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Abstract

The new field of connectomics is using technological advances in microscopy and neural
computation to form a detailed understanding of structure and connectivity of neurons.
Using the vast amounts of imagery generated by light and electron microscopes, connectomic
analysis segments the image data to define 3D regions, forming neural-networks called
connectomes. Yet as the dimensions of these volumes grow from hundreds to thousands of
pixels or more, connectomics is pushing the computational limits of what can be interactively
displayed and manipulated in a 3D environment. The computational cost of rendering in
3D is compounded by the vast size and number of segmented regions that can be formed
from segmentation analysis. As a result, most neural data sets are too large and complex
to be handled by conventional hardware using standard rendering techniques. This thesis
describes a scalable system for visualizing large connectomic data using multiple resolution
meshes for performance while providing focused voxel rendering when editing for precision.
After pre-processing a given set of data, users of the system are able to visualize neural
data in real-time while having the ability to make detailed adjustments at the single voxel
scale. The design and implementation of the system are discussed and evaluated.
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Chapter 1

Introduction

Recent advances in neural imaging have enabled neuroscientists to gather data at previously

unobtainable dimensions. Smaller resolutions and large extents of captured data facilitate

a more global perspective into neural structure. Rather than focusing on specific interac-

tion between neuron pairs, neuroscience now has the ability to consider the neuron activity

as more generalized network of interaction. Mapping this activity into a connectivity net-

work, called a connectome, could lead to an understanding of brain functionality that is

currently unexplainable by local neuron interaction. The relatively new field of connectomic

research has established itself to formulate these connectivity networks through mass neural

connectivity data generation and analysis.

A combination of new technology being developed at the Massachusetts Institute of

Technology, Harvard, and the Max Plank Institute for Medical Research in Heidelberg,

Germany has been critical to the significant growth that connectomics has experienced

recently. Heidelberg and Harvard are leading advances in microscopy to allow for a new

level of detail in cellular imaging, resulting in dramatic increases in the amount of image

data that can be gathered. Furthermore, development of computation ability at MIT has

greatly aided in the analysis of this image data resulting in the generation of vast amounts

of corresponding connectomic data.

1.1 Motivations for Scalability

The increased generation of connectomic data, as facilitated by technological advances in

the capture of raw image data also results in significant performance scalability problems.

The relationship between dimension and volume dictates that a linear increase in image

capture resolution results in a cubic increase in volume data. As a result, even modest

11



12 Chapter 1. Introduction

improvements in microscopy can dramatically increase the number of voxels in volume data

to be visualized. Currently, standard image volumes have dimensions of thousands of pixels.

If this is increased just a single order of magnitude, the volume data will grow from billions to

trillions of voxels. A system that aims to meet the challenge of interactively displaying such

data sets must be built on principles of scalability if it intends on maintaining usefulness.

1.2 Motivations for 3D Editing

Visualizing connectomic data in 3D is a common technique used during the analysis pro-

cess. After the initial raw image data is acquired, the data is segmented into regions that

correspond to objects in the volume. This segmentation data is used to construct 3D mod-

els that represent these objects. Drawing these objects in a 3D space provides a useful

relative spacial context and intuitive navigation means into the connectomic data. Orbiting

around an object in space offers numerous perspectives into the inherently 3D structure of

segmented volume data. Many of these interactions that are immediately apparent as a 3D

model are quite difficult to visualize when only using layers of 2D slices.

In addition to simply visualizing the results of segmented connectomic data, users re-

quire the ability to create and modify segmentations as well. While ideally all raw image

data would be segmented into various objects perfectly by a segmentation algorithm, current

analysis techniques occasionally make mistakes when labeling image data. Traditional seg-

mentation editing uses an interface similar to many drawing programs to facilitate changes

in values that make up a segmentation within the volume. This can be done using a brush

tool to paint in specific pixels or the use of splines to surround a group of pixels. Yet either

interface is inherently limited to a requirement of working on a 2D plane. Most significantly,

this means the user is forced to flip between slices to gain an understanding of the true 3D

structure of the segment. This is less than ideal when trying to understand the connectivity

of these generally topographically complex structures.

Editing in 3D offers the spacial context benefits of 3D visualization to quickly understand

how subtle segmentation modifications are changing the connectivity of the data. Direct user

interaction with a 3D object allows the user to get instant feedback on how segmentation

edits affect the topography of segmented regions. This allows a user to quickly and easily

correct data that have been miss-labeled during the segmentation process.
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1.3 Thesis Outline

This thesis proposes a new scalable system for working with connectomic data in 3D. This

includes an architecture for handling vast quantities of data to facilitate interactive visu-

alization of objects produced from segmentation as well as a novel approach for editing

segmentation data in 3D. Chapter 2 describes the background of connectomic data and

discusses work related to 3D connectomic visualization and traditional segmentation edit-

ing. The general design of the new system proposed by this thesis is outlined in Chapter 3.

Chapter 4 discusses the system components and their unique features that contribute to the

performance and functionality of the system. The application of this thesis is discussed in

Chapter 5, which describes the use of the system in a full application. Chapter 6 concludes

by describing improvements that could be considered for the future and reviews the major

contributions of the system.
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Chapter 2

Background

This chapter provides a background into current techniques for connectomic visualization

and editing. Section 2.1 details the generation and analysis of segmentation data and section

2.2 outlines software related to the proposed system.

2.1 Data Generation and Analysis

In order to construct connectomic networks, data must first be generated from a tissue

source and then analyzed to form a segmentation. A data generation starts with a section

of brain tissue that is carefully sliced to a few dozen nanometers in thickness. These

cross-section slices are scanned via electron microscopy to form layered sets of neural data.

Various stains or fluorescent markers may be added to the tissue, causing different features

to become pigmented and making them easier to differentiate. These unique versions of

image data are called ‘channels’. Multiple channels allow for greater clarity and perspective

into the physical makeup of the image slice. A significant challenge, however, is the necessary

care needed to achieve high-quality image data through careful slicing and scanning so as

to avoid creating imaging artifacts. Poor cuts can distort the tissue from its original shape

and bad scanning can result in noise in the data in the form of blurry or obscured data.

Any of these issues can lead to significant segmentation errors during image analysis.

In the analysis stage, the data that was gathered from tissue slices are grouped into

regions based on evidence of boundaries in the raw image data. These boundaries are

segmented apart either by hand or complex machine-learning algorithms to construct 3D

objects that are contained within the initial tissue sample. However, the recent exponential

growth of volume data is resulting in a near total reliance on software to perform the task

of segmentation. Yet the limitations of electron microscopy resolution and the possible

15
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addition of artifacts, as described previously, can result in distorted and ambiguous data.

This data is more difficult to analyze and is more likely to cause mistakes during the

automated segmentation process. The three major segmentation errors produced during

segmentation are:

• Splits. A single object in the channel data is incorrectly identified as multiple ob-

jects. This may occur when noise in the channel data on a single object is incorrectly

interpreted as a boundary between multiple objects.

• Merges. Multiple segment objects are mislabeled as a single object. This commonly

occurs when image data containing the boundaries of objects is either noisy or of low

quality, making it difficult to determine where one object ends and another begins.

• Misses. An object is entirely unrecognized during segmentation. Unlike a merge,

where one object is assimilated into another, noise in the original image data causes

an object to be ignored completely and it is left as an empty space in the final seg-

mentation.

Until segmentation algorithms improve, the output will need human intervention to rec-

ognize these errors and perform corrections. This is the primary motivation for segmentation

editing as discussed in section 1.2.

2.2 Related Work

The use of software systems to visualize and edit data is ubiquitous to the connectomic

analysis process. This is a result of the exponential growth in data that would otherwise

be impossible to manage without computational means. This section outlines the principle

features and drawback of related connectomic visualization and editing software systems.

2.2.1 Validate

Validate is a tool developed at the Massachusetts Institute of Technology to allow previously

traced 2D segment object contours to be constructed into 3D models. This tool allows for

simple merging of previously of traced object contours to form unified structures. Validate

is primarily used as a merging tool to stitch together pieces of segment results from image
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data that may have been segmented multiple times with varying parameters. The result-

ing segmented regions are individually colored to allow for easy 3D visualization of their

connectivity.

Yet there are many feature and performance limitations to this tool. Contours can only

be merged into larger structures and cannot otherwise be split or modified without having

to refer to other software. Validate also suffers numerous performance issues. The primary

causes for this performance limitation is the speed of the language the tool is built on and

the limited use of pre-processing. Validate uses the MATLAB scripting language which,

like any interpreted language, has a significant performance overhead cost in comparison to

a complied language. Furthermore, Validate does not make effective use of preprocessing to

provide interactivity. The 3D object representations of segmented regions are generated as

needed, but not retained between viewing other regions. This means each time a different

object is rendered, the 3D representation must be reconstructed. This causing significant

performance reductions when viewing large structures.

In contrast, the proposed system contains editing ability to allow users to split, merge,

and otherwise modify segmented regions. Significantly, this functionality is enough to allow

a user to modify a segmentation to any shape. Also, the system makes extensive use of

pre-processing to allow segmented regions to be quickly loaded and displayed for interactive

3D visualization.

2.2.2 Reconstruct

Developed at Boston University, Reconstruct is a popular connectomic analysis tool because

it is freely available and contains much of the basic functionality needed to generate 3D

models of layered cross-sections [4]. Reconstruct uses a point series representation of object

segmentation rather than the traditional segmentation image data. This means that a

segment is defined by a collection of ordered points. A group of these tracings can be

converted to a 3D representation which can be viewed interactively or exported to allow for

high-resolution rendering in other programs.

Yet the 3D functionality of Reconstruct is focused on exporting generated objects more

than a tool for interactive analysis. To view objects in 3D, segment objects are added to the

“scene” collection to cause a meshed version of the object to become visible. The meshes

that make up the scene may be viewed in Reconstruct or exported to common formats, but
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may not be reused in Reconstruct again [5]. This means that every use of the Reconstruct

system requires that the meshes be regenerated if they are to be viewed in the 3D component

of the system. Furthermore, the reliance on point series data to generate meshes causes the

meshing scheme to be highly dependent on point order. This means small irregularities in

tracings can lead to severely unexpected results. Section 3.2.2 further describes the use of

point series data for mesh generation.

The system proposed, however, uses a robust voxel based volume data representation.

Similarly to pixels in many image editing programs, voxels in the 3D space can be set to

various values in any order to define a segmented region. Furthermore, meshes generated

by the system are stored to disk in a format that can be reused. This allows users to quickly

visualize their data each time the system is used after taking the time to build all of the

meshes once.

2.2.3 Amira

In contract to Validate and Reconstruct, the Amira software system developed by Visage

Imaging is specifically advertised as a scalable visualization system developed for use with

large, complex data sets. In addition to rendering large network structures it also provides

simple controls for interactively modifying orientation and visualization properties of the

data. Amira can generate large meshes constructed from many segment objects and offers

a wide variety of viewing options to creatively display 3D data. Unfortunately, Amira is

only limited to visualization and lacks any segmentation editing capabilities. Furthermore,

while it is able render large, complex, segmentation data, user feedback has indicated this

comes at a severe performance cost. This corresponds to significant load times as well as

poor frame rates when viewing large data sets. These penalties on interactivity severely

limit the usability of the system.

The system described in this paper aims to achieve such scalable rendering without the

noticeable degradation in interactivity that Amira suffers. Through sophisticated hierarchi-

cal culling methods, the system bounds the data that is loaded and rendered to only visible

or partially visible regions. This cuts down on unnecessary processing and dramatically

improves interactive performance.



Chapter 3

System Design

This section discusses the design of the proposed system. Section 3.1 sets forth the ma-

jor system goals, section 3.2 discusses primary considerations of how these goals can be

accomplished, and section 3.3 outlines the structure of the final proposed system.

3.1 System Goals

The use of 3D visualization with connectomic data is a common tool for reviewing the

results of the segmentation process. Section 3.1.1 describes the 3D visualization aspects of

the related system described in section 2.2 that the system aims to incorporate. The novel

scalability and 3D editing goals are detailed in section 3.1.2.

3.1.1 Hybrid 3D Visualization

Many of the desired 3D visualization capabilities of the system can be currently found

individually in related software systems. But as described in section 2.2, many systems

are unable to deal with the interactive performance demands of 3D visualization with the

growing segmentation data sets. The proposed system aims to hybrid much of the 3D

visualization functionality of related systems within a scalable architecture. The key 3D

visualization goals of the system include:

• 3D object generation. The internal format that the system maintains segmentation

data in must facilitate easy extraction of 3D object representations of segmented

regions. This process must be fast and efficient to support extracting 3D objects from

all segmented regions in all segmentation data.

19
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• Fast 3D object loading. During the 3D visualization process, 3D objects must be

able to be loaded quickly without significant overhead. As the size of segmentations

grows, so does the number of unique segments found and it is critical that the 3D

objects associated with each of these segments can be quickly loaded into the 3D

space.

• Interactive 3D visualization performance. Rendering each unique 3D segment

object quickly to achieve interactive performance is critical to the user experience

during 3D visualization. The system must be able to manage displaying hundreds to

thousands of 3D segment objects simultaneously, without significant degradation to

rendering frame rates.

Each of these goals requires processing and managing substantial amounts of data. To

integrate all three goals requires a specialized scheme that can scale as the segmentation

data grows.

3.1.2 3D Editing

As described in section 1.2, there is significant motivation for 3D segmentation editing. The

proposed system aims to allow users to interactively manipulate 3D segment objects in a

manner that is integrated with the 3D visualization and provides a unified user experience.

The capability to perform editing actions in a 3D space is a feature not found in any other

related system. Breaking away from the standard 2D editing interface allows a more natural

and intuitive means of interaction when working with segment objects that are inherently

3D themselves. Specifically this includes the ability to perform the following:

• Precise segmentation data editing. Given a 3D segment object, a user must have

the ability to carefully augment or remove voxels in the segmentation object that are

identified with the object. These topographical modifications allow the user to sculpt

the object to achieve segmentation corrections.

• Split and merge functionality. It is also important to give users the ability to split

and merge segments in a 3D environment as well. Splitting depends on the previously

described editing functionality to allow the user to topographically disconnect two

or more regions of segmentation data labeled as belonging to a single segment and
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finally allow the user to relabel one of those regions as a different segment. The

merging process involves selecting two or more unique 3D segment objects and easily

relabeling them such that all belong to a single segment.

• Export edited 3D segmentations. Modifications performed in 3D must be ex-

portable to the common volume data format used in other segmentation systems.

This enables a pipeline of use such that the proposed system can be used for viewing

and editing data that can be processed by another system.

3.2 Considerations

This section discusses a number of design schemes that could be used to accomplish the

previously defined system goals. The major considerations include how segmentation data

are to be represented, the representation of 3D segment objects, and the update propagation

model between the two.

3.2.1 3D Object Representation

In order to meet 3D visualization performance and 3D editing goals, considerable care

must be taken when designing the representation of 3D segment objects. The two common

methods for effectively rendering 3D objects are the use of voxel and mesh representations.

• Voxel. Using the inherent structure of volume image data, voxel rendering represents

each voxel as a rectangular box in 3D space. This allows a single segmented object to

be displayed simply by drawing all the voxels that correspond to a specific segmented

region in the volume. Furthermore, displaying voxels gives an intuitive grasp into

the original segmentation volume data as pixels that are familiar from image slices

correspond directly to a voxel in space. This correlation can also be followed to the

editing processes. Just as pixels are added and removed in common segmentation

editing programs in 2D so are voxels in a 3D space.

The primary drawbacks of a voxel representation, however, is the cost of rendering.

Drawing every voxel in the region wastes considerable resources when generally the

only relevant portions visually are on the surface of the object. The problem can

be alleviated by filtering for the subset of surface voxels that are visible before ren-

dering, although this degrades loading performance. Yet even when only rendering
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boundary voxels, segment objects can have extremely large surfaces and the number

of voxels that must be drawn every frame to cover this surface reduces performance

considerably.

• Mesh. A mesh representation of a 3D object offers considerable performance bene-

fits over a voxel representation. As a collection of triangles that forms a surface, a

mesh naturally avoids time wasted on rendering the internal regions of a 3D object.

Furthermore, unlike the regular structure of voxels, the set of triangles that form a

mesh can be irregularly sized. This means that large uniform portions of the surface

area of a mesh can be approximated by a few large triangles which load and render

quickly, while detailed portions can be preserved by many smaller triangles. The level

of detail preserved is a parameter of the mesh generation process, and allows for user

defined selection of performance or detail preservation.

But unlike a voxel representation, the approximated and simplified mesh representa-

tion abstracts the detailed structure of the original segmentation volume data. Unless

a mesh is dense enough to detail every voxel, causing it to lose much of its performance

advantage over a voxel representation, it is very difficult to perform precise 3D editing.

Furthermore, the mesh structure itself is also difficult to interactively change. Since

a mesh is a surface of connected triangles, local modifications that insert or remove

triangles from the mesh require care in ensuring connectivity of the resulting surface.

The system proposed in this paper makes use of both voxel and mesh rendering depend-

ing on the intentions of the user to take advantage of the benefits of each representation.

During general visualization, the system displays all data using meshes to quickly load and

display 3D segment objects. When a specific segment has been specified to be edited, the

system takes the time to generate and render a voxel representation to make use of the fine

editing granularity of voxels. Unlike meshes that are build during pre-processing, voxel rep-

resentations are constructed as need, due to the large memory requirements of storing such

a detailed representation for all segment objects. The fast performance of meshes for gen-

eral 3D visualization and the detail of voxels for editing optimizes the system functionality

depending on visualization or editing intentions of the user.
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3.2.2 Segmentation Representation

To meet the visualization and editing goals of the system, the internal representation of

segmentation data must support fast extraction of both voxel and mesh based 3D objects

and allow segmentation data to be easily modified. There are three common methods of

defining segmented regions: regularly structured volume, point series, and point set.

• Structured voxels. Representing a segmentation as a regularly structured volume

of voxels is the easiest and most natural extension to 2D image slices. Like pixels,

data is stored at discrete coordinates called voxels in a 3D space.

This simple format allows for voxel objects to be extracted by loading voxels that

are associated to a specific value. The standard technique for mesh generation from

volume data is commonly performed using the “Marching Cubes” algorithm. This

algorithm process the data in a scan-line manner to linearly-interpolate triangle ver-

tices that are formed along a region in the volume that share similar values [10]. The

resulting surface tessellation is a usable mesh approximation to a segmented region.

• Point series. A point series representation uses a list of ordered points on a 2D plane

to create a connected outline of an object. Each connected series defines a 2D region

of space, that when used with multiple sets on parallel spatial planes result in a 3D

volume. This allows the point series to be extremely efficient in requiring only a few

points to coarsely label very large regions.

The drawback of this efficiency is the challenge of extracting contained volume data

needed for voxel representations of 3D objects. The traditional means of rasterizing

polygons to pixels is to use a scan line processes to fill in pixels along a line contained

within an enclosed region. This highly repetitive process requires great care in ensur-

ing irregularly shaped regions are properly filled. To extract meshes from point series,

these points can be used to generate Boissonnat surfaces by using a 3D Delaunay

triangulation to tesselate the points [3]. These surfaces depend on an ordered series

of data, and can have significant irregularities if the point data is not uniform. Trace

data that loops, self-intersects, has irregular ordering, or many other subtle errors can

drastically affect the meshing if not causing it to fail entirely.
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• Point set. A final representation is a set of points used to define the outer surface

of a 3D segmented region. While this gives a similar appearance to point series data,

the point set is unordered and points are not required to lie on a similar plane. This

gives great liberty when defining data, as points can be indiscriminately added in a

space to define the boundaries of a 3D region.

Yet this also makes voxel extraction extremely difficult as there are no definite bound-

ary points to indicate how a scanline through the region could fill in points. A complex

way of gaining boundary points is to first generate a mesh and then perform the scan-

line process using lines that intersect with the tessellated surface. A popular technique

to extract meshes from point set data is the Power Crust algorithm. The Power Crust

is a mesh generation algorithm for surface reconstruction that can produce such a

polyhedral solid [1]. Yet this is an expensive algorithm that requires sufficient points

so as to define separated regions to avoid undesired surface connections. As a result,

both voxel and mesh extraction are complex and costly processes when using a point

set representation.

(a) voxel structure (b) point series (c) point set
(a) Structured voxels

(a) voxel structure (b) point series (c) point set
(b) Point series

(a) voxel structure (b) point series (c) point set
(c) Point set

Figure 3-1: Example of a spherical segmented region defined by the various segmentation repre-
sentations.

Due to the simplicity and effectiveness of a volume representation, the proposed system

maintains all segmentation data as a structured volume of voxels. Both voxel and mesh

representation of 3D objects can quickly and easily be formed to satisfy performance goals

while a voxel representation also allows for easy import of segmentation volume data and

export of segmentation edits as they all have common regular structure.
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3.2.3 Update Propagation Model

Maintaining editable segmentation volume data with the intention of forming both voxel

and mesh based 3D segment objects creates a challenge for ensuring that modifications are

consistently reflected in both representations. Rather than dealing with the complexities of

converting between representations, the system uses the segmentation volume as the source

reference data for all updates and modifications. Any changes to the source data are then

reflected in the derived voxel and mesh representations through appropriate updates. With

the simple voxel correlation between segmentation volume data and 3D segment voxel ob-

jects, local modfications can be quickly performed to reflect changes in the source data.

Due to the complexities of meshes as described in section 3.2.1, local mesh updates are not

an efficient option and entire regions are meshed even if only a few voxels in the segmen-

tation data are changed. As a result, it is more effective to update meshes less frequently,

specifically after all changes are made.

The system implements these ideas as defined separate user modes. The ‘Navigation

Mode’ prevents any modification to the segmentation data, ensuring that the render effective

meshes can be displayed and are up-to-date. While in ‘Editing Mode’, 3D segment objects

that have been selected for editing are displayed in the more rendering intensive voxel

representation, but are able to be quickly updated to reflect local modifications to the

segmentation volume data. The system notes which values were modified in what regions

of the data volume so that when returning from editing, the system can bound the costly

meshing process to only specific regions that have been modified. After these meshes have

been updated, the system is ready to use the the newly formed meshes to quickly display

3D segment objects.

3.3 System Outline

To achieve the specific design goals proposed using the 3D object and segmentation represen-

tations described under the discussed update propagation model, the system is architected

into five major components.

• System. The system component facilitates communication and state managing to

ensure synchronicity between components.
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• Segment. While the shape of a 3D segment object is defined by data in the segmen-

tation volume, the segment component serves to manage the abstract representations

of the data. This abstraction allows the segmentation data to be associated in more

complex ways, allowing for greater flexibility and performance during visualization

and editing.

• Mesh. The mesh component of the system manages the construction and rendering

of the mesh representation of 3D segment objects. It uses the volume component to

extract data to reconstruct into a surface and the segment component for access to

the segment data properties needed for rendering.

• Volume. The volume component manages the segmentation representation. It serves

as the interface for the other components to access, manipulate, and render segmen-

tation volume data. The textitvolume component depends on the mesh component to

render mesh versions segment data, the segment component to for access to segment

data properties, and the system component to perform updates.

• View. The view component controls the user interface and rendering calls during

visualization and editing. The view uses the structure of the volume component

to efficiently render segmentations and the system component to synchronize screen

redraws so as to reflect changes that are relevant to the 3D visualization.

Volume

Mesh

System

Segment

View

Figure 3-2: Component dependency within the proposed system.
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System Components

This chapter provides a detailed description of the function and design of the major com-

ponents of the system. Section 4.1 details the volume component used to manage access to

segmentation data which provides the structure to perform efficient hierarchical rendering

of 3D objects. Section 4.2 details how regions of segmentation data are abstracted into

Segment objects. The mesh generation and management is discussed in the mesh compo-

nent in section 4.3. The view component that manages the 3D user interface and rendering

model is detailed in section 4.4. Finally section 4.5 details the management performed in

the system component to communicate events and state throughout the system.

4.1 Volume

The volume component of the system provides the organization needed to efficiently access,

manipulate, and view data. This is accomplished using a hierarchy of classes to encapsulate

functionality.

4.1.1 Volume

The root of this interface hierarchy is a single Volume class that enables access to all

data managed by the system. A Volume contains no direct access to data, but manages

references to multiple sets of segmentation data. In addition to managing access, a Volume

also performs the conversion between the multiple coordinate frames the system uses.

• Data. The data coordinate frame is used to address discrete voxels. It is used primar-

ily to specify axis aligned bounding boxes of volume data for access or modification.

27
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• Normalized. The normalized coordinate frame is a internal continuous representa-

tion of the extent of the volume. The normalized frame scales the data coordinate

frame such that the entire volume is accessed between zero and one on all dimensions.

This means any coordinate outside the range of zero to one lies outside of the volume.

It is used for the geometry of meshes as well as the geometric culling (section 4.1.4)

which require a consistent and accurate coordinate frame.

• Spacial. The spacial coordinate frame is a dynamic, user defined frame that gives the

user more control over the representation of their data. It is a scaled version of the

normalized frame that is also on a continuous scale. This scale factor is user defined,

so that although the data may have been scanned at a particular resolution on each

dimension, it can be transformed to the appropriate physical dimensions. This allows

the user to view 3D objects that have been scaled to represent the proportions of the

correlated physical tissue volume, rather than being forced to view only at the discrete

proportions that the data was scanned at.

As a single volume system, all contained sets of segmentation data must share the same

extent. This is a deliberate limitation in the system so as to simplify interaction between

data sets, avoiding the complexity of interpolating voxel data when trying to associate data

between differing data sets if there is not a one to one correlation between voxels. A Volume

is also used to correlate data to a user defined spacial extent.

4.1.2 MipVolume

To achieve the scalable performance, the data of a segmentation is abstracted further into

a MipVolume. This class applies the mip-mapping technique of generating pyramidal data

structures in an oct-tree hierarchy to efficiently compress multiple scaled versions of the

data[12]. The leaf level data set of the MipVolume directly correlates to a source segmen-

tation data volume. Successive levels are subsampled such that adjacent octals of voxels in

a child level are reduced to a single voxel in the parent level. 1 With each parent reducing

the dimensions of its child by a factor of two, and thus the data in the volume by eight,

compact representations of large data extents are compressed into a small amount of data.
1Although segmentation data is directly subsampled so as to preserve sampled segmentation data values,

and thereby the value a segmented region is associated with, the subsampling process can involve linear
interpolation or other filters to better preserve detail when mip-mapping image data as is the case of Channel
data as described in section 5.3.4.
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This reduction occurs until the level is sufficiently small, at which point that particular set

of data is considered the root volume level.

4.1.3 MipChunk

The MipChunk class is the final abstraction in the data hierarchy of the system. A

MipChunk augments the compression of a MipVolume with a hierarchical coordinate system

so as to allow a MipVolume to define and manage regions of data within mip-level volumes.

A MipChunk contains directly accessible data addressed as cube of uniform dimensions con-

taining data extracted from a mip-level volume. Each MipChunk can be uniquely addressed

using a mip-level, and orthogonal x, y, z, values in a four dimensional coordinate system of

MipChunkCoordinates. Based on the octal subsampling of the MipVolume, the coordinate

system of the MipChunks form an octal tree such that each MipChunk of a parent mip-level

volume is related to eight children MipChunks. The parent MipChunk and octal children

MipChunks share the same extent in space, although the parent is a subsampled version of

the region covered by the children. The MipChunk that entirely contains the root mip-level

volume is known as the root MipChunk and does not have a parent.

Each MipChunk summarizes relevant information into associated metadata. The most

significant portions of this metadata are sets of data values that uniquely correspond to

segmented regions in the volume data. These sets define the values to be either directly or

indirectly contained by the MipChunk.

Volume

MipVolume

MipChunk

Data Abstraction

Data Access

Figure 4-1: The classes used in the data abstraction hierarchy in volume component.
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(a) Source volume (b) Leaf chunks (c) Subsampled chunks (d) Parent chunks

Figure 4-2: A source volume (a) that has been copied into cubic leaf level MipChunks (b). The
leaf level MipChunks are subsampled (c) and merged to form cubic parent level MipChunks (d).

• Directly contained. Directly contained values are those values which can be found

in the volume data contained by the MipChunk.

• Indirectly contained. Indirectly contained values are the union of indirectly con-

tained values of the children of a MipChunk, or are the same as the directly contained

values if the MipChunk is associated to a leaf mip-level (called a leaf MipChunk).

As a result of managing this associated metadata, any value in the data organized as

a MipVolume can be bounded into specific MipChunks by performing a simple oct-tree

structured search.

4.1.4 Hierarchical Culling

Utilizing the oct-tree structure of MipChunks, the system uses hierarchical rendering tech-

niques to efficiently limit processing to relevant segmentation data in a MipVolume during

the visualization process. Significantly, this allows the rendering process to quickly discard

large regions of volume data when traversing the oct-tree structure by using information in

parent MipChunks to determine if the child MipChunks even needs to be considered. The

two hierarchies considered are geometric and data.
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• Geometric. A common rendering optimization technique is the use of frustum culling

with a hierarchical rendering tree to quickly discard objects from a scene [2, 11].

Frustum culling uses the geometric viewing frustum formed when drawing a 3D scene

onto a 2D screen with specified minimum and maximum viewing distance from the

point of a viewing center. If this frustum intersects a parent object in the rendering

tree, the object is considered visible and the visibility of the enclosed children objects

must also be checked. Otherwise the parent can be discarded, saving the effort of

testing the children. Using the spacial extent of a MipChunk the same principle is

applied using the tree structure of enclosed spacial regions. When a parent MipChunk

is determined to be non-visible, then neither are any of the data that is contained

within its children, so the rendering process need not attempt to render any of its

children MipChunks.

Further optimization can be achieved using a refinement distance metric to limit

refinement to only MipChunks that are within a specific distance of the view cen-

ter of the viewing frustum. This allows the system to improve performance by us-

ing higher-resolution MipChunks when closer to the viewer and low-resolution sub-

sampled MipChunks when further away. This improves the perceived quality of 3D

objects by using high-quality objects when they are visible and close in proximity to

the viewer. The performance benefit of this method is detailed in section 4.3.1.

2

(a)

1

1

(b)

1

0

0

(c)

Figure 4-3: An example of the geometric based hierarchical culling process used with the viewing
frustum. The shaded area designates the region contained by the refinement distance from the view
center. (a) shows an initial frustum intersection with a MipChunk at mip-level 2. As part of this
MipChunk is contained within the refinement region, the frustum performs intersection tests with
the MipChunk’s children. Non-intersecting children are discarded as shown in (b). The refinement
process is repeated for the closest child mip-level 1 MipChunk to create the final MipChunk layout
shown in (c). The resulting layout produces two leaf level (mip-level 0) MipChunks that are rendered
near the viewer and another MipChunk of mip-level 1 that is rendered further away.
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• Data. A complementary hierarchical culling procedure can be applied using the data

value contents of MipChunks. Using pre-processed MipChunk metadata, MipChunks

and their children can quickly be culled based on their possible value content as

indicated by the sets of indirectly contained data values. This culling technique is

utilized in the visualization process by intersecting a set of data values to be rendered

with the indirectly contained data values of a MipChunk to determine if further culling

is necessary. The resulting set of “relevant data values” indicates which of the initial

values are contained by the spatial extent of the tested MipChunk. If the resulting

relevant set is empty, then the MipChunk and its children can instantly be culled.

Otherwise if the set is non-empty, then the children MipChunks need to be intersected

as well to further refine the data region of MipChunks that contains the data values

of interest. Significantly, these recursive intersections can be optimized by using the

resulting relevant set of a parent intersection when intersecting with children to help

bound the number of values used in later intersections. This is because the relevant

sets can be no larger than the set intersected with the parent and only contains values

desired to be rendered that are possibly contained within the children MipChunks.
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Figure 4-4: An example of data based hierarchical culling augmenting the geometric culling pro-
cess. The shaded area designates the region contained by the refinement distance from the view
center. MipChunks are shown with their mip-levels and sets of indirectly contained segment values.
In this example, segment values x and w are desired to be rendered, however the MipChunk shown
in (a) only contains segment values (x,y,z). The intersection of (x,w) with the indirectly contained
values (x,y,z) of the visible MipChunk produces the relevant data value set (x). The MipChunk is
refined and child MipChunks are geometrically culled as shown in (b). Data culling is performed by
intersecting the relevant values set with the indirectly contained values of the children MipChunks,
leaving only a single MipChunk as shown in (c). This MipChunk is outside of the geometric re-
finement distance, and needs no further refinement. Segment data of value x is rendered in the
remaining MipChunk of mip-level 1.
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The combination of these two hierarchical culling techniques allows the system to quickly

and efficiently discard regions of a segmentation volume to consider when rendering in the

visualization process. The inexpensive frustum intersection tests makes spacial culling the

primary step of culling data while the possibly more costly set intersection technique of

data culling is the second step of region refinement.

4.2 Segment

The segment component of the system functions as an interface and manager of abstract

Segment objects. While the topology of a segment object is determined by the data in

a segmentation volume, an additional level of abstraction increases user functionality and

improves editing performance.

4.2.1 Segment Objects

Further abstraction extends the functionality of 3D segment regions by associating each

segment ID to a Segment object class. This class allows users to assign a specific segment

region attributes such as a name, color, and notation. These segment attributes are a simple

but powerful way for users to organize segmentation data.

4.2.2 Data Mapping

As described in section 2.1, a common action performed when editing segmentations is

merging multiple segments into a single segment. If every segment was specified by a

unique value found in the segmentation data, a merge action would require changing the

values in each voxel to so as to match the value of the final merged segment. The cost of

this method scales proportionally to the volume of data associated with the segments that

will be merged into a different segment. This is a significant performance expense when

merging many large segments. In contrast, through a level of indirection, the proposed

system is able perform common editing actions that appear to modify significant quantities

of data nearly instantly. This is accomplished by bidirectionally mapping a set of data values

to a unique segment identification (ID) number. A single segment is therefore associated

with multiple regions of differing data values. In particular, this indirection allows various

segments of unique IDs to be quickly merged simply by finding the union of the data value

sets associated with the segment IDs to be merged and mapping it to the new ID.



34 Chapter 4. System Components

4.3 Mesh

The mesh component of the system provides the interface for generating and displaying

3D mesh objects. Mesh generation utilizes the performance of the volume component to

extract volumes of segmentation data to reconstruct mesh representations. Mesh rendering

takes advantage of the segment abstraction provided by the segment component to apply

visual properties to the 3D objects and render multiple regions of segmented data as a single

Segment object. The mesh component is composed of a MipMesh class which contains and

draws meshed data and a MipMesher class which generates MipMeshes from segmentation

data.

4.3.1 MipMesh

A MipMesh encapsulates the data structure and functions needed to draw a tessellated

surface representation of a portion of a 3D segment object to the screen. Specifically, a

MipMesh is a reconstructed surface mesh defining a region of similar values contained within

the volume data of a single MipChunk. As the segmentation volume of a MipChunk can

contain multiple data values, multiple MipMeshes can be associated to the same MipChunk.

Furthermore, this leads to a five-dimensional MipMeshCoordinate system where four dimen-

sions represent the four-dimensional MipChunkCoordinate and the fifth dimension repre-

sents the value of the data region that the mesh surface describes.

A traditional approach to 3D object meshing would associate each mesh to a single

unique data value, regardless of the boundaries of MipChunks. In this way, only a single

mesh object would need to be rendered to represent all the data of a single value. In

contrast, the method of breaking a single mesh into pieces, or MipChunks, as proposed by

this system offers significant scalability benefits.

• Complexity bounding. By limiting the extent of segmentation data a mesh can

represent to a single MipChunk, the system is bounding the size and complexity of

the associated surface mesh that can be reconstructed from that volume. The mesh

generation processes is then limited to MipChunks containing the region to be meshed

as opposed to a single loosely bounded extent. The rendering process benefits from the

bounded mesh size and complexity because meshes are limited to manageable memory

size, ensuring that meshes can be loaded from disk and drawn in a reasonable amount

of time.
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• Fractional surface drawing. Breaking the tessellated surface of a region into mul-

tiple MipChunk bounded MipMeshes also allows the system to take advantage of the

hierarchical culling described in section 4.1.4 through fractional surface drawing. In

the traditional meshing approach, even if only a small part of the surface was visi-

ble, the entire mesh surface would need to be drawn. Many of the triangles of the

mesh will be needlessly rendered since they would be not be visible outside of the

viewing window. With the fractional surface representation of MipMeshes and hier-

archical spacial culling of MipChunks, only the surface contained within a MipChunk

that is determined to be visible will be rendered, significantly reducing the number of

non-visible triangles that need to be drawn.

• Multiple Resolutions. Using the subsampling relationship between parent and

child MipChunks, MipMeshes correspondingly have a multiple resolution relationship

with segmented regions. This means that MipMeshes associated with parent chunks

are meshes of subsampled child MipChunks. As a result, these lower resolution meshes

have less geometry and are smaller in size and faster to render. A user is then able to

choose the level of MipChunk refinement and thereby MipMesh resolution depending

on the performance or mesh quality preference.

The use of MipMeshes to break surfaces into multiple meshes incurs expenses as well.

Mesh organization becomes more complex as each MipChunk needs to keep track of the set

of MipMeshes associated to it. As each mesh requires a MipMesh object to describe it, there

is an increased memory overhead for using multiple MipMeshes to render what could be

displayed with a single mesh. Furthermore, when multiple MipMeshes are used to describe

a single surface, they must contain redundant border geometry along their seams so as to

appear to be a uniform surface. Due to the independent nature of each MipMesh, this

boundary geometry data is impractical to share and so adjacent MipMeshes must contain

redundantly copies of this data. Yet as scalability of the proposed system is a higher priority

than data efficiency, the performance benefits from using MipMeshes greatly outweigh the

described memory costs.

4.3.2 MipMesher

The MipMesher class is used to generate MipMeshes related to a specific MipChunk. This

is accomplished by specifying data values contained in data volume of a MipChunk, and
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using a multi-staged meshing pipeline to extract surface tessellation of regions associated

to these data values. The stages of the pipeline are ordered as follows:

1. Surface reconstruction. Using the Marching Cubes algorithm as described in sec-

tion 3.2.2, a high-resolution 3D surface tessellation can be extracted from a volume of

segmentation data for a specific value defining region in the data. This extracted set

of triangles is extremely dense due to the per voxel resolution sampling performed by

the algorithm to generate an interpolated iso-surface of the region [10].

2. Decimation. Mesh decimation is the processes of reducing triangle count while

preserving topology [9]. Specifically, the system employs a surface simplification tech-

nique to iteratively contract mesh vertex pairs while preserving salient surface features

as defined by a quadratic error metric [7, 8]. Due to the high-resolution tessellation

resulting from Marching Cubes, the mesh extracted in the previous stage is decimated

to a user defined target percentage. This allows the user to prioritize between mesh

data size and detail.

3. Transformation. The mesh geometry is transformed to the normalized extent of the

MipChunk which is described in section 4.1.1. Pre-transforming to the normalized

extent avoids the cost of repetitively transforming MipMeshes during the rendering

process.

4. Smoothing. Even after decimation, the mesh can still retain much of the blocky ap-

pearance caused by the Marching Cubes algorithm when reconstructing surfaces from

discrete voxels. The user can specify the use of a mesh smoothing filter that ”relaxes”

the mesh by moving vertices to achieve a more even distribution [6]. Specifically, the

system employs a Laplacian based smoothing filter that can be used iteratively to

achieve varying levels of smoothness based on user preference.

5. Normal generation. After the vertex geometry has been modified by the reconstruc-

tion, decimation, transformation, and smoothing stages, it can be used to calculate

normal data. Using the location of neighboring vertices, the surface normal at each

vertex is calculated and added to the mesh data to allow the mesh to have shading

interaction with light sources in the 3D environment.
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6. Stripping. The set of triangles is finally reorganized into contiguous strips. As ad-

jacent triangles share two vertices, strips of triangles approach a two-third reduction

in geometry as the strip length grows compared to the number of vertices in a set of

individual triangles. As a result, a mesh that is made of contiguous strips of trian-

gles has a smaller memory requirement and renders faster than a mesh of individual

triangles.

After a MipMesh has been generated it is saved to disk so it can be quickly loaded and

rendered during the visualization processes. Careful MipMesh data management and the

use of the outlined meshing pipeline allow the MipMesher class to efficiently form compact

representations of 3D data regions.

4.4 View

The view component is responsible for interactively interfacing the user with the 3D rep-

resentation of segmentation data. The component directly handles both mouse input and

system events to cause the screen to refresh with updated material. The view component

breaks apart functionality into several classes.

• View. The View class represents the actual screen space that 3D objects can be

rendered in. This window exists to respond to events from a user or the system, make

a visible change in the system, and initiate the rendering processes to make the change

visible to the user.

• 3D user interface. When the View class receives user input, such as mouse move-

ment or keystrokes, they are sent directly to the 3D User Interface class. This class

filters input events for relevancy and interprets them as changes to the system. These

changes may include camera movement, segment object property changes, or even

voxel modifications if the user is in editing mode.

• Camera. The Camera class manages properties related to the position, orientation,

and perspective of the user in 3D space. These properties can be modified by the 3D

User Interface class to give the user the ability to freely move in space to visualize

the data. Each View class has an associated Camera, allowing views to be used

independently so that a user can look at multiple perspectives of the same object.
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The ability to tightly control the properties of multiple Cameras is particularly useful

during editing when multiple perspectives enable a better understand how a subtle

3D topographical modification is altering connectivity with surrounding objects.

• Widgets. Widgets classes are rendering layers that added to the View window after

all segment objects have been drawn. Examples of Widget functionality highlighting

selected segments and displaying camera location information. Widgets can be dy-

namically enabled or disabled from a view, allowing the users to customize how their

visualization is augmented depending on the task.

4.5 System

Th system component serves to synchronize the other components whose functionality de-

pend on events or specific system states. The following classes are critical to managing the

shared data that unifies these events or states.

4.5.1 Event Manager

Actions taken by the user can impact many pieces of the system. For example, changing the

color of a segment object requires having all view classes redraw so as to reflect this change.

Another example includes changing the system user mode from ‘Edit Mode’ to ‘Navigation

Mode’ as detailed in section 3.2.3. This mode change causes all edited MipChunks in a

MipVolume class with edited data must be rebuilt to reflect these changes. These various

classes are notified through an event system controlled by an EventManager class. The

EventManager maintains a correlation of specific events and instances of classes that have

registered to receive such events. If the EventManager is notified of an event that occurred

anywhere in the system, all registered instances of classes are in turn notified of the event

and data that may correspond to the event. In this way, all Views can redraw themselves

when they are informed that the properties of a segment object has been modified and

a MipVolume can rebuild necessary MipChunks after being notified the system state has

changed.

4.5.2 State Manager

Although events serve to notify classes of changes to the system, sometimes components

need to determine systems state so as to function differently. The StateManager maintains
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the state of various aspects of the system. For example when drawing selected Segmentation

objects, the system checks the StateManager to for the current user mode so as to draw a

mesh representation of Segment object if in ‘Navigation Mode’ or a voxel representation if

in ‘Edit Mode’. In this way, the StateManager is a shared database of states for various

components to use.
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Chapter 5

Omni: A Case Study

This chapter explores the practicality of implementing the proposed system into a com-

plete end-user application called Omni. The background of the application development

is outlined in section 5.1 with application goals discussed in section 5.2. Section 5.3 dis-

cusses implementation details for achieving the outlined goals and application performance

is evaluated in section 5.4.

5.1 Background

The Seung Lab at the Massachusetts Institute of Technology currently uses a wide variety

of software to model and analyze connectomes (neural networks of the brain). Current tools

used for connectomic analysis in the lab have enabled significant progress in tracing and

visualizing neural data, specifically the construction of 3D models from fragments of seg-

mentation data. Yet specific weakness in design and features of the various software systems

used have limited the utility of using a single application. As a result all three software

packages discussed in section 2.2 are used in the analysis process, each individually used

to perform a specific task to offset a weakness or lack of ability in the other packages. Yet

the inconvenience of having a workflow through multiple applications and the overlapping

deficiencies of all three systems has resulted in research for a unified software solution for

connectomic analysis. The proposed solution is Omni, a tool designed for an integrated

workflow utilizing the scalable 3D performance and interactive 3D editing described in this

thesis.

41
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5.2 Goals

This section briefly outlines the goals of the Omni application. These goals are specific to

the needs of the Seung Lab at MIT so as to maximize the utility of the application. The

areas discussed are platform, workflow, and performance.

5.2.1 Platform

The lab currently employs a variety of computer platforms including Apple, Linux, and

Windows. The most popular machines in the lab are the Unix-based Apple and Linux plat-

forms. For this reason it was decided that Omni should undergo cross-platform development

to support these two types of Unix-based systems. 1

5.2.2 Workflow

As a unified replacement for a few individual software systems, it was important that Omni

provide a complete workflow for importing, editing, and visualizing segmentation data. In

particular the application must combine the familiar 2D visualization and editing from other

systems with the 3D counterparts detailed in this thesis. Finally the application must be

able to import and export in the common regularly structured volume data format that the

lab uses to process data. This will allow the application to be able to import channel and

segmentation data while allowing it to export any modified segmentations. This uniform

import and export format gives Omni end-to-end functionality as a tool for all visualizing

and editing.

5.2.3 Performance

The development of Omni is also a result of increasing performance demands of visualization

interactivity. As detailed in section 2.2, related software suffers significant increases in load

times and decreases in frame rates when interacting with ever increasing data sets. The aim

of the Omni application is to leverage the scalability of the system proposed in this thesis

to achieve interactive 2D and 3D visualization and editing without frequent and noticeable

loading.

1The Omni application currently supports Apple OS X 10.5 and Linux Ubuntu 8.10.
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5.3 Implementation

This section describes the significant implementation details that facilitate the platform,

workflow, and performance goals outlined in section 5.2.

5.3.1 Language

Omni is built entirely using the middle-level C++ programming language. C++ was cho-

sen because of its unique combination of performance, object-oriented support, and large

library base. To meet the performance goals desired for the application, it is clear that

Omni needs to be built in a compiled language such as C++ that can control the low-level

details of memory management so as to most effectively access and modify the vast amount

of data it manages. This is contrast to scripted languages, such as MATLAB, which must

be interpreted and do not have fine-grain control over the efficiencies of memory interac-

tion. Because of the heavy use of abstraction in the proposed 3D visualization and editing

system, a language that could support object-oriented design would be most effective to

construct classes such as Volume, MipVolume, and MipChunk (see section 4.1.1). Finally,

the C++ language has the advantage of having wide variety of compatible libraries that are

available under open-source licensing. Using these external libraries reduces the amount of

proprietary code needed and enables faster application development.

5.3.2 Libraries

Careful work was performed to find libraries and a build system to support cross-platform

development. The following details the external libraries used and their function in the

application:

• VTK. The Visualization Toolkit (VTK) is an open-source, cross-platform library

used for image processing and 3D visualization. The application uses VTK for reading

image slices as well as the complexities of the meshing pipeline.

• Boost. The Boost C++ Libraries offer open-source and cross-platform serialization

and regular expression parsing.

• vmmlib The cross-platform vmmlib vector and matrix math library developed at the

Visualization and Multimedia Lab at the University of Zurich is used to perform 2D

and 3D geometric computation throughout the system.
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• OpenGL. The cross-platform graphics interface of OpenGL is used for rendering 2D

and 3D objects in the application.

• Qt. A cross-platform application and user-interface framework. Primarily used for the

design and implementation of the graphical user-interface, the Qt framework provides

the base for many of the common application features such as undo-redo and window

management.

5.3.3 Data Formats

To support the end-to-end workflow design, the Omni application must import and export

volume data formats that the lab can work with. This section discusses the various volume

data formats which Omni must support. These are the formats that the application can

import from, the format that it internally maintains, and finally the format which it can

export to.

Volume data from the lab is generated as either multiple files as slices in a 2D structure

or a single file with a 3D structure. The 2D slices are commonly sets of traditional image

data in PNG or TIFF file format, while the 3D structures are maintained in a HDF5 format.

The application can import both channel and segmentation data as either slices of PNG,

TIFF, or JPEG files or as a complete HDF5 volume.

Internally, the system converts all volume data into HDF5. This is done to increase stor-

age depth and performance. To support segmentations with potentially billions of uniquely

segmented regions, the internal file format for segmentations uses HDF5 with 32-bit voxel

values for an extremely large bit-depth support. In contrast, traditional 2D file formats

have a conventional limitation of 16-bits per voxel. 2 Channel data is also stored in HDF5,

but at depth of 8-bits since this is standard depth of raw image data. Furthermore, image

formats such as PNG do not have an uncompressed format and must be compressed or

decompressed whenever accessed. This adds the computational price of compression to the

already costly processes of reading and writing volume data on disk. Omni avoids these

costs by using an uncompressed data format within HDF5, helping reduce the penalty of

costly disk access.

Unlike channel data, a segmentation can be modified. This modified data may need
2More specifically, this is the maximum bit-depth per color or alpha channel per voxel. But the needs of

the system are contiguous bit-depth, so without going through the effort of partitioning values and storing
parts into individual channels, the practical limitation is 16-bits.
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further processing by another application. Omni allows this volume data to be exported.

Yet as a result of the internal HDF5 format having a higher bit-depth than conventional 2D

image formats, the application is limited to exporting only in HDF5. If necessary, software

such a MATLAB could be used to filter the HDF5 volume data to a conventional bit-depth

that can then be converted to a 2D image format.

5.3.4 Volume Component

The volume component of the proposed system has performance critical functionality that

must be considered during implementation. The following discusses how the implementation

optimizes data structure management and volume data access such that the other system

components can quickly access needed data.

Much of the volume component is organized as hierarchy of containing classes. For ex-

ample, a Volume maintains Segmentations and Channels which are forms of MipVolumes,

while a Segmentation maintains Segment objects. It is important that the organization

overhead does not hinder access performance. Fast management is achieved through a

templated GenericManager that maps each managed object to a unique ‘OmId’. The tem-

plated nature of the class allows the GenericManager to be used to manage any type of

class, allowing for significant code reuse. Using OmIds the GenericManager can assign

state characteristics to objects adding or removing them to specific ”enabled” or ”selected”

sets. Managed objects must inherit from a ManagableObject class so they have an assigned

OmId and other attributes. In this way a GenericManager can access any given object with

a specified OmId in logarithmic time and return a set of OmIds that share a specific state

in constant time, allowing objects to be quickly accessed or filtered by state.

MipChunk volume data is heavily used throughout the application. To support a 2D

visualization system, MipChunks must allow 2D slices to be quickly extracted from associ-

ated volume data. The 3D visualization system requires fast access to volume data so as to

quickly extract meshes. Both systems must be able to quickly modify this data to support

editing. But MipChunks can be costly to read and write because of the cost of disk access

compounded by the internally uncompressed volume format that takes up significant space.

Omni alleviates cost of MipChunk access with a cache structure called a GenericCache.

Objects that inherit from a CacheableObject can be added to the GenericCache, mapping

them to a key that allows logarithmic access to the object instead of the costly process of
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Figure 5-1: Dependency diagram of major classes in the volume component of the Omni application.

reading from disk and, if any modifications were made, writing back to disk again. Instead

the cost of writing modifications is more effectively batched once the cache becomes full.

The cache is emptied by least recently accessed ordering to a specific target percentage,

such that the remaining objects in the cache are those that have been most recently ac-

cessed. As a result, the volume data that is most likely to be relevant is usually cached and

inexpensive to access. As a CacheableObject, MipChunks take advantage of all the bene-

fits of caching through a CachingMipVolume class that inherits from both the MipVolume

and GenericCache classes. This greatly improves the rate of 2D slice extraction and 3D

object generation. Furthermore, since the caching also stores the associated metadata of

the MipChunk, the cache process dramatically improves the data based hierarchical culling

as well.



Chapter 5. Omni: A Case Study 47

MipVolume building is the process of creating multiple resolutions with pyramidal struc-

ture of an original source data volume. To take advantage of the caching mechanisms of

CachingMipVolume, the building process generates subsampled MipChunks in a recursive

depth-first tree with reverse ordering. That is, as the branches of the oct-tree structure of

the MipVolume are recursively built, all children MipChunks must be built before a parent

MipChunk can be built. In this way, newly built MipChunks that have been cached are ex-

tremely likely to be reused in the building process of parent MipChunks. The performance

of this processes is detailed in section 5.4.

The use of the GenericManager and GenericCache classes allow the volume component

to be quickly and efficiently manage much of the data that the rest of the system relies on.

5.3.5 Mesh Component

Much like the volume component, the mesh component also uses several techniques to

improve performance. These techniques make use of multi-threaded coding to provide

parallel functionality. During the mesh generation processes, the highly repetitive processes

of extracting meshes from volume data is streamlined with a multi-threaded meshing system

while the mesh rendering process uses a threaded cache system to improve user interactivity.

A bottleneck identified early in the development of the system was the mesh generation

pipeline. Detailed in section 4.3.2, the MipMesher reconstructs a surface mesh associated

with the value forming a data region with a MipChunk. This multi-staged processes is

computationally significant and due to limitations of the VTK library used to perform this

pipeline, it can only be performed on a single data volume for a single data value region

for each iteration. The solution is to run the pipeline in parallel, giving each thread an

OmMesher class that contains a copy of the source volume data to be meshed. Directing

these threads is an OmMipMesher class that contains a central “todo” set of values associ-

ated to segmented regions in the MipChunk. Each thread removes a value from the set and

performs the meshing pipeline to generate the associate MipMesh, storing it to disk upon

completion. Once all “todo” values have been completed, the OmMipMesher is ready for

the next MipChunk to be meshed. Since the threads perform independent pipelines, the

number of meshing threads can be controlled by the user, enabling user flexibility in how

many resources are devoted to the build process.

The caching of MipMeshes also needed to be threaded for performance reasons. As



48 Chapter 5. Omni: A Case Study

MipMeshes are loaded from disk and drawn to screen, there are significant interactivity

issues if the user needs to wait until all visible meshes are loaded before a complete frame

can be drawn. While a GenericCache helps the problem by bounding the loading to only

MipMeshes not yet cached, significant orientation change of the Camera can reveal enough

new MipMeshes that the delay hinders the user experience. Again, the solution is parallel

processing to create a templated ThreadedGenericCache. Unlike the GenericCache which

forces the rendering process to wait until a requested MipMesh is loaded, the non-blocking

nature of the ThreadedGenericCache informs the rendering process that the MipMesh is

unavailable and adds it to a queue of MipMeshes to be loaded. This allows the rendering

process to continue so as to attempt to render the next MipMesh while the ThreadedGener-

icCache concurrently has a ”fetch” thread that loads queued MipMeshes from disk. After

a designated elapsed time of fetching MipMeshes from disk, the ”fetch” thread notifies the

View to redraw the screen so that MipMeshes that are now available to the render process

can be drawn to the screen. This threading is crucial in allowing the user to smoothly

navigate through vast numbers of MipMeshes without suffering significant loading delays.

OmMesherOmMipMesh

Inherits Class Functionality

Depends on Class Functionality

Legend

OmMipMesher

OmMipMeshManager

OmMipMeshCoordinate

OmGenericThreadedCache

OmCacheableObject

External Dependencies

OmMipChunk

Figure 5-2: Dependency diagram of major classes in the mesh component of the Omni application.
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5.3.6 3D User Interface

The 3D user interface of Omni is implemented using a combination of functionality provided

by the OpenGL library and the Qt toolkit. This interface allows the user to directly interact

with the segmentation data in a 3D space. The primary interactions supported include

Camera movement, Segment object interaction, and Segment voxel editing.

Camera control is similar to what is found in many other 3D visualization software, using

traditional ”click-and-drag” mouse interaction to change a variety of Camera properties.

Depending on the mouse button depressed, the camera can be rotated, panned, or zoomed

about cross-hairs that mark the ”focus” of the Camera. Additionally, the cross-hairs are

always axis aligned so as to help orient users to the scene.

Segment object interaction, such as double-clicking a rendered mesh to select a specific

Segment object, is performed via rendering in “selection” mode in OpenGL. This renders a

small region of the screen underneath the mouse such that the object rendered are uniquely

named and stored in a “selection buffer”. Analyzing this buffer to find the closest object

allows the system to change properties such as selection and give the user the impressing that

they can directly interact with Segment objects using the mouse. This selection rendering

technique is also used to generate relevant contextual menues. After determining the closes

Segment object under the mouse when right-clicking, Omni uses Qt to generate a visible

contextual menu on screen. This menu can be used to easily “enable” or “select” specific

Segment object or perform editing actions such as merging a set of selected Segment objects.

Voxel interaction during ‘Edit Mode’ makes use of the depth buffer in OpenGL to

determine the voxel associated with a specific pixel that a user clicks on in a rendered

image. For every rendered frame, the depth buffer stores the 3D distance from the Camera

to the object each pixel represents. This object location can be determined using a process

called ”unprojection”. Given a specific pixel and the distance associated to it in the depth

buffer, the perspective and 3D location of the Camera can be used to unproject the pixel

to the 3D location in space. A simple transform converts this location to the containing

voxel, allowing users to specify specific voxels by using the mouse to click a 2D pixel on the

screen. So if a user wants to remove voxels from a Segmented object, they need only click

over the specific rendered voxel in the segmentation. The process is extended by offsetting

the unprojected location closer to the camera, allowing users to select voxels ”on top” of
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(a) Segment object interaction (b) Segment voxel interaction

Figure 5-3: Examples of the 3D user interface in Omni. The use of selection mode rendering to
create a context menu (a) and pixel unprojection to enable interactive voxel removal (b).

the voxel associated to the 2D point that the mouse clicked. This allows users to easily

augment a segmentation with a new voxel layer simply by clicking on a voxel to be covered.

5.4 Preprocessing Performance

To achieve interactive 3D visualization performance, the system performs significant data

pre-processing performed in two stages. First the source segmentation volume is built into a

MipVolume to allow for efficient multi-resolution volume data access. Secondly, MipMeshes

are built from all segmented regions in every MipChunk within the MipVolume. This

generates multiple resolution surface meshes for all segments in the segmentation. The

building process is intended to amortize the cost of using the MipVolume and MipMesh

structures that would be otherwise too expensive to generate interactively.

Figures 5-4 and 5-5 demonstrate the exponential growth in build times and data size

as the dimensions of the source volume double from 1753, 3503, and 7003 voxels. The

use of caching and threading can be seen to have an impact on preprocessing performance.

Caching proves to have a marginal advantage during the MipVolume build process as shown

in 5-4(a), while threading shown in 5-5(a) dramatically reduces MipMesh building times.



Chapter 5. Omni: A Case Study 51

175^3 350^3 700^3 175^3 350^3 700^3

build volume - tests

build volume - avg

no cache vol build

avg

in min

volume size - tests

volume size avg

4 27 247 build mesh  - tests 184 1480 18096

6 27 249 183 1482 18081

5 27 248 build mesh  - avg 183.5 1481 18088.5

1/60 1/60 1/60 1/60 1/60 1/60

0.0833333333 0.45 4.1333333333 3.0583333333 24.683333333 301.475

5 23 259 no cache no thread mesh build 352 2774 29769

5 33 243 348 2776 29654

5 28 251 avg 350 2775 29711.5

1/60 1/60 1/60 1/60 1/60 1/60

0.0833333333 0.4666666667 4.1833333333 in min 5.8333333333 46.25 495.19166667

75705362 302957496 2122204819 vol + mesh size - avg 120111481 645941000 5189219250

75705362 302957496 2122204819 120111481 645946864 5189362530

75705362 302957496 2122204819 120111481 645943932 5189290890

1048576 1048576 1048576 1048576 1048576 1048576

72.198259354 288.9227829 2023.89223 114.54723454 616.02013779 4948.8934422

mesh size in MB 42.348975182 327.09735489 2925.0012121

0

1.25

2.50

3.75

5.00

4.13

0.45

0.08

4.18

0.47

0.08

MipVolume Build Time in Minutes

0

150

300

450

600

301.5

24.7
3.1

495.2

46.3
5.8

MipMesh Build Time in Minutes

0

750

1500

2250

3000

2024

289

72

MipVolume Data Size in MB

0

1000

2000

3000

4000

2925

327
42

MipMesh Data Size in MB

Without Caching or Multi-Threading
With Caching and Multi-Threading

Without Caching
With Caching

35031753 7003

35031753 7003

(a)

175^3 350^3 700^3 175^3 350^3 700^3

build volume - tests

build volume - avg

no cache vol build

avg

in min

volume size - tests

volume size avg

4 27 247 build mesh  - tests 184 1480 18096

6 27 249 183 1482 18081

5 27 248 build mesh  - avg 183.5 1481 18088.5

1/60 1/60 1/60 1/60 1/60 1/60

0.0833333333 0.45 4.1333333333 3.0583333333 24.683333333 301.475

5 23 259 no cache no thread mesh build 352 2774 29769

5 33 243 348 2776 29654

5 28 251 avg 350 2775 29711.5

1/60 1/60 1/60 1/60 1/60 1/60

0.0833333333 0.4666666667 4.1833333333 in min 5.8333333333 46.25 495.19166667

75705362 302957496 2122204819 vol + mesh size - avg 120111481 645941000 5189219250

75705362 302957496 2122204819 120111481 645946864 5189362530

75705362 302957496 2122204819 120111481 645943932 5189290890

1048576 1048576 1048576 1048576 1048576 1048576

72.198259354 288.9227829 2023.89223 114.54723454 616.02013779 4948.8934422

mesh size in MB 42.348975182 327.09735489 2925.0012121

0

1.25

2.50

3.75

5.00

4.13

0.45

0.08

4.18

0.47

0.08

MipVolume Build Time in Minutes

0

150

300

450

600

301.5

24.7
3.1

495.2

46.3
5.8

MipMesh Build Time in Minutes

0

750

1500

2250

3000

2024

289

72

MipVolume Data Size in MB

0

1000

2000

3000

4000

2925

327
42

MipMesh Data Size in MB

Without Caching or Multi-Threading
With Caching and Multi-Threading

Without Caching
With Caching

35031753 7003

35031753 7003

35031753 7003

35031753 7003

(b)

Figure 5-4: Performance comparison of building MipVolumes from cubicly shaped segmentation
data volumes with 1753, 3503, and 7003 voxels.3 (a) shows a comparison of build times with and
without a caching. The MipChunk cache size was 128MB. (b) shows the resulting size of the
MipVolume data.
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Figure 5-5: Performance comparison of building MipVolumes from cubicly shaped segmentation
data volumes with 1753, 3503, and 7003 voxels.3 (a) shows a comparison of build times with and
without a caching and multi-threaded support. The MipChunk cache size was 128MB and two
threads were used. (b) shows the resulting size of the MipMesh data generated.

3All results are the average of two trials performed on a dual core Intel Xeon 3.0GHz CPU with 2GB of
RAM running Ubuntu Linux 8.10
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Chapter 6

Conclusion

This chapter concludes the thesis by detailing how the proposed system could be extended

through future work in section 6.1 and finally summarizes the major contributions of the

system in the closing remarks of section 6.2.

6.1 Future Work

The primary challenges of 3D visualization that the system specifically seeks to address

are in the areas of scalability and 3D editing. As these are very broad problems regarding

data management and user interfacing, the solutions proposed by the system are very open

ended. This section describes how the solutions to these challenges could be further explored

or extended.

6.1.1 Scalability

Scalable performance is a primary consideration for many components of the system. The

key classes in the system that facilitate this scalability are the MipVolume and MipMesh.

Each of these classes has the capacity for design modifications that could result in perfor-

mance improvement.

In section 4.1.2, the use of MipVolumes to scale the performance of data access and

modification of multiple resolutions of segmentation volume data is outlined. This model of

data structure depends on eventual refreshing from the modified leaf-level data to rebuild

higher level volumes until any changes have propagated to the root-level volume. While

this cost is amortized by only performing rebuilds during user mode changes as described

in section 3.2.3, rebuilds can be extremely wasteful by rebuilding entire chunks when only

a small number of voxels have been modified. A possible solution to this would be the
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use of immediate local updates. After a voxel is modified in the leaf-level, a MipVolume

would determine if the current subsampling method used would cause the change in voxel

value to modify the parent level volume. This processes is repeated until the modification

does not affect the parent level volume or the root level volume is reached. As MipVolumes

representing segmentation volume data use a simple subsampling technique, where a parent

volume is a uniform subsample of one in eight child voxels, the probability of a modification

propagating to a parent volume decreases by one-eighth each level increase. This makes

these local updates a practical way of eliminating costly rebuilds by always keeping all

volume levels of a MipVolume up-to-date.

Section 4.3 details the use of MipMeshes to scale mesh generation and drawing. The

relationship between MipMeshes and MipChunks shows how MipMeshes extracted from

higher-level MipChunks are lower resolution version meshes of larger data extents. These

lower resolutions meshes provide the same data extent coverage using a fraction of the

geometry of multiple MipMeshes from lower-level MipChunks. As a result, the same region

of space can be drawn faster but at the cost of detail. A possibly scheme for further

utilizing lower resolution meshes would be to maintain multiple resolutions of meshes with

the same data coverage. This means that a mesh extracted from a single data volume for a

specific data value would be decimated and saved at multiple target decimation percentages.

Avoiding the cost of rebuilding all meshes at a different decimation target, the user could

then instantly choose between various levels of meshing to select an appropriate performance

and detail tradeoff. The clear cost of this option is that multiple sets of mesh resolutions

would need to be managed and stored, but the ability for a user to dynamically modify

system performance could be extremely desirable.

6.1.2 3D Editing

A novel feature of the system is the ability to edit segmentation volume data in a 3D en-

vironment. The view component provides basic user interaction with the volume using the

mouse to selectively add or remove voxels from a Segment object. This simple functionality

allow a user to slowly sculpt segmentation data to a desired form. However, when a seg-

mented region of data requires major topographical changes, adding and removing a single

voxel at a time can become quite tedious. An area for improvement for 3D editing would be

to develop a set of various tools to use while editing. Much like a tool palette common to
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most image editing software, a set of 3D editing tools could enable faster and more accurate

modifications. Possible tools include:

• Cutting tool. When splitting merged segments, many times it is desirable to remove

all voxels in a segmented region along a given 2D plane. This plane cuts the segmented

region into at least two parts, so that a contiguous part can be relabeled as a new

uniquely segmented region.

• Paint brush. Just as the thickness of a brush determines the width of pixels it

covers when applied in image editing software, a 3D brush could vary in diameter of

the hemisphere of voxels it could add to a specified location. This would allow a user

to easy add thick layers of voxels to a segmented region.

• Clone tool. A clone tool could be used to quickly alter portions of target segmented

regions so adopt some of the topography of a source region. This would be particu-

larly useful to copy complex features of segmented regions between similarly shaped

segments.

• Copy and paste. Channel data are often segmented multiple times with varying

parameters. This can cause the resulting segmentations to be a mixture of correct

and incorrectly segmented regions. Copy and paste functionality would allow a user to

copy the correctly labeled regions across the various segmentation sources and paste

them to a final destination segmentation.

6.2 Closing Remarks

As the field of connectomics advances so does the the amount of data that is generated.

Smaller imaging resolutions create larger and more detailed raw image sets while improved

algorithms increases the rate of segmentation data generation. To keep pace with the

technology creating connectomic data, the system proposed in this thesis details a novel

approach towards scalable 3D visualization and editing.

The scalable performance of the system derives primarily from a new way to abstract

and organize connectomic data. A Volume class represents a rectangular region of seg-

mented tissue. This region can contain multiple segmentations which are abstracted into a

MipVolume class. This class organizes multiple resolutions of the segmentation data into
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MipChunks that can be quickly accessed and modified. During the rendering processes, this

organization allows the system to make use of both spacial and data hierarchical culling to

quickly and efficiently bound the amount of work needed to display mesh renderings of Seg-

ment objects. This ”divide-and-conquer” approach to limiting computational costs using

an oct-tree structure facilitates efficient logarithmic performance scaling of the system.

The system also includes unique 3D editing functionality not found in related con-

nectomic analysis software. While meshes are used to give the scalable 3D visualization

performance needed to view many large segmentations at once, the companion voxel ren-

dering of Segment objects provides the precision needed to perform detailed segmentation

modifications. In contrast to common 2D segmentation slice editing systems, the user in-

terface of the view component of the proposed system enables users to interactively sculpt

Segment objects via mouse input to achieve a desired shape. This interface provides a more

intuitive and easier way of editing 3D connectomic data.

To achieve the goals outlined in section 3.1, the system makes use of new ideas as well as

common 2D scaling and editing techniques that have been modified to work in a 3D domain.

The final system merges the performance of scalable 3D visualization and the functionality

of 3D editing to produce an architecture for the next generation of connectomic tools.
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