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ABSTRACT

In this paper, we focus on a number of applications of network

optimization techniques to transportation systems analysis. In parti-

cular, network analysis problems, network design problems, and network

management problems are discussed in some detail. The intent is to

survey important application areas.

INTRODUCTION

Recent advances in techniques for handling large-scale network

problems have found a prime area of application in the modeling and op-

timization of transportation systems. In this paper, transportation

network problems are classified into the following three categories:

(1) network analysis problems,
(2) network design problems, and
(3) network management problems.

This classification scheme is somewhat arbitrary but valuable nonethe-

less. A common point of departure for dealing with these problems is

to view the underlying transportation network and its operating stra-

tegies as the supply for transportation, whereas the demand for trans-

portation services is generated by the persons and goods wishing to

be transferred together with their motives and behavioral relationships.
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Our purpose in this paper is to escort the reader on a guided

tour through selected applications of optimization techniques to trans-

portation networks; within each category we focus on a specific appli-

cation. In network analysis problems one calculates the optimal dis-

tribution of flows in a given network. An example is the traffic as-

signment problem which concerns the assignment of origin-destination

pair demands to various routes in order to minimize total travel costs.

Network design problems deal with determining an optimum network con-

figuration for a predicted demand pattern, subject to budget constraints.

In particular, network improvement will be discussed. Network manage-

ment problems involve the control of operations in order to make effec-

tive utilization of available resources. Vehicle routing is an impor-

tant network management problem which has received widespread attention

recently in the Operations Research literature. We remark that there

is often a great amount of overlap between the categories listed above.

Many real-world problems contain elements from each category. Potts

and Oliver [45], Steenbrink [49], and Bradley [5] are recommended as

general references on transportation networks. In addition, Golden

and Magnanti [251 provide an extensive network bibliography.

NETWORK ANALYSIS PROBLEMS

In the jargon of transportation planners, the technique most often

used for network analysis problems is called traffic assignment. Traf-

fic assignment is a computational procedure used to aid the analyst in

forecasting of future loadings on a network of transportation facili-

ties. The result of the assignment procedure is an estimate of user

volumes on each segment of a transportation network. The user volumes
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may be the number of vehicles, the number of persons, the number of

transit riders, or any other commodity that has an origin (0), destina-

tion (D), and some quantifiable trip interchange characteristic.

The traffic assignment procedure is used for many purposes, such

as:

--Development and testing of alternate transpor-
tation systems.

--Establishment of short range priority programs
for transportation facility development.

--Evaluating the impact of new traffic generators
on an existing transportation system.

--Location analysis of distribution and service
facilities within a transportation corridor.

--Providing input and feedback to other planning
models.

The same procedure has been applied to urban area networks, statewide

systems, as well as national and international transportation systems.

The types of assignment that were made included: vehicles to a high-

way network, passengers to transit networks, passengers to air carrier

routes, freight to rail and shipping lines, messages to communication

channels, etc. The widest application of the traffic assignment pro-

cedure is in the urban transportation planning process, where it con-

stitutes a fundamental step in the travel forecasting stage. It is

the last in a sequence of five steps:

--Land Use Prognostication
--Trip Generation
--Trip Distribution
--Modal Split
-Traffic Assignment

The first four steps are designed to provide the analyst with an es-

timate of future O-D person travel demands, by mode of travel, for a

given layout of a transportation network. The assignment procedure is

then used to assign persons and vehicles to the various routes in the
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system. A description of the transportation planning process can be

found in such references as Potts and Oliver [45], Hutchinson [28],

or Comsis [11].

Wardrop [52. enunciated two broad principles for determining the

assignment of traffic to alternative routes: Assignment according to

the first principle leads to an equilibrium situation in which travel

costs on all utilized routes between any given origin-to-destination

(O-D) are equal or less than those on nonutilized routes. This is a

descriptive assignment emulating the traffic pattern in a transporta-

tion network when no restrictions are imposed on the route each traveler

may choose. The resulting pattern has been termed a user-optimized

pattern. On the other hand, assignment according to the second prin-

ciple leads to a system-optimized pattern by minimizing total travel

costs in the system. This is a non-equilibrium pattern and can be

achieved when travelers are prescribed their travel paths so that

total costs to the community are minimized. Thus, assignment accord-

ing to this principle is a normative assignment.

Dafermos and Sparrow [13] show that, in the case of nonelastic

demands, a traffic pattern satisfying one of Wardrop's principles is

the optimal solution to the following convex problem:

min Z. (f.)
J

subject to flow conservation and nonnegativity constraints, where

fj Cj(x)dx for a user-optimized
Z(f) = pattern (1)

2f2 C(f) for a system-optimized
j j (f)pattern
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and Cj(fj) = travel cost on link j at flow f.

In general, Cj(fj) is a monotone increasing function of the link flow

f.. A typical function used in planning situations is:

C.j(fj) = aj + bj(fj) (2)

where a. and b. are constants characterizing link j.

When trip demand is elastic and given by a monotone decreasing

function of the associated interzonal travel cost, the user-optimized

pattern becomes the classic economic supply-demand equilibrium, where

the interzonal travel cost implied by the demand function is equal to

the actual travel cost of the utilized routes. The equilibrium flows

are those that maximize the consumer's surplus, or equivalently (Beck-

man et al. [2]), minimize the function

I fj Cj(x)dx - z fgi W(y)dy (3)
210 io

where gi represents the number of trips related to O-D pair i, and

Wi(gi ) is the inverse of the demand function for travel between O-D

pair i.

Solution procedures for the traffic assignment problem in trans-

portation planning may be divided into two main categories:

(1) capacity restraint methods and,

(2) equilibrium methods.

The basic idea of all these methods is to obtain an equilibrium traf-

fic pattern, from an initial trial solution, by iteratively adjusting

the travel costs and the traffic flows. The capacity restraint methods

are generally based on intuitive arguments, while the equilibrium

methods are based on rigorous mathematical arguments which ensure the
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convergence of the calculations to the solution of a. convex cost mini-

mization problem. Surveys and extensive bibliographies of existing

methods are given in Comsis [11], Ruiter [47], Nguyen [43], and Assad [1].

Some of the more recent equilibrium approaches, which also report com-

putational experience and which are based on various decomposition

techniques, are discussed below.

Dafermos [121 presents an iterative procedure which begins with

an initial feasible flow pattern and by means of an "equilibration

operator" constructs a sequence of feasible flow patterns which con-

verges to the optimum solution. The main drawback of this technique,

which severely limits its computational effectiveness, is that it re-

quires the enumeration of all paths between each O-D pair. Leventhal

et al. [34] improve on this method by developing a column generation

algorithm for the problem, which does not require the a priori genera-

tion of all O-D paths. The algorithm is capable of handling rather

large networks, taking advantage of the fact that relatively few of

the paths have positive flows in an optimal solution.

The most efficient computational approach to the traffic assign-

ment problem, so far, uses an adaptation of Frank-Wolfe decomposition

[54]. Given a feasible point xk (in flow space), the objective func-

tion (1) is linearized at that point. Since the constraints are also

linear, the problem turns into a linear program with an optimal solu-

tion yk . The direction d = yk xis then a good direction to seek

a decreased value of Z. Using a search technique such as Golden Sec-

k+ltion or Bolzano, a new feasible solution x is derived. The pro-

cedure keeps iterating through the linearization-search stages, using

k+l
x as a new starting point, until convergence. The main computational
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advantage of this decomposition method is that the LP is actually solved

by a shortest-route algorithm that can be applied independently to each

origin in the network. Very efficient algorithms exist for this purpose.

Variants of the procedure described above were used by Bruynooghe et

al. [6], and later by Cantor and Gerla [7], Golden [23], and LeBlanc

et al. [32]. A similar approach with comparable computational results,

was developed by Nguyen [42]. Nguyen adapts a particular form of the

convex-simplex method which exploits the block-diagonal structure of

the assignment problem to speed up computations.

The equilibrium techniques described above have proven to be use-

ful for the kind of problems that transportation planners consider

most often (up to, say, network sizes of 1000 nodes, 2500 links, 250

origins). It has also been shown that the equilibrium approaches pro-

vide improved predictive capability [18, 31] when compared to the

traditional capacity restraint techniques [27]. These approaches fail,

however, when one wishes to consider in detail very large networks

such as those found in the New York or Los Angeles metropolitan areas

(e.g., 10,000 nodes, 25,000 links, 1000 origins). An approach that

was recently developed for this purpose uses geographic decomposition

and sub-area focusing to reduce the size of the problem [38]. Geo-

graphic decomposition is based on the observation that very large net-

works are often only loosely connected and by deleting a small set of

links the network will decompose into several disjoint subnetworks.

It is shown that the equilibrium assignment techniques can also be ap-

plied in this case by linking the subnetworks together through generali-

zed Benders decomposition as described by Maier [38].
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Generalized Benders decomposition is also used by Florian and

Nguyen [17] for computing network equilibrium with elastic demands.

The constraints of the problem, in this case, are separable for each

O-D pair. The only interaction occurs on the links and consequently

in the objective function. Since the objective function is convex,

a local minimum is also a global minimum, and the problem may be de-

composed by each O-D pair. The entire problem is then solved by cyc-

lical application of a special algorithm for a simple O-D pair.

In many cases the link supply functions are subject to change,

e.g., in the case of signal-controlled intersections in which the link

capacity is determined by the greentime apportioned to that link. Cur-

rent practice is that traffic engineers, in devising control strategies

for the signals, assume fixed demands. On the other hand, transpor-

tation planners, in their assignment calculations, ignore the con-

trollability of the link capacity and assume fixed supply functions.

Gartner [19] shows the potential benefits of combining the two aspects

into a single optimization program which is also amenable to the de-

composition techniques described above.

All models described so far presume a static situation, i.e.,

demand does not vary with time. This assumption is not applicable in

many realistic traffic situations. Traffic assignment models are fre-

quently used for analyzing rush-hour periods in metropolitan areas,

and the dynamic behavior must be considered if congestion is to be al-

leviated by controlling traffic. Merchant and Nemhauser [39] present

a discrete time model for dynamic traffic assignment. The model leads

to a nonlinear and nonconvex mathematical programming problem. A
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piecewise linear version of the model can be solved for a global opti-

mum using a one-pass simplex algorithm, without resorting to branch-

and-bound. The piecewise linear program has a staircase structure and

can be solved by decomposition techniques or compactification methods

for sparse matrices. A somewhat similar approach akin to store-and-

forward communication networks is suggested by D'ans and Gazis [14].

NETWORK DESIGN PROBLEMS

In this section, we discuss some transportation network design

problems. Since it is unlikely that an entire transportation system

be constructed at once, most system engineers will encounter network

design problems that concern the improvement of an existing network.

Therefore, we prefer to focus on network improvement problems rather

than network synthesis problems.

The general network improvement problem that we will discuss has

the following properties:

(1) An existing network configuration is given.

(2) There is a set of traffic flows that must be
routed through the network. These flows can
already be routed through the initial unim-
proved network. The traffic assignment can
be determined by either of the two Wardrop
principles.

(3) There is a set of possible improvements that
can be made to upgrade the network. These
network improvements include adding new arcs
to the existing network or modifying arcs al-
ready in the network. These arc modifications
can consist of either increasing the flow
capacity or decreasing the traffic flow cost
of an arc.

(4) There is a construction cost associated with
each possible improvement to the network.
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(5) The problem is to select a set of network
improvements subject to a construction bud-
get constraint so that the traffic flow costs
are minimized.

This general framework encompasses a large number of network improve-

ment problems. Next, we will discuss some interesting features of this

class of network design problems. For a more comprehensive discussion

of these and other network design problems see the surveys by MacKinnon

[37], Stairs [48], Steenbrink [491, and Wong [53].

First, we consider a major difference between network improvement

problems with user-optimized traffic flows and system-optimized traffic

flows. For a network with system-optimized flows, the addition of an

arc to the network can never increase the total traffic flow costs.

Since we can always adopt the flow pattern that was used before the

new arc was added, the traffic flow costs can never increase and will

usually decrease. For a network with user-optimized flows, the ad-

dition of an arc can actually lead to an increase in the total flow

assignment costs. Since Braess was the first one to recognize this

phenomenon, it is known as Braess' paradox [40].

We now describe an example of Braess' paradox based on a modified

form of an example reported by LeBlanc [29]. The figure below gives

a sketch of the directed network that we will discuss.

6 units

6 units

Network Example of Braess' Paradox
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Six units of flow must be routed from node 1 to node 4. We also have:

Traffic flow cost for arc (i, ) = xijfij(xij) where:

x.. = flow on arc (i, j)

f12(x) = 10 + .5(x)
4

f 13 (x) = 150 + .9(x)

f24(x) = 150 + .9(x)
4

f34(x)= 10 + .5(x)
4

f23(x) = 10.4 + (x)
4

path 1 = arcs (1,2) and (2,4)

path 2 = arcs (1,3) and (3,4)

path 3 = arcs (1,2), (2,3) and (3,4).

The first situation that we will analyze is when arc (2, 3) is

not present in the network. By symmetry, the user-optimized traffic

pattern is to send 3 units of flow via paths 1 and 2. The total flow

cost is 273.4. If we consider the network with arc (2, 3) added to it,

the user-optimized traffic pattern is to send 2 units of flow via paths

1, 2 and 3. The total flow cost is 302.4. With the addition of arc

(2, 3) to the network, the flow cost increases by about 11%.

It is not known how prevalent this counter-intuitive behavior is

in networks that have user-optimized flows. However, Murchland [40]

reports on a recent experience by Knodel, "Knodel remarks that the

example (of Braess) may seem contrived, but a recent experience in

Stuttgart shows that it can occur in reality. Major road investments

in the city centre, in the vicinity of the Schlossplatz, failed to

yield the benefits expected. They were only obtained when a cross

street, the lower part of Konigstrasse, was subsequently withdrawn

from traffic use."
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So Braess' paradox indicates that great care should be used in

evaluating proposed improvements to a network with user-optimized flows.

Now we discuss an underlying issue present in every network im-

provement problem. All network design problems-contain an implicit

traffic assignment problem that must be solved. This implicit problem

is the evaluation of a proposed network design. So- if the underlying

traffic flow problem cannot be solved efficiently then there is little

hope of solving the actual network improvement problem. This could ex-

plain why most researchers in the area of network design have concen-

trated on problems with system-optimized flow patterns. Until recent-

ly, only very small user-optimized traffic assignment problems could be

solved efficiently.

The recent advances in traffic assignment algorithms described in

the previous section should enlarge greatly the range of network improve-

ment problems that can be solved efficiently. In fact, several examples

of network improvement procedures which rely upon the availability of

sophisticated traffic assignment algorithms, have already appeared. We

will describe some of these recent efforts.

LeBlanc [29] deals with the first network improvement problem that

we will consider. The design problem has a discrete set of possible

improvements to an existing network. Flow patterns are assigned accord-

ing to a user-optimized flow policy. The arc flow costs are convex

functions of the total arc flow. LeBlanc utilizes a branch-and-bound

procedure to select the optimal set of improvements. A procedure re-

cently developed by LeBlanc, Morlok, and Pierskalla [32] is used to

evaluate proposed design solutions. Also lower bounds used to limit

the tree searching process are computed by the same procedure. LeBlanc
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tests his procedure by solving a sample problem on a network with 24

nodes, 76 arcs and 5 elements in the set of possible improvements.

Finding an optimal solution to the problem required about 2 1/4 minutes

of CDC 6400 computer time.

LeBlanc's work is one of the few efforts to deal with improvements

for a network that has user-optimized flows. Other efforts in this

area have been made by Ochoa and Silva [44] and by Barbier (whose work

is described in [48]). Although Barbier's work has also been used to

solve some moderate-sized problems (36 nodes, 80 arcs), the method is

a heuristic one, so the quality of the solutions obtained is unknown.

Dantzig et al. [15] consider a different type of network improve-

ment problem. For their problem the improvement variables are contin-

uous instead of discrete as was the case in LeBlanc's problem. There-

fore, the set of possible improvements has an infinite number of ele-

ments. Traffic flow is assigned according to a system-optimized policy.

Arc flow costs are piece-wise linear convex functions of the total arc

flow.

In order to solve their problem Dantzig et al. attach a Lagrange

multiplier to the budget constraint and then place this constraint in

the objective function. Then they use a decomposition technique that

was developed by Steenbrink [49]. Steenbrink's method involves decom-

posing the problem into a master problem and a series of subproblems.

Each subproblem concerns finding the optimal improvements for an arc

given the total flow through it. The master problem is a traffic assign-

ment problem which is solved using Frank-Wolfe decomposition. Steen-

brink's decomposition method is applied several times with different

values of the Lagrange multiplier in order to find a good solution which

also satisfies the budget constraint.
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Dantzig et al. tested this method on a network improvement problem

with 24 nodes and 76 arcs. Their procedure required 10.68 seconds of

IBM 370/168 computer time. The final solution was about 2.5% away

from the optimal solution. In contrast, they report that the same prob-

lem was solved by using a linear programming formulation of the problem.

The formulation contained 702 rows and 2868 variables. The simplex

method, implemented in the MPS/360 package, required 40.8 minutes of

IBM 370/168 computer time to obtain an optimal solution. So by utiliz-

ing a decomposition approach which requires a good traffic assignment

routine, Dantzig et al. were able to obtain a near optimal solution

in a fraction of the time it took a method which did not utilize a

special traffic assignment algorithm. Dantzig et al. also report com-

putational experience on a problem with 394 nodes and 1042 arcs. Their

method required 5.63 minutes of IBM 370/168 computer time.

In this section, we have described a general class of network im-

provement problems. A major difference between design problems with

system-optimized and user-optimized traffic patterns has been mentioned.

In addition, we indicate that recent advances in traffic assignment

methods have helped bring about new progress in network improvement

procedures. The further exploitation of these traffic assignment ad-

vances appears to be a good area for future research.

NETWORK MANAGEMENT

As an illustration of a network management problem we pose the

following very general problem situation. Imagine that a large organi-

zation with certain well-defined objectives must perform a number of

distribution or collection activities over a transportation network in

~~~~ l y _ _ _ _ 1 1~~~~~~~ 11_---~~~~11--_1· 1-rl- I__~~~_ ---
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order to satisfy various demands. There are a myriad of possibilities

depending upon the specific characteristics involved. Several possibili-

ties are listed below which lead to a host of related problems:

(i) depots (single depot or multiple depots);
(ii) demand locations (pre-specified locations,

random locations, or mixed);
(iii) demands (deterministic, stochastic, or mixed);
(iv) operations (pickup, delivery, or mixed);
(v) vehicle fleet (homogeneous or heterogeneous);

(vi) routing (over nodes, over arcs, or mixed).

Network management, in this example, entails the efficient utilization

of central depots and vehicle fleet in order to perform the desired

operations at demand locations, satisfy requirements, and maintain a

cost-effective routing policy.

In this section, we discuss a special case of the above problem

known as the vehicle routing problem (VRP). Vehicle routing problems,

sometimes referred to as truck-dispatching problems, are almost always

encountered by complex organizations in both the public and private sec-

tors, and reliable procedures for dealing with them are needed. Recent-

ly, higher vehicle costs due to increased oil prices and rising truck

drivers salaries have motivated management to study these issues more

carefully.

Due to the inherent complexity of the VRP, only small problems can

be solved for the optimal solution. For larger transportation networks,

we use heuristic algorithms which produce near-optimal solutions. We

will discuss several of the well-known heuristic approaches for the VRP

in this section. Recent implementation results (see Golden, Magnanti

and Nguyen [26] for details), demonstrate that large-scale problems can

be solved much more efficiently than previously. Hopefully, these com-

putational advances will result in the better management of complex

_· __ ____ I_ I_ ____ ______~~~~~~~~~_~_ 11-_ - ---
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logistics and transportation systems which will be more flexible and

less costly than existing ones. The surveys by Bodin [4], Christofides

[8], Golden [24], and Turner et al. [50] are recommended for more back-

ground regarding the VRP; here we provide an overview of vehicle rout-

ing with an emphasis on broad issues.

There may be several hundred demand points in and around a city.

The vehicle routing problem is to obtain a set of delivery routes from

a central depot to the various demand points, each of which has known

requirements, which minimizes the total distance. covered by the entire

fleet. Vehicles have capacities and maximum route time constraints.

In addition, the fleet of vehicles may be heterogeneous with respect

to these characteristics. All vehicles depart from the central depot,

make a tour of a subset of the demand nodes, and return to the central

depot. All demands must be satisfied. Examples of vehicle routing

problems include:

(i) municipal waste collection (see Beltrami
and Bodin [3]);

(ii) fuel oil delivery (see Garvin et al. [20]);
(iii) newspaper distribution (see Golden, Magnanti,

and Nguyen [26]);
(iv) routing of school buses (see Newton and

Thomas [41]).

Operationally the examples may seem different, but conceptually they

can be thought of as equivalent.

Proposed heuristic techniques for solving problems of this sort

can be grouped into four classes: "savings" procedures [10], "sweep"

procedures [22], "nearest-neighbor" procedures [51], and "r-optimal"

procedures [35]. We discuss each of these approaches in this section

but concentrate on the first two which seem to be more effective.
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Undoubtedly, the Clarke-Wright savings method, developed in 1964,

is the most widely used and cited vehicle routing algorithm. It in-

volves first evaluating all potential savings Sij = dlj + dj - dij

from linking two nodes i and j, and then joining those nodes with the

highest feasible savings at each iteration. Initially, we suppose that

every two demand points i and j are supplied individually from two

vehicles giving a total distance of 2dli + 2dlj. Now if instead of two

vehicles, we used only one, then we would experience a savings in travel

distance of (2dli + 2dlj) - (dli + dij + djl li + d lj - dij-

For every possible pair of demand points i and j there is a corre-

sponding savings S .. We order these savings from greatest to least

and starting from the top of the list we link nodes i and j where S..

represents the current maximum savings unless the problem constraints

are violated. Christofides and Eilon found from 10 small test problems

that tours produced from the savings method averaged only 3.2 percent

longer than the optimal tours [9].

In 1974, Gillett and Miller [22] proposed a sweep algorithm for

Euclidean networks which ranks and links demand points by their polar

coordinate angle. We select a "seed" node randomly. With the central

depot as the pivot, we start sweeping (clockwise or counterclockwise)

the ray from the central depot to the seed. Demand nodes are added to

a route as they are swept. If the polar coordinate indicating angle is

ordered for the demand points from smallest to largest (with seed's

angle O) we enlarge routes as we increase the angle until capacity

restricts us from enlarging a route by including an additional demand

node. This demand point becomes the seed for the following route.

Once we have partitioned the nodes, we can apply traveling salesman
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heuristics to improve tours and obtain significantly better results.

In addition, we can vary the seed and select the best solution.

Tyagi [51], in 1968, presented a method which groups demand points

into tours based on a nearest-neighbor concept. That is, points are

added to a tour sequentially, each new addition being the closest point

to the last point added to the tour. Having grouped the delivery points

into m tours, we solve m traveling salesman problems to refine the tours.

Eilon et al. [16] study an r-optimal procedure for the VRP which

is an outgrowth of Lin's approach to the traveling salesman problem

[35]. We remark that the traveling salesman problem is a special case

of the VRP which arises in many different contexts; typical applications

include computer wiring, clustering, and job-shop scheduling, in addi-

tion to vehicle routing [33]. The procedure presented by Eilon et al.

begins with a feasible solution and tests perturbations of r arcs at

a time until we obtain r-optimality. For example, if r = 2 we examine

each pair of arcs to see if it can be replaced by another pair such

that feasibility is preserved and total distance is decreased.

Vehicle routing algorithms have recently "come of age" in the

sense that they are now capable of solving some large-scale real-world

problems. A 250-location problem with about 10 locations per route was

solved on an IBM 360/67 in just under 10 minutes using the Gillett and

Miller algorithm [22]. More recently, Golden, Magnanti and Nguyen [26]

have incorporated some ideas from computer science into a modified

savings procedure. A newspaper distribution problem involving 600 nodes

was solved using this approach on an IBM 370/168 in 20 seconds of exe-

cution time. It should be noted that the sweep algorithm generally pro-

duces better solutions than the savings algorithm, (due to the fact

_ _1·(1111 l1 1III_ _�lllp·ll -·-·l�l-_--LI(----·^-_.-_�^ _11_�011_1_·-�^^�- ---- ___ _XI_
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that a number of seeds are considered) but running time is much

greater.

These heuristic algorithms, especially the savings method, have

been shown to perform very quickly. But how accurate are they? Remem-

ber that heuristic algorithms produce good solutions to given combina-

torial programming problems, but not necessarily the best possible

(optimal) solutions. We now construct a couple of pathological examples

to indicate that there are situations in which the savings and sweep

algorithms terminate with poor solutions.

Example I: The savings algorithm. Node 1 is the origin. At each of
the four demand nodes there is a demand of 1; vehicle
capacity is 2. The network is displayed below. The ratio
SAVE/OPT is approximately 1.25.

Svin c Tist-

S34 =2.01

S23 =2.00

S45= 2.00

S24 = 1.01

S35 = 1.01

S25 .01
25

Optimal Solution Clarke-Wright Solution
Total distance = OPT = 8 Total distance = SAVE - 10
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Example II: The sweep algorithm. Node 1 is the origin and node 5 is
the seed. At each of the four demand nodes there is
unit demand; vehicle capacity is 2. Suppose we sweep
in a counterclockwise direction in the network below.
The ratio SWEEP/OPT is 1.75.

1
3 -- 4

0 \ 10
1 1

Optimal Solution Gillett-Miller Solution
Total distance = OPT = 24 Total distance = SWEEP = 42

Despite the fact that poor performance can result from these ap-

proaches, in practice these extreme cases do not arise frequently. Re-

cently, several researchers have explored the possibility of combining

several of the four methods outlined into an even more effective hybrid

approach. For example, Robbins et al. [46] have assembled a tour con-

struction-tour improvement code in which tours are initially constructed

using a savings approach and then improved upon via an r-optimal proced-

ure.

The indication is that the suggested procedures can be used as

effective decision-making tools by management for large-scale vehicle

routing problems encountered in many practical situations.

FINAL COMMENTS

Large-scale network problems have-recently attracted a great deal

of attention. As a result, network-researchers have achieved substan-

)

)
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tial algorithmic advances which have direct applicability to transpor-

tation network problems. These new large-scale network techniques

have enlarged greatly the size. and scope of network analysis, network

design, and network management problems that can be dealt with effective-

ly. As these results become more widely recognized, the number of

successful applications to actual transportation system planning prob-

lems will undoubtedly increase.
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