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We present a (mathematically rigorous) probabilistic and geometrical proof of the Knizhnik-Polyakov-

Zamolodchikov relation between scaling exponents in a Euclidean planar domain D and in Liouville

quantum gravity. It uses the properly regularized quantum area measure d�� ¼ "�
2=2e�h"ðzÞdz, where dz

is the Lebesgue measure on D, � is a real parameter, 0 � � < 2, and h"ðzÞ denotes the mean value on the

circle of radius " centered at z of an instance h of the Gaussian free field on D. The proof extends to the

boundary geometry. The singular case � > 2 is shown to be related to the quantum measure d��0 , �0 < 2,

by the fundamental duality ��0 ¼ 4.

DOI: 10.1103/PhysRevLett.102.150603 PACS numbers: 04.60.Kz, 02.50.�r, 64.60.al

Introduction.—One of the major theoretical advances in
physics over the past 30 years has been the realization in
gauge theory or string theory that transition amplitudes
require summing over random surfaces, which replaces
traditional sums over random paths, i.e., the celebrated
Feynman path integrals of quantum mechanics and quan-
tum field theory. Polyakov [1] first understood that the
summation over random Riemannian metrics involved
could be represented mathematically by the now celebrated
Liouville theory of quantum gravity.

The latter can be simply described as follows: Consider
a bounded planar domain D � C as the parameter domain
of the random Riemannian surface and an instance h of the
Gaussian free field (GFF) on D, with Dirichlet energy
ðh; hÞr :¼ ð2�Þ�1

R
D rhðzÞ � rhðzÞdz. The quantum area

is then (formally) defined by A ¼ R
D e�hðzÞdz, where dz

is the standard 2D Euclidean (i.e., Lebesgue) measure and

e�hðzÞ the random conformal factor of the Riemannian
metric, with a constant 0 � � < 2. The quantum
Liouville action is then

SðhÞ ¼ 1
2ðh; hÞr þ �A; (1)

where � � 0 is the so-called ‘‘cosmological constant.’’
Kazakov introduced the key idea of placing (critical)

statistical models on random planar lattices, when ex-
actly solving there the Ising model [2]. This antici-
pated the breakthrough by Knizhnik, Polyakov, and
Zamolodchikov (KPZ) [3], who predicted that correspond-
ing critical exponents (i.e., conformal weights x) of any
critical statistical model in the Euclidean plane and in
quantum gravity (�) would obey the KPZ relation [3–5]:

x ¼ �2

4
�2 þ

�
1� �2

4

�
�: (2)

In the critical continuum limit, the statistical system borne
by the random lattice is described by a conformal field
theory (CFT) with central charge c � 1, which fixes the

value � ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� c

p � ffiffiffiffiffiffiffiffiffiffiffiffi
1� c

p Þ= ffiffiffi
6

p � 2 [3]. This pro-
vides the core continuous model of ‘‘2D quantum gravity,’’
whose deep and manifold connections to string theory,
conformal field theory, random planar lattice models, ran-
dom matrix theory, and stochastic Loewner evolution
(SLE) are often still conjectural (see [6–11], and references
therein).
Despite its great importance for conformal field theory,

and its manifold checks by explicit calculations in geomet-
rical models on random planar lattices [12–15], the KPZ
relation (2) was never proven rigorously, nor its range of
validity properly defined, and not even its geometrical
meaning fully understood. The aim of this Letter is to
present such a proof in a minimal, yet rigorous way. In
our geometrical and probabilistic approach, we start from
the critical Liouville gravity, with action S (1) taken at � ¼
0, i.e., a free-field action. We define a properly regularized
quantum area measure, which allows for a transparent
probabilistic understanding of the KPZ relation (2) for
any scaling fractal set in D, as a direct consequence of
the underlying Brownian stochastic properties of the two-
dimensional GFF. We also prove the boundary analog of
KPZ for fractal subsets of the boundary @D.
One striking and important consequence of our perspec-

tive is that KPZ appears to hold in a much broader context
than the original CFT realm which relates � to c, i.e., for
any fractal structure as measured with the quantum ran-

dom measure e�hðzÞdz and for any 0 � � < 2. For instance,
it predicts that the set of Euclidean exponents x of a
random or a self-avoiding walk (a c ¼ 0 CFT) obey (2)

with � ¼ ffiffiffiffiffiffiffiffi
8=3

p
in pure gravity (c ¼ 0) but also with � ¼ffiffiffi

3
p

on a random lattice equilibrated with Ising spins (c ¼
1=2). This central charge mixing yields new KPZ exponent
�’s, settling theoretically an issue raised earlier but incon-
clusively in numerical simulations [16,17].
Our probabilistic approach also allows us to explain the

duality property of Liouville quantum gravity: For � > 2,
the singular quantum measure can be properly defined in
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terms of the regular �0-quantum measure, for the dual
value �0 ¼ 4=� < 2, establishing the existence of the so-
called ‘‘other branch’’ of the �-KPZ relation and its cor-
respondence to standard �0-KPZ for �0 < 2, as argued long
ago by Klebanov [18–20].

An extended mathematical version of this work will
appear elsewhere [21]. Several follow-up works exist, at
either the rigorous level [22,23] or the heuristic one [24].

GFF circular average and Brownian motion.—Let h be
a centered Gaussian free field on a bounded simply con-
nected domain D with Dirichlet zero boundary conditions.
As already remarked in Ref. [25], special care is required
to make sense of the quantum gravity measure, since the
GFF is a distribution and not a function (it typically
oscillates between �1) (see, e.g., [26]).

For each z 2 D, write B"ðzÞ ¼ fw : jw� zj< "g. When
B"ðzÞ � D, write h"ðzÞ for the average value of h on the
circle @B"ðzÞ. Denote by �z

"ðyÞ the uniform density (of total
mass one) localized on the circle @B"ðzÞ, such that one can
write the scalar product on D: h"ðzÞ ¼ ðh; �z

"Þ :¼R
D hðyÞ�z

"ðyÞdy. To the density �z
" is naturally associated

a Newtonian potential. We define the function fz"ðyÞ, for
y 2 D:

fz"ðyÞ ¼ � log maxð"; jz� yjÞ � ~GzðyÞ; (3)

where ~GzðyÞ is the harmonic function of y 2 D, with
boundary value equal to the restriction of � logjz� yj to
@D. By construction this fz"ðyÞ satisfies Dirichlet boundary
conditions and the Poisson equation ��fz" ¼ 2��z

". This
(regular) potential function is represented in Fig. 1.
Integrating by parts, we immediately have the following:

h"ðzÞ ¼ ðh; fz"Þr; (4)

in terms of the Dirichlet inner product defined as

ðf1; f2Þr :¼ ð2�Þ�1
Z
D
rf1ðzÞ � rf2ðzÞdz;

i.e., the interaction energy of fields associated with poten-

tials fi¼1;2. In fact, the random variables ðh; fÞr are zero

mean Gaussian random variables for each f, with the
covariance property: Covððh; f1Þr; ðh; f2ÞrÞ ¼ ðf1; f2Þr.
From this, we deduce the covariance of the averaged
h"ðzÞ fields (4) on two nested circles (Fig. 1):
Covðh"ðzÞ; h"0 ðzÞÞ ¼ ðfz"; fz"0 Þr. The latter is the Newton-

ian interaction energy of the two circles, which, owing to
the explicit potential (3), to Gauss’ theorem, and to har-

monicity of ~Gz, gives the explicit form of the covariance

Cov ðh"ðzÞ; h"0 ðzÞÞ ¼ Eðh"ðzÞh"0 ðzÞÞ
¼ � log maxð"; "0Þ � ~GzðzÞ; (5)

with Eh"ðzÞ ¼ 0 for Dirichlet boundary conditions, and

where ~GzðzÞ ¼ � logCðz;DÞ in terms of the so-called con-
formal radius C of D viewed from z, a smooth function of
z. From (5) we thus get the two important variances

Var h"ðzÞ ¼ � log"þ logCðz;DÞ; (6)

Var ½h"ðzÞ � h"0 ðzÞ� ¼ j log"� log"0j: (7)

The interpretation of (6) and (7) is immediate: For fixed z,
the Gaussian random variable h"ðzÞ is one-dimensional
standard Brownian motion when parameterized by time
t :¼ � log" [21].
Random metrics and Liouville quantum gravity.—Recall

first that if N is a Gaussian random variable with mean a

and variance b, then EeN ¼ eaþb=2. Since Eh"ðzÞ ¼ 0, we
have from (6) the exponential expectation

E e�h"ðzÞ ¼ eVar½�h"ðzÞ�=2 ¼ ½Cðz;DÞ="��2=2: (8)

Since (8) ultimately diverges for " ! 0, we are led to
regularize Liouville quantum gravity by defining the ran-
dom measure

d�� ¼ M"ðzÞdz; M"ðzÞ :¼ "�
2=2e�h"ðzÞ; (9)

in a way similar to the so-called Wick normal ordering
(see, e.g., [27]). In Ref. [21], it is shown that the limit of
this regularized measure exists as " ! 0, which mathe-
matically defines Liouville quantum gravity (see also
[28]).
GFF sampling and random metrics.—We now consider

a measure on pairs ðz; hÞ, where h is the Gaussian free field,
and, given h, the point z is chosen from the regularized

quantum area measure e�h"ðzÞdz. Such a measure has the

form e�h"ðzÞdhdz, where dh represents the (whole) GFF
measure. Its total action is thus the quadratic combination
1
2 ðh; hÞr � �h"ðzÞ. Owing to (4) and to Varh"ðzÞ ¼
ðfz"; fz"Þr, the latter can be rewritten as 1

2 ðh0; h0Þr �
�2

2 Varh"ðzÞ, with the substitution h0 :¼ h� �fz". The

probability weight involved in our random metric can
therefore be written as

exp½�1
2ðh0; h0Þr�Ee�h"ðzÞ; (10)

−logf ~~

D

ε

B(z)

ε

ε

z

ε’ε

FIG. 1 (color online). Potential fz" (3) created by a uniform
mass distribution on the circle @B"ðzÞ; its leading constant value
inside the disk B"ðzÞ is � log".
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where the second factor is the marginal distribution density
(8) of z. The meaning of (10) is that, after sampling z from

its marginal distribution, the law of h weighted by e�h"ðzÞ is
identical to that of the original GFF h0 plus the determi-
nistic function �fz" (3).

KPZ proof.—It is shown in Ref. [21] that, when " is
small, the stochastic quantum measure (9) of the Euclidean
ball B"ðzÞ is very well approximated by

��ðB"ðzÞÞ ’ �"�Qe�h"ðzÞ; (11)

where Q� :¼ 2=�þ �=2. In the simplified perspective of

this work, we take (11) to be the definition of ��ðB"ðzÞÞ.
That is, we view �� as a function on balls of the form

B"ðzÞ, defined by (11), rather than a fully defined measure
on D. Define then the quantum ball ~B�ðzÞ of area �
centered at z as the (largest) Euclidean ball B"ðzÞ whose
radius " is chosen so that

��ð ~B�ðzÞÞ ¼ �: (12)

One says that a (deterministic or random) fractal subset
X of D has Euclidean scaling exponent x (and Euclidean
dimension 2� 2x) if, for z chosen uniformly in D and
independently of X, the probability PfB"ðzÞ \ X � ;g �
"2x, in the sense that lim"!0 logP= log" ¼ 2x. Similarly,
we say that X has quantum scaling exponent � if, when X
and ðz; hÞ, sampled with weight (10) are chosen indepen-
dently, we have

P f ~B�ðzÞ \ X � ;g � ��: (13)

In weight (10), h0 ¼ h� �fz" is a standard GFF, and
thus its average has the characteristic property (7): Bt :¼
h0"¼e�tðzÞ is standard Brownian motion in time t ¼ � log".
Equation (3) then gives h"ðzÞ¼h0"ðzÞ��log"¼Btþ�t
(up to a bounded constant); i.e., h"ðzÞ in (11) sampled with
(10) has the same law as Brownian motion with drift.

Equality of (11) to (12) then relates stochastically the
Euclidean radius " to the quantum area �. This radius is
given in terms of the stopping time

TA ¼ � log"A :¼ infft : �Bt þ a�t ¼ Ag; (14)

with the definitions A :¼ �ðlog�Þ=� > 0 and a� :¼ Q� �
� ¼ 2=�� �=2> 0 for � < 2. A constant is absorbed in
the choice of time origin such that B0 ¼ 0.

The probability that the ball B"AðzÞ intersects X scales as

"2xA ¼ e�2xTA . Computing its expectation E expð�2xTAÞ
with respect to the random time TA will give the quantum
probability (13). Consider then for any � the standard
Brownian exponential martingale E½expð��Bt �
�2t=2Þ� ¼ 1, valid for 0 � t <1. We can apply it at the
stopping time TA, when TA <1 and whereBTA

¼ a�TA �
A; we thus get for 2x ¼ ��a� þ �2

�=2

E½expð�2xTAÞ1TA<1� ¼ expð���AÞ ¼ ��� ;

��ðxÞ :¼ ða2� þ 4xÞ1=2 � a�; �� :¼ ��=�:
(15)

For x ¼ 0, one finds in particular PðTA <1Þ ¼
E½1TA<1� ¼ 1, since ��ð0Þ ¼ 0 for a�<2 > 0, so that the

conditioning on TA <1 can actually be omitted. We thus
obtain the expected quantum scaling behavior (13) with
� ¼ ��, which is the positive root to KPZ (2), QED.

The inverse Laplace transform PAðtÞ of (15), with re-
spect to 2x, is the probability density of TA ¼ � log"A
such that PAðtÞdt :¼ PðTA 2 ½t; tþ dt�Þ [21]:

PAðtÞ ¼ Affiffiffiffiffiffiffiffiffiffi
2�t3

p exp

�
� 1

2t
ðA� a�tÞ2

�
: (16)

From (16), one deduces that, for A large (i.e., � and "

small), A
TA

¼ log�
� log"A

is concentrated in (15) near a� þ ��.

Reverse engineering to GFF h via (14), one finds that
a point z that is typical with respect to the quantum
measure is an �-thick point of h [29]: � :¼
lim"!0 logh"ðzÞ= log"�1 ¼ �� ��, for a fractal of quan-
tum scaling dimension �.
Boundary KPZ.—Suppose that D is a domain with a

(piecewise) linear boundary @D and h a GFF, now with free
boundary conditions. For z 2 @D, h"ðzÞ is the mean value
of hðzÞ on the semicircle @B"ðzÞ \D, with variance scaling
like �2 log". We define the boundary quantum measure

d�B
� :¼ "�

2=4e�h"ðzÞ=2dz, where now dz is Lebesgue mea-

sure on @D, with the conformal factor needed for integrat-
ing a quantum length instead of an area and a regulator
such that the limit of �B

� exists for " ! 0 and � < 2 [21].

For a fractal X � @D, we define boundary Euclidean (~x)

and quantum (~�) scaling exponents with this measure. We
can repeat the analysis above, with now h"ðzÞ a standard
Brownian motionB2t, with drift �t ¼ �� log", and prove

the validity of the KPZ relation (2) for the pair ð~x; ~�Þ [21],
as anticipated in Ref. [11].
Liouville quantum duality.—For � > 2, the Liouville

measure (9) corresponds to the so-called ‘‘other’’ gravita-
tional dressing of the Liouville potential [18–20]. The
corresponding random surface is meant to be the scaling
limit of random simply connected surfaces with large
amounts of area cut off by small bottlenecks [30–34] (see
also [35]). This surface turns out to be a treelike foam of
Liouville quantum bubbles of dual parameter �0 :¼ 4=�
(‘‘baby universes’’) connected to each other at ‘‘pinch
points’’ and rooted at a ‘‘principal bubble’’ parameterized
by D. A precise description requires additional machinery
and will appear elsewhere. For now, we relate � to �0 only
formally.
The definition of quantum balls in (11) and (12) makes

sense when � > 2. Noting that Q�0 ¼ Q�, we have

��0ðB"ðzÞÞ ¼ �"�
0Qe�

0h"ðzÞ ¼ ��ðB"ðzÞÞ�0=� ¼ �4=�2

�

(up to an irrelevant power of �)—i.e., a �-quantum ball of

size � has �0-quantum size �0 :¼ �4=�2
. (Intuitively, the

ball contains about a �0 fraction of the total �0-quantum
area but only a � < �0 fraction of the �-quantum area
because the latter also includes points on nonprincipal
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bubbles.) The number of �-quantum size-� balls needed to

cover the principal bubble D thus scales as ð�0Þ�1 ¼
��4=�2

.
From (2), the quantum scaling exponent �� in (15),

when generalized to � > 2, satisfies the duality relation
�� � 1 ¼ ð4=�2Þð��0 � 1Þ [11,18–20]. If X � D has scal-

ing exponent x, then (13), established for �0 < 2, essen-
tially says (see [21]) that the expected numberN�0 ð�0; XÞ of
�0-quantum size-�0 balls [i.e., number N�ð�; XÞ of

�-quantum size-� balls] required to cover X scales as

ð�0Þ��0�1 ¼ ����1.
Brownian approach to duality.—When � > 2, the

"-regularized measures M"ðzÞdz (9) converge to zero. If
we choose the pair (z, h) from the weighted measure
M"ðzÞdhdz as in (10) and consider the Brownian descrip-
tion (14), we find that a� < 0 for � > 2, i.e., the drift term

runs in a direction opposite to A > 0, so that TA ¼ 1 for
large A. The weighted measure is thus singular; i.e., there
is a quantum area of at least � localized at z for small
enough �. The Brownian martingale result (15) for x ¼ 0
gives the probability, at a given z, for TA to be finite:

P ðTA <1Þ ¼ E½1TA<1� ¼ ���ð0Þ ¼ �1�4=�2 ¼ �=�0;

where ��ð0Þ ¼ ðja�j � a�Þ=� ¼ 1� 4=�2. For general x,

(15) scales as ��� . We may define a �-regularizedmeasure
M�ðzÞdhdz as M"AðzÞdhdz restricted to the event TA <1.

Replacing � with �0 ¼ 4=� and � with �0 has the same

effect as multiplying M�ðzÞ by �0=� ¼ �4=�2�1, so
�0
� M

�ðzÞdz converges to d��0 . This agrees with the condi-

tional expectation scaling as

E½expð�2xTAÞ1TA<1�
E½1TA<1� ¼ ��� 	 �0

�
¼ �0��0 :

Using (15) and a�0 ¼ �a�, one obtains ����0 ¼ x, as

anticipated in Ref. [11]. The typical GFF thickness � ¼
�ð1� ��Þ ¼ �0ð1���0 Þ is invariant under duality and

obeys the Seiberg bound � � Q [7]; the string suscepti-
bility exponent �str ¼ 2� 2Q=� obeys the expected dual-
ity relation ð1� �strÞð1� �0

strÞ ¼ 1 [11,18–20] (see also
[30–34]). Finally, for the SLE	 process � ¼ ffiffiffiffi

	
p

[21], so
that the Liouville ��0 ¼ 4 and SLE 		0 ¼ 16 dualities
coincide.

We have established the KPZ relation for continuum
Liouville quantum gravity. Outstanding open problems
relate discrete models and SLE to Liouville quantum grav-
ity, as described in Ref. [21]. We hope that they will be
solved by the methods introduced here.

We thank M. Aizenman, O. Angel, J. Franchi, P. Jones,
I. Klebanov, I. Kostov, G.-F. Lawler, A. Okounkov,
T. Spencer, P. Wiegmann, and the late Oded Schramm
for useful discussions.
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