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Recently, it was shown that in inclusive B ! Xs‘
þ‘� decay, an angular decomposition provides three

independent (q2 dependent) observables. A strategy was formulated to extract all measurable Wilson

coefficients in B ! Xs‘
þ‘� from a few simple integrals of these observables in the low q2 region. The

experimental measurements in the low q2 region require a cut on the hadronic invariant mass, which

introduces a dependence on nonperturbative b quark distribution functions. The associated hadronic

uncertainties could potentially limit the sensitivity of these decays to new physics. We compute the

nonperturbative corrections to all three observables at leading and subleading order in the power

expansion in �QCD=mb. We find that the subleading power corrections give sizeable corrections, of order

�5% to �10% depending on the observable and the precise value of the hadronic mass cut. They cause a

shift of order �0:05 GeV2 to �0:1 GeV2 in the zero of the forward-backward asymmetry.

DOI: 10.1103/PhysRevD.79.114021 PACS numbers: 13.20.He

I. INTRODUCTION

The inclusive decay B ! Xs‘
þ‘� is highly sensitive to

new physics, since it involves flavor-changing neutral-
current interactions, which do not occur at tree level in
the standard model (SM). It is described by the effective
Hamiltonian

H eff ¼ �GFffiffiffi
2

p VtbV
�
ts

X10
i¼1

CiOi; (1)

where O1–6 are four-quark operators and

O7 ¼ e

4�2
�mb �s���F

��PRb;

O8 ¼ g

4�2
�mb �s���G

��PRb;

O9 ¼ e2

4�2
ð �s��PLbÞð �‘��‘Þ;

O10 ¼ e2

4�2
ð�s��PLbÞð �‘���5‘Þ;

(2)

with PL;R ¼ ð1� �5Þ=2. Here we have neglected the

s-quark mass. All short distance information, including
possible new physics contributions, is encoded in the
Wilson coefficients, Ci. Thus, one can test the SM and
search for new physics by extracting these Wilson coeffi-
cients. Two observables frequently studied for this task are
the dilepton mass (q2) spectrum and the forward-backward
asymmetry [1–3]. Recently, it was noted that a third ob-
servable, proportional to a different combination of Wilson
coefficients, can be obtained from an angular decomposi-
tion and significantly increases the sensitivity to the differ-
ent Wilson coefficients [4]. With the addition of this third
observable, the precise measurement of the q2 dependence
becomes unnecessary. Instead, a few simple q2 integrals of
these observables are sufficient to determine all measur-

able Wilson coefficients in B ! Xs‘
þ‘� with the data

already available from the B factories.
The presence of intermediate c �c resonances, J=c and

c 0, restricts the portion of phase space that is amenable to a
precise comparison between theory and experiment. There
are two suitable regions, q2 <m2

J=c and q2 >mc 0 . The

large q2 region is usually considered less favorable, be-
cause it has a smaller rate and suffers from large non-
perturbative corrections. However, the experimental
efficiency is better there, and in Ref. [5] it was shown
that by taking the ratio of the B ! Xs‘

þ‘� and B !
Xu‘ �� rates the nonperturbative corrections can be kept
under control, so precise predictions are possible even at
large q2.
In this paper, we focus on the low q2 region, which

benefits from a higher rate. The trade-off is that experi-
mentally a cut on the hadronic invariant mass, mX <mcut

X ,
is required to suppress the huge background from b !
cð! s‘þ�Þ‘� ��. This mX cut introduces hadronic uncer-
tainties that can easily spoil the search for new physics in
this decay. The problem is that the decay rate is put into a
kinematic region where the usual local operator product
expansion in powers of �QCD=mb is no longer applicable.

Instead, the rate becomes sensitive to the motion of the b
quark inside the B meson, which is described by non-
perturbative b quark distribution functions (shape func-
tions) [6,7]. (The large q2 region is unaffected by the mX

cut.)
The latest BABAR [8] and Belle [9] analyses use mcut

X ¼
1:8 GeV and mcut

X ¼ 2:0 GeV, respectively. To obtain the
total branching ratio in the low q2 region, the measure-
ments are extrapolated to the full mX range using signal
Monte Carlo based on a Fermi motion model. The extrapo-
lated measurements are routinely quoted to compare theory
and experiment. This practice is questionable because, as is
well established in the context of inclusive B ! Xs� and

PHYSICAL REVIEW D 79, 114021 (2009)

1550-7998=2009=79(11)=114021(11) 114021-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.114021


B ! Xu‘ �� decays, any such extrapolation should not be
considered reliable and can give at best a rough estimate of
the effect of the mX cut.

In the kinematic region of low q2 and small mX, one can
calculate the inclusive decay rates using soft-collinear
effective theory (SCET) [10,11]. At leading order in
�QCD=mb, they factorize into process-dependent hard

functions h½0�, a universal jet function J, and the universal
soft shape function S [12,13], i.e.

d�½0� ¼ h½0� � J � S; (3)

a result applied extensively in the study of inclusive B !
Xu‘ �� and B ! Xs� decays. It was first applied to B !
Xs‘

þ‘� in Refs. [14,15] to study systematically the effect
of the mcut

X on the q2 spectrum and forward-backward
asymmetry. In Ref. [15] it was shown that the cut on mX

leads to a 10–30% reduction in the rate. This reduction is,
to a good approximation, universal among the different
short distance contributions and one can take it into ac-
count accurately using experimental information from
B ! Xs� or B ! Xu‘ ��, thereby maintaining the sensitiv-
ity to new physics.

The largest irreducible hadronic uncertainties and uni-
versality breaking are expected to come from
Oð�QCD=mbÞ power corrections due to subleading shape

functions [16–18]. In this paper, we extend the analysis of
the three angular observables to incorporate nonperturba-
tive shape-function effects arising from themX cut, includ-
ing the Oð�QCD=mbÞ subleading shape functions.

In Sec. II, we briefly discuss the kinematics and the
angular decomposition, defining the three observables
HT;A;Lðq2Þ. In Sec. III, we discuss the separation of the

perturbation series above and below the scale ��mb, and
our effectiveWilson coefficients. In Sec. IV, we present our
results for HT;A;L in the SCET region. The leading power

contribution is given in Sec. IVA, including the full NLL
and partial NNLL perturbative corrections. The subleading
power corrections are presented at tree level in Sec. IVB.
Their numerical impact is investigated briefly in Sec. V,
and we conclude in Sec. VI.

II. ANGULAR DECOMPOSITION AND
KINEMATICS

The triple differential decay rate can be written as [4]

d3�

dq2dpþ
X dz

¼ 3

8
½ð1þ z2ÞHTðq2; pþ

X Þ þ 2zHAðq2; pþ
X Þ

þ 2ð1� z2ÞHLðq2; pþ
X Þ�: (4)

Here, q2 ¼ ðp‘þ þ p‘�Þ2 is the dilepton invariant mass,
p�
X ¼ EX � j ~pXj, and z ¼ cos�. In �B0 or B� [B0 or Bþ]

decay, � is the angle between the ‘þ [‘�] and the Bmeson
three-momenta in the ‘þ‘� center-of-mass frame. The q2

spectrum and forward-backward asymmetry are given by

d�

dq2
¼ HTðq2Þ þHLðq2Þ; dAFB

dq2
¼ 3

4
HAðq2Þ: (5)

The velocity of the Bmeson is v� ¼ p�
B=mB. We define

light-cone vectors n and �n such that q�? ¼ v�
? ¼ 0 and

pþ
X ¼ n 	 pX, p

�
X ¼ �n 	 pX. For later convenience, we also

define the leptonic light-cone variables

qþ ¼ n 	 q ¼ mB � pþ
X ;

q� ¼ �n 	 q ¼ mB � p�
X ¼ q2

mB � pþ
X

;
(6)

with q2 ¼ qþq�.
The functionsHiðq2; pþ

X Þ in Eq. (4) are independent of z,
and are given by

HTðq2; pþ
X Þ ¼ 2

�0

m5
B

ðqþ � q�Þ2
qþ

q2WTðq2; pþ
X Þ;

HAðq2; pþ
X Þ ¼ �2

�0

m5
B

ðqþ � q�Þ2
qþ

q2WAðq2; pþ
X Þ;

HLðq2; pþ
X Þ ¼

�0

m5
B

ðqþ � q�Þ2
qþ

WLðq2; pþ
X Þ;

(7)

where

�0 ¼ G2
Fm

5
B

48�3

�2
em

16�2
jVtbV

�
tsj2: (8)

In terms of the usual structure functions in the decompo-
sition of the hadronic tensor,

W�� ¼ 1

2mB

1

2�

Z
d4xe�iq	xhBjJy�ðxÞJ�ð0ÞjBi

¼ �g��W1 þ v�v�W2 þ i���
�	v

�q	W3

þ q�q�W4 þ ðv�q� þ v�q�ÞW5; (9)

the hadronic structure functionsWT;A;L in Eq. (7) are given

by

WT ¼ 4W1; WA ¼ �2ðqþ � q�ÞW3;

WL ¼ 4q2W1 þ ðqþ � q�Þ2W2:
(10)

Without any cuts, the phase space limits on q2, pþ
X , and z

are

0 
 pþ
X 
 mB �

ffiffiffiffiffi
q2

q

 mB; �1 
 z 
 1: (11)

In the rest frame of the B meson,

2mBEX ¼ m2
B þm2

X � q2; (12)

so low q2 corresponds to EX �OðmBÞ. In conjunction with
themX cut required by the experiments we havem2

X � E2
X

or equivalently pþ
X � p�

X . This is illustrated in Fig. 1 in the
p�
X plane. The measurements are done in the orange (me-

dium) region, where the two cutsmX 
 2:0 GeV (dark red)
and 1 GeV2 
 q2 
 6 GeV2 (light yellow) overlap. There,
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p�
X �mB is large, while pþ

X & 1 GeV is small. This is
precisely the kinematic region where shape function ef-
fects are important, as explained in the Introduction.

More explicitly, a cut mX 
 mcut
X corresponds to a q2

dependent cut pþ
X 
 pþcut

X , where

pþcut
X ¼ 1

2mB

�
m2

B þ ðmcut
X Þ2 � q2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

B þ ðmcut
X Þ2 � q2Þ2 � 4m2

Bðmcut
X Þ2

q �
: (13)

The Hi with a cut on mX are thus given by

Hiðq2;mcut
X Þ ¼

Z pþcut
X

0
dpþ

XHiðq2; pþ
X Þ;

Hiðq21; q22;mcut
X Þ ¼

Z q2
2

q2
1

dq2Hiðq2;mcut
X Þ;

(14)

where the phase space limit from Eq. (11) is implicitly
understood.

III. SPLIT MATCHING AND EFFECTIVE WILSON
COEFFICIENTS

After theW, Z, and t are integrated out at a scale of order
mW , the effective weak Hamiltonian in Eq. (1) is evolved
down to the scale mb, where the decay rate is calculated by
evaluating the matrix elements of the operators Oi. In this
step, the contributions from the four-quark operators O1–6
and O8 can be absorbed into effective Wilson coefficients
Ceff
7;9ðq2Þ that are complex functions of q2. In the evolution

from mW down to mb, C9ðmbÞ receives a lnðm2
W=m

2
bÞ con-

tribution from the mixing of O2, which formally enhances
it to C9ðmbÞ �Oð1=�sÞ, while numerically jC9ðmbÞj �
C10. It is thus advantageous to separate the perturbation
series above and below the scale mb, such that below mb

the effective Wilson coefficients can be treated as Oð1Þ
numbers. This is achieved by the ‘‘split matching’’ proce-

dure introduced in Ref. [14] in the context of matching on
to SCET.
The split matching can be thought of as first matching

the effective weak Hamiltonian at a scale �0 �mb on to a
sum of effective b ! s‘þ‘� currents,

X10
i¼1

Cið�0ÞOið�0Þ ¼ e2

4�2
½Cincl

7 ðq2; �0ÞJ�7 �‘��‘

þ Cincl
9 ðq2; �0ÞJ�9 �‘��‘

þ Cincl
10 ðq2; �0ÞJ�9 �‘���5‘�; (15)

where

J�9 ¼ �s��PLb; J�7 ¼ 2mb

q2
�siq��

��PRb

���������¼mb

:

(16)

In the second step, starting from Eq. (15), the decay rate is
calculated. In the local OPE treatment, the time-ordered
products of the currents in Eq. (16) are matched at the scale
�b �mb on to a set of local operators, whereas in SCET,
the currents are matched at �b �mb on to corresponding
SCET currents, as we shall do in Sec. IV. In either case,
numerically one can take�b ¼ �0, while formally�0 and
�b are independent scale parameters. For example, to
estimate perturbative uncertainties they can and should
be varied separately.
While J�9 is a conserved current and thus scale-invariant,

the tensor current J�7 has an anomalous dimension and is
therefore taken to be at a fixed reference scale,� ¼ mb. To
obtain a well-behaved perturbative series, we usemb in the
1S scheme [19], although any other short distance b-quark
mass could be used instead. Since both sides of Eq. (15)
must be �0 independent, and the currents are (by defini-
tion) �0 independent, the matching coefficients
Cincl
i ðq2; �0Þ are also �0 independent to the order in per-

turbation theory at which the matching is performed.
Hence, the decay rate calculated from Eq. (15) is formally
�b independent and one can treat the C

incl
i ðq2; �0Þ as Oð1Þ

when counting powers of �s below the scale �b. This also
means that we have to be careful with our terminology. As
far as the Wilson coefficients are concerned, we stick to the
usual B ! Xs‘

þ‘� counting, where, due to the formally
leading 1=�s in C9ðmbÞ, NNLL refers to Oð�sÞ. On the
other hand, in SCET at �b and below, NNLL refers to the
full two-loop Oð�2

sÞ.
Since the split matching happens at the level of currents,

it captures only finite virtual corrections, which are con-
tained in the Cincl

i ðq2Þ, and the universal IR divergent
virtual and bremsstrahlung corrections, which are de-
scribed by the currents J

�
7;9. It does not incorporate finite

bremsstrahlung corrections from operators other than
O7;9;10, which must be added explicitly. In the local OPE

FIG. 1 (color online). Phase space cuts relevant for B !
Xs‘

þ‘� in the p�
X plane. The measurements are performed in

the orange (medium) region, where the mX and q2 cuts overlap
and pþ

X � p�
X .
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their effect was shown to be small, around the 1% level
[20].1 In the SCET expansion they are both power and �s

suppressed and thus beyond the order we are working at.
Similar considerations apply to electroweak corrections
[21,22], which are not included here.

In Ref. [4] the Cincl
i ðq2; �0Þ are decomposed as2

Cincl
7 ðq2; �0Þ ¼ C7 þ F7ðq2Þ þG7ðq2Þ;

Cincl
9 ðq2; �0Þ ¼ C9 þ F9ðq2Þ þG9ðq2Þ;

Cincl
10 ðq2; �0Þ ¼ C10;

(17)

such that all terms on the right-hand side of Eq. (17) are
separately �0 independent to the order one is working at.
The explicit expressions are collected in the Appendix of
Ref. [4], and we do not repeat them here. To simplify our
notation we suppress the�0 dependence in the coefficients
hereafter.

The functions F7;9ðq2Þ contain the virtual contributions

from O1–6;8 and are known at NNLL order [23–29] (up to

small O3–6 contributions), while the G7;9ðq2Þ contain non-

perturbativeOð1=m2
cÞ corrections involving the four-quark

operators [30]. The latter can be included in this simple
form, but the final results for the decay rates have to be
reexpanded so that any terms of Oð�s=m

2
c; 1=m

4
cÞ are

discarded.
The coefficients C7;9;10 are real in the SM. They contain

the dependence on the coefficients C7;9;10ð�Þ in Eq. (1), i.e.

C7 ¼ C7ð�0Þ �mbð�0Þ
mb

þ 	 	 	 ; C9 ¼ C9ð�0Þ þ 	 	 	 ;
C10 
 C10; (18)

which are sensitive to new physics. On the other hand, the
functions Fiðq2Þ and Giðq2Þ are dominated by contribu-
tions from O1;2 and thus are expected to be insensitive to

new physics. Hence, the approach advocated in Ref. [4] to
search for new physics is to assume the SM everywhere
and treat C7;9;10 as three unknown real parameters to be

extracted from data; it was shown that HLð1; 6Þ, HTð1; 6Þ,
HAð1; 3:5Þ, and HAð3:5; 6Þ are sufficient for this purpose.
This strategy has the advantage that the number of parame-
ters is kept to a minimum and thus the sensitivity to new
physics can be maximized. In addition, there is no depen-
dence on a specific new physics model. New physics con-
tributions will show up as inconsistencies between the
extracted values of C7;9;10 and their calculated SM values,

or between overconstraining measurements (similar to the
usual approach to overconstrain the Cabibbo-Kobayashi-
Maskawa matrix).

IV. RESULTS

In this section, we present our results for the three
observables HT , HA, and HL defined in Eq. (4) in the
SCET region, pþ

X � p�
X . Wewrite their structure functions

in Eq. (7) as

Wiðq2; pXÞ ¼ W½0�
i ðq2; pþ

X Þ þW½1�
i ðq2; pþ

X Þ þ 	 	 	 ; (19)

where i ¼ T, A, L and the superscript ½n� denotes the order
ð�QCD=mbÞn in the power expansion. The leading-order

W½0�
i ðq2; pþ

X Þ, involving the leading shape function, are

discussed next, while the W½1�
i ðq2; pþ

X Þ, containing the
subleading shape functions, are discussed in Sec. IVB.

A. Leading order

The leading-order structure functions factorize as

W½0�
i ðq2; pþ

X Þ ¼ h½0�i ðq2; pþ
X ;�iÞ

Z
d!p�Jðp�!;�iÞ

� Sðpþ
X �!;�iÞ; (20)

where p� ¼ mb � q� ¼ mb � q2=ðmB � pþ
X Þ is the par-

tonic light-cone momentum. The integration limits here
and below are implicit in the support of the functions,
which are nonzero only if their first argument is positive.
We shall discuss each ingredient in Eq. (20) in turn.

The hard functions h½0�i ðq2; pþ
X ;�bÞ are different for each

structure function. To obtain them, we start by matching
the QCD currents in Eq. (16) at the hard scale �b �mb on
to corresponding SCET currents,

J
�
9 ¼ X

i¼1;2;3

c9i ðp�; �bÞ �
n�
�
9;iH

n
v;

J�7 ¼ 2mb

q2
X
i¼1;2

c7i ðp�; �bÞ �
n�
�
7;iH

n
v;

(21)

where 
n ¼ Wy
n �n and H n

v ¼ Yy
n bv are the standard col-

linear and heavy-quark fields in SCET, and p� corresponds
to the large momentum label on the collinear quark field.
We choose a slightly different set of minimal Dirac struc-
tures than usual,

��
9;i ¼ PRf��; v�; q�g;

��
7;i ¼ PRfiq����; q�ðq�v� � q�v�Þg: (22)

The reason to use q� instead of n� for �
�
9;3 is that it makes

explicit the constraint from lepton current conservation,
which implies that for massless leptons only two coeffi-
cients contribute to the rate. For ��

7;i there are only two

independent coefficients from the start, because q�J
�
7 ¼ 0

provides an additional constraint.

1The full z dependence of these corrections, which may be
known from the calculations of the authors of Refs. [20], has not
been published, and so is not known for HTðq2Þ and HLðq2Þ
separately, but only for HAðq2Þ and the sum HTðq2Þ þHLðq2Þ.

2In Ref. [4] the coefficients Cincl
i ðq2Þ are defined implicitly by

absorbing all virtual contributions from O1–6;8 into them and by
requiring their �0 independence. That definition is equivalent to
the one given here. The coefficients Cmix

i ðq2Þ in Refs. [14,15] are
equivalent to these except that Cmix

7 ðq2Þ ¼ ðmB=mbÞCincl
7 ðq2Þ.
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The matching for general currents to Oð�sÞ was carried out in Ref. [11]. For the vector current, the two-loop Oð�2
sÞ

matching has become available only recently, through the work of several groups [31–34]. We find

c91ðp�; �bÞ ¼ 1� �sð�bÞ
2�

CF

�
ln2

�b

p� þ 5

2
ln
�b

p� þ Li2

�
1� p�

mb

�
þ 1

2
ln
p�

mb

�
mb

mb � p� þ 2

�
þ �2

24
þ 3

�

þ �2
sð�bÞ
16�2

Cð2Þ
1

�
p�

mb

;�b

�
;

c92ðp�; �bÞ ¼ �sð�bÞ
2�

CF ln
p�

mb

mb

mb � p� þ �2
sð�bÞ
16�2

�
Cð2Þ
2

�
p�

mb

;�b

�
þ 2mb

p� Cð2Þ
3

�
p�

mb

;�b

��
;

c93ðp�; �bÞ ¼ �sð�bÞ
2�

CF

1

mb � p�

�
ln
p�

mb

�
mb

mb � p� � 2

�
þ 1

�
� �2

sð�bÞ
16�2

2

p� Cð2Þ
3

�
p�

mb

;�b

�
;

(23)

where the two-loop functions Cð2Þ
i ðuÞ can be found in

Ref. [34], and as indicated they have to be evaluated at
� ¼ �b. For the tensor current, we find

c71ðp�; �bÞ ¼ 1� �sð�bÞ
2�

CF

�
ln2

�b

p� þ 5

2
ln
�b

p�

þ Li2

�
1� p�

mb

�
þ 3

2
ln
p�

mb

þ �2

24
þ 3

�
;

c72ðp�; �bÞ ¼ ��sð�bÞ
2�

CF ln
p�

mb

2

mb � p� : (24)

The Oð�2
sÞ corrections for the tensor current are not fully

known at present, but since two-loop calculations for the
vector current exist, the equivalent two-loop calculation for
the tensor current should be feasible. From the two-loop
computation of the jC7j2 terms in the b ! s� rate [35,36],
one can obtain the Oð�2

sÞ contribution to c71 at the point
p� ¼ mb [37,38]. For the vector current, the �2

s correc-
tions to c9i ðp�; �bÞ for small q2 or large p� are to good
approximation given by a constant shift. Assuming a simi-
lar behavior for the tensor current, we can obtain an
approximate result for c71 at Oð�2

sÞ in the low q2 region,

~c 7
1ðp�; �bÞ ¼ c71ðp�; �bÞ þ 1

2
½hsðmb;�bÞ

� c71ðmb;�bÞ2�; (25)

where c71 is the result to Oð�sÞ in Eq. (24), and hsðmb;�bÞ
is given to Oð�2

sÞ in Eq. (A4) of Ref [38].

The hard functions h½0�i are now computed by substitut-
ing the currents in Eq. (21) together with their prefactors
from Eq. (15) into Eq. (9) for the hadronic tensor and
factorizing out the matching coefficients times the trace

of their Dirac structures. One then obtainsW½0�
��¼h½0���J�S,

with (writing for simplicity c10i 
 c9i and �10;i 
 �9;i)

h½0��� ¼ X
a;b¼7;9;10

Cincl�
a Cincl

b

X
i;j¼1;2

cai c
b
j Tr

�
1þ v6
2

���
a;i

n6
4
��
b;j

�
:

(26)

The remaining matrix element gives the convolution of jet
and shape function, J � S.
Taking the traces and the appropriate linear combina-

tions from Eq. (10), we find [14]

h½0�T ðq2; pþ
X ;�bÞ ¼

��������Cincl
9 ðq2Þc91ðp�; �bÞ þ 2mb

q�
Cincl
7 ðq2Þc71ðp�; �bÞ

��������
2þ C210½c91ðp�; �bÞ�2;

h½0�A ðq2; pþ
X ;�bÞ ¼ 2C10c91ðp�; �bÞRe

�
Cincl
9 ðq2Þc91ðp�; �bÞ þ 2mb

q�
Cincl
7 ðq2Þc71ðp�; �bÞ

�
;

h½0�L ðq2; pþ
X ;�bÞ ¼

��������Cincl
9 ðq2Þ

�
qþc91ðp�; �bÞ þ qþ � q�

2
c92ðp�; �bÞ

�
þ 2mbC

incl
7 ðq2Þ

�
c71ðp�; �bÞ

þ qþ � q�
2

c72ðp�; �bÞ
���������

2þ C210

�
qþc91ðp�; �bÞ þ qþ � q�

2
c92ðp�; �bÞ

�
2
:

(27)

To evolve the coefficients from the hard scale �b �mb to

the intermediate scale �i �mX �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�QCDmb

q
, we use

h½0�i ðq2; pþ
X ;�iÞ ¼ h½0�i ðq2; pþ

X ;�bÞUHðp�; �b;�iÞ; (28)

where the hard evolution factor [11] sums logarithms
between the scales �b and �i and is known at NNLL.

Next, we consider the convolution of jet and shape
function in Eq. (20). The jet function Jðp�!;�iÞ contains

perturbative physics at the intermediate jet scale �i �mX,
and is known at Oð�sÞ [39,40] and Oð�2

sÞ [41].
The leading shape function Sð!;�Þ is defined as3

Sð!;�Þ ¼ 1

2mB

hBjO0ð!;�ÞjBi 
 hO0ð!;�ÞiB; (29)

3We use a different normalization of the jBi state from that in
Ref. [38].
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where

O0ð!;�Þ ¼ �bv�ðiDþ � �þ!Þbv: (30)

Here, bv is the HQET b quark field, iD� is an ultrasoft
covariant derivative, and � ¼ mB �mb, so Sð!Þ has sup-
port for !> 0. We use the full QCD B meson state jBi in
Eq. (29), which automatically absorbs into Sð!;�Þ all
subleading shape functions that would otherwise arise
from time-ordered products of O0ð!;�Þ with the power
corrections in the HQET Lagrangian.

The shape function contains both nonperturbative and
perturbative physics. A method to combine all available
perturbative and nonperturbative information was devel-
oped recently in Ref. [38]. To do so, the shape function at
the scale �i is written as

Sð!;�iÞ ¼
Z

d!0 Z dkUSð!�!0; �i; ��Þ
� Ĉ0ð!0 � k;��ÞF̂ðkÞ; (31)

where the hats indicate that the quantities are given in a

renormalon-free short distance scheme. The function Ĉ0 is
perturbatively calculable at the soft scale��, and is known
at Oð�sÞ [39,40] andOð�2

sÞ [42]. The soft evolution factor
US [40,43,44] sums logarithms between the soft scale ��

and the jet scale �i. Finally, F̂ðkÞ is a fully nonperturbative
function, which can be constrained by data from B ! Xs�,
B ! Xu‘ �� and B ! Xc‘ �� [38].

Combining the convolutions in Eqs. (20) and (31), we

define the perturbative function P̂ðp�; pþ
X ;�iÞ by

P̂ðp�; pþ
X ;�iÞ ¼

Z
d!

Z
d!0p�J½p�ðpþ

X �!Þ; �i�
�USð!�!0; �i; ��ÞĈ0ð!0; ��Þ

¼ �ðkÞ þOð�sÞ; (32)

and combining this with Eq. (28) we obtain

W½0�
i ðq2; pþ

X Þ ¼ h½0�i ðq2; pþ
X ;�bÞUHðp�; �b;�iÞ

�
Z

dk P̂ðp�; pþ
X � k; �iÞF̂ðkÞ: (33)

With Eq. (27) and the matching coefficients in Eqs. (23)

and (25) we have an approximate Oð�2
sÞ result for h½0�T;A,

which do not depend on c72. While h½0�L depends on c72, it has
no soft photon pole and is thus completely dominated by
the vector current contributions, which are known at

Oð�2
sÞ. An explicit expression for P̂ðp�; pþ

X ;�iÞ to
Oð�2

sÞ with NNLL summation, in any short distance
scheme for the b-quark mass and kinetic-energy matrix
element, has been derived in Ref. [38]. An explicit NNLL
expression for UH can be found there as well. Hence,
approximate NNLL Oð�2

sÞ results are available at leading
order in the SCET power expansion for all three observ-
ables HT;A;Lðq2; pþ

X Þ.

B. Subleading order

At tree level andOð�QCD=mbÞ six additional subleading
shape functions enter in the description of B ! Xu‘ �� and
B ! Xs� [16–18,45–50], and will also contribute to B !
Xs‘

þ‘�. We refer to these as the primary subleading shape
functions. The analog of the factorization theorem Eq. (20)
at Oð�QCD=mbÞ was worked out explicitly in Ref. [47]. At
Oð�s�QCD=mbÞ an even larger number of additional shape

functions appears [47,49,51]. The split matching relies on
the fact that forO7;9;10 we can treat q

2 asOð1Þ in the SCET
expansion. If subleading contributions from other opera-
tors are considered, it can be necessary to count q2 as
parametrically small and to treat the photon as collinear
particle. In this case there will be additional four-quark
operators with collinear quarks coupling to the collinear
photon, giving rise to additional subleading four-quark
shape functions [14,52]. We shall restrict our discussion
to tree level and the primary subleading shape functions.
When we consider the Oð�QCD=mbÞ power corrections,

the split matching is important for two reasons. First, it is
convenient, because it allows us to think only about the two
currents in Eq. (16). This implies that the factorization in
Ref. [47] also applies to our case, and a large part of the
results can be reused. More importantly, it provides us with
a consistent way to work at tree-level at the scale �b and
below and neglect Oð�s�QCD=mbÞ loop corrections in

SCET, while at the same time keeping the full �s correc-
tions to the effective Wilson coefficients from scales �0

and above, even when they multiply subleading shape
functions. In this way, we can avoid artificially large power
corrections that arise simply from having to use different
Wilson coefficients at Oð�QCD=mbÞ, and can instead use

the same Wilson coefficients at each order in the power
counting.
The calculation proceeds along the same lines as in the

previous section, though here there are two sources of
subleading corrections. First, the matching in Eq. (21)
now has to include subleading SCET currents. Second,
when the time-ordered products are evaluated, there will
be corrections from higher-order terms in the SCET
Lagrangian. Alternatively, working at tree level, we can
directly match the time-ordered products of the effective
currents on to the subleading shape function operators as in
Ref. [50]. Of course, both approaches give the same results.
The operators that arise from subleading SCET currents

are

O
�
1 ð!Þ ¼ 1

2
�bvfiD�; �ðiDþ � �þ!Þgbv;

P2ð!Þ ¼ i

2
�?��

�bv½iD�; �ðiDþ � �þ!Þ���
T�5bv:

(34)

They come with the same jet function as the leading-order
shape function. The contribution from O

�
1 ð!Þ can be re-

written in terms of the leading-order result as
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Z
d!p�Jðp�ðpþ

X �!Þ; �iÞn�hO�
1 ð!ÞiB

¼
Z

d!p�Jðp�ðpþ
X �!Þ; �iÞð��!ÞSð!Þ

¼ ð�� pþ
X ÞF̂ðpþ

X Þ þOð�sÞ; (35)

while P2ð!Þ gives rise to a new subleading shape function,

Z
d!p�Jðp�ðpþ

X �!Þ; �iÞhP2ð!ÞiB
¼ F2ðpþ

X Þ þOð�sÞ: (36)

The operators that are due to higher-order terms in the
SCET Lagrangian are

O3ð!1; !2Þ ¼ �bv�ðiDþ � �þ!1ÞðiD?Þ2�ðiDþ � �þ!2Þbv;
P�
4 ð!1; !2Þ ¼ 1

2
�bv�ðiDþ � �þ!1Þg�?�
G

�

? �ðiDþ � �þ!2Þ��

T �5bv;

O
��
5s ð!1; !2; !3Þ ¼ ½ �bvTA�ðiDþ � �þ!1Þ��PLs

�n
us��ði@þ � �þ!2Þ½�s �nus��PL�ðiDþ � �þ!3ÞTAbv�; (37)

where ���
? ¼ ����	n� �n	=2 (with �0123 ¼ 1), igG��

? ¼ ½iD�
?; iD

�
?�, and s �nus ¼ ð6n�n6 =4Þsus is an ultrasoft s quark field.

These operators are associated with new jet functions that are known only at tree level. Combining their Bmatrix elements
with their jet functions, we define

F3ðpþ
X Þ ¼

Z
d!1d!2

�
�ðpþ

X �!1Þ
pþ
X �!2

þ �ðpþ
X �!2Þ

pþ
X �!1

�
hO3ð!1; !2ÞiB;

F4ðpþ
X Þ ¼

Z
d!1d!2

�
�ðpþ

X �!1Þ
pþ
X �!2

þ �ðpþ
X �!2Þ

pþ
X �!1

�
n�hP�

4 ð!1; !2ÞiB;

Fs
5ðpþ

X Þ ¼
Z

d!1d!2d!3

4��s

2�i

� Y
j¼1;2;3

1

pþ
X �!j � i"

� Y
j¼1;2;3

1

pþ
X �!j þ i"

�
n�n�hO��

5s ð!1; !2; !3ÞiB;

Fs
6ðpþ

X Þ ¼
Z

d!1d!2d!3

4��s

2�i

� Y
j¼1;2;3

1

pþ
X �!j � i"

� Y
j¼1;2;3

1

pþ
X �!j þ i"

�
ðg?�� þ i�?��ÞhO��

5s ð!1; !2; !3ÞiB;

(38)

which correspond to the functions defined in Ref. [47]. There are also operators P�
1 , O2, P3, and O�

4 , obtained from the
above by interchanging the Dirac structure 1 $ ��

T �5. They do not contribute because their matrix elements between B
meson states vanish as a result of parity and/or time-reversal invariance.

With the above definitions, we find the following Oð�QCD=mbÞ corrections to the structure functions:

W½1�
T ðq2; pþ

X Þ ¼ �½jCincl
9 ðq2Þj2 þ C210�

�
F1ðpþ

X Þ
mb

þ FTðpþ
X Þ

p�

�
þ 4m2

b

q2�
jCincl

7 ðq2Þj2
�
F1ðpþ

X Þ
mb

� FTðpþ
X Þ

p�

�

� 4mb

q�
Re½Cincl

9 ðq2ÞCincl�
7 ðq2Þ�FTðpþ

X Þ
p� ;

W½1�
A ðq2; pþ

X Þ ¼ �2C10 Re
�
Cincl
9 ðq2Þ

�
F1ðpþ

X Þ
mb

þ FTðpþ
X Þ

p�

�
þ 2mb

q�
Cincl
7 ðq2ÞFTðpþ

X Þ
p�

�
;

W½1�
L ðq2; pþ

X Þ ¼ ½jCincl
9 ðq2Þj2 þ C210�

�
q2þF1ðpþ

X Þ
mb

� q2þFLðpþ
X Þ þ 2q2F2ðpþ

X Þ
p�

�
� 4m2

bjCincl
7 ðq2Þj2

�
F1ðpþ

X Þ
mb

þ FLðpþ
X Þ þ 2F2ðpþ

X Þ
p�

�
� 4mb Re½Cincl

9 ðq2ÞCincl�
7 ðq2Þ� qþFLðpþ

X Þ þ ðqþ þ q�ÞF2ðpþ
X Þ

p� ;

(39)

where we have used the abbreviations

F1ðpþ
X Þ ¼ ðpþ

X � �ÞFðpþ
X Þ þ F2ðpþ

X Þ;
FTðpþ

X Þ ¼ F3ðpþ
X Þ � F4ðpþ

X Þ þ 2Fs
5ðpþ

X Þ;
FLðpþ

X Þ ¼ F3ðpþ
X Þ þ F4ðpþ

X Þ � 2Fs
6ðpþ

X Þ:
(40)

Note that inW½1�
T andW½1�

A only two different combinations
of subleading shape functions appear, a property which can

be exploited to construct particular combinations of ob-
servables in B ! Xu‘ �� and B ! Xs‘

þ‘� for which the
subleading shape functions drop out [53].

V. mX-CUT EFFECTS AT SUBLEADING ORDER

In this section, we briefly investigate the numerical
impact of the power corrections in Eq. (39) on the different
observables, using the input values collected in Table I. A
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detailed numerical analysis of the mX cut effects including
an estimation of uncertainties is beyond the scope of this
paper and is relegated to a dedicated publication [55].

To obtain expressions for the leading and subleading
shape functions, we follow the construction in Ref. [38].
We give only a few relevant formulas here, and refer the
reader to Ref. [38] for further details. The nonperturbative

function F̂ðkÞ entering the leading-order result Eq. (33) can
be expanded as

F̂ð
xÞ ¼ 1




�X1
n¼0

cnfnðxÞ
�
2
; (41)

where 
��QCD is a free parameter and fnðxÞ form a

complete set of orthonormal functions on ½0;1Þ. We use
the default value 
 ¼ 0:8 GeV and fnðxÞ from Eq. (48) of
Ref. [38].

Since our main interest is in the corrections from sub-

leading shape functions, we use a fixed model for F̂ðkÞ,
obtained by truncating the series in Eq. (41) at n 
 2. For a
given value of 
, the remaining coefficients c0;1;2 are

determined by the 0th, 1st, and 2nd moments of F̂ðkÞ,

Z
dkF̂ðkÞ ¼ 1;

Z
dk kF̂ðkÞ ¼ mB �m1S

b ;

Z
dk k2F̂ðkÞ ¼ �
i

1

3
þ ðmB �m1S

b Þ2;
(42)

with m1S
b given in the 1S scheme and 
i

1 in the ‘‘invisible’’

scheme [38].
Very little is known about the subleading shape func-

tions. Since the flavor of the light quark in the operatorO5s

does not match the flavor of the spectator quark in the B
meson, we expect the functions Fs

5;6ðpþ
X Þ to give only small

corrections. Furthermore, since they arise only in combi-
nation with F3;4ðpþ

X Þ as in Eq. (40), we can assume that any

small effect they may have will likely be washed out by the
uncertainties in F3;4ðpþ

X Þ. We therefore set F5;6ðpþ
X Þ to zero

in our numerical analysis. The first moments of the remain-
ing functions are

Z
dkF2;3;4ðkÞ ¼ 0;

Z
dk kF2;3;4ðkÞ ¼ f�
2; 2
1=3; 
2g;

Z
dkðk� �Þ2F2;3;4ðkÞ ¼ f�2; 0; 0g: (43)

For F2;3;4ðkÞ we use a construction similar to Eq. (41),

Fið
xÞ ¼ � d

dx

�X1
n¼0

dinfnðxÞ
�
2
; (44)

which automatically incorporates the vanishing 0th mo-
ment. The overall sign is determined by the sign of the first
moment. To obtain a range of models for each function we
consider two cases, di0;1 � 0 and di1;2 � 0, with all other

coefficients set to zero. For each case, there are two solu-
tions to the moment constraints from Eq. (43), providing us
with a total of four reasonably different models for each
function, which are shown in Fig. 2. When combined, these
give 64 different sets of models for the subleading shape
functions, which we use to illustrate their effects. We stress
that the spread in the results obtained from these models
should not be interpreted as a rigorous theoretical error, but
merely as an indication of the rough size of the uncertainty
expected from the unknown form of the subleading shape
functions. A more detailed analysis will be presented in
Ref. [55].
To illustrate the effect of the power corrections, we

consider their relative corrections to the lowest-order re-
sult,

�Hiðq21; q22;mcut
X Þ ¼ H½1�

i ðq21; q22;mcut
X Þ

H½0�
i ðq21; q22;mcut

X Þ : (45)

Here, Hi ¼ fHT;HA;HL;�g and the H½0;1�
i are obtained

from Eqs. (33) and (39), respectively, corresponding to
zeroth and first order in the power expansion. Since we

consider H½1�
i at tree level only, we also use the tree-level

result for H½0�
i in the denominator for comparison. Note

TABLE I. Central values of input parameters.

Parameter Value

mB 5.279 GeV

mb 
 m1S
b [54] 4.70 GeV


1 
 
i
1 [38] �0:32 GeV2


2 0:12 GeV2

�2 [54] �0:065 GeV3

C7 �0:2611
C9 4.207

C10 �4:175

FIG. 2 (color online). Model functions used for the subleading
shape functions F2ðkÞ (dashed blue), F3ðkÞ (dotted green), and
F4ðkÞ (solid orange). The black solid line shows the model used
for the leading-order function F̂ðkÞ.
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that we keep the full NNLL expressions for the Wilson
coefficients Cincl

i ðq2Þ in both numerator and denominator
(using the numerical expressions from Ref. [4]). As already
mentioned in Sec. IVB, this is consistent because of the
split matching and is important for maintaining the correct
relative size of the different short distance contributions at
Oð�QCD=mbÞ. Figure 3 shows �HTð1; 6;mcut

X Þ,
�HAð1; 3:5;mcut

X Þ and �HAð3:5; 6;mcut
X Þ, �HLð1; 6;mcut

X Þ,
and ��ð1; 6;mcut

X Þ. For HL and �, the corrections are
between 0% and �10% with central values around �5%
for mcut

X between 1.8 GeV and 2.0 GeV. As expected from
Ref. [15], the uncertainty in the correction increases for
lower mcut

X . The corrections for HT are somewhat larger
with similar uncertainties. The reason is that in the combi-
nation FTðkÞ ¼ F3ðkÞ � F4ðkÞ entering HT the corrections
from F3ðkÞ and F4ðkÞ tend to add up, while in FLðkÞ ¼
F3ðkÞ þ F4ðkÞ entering HL they tend to cancel.

Considering HA, we see that the lower bin HAð1; 3:5Þ
receives a significant positive correction, above þ10%,
while the higher bin HAð3:5; 6Þ receives only small nega-
tive corrections of a few percent. The reason is that the
Cincl
7 ðq2ÞC10 term, whose absolute value decreases (it be-

comes less negative), dominates HA for very small q2. As
q2 increases, these corrections are compensated by a cor-
responding reduction of the Cincl

9 ðq2ÞC10 term. This also

results in a shift of the zero, q20, where the forward-

backward asymmetry dAFB=dq
2 ¼ ð3=4ÞHAðq2Þ vanishes.

In Fig. 4 we plot the ratio

ĤAðq2;mcut
X Þ ¼ HAðq2;mcut

X Þ
�ð1; 6;mcut

X Þ ; (46)

i.e. HAðq2Þ normalized to the rate integrated over the low
q2 region, as a function of q2 for fixedmcut

X . The black lines

show the leading-order result Ĥ½0�
A ðq2;mcut

X Þ using mcut
X ¼

2:0 GeV (solid) and mcut
X ¼ 1:8 GeV (dashed). The green

bands show the result obtained by including the subleading
shape function corrections in both numerator and denomi-
nator, leading to a horizontal shift of about�0:05 GeV2 to
�0:1 GeV2 with a similar uncertainty. This is the same
size as the perturbative uncertainty usually quoted for q20.
The size of the horizontal shift in the curve at q20 is not

different from that at any other point in this q2 region. This
is expected, because in the theoretical description of in-
clusive decays there is nothing special about the zero
beyond the fact that HAðq2Þ happens to vanish there.

VI. CONCLUSIONS

In Ref. [4], it was demonstrated that the three observ-
ables HTðq2Þ, HAðq2Þ, HLðq2Þ measured in the low q2

region provide significantly better sensitivity to the differ-
ent Wilson coefficients than the rate d�=dq2 ¼ HAðq2Þ þ
HLðq2Þ and forward-backward asymmetry dAFB=dq

2 ¼
ð3=4ÞHAðq2Þ alone. In the low q2 region, the experimen-
tally required cut on the hadronic invariant mass, mX,
makes the measurements sensitive to nonperturbative b
quark distribution functions, so-called shape functions.

FIG. 3 (color online). Relative corrections due to subleading shape functions as function of mcut
X for HTð1; 6;mcut

X Þ (top left),
HAð1; 3:5;mcut

X Þ and HAð3:5; 6;mcut
X Þ (top right), HLð1; 6;mcut

X Þ (bottom left), and �ð1; 6;mcut
X Þ (bottom right). The thin lines show the

result of using the different subleading shape function models from Fig. 2. The thick black line in each case shows the center of the thin
curves.
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Rather than extrapolating the measurements to compare
with theory, one should take the effect of the mX cut into
account on the theory side. In this paper, we computed all
three observables, HT;A;L, in the low q2 region in the

presence of an mX cut, including the leading and sublead-
ing shape function contributions.

We used a split matching procedure to separate the
perturbative corrections above and below the scale mb.
The perturbative corrections above mb are taken into ac-
count via uniquely defined effective Wilson coefficients
Cincl
i ðq2Þ and are known at NNLL [Oð�sÞ] from the stan-

dard calculation of B ! Xs‘
þ‘� in the local OPE. Below

the scale �b, the perturbative corrections at leading order

in the power expansion are fully known at NLL [Oð�sÞ]
and approximately at NNLL [Oð�2

sÞ]. The subleading
power corrections are included at tree level.
While the effect of the mX cut at leading order can be

taken into account model-independently by combining all
constraints on the leading shape function from perturbation
theory, together with available data from B ! Xs� and
B ! Xu;c‘ �� [38], much less is known about the subleading

shape functions, which represent a currently irreducible
hadronic uncertainty. Depending on the observable and the
value of the mX cut, the subleading shape functions induce
corrections to the leading-order result of about �5% to
�10% in the rates and a shift of about �0:05 GeV2 to
�0:1 GeV2 in q20, with uncertainties of the same size.

Hence, they must be accounted for to be able to obtain
precise predictions for measurements of B ! Xs‘

þ‘� in
the low q2 region. A detailed numerical analysis of the mX

cut effects and their influence on the uncertainties in the
extraction of the Wilson coefficients will be presented in a
separate publication [55].
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