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Preparation of Reduced-Quantum-Uncertainty Input States
for an Atomic Clock

M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić

Department of Physics, MIT-Harvard Center for Ultracold Atoms,
and Research Laboratory of Electronics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

ABSTRACT

Atomic clocks have reached the Standard Quantum Limit (SQL) of precision,1 set by the projection noise
inherent in measurements on uncorrelated atoms. It is possible to overcome this limit by entangling the atoms to
generate a “squeezed state” of the atomic ensemble. We use the collective interaction of an atomic ensemble with
a far-detuned light field in an optical resonator to prepare squeezed states by two different methods: quantum
non-demolition (QND) measurement and Hamiltonian evolution. We apply both methods to an ensemble of
5 × 104 87Rb atoms in a superposition of hyperfine clock states. We measure the suppression of projection
noise and compare it to the accompanying reduction in signal, thereby quantifying the net gain in spectroscopic
sensitivity.

By QND measurement, with resolution up to 9 dB below the projection noise level, we achieve 3.0(8) dB of
metrologically relevant squeezing. Whereas the measurement-based approach relies on knowledge of the (ran-
domly distributed) measurement outcome to produce a conditionally squeezed state, the method of Hamiltonian
evolution produces a known squeezed state independent of detector performance. We mimic the dynamics of the
one-axis twisting Hamiltonian, proposed as a generator of squeezed states by Kitagawa and Ueda,2 by using the
atom-induced frequency shift of the resonator mode and the corresponding resonator-field-induced shift of the
atomic transition frequency to introduce an effective interaction among the atoms. The resulting deterministic
squeezing is sufficient to allow a 6.0(4) dB improvement in spectroscopic sensitivity over the SQL.

Keywords: metrology, atomic clock, spin squeezing, entanglement, Standard Quantum Limit

1. INTRODUCTION

In the past decade, the precision of measurement devices ranging from microwave1 and optical3–5 atomic clocks
to atom interferometers6 has approached the Standard Quantum Limit (SQL).7, 8 All of these devices employ a
Ramsey sequence, in which a π/2 pulse places an initially optically pumped ensemble of N0 two-level atoms—
abstractly, spin-1/2 particles—into a symmetric superposition state with phase uncertainty Δφin = 1/

√
N0.

After allowing this coherent spin state (CSS) to precess for some time, the final phase is read out by converting
it via a second π/2 pulse into a population difference between the two clock levels. Even if this population
difference is read out perfectly, the phase uncertainty Δφin of the initial coherent spin state (CSS) results in the
quantum-limited uncertainty 1/

√
N0 in the phase accumulated during the precession.

A general state of the ensemble of N0 atoms with levels |↑〉 = |sz = +1/2〉 and |↓〉 = |sz = −1/2〉 is charac-
terized by a total ensemble spin S with S ≤ N0/2, where the equality holds for symmetric states of the ensemble.
For a given 〈S〉 = Sx̂—where we have assumed an orientation along the x̂-axis—the minimum-uncertainty un-
correlated state is the CSS, with phase uncertainty 1/

√
2S corresponding to a spin variance (ΔSy)2 = S/2.

Achieving precision beyond the SQL requires that, at the beginning of the Ramsey precession, the ensemble
be in an entangled state such that (ΔSy)2 < S/2: a spin-squeezed2, 9–21 (specifically, phase-squeezed) state.
Figure 1 illustrates the preparation of a generic spin-squeezed state (C), characterized by an uncertainty less
than the CSS uncertainty in some direction transverse to x̂; and the use of this state in a modified Ramsey

Send correspondence to M.H.S.-S.: E-mail: schleier@mit.edu, Telephone: 1 617 452 3578

Invited Paper

Time and Frequency Metrology II, edited by Tetsuya Ido, Derryck T. Reid, Proc. of SPIE Vol. 7431, 
743107 · © 2009 SPIE · CCC code: 0277-786X/09/$18 · doi: 10.1117/12.828171

Proc. of SPIE Vol. 7431  743107-1

Downloaded from SPIE Digital Library on 17 Mar 2010 to 18.51.1.125. Terms of Use:  http://spiedl.org/terms



C

D

A B

E F
z

y
x

C’

Ry(π/2) Squeeze

R-x(π/2)Precess

R x(π
/2-α)

R-x(α)

Figure 1. Modified Ramsey sequence incorporating spin squeezing. Initially, the ensemble is optically pumped into one
clock state |↓〉 (A). A π/2 pulse places the ensemble in a CSS superposition of states |↓〉 and |↑〉 B. The CSS is converted
into a state which is squeezed along some direction, at an angle α from the z-axis (C). The rotation of the squeezed state
into a phase-squeezed state (D) marks the beginning of the free precession of the clock. A final π/2 pulse converts the
accumulated phase (E) into a population difference (F), the variance of which is reduced relative to the CSS variance. In
the present work, we verify spin squeezing by directly rotating the state C into the number-squeezed state C’, so as not
to introduce extra noise via the Ramsey sequence. Note that in the case of conditional squeezing by measurement of Sz,
α = 0.

sequence, initiated by a rotation that places the squeezing in the phase quadrature (D). The preparation of such
spin-squeezed input states C is the focus of this work.

We characterize the spin noise of each prepared state by measuring the variance of the population difference
N↑ − N↓ = 2Sz between clock states after a suitable rotation about x̂ (Fig. 1C’). Since any squeezing process
not only reduces (ΔSz)

2 but also shortens the mean ensemble spin vector 〈S〉 relative to its length Sin in the
CSS,9 the squared signal-to-noise ratio |〈S〉|2/ (ΔSz)

2 must be compared to its value 2Sin in the CSS in order
to quantify metrological gain. A metrology factor ζm ≡ 2Sin (ΔSz)

2 /|〈S〉|2 < 1 corresponds to metrologically
relevant spin squeezing.

Experimental realizations of spin squeezing to date are few but nevertheless encompass a wide spectrum
of atomic systems. Up to three ions have been entangled to achieve spectroscopy beyond the SQL.10, 22 A
Bose Einstein condensate in a multiple-well potential can evolve from a CSS into a spin-squeezed state under
the influence of collisional interactions.20, 21 To induce spin squeezing in a dilute atomic ensemble, atom-light
interaction can substitute for direct interatomic interaction.9, 12–14, 16, 18, 19, 23, 24 To date, the most effective
approach to such light-induced squeezing has been to perform, via the light field, a quantum non-demolition
(QND) measurement that projects the atomic ensemble into an entangled state.18, 19 This state is conditionally
squeezed, in the sense that the particular state prepared depends upon the measurement outcome.

In principle, atom-light interactions can also produce deterministic spin squeezing if the light passes through
the atomic sample multiple times so as to apply feedback.15, 25, 26 Here, we introduce a simple approach to
such deterministic spin squeezing which exploits the Hamiltonian dynamics of an atomic ensemble interacting
with a light field in an optical resonator. We demonstrate this dynamic squeezing on the |F = 1, mF = 0〉 →
|F = 2, mf = 0〉 clock transition of 87Rb and compare it with the conditional squeezing induced by resonator-
enhanced QND measurement in the same system.
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2. THEORETICAL OVERVIEW

Figure 2(a) illustrates the level scheme for our light-induced squeezing. A resonator mode is placed (in an idealized
3-level system) at equal and opposite detunings ±δ from transitions |↑〉 → |e〉 and |↓〉 → |e〉 associated with the
two clock states. Thus, the dipole interaction of the atom with the intracavity light has equal magnitude—but
opposite sign—for atoms in the two clock states. The detuning is much larger than the atomic excited-state
linewidth, δ 
 Γ, so that the interaction Hamiltonian is given by

HI/h̄ = â†â
(

g2

δ
N↑ − g2

δ
N↓

)
= 2

g2

δ
â†âŜz, (1)

where 2g is the vacuum Rabi frequency and â†â represents the intracavity photon number. The atom-light
interaction has two complementary manifestations: a frequency shift of the resonator mode by (2g2/δ)Sz; and,
via the AC Stark shift on the atomic levels, a phase shift between the clock states averaging 4g2/(δκ) per photon
transmitted through the resonator. The same dimensionless parameter φ1 ≡ 4g2/(δκ) characterizes both the
atomic phase shift per photon and the resonator mode shift (φ1/2)κSz.

A probe laser is placed at a detuning κ/2 from cavity resonance so that, for Szφ1 � 1, the intracavity
and transmitted power depend linearly on Sz. A measurement of the transmitted probe power is thus a QND
measurement of Sz; conditioned upon the outcome of this measurement, the variance (ΔSz)

2 is reduced.

This same configuration also allows a second route to squeezing. The dependence of intracavity probe photon
number â†â on Sz yields an atomic phase shift that is linear in Sz, which induces a twisting of the Bloch sphere
similar to the dynamics of the “one-axis twisting” Hamiltonian2, 26 H ∝ S2

z . The twisting has no effect on the
variance of Sz but squeezes the state along an oblique axis, as illustrated in Fig. 2(b).

The evolution of the squeezed state from an initial CSS can be understood, in a simple semiclassical model,
by evaluating the phase shift induced on each atom by the intracavity light for a given net ensemble spin Sz and
thereby obtaining the mean and variance of Sy given Sz.27 Key results from this model are as follows:

� Neglecting technical noise and decoherence, the elliptical geometry of the squeezed state is described by a
single “shearing parameter” Q = Spφ2

1, where p is the number of photons transmitted through the resonator

� The variance along the minor axis decreases as (ΔSz)
2
min ≈ 1/(1 + Q) (until reaching a limit due to either

the curvature of the Bloch sphere or photon scattering)

� The orientation of the minor axis asymptotically approaches the ẑ-direction with increasing shearing

� The uncertainty product ΔSzminΔSzmax grows in proportion to
√

Q due to phase broadening induced by
photon shot noise in the intracavity power

3. EXPERIMENTAL SETUP

We describe here the experimental setup used for dynamic squeezing; the conditional squeezing data were taken
earlier in the same setup,19 except for minor subsequent technical improvements. The atoms are trapped in the
mode of a near-confocal optical resonator using a standing-wave optical dipole trap of 851 nm wavelength. To
minimize inhomogeneous broadening of the clock transition by the optical trap, we use a combination of elliptical
polarization and magnetic bias field which yields a first-order cancellation of the scalar and vector AC Stark
shifts (see Appendix A).

We probe (and squeeze) via the optical resonator on the D2 line, using linearly polarized 780 nm light. At
this wavelength, the resonator has a finesse of 5.6(2) × 103, a linewidth κ = 2π × 1.01(3)MHz, and a mode
waist size of 56.9(4) �m at the position of the atoms. The coupling of atoms to the probe light is maximally
inhomogeneous because the standing wave formed by the probe light is incommensurate with that of the trap
(Fig. 2(c)). The inhomogeneously coupled ensemble of Na ≤ 5 × 104 atoms is equivalent to an ensemble of
N0 = (〈η〉2e/〈η2〉e)Na ≈ 0.66Na atoms uniformly coupled to the resonator with effective single-atom cooperativity
ηeff = 〈η2〉e/〈η〉e = 0.145(5),19 where 〈〉e denotes an average over the atomic ensemble and η(r) = 4g2

0/(κΓ) in
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Figure 2. Experimental setup and sequence. (a) Atomic level structure and tuning of probe laser relative to atomic
transitions and cavity resonance. (b) Shearing of a coherent state (red circle) into a squeezed state (blue ellipse) under
the scheme depicted in (a). The evolution is similar to the “one-axis twisting” dynamics of an interaction Hamiltonian
HI ∝ S2

z (dotted green ellipse), but in our system the state is broadened by photon shot noise. (c) Schematic of probe
and trap light in optical resonator. (d) Timing of probe pulses (solid blue line) and microwave pulses (dashed red line) in
preparation and readout of a squeezed state. π̃ designates a SCROFULOUS28 π pulse. Points A-C indicate the state of
the ensemble as depicted in Fig. 1. Various procedures are inserted at X to measure the noise of a spin component other
than Sz, evaluate the interference contrast, or operate a clock, as described in the text.

terms of the coupling g0 of a two-level atom to the resonator. In our system, g2 is reduced by a factor of 2/3, the
oscillator strength of the D2 line. Thus, the (appropriately averaged) atomic phase shift per photon transmitted
through the resonator is φ1 = (2/3)ηeffΓ/δ = 1.78(6)×10−4 rad; and the resonator mode shift per effective atom
of population difference N↑ − N↓ = 2Sz is κφ1/4 = 4.5(2)× 10−5κ.

The TEM00 resonator mode used for probing is tuned 3.18(1) GHz to the blue of the
∣∣52S1/2, F = 2

〉 →∣∣52P3/2, F
′ = 3

〉
transition. The probe light placed at detuning κ/2 from this resonance is a sideband modulated

at 36 GHz onto a laser that is locked via the Pound-Drever-Hall technique29 to a TEM01 mode of the resonator.
We always apply probe light in two 50 �s pulses separated by 330 �s during which we apply a composite
(SCROFULOUS28) π pulse to allow a spin-echo cancellation of inhomogeneous broadening.

Figure 2(d) shows the squeezed-state preparation and readout sequence. To measure the mean and variance
of an ensemble spin vector, we repeat this sequence 100 times in 10 sets of 10 repetitions with the same loaded
atoms.

4. DATA

4.1 Calibration of Projection Noise

In order to quantify spin squeezing, we require an accurate calibration of the quantum projection noise (ΔSz)
2
CSS

of the CSS. Figure 3 shows two measurements of the CSS variance as a function of effective atom number N0

which are essentially equivalent but sensitive to different technical noise sources. The open red triangles give the
variance (δN)2 = 4 (δSz)

2 of a measurement of Sz following the preparation of a CSS along x̂ (the squeezing
measurement in Fig. 2(d)) in effective atom units. The open red circles are obtained by preparing a CSS twice
from the same loaded atoms, measuring Sz in each case, and evaluating half the variance of the difference between
the two measurements. The dashed red curve indicates the projection noise level as determined from the atom
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Figure 3. Spin measurements performed using p = 5 × 105 probe photons to characterize CSS projection noise and
measurement resolution. Open red triangles: measured variance of N = 2Sz after preparation of a CSS in the xy-
plane. Open red circles: half the variance of the difference between measurements of Sz following two independent
CSS preparations. The red data are consistent with the variance expected from the measured atom number (dashed
red line) plus smaller contributions from technical noise of the CSS preparation, including drifts in microwave power
(solid red curve). Solid blue diamonds: measurement resolution (δN)2 = 4 (δSz)

2, given by half the variance of the
difference between two successive measurements of Sz following a single CSS preparation. Inset: Normalized spin noise
(ΔSz)2 / (ΔSz)2CSS (solid blue diamonds) vs photon number p at fixed atom number N0 = 3.3(2)× 104. The reduction of
normalized spin noise with increasing photon number occurs at the cost of decreasing contrast C = |〈S〉|/S0 (open gray
squares).

number, measured from the resonator shifts induced by optically pumping the ensemble into each of the two
clock states in turn. The data are consistent with the projection noise expected for the measured atom number
augmented by smaller technical noise contributions (solid red curve), which we attribute to drifts in microwave
power and to an effect of leakage light.

In quantifying spin squeezing, we always normalize to the true CSS variance (ΔSz)
2
CSS = N0/4 determined

from the measured atom number, not to the larger technical noise. We have an accurate calibration of the
resonator mode shift per atom κφ1/4 from measured resonator parameters, and we have independently confirmed
it by directly measuring the atomic phase shift φ1.19

4.2 Normalized Spin Noise

4.2.1 Conditional Noise Reduction via QND Measurement

To quantify the spin noise conditioned on the squeezing measurement, we perform an identical readout measure-
ment following the squeezing measurement. Although the unconditional variance (δSz)

2
U of each measurement

is at least as great as the CSS variance, the information from the squeezing measurement helps to predict the
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Figure 4. Normalized spin noise (ΔSz)2 / (ΔSz)2CSS measured after rotating by a variable angle about 〈S〉 four different
states corresponding to shearing parameters Q = 0 (green triangles), Q = 4.5 (magenta diamonds), Q = 15 (blue squares)
and Q = 28 (black circles). With increasing Q, the angle of minimum spin noise decreases, while the uncertainty product
ΔSzminΔSzmax increases. Inset: dependence on photon number p of minimum normalized spin noise (ΔSz)2min / (ΔSz)

2
CSS

(solid blue diamonds) at fixed atom number N0 = 28000(1000); and of contrast C (open gray squares).

readout with reduced uncertainty. Since the squeezing and readout measurements are identical and uncorre-
lated, the resolution (δSz)

2
M of each such measurement is given by half the variance of the difference between

the measurements. The squeezing measurement reduces the uncertainty of an ideal, noiseless readout of Sz

from (δSz)
2
U − (δSz)

2
M to (ΔSz)

2 = (δSz)
2
M ((δSz)

2
U − (δSz)

2
M )/ (δSz)

2
U .19 We plot the normalized spin noise

(ΔSz)
2
/ (ΔSz)

2
CSS in the inset to Fig. 3 as a function of the number p of probe photons used in each measurement

and find that it reaches 9.2(8) dB at p = 1.2 × 106.

4.2.2 Deterministic Noise Reduction via Hamiltonian Dynamics

To observe the dynamic squeezing, we insert between squeezing and readout a rotation about the x-axis by a
variable angle and evaluate the dependence of variance (δSz)

2 of the readout measurement on rotation angle. We
always use 1.1(2) × 106 photons for the readout measurement so that the variance contributed by the technical
noise of the readout (equivalent to the projection noise of 900 atoms) is less than the spin noise even after
appreciable squeezing. We conservatively estimate the true spin noise as (ΔSz)

2 ≈ (δSz)
2. Figure 4 shows four

representative curves of normalized spin noise (ΔSz)
2
/ (ΔSz)

2
CSS as a function of rotation angle for different

values of the shearing parameter Q ≡ Spφ2
1. From the sinusoidal fits to these data, we extract the minimum

spin noise (ΔSz)
2
min, the uncertainty product ΔSzminΔSzmax, and the angle α of the minor axis of the squeezed

state relative to the z-axis, finding these quantitites in good agreement with a model including known technical
effects.27 We plot the normalized spin noise (ΔSz)

2
min / (ΔSz)

2
CSS in the inset to Fig. 4.
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4.3 Interference Contrast

In order to quantify spin squeezing, we must not only measure spin noise but also account for the reduction
in interference contrast C = S/S0 due to the squeezing light. We measure the contrast by either driving Rabi
oscillations or inserting a Ramsey sequence between the squeezing and readout measurements (at X in Fig.
2(d)). The inset to Fig. 3 shows the contrast of Rabi oscillations measured at N0 = 4.0(1) × 103 as a function
of squeezing photon number under the experimental conditions of the conditional squeezing. Note that at larger
atom number, the “one-axis twisting” dynamics in our system lead to an appreciable Sz-dependent phase. This
phase fluctuates from shot to shot but can be predicted based on the outcome of the squeezing measurement.
Thus, the result of the squeezing measurement must be used not only to benefit from the conditionally reduced
noise in Sz but also to achieve the full contrast measured at smaller atom number.

The inset to Fig. 4 shows the contrast of Ramsey fringes measured under the experimental conditions of
the dynamic squeezing. The initial contrast Cin is higher than that measured under the conditional squeezing
conditions because the resonator locking light is further detuned.

5. RESULTS

In Fig. 5, we compare the metrology factors ζm = 2 (ΔSz)
2
Sin/|〈S〉|2 obtained by the measurement-induced

and dynamic spin squeezing as a function of photon number p at similar atom numbers, with Sin = 12000(1000)
for both datasets. The dynamic squeezing commences at lower photon number because its performance is more
nearly photon shot noise limited. In particular, the dynamic squeezing performs ideally when the fluctuations
in intracavity power are dominated by photon shot noise. This condition holds in our system for p < 5 × 104;
at larger photon number, the dominant noise is contributed by laser frequency jitter of 1.6(4) × 10−3κ between
the two 50�s probe pulses which induce the squeezing. (Noise common to the two pulses is removed by the spin
echo.) The conditional squeezing, however, always suffers from the 43(4)% quantum efficiency of our detection
and a factor of 2 in excess noise of the avalanche photodetector.∗

Both methods of squeezing improve with increasing photon number until encountering technical limitations.
The conditional squeezing is limited by the reduction in contrast associated with the inhomogeneous coupling of
atoms to probe light; the rephasing by spin echo is imperfect because of atomic motion. The dynamic squeezing
is limited not by contrast loss but by an increase in spin noise (ΔSz)

2
min at large photon number (and more

generally, at large Q). Such an effect is expected for shearing parameters greater than Qc ∼ √
N0 due to the

curvature of the Bloch sphere, but its onset in our system occurs at somewhat smaller Q. This may be due to
the inhomogeneous atomic phase induced by the resonator locking light—evidenced by the finite initial contrast
Cin. Such a phase inhomogeneity can make some atoms sample the curvature of the Bloch sphere at reduced Qc.

Because of the adverse effects arising with increasing photon number, the dynamic squeezing—which allows
the greater noise reduction at low photon number—is more effective. Both conditional and dynamic squeezing
can be improved by cooling the atoms further and by modifying the laser system to lock to the resonator
with further-detuned light (to minimize contrast loss) at higher power (to improve the frequency stabilization).
A rough estimate for the fundamental limit posed by photon scattering14, 15, 24 is, for the dynamic squeezing,
ζ−1
m =

√
N0ηeff/6 = 14 dB in our system with collective cooperativity N0η = 4000. This estimate is probably a

conservative one, as it does not take into account the continual squeezing of the noise added by photon scattering.

6. CONCLUSION

We have applied two different approaches to spin squeezing on the |F = 1, mF = 0〉 → |F = 2, mF = 0〉 clock
transition of 87Rb, both harnessing the collective interaction of an atomic ensemble with light in an optical
resonator. By a QND measurement on the light, we achieve 3.0(8) dB of metrologically relevant conditional spin
squeezing. The more powerful approach exploits the “one-axis twisting” dynamics of the atom-light interaction to

∗We reduce the sensitivity of the conditional squeezing to laser frequency jitter by placing a “compensation” sideband
of the probe laser at detuning −κ/2 relative to a cavity mode far detuned from the atomic transitions.19 However, this
sideband also doubles the photon shot noise on the detector. At the photon number where we find the minimum metrology
factor, this compensation sideband may even add slightly more noise than it removes.
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Figure 5. Comparison of metrology factors for conditional spin squeezing (open blue circles) and deterministic spin
squeezing (solid red triangles), measured at effective atom number N0 ≈ 3× 104. Curves are constructed from the fits to
measured noise and contrast shown in the insets to Figs. 3 and 4.

deterministically prepare a spin-squeezed state allowing a 6.0(4) dB metrological improvement over the Standard
Quantum Limit (SQL).

We have tested that both conditional and deterministic squeezing remain when the Ramsey clock sequence
shown in Fig. 1D-F is inserted before the readout (at X in Fig. 2(d)). So far, we have limited the precesion
time to 70 �s, as observing the squeezing after longer time would require improved field stabilization. We would
like to investigate the lifetime of the squeezing by applying it to the |F = 1, mF = −1〉 → |F = 2, mF = 1〉 clock
transition in magnetically trapped 87Rb, where long coherence times have already been demonstrated.30, 31 Our
method may also be extended beyond the microwave domain to benefit optical-transition atomic clocks.3–5

APPENDIX A. “MAGIC POLARIZATION” TRAP

To minimize inhomogeneous broadening of the clock transition, the trap light is elliptically polarized such that the
vector light shift cancels, to lowest order, the differential scalar light shift of the clock states. Such a cancellation
is possible because the vector light shift acts as an effective magnetic field32 and can be added to a real magnetic
field to yield a quadratic Zeeman shift which, like the scalar light shift, is linear in the local intensity of trap
light. In particular, in a magnetic field Bz along the resonator axis, for an atom at potential U < 0 in the dipole
trap, the |F = 1, mF = 0〉 → |F = 2, mF = 0〉 transition frequency is shifted by

δU

2π
= −ωHF

Δ
U

h
+ β

(
Bz + fbσ+

U

h

)2

, (2)

where ωHF = 2π × 6.835 GHz is the ground-state hyperfine splitting; Δ−1 = (2/Δ2 + 1/Δ1)/3 in terms of the
detunings Δ1 and Δ2 from the D1 and D2 lines; β = 574 Hz/G2 sets the scale of the quadratic Zeeman shift;33
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f is the circular polarization fraction of the trap light; and the coefficient bσ+ = (Δ−1
1 − Δ−1

2 )Δ × h/3μB =
0.061 G/MHz gives the effective magnetic field per unit trap depth for σ+-polarized light. For a given field Bz,
the broadening is minimized by choosing f to place the minimum of the parabola described by Eq. 2 at the
mean trapping potential 〈U〉 seen by the atoms.

For B2
z > (ωHF/Δ)〈U〉/β, the optimum circular polarization f is inversely proportional to Bz, so that the

residual broadening scales as 1/B2
z . For our field of Bz = 5.6 G, we find an optimum circular polarization fraction

f = 0.5(1), in agreement with the value calculated to minimize Eq. 2 at our trap depth −U ≈ 20 MHz. We
measure a Ramsey coherence time of 10(2) ms, attributable to the residual broadening β(fbσ+kT/h)2 associated
with an axial temperature kT/h ∼ 5 MHz.
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