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Abstract

This paper introduces a simple "contingent experimental

design" and outlines how the contingent design would operate

and how it would be evaluated. The familiar "before-and-after"

type of experiment is modified so that the duration of the

"baseline" period, rather than being fixed before the experi-

ment, is made contingent on the experimenter's prior estimate

of the experimental impact and on the baseline data as they

appear. At the conclusion of each day of the baseline period,

a decision is made as to whether to terminate the baseline at

that time, weighing the costs of extending the baseline by one

day against the benefits of better estimating the experimental

impact. An analytic framework is proposed for making this deci-

sion and for comparing the contingent design against an alter-

native having a baseline period of fixed duration.
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1. ' 'INTRODUCTION

This paper addresses the following question: given that

one is planning a prospective experiment of the "before-and-

after" type, how long should one extend the "baseline" period?

One simple answer is to make the baseline as long as the anti-

cipated trial period. A more intriguing answer, which this

paper explores, is to make the duration of the baseline period

contingent on the baseline data as they unfold. Thus we imagine

that at the conclusion of every day of the baseline period, the

managers of the experiment have the option of either beginning

the trial period on the next day or extending the baseline

period one more day and then reconsidering the question. We

develop below an algorithm for making that decision.

There are many possible contexts in which this problem

of contingent experimental design might be analyzed. For con-

creteness we pick one which seems both tractable and realistic,

making the following five assumptions. First, we assume that

the data are counts of events generated by homogeneous Poisson

processes with rates Xb counts/day during the baseline period

and RAb during the trial period. For instance, the events

may be serious crimes, the experimental treatment an increase

in police patrol presence, and the goal of the experiment an

estimate of the parameter R [1] . Second, we assume

that the potential duration of the baseline Ib is unlimited

but the anticipated duration of the trial period is fixed at It



Third, we assume that the cost of any day of baseline data

collection is Cb and that of any day of trial operation is

C t > Cb This creates a pressure to minimize the duration of

the baseline which trades-off against the need to extend the

baseline period to smooth out sampling fluctuations and better

estimate the true experimental impact. Fourth, we assume that

the managers of the experiment have a prior sense of the

possible values of R and their relative credibilities. This

prior distribution for the experimental impact is essential

for the real-time reaction to baseline data. Fifth, we assume

that the only other costs of note are the costs of errors in

the estimation of R , the experimental impact. In general,

these costs will be a function both of the actual value of R

and of its estimate R . The decision itself is treated as

costless, or as part of the fixed costs of data analysis.

2. DECISION RULE FOR TERMINATING 'BASELINE 'P'ERIOD

After any day during the baseline period, the decision

to be made is to stop the baseline then or to add one more day.

If the baseline period is stopped after Ib days, the total

cost of the experiment is the cost in errors of estimation plus

the implementation costs CbIb + CtIt . If the baseline period

is stopped after Ib + 1 days, the total cost is the cost in

errors of estimation plus Cb(Ib+l) + CtIt . Let the cost or

disutility of estimating impact R conditional on the true
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impact Ro be U(RJR O) . Then the total cost of stopping

after Ib days ("now") is

Cnow = U(RnowIR o ) + CbIb + CtIt

and the total cost of stopping after Ib + 1 days ("next") is

Cnext = U(RnextR ) + Cb(Ib+l) + CtIt (2)

In general one should conclude the baseline period whenever

C <C
now next (3)

which condition corresponds to

A A

U(RnowR) - U(Rnext < Cb (4)

A A

Of course, the estimates R and R will be random
now next

variables whose values will be unknown at the time of the

decision. Suppose that during the first Ib days of the base-

line period there have been Nb random events, that during

the next baseline day (if it is decided to extend the baseline

period) there will be m additional events, and that during the

It days of the trial period there will be n random events.

In that case the estimates of experimental impact would be

now - b I ) ( b(5)
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and

n/I.t.... b
R nex - /I (6)
next (Nb+m)/(Ib+l) It b+m

At the time of the decision both m and n will be unknown,

but both will presumably be generated by Poisson processes with

parameters Ab and AtIt respectively. The parameter Ab can

be estimated by Bayesian updating [2] from the accumulated base-

line data (Ib and Nb). The parameter t would then be

estimated as RolbA

As shown below, this line of analysis produces the probabi-

lity distributions of m and n , which via (5) and (6) provide
A A

the distributions of U(R nowR o) and U(RnextlRo) in (4).

It is reasonable and customary when faced with a stochastic

criterion like (4) to base decisions on the expected values of

the stochastic terms [3]. Thus the criterion for stopping the

baseline after Ib days becomes

E[ ( nowIRg - E(RnextIRo <Cb (7)

Finally, we note that the true experimental impact R

cannot be known at the time of the decision, but a prior dis-

tribution is presumably available. Taking this prior into

account leads to the unconditional expected cost decision rule:

stop the baseline period after Ib days whenever
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E I U(R nowlR O) - E ( nef(R) dR < C b (8)

R =0

A A

Note that since both R and Rnext are functions of
now next

the number of events in the baseline period, Nb the use of

(8) may produce different decisions depending on the particular

history of events over the baseline period. Whether a particular

history calls for terminating the baseline will depend on the

actual current count Nb , on the form of the disutility function

for errors in estimation (e.g., are over-estimates more serious

than under-estimates?) and on the prior estimate of experimental

impact. This general format can accomodate two very different

types of evaluator. One, whom we might call the "scientist",

would seek to establish "objective" evidence of experimental

impact by using a diffuse prior and by reacting equally to over-

estimates and under-estimates. The other, whom we might call

the "advocate", would seek to "confirm" a rather strong prior

and would have different sensitivities to false-negative and

false-positive conclusions. Without here arguing the merits of

these philosophical approaches to evaluation, we note that

either perspective can be embodied in the decision rule (8).

3. PROBABILITY DISTRIBUTIONS OF THE ESTIMATES OF EXPERIMENTAL
IMPACT

We noted above that the estimation errors conditional on a
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prior estimate of experimental impact R0 have distributions

which depend (through (5) and (6))on m , the number of events

in the next baseline day if the baseline is extended, and on

n , the number of events in the trial period. This section

derives the probability distributionsof the random variables m

and n and their joint distribution.

The number of events m in any baseline day has, by

assumption, a Poisson distribution with parameter Xb . Thus

Prob [mlAb] = exp [-Xb] bm/m! , m > . (9)

Now the exact value Ab cannot be known, but a Bayesian estimate

can be made from the baseline data. Assume that before the base-

line data collection begins we have a diffuse prior distribution

for kb (one could instead chose a logarithymically flat prior

or a gamma prior with no essential change in the form of the

results to be derived). It is well known [2] that updating this

prior with the baseline data of Nb Poisson events in Ib days

leads to a gamma posterior distribution for Xb

Nb+l
I Nb >

f(Xb) Nb A exp -IbXbb ' Xb (10)

Combining (9) and (10) we get the unconditional distribution of m ,

the count in the next baseline day
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Iso ]m =Oc·IA]A1 [ ] ~+r -._ Nb+lIb . NbProb [ml T= [mX] b/= 4M xb Xb exp [-Ibb] dXb (11)rob

Nb+1

b

N. m!

Ib=O

Nb+1b 

I b'b

N +1
Q Nb+\(I) b I

Nb +m
Ib exp [-(Ib+l)Xb] dAb (12)

(13)
.(Nb+m)! . .

Nb +m+ 1

Ib+l)

, m- O (14)

A similar analysis holds for n , the number of events in

the trial period, conditional on the estimates R of experi-

mental impact and b of baseline rate. During a trial period

of duration It the conditional count will be Poisson

Prob nlR , b] = exp [- Ro bIt] (RoAbt)n/n!
0 b 0 b t 0 b t~~~~~~~~~~~~ , n - 0 . (15)

We can next use (10) to obtain

_ - II

Ib +1
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Prob [n-Ro] = exp [-ROXbIt] (RoXbIt)n/n! x

Xb-0

b exp 
bexp [-Ib b dAb (16)exp~~~~

0o

Nb+
(RoIt7 b Nb+n

Nb! b
Xb=0

exp [-(RoIt+ Ib)b] dAb (17)

Nb+1
(RoIt)n Ib (Nb+n)!

n! Nb+n+l

nb (RoIt+ I b)

+n Nb+1 R I n
b b n> (19)n +I IRit+ib

We note that since the counts m and n both appear in

expression (6) for Rnext we require their joint distribu-

tion. Conditional on R ° and Ab , the counts m and n

are independent Poisson variates with parameters Ab and

RoAbIt , respectively (since they arise in non-overlapping

time periods).

_ 1� *111 1�___�_ _
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Prob [m,nIRoAb] = Prob [miAb] x Prob [nlRo ,Xb

= [exp [-xb] bm/m!] x [exp [-RokbIt] (RoXbI t)n/n!

Again using (10) to uncondition with respect to b

J [exp (-Ab) Abm/m!] x [exp (-RoAbIt) (Ro XbIt)n/n!]

Ab=0

b exp (-IbXb) dA b
e p

. (RoIt) IbNb+

m! n! Nb!

fO

Jx=hb=

Nb+1
(RIt)n I b
m! n! Nb

xm+n+ Nb exp[-(+RoI t+Ib ) b]b (2

(m+n+Nb) !

m+n+Nb+l
(1+RoIt+Ib)

(Nb+m+n)! / Ib \ b

m n! N b .! I+R It+Ib +

1+R In

x I +I
t b ( 1 m

(20)

(21)

Prob [m,n|Ro] =

x (22)

(24)

.

(25)
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Note that the counts m and n are not independent, since

(25) is not (14) times (19). Expressions (19) and (25),

together with (5) and (), would be used in the decision rule

(8) to decide, after observing Nb events in Ib days, whether

or not to terminate the baseline period. Unfortunately, even

2 , it does
for a simple disutility function such as (R - R) 

not appear to be possible to obtain an analytical expression

for the decision rule (8) or even for the conditional decision

rule (7). It should be quite easy to obtain numerical results

on a digital computer, however.

To summarize, terminating the baseline period at Ib

having observed a total of Nb events and believing the true

experimental impact to be R ° , one would expect estimates of

impact of the form

R =n 0 (5)
now tIt (Nb n

where

Nb +1

(Nb+n) R Ib) b RoIt ) . (19o oit+ Ib

If one were to extend the baseline by one day, the possible

estimates would be of the form

next +l n, (6)Rtext I (yjm) n ,- 0 (6)
Rnex~t =b 
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where

(Nb+m+n) +RItIb)
Nb+l

R I n bm

1+RIt+b +R It+I .(25)

If, instead of the diffuse prior, one were to choose a gamma

prior for the baseline rate Ab

Tk+l

(Ab) k!

then one merely replaces Ib

exp (-Tb ) (26)

with Ib +T and Nb with Nb+k

in the probability expressions, i.e.,

Prob [n] =

Nb+k+l(Nb+k+n Ib+T

bn )(R I b+T ) 

RI
ot

RoIt+Ib+T

and

N +k+l

.(Nb+k+m+n) ! Ib+T b

robn ] (N 6 +k)!m-:n! /j+ROIt+Ib+T/

n m

ot b+T1 )
+R I +I +T 1+R I+Ib+T 0 tb 0 

(28)

(27)
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4. COMPARISON OF CONTINGENT AND' FIXED-LENGTH BASE'LINES' BY MONTE
CARLO SIMULATION

We have developed above an algorithm for contingent term-

ination of the baseline period in a before-and-after type experi-

ment. Given a prior guess about the experimental impact R ,

a prior for the baseline rate \b a set of disutilities expressed

by U(RIRO) and Cb , and the current baseline duration Ib and

count of events Nb , one can numerically evaluate the decision

rule (7) and decide whether or not to stop the baseline.

In this section we address the issue of comparing this

contingent approach with fixed-length baselines. Several fixed-

length alternatives come to mind: (1) equal baseline and trial

periods; (2) longer baseline, so that equal costs are devoted to

baseline and trial periods; (3) longer trial period, so that the

(presumably) smaller rate of events during the trial period can be

estimated with equal precision. Whatever the choice of fixed-

length alternative, we require both a measure of comparative

performance and a mechanism for estimating the measure. The

measure to be used is bsed on that used in the decision rule; the

mechanism is Monte Carlo simulation.

Earlier we based the decision to terminate or extend the

baseline on a measure which combined the cost of error in estima-

tion of the experimental impact with the cost of the baseline

data collection. To be consistent, we must use this same measure,

only now we compare the contingent baseline against a fixed-length

alternative. Let c index the contingent case and f the fixed-

length case, and let the true measure of experimental impact be R*
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Then the performance measure

A f= f(R*)+CbIbf +CtI - c (R*)+CbIbc+tI (29)

= U (R*)-Uc(R*)] + [Cb(Ibf-Ib] (30)

Thus the relative advantage A depends on the difference in

estimation errors and the difference in baseline durations (and

therefore costs). Any value of A> 0 indicates that the contin-

gent approach out-performed the fixed lenqth alternative.

One would expect that the relative a 9vntage of the con-

tingent approach would depend on five factors: the prior dis-

tribution of experimental impact, the prior distribution of the

baseline rate, the length of the trial period, the form of the

disutility function for estimation errors, and the cost of base-

line data collection. All five of these factors represent para-

meters in a Monte Carlo simulation, so a full investigation of

the relative merits of the contingent approach promises to be a

rather large undertaking. For any given settings of the last

three factors, we could systematically explore the dependence of

A on the first two factors. A useful format for reporting the

simulation results would be as shown in Figure 1. Any prior dis-

tribution for Ab could be summarized by its mean squared error

("M.S.E.") around the true value. For a given M.S.E one would

choose a prior estimate of impact Ro and run several simulations

_I~~~~ __________ __~~~~~~---- -
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FIGURE 1: FORMAT FOR DISPLAY OF MONTE CARLO COMPARISON
OF CONTINGENT vs. FIXED-LENGTH BASELINES
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to form an estimate of the relative advantage of the contingent

approach.

The simulations themselves would be executed in accor-

dance with the flowchart shown in Figure 2. Initialization

involves selection of those parameters which will not be varied

during the course of one simulated experiment, such as the

prior distributions for baseline rate Ab and the hypothesized

experimental impact Ro , their actual values A*b and R* ,

the duration of the fixed-length alternative Ibf the duration

of the trial period It , and the disutilities u(RIRo ) and Cb

Simulation of a day of baseline or trial requires the generation

of Poisson counts at a given rate for a given period of time.

Numerical solution of (7) constitutes evaluation of the decision

rule. The output of any given simulation would be a value of

A, the relative advantage of the contingent approach.

_
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FIGURE 2: FLOWCHART OF SIMULATION COMPARING CONTINGENT
WITH FIXED-LENGTH BASELINE
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