9], or an N × N fiber coupler [10]. Here, we con-
sider the specific case of a beam combiner in which equal powers
are required of the inputs in order to get unity beam combin-
ing efficiency, and assume that the elements are mode-matched
and the inputs are coherent with each other. This is idealized in
Fig. 1.

The beam combining efficiency for a multiport system has
been previously derived [6]; that work included the general case
of a beam combiner that requires unequal powers to achieve
unity beam combining efficiency. Here, the assumption of equal
powers is made in order to derive a simple, intuitive expression
for beam combining efficiency. In generalizing to N elements,
(2) becomes

η =
1
N

∣∣∣∑N
m=1

√
Pm exp(jφm )

∣∣∣2∑N
m=1 Pm

(5)

where Pm and φm are the power and phase in the mth beam,
respectively (m = 1 to N ). By definition, it has been chosen
that φm = 0 results in constructive interference to the output
beam. This choice can be made because the reference plane
for defining the scattering matrix coefficients can be chosen
arbitrarily [5]. This choice does, however, impose conditions
on the other components of the scattering matrix so that it is

unitary [5]. For φm = 0

ηa =

[
1
N

N∑
m=1

√
1 + ∆m

]2

(6)

where ∆m is the difference in power from the average for
the mth element. One important difference between the two-
element case and the N -element case is the range of ∆. In
general, −1 ≤ ∆m ≤ N − 1. In the limit of small |∆m|, ηa can
be approximated as

ηa ≈ 1 − 1
4N

N∑
m=1

∆2
m . (7)

In deriving this approximation from (6), |∆m| must be less
than 1 and only the square terms of ∆m are retained in the
series expansion. Also, terms containing powers of N greater
than 2 (in the denominator) are ignored. In the limit of large N ,
in which the deviations can be expressed probabilistically, this
becomes

ηa ≈ 1 − σ2
∆

4
(8)

where σ∆ is the standard deviation of ∆, similar to (4). This
is similar in form to the approximation of the beam combining
efficiency in the case of small phase errors (but no amplitude
errors) ηφ , which is given by [2], [3]

ηφ ≈ 1 − σ2
φ (9)

where σφ is the standard deviation of the phase. It can be shown
in the limit of small phase and amplitude errors that

η ≈ ηaηφ . (10)

IV. EFFECT ON COMBINING EFFICIENCY FOR

NONOPERATIONAL ELEMENTS

This analysis can be used to determine the dependence of
beam combining efficiency on the number of elements. Here,
we want to understand what happens to the beam combining
efficiency when only a fraction of the array is operational. The
starting point for this analysis is (5). In the case where all ele-
ments have equal power and are all operational, Pm = P1 , and
thus, η =1 for φm = 0. For only a fraction F (F ≤ 1) of the
elements being operational, (5) becomes

ηa =
1
N

[
FN

√
P1

]2

FNP1
= F. (11)

Hence, ηa is equal to the fraction of operational elements,
similar to the Strehl ratio being proportional to the fill factor for
a tiled-aperture implementation [2]. Since the total power from
the array is proportional to F , the power in the combined beam
scales as F 2 , which is the same result previously highlighted for
the degradation of the performance as array elements fail. The
beam combining efficiency can be made unity and the power in
the combined beam degraded to only F by changing the optical
system such that the interferometric combiner is designed for
FN elements [1].
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V. EQUIVALENCE OF BEAM COMBINING EFFICIENCY

AND STREHL RATIO

The beam combining efficiency for interferometric beam
combiners is equivalent to the Strehl ratio for tiled apertures.
Here, the strict definition of Strehl ratio is used, in which a uni-
formly illuminated aperture with uniform phase gives a Strehl
ratio of 1. The expression for beam combining efficiency [see
(5)] is identical to the expression for the Strehl ratio for a tiled
aperture [2]. Given the equivalence, some additional statements
can be made regarding phase and amplitude errors for coher-
ent combining. In general, the degradation in beam combining
efficiency caused by the combination of amplitude errors and
phase errors is not separable, except in the limit of small errors.
In other words, for a given phase-error distribution among the
elements, there may be a nonzero amplitude variation among the
elements that maximizes efficiency. This can be seen, for exam-
ple, in the simple case of combining two beams. For φ = π/2,
the maximum beam combining efficiency arises from one of the
inputs having a power of 0 (i.e., ∆ = 1); equal power inputs
(∆ = 0) lead to a beam combining efficiency of 0. However, it
is also true that, for any amplitude distribution, the highest beam
combining efficiency (Strehl ratio) always occurs for no phase
error [11] (i.e., φm = 0 by the definition in this paper).

VI. SUMMARY

The reduction in beam combining efficiency caused by
amplitude-control errors is relatively small in coherent beam
combining. For the case in which only a fraction of the ele-
ments operate, the beam combining efficiency is equal to that
fraction, assuming no phase error. While the degradation of
beam combining efficiency is small, it still is less favorable than
wavelength beam combining in which the beam combining ef-
ficiency is independent of amplitude. The beam combining effi-
ciency of an interferometric combiner is equivalent to the Strehl
ratio in a tiled-aperture implementation.
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