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USE OF DIRISTRBUTION FUTNCIIONS TO DSCRIB:

THE FLOWV OF CIENTIFIC INORriTION.

by Philip M. Viorse
Nlarch, 1979 KIIT OR Center

Scientific information fLlows from source to ultimate

user in a number of ways. This note concentrates on the flow

via the published scientific literature and its use via univ-

ersity, project or industrial library. At each step semi-random

matters of choice govern the rates of flow and thus determine tne

probability distributions describing the flow. For example, the

individual scientist, or member of a research team, chooses the

particular journal to which his paper is submitted; whether it

appears in that journal depends on the choice of the editor and

his referees. The library has a choice of which journals to

subscribe to. And, finally, a scientist, in carrying out new

research, has a choice of which journals, in the library and

accessible to him, he peruses in the hope of finding ideas or

data pertinent to his present research. In eac step of this

process the related distribution functions combine, resulting in

a new distribution, descriptive of the next stage of flow.

Thus the effects of combining distribution functions are

important in the study of this cyclic flow of scientific infor-

mation. It is the purpose of this note to discuss the combining

properties of the distribution functions that have been found

useful in describing various aspects of the flow. In all such

distributions we are describing how a number A of items (journals,

users, articles, etc.) are istributed with respect to what we

shall call roductivitv (number of articles in a given field in
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a volume of a given journal, journal usage ("used" n times a

year, or month) by specialists in a given field, probability that

a scientist contributes n articles per year to a given journal,

number of citations amassed by a iven article uring x years

after its publication, etc.) The fraction of the A items that

have productivity n will be called fn (or, at times, Pn ) , satis-

fying the usual requirements

Z fn = 1 ; n fn = q mean productivity of all items (la)

where the summations are over all allowed values of n. For the

cumulative distribution function

Fn = fm ; Fmin = 1 ; F = q (lb)

where min is the lower limit of n and where the summations are

over all allowed values of n not less than the lower limit shown.

The two distributions particularly (but not exclusively)

studied in this note are the well-known eometric distribution,

f= (l-y)y ; Fn = Y (O n < ) ; q = y/(l-y) (2)

and the Bradford distribution. The basic properties of this

distribution have been described in the IT-OR Center orkinz

Paper Mio. OR 068-77. The main properties are given in Table I

of this note, and a more extensive and more accurate set of values

of the more important quantities are given in Table II.

The important properties of the Bradford distribution are:

1. The distribution index n ranges from 1 to some maximum

productivity ; all items of productivity of N or reater are

lumped together into one upper limit F, with mean roductivity

GN/FN- qN ; N (see 2able I for definitions).

2. The number AFn = Al - (l/p)UJ= A[l - (1/0)Ylexp(-Vl)l,



of items with productivity reater or equal to n depends expo-

nentially onAGn (V n = G - G n), the total production of tose items.

This is the Bradford condition.

3. The distribution depends on one table of values of the

quantities Yn' n' Un, and Vn, tabulated in Table I and (aside

from the total number A of items and for N, the value of n for

the core) depends on the single parameter , wich deoends on N

and on the lower and upper mean roductivities qland qN and on

the Tabulated quantities U and VN

qNUN V N
- q1 q 1 = ; = N/FI (4)

Moreover, the dependence on ~ is purely multiplicative;

fn = Yn/p (1n< N) ; fN = 1- (UN/) - FN
(5)

F n = - (Un/) ; Gn = G 1 - (Vn/0) q- q1 nFn (l nN)

where AGn is the total production of all items equal to or reater

than n and qn= Gn/Fn is the mean productivity of all these items.

This last property gives the Bradford distribution useful orooerties

when combining with other distributions.

Thus, if the A items are also distributed according to some

other criterion j (number of times per year or month a particular

journal is "used" in a library, or the probability that an author

submits an article to a particular journal, for example) andl this

distribution depends on n, the productivity of the item, then the

probability tnat an item have property j if it has productivity n,

can be defined as p(j if n), where ~p(j if n) = 1. (In many cases

p(j if O) = O, interest in zero roductivity items is zero), Then the

combined probability that an item of A has property j as well as
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Productivity n is

p(j and n) = p(j if n)fn = p(nif j)pj (l n N) (6)

where pj is the unconditional probability that an item of A has

property j and p(nif j) is the conditional probability that the

item has productivity n if it has property j E[p(nif j) = 1 and

p(j if n) = ].

Because of the structure of the Bradford distribution f

the summation over n to find pj is particularly simple;
N-i

P = Lp( ifn)(/) + p(j if N)L- (U/,)|

= p(j if N) + (l/)R.(N) where (7)

Rj(N) = p(j if n)yn - p(j if N)UN

Since ZR.(N) = O, we are assured that p = 1. The quantities
J1J

Rj(N) are independent of , they are the same for all Bradford

distributions with the same N. The mean value of j (mean usage

or number of articles submitted, etc.) for those items of pro-

ductivity n, would. be J(n) = Z j p(j if n) and the mean value of

j for all A items, for all values of n, would be

= Ej p = J(n)fn = J(N)1- (Y1 Y) + (N) (3)

where d(N) = E J(n)yn

Thus the mean value of j can be expressed in terms of the quan-

tities in Table II, plus the values of J(N), determined from the

known p(j if n), finally using the value of , determined from

the , ql and qN for the appropriate Bradford distribution.

As an example we could assume that the distribution of

usage j of a journal in the library was geometric, with the mean

usage rate J(n) for a journal with productivity n (n articles on

a given subject per volume) such that



p(j if n) = (- )Y ; Yn Jn ( J(e )

(3a)
Yn 1 - e-4n )

i_(n) - en J( o)
1- Yn 1 + J( oo)e- 4n 1 + J(Q )

A few values of the quantities Rj(lO), J(N) and (N) are

given in Table III. All of these can be computed independently

of , and thus of ql and N'. ie see that Rj(l0), times the

difference between pj and p(j if 10), adds to p(j if n) for j = 0

and subtracts from it for j> 0. Thus the chance po of a journal,

chosen at random from the library, not being used at all by special-

ists in the designated field, is greater than it is for those

journals that have N articles in he field per volume -- a not

surprising result. We see also that the new distribution pj is

neither geometric nor Bradford. Its form, however, is one that

can be combined further with little more trouble than would be

encountered i combining p(j if n) with another distribution.

A still greater simplification can be obtained if the

combination of distributions is the other way around. Supcose,

for example, that the fraction of scientific journal volumes in

a given library, which have k articles in a given scientific

field, is Pk and suppose that the fraction of these journals

that are consulted (used) by specialists in the field is dist-

ributed according to the Bradford distribution, with a value of

f depends on k (ql and/or q depend on k). 2hen the fraction,

of all A journal volumes in the library,that have k articles in

the given field and are consulted n times a year (or month) by

specialists in the field is
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p(nand k) = p(nif k)Pk = p(kif n)fn (9)

where we have assumed that

p(nif k) = n/Pk (1 n<N) ; p(Nif k) = 1 - (l/[k)UN

In addition we probably sould assume that the specialist

knows what journals have articles in his specialty, so he looks

only at journals with at least one article in his specialty, neg-

lectinz the fraction P of journal volumes in A that contain no

article in the field, i.e., we should set p(nif O) = O. Thus

we should consider, not all A journal volumes in the library, but

only those that have at least one article in the field, ani con-

sider the distribution P = P k / ( 1 - P o ) (k 1) of the A' = (1-Po)A

volumes with one or more articles in the field. Then P = 1.

If this is the case, then the unconditional probability

that one of the A' journal volumes is used n times a year (month)

by specialists in the field is, from q. (9),

fn = p(nandk) = y / (1n< N) ; fN 1 - 1/) (10)

where (1/,) = E (1/,k)Pk

Therefore the distribution in use, by specialists in te field,

of the journals in the field in the library, is also a Bradford

distribution, with a equal to the reciprocal mean,of all the

B' over the istribution P of articles per journal (of ro-

ductive journals).

An interesting special case is where Pk also is a Bradford

distribution. For example, suppose the istribution in papers

published, among the A journals that publish at al in some field,

is Bradford an! suppose furter that the fraction of those journals

that published n articles last year (or month), which had k
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articles in the field submitted to and accepted for publication

in its next year (or month), p(kif n), also is a Bradford dist-

ribution, with parameter n. That is

fn = Yn/¢ (1 .n< N) fN = 1 - (UN/)
(11)

p(kif n) = yk/n (1 n N) ; p(Nif n) = 1 - (UNT/N)

Then the unconditional probability that a journal in the field

publishes k articles in the field next year (or month) is

f= ~p(kifn) = yk/' (U k<N ) ; f1

· ""' , ,-- (12)
where (1/5') = (1/)Z(Yn/n) - (N/P) + ( N )

which is another Bradford distribution (as it should be) with

another value ' of the parameter. If p' = p then the istri-

bution of articles published is steady-state, which sets some

conditions for the values of the parameters n for the conditional

probabilities p(kif n). One could carry this further by consid-

ering the p(kif n) to be Markov transition probabilities.

It would be interesting to know ow restrictive are te

requirements on the form of the listribution for it to satisfy

the combining properties expressed in is.(ll) and (12). in any

case, since the distribution over ournals of articles in a given

specialty has been shown to be Bradford in many cases, it appears

that the combined choice of authors plus referees results in a

conditional probability p(kif n),of k' articles per year submitted

and accepted by the journal with n articles last year, that also is

Bradford, as was assumed in q.(11i). TIais sugests speculation

as to whether there is some socio-stochastic reason for the sub-

mission of paoers to journals following a rsdford distribution.

A tendency to sub-nit acers that increases exoonentially with the

productivity of the journal would produce such a istribution.



TABLE I. IHE BtADFORD FUiNCTION.

A = otal number of productive items. Afr= No. wita prod. n.
rA-1 1

F n- fm + F
N = -(Y -Y n) = l-(Un/p) (1c n< N) is the

fraction of items with productivity n or greater. All items

with productivity N or greater are lumped together in the core.00 n-1 -l '

Yn = Yn; Un = Ym ; fn Yn/ p ( 1 < n< N) ; fN = FN ; f m = 1

fn is the fraction of items with productivity n (l n N).

fN is the fraction of items in the core.
n -\ n l

n Zmf+G m N l (Vn/) (l n N) ; Vn= my = n-Z U

AGn is the total production of all items with productivity
equal to n or greater. G = ql

qn = Gn/F is the mean productivity of items with productivity > n.
ql = mean productivity of all A items; qN = mean productivity of core.

Yn Ylexp(-Vn) or Fn= 1 - (Y 1 /){(1- expL[(Gn- G1 )j(Bradford rule).

For n 20,

y: (/n 2 ) - (/4n) ; Zn ny- (1/n) - (1/4n 3 )

Yn (l/n) + (1/2n2 ) + (1/12n ) - (l/n 4 ) ; Un 1.495-639 - Yn

Vn o.4024484 + ln(n-1) + (1/2n) + (1/2n2 ) + (1.76/n 5 )- (11/n 4 )

, is given in terms of N (items with productivity N or reater
belong to the core), qN mean productivity of core and

ql = G1 mean productivity of all A items.

,BqU=N -V ~ 11.4954639qN - o.024494- ln(N- 1)
q - ql N-

-(1/2n)(2 qN+1) - (1/2n 2 )(N+l)

-(1/12n ) ( qN+21. 12) + (1/8n 4 ) ( qN+)

for n 20.

There are several limitations on te ranges of N, q and qN.

First q N must be larer than ql. Also qNi must be larger than

VN/UN; in fact it is only reasonable to require that q, the

mean productivity of the core, be lar-er than -l, te produc-

tivity of the most productive items outsile the core.



AI II9 
THE BRADFORD FUNCTION.

n z' aZ

1 0.8671469
2 .4756952

5 .3252195
4 .2463951

5 .1981048

6 .1655524
7 .1421491
8 .1245221

9 .1107745
10 .0997533

11 .0907238
12 .0851898
13 .0768106

14 .0713378
15 .0665934
16 .0624390

17 .0587732
18 .0555126
19 .0525956
20 .0499686

21 .0475925
22 .0454310

23 .0434579
24 .0416484

25 .0399842
26 .0384472
27 . 0370245
28 .0357029
29 .0344724
30 .03353241

Yn

0.8671469
.2378476
.1084065
.0615988
.0596210

.0275921

.0203070

.0155653

.0123083

.0099753

.0082476

.0069325

.0059085
.0050956
.0044396

.0039024

.00oo4573

.0030840

.0027682

.0024984

.0022663
.0020650

.0018895

.0017354

.0015994

.0014737

.0015713

.0012751

.0011887

.0011108

Yn

1.4954639
.6283170
·3904694
.2820629

.2204641

.1808432

.1532511

.1329441

.1173789

.1050706

.0950953
.0368476

.0799152

.0740066

.0639111

.0644715

.0605691
.0571113

.0540278

.0512596

.0487612

. 0464949

· 0444298

.0425404

.0408050

.0392057

.0377269

.0363556
.0350805
.0333918

vn

0

0.8671469

1.3428421

1.6680616

1.9144567

2.1125615

2.2781139

2.4202630

2.5447851

2.6555595

2.7553128

2.8460;66

2.9292264

5.0060370

3.0773748
5.1439682

3.2064072

5.2651803
35.206929

35.53732385

3.42352571

3 .4708495

j.5162504

.5597384

3.60135868

3.64135710

3.6798182

. 7168427

3.7525456

5.7370130

U.,

0

0.8671469

1.1049945

1.2134010

1.2749998

1.3146208

1.3422128

1. 5625198

1.3780851

1.5903934

1.4003687

1.4086163

1.4155488

1.4214575

1.4265529

1.4309924

1.443949

1.4533521

1.4414361

1.4 442043

1.4467025

1.4439691

1.4510341

1.4529236

1.4546589

1.4562583

1.4577370

1.459103

1.460334

1.4615 721
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TABLE II

continued

Zn

.0312424

.0294054

.0285656

.0277724

.0263112

.0249961

.0222195

.0199980

.0166655

.0142850

.0124995

.0099998

.0083352

.0071428

.0066666

.0062499

.0055555

.0050000

.0040000

.0033333

.0028571

.0025000

.0020000

. 0016667

.0012500

.0010000

Yn

.0009763

.0003649

.0008162

.0007715

.0006924

.0006249

.0004938

.0004000

.0002778

.0002041

.0001562

.0001000

.0000694

.0000510

.0000444

.0000391

.0000309

.0000250

.0000160

.0000111

.0000082

.0000062

.0000040

.0000028

.0000016

.0000010

Yn

.0317407

.0298463

.0239815

.02.31653

.0266635

.0253138

.0224700

.0202006

.0168059

.0143880

.0125783

.0100501

.0083631

.00716834

.0066889

.0062696

.0055710

.0050125

.0040080

.0033389

.0028612

.0025031

.0020020

.0016681

.0012508

.0010005

Vn

3.3525921

3.9141309

-.9435365

3.9721023

4.0268973

4. 0783457

4.1980127

4.3044810

4.4834659

4. 438045

4.7732275

5 .0026199

5.1857742

5.3405199

5.4097508

5.4744975
5.5926277

5.6982659

5.9219094

6.1045643

6.2589530

. 3926630

6.6160565

6. 798544 7

7. 0364 351

7.35097037

U n

1.4637232

1.4656176

1. 46645324

1.4672986

1.4688004

1.4701502

1.4729939

1.4752633
1.4736530

1.4310759

1.4823856

1. 454138

1.4870958

1.4L832955

1.4837750

1.L391943

1.43;3929

1.4904514

1.4914559

1.4921250

1.4926027

1.4929608

1.4934619

1.493795S

1.4942131

1.4944634

n

32

35

36

38
40

45
50
60

70

80

100

120

140

150

160

180

200

250

300

350
400

500
6O00

800

1000
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TABLE III.

Combination of Geometric and Bradford Distributions. See 7,

Values of Y10'

J(0O)
Y10

10
Ro
R0
R2
Rx0

R5

R 7
R8
Rg
RiO

0.05 0.05 0.05
2 4

0.2623 0.5148
.3556 .4594

0.2829
-. 1949
-.0640
-.0176
-.0047
-. 0012
-.0003
-. 0001

0.3
-,2
-. 0
-. 0

-. 0

-. 0

-.0

-. 

J(10) and R;(10) vs. values

6
0.355,7
.5089

395 0.35
128 -.2
)852 -. 0
23 -. 0
)091 -. 0
029 -. 0
)009 -. 0
)005 -. 0
)001 -. 0
- -. 0

2
0.4214 0.
.7234 1.

6538 0.455338
183 - 2116
944 -. 1238
336 -.0561
115 -. 0243
039 -. 0104
013 -. 0044
005 -.0019
002 -. 0008
001 -. 0003
- -. 0001

0.1 0.1
4 6
5057 0.5418
0250 1.1825

0.5206
-. 2006
-. 1499
-. 0824
-.0429
-.0220
-.0112
-.0057
-.0029
-.0015
-. 0007

0. 5578
-. 1904
-. 1581
-.0936
-.0523
-.0288
-. 0157
-. 0086
-.0047
-.0025
-. 0014

For j >10,

of and J( ) ).

0.15
2

0.5179
1.0743

0,5068
-. 1797
-.1472
-.0845
-. 0454
-.0239
-. 0125
-.0065
-. 00L4
-. 0018
-. 0009
j-o1

0.15
4

0.6215
1.6420

0.6081
-. 1572
-. 1601
-. 1130
-. 0734
-.0465
-. 0293
-. 0183
-.0114
-. 0071
-. 0044

0.15
6

0.6659
1.9931

0.6516
-. 1109
-. 1583
-.1216
-.0350
-.0579
-.0390
-.0262
-. 0175
-. 0117
-.0078

Values of J(N)

N-=2 3

0.202
.112

.286

.121

1 4 J 0.170
q .071

J .184.1 6 ......
.077

.1 J .192Q .080

.2 4 J .358
q .147

.2 6 J .94Q .160

and (N)

4 5 6

0.358
.140

.394

.152

0.459 0.565
.162 .180

.509

.176

vs. Ni, p. and J(o ).

7
0.674
.196

.631 _ 759

.196 .214

8 9
0.787 0.904
.210 .222

.894 1.036

.229 .243

.299 .415 .538 .670 .310 .959 1.i16

.126 .158 .184 .205 .224 .240 .255

.565

.232
.787 1.023 1.268 1.517 1.766 2.010
.293 .342 .383 .418 .448 .476

.651 .894 1.183 1.494 1.823

.253 .322 .577 .423 .465
2.165 2.514
.502 .535

J .415 .670 .959 1.285.265 .338 .97
Q .167 .265 .3358 ·397

J .565 .904 1.268
.227 .361 .459

1.642
.537

1.640
.448

2.010
.602

6 3 .651 1.035
*.3 6 $.248 .398

.670

.260
1.116
.419

1.494
.510

1.640
.540

1.993 2.514 3.035
.602 .681 .750

2.232
.641

2.875 3.546
.729 .809

3.533 3.988
.812 .867

.3 8 3 1.006
4.215

.8.31
4.853

.946

8, a.

A J(o0)
10

0.233

.256

.269

.501

.566

2.027
.493

2.356
.658

2.375
.572

2.441
.554

2.669
.706

.607

2.941
.747

.916

Ri (10) &, JO(10) (Y10


