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We present a communication protocol for the erasure channel assisted by backward classical commu-

nication, which achieves a significantly better rate than the best prior result. In addition, we prove an upper

bound for the capacity of the channel. The upper bound is smaller than the capacity of the erasure channel

when it is assisted by two-way classical communication. Thus, we prove the separation between quantum

capacities assisted by backward classical communication and two-way classical communication.

DOI: 10.1103/PhysRevLett.103.240505 PACS numbers: 03.67.Hk

In quantum information theory, a capacity Qð�Þ of a
channel � is a theoretical maximum of the rate m=n that is
achievable by some communication protocol that sends
m-qubit information with n uses of the channel, where n
tends to infinity. The above definition of Q is defined
without auxiliary resources, and additional free classical
communication may increase the capacity. We use Q, Q1,
QB, and Q2 to denote the quantum capacities of a quantum
channel when unassisted, assisted by unlimited forward,
backward, and two-way classical communication, respec-
tively. It was proved that classical forward communication
alone does not increase the quantum capacity of any chan-
nel; in other wordsQð�Þ ¼ Q1ð�Þ for all channels � [1]. In
contrast, Q2 is greater than Q for some channels [1]. QB is
also known to be greater than Q for some channels [2], but
it has been an open question whether QBð�Þ ¼ Q2ð�Þ for
all �.

We study the capacities of the quantum erasure channel,
which was first introduced in [3]. The quantum erasure
channel of erasure probability p, denoted by Np, replaces

the incoming qubit, with probability p, with an ‘‘erasure
state’’ j2i orthogonal to both j0i and j1i, thereby both
erasing the qubit and informing the receiver that it has
been erased. In an equivalent formulation, called the iso-
metric extension, the channel exchanges the incoming
qubit with the environmental system in state j2i with
probability p. It was shown in [2] that the quantum capaci-
ties Q, Q1, and Q2 for Np are given by

QðNpÞ ¼ Q1ðNpÞ ¼ maxf0; 1� 2pg
and Q2ðNpÞ ¼ 1� p:

However, until the current investigation, little has been
known about QBðNpÞ except for two lower bounds that

follow straightforwardly from one-way hashing [1] and
teleportation [4] and an upper bound given by Q2ðNpÞ as

QBðNpÞ � 1� 2p; if p � 2=5;

QBðNpÞ � ð1� pÞ=3; if p � 2=5;

and QBðNpÞ � Q2ðNpÞ ¼ 1� p:

(1)

In this Letter, we present an efficient communication
protocol that achieves a better lower bound of QBðNpÞ,
and we prove a new upper bound of QBðNpÞ. With this

upper bound, we show that QBðNpÞ<Q2ðNpÞ for all p
and resolve the previously open question.
Preliminaries and notations.—Recall the definition of

von Neumann entropy HðAÞ ¼ Hðc AÞ ¼ �trðc A logc AÞ,
where c A is the density operator for system A. The quan-
tum mutual information and coherent information are de-
fined as

IðA;BÞ ¼ HðAÞ þHðBÞ �HðABÞ;
and IðAiBÞ ¼ HðBÞ �HðABÞ:

The statements in the following lemma will be used in the
proof of a theorem in the later section.
Lemma 1. For disjoint systems A, B, and C, (i) IðAB;CÞ�
IðB;CÞ � IðA;BCÞ. (ii) IðAiBÞ � IðAiBCÞ. (iii) IðAiCÞþ
IðBiCÞ � IðABiCÞ. (iv) IðAiBCÞ � IðAiBÞ � 2HðCEÞ,
where E is any subset of B.
Proof. Subadditivity and strong subadditivity inequalities
[5] easily give (i), (ii), (iii),

HðCDEÞ � HðDÞ þHðCEÞ;
HðADÞ � HðCEÞ þHðADCEÞ;

and HðDÞ þHðADEÞ � HðADÞ þHðDEÞ;
for E � B and D ¼ B=E. Adding these three inequalities
yields (iv). j
We consider only near-perfect communication protocols

that produce, with high probability, output states of high
fidelity with the input states. The fidelity of states �in and
�out is defined to be
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Fð�in; �outÞ � tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=2
in �out�

1=2
in

q
:

From now on, we call the sender, the receiver, and the
environment Alice, Bob, and Eve.

Communication protocol.—We derive an improved
lower bound for QBðNpÞ by providing a communication

protocol. The protocol combines two subprotocols that
utilize coherent teleportation introduced in [6].

Coherent teleportation.—Given an unknown qubit state
jc i ¼ aj0i þ bj1i in system M and an ebit (sometimes
called an EPR pair or Bell state) j�iAB ¼ 1ffiffi

2
p ðj00i þ j11iÞ

between Alice and Bob, Alice can transmit jc i to Bob by
teleportation [4]. In the original teleportation protocol, the
change of basis takes the initial state jc iMj�iAB to

1

2

X
ij

jijiMAX
iZjjc iB: (2)

Reference [6] proposes a coherent variant of teleportation
in which Alice does not measure jijiMA, but instead coher-
ently copies jijiMA to two ancillary systems C1C2 and
transmits them coherently to Bob. Mathematically, Alice
and Bob share the joint state 1

2

P
ijjijiMAjijiC1C2

XiZjjc iB.
After receiving C1C2, Bob can apply a control X from C1

to B and then a control Z from C2 to B. Alice and Bob then
share the state 1

2

P
ijjijiMAjijiC1C2

jc iB, with jc i transmit-

ted and two ebits shared between Alice and Bob.
First subprotocol.—Suppose Alice and Bob already

share an ebit, and Alice teleports jc i to Bob by attempting
to use the erasure channel for coherent classical commu-
nication of each of jiiC1

and jjiC2
(see previous subsection

on coherent teleportation). Bob tells Alice whether the
communication is erased or not. If so, Alice copies and
sends it again until Bob receives it. Note that the trans-
mission is coherent if it is not erased in the first trial. If i
and j are erased k and l times before they are sent success-
fully, the state becomes (after Bob’s controlled X and Z)

1

2

X
ij

jijiAjii�kE jji�lE jijiBjc iB

�j�i�ð1kþ1lÞ
ABE j�i�ð2�1k�1lÞ

AB jc iB;
where 1k ¼ 0 if k ¼ 0 and 1k ¼ 1 if k > 0 and similarly
for 1l, j�i ¼ 1ffiffi

2
p ðj000i þ j111iÞ, and � denotes equiva-

lence up to a unitary transformation on E.
Since the success probability of each transmission is

1� p, Alice tries 1
1�p times on average to send each

register i and j. Hence she transmits 2
1�p qubits through

the channel. Both 1k and 1l have expectation p. In asymp-
totic resource inequality [6],

2

1� p
Np þ�AB � 1 Qbitþ 2ð1� pÞ�AB þ 2p�ABE;

(3)

where resources on the left-hand side simulate those on the

right,Np denotes one use of the erasure channel, and Qbit

denotes one use of the noiseless qubit channel. We have
used� and � as shorthand for j�ih�j and j�ih�j. With free
back classical communication, one use of Np can prepare

one ebit with probability 1� p. Hence,

1Np � ð1� pÞ�AB: (4)

We combine Eqs. (3) and (4) to get

1Np � 1� p

2
Qbit; if p � 1=2

and 1Np � 1� p

1þ 2p
Qbit; if p � 1=2:

Hence, the rate of the first subprotocol is

1� p

2
; if p � 1=2 and

1� p

1þ 2p
; if p � 1=2:

Second subprotocol.—This method differs from the pre-
vious subprotocol only in that jiji will be sent using a
coherent version of superdense coding. More specifically,
in this case, Alice and Bob first share an ebit j�iC1C2

where

C1 belongs to Alice and C2 belongs to Bob. After the
change of basis [see Eq. (2)], Alice applies control X
from M to C1 and control Z from A to C1, resulting in
the joint state

1

2

X
ij

jijiMAj�ijiC1C2
XiZjjc iB;

and sends C1 to Bob using the erasure channel. The states
j�iji ¼ XiZjj�i are orthogonal (they form the Bell basis)

[5]. In case of erasure, Bob and Eve share j�ijiC1C2
and

Alice and Bob will take another ebit and repeat the super-
dense coding procedure, until Bob receives the transmis-
sion (call the two-qubit system in his possession D1D2).
Then, Bob applies the transformation j�ijiD1D2

! jijiD1D2

and coherently reverts the XiZj not only in XiZjjc iB but
also in all the j�iji he shares with Eve (by acting only on

his halves), so that the final state becomes

1

2

X
ij

jijiMAjijiD1D2
j�i�kEBjc iB;

where k again denotes the number of erasures before the
successful transmission. In this method, Alice and Bob
always share two 2 ebits at the end.
Once again, Alice needs to apply superdense coding 1

1�p

times on average. This gives the asymptotic resource in-
equality,

�AB þ 1

1� p
½Np þ�AB� � 1 Qbitþ 2�AB

þ
�

1

1� p
� 1

�
�BE:

Note that the above consumes more ebits than it produces
for all p; thus, we use Eq. (4) to supply the needed ebits,

PRL 103, 240505 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

11 DECEMBER 2009

240505-2



and obtain

1Np � ð1� pÞ2 Qbit:
Hence the rate of the second subprotocol is ð1� pÞ2.

Rate of communication protocol.—Applying the two
protocols selectively, the rate of the protocol is

ð1� pÞ2; if p � 1=2 and
1� p

1þ 2p
; if p � 1=2:

(5)

Upper bound for the capacity.—The purpose of this

section is to prove that QBðNpÞ � 1�p
1þp . By the definition

of the capacity, for each n, there is a protocol P n that uses
back classical communication andNp at most n times and

transmits nðQBðNpÞ � �nÞ qubits from Alice to Bob with

fidelity at least 1� �n and probability at least 1� �n,
where �n; �n ! 0 as n ! 1.

Our strategy to show the upper bound is as follows. We
consider any protocol that transmitsm qubits with n uses of
the channel. In particular, such protocol must be able to
transmit m halves of ebits shared between Alice and a
reference system R [7], without entangling Eve and R (or
else the transmission to Bob will be noisy). This translates
to bounds on quantum mutual information between Bob,
Eve, and R that will be contradicted if m=n is larger than
our stated upper bound.

If Alice transmits her halves of the ebits shared with R
directly through the channel, any loss to Eve can never be
recovered. Thus, Alice has to transmit quantum states
whose potential entanglement with R can be materialized
or nullified depending on Bob’s back communication and
Alice’s future transmissions. The finalizing or nullifying
process requires further uses of the channel, giving an
upper bound to the capacity.

To quantify the above idea, denote by S1; S2; . . . ; Sn the
qubits transmitted by Alice through the channel. Each Si is
delivered to Bob with probability 1� p or lost to Eve with
probability p. Let B ¼ fijSi sent to Bobg and E ¼
fijSi sent to Eveg be the index sets of qubits delivered to
Bob and Eve. We define Ei ¼ S

1�j�i;j2ESj to be Eve’s

system after the ith transmission. For Bob, the most gen-
eral procedure after each transmission is an isometry fol-
lowed by a measurement. By double-block coding and by
extending Theorem 10 in [8], any such measurement can
be approximated by a von Neumann measurement on part
of Bob’s system (turning the measured qubits into classical
data). Let ~Bi be Bob’s quantum system immediately after
the ith channel use, and Bi be his quantum system after his
measurement and classical feedback to Alice. Thus ~Bi ¼
Bi�1 [ Si if Si is delivered to Bob, and ~Bi ¼ Bi�1 if Si is
lost to Eve. Suppose a total of c qubits are measured by
Bob in the protocol. After the final decoding operation,

Bob produces an m-qubit system Bð1Þ that is almost maxi-
mally entangled with the system R. We denote the rest of

Bob’s quantum system by Bð2Þ.

In the following theorem, IðSi;Bi�1RÞ is the amount of
mutual information carried by each transmission Si. For
the rest of the Letter, information theoretical quantities are
evaluated on the states that are held at the corresponding
stages of the protocol. Part (i) of the theorem states that a
sufficient amount of mutual information (2m for m ebits)
has to be delivered to Bob. Part (ii) states that the more
mutual information is lost to Eve, the more transmissions
are needed to nullify the lost information.
Theorem 2. If the fidelity between the input and output
states is at least 1� �n, then (i)

P
i2BIðSi;Bi�1RÞ �

2m� 2ð2 ffiffiffi
2

p
m

ffiffiffiffiffi
�n

p þ 1Þ. (ii) Pi2EIðSi;Bi�1RÞ � n�mþ
4ð2 ffiffiffi

2
p

m
ffiffiffiffiffi
�n

p þ 1Þ.
Proof (i) For each i 2 B, apply part (i) of Lemma 1 on the
systems Si; Bi�1 and R to obtain

IðBi;RÞ � IðBi�1;RÞ � IðBi�1Si;RÞ � IðBi�1;RÞ
� IðSi;Bi�1RÞ:

Thus,
X
i2B

IðSi;Bi�1RÞ �
X
i2B

ðIðBi;RÞ � IðBi�1;RÞÞ ¼ IðBn;RÞ

¼ IðBð1ÞBð2Þ;RÞ � IðBð1Þ;RÞ
¼ HðBð1ÞÞ þHðRÞ �HðBð1ÞRÞ
� 2ðHðRÞ �HðBð1ÞRÞÞ:

Note that the fidelity between the state � in Bð1ÞR and
��m is at least 1� �n. LetD ¼ 1

2 trj����mj be the trace
distance [5] between � and ��m. By [5] (p. 415),

D �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Fð�;��mÞ2

q
� ffiffiffiffiffiffiffiffi

2�n
p

:

By Fannes’ inequality [5],

HðBð1ÞRÞ ¼ jHð�Þ �Hð��mÞj � 2Dm� 2D logð2DÞ
� 2

ffiffiffi
2

p
m

ffiffiffiffiffi
�n

p þ 1:

(ii) Using 2, 3, and 4 to denote the use of parts (ii), (iii),
and (iv) of Lemma 1, respectively, we have

X
i2E

IðSiiBi�1RÞ �
2
cþ X

i2E

IðSiiBnRÞ

�3 cþ I

�[
i2E

Si

�
BnR

�

¼ IðEniBð1ÞBð2ÞRÞ þ c

�4 cþ IðEniBð1ÞBð2ÞÞ þ 2HðBð1ÞRÞ
�3 cþ IðEnRiBð1ÞBð2ÞÞ � IðRiBð1ÞBð2ÞÞ

þ 2HðBð1ÞRÞ
¼ cþ IðEnRiBnÞ � IðRiBð1ÞBð2ÞÞ

þ 2HðBð1ÞRÞ;
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where the equalities use the fact that Bob’s decoding is
isometric. IðEnRiBnÞ is upper bounded by n� jEj � c.

IðRiBð1ÞBð2ÞÞ is lower bounded as

IðRiBð1ÞBð2ÞÞ �2 IðRiBð1ÞÞ �4 IðRiBð1ÞTÞ � 2HðTÞ
¼ m� 2HðBð1ÞRÞ;

where T purifies Bð1ÞR. Putting together the two previous
sets of inequalities,X

i2E

IðSiiBi�1RÞ � n� jEj �mþ 4ð2 ffiffiffi
2

p
m

ffiffiffiffiffi
�n

p þ 1Þ:

Hence,X
i2E

IðSi;Bi�1RÞ ¼
X
i2E

ðHðSiÞ þ IðSiiBi�1RÞÞ

� X
i2E

ð1þ IðSiiBi�1RÞÞ

� n�mþ 4ð2 ffiffiffi
2

p
m

ffiffiffiffiffi
�n

p þ 1Þ: j

Since Alice cannot predict whether Bob or Evewill receive
the next transmission and a certain fraction of the trans-
mission is lost to Eve, the same fraction of mutual infor-
mation has to be lost to Eve. Combined with the theorem,
the argument gives an upper bound of QBðNpÞ. To prove

this rigorously, consider the following random variable:

Xi ¼
� p
2 IðSi;Bi�1RÞ if Si is delivered to Bob
�ð1�pÞ

2 IðSi;Bi�1RÞ if Si is lost to Eve:

Then jXij � 1 and EðXiÞ ¼ 0. Note that the Xi’s may not
be independent variables. Let Yi ¼

P
i
j¼1 Xj and Y0 ¼ 0.

Then Y0; Y1; . . . ; Yn is a martingale [9] with jYiþ1 � Yij �
1. If the fidelity between the input and output states is at
least 1� �n, then from Theorem 2

Yn ¼ p

2

X
i2B

IðSi;Bi�1RÞ � ð1� pÞ
2

X
i2E

IðSi;Bi�1RÞ

� ð1þ pÞ
2

m� ð1� pÞ
2

n� ð2� pÞð2 ffiffiffi
2

p
m

ffiffiffiffiffi
�n

p þ 1Þ:

Assume by contradiction that QBðNpÞ> 1�p
1þp . Then, for

sufficiently large n, m
n � 1�p

1þp þ 4k for some k > 0. The

above expression for Yn, which holds with probability at
least 1� �n, will exceed kn. Therefore limn!1 Pr½jYnj �
kn� ¼ 1.
However, Azuma’s inequality [9] applied to martingale

Yi gives Pr½jYnj � kn� � e�ðk2=2Þn, and limn!1 Pr½jYnj �
kn� ¼ 0, which is a contradiction. Hence,

QBðNpÞ � 1� p

1þ p
: (6)

Discussion.—We summarize the previous and our new
results in Fig. 1. The lighter region is the previous unde-
termined area ofQBðNpÞ, given by the previous lower and
upper bounds in Eq. (1). The darker region is the new
undetermined area of QBðNpÞ due to our lower and upper

bounds in Eqs. (5) and (6), which are significantly im-
proved over previous results. Since our upper bound of
QBðNpÞ is strictly less than Q2ðNpÞ, we prove the sepa-

ration between QB and Q2 answering the long-standing
question raised in [2].
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FIG. 1. Undetermined area of QBðNpÞ.
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