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Application of self-tuning Gaussian networks for control of civil 
structures equipped with magnetorheological dampers 

 
Simon Laflamme* and Jerome J. Connor 

Dept. of Civil and Env. Eng., MIT, 77 Mass. av., Cambridge, MA 02139 
 
 

ABSTRACT 
 

This paper proposes an adaptive neural network composed of Gaussian radial functions for mapping the behavior of civil 
structures controlled with magnetorheological dampers. The online adaptation takes into account the limited force output 
of the semi-active dampers using a sliding mode controller, as their reaction forces are state dependent. The structural 
response and the actual forces from the dampers are used to adapt the Gaussian network by tuning the radial function 
widths, centers, and weights. In order to accelerate convergence of the Gaussian radial function network during 
extraordinary external excitations, the learning rates are also adaptive. The proposed controller is simulated using three 
types of earthquakes: near-field, mid-field, and far-field. Results show that the neural controller is effective for 
controlling a structure equipped with a magnetorheological damper, as it achieves a performance similar to the passive-
on strategy while requiring as low as half the voltage input. 
 
Keywords: Gaussian radial functions, magnetorheological dampers, adaptive control, structural control, civil structures 

 
 

1.   INTRODUCTION 
 

Specific problems associated with variable control of civil structures include large actuating forces, possible 
destabilization from feedback control, uncertainties in dynamic characteristics, and limited state measurements1. 
Magnetorheological (MR) dampers have been proposed in the literature for control of civil structures because of their 
capability to perform almost as well as active control schemes, while requiring only a fraction of the power input2,3.They 
are also considered to be robust and fail-safe4, providing enhanced protection for vibration mitigation during natural 
hazards. Their hysteretic behavior has been extensively studied and successfully modeled5, but their complex dynamic 
behavior renders complicated the mapping of the required voltage for a desired force6. Even when such mapping is 
possible, knowledge of the dynamic properties of the structure is required. However, dynamic characteristics of 
structures are inherently difficult to estimate accurately. Some control techniques have been proposed to account for 
bounded uncertainties, such as sliding mode control7 and adapted LQR/H2 control8, but a nominal estimation of the plant 
characteristics is still required as the performance of the controller depends on the level of the uncertainties. Neural nets 
have been proposed to deal with uncertainties without prior knowledge of the plant, attempting to map the entire 
plant/MR damper system9,10. However, classic neural networks must be trained a priori, which is difficult to achieve for 
large-scale structures. Suresh et al.11 proposed an adaptive mapping scheme based on Lyapunov stability theory that uses 
Gaussian radial functions to control base-isolation of nonlinear buildings equipped with an actuator. With the proposed 
mapping, the structure learns its behavior during an event while using limited state measurements. Lee et al.12 developed 
a semi active neuro-controller for base-isolation control with an MR damper, where the neural network was updated 
using a cost function and sensitivity evaluation. Lee et al.13 achieved an adaptive modal neuro-controller for a structure 
equipped with a MR damper. Song et al.14 proposed an adaptive controller for MR dampers used in car suspension 
systems. The controlled system is identified sequentially, and also includes an adaptive controller in parallel. System 
identification is achieved on a single degree-of-freedom system using a root least square algorithm, but such 
identification strategy would require too much computation time for a real-time application to civil structures because of 
the numerous degrees-of-freedom. 
 
The main contribution of this paper is to propose a modified version of the self-tuning Gaussian network from Suresh     
et al.11 to map the behavior of a civil structure equipped with MR dampers. Semi-active damping devices offer a  
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particular challenge in adaptive control since the state dependence of their reaction force means the desired control force 
may not be achieved. Therefore, the sequential training must take into account the uncertainty in the applied force. A 
sliding mode controller is used for this task. Moreover, the proposed self-tuning network uses adaptive learning rates 
based on Lyapunov stability theory to accelerate convergence. Many control schemes have been proposed in the 
structural control field since its introduction by Yao in 1972, but their applicability has not been extensively discussed15. 
This paper is also original as it discusses the applicability of the control solution to large-scale civil structures. 
 
The paper is organized as follows: section 2 presents MR damper theory; section 3 reviews the GRF network design 
procedure; section 4 describes the proposed controller; section 5 contains the simulation and results along with a 
discussion; section 6 concludes the paper. 
 
 

2.   MAGNETORHEOLOGICAL DAMPERS 
 

Magnetorheological actuators are defined by the fluid that gives them their rheological properties. This particular fluid 
contains polarizable and magnetizable particles that line up upon magnetic excitation, causing a change in the liquid’s 
viscosity within a few milliseconds16. For a large-scale 180 kN MR damper, this response would be on the order of 60 
milliseconds17. 
 
Their low power requirement, which is 50 W for a 200 kN damping force5, also makes them very attractive as only a 
battery is needed to drive their response. This would allow the structure to remain stable under a global power failure 
which is likely to occur during a natural disaster, and in the event of a local power failure, MR dampers can still act as 
passive dampers, providing a minimal damping to the structure.  
 
Numerous models, mathematical as well as non-mathematical, have been developed over the years in attempts to model 
the dynamic behavior of the damper. Spencer et al.3 proposed a phenomenological model that has been shown to be 
quite accurate. This model is used for the computer simulation. According to this phenomenological model, the force 
output of an MR damper due to an applied voltage can be written as: 
 
  ݂ ൌ ܿଵݕሶ ൅ ݇ଵሺݔ െ ሶݖ  ଴ሻݔ ൌ െݔ|ߛሶ െ ሶݕ ௡ିଵ|ݖ|ݖ| െ ሶݔሺߚ െ ௡|ݖ|ሶሻݕ ൅ ሶݔሺܣ െ ሶݕ ሻݕሶ ൌ ሺܿ଴ ൅ ܿଵሻିଵ൫ܽݖ ൅ ܿ଴ݔሶ ൅ ݇଴ሺݔ െ  ሻ൯ݕ

(1) 

 
where ݂ is the resulting force, ݇଴, ݇ଵ, ,ߚ ,ߛ ,ܣ ݊ are constants, ݖ is an evolutionary variable, and ܽ, ܿ଴, ܿଵare voltage-
dependent and defined by: 
 
  ܽ ൌ ܽ௔ ൅ ܽ௕ݓ ܿ଴ ൌ ܿ଴௔ ൅ ܿ଴௕ݓ ܿଵ ൌ ܿଵ௔ ൅ ܿଵ௕ݓ ݓሶ ൌ െߟሺݓ െ  ሻݒ

(2) 

 
where ܽ௔, ܽ௕, ܿ଴௔, ܿ଴௕, ܿଵ௔, ܿଵ௕,  .is the applied voltage, and w is the actual voltage ݒ ,are constants ߟ
 
The inverse mapping of voltage to force is difficult to achieve with most mathematical models, as seen from equations 
(1) and (2). It is possible to use a neural network to identify this inverse mapping, but this necessitates prior 
training. Since this paper is an effort to propose a system that could work without prior training, the required force from 
the controller is applied following the clipped-optimal algorithm18. In this algorithm, the applied voltage is maximum if 
the required force is higher than the actual damper force and of the same sign; it is set to zero otherwise. The clipped-
optimal algorithm has shown good performance in the literature2,19. It can be directly observed from the clipped-optimal 
scheme that there will be an error between the actual force ݑ௔௖௧ and the required force ݑ: 
 
෤ݑ  ൌ ݑ െ  ௔௖௧ (3)ݑ
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This error ݑ෤ on the force is treated as a system uncertainty and is handled using a sliding mode controller described in 
section 4. 
 
 

3.   GAUSSIAN NETWORKS 
 
Neural networks have attracted significant attention over the past decades because of their capability to approximate the 
input-output relationship of unknown systems. Traditionally, sigmoid and linear functions are combined linearly to 
achieve the system approximation. More recently, Gaussian radial functions (GRF) have been researched to replace 
traditional functions20. GRF neural network have several advantages compared to traditional neural nets, among which 
are better approximation, convergence speed, optimality in solution and excellent localization11. The choice of Gaussian 
radial functions (GRF) is also motivated by their capability to be trained more quickly than most other neural network 
techniques, and to model nonlinear systems by estimating in the function space20-22. The output of a GRF network can be 
expressed as: 
 
 

Θ୨ ൌ ෍ ௞௝݁ିԡ௑ିఓೖԡమఙೖమ௛ߙ
௞ୀଵ ൌ ௝்ߙ ߶,       ݆ ൌ 1, 2, 3, … ݉ 

(4) 

 
where Θ is the output, X is the input vector; the ߙ and ߪ are vectors containing the network weights and the Gaussian 
widths; ߤ is a matrix containing the multidimensional location of the Gaussian centers; ߶ is the vector representing 
Gaussian functions; and subscripts j and k range over the number of output and Gaussian functions, respectively.  
 
3.3.1   Network Input/Output 
 
The GRF network designed for this paper is a direct inverse controller, where the artificial neural network outputs 
control forces according to some states. The choice of the number of outputs is straightforward, and corresponds to the 
number of actuators. The choice of state input, however, is more involved, and needs to be selected based on prior 
knowledge of the system, if possible. The network designer must also choose an appropriate lag space, which has to be 
large enough to include the dynamics that properly describes the system, and decide on an appropriate scaling of input 
which would improve the algorithm robustness and convergence speed23. 
 
3.3.2   Self-Organization of Nodes 
 
GRF network performance depends on the number of basis functions and on the width and position of the center of each 
function. Generally, the network has to be a priori trained with an existing set of input-output. However, this is difficult 
to achieve for civil structures because of the size of the structures to be controlled. Therefore, sequential learning is 
preferred over batch learning. The concept of sequential learning is that the neural network learns, or adapts, after each 
new input-output entry. Nevertheless, because of the lack of prior information on the set of input-output data, pre-set 
numbers of tuned GRF result in suboptimal networks24. A self-organizing neural network model (SOM) has the 
capability to adapt itself, by adding or subtracting nodes, which motivates the choice of a self-organizing GRF network 
for this paper.  
 
Based on SOM theory, nodes are added when a new set of input is too far from the actual node centers. The new node is 
generally placed at the center of the new set, with appropriate weight to achieve the output, and of a pre-defined width.  
A SOM can also have the capability to prune nodes when they are judged to be unnecessary. Many different rules can be 
set to prune a network. For instance, one can choose to remove a node if its weight falls below a threshold for a certain 
continuous number of observations.  
 
3.3.3   Adaptation of Parameters 
 
There exist many algorithms to adapt network parameters, such as back-propagation (BP), extended Kalman filtering, 
and recursive least-square, but the BP algorithms is clearly superior in its computational simplicity25. Applicability of the 
neural controller for real-time control requires computational simplicity and minimal data storage in order to avoid time 
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delay. The BP scheme has slow convergence. However, convergence is improved by including learning parameters that 
estimates the size of the step to be taken in the direction of the steepest descent. It is difficult to choose appropriate 
learning parameters in the case of a structure exposed to stochastic excitations because of the unknown magnitude of the 
dynamic response. Behera et al.25 proposed time-varying learning parameters that enhance convergence speed for system 
identification, and showed their stability via Lyapunov theory. The concept of time-varying learning rates is 
implemented in the proposed neural controller. 
 
 

4.   CONTROLLER 
 
Based on (4), the mapping of control-input/state-output of the system equipped with a MR damper can be expressed as: 
 
ௗ,௝ݑ  ൌ ௝்ߙ ߶,             ݆ ൌ 1, 2, 3, … ݉ (5) 
 
where ud is the desired control force. Because the proposed controller will be applied to a single actuator, this section is 
specialized for the case where j = 1. 
 
Using (5) and the conventional state-space representation of the equation of motion of a structure, the dynamics of the 
controlled state error can be written as: 
 
 ሶ݁ ൌ ሶݔ െ ሶௗݔ ൌ ݁ܣ ൅ ௔௖௧ݑሺܤ െ ௗݑ ൅ ߳ሻൌ ݁ܣ ൅ ො்߶෠ߙ൫ܤ െ ߶்ߙ െ ෤ݑ ൅ ߳൯ 

(6) 

 
where x is the system state vector, A, B, and u are notations that conform to the traditional state-space representation of 
dynamic systems, the subscript d denotes the desired states and forces (optimal), the hat denotes estimated values, and ߳ 
is the estimation error.  Using a sliding mode controller and defining the sliding surface as: 
 
ݏ  ൌ ܲ݁ (7) 
 
where the targeted surface is s = 0, P is a user-defined vector with all positive elements weighting the error vector, and 
introducing the following control law: 
 
௔௖௧ݑ  ൌ ො்߶෠ߙ െ ݇൫signሺݏሻ൯ (8) 
 
where k is a constant to be defined later, (6) becomes:  
 
 ሶ݁ ൌ ݁ܣ ൅ ܤ ቀߙො்߶෠ െ ߶்ߙ െ ෤ݑ ൅ ߳ െ ݇൫signሺݏሻ൯ቁ (9) 

 
Note that (8) uses a sign function rather than a saturation function. Even though a saturation function would help a 
smoother transition in the control force, thus preventing chattering, using the clipped-optimal algorithm transforms this 
control law into a bang-bang controller on the voltage input.  
 
In order to find adaptation laws that would guarantee the stability of the GRF network, Lyapunov theory is applied. 
Consider the following Lyapunov candidate: 
 
 ܸ ൌ 12 ݏ்ݏൣ ൅ ෤ߙ෤்Γఈିଵߙ ൅ ߶෨்Γథି ଵ߶෨൧ (10) 

 
where Γఈିଵ and Γథି ଵ are positive definite diagonal matrices representing learning parameters, the tilde denotes the error 
between the estimated and real values (ߙ෤ ൌ ොߙ െ ;ߙ ߶෨ ൌ ߶෠ െ ߶ሻ. Note that here s is a scalar, but because it becomes a 
column vector in the case of multiple MR dampers, it is written in vector form. Neglecting the higher order term, the 
time derivative of V is: 
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 ሶܸ ൌ ݁ܣ்ܲݏ ൅ ො்߶෨ߙ൫ܤ்ܲݏ ൅ ෤்߶෠൯ߙ ൅ ෤்Γఈିߙ ଵߙොሶ ൅ ߶෨்Γథି ଵ߶෠ሶ ൅ ෤்Γሶߙ ఈିଵߙ෤ ൅ ߶෨்Γሶథି ଵ߶෨ ൅ െ߳ܤ்ܲݏ ෤ݑܤ்ܲݏ െ ൌ݇ܤܲ|்ݏ| ݁ܣ்்ܲܲ݁ ൅ ߶෨் ቀߙො்ݏ்்ܲܤ ൅ Γథି ଵ߶෠ሶ ቁ ൅ ݏ்்ܲܤ෤்൫߶෠்ߙ ൅ Γఈିଵߙොሶ ൯ െ ෤ݑሺܤ்ܲݏ െ ߳ሻ െ ൅݇ܤܲ|்ݏ| ሚ்Γሶߦ ିଵߦሚ 
(11) 

 
with: 
 
ሚߦ  ൌ ൤ߙ෤߶෨൨ , Γ ൌ ൤Γఈ 00 Γథ൨  

 
The tilde denotes the error between the optimal and current parameters. By choosing the following adaptation laws: 
 
ොሶߙ  ൌ െ൫Γఈ߶෠൯ݏ்்ܲܤ ߶෠ሶ ൌ െ൫Γథߙො൯ݏ்்ܲܤ 

Γሶ ିଵ ൌ െܫݏ்ݏ 

(12) 

 
where ܫ is an identity matrix to populate Γሶ ିଵ, equation (11) becomes: 
 
 ሶܸ ൌ ݁ܣ்்ܲܲ݁ െ ෤ݑሺܤ்ܲݏ െ ߳ሻ െ ݇ܤܲ|்ݏ| െ  ሚ (13)ߦሻܫݏ்ݏሚ்ሺߦ
 
Choosing ݇ ൌ ෤ݑ is positive, and ub is a known bound (also positive) on ߟ ௕, whereݑߟ , (13) can be rewritten as: 
 
 ሶܸ ൌ ݁ܣ்்ܲܲ݁ െ ෤ݑሺܤ்ܲݏ െ ߳ሻ െ ௕ݑߟܤܲ|்ݏ| െ  ሚ (14)ߦሻܫݏ்ݏሚ்ሺߦ
 
It can be noted that the switching law in (8), and thus the term k, can be used to control for system uncertainties. The 
adaptive parameters are chosen to guarantee convergence of the GRF network based on the error. Hence, uncertainties 
on external loadings from both the desired and current dynamics are cancelled out in (6). The term k depends on the 
uncertainty on the error on the applied force ub and a constant. This error can be quite large, and increasing its value too 
much would lead to a controller based almost exclusively on the sign of the sliding surface. Instead, a bound ub is 
assumed, and adaptation on the network slowed when |ݑ෤| ൐  .௕ݑ
 
The estimation error term ߳ is decreased with the increased number of GRF nodes. It is assumed that ݑ෤  is much larger 
than ߳, otherwise the switching control term will by default be larger than ݑ෤ െ ߳. Therefore, equation (14) can be 
guaranteed to be negative for P chosen such that ்ܲܲܣ is semi-negative definite. Note that in practice the matrix A is 
unknown. Nevertheless, it is acceptable to choose P based on a rough approximation of A because of its structure and 
magnitude. Equation (14) is therefore negative definite. Thus, using Barbalat’s lemma, the error will converge to zero26.  
 
4.1   Discussion on System States 
 
The sliding surface necessitates the knowledge of all displacements and velocities, as well as for some of the input states 
in (4). To obtain these states, it is better to have an estimator. In practice, only accelerations are measured because 
displacement and velocity measurements only provide relative quantities, are more expensive to measure than 
accelerations, and integration of acceleration can lead to significant errors27,28. 
 
It is also worth mentioning that in the case where displacement and velocity measurements of some specific degrees of 
freedom cannot be obtained, the vector P can be modified to include null entries where these measurements are missing. 
 
For the proposed controller, the input states are the actual displacements and velocities, and the previous applied forces. 
Despite that they have to be estimated in practice, using displacements and velocities is advantageous as these measures 
represent the error. This error is therefore fed in the neural network as an input. The velocity inputs are scaled by 10 and 
the forces by 1000 to give an equal importance in the network. 
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4.2   Self-Organization Rules 
 
Conformed to the previous section, a node is added if the smallest distance between the center of an input and an 
existing node falls below a threshold. This threshold has to be selected depending on the type of excitation. For instance, 
this threshold will be higher if the region where the structure is located is expected to have earthquakes of large intensity. 
Regarding pruning, a node is removed if its weight falls below 5% of the highest weight for more than 100 consecutive 
samples.  
 
4.3   Adaptive Learning Parameters 
 
Noting that ΓΓିଵ ൌ  :taking its time derivative results in ,ܫ
 
 Γሶ ൌ Γሺܫݏ்ݏሻΓ (15) 
 
It is clear from (11) and (15) that the adaptive learning rate can be any increasing function, because Γሶ ିଵ has to be semi 
negative definite. Using the sliding surface error in the function is intuitive, as a greater error indicates that the system is 
further from its optimality, therefore increasing the step taken in the descent direction. However, in order to prevent the 
learning rate from augmenting too quickly, and thus initiating system instability, (15) is modified by dividing by the     
2-norm of the learning rate. Therefore, noting that in the following equation Γక is the ߦth diagonal parameter of the matrix Γ and thus a scalar, the adaptation laws (12) for the ߦth network parameter can be rewritten as: 
 
መሶߦ  ൌ െΓక ൬ߦߜݑߜ൰ Γకሶ ݏ்்ܲܤ ൌ sTs 

(16) 

 
While ߦመ is modified using an unknown vector B, it is noted that this adaptation can be realized using the approximation ܤ෠ , as ܤ෠ ൌ  .where ߰ is a diagonal matrix, and that ߰ can be absorbed in Γ ܤ߰
 
 

5.   SIMULATION 
 
The three degree-of-freedom model tested in Dyke et al.18 has been used as a benchmark for the numerical simulation. 
Just as with the benchmark model, a 1000 N MR damper is attached between the ground and the first story. Structural 
properties are as follows: 
ܯ  ൌ ൥98.3 0 00 98.3 00 0 98.3൩ kg ; ܥ    ൌ ൥175 െ50 0െ50 100 െ500 െ50 50 ൩ N · sm ; ܭ    ൌ  10ହ ൥ 12.0 െ6.84 0െ6.84 13.7 െ6.840 െ6.84 6.84 ൩ Nm 

 
Three different earthquakes corresponding to far-field, mid-field, and near-field earthquakes are considered. The 
earthquakes are ElCentro 1940 North-South (near-field), Kobe 1995 East-West (mid-field), and Mexico City 1985 
North-South (far-field). The earthquake time is scaled by a factor of 5 to match the model.  
 
In order to show stability of the controller, the structure has been simulated with an ideal actuator saturating at 1100 N. 
The switching term has been used to account for a possible difference between the force predicted by the network and 
the actual force resulting from the actuator saturation. Figure 1 shows the neural controller performance at reducing the 
third story displacement for the ElCentro earthquake. Figure 2 shows the performance for a sinusoidal excitation at the 
first natural frequency. 
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Figure 1: Controller performance, ElCentro earthquake. 

 
Figure 2: Controller performance, sinusoidal excitatio

 
The controller has been applied with the MR damper. Detailed performance for the ElCentro (1940) earthquake is 
shown in Figures 3 – 8. Figure 3 and Figure 4 show results for the third storey displacement and acceleration 
reduction. Figure 5 and Figure 6 compare vibration mitigation against the passive-off and passive-on case. The 
passive-off case refers to the utilization of the MR damper with no voltage input, while the passive-on case refers to 
the continuous application of the full voltage. Figure 7 shows the force from the MR damper, and Figure 8 compares 
the required force versus the actual force.  
 
The controller has been tested against three different types of earthquakes. The evolutions of the GRF networks for 
the three earthquakes are plotted along with the excitations in Figures 5.9 – 5.11. Results are shown in Tables 1 – 3.  
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Figure 3: Third story displacement; uncontrolled versus        

controlled case. 

 
Figure 4: Third story acceleration; uncontrolled versus          

controlled case. 

 
Figure 5: Third story displacement; passive versus      

controlled case. 

 
Figure 7: Applied voltage. 

 Figure 6: Third story acceleration; passive versus      
controlled case.  

 
Figure 8: Required force (dotted line) versus actual force.
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Figure 9: Evolution of the GRF network, ElCentro earthquake. 

 
Figure 10: Evolution of the GRF network, Kobe earthquake. 

 

 
Figure 11: Evolution of the GRF network, Mexico City earthquake. 

 
 

  
Table 1: Results for the ElCentro earthquake. 

 

Uncontrolled Passive-off Passive-on Controlled
Storey 1 0.55 0.212 0.0790 0.0865
Storey 2 0.837 0.362 0.198 0.189
Storey 3 0.974 0.457 0.312 0.270
Storey 1 883 402 293 652
Storey 2 1067 509 525 455
Storey 3 1414 738 790 722

Average force (N) 0 83.1 128 125
Average voltage (V) 0 0 2.25 1.54
Maximum Force (N) 0 264 1006 951

Near-Field - ElCentro 1940 NS
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Table 2: Results for Kobe earthquake. 

  
Table 3: Results for Mexico City earthquake. 

 
5.1   Discussion on Results 
 
Results on the three earthquakes show that the controller is promising for vibration mitigation. With respect to 
displacement control, the controller mitigates vibrations similar to the passive-on case, but with significantly less 
voltage. Acceleration mitigation is better for the near-field earthquake, similar for the mid-field, and worst for the 
far-field, except for the first floor where the actuator is located. This increase in acceleration on the first floor is 
explained by the change in the damper voltage provoking a non-smooth displacement of the damper itself, as 
expected. However, the GRF network does not have acceleration mitigation as a goal, since it does not appear in the 
error metric.  
 
The evolution of the networks show that the neural controller initially quickly increases in size when the earthquake 
occurs, and then stabilizes at the same time as the excitation, as evidenced with the Kobe and Mexico City 
earthquakes. This concept is quite intuitive, but shows that a rapid convergence of the network is essential to 
effectively achieve hazard mitigation. 
 
Figure 8 depicts the major challenge faced when using adaptive control with an MR damper. The semi-active 
control device can only work towards achieving the required force, but usually does not achieve it. This results in a 
slow convergence of the neural network, which necessitates taking bigger steps in the descent direction. 
Nevertheless, no structural instability can occur because of the inherent stability of damping devices. This 
comparison in forces shows that the force outputted by the damper successfully follows a scaled version of the force 
required by the neural controller. 
 
 
 
 
 

Uncontrolled Passive-off Passive-on Controlled
Storey 1 0.303 0.169 0.0735 0.0790
Storey 2 0.493 0.291 0.201 0.203
Storey 3 0.607 0.352 0.305 0.310
Storey 1 610 297 427 512
Storey 2 697 475 560 559
Storey 3 901 538 741 763

Average force (N) 0 59.9 131 129
Average voltage (V) 0 0 2.25 1.29
Maximum Force (N) 0 223 1031 1075

Mid-Field - Kobe 1995 EW

D
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Uncontrolled Passive-off Passive-on Controlled
Storey 1 0.188 0.117 0.0810 0.0811
Storey 2 0.291 0.189 0.129 0.131
Storey 3 0.347 0.225 0.163 0.165
Storey 1 274 226 170 530
Storey 2 337 239 189 260
Storey 3 391 285 245 289

Average force (N) 0 32.6 45.8 43.6
Average voltage (V) 0 0 2.25 1.07
Maximum Force (N) 0 156 472 649
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.
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m
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6.   CONCLUSION 
 

Results show that the use of a GRF neural network to control an MR damper is promising. The damper was capable 
of significantly mitigating vibrations with a fraction of the voltage required to do so with a passive-on strategy. This 
performance is similar for all three types of simulated earthquakes.  
 
More work has to be done in order to optimize the choice of parameters used in the network design, such as for the 
self-organization rules. Other performance measures could be tested with the controller, such as acceleration 
reduction. A neuro-controller based on pure acceleration feedback is currently being researched by the authors.  
 
The proposed control strategy is particularly attractive for large-scale implementation. It does not require prior 
knowledge of structural properties, as parameters used in the adaptation scheme can be designed using basic 
assumptions on the controlled system. Applicability of control systems in civil engineering is an important topic. It 
is a critical issue for acceptability of structural control strategies by the industry.  
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