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Identification of Multichannel Cardiovascular Dynamics Using Dual Laguerre
Basis Functions for Noninvasive Cardiovascular Monitoring

Jin-Oh Hahn, Devin B. McCombie, Andrew T. Reisner, Horacio M. Hojman, and H. Harry Asada

Abstract—This paper presents a novel method to identify the car-
diovascular (CV) system using two distinct peripheral blood pres-
sure (BP) signals. The method can characterize the distinct arte-
rial path dynamics that shape each of the BP signals and recover
the common central-flow signal fed to them. A Laguerre series
data-compression technique is used to obtain a compact represen-
tation of the CV system, whose coefficients are identified using the
multichannel blind system identification. A Laguerre model decon-
volution algorithm is developed to stably recover the central-flow
signal. Persistent excitation, model identifiability, and asymptotic
variance are analyzed to quantify the method’s validity and relia-
bility, without using any direct measurement of central-flow input
signal. Experimental results based on 7000 data segments obtained
from nine swine subjects show that, for all the swine subjects under
diverse physiologic conditions, the CV dynamics can be identified
very reliably and the waveform of the central flow can be recovered
stably from peripheral BP signals.

Index Terms—Cardiovascular (CV) system, Laguerre basis
function, noninvasive CV monitoring, two-channel blind system
identification (ID).

1. INTRODUCTION

ENTRAL cardiovascular (CV) signals, such as aortic

blood pressure (BP) and blood flow (BF), are generally
more informative about cardiac dynamics and global circulation
in comparison with peripheral CV signals. Measuring central
signals directly, however, requires invasive procedures, which
are relatively costly, uncomfortable, and risky. Therefore, there
is substantial interest in alternative methods to assess the CV
state using peripheral circulatory measurements, e.g., arterial
BP measured in a distal extremity [1]-[6]. Many of these
methods involve a population-based model, employing nominal
parameter values derived from prior experimentation. In many
cases, this approach yields useful estimates. In theory, however,
it will be less valid for extreme physiologic conditions, during
which the average relationships between the aortic and periph-
eral signals are less applicable [5], [6]. It would be ideal if a CV
monitoring technique were independent of a priori knowledge
of the CV dynamics.
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Efforts have been made to use multiple peripheral mea-
surements to reduce the reliance on a priori knowledge and
other population-based assumptions regarding the relationship
between central and peripheral CV dynamics [7]-[13]. Some
of the efforts involved measurements relatively close to the
central aorta, e.g., the carotid [7], [8], and used it as a surrogate
for a central signal. In practice, were a method required two
arterial BP measurements to be ever considered practical, it
would presumably involve a pair of extremity measurements
rather than the carotid. Another approach used the multichannel
“blind” system identification (ID) method [19], [20], which
was shown capable of reproducing the central BF [9], [10]
and BP [11], [12] signals as well as estimating other key CV
physiologic measures [13], [14] from a couple of peripheral BP
measurements. However, using these methods, which are based
upon finite impulse response (FIR) [9], [12] and generalized
FIR models [10], [13], [14], it is difficult to systematically
determine the order of each channels’ dynamics and other key
parameters, due to the lack of available analytic measures and
guidelines to select appropriate model structures.

Based upon the prior work by the authors’ group [9]-[11],
[13],[14], this paper presents a significantly improved algorithm
for identifying multichannel CV dynamics and recovering the
central-flow signal, and an accompanying theoretical analysis
that provides analytic measures for model structure determina-
tion. Specifically, a data-compression technique using dual La-
guerre basis functions will be developed, which assures iden-
tifiability and reduces estimation error by enabling a compact
representation of CV dynamics. A novel deconvolution algo-
rithm will be developed to recover an unknown central-flow
signal from peripheral BP measurements. The determination of
model order and other key parameters as well as data length will
be based on a rigorous evaluation of persistent excitation (PE),
model identifiability (MI), and asymptotic variance, without the
use of any direct measurement of the central-flow input signal.
The algorithm will be evaluated for 7000 data segments from
nine swine subjects across diverse physiologic conditions. This
analysis will demonstrate that the new algorithm is significantly
more reliable and valid than the prior algorithm that required
identical Laguerre basis poles for all channels [10]. A similar
analysis might be constructively applied to a range of contempo-
rary research involving dynamic physiologic models, e.g., [9],
[11], and [12].

II. ALGORITHM AND THEORETICAL DEVELOPMENTS

A. Blind System ID Using Dual Laguerre Basis Functions

Consider two distinct arterial paths connected to the same
central-flow input, as shown in Fig. 1. In this paper, the CV
dynamics is considered to be an unknown and time-varying
process. However, within a short time window, it is assumed
that the system can be approximated as a time-invariant linear
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{) ArterialPath#l:G;(z)) » BP #1; yy(n)

u(n)
{) Arterial Path #2: Gy(z) ) » BP #2; ys(n)

Fig. 1. CV system as a two-channel dynamic system.

system. It is known that, on a beat-to-beat basis, the CV dy-
namics is time invariant and that the nonlinearity is negligibly
small [15].

Let G1(z) and Go(z) be stable transfer functions from the
common input u(n) to outputs y; (n) and yo(n) observed at the
ends of the first and the second arterial paths, respectively. The
impulse response of each transfer function can be approximated
by a finite series expansion

L;
Gi(2) =Y bV (),  i=12 (1)
k=1

is a set of orthonormal basis functions

where {Vk(i) (z)}k:1_2

d {b(i)}
MOk S pmrn

ith arterial path or channel. Given a series description of the
CV system, our objective is to identify both the arterial path
dynamics and the central-flow input fed to them using only the
peripheral BP signals y1(n) and y2(n).

Remark 1: This formulation of the blind system ID has dis-
tinct features. If a rational function is used for the system de-
scription instead of the series expansion, at least three output BP
signals are needed to identify both the denominator and numer-
ator of the rational transfer functions [9], [19], [20]. In contrast,
this series expansion method needs only two BP signals.

Since both arterial paths are driven by the same input, the
following formulation between the arterial paths holds by virtue
of the associative law for linear systems:

Ga(2)y1(n) = G1(2)y2(n) )

which does not include the input signal. Therefore, the arterial
paths can be identified by substituting a measured time series
of the peripheral BP signals for y1(n) and y»(n) into (2). This
system ID technique is called the blind system ID because it
does not involve the use of the input signal for system ID. It can
be shown that the blind system ID problem (2) can be solved to
identify G4 (z) and Go(2) if Gi(p) 2 2k bVpk, i = 1,2,
are coprime [9], [19], [20]. Substituting (1) into (2) yields

Lo Ly
S bPa () = S 02 (n) 3)
k=1 k=1
where 2" (n) = V® (2)y1(n) and 22 (n) = VPV (2)ya(n),
which, given time series sequences of the peripheral BP sig-
nals, can be formulated into a homogeneous matrix equation
that can be readily solved for b £ [by1 bs], where b; 2
{b;(f)}kzl,z,...-
It is ideal that the number of series coefficients to reproduce
the true impulse response be small, because a large number of
series coefficients are difficult to identify unless the system input

signal is rich enough [16]. For example, the standard FIR rep-
resentation with Vk(l) = 2~ requires a large number of series
coefficients, particularly when the system has a slowly decaying
pole. Given that we have no control over the input signal (i.e.,
the BF from the heart) for identifying the CV system, itis crucial
to reduce the number of series coefficients. This can be achieved
with an appropriate set of basis functions that can represent the
CV channel dynamics with fewer terms.

A unique feature of the arterial path dynamics is that it con-
sists of a fast decaying dynamics that is branch specific and
a common slowly decaying dynamics, often referred to as the
“Windkessel” response [10] which is often approximated by a
first-order exponential decay. The Laguerre series expansion is
effective for compressing the dynamic representation of systems
having a dominant slow pole [17], [18]. Its basis function is
given by

(1-—a®)Ts, 1- az)kfl
z—a ’

Vk(z) =

E=1,2... (4
z—a

where a is called a Laguerre basis pole, which is to be set close
to the slowly decaying pole of the original system (0 < a < 1),
and T is the sampling interval. Using the basis poles a; for
G1(2) and ay for Go(z), a:g)(n) and xgcz)(n) (3) becomes

k-1
(1) ERVAC S a3)Ts (1 —aszz
A = YEZL (1mm) )
k-1
(2) ERVAC S a)Ts (1 —ayz
z; " (n) = ~al ol ya(n).  (5)

Remark 2: As we will demonstrate, the number of terms
needed for approximating the original system depends on the
choice of the Laguerre basis pole. An earlier attempt by the au-
thor’s group required that the same Laguerre basis pole must be
used for both path dynamics [10], [13]. Although the use of the
Laguerre basis functions was motivated by the slowly decaying
common dynamics of the CV system, the estimated values of the
basis poles for different arterial paths are, in general, different
from each other, since the basis poles are determined in such a
way that they can reproduce the gross behavior of the associated
arterial paths, including the effects of both common Windkessel
and branch-specific dynamics. Based on this physical intuition,
the obligatory use of the same Laguerre basis pole is removed
in this paper, which will allow us to further reduce the number
of terms for both paths’ dynamics, which will be demonstrated
using the experimental results in Section I'V.

Remark 3: Considering that the denominator dynamics of the
CV system is estimated using its zero-input response in diastole
which is not rich in information [9], [10], it is desirable that the
number of parameters involved in the denominator dynamics
be small. Given this limitation, one important advantage of the
Laguerre series expansion over other possible model structures
for CV dynamics is that it involves only one parameter, i.e., the
Laguerre basis pole in the denominator.

Remark 4: It is important to note that the blind system ID
can provide the directionality of the vector b, but not its actual
scale. This is an inherent problem of the blind system ID caused
by the unknown input signal to the system, i.e., for any o # 0

) = Gi(2Juln) = 0G(] | Tutw)] . ©

(07
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Given this formulation alone, it is, in general, impossible to
scale the input and the channel transfer functions from the pe-
ripheral BP signals.

B. Laguerre Model Deconvolution: Central-Flow Recovery

Once the arterial path dynamics are identified, the cen-
tral-flow input may be recovered by inverting either of the
identified dynamics. However, this inversion often ends up with
instability due to the nonminimum-phase zeros in the arterial
path transfer functions (which are often caused by the time
delay associated with the central-to-peripheral transfer of BP
and BF waves). An earlier attempt by the author’s group [10]
developed a Laguerre deconvolution filter to stably recover
the input signal, but its application was limited to the situation
where the Laguerre basis poles of the two distinct arterial paths
are identical. It was a significant limitation since the Laguerre
basis poles for different arterial paths are typically different.
In this paper, we develop a Laguerre deconvolution filter that
is applicable to multichannel Laguerre series systems having
distinct channel basis poles by exploiting the notion of coprime
transfer functions [21].

Lemma (The Generalized Bezout Identity): Two stable real
rational transfer functions M (z) and M»(z) are coprime if they
have no common zeros outside the unit circle and at least one
of them is of relative degree zero [21]. For coprime M;(z) and
M>(z), there exist stable real rational transfer functions Wy (2)
and W(z) satisfying My (2)W1(z) + Ma(2)Wa(z) =1. O

Deconvolution Algorithm: The unknown input sequence
u(n) can be recovered from observed output sequences y;(n)
and y»(n) by using the coefficients b as well as the basis poles
a1 and as of the Laguerre basis functions

Na(z)

u(n) = % (2 = a1)y1(n)+m ya(n) (7)

where N (z) and N3(z) are polynomials of orders Ly and L; —
1, respectively, that satisfy the following:

A1(2)N1(2) + A2(2)N2(z) =

where N»(0) = 1 and

(z — al)L‘_1 (z —az)’? (8)

L;

= b(l \/ (1-af)Ts(1 - azz)kfl (2 = a;))" 7k,
=1
i=1,2 (9
if A1(z) and As(z) are coprime! and
Zb(l) —a) R £ 0 Zb(l —a)* £ 0. (10)

A

Proof: From (1) and (4), Fi(2) = (2 —a1)G1(z) is a
transfer function with relative degree zero, and the transfer func-
tions Fi(z) and G2(z) are coprime. Thus, from the aforemen-
tioned lemma, there exist stable transfer functions B;(z) and

IThe coprime condition can be checked by the following method. Let )\§-’),
t=1,2andjy = 1,2,...,L; — 1, be the roots of the polynomial equation
S by AT = 0. Compute ¢ = 14 a; A /A - a; and form
z() = {;J(-’) j=1,2,...,L; — 1} fori = 1,2. Then, A;(2) and A>(z)

are coprime if z(") N z(?) = .

Bs(z) where

Fl(Z)Bl(Z) + GQ(Z)BQ(Z) = (11D
Construct By (z) and Bs(z) as follows:
Bi(z) = M) Ba(z) = Naolz) g
)" et

Then, (11) reduces to the polynomial identity (8). Multiplying
u(n) to both sides of (11) and using y;(n) = G1(z)u(n) and
ya(n) = Ga(z) u(n) yield (7).

Since N2(0) = 1 has been given, N1(z) and Na(z) together
give (Ly + 1) + (L1 — 1) = Ly + Lo unknown coefficients.
Furthermore, since both sides of (8) are polynomials of order
Ly + Ly —1,(8) yields Ly + Lo linear equations with Ly + Lo
unknowns, An = v shown in Fig. 2, where

L,

Aq(z) = Zbgl)(l —a12) 7z —a)lr I
j=1
Li-1
SR
=0
1 1 1 -
o oz 4ot o T
As(z) = Z b(z) —asz) ' (2 —ag)2
L2 1
= Z ag»z)zj
§=0
—aP + ozl 2t 3)
and
Li+L>—1 Lo—1

(z — al)Ll_l(z -

G/Q)LZE Z Ym2™ + Za§»2)zj
m=0 7j=1

The matrix A should be nonsingular for the existence of 7,
the coefficients of the deconvolution filter. Fig. 2 shows that
A should satisfy two conditions. First, it is obvious from the
top and bottom rows of A that both ozgl) and a(Lll)_l should be
nonzero, which, together with (9) and (13), yields (10). If {”
and a(Lll)_1 are nonzero, the first and the (Lo + 1)th column
vectors are linearly independent of the remaining Lj + Lo — 2
column vectors in A. Thus, A is nonsingular if these remaining
column vectors are linearly independent. Noting that the elim-
ination of the first and (Lo 4 1)th column vectors as well as
the top and bottom rows from A results in the Sylvester ma-
trix associated with A;(z) and As(z), A1(z) and A2(z) need
be coprime (otherwise, the Sylvester matrix becomes rank defi-
cient). O
Fig. 3 shows the block diagram of the aforementioned decon-
volution algorithm to recover the unknown input signal.

C. Validity and Quality Assurance

1) PE and MI: Solving (3) for b hinges upon the “richness”
of the observed outputs y; (n) and yo(n). If the dimension of b,
i.e., the order of the two Laguerre series models L = Ly + Lo,

Authorized licensed use limited to: MIT Libraries. Downloaded on February 11, 2010 at 14:47 from IEEE Xplore. Restrictions apply.



HAHN et al.: IDENTIFICATION OF MULTICHANNEL CARDIOVASCULAR DYNAMICS 173

L — p—L-—p
e —0 ] 5

N2

t——rtc—'"1—>
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‘]L1—1(2)

YLi+L2-1
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Fig. 2. Matrix equation for the design of the deconvolution filter.

CV System

.. >-_
4.-—

Fig. 3. Laguerre deconvolution filter.

De-Convolution Filter

AN
(Z‘“z)L2
N, (2)

(:—a,)["_I

-u(n)»

is too large, (3) cannot be solved. Care must be taken in deter-
mining the model order, given that the output signals are pas-
sively observed and may contain limited richness. This critical
issue can be addressed by examining PE and MI conditions [16].

Since the blind system ID equation is homogeneous, the scale
of solution vector b is undetermined. Assuming b§2) .;é 0, let us
scale the Laguerre series coefficients as l;,(:) = bg) / bg2) and
rewrite (3) as

Lo L,
2 (m) = = 3572 () + 35 e (n)
k=2 k=1
—=0%p(n) (14)

where § =[5 B B 60" and @(n) is
specified accordingly. Therefore, # can be uniquely determined
if o(n) is persistently exciting. Once the PE condition is met,
the MI issue becomes trivial. The model structure (14), which
can be viewed as a moving-average model, is always identifiable
[16].

Remark 5: The usefulness of the aforementioned PE condi-
tion is that it can be evaluated using a time series of the periph-
eral BP signals alone. Unlike the PE conditions for blind system
ID in the previous literature (e.g., [19] and [20]), it does not in-
clude the input, i.e., the central flow, which is inaccessible.

Remark 6: When an FIR model is used for the CV dynamics,
a large number of coefficients must be identified from the ob-
served output signals [9]. This increases the dimension of the
regressor vector ¢(n) and makes the PE condition difficult to
satisfy. Furthermore, as we will demonstrate, using different La-
guerre basis poles a1 and as for the two distinct channels allows

us to further reduce the dimensionality [14], compared to the
single basis pole model [10], [13].

2) Asymptotic Variance: Variance analysis is useful to assess
the level of reliability in estimating parameters of unknown pro-
cesses. The expected variance can be predicted by the asymp-
totic variance, using the model structure and the empirical mea-
surements [16].

In the blind system ID, the model parameters are determined
by minimizing the error associated with the equality (3)

L2 Ll
e(n,b) = Z I;I(CZ)xl(cl)(n) - Z ?Jl(cl)xl(cz)(n) (15)
k=1 k=1

where &(n, B) is referred to as the output estimation error. Its
sensitivity to the Laguerre series coefficients are given by

de(n,b T
= % = ["'xi(cl)(")"' ..._ng)(n)...] .
(16)
Following [16], it can be shown that, for a time series of the
peripheral BP signals, the variance of estimating Laguerre series

coefficients b converges asymptotically to

P(n)

~ 1
var(b — bo) = N}\N (bo

|

where Ay is the variance of €(n) and Sy is the inverse of the
sensitivity covariance matrix. This variance is not computable
since it is evaluated at b, which is unknown. However, the fol-
lowing approximation using the estimate b suffices in many ap-
plications

~

S~

L — |

Al &
:N N;£2(n7bo)]
N —1
x| Z«/z(n)«/ﬁ(n)] (17)

=l

var(b — bg) =

An(b) - Sy. (18)

1
N

From this asymptotic variance, we can obtain useful insights

as to how confidently the CV system is identified.

1) As the number of available data NV increases, the asymp-
totic variance decreases. This gives a guideline for
selecting IV to reduce the variance to a desired level.

2) If one or more of the Laguerre series coefficients have very
low sensitivity upon the output estimation error (15), the in-
verse of the sensitivity covariance matrix S in (18) blows
up or it becomes extremely large as the sensitivity dimin-
ishes. This often happens when the model contains too
many parameters to estimate. Low-sensitivity parameters
should be eliminated from the model. .

3) If the empirical output estimation error variance Ay in
(18) is large, the measurements are noisy, and/or the model
does not fit the measured peripheral BP signals. The model
structure must be reconsidered, and/or the quality of the BP
signals must be improved.

Therefore, the asymptotic variance analysis offers a warning

sign and quality measures for the validity of the CV system ID.
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TABLE I
PHYSIOLOGIC SPAN OF THE PIGS: MEAN AND 95% STANDARD DEVIATION

Pigs [rrl\lllrr‘;ll)g] HR [bpm] CO [lpm] [mrr}-lpgl/{lpm]
1 61.2+/-47.6 109+/-71.2 3.5+/-2.6 18.94/-10.4
2 65.6+/-35.2 140+/-76.2 3.5+/-2.9 21.2+4/-16.6
3 68.2+/-28.9 1754/-27.9 4.4+4/-2.5 16.0+/-4.3
4 59.8+4/-36.5 123+4/-43.5 3.3+/-2.1 19.04/-11.6
5 86.1+/-42.8 1274/-60.5 3.2+/-1.1 27.2+/-14.0
6 84.5+/-31.1 124+/-51.7 3.84/-2.0 23.6+/-13.4
7 84.7+/-38.3 125+4/-55.9 2.9+/-1.5 30.6+/-15.2
8 79.5+/-39.5 138+/-74.8 3.7+/-1.6 22.4+4/-14.7
9 69.8+/-41.8 127+/-47.0 3.4+4/-3.1 25.8+/-29.1

73.84/-44.0 129+/-65.6 3.4+/-2.3 23.34/-17.7
\ by Lo

>

———————————————— e — )
’\« ,@nag‘:ics 0] } .| De-C ion | ion
v b, b u(k ) (K)=G (2)ii
: D, by (k) ) <,(_).,(k)\|‘
‘ ay @ T \ J
. T
4
Data

Fig. 4. Laguerre series blind CV system ID and deconvolution procedure.

III. METHODS

A. Experimental Protocol

Under the experimental protocol #01-055 approved by the
Massachusetts Institute of Technology Committee of Animal
Care, invasive CV data were obtained from nine anesthetized
swine subjects at a sampling rate of 250 Hz. The BP signals
were measured in the swine subjects simultaneously from
indwelling catheters in the radial and femoral arteries, coupled
via rigid fluid-filled tubing to external pressure transducers. In
addition, the aortic flow signal was measured using a flow meter
placed around the ascending aorta. The physiologic conditions
of the swine subjects were widely altered in order to verify
the proposed algorithm for a broad range of physiologic con-
ditions. During the experiment, a combination of intravenous
medication infusions, including epinephrine, nitroglycerine,
dobutamine, neosynephrine, and esmolol, was made. The phys-
iologic spans of the swine subjects are summarized in Table I.
Prior to their application to the blind system ID and the input
deconvolution, the BP signals were prefiltered using a FIR
digital filter with 30-Hz cutoff frequency and downsampled to
125 Hz.

B. CV System ID and Central-Flow Recovery

From the experimental swine data, we obtained totally 7000
segments of data, each having approximately 2000 samples of
peripheral BP and aortic flow signals. The blind system ID and
the input deconvolution algorithms were applied to these data,
following the procedure shown in Fig. 4. First, initial estimates
of the order of the Laguerre series and the basis poles of the two
arterial paths were provided?, based on which the peripheral BP
signals were Laguerre filtered to generate the signals J;,(;) (n) in
(3). Then, (3) was solved for E), which was used to evaluate the

2If the basis poles @ and @ are unknown, the Laguerre series becomes an
ARMA model, which requires at least three distinct measurements for ID [9]. In
order to avoid this difficulty, the solution procedure first assumes the Laguerre
basis pole values and solves the homogeneous equation (3).

polynomials Aq(z) and A3(z) in (9) and solve (8) to design the
Laguerre deconvolution filter (7). The central-flow signal was
recovered by processing the peripheral BP signals using this
deconvolution filter. The performance of the CV system ID was
quantified by comparing the observed outputs to their estimated
counterparts

i é’ zazbﬁn,ai,f) ’
- (wi) = Gz, B >)' .

- (i)

M=

i=1

The procedure described previously was iterated until the metric
(19) was optimized.

For each data segment, the richness of the data was evalu-
ated by examining the PE condition. Furthermore, to assess the
level of reliability on the identified CV dynamics, the asymp-
totic variance of the identified Laguerre series coefficients b was
evaluated by (18). This whole procedure was repeated for dif-
ferent values of model orders L and Lo as well as dual basis
poles a; and as. In particular, the proposed method using dual
Laguerre basis functions a; # a2 was compared to the single
basis pole method [10], [13] a1 = a9 in terms of both accuracy
and reliability. To objectively compare the asymptotic variance
of the Laguerre series coefficients b (single pole) and b, (dual
pole) identified with and withouE the cogstraint a1 = a9 in the
absence of any reference scale, b and b, were scaled in such
a way that the resulting dc gains of the arterial path dynamics
become identical, i.e., b, and b, were appropriately scaled to
b, and b, in order to meet the following equality:

1+ ay Y (i 1+a; Y (i
USHOL = Y

>

(20)

a1=azs ay#az

where Ingc and lu)((;)k are the elements of BS and Bd. These BS and

b associated with the 7000 segments of peripheral BP signals
were applied to (18) for asymptotic variance analysis.

IV. RESULTS AND DISCUSSION

The examination of the PE condition for the 7000 segments
of peripheral BP data showed that the PE condition was met
for most data segments when the total number of model order
L = L1 + Ly was less than 12. For L = 6, L; = Lo = 3, the
PE condition was satisfied for all the 7000 data segments. This
reveals a few important points.

1) The observed peripheral BP data contained information

rich enough to identify no more than 12 parameters.

2) Occasionally, some data segments were found to be rich
enough to satisfy the PE condition for high model orders.
However, to assure that the CV dynamics is identifiable for
all the swine subjects under diverse physiologic conditions,
the total model order should be kept on a conservative side,
i.e., six or lower, which necessitates an effective represen-
tation of the CV system.

Fig. 5 shows a typical result of the blind CV system ID and
input deconvolution. The model order was kept low: L = 6,
Ly = Ls = 3. The two left plots are the peripheral BP sig-
nals used for ID, and the measured aortic versus recovered cen-
tral-flow signals are shown on the right. Note that, although the
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Fig. 5. Peripheral BP and true versus recovered aortic flow signals. Model
order: Ly = 3, L, = 3. Laguerre basis poles: a; = 0.79, a» = 0.94. Nor-
malized squared error: J = 0.0982.
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Fig. 6. Impulse responses of identified aortic-to-radial transfer functions under
diverse physiologic conditions.

model order was kept low, the recovered waveform of the cen-
tral flow accurately reproduced the true aortic flow.

The identified transfer functions differ significantly de-
pending on the physiologic conditions of each swine sub-
ject. Fig. 6 shows how much variation we observed in the
aortic-to-radial transfer functions even for a single swine sub-
ject. It is difficult to average these responses and replace all
the diverse transfer functions by a single transfer function. Our
algorithm allows for the ID of these diverse transfer functions.

The results of the asymptotic variance analysis give more in-
sights into the accuracy and reliability of the system ID. First,
Table IT summarizes the asymptotic variance of the Laguerre se-
ries coefficients for the dual- and single-pole CV models, aver-
aged over the 7000 segments of data, where the asymptotic vari-
ances for the data length of 400, 800, and 2000 show that they
decrease approximately in proportion to the size of data points

TABLE II
ASYMPTOTIC VARIANCE OF LAGUERRE SERIES COEFFICIENTS (L; = Ly = 3)
a; * a, a=a,
N=400 N=800  N=2,000 | N=2,000
b 7.392 5.112 3.732 6.172
bV 7782 5.65 4.042 5.812
b 4357 3.132 2,292 3.642
b? 10.74? 5.16? 2732 6.272
b? | 1495 5.97% 2.70° 732
b? 9.562 4.042 2.112 5.00°
TABLE III
PERCENTAGE ASYMPTOTIC VARIANCE OF DC GAINS (N = 800)
a; * a, a =a,
Li=lp=3  Li=L,=5 | Li=L,=3  L;=L,=5
iy 57.3 317 113 93.3
ISy 0.52 1.10 131 3.88
AG (1)/G (1) | 5.14% 15.2% 30.5% 188%
AG,(1)/G,(1) | 7.93% 28.9% 43.2% 424%

N, as predicted by (18). Hence, the confidence of the parameter
estimation can be improved by increasing the data length.
Table II also compares the identified CV dynamics with dual
Laguerre basis functions, a; # a2, and that with a single basis
pole a; = a9, which suggests that the single-pole model does
not work well for . = 6. The single-pole model needs more
terms in the Laguerre series expansion, because constraining
the Laguerre basis pole to the same value usually incurs more
mismatches in the individual arterial path dynamics, resulting in
a larger Ay in (18). The mismatches may be reduced by using a
higher model order. Unfortunately, however, this higher model
order again incurs poor asymptotic variance by deteriorating the
sensitivity to result in a larger Sy in (18), as shown in Table III.
We also investigated how the asymptotic variance analysis
can be used for the tradeoff between accuracy and reliability
in CV system ID. In particular, two different model orders (six
versus ten) and two different model structures (single Laguerre
basis function versus dual Laguerre basis function) were con-
sidered for the 7000 segments of data. In these comparisons,
N = 800 was used. The resulting output estimation error vari-
ance Ay, the magnitude of the inverse sensitivity matrix (mea-
sured by its trace norm) ||Sy|| = trace(Sn), and the resul-
tant asymptotic variance given by (18) in identifying the indi-
vidual CV path dynamics, averaged over the 7000 segments of
data, are summarized in Table III. Specifically, it lists the per-
centage asymptotic variances of the dc gains of the first and
second arterial paths normalized by its own dc gain as a rep-
resentative of the asymptotic variance. Here, the dc gain of the
CV dynamics G,(1) can be interpreted as the mean BP for a
given mean aortic flow, and its variance includes the aggregate
effects of all the variances in estimating the individual Laguerre
spries coefficients. First, the variance of output estimation error
An and the magnitude of the inverse sensitivity matrix ||Sy||
for estimating CV path dynamics were computed for different
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model orders L. = 6 and L. = 10, respectively. As the model
order increases, the output estimation error decreases. This is
because more parameters can be used to fit the data as the model
order increases. However, the overall asymptotic variance in-
creases as the model order increases. The magnitude of ||Sy||
increases significantly for L = 10, indicating that some of the
Laguerre series coefficients have low sensitivities. As a result,
the estimates of these series coefficients become unreliable. For
N = 800, which corresponds to 6.4 s of data, the asymptotic
variance of the dual-pole model with L. = 6 decreases to just
a few percent for both arterial paths. On the other hand, the
variance is significantly larger for the single-pole model with
L = 10, supporting again that allowing different Laguerre basis
poles to different arterial paths can deliver tremendous benefit in
improving the reliability of the blind system ID. In summary, the
PE condition and asymptotic variance analysis provide useful
insights and design guidelines as to data richness, data length,
model order, and model efficiency, which allow us to guarantee
the accuracy and reliability of identified CV dynamics.

V. CONCLUSION

Identifying the CV dynamics from limited peripheral BP ob-
servation is a challenging problem. In this paper, we presented
several key algorithmic and experimental results. First, an ef-
fective data compression based on dual Laguerre basis func-
tions was presented, in which the dynamics of a two-channel
CV system was accurately and reliably identified from arterial
BP measurements at two peripheral locations. This method al-
lowed us to deliver compact and high-fidelity representations of
the CV system. Second, the central-flow signal was recovered
with our Laguerre deconvolution algorithm for stable inversion,
without the use of predetermined transfer functions. Altogether,
these algorithms opened up a new possibility for enhanced as-
sessment of global CV dynamics (e.g., central and branch condi-
tions as well as other key CV physiologic measures [13], [14]),
using just peripheral BP signals measured via minimally inva-
sive or noninvasive techniques. Third, this paper described anal-
ysis and design tools for evaluating the richness of the observed
signals and quantifying the estimation error variance and pa-
rameter sensitivity, without reliance on any direct central input
signal measurement. This methodology illustrated a systematic
way of identifying CV dynamics based on quantitative relia-
bility measures, which may be valuable in many physiologic
applications of system ID.

In this paper, we applied these methods to 7000 data seg-
ments obtained from nine swine subjects, validating that the
novel ID and deconvolution algorithm performs well under
diverse physiologic conditions, given just several seconds of
peripheral BP measurements. Future study of the utility of this
methodology, with potentially wide-ranging clinical applica-
tions, is warranted.
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