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The treatment effects literature is about how some outcome of interest, such as earn-

ings, is affected by some treatment, such as a job training program. Evidently such

treatment effects must be related to structural models, where the outcome of interest is

the left hand side variable and the treatment is a right-hand side variable. Indeed, as

we will see, treatment effects can be thought of as coming from a linear structural model

with random coefficients. Treatment effect models do have a terminology and set up all

their own though, so to help understand the literature it is important to set them up the

way others do.

To do so, let i index individuals and Di denote a treatment indicator, equal to 1 if

a person is treated, and equal to 0 otherwise. For example, Di = 1 might correspond

to enrollment in some training program or to some medical treatment. To describe the

treatment effect, we need to define two other variables. Let Yi0 denote the potential

outcome that would occur when person i is not treated (Di = 0) and Yi1 the potential

outcome when they are treated (Di = 1). Clearly these are not both observed. One

of them will be ”counterfactual”, an outcome that would have occurred if a different

treatment had been given. The observed outcome will be

Yi = DiYi1 + (1−Di)Yi0.

The treatment effect for individual i is given by

βi = Yi1 − Yi0.

This object is clearly not identified, because only one of the potential outcomes is ob-

served. There are several objects that may be interesting that are identified under certain

conditions. One of these is the average treatment effect, given by

ATE
def
= E[βi].

This describes the average over the entire population of the individual treatment effects.

Another interesting object is the average effect of treatment on the treated, given by

ATT
def
= E[βi|Di = 1].



This gives the average over the subpopulation of treated people of the treatment effect. A

third important object that is also of interest in the literature is called the local average

treatment effect. It will be described below.

To help understand the treatment framework and the various effects, it helps to relate

this to a regression model with random coefficients. By the equation for Yi given above,

Yi = Yi0 + (Yi1 − Yi0)Di = αi + βiDi,

αi = Yi0, βi = Yi1 − Yi0.

Thus we see that Yi follows a linear model where the treatment effect βi is the coefficient

of Di and the constant αi and slope βi may vary over individuals. The ATE is then the

average of the slope over the entire population and the ATT is the average of the slope

over the subset of the population where Di = 1.

This random coefficient set up also helps place the treatment effects environment

in a proper historical context. The coefficient βi = Yi1 − Yi0 is sometimes called a

”counterfactual” because it describes how Yi would have been different if Di had been

different. In the context of demand and supply systems we are familiar with such objects

as ”movements along a curve.” This kind of object was considered in economics as early

as Wright (1928), who gives a nice explanation of ”movements along a curve” in a supply

and demand setting. Similarly, the average treatment effect is just the expected value of

the random coefficient in a linear model, i.e. the average slope of the curve.

The ATE and ATT will be identified and can be estimated under various assumption.

Here we will discuss various cases in which these objects are identified. The proofs of iden-

tification will consist of showing how the objects can be written in terms of expectations

of the data.

We begin with the simplest case.

Constant Treatment Effects

A simple special case of this model is constant treatment effects where βi = β̄, i.e.

where the treatment effect is constant across individuals. Here the ATE and ATT is

simply β̄. In this case, for ᾱ = E[αi] and εi = αi − ᾱ,

Yi = ᾱ+ β̄Di + εi.

Here the model reduces to a simple linear model with an additive disturbance and con-

stant coefficients. In contrast, the general model is also a linear model with additive

disturbance but random slope coefficient. Note here the equivalence between having a

random αi and having a constant plus disturbance αi = ᾱ+ εi.



We can identify and estimate β̄ and ᾱ in the usual way if we have an instrument Zi

that is uncorrelated with εi and correlated with Di, that is

0 = Cov(Zi, εi) = Cov(Zi, αi) = Cov(Zi, Yi0),

Cov(Zi, Di) 6= 0.

In this case the coefficient is identified from the usual IV equation

β̄ = Cov(Zi, Yi)/Cov(Zi,Di).

This coefficient can be estimated in the usual way by replacing population covariances

by sample covariances. In summary, there is not much new here, except terminology of

putting standard model with dummy endogenous variable in a treatment effects frame-

work, as ”constant treatment effect.”

Constant treatment effects is too strong for many settings. It would say that effect of

training on earnings or of smaller class size on education is the same for every individual.

This seems unlikely to hold in practice. Instead we would like to allow βi to vary over

individuals.

Random Assignment

Random assignment means that whether or not a person is treated does not depend

on their outcomes. The specific statistical assumption that we make is that

E[Yi0|Di] = E[Yi0],

i.e. that the mean of the nontreated variable does not depend on treatment status.

Equivalently we can say that E[αi|Di] = E[αi]. This is slightly more general than inde-

pendence, because it allows the higher-order moments of Yi0 to depend on Di. However,

it seems difficult to think of environments where the mean assumption would be true

without full independence.

To see what happens under this assumption note first that

E[βi|Di]Di =

(
0, Di = 0,

E[βi|Di = 1], Di = 1
= E[βi|Di = 1]Di.

Then under the mean independence assumption,

E[Yi|Di] = E[αi + βiDi|Di] = E[αi] +E[βi|Di]Di

= E[αi] +E[βi|Di = 1]Di.



Here the dummy variable regression of Yi on a constant Di has its slope coefficient the

ATT. If in addition we assume that the mean of Yi1 does not depend on Di, i.e. if we

assume that

E[Yi1|Di] = E[Yi1],

Then we find that ATE = ATT , since

E[βi|Di = 1] = E[Yi1|Di = 1]−E[Yi0|Di = 1]

= E[Yi1]−E[Yi0] = E[βi].

Summarizing, we find that when Yi0 is mean independent of Di that the ATT is

identified as the dummy coefficient in a regression of the outcome variable Yi on a con-

stant and the treatment dummy variable. We also find that if, in addition, Yi1 is mean

independent of Di then the ATE is also this coefficient. Of course, this coefficient can be

estimated by a linear regression of Yi on (1, Di). Further, as always, that linear regression

coefficient is just the difference of means of Yi for the treated and untreated observations.

Discussion

Random assignment is too strong for many applications. Often individuals can choose

whether to accept the treatment or not, e.g. by dropping out of the sample if they don’t

like the treatment conditions. They can opt out of training programs, or not take medical

treatment. If these decisions are related to (αi, βi) then we do not have independence of

(αi, βi) and Di. In terms of the linear model Yi = αi+βiDi we have possible endogeneity,

where Di may be correlated with the random coefficients αi and βi. This is a more severe

problem than the usual case because the slope βi also may be correlated with Di.

There are two approaches to this problem. One (familiar) one is instrumental variables

(IV). The second approach is called ”selection on observables.” In that approach con-

ditioning on some observable variables removes the correlation between Di and (αi, βi).

Because IV is a most familiar and common approach we will first consider IV.

IV Identification of Treatment Effects

In the usual linear model, of which the constant treatment effects is a special case,

the assumptions that are needed for the identification of the slope is that the instrument

is uncorrelated with the disturbance and correlated with Di. Similar conditions will be

used for IV identification of treatment effects. Let Zi be an instrument. We will assume

throughout that

E[αi|Zi] = E[Yi0|Zi] = E[Yi0] = E[αi], .

i.e. that the outcome without treatment is mean independent of the instrument.



We also will focus on the case where Zi is also a dummy variable, i.e. where Zi ∈
{0, 1}, with P = Pr(Zi = 1) and 0 < P < 1. (Question: Why do we assume 0 < P < 1

?). For a dummy instrument there is a useful formula for the covariance between the

instrument and any other random variable Wi. Specifically, we have

Cov(Wi, Zi) = E[WiZi]−E[Wi]E[Zi] = (
E[WiZi]

P
−E[Wi])P

= (E[Wi|Zi = 1]−E[Wi])P

= {E[Wi|Zi = 1]− (PE[Wi|Zi = 1] + (1− P )E[Wi|Zi = 0])}P
= (E[Wi|Zi = 1]−E[Wi|Zi = 0])P (1− P ).

That is, the covariance between Wi and Zi is the difference of the conditional mean at

the two values of Z times P (1− P ).

This formula has two useful implications. The first is that mean independence of Yi0

from Zi is equivalent to Yi0 being uncorrelated with Zi. This occurs since Cov(Zi, Yi0) = 0

if and only if E[Wi|Zi = 1] = E[Wi|Zi = 0]. A second useful implication is a formula for

the limit of the IV estimator of the slope, given by

Cov(Zi, Yi)

Cov(Zi,Di)
=

E[Yi|Zi = 1]−E[Yi|Zi = 0]

E[Di|Zi = 1]−E[Di|Zi = 0]

This is often referred to the Wald IV formula, referring to work where Wald suggested

using dummy variables as an IV solution to the measurement error problem.

In general, under mean independence of αi from Zi, it does not seem like the IV

formula identifies the ATT, the ATE, or anything useful. Plugging in Yi = αi + βiDi,

and using mean independence of αi we find

Cov(Zi, Yi)

Cov(Zi, Di)
=

E[αi|Zi = 1]−E[αi|Zi = 0] +E[βiDi|Zi = 1]−E[βiDi|Zi = 0]

E[Di|Zi = 1]−E[Di|Zi = 0]

=
E[βiDi|Zi = 1]−E[βiDi|Zi = 0]

E[Di|Zi = 1]−E[Di|Zi = 0]
.

In general, the problem is that βi and Di are correlated, so that (apparently) it is not

possible separate them out in general. There are two interesting, specific cases though

where something important is identified. They are random intention to treat and local

average treatment effects.

Random Intention to Treat

A common occurrence in medical trials is that people are randomly assigned to treat-

ment but that not all take the treatment. Here Zi represents the assignment to treatment,



with Zi = 1 is individual i is assigned to be treated and Zi = 0 if they are not. In this

setting, the only ones who are treated (i.e. for which Di = 1) will be those who were

randomly assigned to treated. It turns out that in this case IV gives the ATT. This

finding, due to Imbens and Rubin, has led to the widespread use of IV in biostatistics.

To show that IV gives the ATT, note that Zi = 0 will not be treated, i.e. Di = 0

when Zi = 0. Then

Cov(Zi, Yi)

Cov(Zi, Di)
=

E[βiDi|Zi = 1]− 0
E[Di|Zi = 1]− 0

=
E[βiDi|Zi = 1]

E[Di|Zi = 1]
.

Also, note that Di = 1 implies Zi = 1, so that {Di = 1} ⊂ {Zi = 1}. Therefore,
E[βi|Di = 1, Zi = 1] = E[βi|Di = 1] = ATT . Also, it follows similarly to the reasoning

above that

DiE[βi|Di, Zi = 1] = DiE[βi|Di = 1, Zi = 1] = Di ·ATT.

By iterated expectations it follows that

E[βiDi|Zi = 1] = E[DiE[βi|Di, Zi = 1]|Zi = 1] = ATT ·E[Di|Zi = 1].

Then dividing gives

Cov(Zi, Yi)

Cov(Zi,Di)
=

E[βiDi|Zi = 1]

E[Di|Zi = 1]
=

ATT · E[Di|Zi = 1]

E[Di|Zi = 1]
= ATT.

The Local Average Treatment Effect

A second case where an interesting treatment effect is identified by IV involves inde-

pendence and monotonicity conditions. Consider the following conditions:

Independence: Di = Π(Zi, Vi) and (βi, Vi) is independent of Zi;

Monotonicity: Π(1, Vi) ≥ Π(0, Vi) and Pr (Π(1, Vi) > Π(0, Vi)) > 0.

The independence condition says that there is a reduced form Π(z, v) with a distur-

bance Vi that may be a vector and enters nonlinearly. An example is a threshold crossing

model where Di = 1(Zi + Vi > 0). The monotonicity condition changing the instrument

only moves the treatment one direction. This condition is satisfied in a threshold crossing

model. The reduced form is sometimes called the selection equation, with a person being

selected into treatment when Π(z, v) = 1.



Under these conditions it turns out that IV identifies an average of βi over a subpop-

ulation that is referred to as the Local Average Treatment Effect (LATE). This effect is

defined as

LATE = E[βi|Π(1, Vi) > Π(0, Vi)].

This object is the average of the treatment effect over the individuals whose behavior

would be different if the instrument were changed. This object may often be a parameter

of interest. For example, in a model where Yi is the log of earnings, Di is completing high

school, and Zi is a quarter of birth dummy, LATE is the average effect of a high school

education over all those dropouts who would have remained in school had their quarter

of birth been different and for those who remained in school but would have dropped

out if their quarter of birth were different. Thus, IV estimates the average returns to

completing high school for potential dropouts. This is an interesting parameter, although

it is not the returns to schooling over the whole population.

To show that IV give LATE under independence and monotonicity, let Ti = Π(1, Vi)−
Π(0, Vi). Then we have

E[βiDi|Zi = 1]−E[βiDi|Zi = 0]

= E[βiΠ(1, Vi)|Zi = 1]−E[βiΠ(0, Vi)|Zi = 0]

= E[βiΠ(1, Vi)]− E[βiΠ(0, Vi)] = E[βiTi].

It follows similarly that

E[Di|Zi = 1]−E[Di|Zi = 0] = E[Ti].

By monotonicity, Ti is a dummy variable, taking the value zero or one. Therefore we

have
cov(Zi, Yi)

cov(Zi,Di)
=

E[βiTi]

E[Ti]
= E[βi|Ti = 1] = E[βi|Π(1, Vi) > Π(0, Vi)].

LATE Empirical Example

An empirical example is provided by the Angrist and Krueger (1991) study of the

returns to schooling using quarter of birth as an instrument. We consider data drawn

from the 1980 U. S. Census for males born in 1930-1939, as in Donald and Newey (2001,

”Choosing the Number of Instruments,” Econometrica). The 2SLS estimator with 3

instruments is .1077 with standard error .0195 and the FULL estimator with 180 instru-

ments is .1063 with standard error .0143 (corrected for many instruments). Thus we find

returns to schooling of ”potential dropouts” is about 11 percent.

Selection on Observables



The other kind of model that has been used to identify treatment effects is one where

conditioning on observable (or identifiable) variables Xi makes the treatment behave as

if it were randomly assigned. This is like removing endogeneity in a linear equation by

adding regressors. The conditioning variables are like omitted regressors, which remove

the endogeneity when they are included. The specific assumption that is made is

E[Yi0|Xi,Di] = E[Yi0|Xi].

In word, it is assumed that Yi0 is mean independent of Di conditional on Xi. This

assumption is analogous to the previous one that E[Yi0|Di] = E[Yi0], being a conditional

version of that hypothesis.

One concern with this kind of assumption is the source for the variables Xi. There are

some economic models where such variables are implied by the model. However in many

cases in applications these variables Xi are chosen without reference to a model. In those

cases identification is fragile, requiring specifying just the right Xi. Conditional mean

independence that holds for Xi need not hold for a subset of Xi nor when additional

variables are added to Xi.

This assumption allows identification of the ATT, with one additional condition. Let

X denote the support of Xi (the smallest closed set having probability one), and X0 and
X1 the support of Xi conditional on Di = 0 and Di = 1 respectively. The additional

condition is the common support condition that

X = X0 = X1.

This assumption is necessary and sufficient for E[Yi|Xi,Di = 1] and E[Yi|Xi, Di = 0] to

be well defined for all Xi. It is verifiable and may or may not be satisfied in practice.

The common support condition and conditional mean independence give

E[Yi|Xi, Di = 1]−E[Yi|Xi,Di = 0] = E[αi|Xi,Di = 1]−E[αi|Xi, Di = 0] +E[βi|Xi,Di = 1]

= E[βi|Xi, Di = 1].

The object E[βi|Xi,Di = 1] is a conditional version of the ATT. By iterated expectations

the ATT is then identified as the expectation over Xi of this difference given Di = 1,

that is

ATT = E[βi|Di = 1] = E[{E[Yi|Xi,Di = 1]−E[Yi|Xi,Di = 0]}|Di = 1].

The ATE can also be obtained if we assume that Yi1 is conditional mean independent of

Di conditional on Xi. In that case

E[βi|Xi,Di = 1] = E[Yi1|Xi, Di = 1]−E[Yi0|Xi,Di = 1]

= E[Yi1|Xi, ]−E[Yi0|Xi] = E[βi|Xi].



Therefore

ATE = E[βi] = E[{E[Yi|Xi, Di = 1]− E[Yi|Xi, Di = 0]}]

Unlike the unconditional case the ATE is a different function of the data distribution

than the ATT. The ATE is obtained by averaging E[Yi|Xi, Di = 1] − E[Yi|Xi, Di = 0]

over all Xi while the ATT is obtained by averaging over just Di = 1.

Estimating the ATT and ATE under these conditional restrictions is a challenge.

Notice that they depend on conditional expectations. Usually we will not want to assume

that these conditional expectations have any particular functional form. Consequently,

we will want to use nonparametric regression estimators, which will be discussed later in

the course.

Nonparametric estimation is difficult when the dimension of Xi is large. This is

often referred to as the ”curse of dimensionality.” Some have tried to reduce the curse

of dimensionality using the “propensity score” P (X), which is defined as the conditional

probability of being treated (or ”selected”) given X, i.e.

P (Xi) = Pr(Di = 1|Xi) = E[Di|Xi].

It turns out that the conditional mean independence of Yi0 given Xi implies conditional

mean independence given P (Xi). Thus, if P (Xi) were known, it would be possible to

identify and estimate the ATE and ATT using a one dimensional conditioning variable

rather than a multidimensional variable Xi. Specifically, if E[Yi0|Xi,Di] = E[Yi0|Xi] and

0 < P (Xi) < 1 with probability one then E[Yi0|P (Xi),Di] = E[Yi0|P (Xi)], so that

reasoning like that above gives

ATT = E[{E[Yi|P (Xi), Di = 1]− E[Yi|P (Xi),Di = 0]}|Di = 1].

If, in addition, E[Yi0|Xi,Di] = E[Yi0|Xi] then

ATE = E[{E[Yi|P (Xi), Di = 1]−E[Yi|P (Xi),Di = 0]}].

Thus, ATE and ATT are expectations of nonparametric functions of two variables, P (Xi),

and Di.

If P (Xi) is completely unknown and unrestricted there is no known advantage for

conditioning on the propensity score, since P (Xi) is also a function of a high-dimensional

argument. Thus, it appears that any advantage for using the propensity score will depend

on knowing more about P (X) than about E[Yi|Xi,Di].

It remains to prove that independence conditional on X implies independence condi-

tional on P (Xi). For notational simplicity let Pi = P (Xi). We will prove the result for

a general variable Wi. The general result will then apply to both Yi0 and Yi1. To prove



that E[Wi|Xi,Di] = E[Wi|Xi] implies E[Wi|Pi,Di] = E[Wi|Pi], note that by iterated

expectations, E[Di|Pi] = E[E[Di|Xi]|Pi] = Pi. By iterated expectations again,

E[Wi|Pi,Di = 1] = E[E[Wi|Xi, Di = 1]|Pi,Di = 1] = E[E[Wi|Xi]|Pi,Di = 1]

=
E[DiE[Wi|Xi]|Pi]

E[Di|Pi]
=

E[PiE[Wi|Xi]|Pi]

Pi

= E[E[Wi|Xi]|Pi] = E[Wi|Pi].

By similar reasoning we also have E[Wi|Pi, Di = 0] = E[Wi|Pi], so the conclusion follows

by the previous equation.

Regression Discontinuity Design
There are two cases here, one where the treatment variable jumps discontinuously,

and one where the treatment probability is discontinuous. Consider the discontinuous

treatment variable first.

We suppose thatDi = 1(Xi ≥ c). In this caseE[Yi0|Di,Xi] = E[Yi0|Xi] andE[Yi1|Di,Xi] =

E[Yi1|Xi] hold by construction. The common support assumption is not satisfied. Indeed,

in this case X0 and X1 are disjoint.
We take a different approach to identification here, and instead rely on a continuity

condition for E[Yi0|Xi = x] and E[Yi1|Xi = x].

Assumption: E[Yi0|Xi = x] and E[Yi1|Xi = x] are continuous in x at c.

Note that for Yi = Yi0 for Xi < c and Yi = Yi1 for Xi ≥ c. Then

E[Yi0|Xi = c] = lim
x↑c

E[Yi0|Xi = x] = lim
x↑c

E[Yi|Xi = x],

E[Yi1|Xi = c] = lim
x↓c

E[Yi1|Xi = x] = lim
x↓c

E[Yi|Xi = x].

It follows that

E[βi|Xi = c] = E[Yi1 − Yi0|Xi = c] = lim
x↓c

E[Yi|Xi = c]− lim
x↑c

E[Yi|Xi = c].

Thus, the conditional treatment effect E[Yi1 − Yi0|Xi = c] is identified as the jump in

E[Yi|Xi = x] at x = c.

We can also interpret this differently. Similarly to above,

E[βi|Xi = c] = E[Yi|Di = 1,Xi = c]−E[Yi|Di = 0,Xi = c].

Note that both of E[Yi|Di = 1,Xi = c] and E[Yi|Di = 0,Xi = c] are nonparametric

regression functions evaluated at the boundary of their support, the first at the lower

boundary and the second at the upper. So regular kernel regression is not good. Can do

locally linear regression.


