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Meson widths from string worldsheet instantons

Thomas Faulkner and Hong Liu
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

We show that open strings living on a D-brane which lies outside an AdS black hole can tunnel
into the black hole through worldsheet instantons. These instantons have a simple interpretation
in terms of thermal quarks in the dual Yang-Mills (YM) theory. As an application we calculate the
width of a meson in a strongly coupled quark-gluon plasma which is described holographically as a
massless mode on a D7 brane in AdS5×S5. While the width of the meson is zero to all orders in the
1/
√

λ expansion with λ the ’t Hooft coupling, it receives non-perturbative contributions in 1/
√

λ
from worldsheet instantons. We find that the width increases quadratically with momentum at large
momentum and comment on potential phenomenological implications of this enhancement for heavy
ion collisions. We also comment on how this non-perturbative effect has important consequences
for the phase structure of the YM theory obtained in the classical gravity limit.

A heavy quarkonium bound state, like J/ψ or Υ, which
finds itself in the quark-gluon plasma (QGP), becomes
increasingly unstable and eventually dissociates at suffi-
ciently high temperatures. On the one hand this can be
attributed to the weakening attraction between a heavy
quark and anti-quark in the bound state due to color
screening of the medium [1]. On the other hand the
bound state can be broken up from collisions with the
deconfined quarks and gluons in the medium [2]. Given
that the QGP at RHIC and LHC is likely strongly cou-
pled, understanding such medium effects on the propa-
gation and dissociation of heavy quarkonia presents non-
trivial theoretical challenges which must be confronted
in order to interpret experimental data on quarkonium
suppression.

Interesting insights have recently been made into this
problem from strongly coupled model gauge theories
using the AdS/CFT correspondence. AdS/CFT-based
methods are powerful at attacking questions of dynami-
cal origin, such as how the motion of quarkonia relative
to the medium affects their various properties. The sim-
plest example of the correspondence is provided by the
duality between N = 4 SU(Nc) super Yang-Mills (SYM)
theory and string theory in AdS5×S5 [3]. Based on a cal-
culation of the potential between a pair of heavy external
quark and antiquark moving in the strongly coupled hot
N = 4 plasma, it has been argued in [4] (see also [5]) that
the dissociation temperature Tdiss of a heavy quarkonium
decreases with their velocity v relative to the medium as
Tdiss(v) ≈ (1− v2)

1
4 Tdiss(v = 0). Such a velocity scaling,

which can be heuristically understood as due to increased
screening from the boosted medium, could provide a sig-
nificant additional source of quarkonium suppression at
nonzero transverse momentum in heavy ion collisions [4].

Rather than drawing inferences from the heavy quark
potential, it is also possible to directly study the prop-
agation of mesons in a strongly coupled plasma. While
N = 4 SYM theory itself does not contain dynamical
mesons, one can obtain a closely related theory which
does contain mesons by adding to it Nf ¿ Nc funda-
mental “quarks”, which corresponds to adding some D7-

branes to AdS5 × S5 in the gravity picture [6]. It was
found in [7, 8] that meson dispersion relations are dra-
matically modified by the plasma and in particular, there
exists a limiting velocity vc(T ) < 1, which decreases with
increasing temperature. The existence of a subluminal
limiting velocity is consistent with the velocity-enhanced
screening obtained from the heavy quark potential, as
when v > vc(T ) the quark and anti-quark are completely
screened and no bound states are possible.

For a more complete understanding of the dissocia-
tion of mesons one needs to study their widths. We
will be particularly interested in the momentum depen-
dence of the widths. This has not been possible within
the classical gravity approximation developed so far. In
this approximation, the mesons are stable (i.e. they have
zero width) for T smaller than a dissociation temperature
Tdiss, but completely disappear for T > Tdiss [7, 9, 10].
The approximation also has another important draw-
back: the densities of quarks and antiquarks are iden-
tically zero for a range of temperatures and chemical po-
tentials [11] even though they should obey the standard
thermal distribution.

In this paper, we discuss a novel tunneling effect on
the string worldsheet which gives rise to nonzero quark
densities and meson widths for T < Tdiss. This enables
us to calculate explicitly the momentum dependence of
the width of a meson in a strongly coupled QGP. We find
that the width increases quadratically with momentum
at large momentum.

At finite temperature, N = 4 SYM theory can be de-
scribed by a string theory in the spacetime of a black
hole in AdS5 × S5, whose metric can be written as

ds2 = −fdt2 +
1
f

dr2 +
r2

R2
d~x2 + R2dΩ2

5 (1)

where f = r2

R2

(
1− r4

0
r4

)
, ~x = (x1, x2, x3). dΩ2

5 is the met-
ric on a unit five-sphere S5 which can be written as

dΩ2
5 = dθ2 + sin2 θdΩ2

3 + cos2 θdφ2, θ ∈
[
0,

π

2

]
(2)



2

with dΩ2
3 the metric for a three-sphere S3. The string

coupling gs is related to the Yang-Mills coupling gY M by
gs = 4πg2

Y M and the curvature radius R is related to the
’t Hooft coupling λ = g2

Y MNc by R2

α′ =
√

λ. The per-
turbative gs and α′ expansions in the bulk string theory
are related to the 1/Nc and 1√

λ
expansions in the Yang-

Mills theory respectively. The temperature T of the YM
theory is given by the Hawking temperature of the black
hole, T = r0

πR2 . Adding Nf fundamental “quarks” can
be described in the dual string theory by adding Nf D7-
branes in (1) [6]. A fundamental “quark” in the YM
theory can be described by an open string with one end
on the D7-branes and the other end on the black hole.
Open strings with both ends on the D7-branes can be
considered as “bound states” of a quark and antiquark,
thus describing meson-type excitations in the YM theory.
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FIG. 1: An embedding of the D7 brane (green) in the
AdS5 × S5 black hole geometry for T < Tdiss which lies en-
tirely outside the black hole. Inset: the Euclidean r− τ plane
at θ = 0 showing a world-sheet instanton (red) connecting the
tip of D7 brane r = rm to the horizon at the center of the
disk r = r0.

We now briefly outline the standard procedure for ob-
taining the meson spectrum [9]. We will take Nf = 1,
Nc → ∞, and λ large but finite throughout the paper.
The D7-brane can be chosen to lie along the directions
ξα = (t, ~x,Ω3, θ) and using the symmetries of the prob-
lem the embedding in the two remaining transverse di-
rections can be taken as φ(ξα) = 0 and r(ξα) = r(θ).
At the lowest order in the α′ expansion, r(θ) can be
determined by extremizing the Dirac-Born-Infeld (DBI)
action of the D7-brane with the boundary condition
r(θ) cos θ|θ→π

2
→ L, where L is related to the mass mq

of a quark in the Yang-Mills theory as mq = L
2πα′ . For

T smaller than some Tdiss, r(θ) has the form shown in
Fig. 1. The brane is closest to the black hole at θ = 0,
where there lies a 4-dimensional subspace spanned by
(t, ~x) since here the S3 in (2) shrinks to a point. De-
noting rm ≡ r(θ = 0) > r0, the shortest open string
connecting the D7-brane to the horizon has a mass in
the YM theory

m(T )
q =

rm − r0

2πα′
=
√

λT
Λm − 1

2
, Λm =

rm

r0
(3)

Note that Λm is a dimensionless number of O(λ0) deter-
mined by the ratio L/r0, and m

(T )
q can be interpreted as

the effective mass of a quark at temperature T .
The mesons corresponding to massless fluctuations on

the D7-brane can be found by solving the linearized equa-
tions resulting from expanding the DBI action around
the embedding. For example, the quadratic action for
the fluctuation χφ(ξα) of the location of D7-brane in the
φ direction can be written as

SDBI [χφ] = −µ7

2

∫
d8ξ

√−g Gφφ gαβ∂αχφ∂βχφ (4)

where µ7 = 1
(2π)7gsα′4

is the tension of the D7-brane,

Gφφ = R2 cos2 θ, and gαβ denotes the induced metric on
the D7-brane. Writing χφ = e−iωt+i~k·~xYl(Ω3)ψ(θ), the
equation of motion for ψ can be written as

Ĥ(~k, l)ψ(θ) = ω2ψ(θ) (5)

where Ĥ(~k, l) is a second order differential operator in
θ and Yl are spherical harmonics on the S3. For a given
~k, l, Ĥ(~k, l) has only discrete eigenvalues ω2

n labeled by an
integer n, giving rise to dispersion relations ω = ωn(~k, l),
all of which have zero width. In particular, the meson
masses are of order M = 2

√
2L

R2 = 4
√

2πmq√
λ

. Since M is

parametrically smaller than mq in
√

λ, the mesons have
a large binding energy, given by 2m

(T )
q . There exists a

temperature Tdiss = 0.122M , beyond which the D7 brane
falls into the black hole and mesons cease to exist as well-
defined quasi-particles [7, 10].

We stress that the zero-width conclusion only depends
on the topology of the embedding in Fig. 1. Since mesons
can only dissociate by falling into the black hole, when
the D7-brane lies above the black hole horizon the mesons
are necessarily stable. Given that the brane embed-
ding and the background geometry are smooth, includ-
ing higher order perturbative corrections in α′ should not
change the topology of the brane embedding if the dis-
tance between the brane and the horizon is parametri-
cally larger than the string scale. This implies that the
widths of mesons should remain zero to all orders in the
perturbative 1√

λ
expansion.

One can also turn on a quark chemical potential µ <

m
(T )
q in the boundary theory by setting At = µ, where

At is the time component of the gauge field on the D7-
brane [11, 12]. Since the DBI action and its higher or-
der α′ corrections contain only derivatives of At, the D7-
embedding and the meson spectrum are not modified by
turning on the constant mode of At. Thus, the meson
widths and the net quark density remain zero to all or-
ders in the α′ expansion even at a finite chemical poten-
tial [18].

The above conclusions can be further illuminated by
simple thermodynamic reasoning. From (3), βm

(T )
q ∝
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√
λ, the quark (or anti-quark) density, being proportional

to e−βm(T )
q ±βµ, is then exponentially suppressed in

√
λ

for µ < m
(T )
q . Similarly, since the binding energy EBE of

a meson is 2m
(T )
q , thermal effects which destabilize the

mesons are also exponentially suppressed in
√

λ. Thus
the meson widths and quark densities are not visible in
the perturbative expansion in 1/

√
λ and can only have

non-perturbative origins on the worldsheet.
There are indeed non-perturbative corrections in α′

which effectively change the topology of the D7-brane
embedding and generate non-vanishing meson widths
and quark densities. To see this it is more convenient
to analytically continue (1) to Euclidean signature with
t → −iτ . Then the r − τ plane has the topology of a
disk. The angular direction τ has a period given by the
inverse temperature β. The center of the disk is located
at r = r0. Open strings on the D7-brane are described
by worldsheets with the topology of a disk whose bound-
ary lies on the D7-brane. Denoting the worldsheet co-
ordinates as ρ ∈ [0, 1] and σ ∈ [0, 2π), the worldsheets
separate into different topological sectors corresponding
to the winding number m of the target space disk (r, τ)
wrapping around the worldsheet disk (ρ, σ). The DBI
action arises from the sector of trivial winding number
m = 0, in which (ρ, σ) is mapped to a single point on
the D7-brane. In all the other (nontrivial) sectors, the
string worldsheet is mapped to the region in the r − τ
plane from the location of the D7-brane all the way to
the horizon r = r0 (see inset of Fig. 1). When analyti-
cally continued back to the Lorentzian signature, such a
worldsheet describes a tunneling process in which a tiny
neck is generated between the D7-brane and the black
hole horizon. As a result mesons can leak through the
tiny neck into the black hole and dissociate.

As an illustration, we now calculate the contributions
from m = ±1 sectors to the quark density and the widths
of mesons in (4). We will only be interested in the lowest
order term in the α′ expansion. The relevant spacetime
effective action for the D7-brane can be obtained from
the worldsheet path integral [15]

SE [χφ] =
∫

disk

DX e−I[X]+
∮

ρ=1 dσ µ dτ
dσ−IB [χφ] (6)

where X = (ξα, r, φ) denotes collectively the worldsheet
fields. I[X] is the worldsheet action, which for our pur-
pose can be taken to be the Nambu-Goto action for a
string propagating in (1)

I[X] =
1

2πα′

∫
dσdρ

√
dethab (7)

with hab = GMN∂aXM∂bX
N the induced metric on the

worldsheet and GMN the Euclidean version of the metric
(1). The second term in the exponential of (6) corre-
sponds to turning on Aτ = −iµ which gives in the Eu-
clidean theory a nonzero (quark) chemical potential µ in

the boundary YM theory. IB [χφ] =
∮

ρ=1
dσ R2

2πα′χ
φ∂ρφ

is the boundary action which couples the worldsheet to
χφ(ξα). We have suppressed any dependence on space-
time and world sheet fermions. The integral (6) can
be evaluated using the saddle point approximation in
each topological sector [16], i.e. SE = Sm=0 + Sm=+1 +
Sm=−1 + · · · with Sm=0 = SDBI .

For m = ±1, (7) has a classical solution given by

τ = ± β

2π
σ, r = r̂(ρ), θ = 0, φ = 0, ~x = ~x0 (8)

where ~x0 is an arbitrary constant position vector and
r̂(ρ) is chosen so that r̂(1) = rm and fdτ2 + 1

f dr̂2 ∝
dρ2+ρ2dσ2. Eq. (8) represents the worldsheet of a string
connecting the tip of the brane to the horizon with the
± sign corresponding to opposite orientations. It has a
classical action I± = βm

(T )
q where m

(T )
q is the effective

quark mass introduced in (3). One can readily verify that
(8) minimizes the action and satisfies the right boundary
conditions at the D7-brane. Note that there are only
three bosonic zero modes in (8) [19], since it costs energy
to move away from θ = 0 and the worldsheet time σ now
coincides with τ . With χφ set to zero, Eq. (6) then yields

Sm=±1 = e−βm(T )
q e±µβ 1

gs
DV3 (9)

where the e±µβ arises from the second term in the ex-
ponential of (6), V3 is the spatial volume from integrat-
ing over the three zero modes in (8), and the 1

gs
fac-

tor arises because we are evaluating the disk path inte-
gral. D is a real number coming from Gaussian integra-
tion around the saddle point (8) (including worldsheet
fermions) whose sign we will fix from physical require-
ments. Identifying the Euclidean action with βF (β, µ)
where F (β, µ) is the free energy, equation (9) leads to a
net quark charge density − 2D

gs
e−βm(T )

q sinhβµ, which in
turn requires that D should be negative [20]. It is natural
to interpret Sm=±1 as the contributions from quarks and
anti-quarks separately: Sm=±1 = −n±V3, which from (9)
leads to a quark and antiquark number density given by
n± = e−βm(T )

q e±µβ 1
gs

(−D). Note that n± ∝ 1/gs ∝ Nc

since quarks come in an Nc-multiplet.
In our derivation of (9) we have assumed the embed-

ding of the D7-brane is given by that determined by the
DBI action. This is justified for µ < m

(T )
q since the cor-

rection to the DBI action is exponentially small. When
µ ≥ m

(T )
q , the backreactions from instantons become

large and the embedding of Fig. 1 cannot be trusted.
The nonzero quark densities for nonzero µ < m

(T )
q have

important implications for the phase structure of the the-
ory. As discussed in [11] (see also [12]) based on the anal-
ysis of the DBI action (which corresponds to λ = ∞), at
low temperature there is a phase transition in chemical
potential at which the net quark charge density becomes
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nonzero. Our results strongly indicate this phase transi-
tion (at nonzero temperature) is smoothed to a crossover
at any finite value of λ.

To find the widths of the mesons described by (4),
we need to compute (6) to quadratic order in χφ. For
simplicity, we will restrict to the l = 0 mode on the
S3. Near θ = 0, the worldsheet action for φ is given
by R2

4πα′
∫

dρdσ (∂φ)2, which is free. The path integral is
then straightforward to compute and yields for Sm=±1

− R2n±
2πα′β2

∫
d3x0dτdτ ′

(
χφ(τ, ~x0)G̃D(σ, σ′)χφ(τ ′, ~x0)

)
θ=0

(10)
where G̃D(σ, σ′) = limρ→1,ρ′→1 ∂ρ∂ρ′GD(ρ, σ; ρ′, σ′) with
GD(ρ, σ; ρ′, σ′) the Dirichlet propagator for a canonically
normalized massless field on the unit disk and σ = 2π

β τ .
Note that (10) only depends on the value of χφ at the
tip of the brane and is nonlocal in the Euclidean time
direction.

Treating (10) as a small perturbation to (4), one can
compute the corrections to the Euclidean two-point func-
tion of the (meson) operator dual to χφ in the boundary
YM theory, from which the corrections to the Lorentzian
retarded function can be found by analytic continuation.
One finds that the poles of the retarded function now
obtain a nonzero imaginary part. Alternatively one can
directly obtain the Lorentzian counterpart of (10) by an-
alytically continuing the worldsheet disk to Lorentzian
signature with σ = iη = i2πt/β, which gives the part
of Rindler spacetime ds2 = dρ2 − ρ2dη2 with ρ ≤ 1.
The Lorentzian spacetime effective action can be ob-
tained using the Schwinger-Keldysh contour, giving the
Lorentzian equation of motion [21]

∂α

(√−gGφφ∂αχφ
)

= −R2n±δ(θ)
µ7πα′β2

∫
dt′ G̃R(η−η′)χφ(t′)

(11)
where G̃R(η−η′) = limρ→1,ρ′→1 ∂ρ∂ρ′GR(ρ, η; ρ′, η′) with
GR(ρ, η; ρ′, η′) the retarded propagator for a massless field
in the Rindler spacetime with Dirichlet boundary condi-
tion at ρ = 1. Fourier transforming (11) to momentum
space and using

∫
dη eiνηG̃R(η) = iν, one finds that (5)

is modified to

Ĥ(~k, l = 0)ψ − iωn±
4π3α′µ7A

δ(θ)ψ(θ) = ω2ψ(θ) (12)

with A =
√−g(−gtt). Writing the dispersion relation

as ω = ωn − i
2Γn where n denotes the excitation num-

ber, and using first order perturbation theory in n± we
find [22]

Γ(±1)
n =

32π3
√

λ

Ncm2
q

|ψn(θ = 0)|2 n± (13)

with ψn(θ = 0) eigenfunctions of (5) evaluated at the tip
of the brane. Recall that n± are thermal densities for
quarks and antiquarks and are proportional to Nc.

The ratio

Γn(k)
Γn(0)

=
|ψn(θ = 0;~k)|2

|ψn(θ = 0;~k = 0)|2
(14)

can be evaluated numerically and the results are shown
in Fig. 2. For large k, the asymptotic form of the wave
function, found in [8], can be used to show that the
width (14) scales like k2 for large k: Γn(k)/Γn(0) =
Rn[T/M ](k/M)2 + O(k) for some function Rn[T/M ].
Furthermore for temperatures T ¿ M and k À
M3

T 2 one finds the closed form expression Γn(k)
Γn(0) ≈

2(4π)4

(n+2)(n+3/2)
T 4k2

M6 . Fig. 2 has the interesting feature that
the width is roughly constant for small k, but turns up
quadratically around k/M = 0.52(Tdiss/T )2, which is
roughly the momentum at which the meson approaches
its limiting velocity vc(T ). This is consistent with the
conclusions based on the velocity dependence of the
screened quark potential found in [4]. Note that the
width as defined here is in the rest frame of the plasma, so
the k2 behavior at large k should be contrasted with the
1/k behavior of a relativistic decay width which comes
from the usual time-dilation argument.

The plots here also share some similarities with those
in [13] for momentum-dependence of meson widths ob-
tained for µ > m

(T )
q with λ = ∞ where the relevant D7

brane embedding resembles a long spike reaching down
to the horizon.

1 2 3 4
LogH1+ k�ML

0

1

2

3

4

5

L
o
g
G
H
k
L
�
G
H
0
L

FIG. 2: The behavior of the width as a function of k for
T/Tdiss = .99, .71, .3, .13 from left to right. The dashed lines
are analytic results for large momenta.

q

q

q

q̄

FIG. 3: Schematic diagrams of the relevant thermal processes
contributing to the meson width. For large λ the first process
is dominant, coming from the single instanton sector.

Our result (13) has a very simple physical interpreta-
tion as shown in the left plot of Fig. 3, in which a meson
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breaks apart by colliding with a quark (or anti-quark) in
the thermal bath. There are also processes correspond-
ing to a meson breaking up by colliding with gluons in
the thermal bath, shown in the right plot of Fig. 3. For
such a process to happen the gluon should have an en-
ergy above the binding energy of the meson. The density
of such gluons is thus suppressed by e−2βm(T )

q and should
be described by an instanton and anti-instanton so that
the resulting worldsheet has trivial topology. We expect
that contributions from such processes are also controlled
by the value of the meson wave function at the tip of the
brane, and possibly have similar growth with momentum.

Our method should be generic to any theory with a
holographic dual. While the precise value of the width is
clearly model dependent, it is conceivable that the mo-
mentum dependence may apply in a wider context in-
cluding QCD. In particular, our result highlights the con-
tributions to quarkonium suppression from the collisions
with medium quarks and gluons in the large transverse
momentum region in heavy ion collisions.

Consider the effect of such a momentum scaling on
J/ψ with M ≈ 3GeV. The dissociation temperature
from the gravity set-up is Tdiss = 0.122M ≈ 370MeV
in fairly good agreement with lattice data [17] for QCD
Tdiss ≈ 2.1Tc for Tc = 170MeV [11]. If we take the
RHIC temperature of T = 250MeV (this corresponds to
the second curve from the left in Fig. 2) then a moving
J/Ψ’s width will increase by a factor of 2(10) at a mo-
mentum k = 6(13)GeV. When the width of a meson
approaches the spacing between different meson states,
the meson can no longer be considered as a well-defined
quasi-particle. The momentum scaling thus implies a
maximal momentum beyond which the meson no longer
exists. As an illustration, suppose the width for the J/ψ
in the QGP at zero momentum is about 200 MeV (which
is not known) then one expects a maximal momentum
around 7 GeV.

Finally, we expect the worldsheet instantons found
here to have many other applications to various aspects
of flavor physics in AdS/CFT.

We thank C. Athanasiou, H. Meyer, K. Rajagopal,
D. Teaney, A. Tseytlin, U. Wiedemann for useful dis-
cussions. Research supported in part by the DOE under
contracts #DF-FC02-94ER40818. HL is also supported
in part by the A. P. Sloan Foundation and the DOE OJI
program.
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