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ABSTRACT

We quantify the influence of thermopiezoelectric effects in nano-sized AlxGa1−xN/GaN heterostructures for pres-
sure sensor applications based on the barrier height modulation principle. We use a fully coupled thermoelec-
tromechanical formulation, consisting of balance equations for heat transfer, electrostatics and mechanical field.
To estimate the vertical transport current in the heterostructures, we have developed a multi-physics model
incorporating thermionic emission, thermionic field emission, and tunneling as the current transport mecha-
nisms. A wide range of thermal (0-300 K) and pressure (0-10 GPa) loadings has been considered. The results
for the thermopiezoelectric modulation of the barrier height in these heterostructures have been obtained and
optimized. The calculated current shows a linear decrease with increasing pressure. The linearity in pressure
response suggests that AlxGa1−xN/GaN heterostructure-based devices are promising candidates for pressure
sensor applications under severe environmental conditions.

Keywords: Pressure sensor, AlxGa1−xN/GaN heterostructures, thermoelectromechanical effects, coupled mul-
tiphysics models

1. INTRODUCTION

There has been a recent increase in demand for ultrasensitive, fast, portable and robust pressure sensors that
can operate in harsh environments. Materials such as GaN and AlN exhibit favorable thermal, mechanical,
and chemical stabilities and radiation hardness with minimal problems arising from the unwanted optical or
thermal generation of charge carriers as a result of their large band gap and atomic bondings.1 Therefore they
are suitable materials for constructing pressure sensors for applications in extreme environments. One of the
unique advantages of GaN-based devices is that GaN/AlN heterostructures develop sheet charges at the hetero-
interfaces due to spontaneous polarizations and piezoelectric polarization.2–6 The stress-induced modulation
of the barrier height in AlGaN/GaN structures has been recently investigated, demonstrating potential use of
these structures in pressure or stress sensing.7–10 Also, portability of a sensor device, one of the prior concerns
in sensor applications, can be achieved with recent progress in nano-fabrication techniques. Recent reports
on micro pressure sensors based on AlxGa1−xN/GaN heterostructures grown on 6H:SiC substrate7 show that
the proposed heterostructure is a promising candidate. However, the device peroformace was limited due to
the substrate material (6H:SiC), which can be improved further by using substrate from the same family of
materials such as GaN.7 In order to meet technological requirements of such sensors, a systematic study of
thermoelectromechanical loading effects in nano-sized heterostrctures is required.

In this work, the pressure response of an AlxGa1−xN/GaN is investigated using a generalized fully coupled
thermoelectromechanical model. We use a fully coupled thermopiezoelectric formulation, consisting of balance
equations for heat transfer, electrostatics and mechanical field. Accordingly, the changes in current due to
thermionic emission, thermionic field emission and tunneling have been calculated. The results for the ther-
mopiezoelectric modulation of the barrier height in these heterostructures have been obtained. The energy band
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gap shifts for the wide range of thermoelectromechanical loadings have been analyzed. We also study the effect
of composition and dimensions of heterostructures on device performance. In particular, we have investigated
the devices fabricated on a GaN substrate with the objective of determining the most promising AlGaN/GaN
heterostructures for pressure sensing.

2. MODEL FORMULATION

In what follows, we formulate a mathematical model in order to study thermoelectromechanical effects in QDs. A
general three-dimensional (3D) axisymmetric model is developed with coupled multi-physics governing equations.
The problem is governed by a coupled system of equilibrium equations of elasticity, electrostatics and heat
transfer.

2.1 Explicit form of governing equations for wurtzite nanostructures in cylindrical
coordinates
Governing equations for wurtzite structures are axisymmetric, hence all thermal-, electric- and mechanical- field
solutions are axisymmetric as well. Therefore, the original 3D problem can be reduced in this case to a simpler
2D problem.4 The electromechanical balance equations in the cylindrical coordinates for axisymmetric case take
the following form:11

∂σrr

∂r
+

∂σrz

∂z
+

σrr − σθθ

r
= 0, (1)

∂σrz

∂r
+

∂σzz

∂z
+

1
r
σrz = 0, (2)

∂Dr

∂r
+

∂Dz

∂z
+

1
r
Dr = 0. (3)

Here σij are stress tensor components, Di are electric displacement vector components, hi are the components
of heat flux vector. Coupling of equations (1-3) is implemented through constitutive equations. These equations
are invariant with respect to rotations around the z axis (in spite of the lack of axisymmetry of the underlying
wurtzite lattice, refer to detailed discussions in12), hence solutions can be separated into a (r, z) part and a φ
part, subject to adequate boundary conditions. The constitutive relations in equations then take the following
form for wurtzite nanostructures:

σrr = C11εrr + C12εθθ + C13εzz − e31Ez − β11Θ,

σrz = C44εrz − e15Er,

σzz = C13εrr + C13εθθ + C33εzz − e33Ez − β33Θ,

Dr = e15εrz+ ∈11 Er,

Dz = e31εrr + e31εθθ + e33εzz+ ∈33 Ez + p3Θ + P sp, (4)

where cij , eij ,∈ij and κij are the elastic moduli, piezoelectric constants, dielectric constants and coefficients of
heat conduction, respectively, while pi and βij are pyroelectric and stress-temperature material constants, respec-
tively. P sp is the spontaneous polarization. At thermal equilibrium, the temperature change becomes spatially
independent, effectively leading to the determination of solution of the equilibrium equations for mechanical and
electric field only.13 The well-posedness of the corresponding mathematical models in this and in more general
case was shown in11, 14 (see also references therin) while the analysis of the special types of boundary conditions
was carried out in.15

To take into account the lattice mismatch, the strain tensor components take the following form:

εrr =
∂ur

∂r
− ε∗a

εzz =
∂uz

∂z
− ε∗c

εθθ =
ur

r
− ε∗a
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, (5)

with ε∗a = am−aQD

am
and ε∗c = cm−cQD

cm
inside the QD and zero otherwise. Quantities, am, cm and aQD, cQD are

the lattice constants of the matrix and the QD, respectively, while quantities, ε∗a and ε∗c are the local intrinsic
strains (lattice mismatch) along a and c directions, respectively. The directions a and c correspond to the shorter
and longer dimensions of the unit cell of the wurtzite crystal, respectively.

2.2 Barrier height calculations

In order to highlight further our point regarding the influence of thermoelectromechanical effect, we consider a
two band model that consists of conduction band (C1) and valance band (HH1). It is instructive in this context
to think of electrons and holes as being particles moving in effective potentials, VCeff and VHeff , respectively.
We express the relations for the effective conduction and valance band edges (for wurtzite crystals):

EC1 = VCedge + a‖
cεrr + a⊥

c εzz − V, (6)

EHH = VHedge + (d2 + d4 − d5)εrr + (d1 + d3)εzz − V, (7)

where VCedge and VHedge are the unstrained conduction and valance band-edges, respectively, a⊥
c and a

‖
c are the

conduction band deformation potentials along a and c directions, while di (i=1,2..5) are valance band deformation
potentials.16

Hence, the effective band gap (C1 − HH1) is,

Egeff = EC1 − EHH (8)

= Eg(Θ) +
(
a‖

c − (d2 + d4 − d5)
)

εrr +
(
a⊥

c − (d1 + d3)
)
εzz,

where

Eg(Θ) = Eg(0) − αΘΘ2

βΘ + Θ
, (9)

along with αθ and βθ as Varshni coefficients.18

In this relatively simple case the above equation indicates that the effective energy band gap is independent
of electric potential and is dependent on temperature and strain. The electric potential (V ) tilts the energy
bands, however, the effective band gap remains unchanged.2

2.3 Current calculation

As mentioned previously, we calculate transport current under pressure by incorporating thermionic emission and
tuneling as the current transport mechanisms. The detailed expressions for the current densities in corresponding
cases are expressed as follows. The charge density ρ near the junction is given by19

ρ(x) =
{ −qNa −xp < x < 0

+qND 0 < x < xN ,
(10)

where Na is the net acceptor concentration in the p side and ND is the net donor concentration on the N side.
Using Gauss’s law, one can write

d

dx
E(x) =

{
− qNa

εp
−xp < x < 0

+ qND

εN
0 < x < xN ,

(11)

where E is the electric field, and εp and εN are the permittivity in the p and N regions, respectively. According
to Gauss’s law, the slope of the E(x) profile is given by the charge density divided by the premittivity, Therefore,

E(x) =

{
− qNa(x+xp)

εp
−xp < x < 0

+ qND(x−xN)
εN

0 < x < xN ,
(12)
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in the depletion region and zero outside. The relationship between the electric field and the electrostatic potential
distribution φ(x) across the junction is given by

Ex = − d

dx
φ(x). (13)

If the reference potential is chosen as zero for x < −xp, we have

φ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x ≤ −xp
qNa(x+xp)2

2εp
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qNax2
p

2εp
+ qND(2xxN−x2)

2εN
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V0 xN ≤ x,

(14)

where
V0 = V0p + V0N ;

V0p = φ(0) =
qNax

2
p

2εp
;

V0N =
qNDx2

N

2εN
, (15)

where V0 is the total potential drop across the junction, V0p is the portion of the voltage drop on the p side and
V0N is the portion of the voltage drop on the N side. For nondegenerate semiconductors, one can write

ECN − FN � −kBT ln

(
N

NCN

)
, (16)

Fp − Evp � −kBT ln

(
p

Nvp

)
. (17)

Using the boundary condition Naxp = NDxN , the expressions for V0, V0p, V0N and the total width of the
depletion region xw from

xw = xp + xN , (18)

one can derive
xp =

ND

Na + ND
xw; xN =

Na

Na + ND
xw . (19)

Therefore, xw and V0 are related as

xw =

[
2εpV0

qNaND

(
ND + εp

εN
Na

)
]1/2

(Na + ND). (20)

The band edge Ev(x) from the p side to the N side is expressed as

Ev(x) =
{ −qφ(x) on p side

−ΔEv(x) − qφ(x) on N side, (21)

The conduction band edge Ec(x) is above Ev(x) by an amount Egp on the p side and by an amount EGN on
the N side. Ec(x) is always parallel to Ev(x):

Ec(x) =
{

Ev(x) + Egp x < 0
Ev(x) + EGN x > 0, (22)
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Using the one-dimensional WKB approximation, the transmission probability for the barrier is expressed as20

T (Ex) =

{
exp
(
− 4π

h

∫ XE

0
[2m∗

n{Ec(x) − Ex}]1/2dx
)
, Emin ≤ Ex < ECN ,

1, ECN ≤ Ex,
(23)

where h is Planck constant, m∗
n is the electron effective mass, Ex is the energy coponent in the x direction and

Emin = max[Ecp, Ec(W )].

Assuming the Boltzmann energy distribution, the electron current density Jn across the heterointerface is
expressed as

Jn = Jn1 − Jn2

= −A∗T
k

∫ x

Emin

f1(Ex)T (Ex)dEx +
A∗T

k

∫ x

Emin

f2(Ex)T (Ex)dEx , (24)

where k is the Boltzmann constant, A∗ is the effective Richardson constant for electrons and f1,2(Ex) is the
occupation probability in each region. We have

Jn1(0
−) = −qvn1(1 + δ)n1(0−)exp

(
− ΔEc

kT

)
, (25)

where

n1(0−) = Nc1exp

(
Efn1(0−) − Ec(0−)

kT

)
, (26)
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A∗T 2
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. (27)
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h
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)
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Similarly, the equation for the opposing flux of electron current can be expressed as

Jn2(0
+) = −qvn2(1 + δ)n2(0+) , (29)

where

n2(0+) = Nc2exp

(
Efn2(0+) − Ec(0+)

kT

)
, (30)

vn2 =
A∗T 2

qNc2

. (31)

where vn1,2 is the mean electron thermal velocity, Nc1,2 is the effective density of states in the conduction band
in each region, and n1(0−) and n2(0+) are the electron densities on either side of the heterointerface.

The net electron current density crossing at the heterointerface is

Jn,i = −qvn1(1 + δ)n1(0−)exp

(
− ΔEc

kT

)
+ qvn2(1 + δ)n2(0+) (32)

The thermionic emission is taken into account through the parameter δ. When the tunneling mechanism is
neglected (δ = 0), this equation becomes the thermionic boundary condition.
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3. RESULTS AND DISCUSSIONS

We study the dependence of thermoelectromechancial loadings on barrier height and current calculated for applied
potential for 10 nm and 20 nm thick AlxGa1−xN. The calculations are performed for a range of Al-concentration
(0 to 1), temperature (0 K to 300 K), pressure (0 GPa to 10 GPa) and for 20 nm thick AlxGa1−xN in 60 nm
× 140 nm matrix of GaN. Figure 1 shows the band gap and conduction band edge variation under different

Figure 1. Effect of Al-concentration and pressure on band gap and conduction band edges of AlxGa1−xN/GaN heterostruc-
ture.

thermoelectromechanical loadings. The band gap energy of AlxGa1−xN increases with increase in pressure and
decreases with increase in temperature. Eg varies from 3.45 eV for x = 0 to 6.2 eV for x = 1.0 at T=0 K and
P=0 GPa, while smaller band gapes are observed at T=300K and P=0GPa, 3.35 eV for x = 0 and 6.1eV for
x = 1.0. For T=0K and 300K, the change ΔEg is ∼ 0.1eV at x = 0.3 which further decreases to ∼0.0eV at
x = 1.0. On the other hand, the conduction band edge (Ec) profiles for different x and pressure at T=0K 3 and
T=300K 3 show that the change in Ec due to change in pressure, ΔEc increases with increase in x. For T=0K
and 300K, the change ΔEc is ∼ 0.8eV at x = 0.3 which further decreases to ∼ 1.1eV at x = 1.0.

The Fermi level, η for intrinsic semiconductor can be calculated from Eg and the barrier height, φB is known
from the profile of Ec for corresponding conditions. The smaller values of ΔEg with increase in Al-concentration,
may result in less sensitivity to pressure with higher Al-concentrations in AlxGa1−xN. On the other hand, higher
values of ΔEc with increase in Al-concentration will increase the sensitivity of the pressure sensor. However, the
effect of relatively higher values of ΔEc may overcome the effect of smaller values of ΔEc with increase in Al-
concentration and effectively may lead to increase in sensitivity of the pressure sensor at higher Al-concentrations.
Figure 2 shows the pressure dependence of the current at different Al-concentrations (x = 0.3, 0.5, 0.7 and 1.0).
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Figure 2. Calculated pressure dependence of the current as a function of Al-concentration.

The results indicate a decrease in the magnitude of the current that is nearly linear over the range of pressures
from 0 to 10 GPa. This indicates that AlxGa1−xN/GaN heterostructures are promising candidates for pressure
sensing applications under severe environmental conditions.

4. CONCLUSIONS

In this paper, a systematic study on the effects of thermomechanical loading on AlxGa1−xN/GaN heterostruc-
tures has been performed. In order to achieve this objective, a fully coupled multiphysics model incorporating
balance equations for heat transfer, electrostatics and mechanical field has been developed. Using the barrier
height modulation principle, we have demonstrated that AlxGa1−xN/GaN heterostructures can be employed as
pressure sensors under a wide range of thermal and pressure loadings. The linear trends in vertical transport
current suggest the potential of these heterostructures in pressure sensor applications under severe environmental
conditions.

REFERENCES
[1] J. Piprek, Nitride Semiconductor Devices: Principles and Simulation, Wiley-VCH, 2007.
[2] A. D. Andreev, and E. P. O Reilly, Phys. Rev. B 62, 15851 (2000).
[3] A. D. Andreev, and E. P. O Reilly, Nanotechnology 11, 256 (2000).
[4] B. Lassen, M. Willatzen, D. Barettin, R. V. N. Melnik, and L. C. Voon, J. of Phys.: Conf. Series 107,

012008 (2008).
[5] S. R. Patil, and R. V. N. Melnik, Nanotechnology 20, 125402 (2009).
[6] S. R. Patil, and R. V. N. Melnik, Phys. Status Solidi A 206, 960 (2009).
[7] K. A. Son, Y. Liu, P. P. Ruden, J. Xie, N. Biyikli, Y. T. Moon, N. Onojima, and H. Markoc, Proc. IEEE

Sensors 2005 DOI: Digital Object Identifier: 10.1109/ICSENS.2005.1597935.
[8] B. S. Kang, J. Kim, F. Ren, J. W. Johnson, R. T. Therrien, P. Rajagopal, J. C. Roberts, E. L. Piner, K.

J. Linthicum, S. N. G. Chu, K. Baik, B. P. Gila, C. R. Abernathy, and S. J. Pearton, Appl. Phys. Lett. 85,
2962 (2004).

[9] B. S. Kang, S. Kim, J. Kim, F. Ren, J. W. Johnson, K. Baik, S. J. Pearton, B. P. Gila, C. R. Abernathy,
C. C. Pan, G. T. Chen, J. I. Chyi, V. Chandrasekaran, M. Sheplak, T. Nishida, and S. N. G. Chu, Appl.
Phys. Lett. 83, 4845 (2003).

[10] M. Eickhoff, O. Ambacher, G. Krotz, and M. Stuzmann, J. Appl. Phys. 90, 3383 (2001).

Proc. of SPIE Vol. 7402  74020C-7

Downloaded from SPIE Digital Library on 17 Mar 2010 to 18.51.1.125. Terms of Use:  http://spiedl.org/terms



[11] R. V. N. Melnik, Appl. Math. Comput. 107, 27 (2000).
[12] L. C. Voon, C. Galeriu, B. Lassen, M. Willatzen, and R. V. N. Melnik, Appl. Phys. Lett. 87, 041906 (2005).
[13] C. W. Nan, Phys. Rev. B 49, 12619 (1994).
[14] R. V. N. Melnik, Math. Mech. Solids 2, 153 (1997).
[15] R. V. N. Melnik, and K. N. Melnik, Comm. Numer. Methods Engg. 14, 839 (1998).
[16] T. Nakaoka, S. Kako, and Y. Arakawa, Physica E 32, 148 (2006).
[17] R. V. N. Melnik, Comp. Phys. Commu. 142, 231 (2001).
[18] J. Z. Wang, P. J. Huang, Y. S. Huang, F. Firszt, S. Legowski, H. Meczynska, A. Marasek, and K. K. Tiong,

J. Phys.: Condens. Matter 19, 096216 (2007).
[19] S. L. Chuang, Physics of Optoelectronic Devices, John Wiley and Sons, 1995.
[20] K. Yang, J. R. East, and G. I. Haddad, Solid State Electron. 36, 321 (1993).

Proc. of SPIE Vol. 7402  74020C-8

Downloaded from SPIE Digital Library on 17 Mar 2010 to 18.51.1.125. Terms of Use:  http://spiedl.org/terms


