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Abstract

Progression of technology nodes in integrated circuit design is only possible if there
are sustainable, cost-efficient processes by which these designs can be implemented.
As future technologies are increasing device density, shrinking device dimensions, and
employing novel structures, semiconductor processing must also advance to effectively
and efficiently process these devices. Arguably one of the most critical, inefficient,
poorly understood and costly processes is planarization. Thus, this thesis focuses on
two types of planarization processes. Models of efficient and environmentally benign
electrochemical-mechanical copper planarization (eCMP) are developed, with a fo-
cus on electrochemical mechanisms and wafer-scale uniformity. Specifically, previous
models for eCMP are enhanced to consider the full electrochemical system driving
planarization in eCMP. We explore the notion of electrochemical reactions at both
the cathode and anode, in addition to lateral current flow in a time-averaged calcula-
tion. More efficient and accurate models for planarization of shallow-trench isolation
(STI) structures are proposed, with a focus on die-scale and feature-scale uniformity.
This thesis captures the fundamental weakness of CMP, pattern dependencies, and
uses deposition profile effects as well as the pattern-density to more accurately model
and physically represent STI structures during CMP. We model, for the first time,
the evolution of pattern density as a function of time and step-height, and use layout
biasing to account for deposition profile evolution for the accurate prediction of die
and feature-scale CMP.

Thesis Supervisor: Duane S. Boning
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

This chapter introduces the impetus for advanced integrated circuit planarization

processes. A literature review of two planarization processes, and a conceptual review

of the two respective types of modeling explored in this thesis are discussed. Lastly,

the contributions of this thesis to academic and industrial knowledge are presented,

and the organization of the remainder of the thesis is summarized.

1.1 Motivation for Modeling of Advanced

IC Planarization

A product design is only as strong as the manufacturing process used to fabricate

that design. Design progression of technology nodes is only possible if there are

sustainable, cost-efficient processes by which these designs can be implemented. As

future technologies are increasing device density, shrinking device dimensions and

integrating novel device structures, semiconductor processing has to also consider

alternative approaches and other evolutionary advances to effectively and efficiently

process these devices. Arguably one of the most critical, inefficient, poorly understood

and costly processes is planarization.

In order to achieve the critical planarity required by future (sub 22nm) technology

nodes, there have to be new technology drivers in planarization, for both metal layers
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and dielectrics. One driver is in the form of models that reduce the consumable cost

or consumable usage, which are also accurate enough to provide in-situ knowledge

of the process and thus control process variation with optimal performance metrics.

The question is modeling of what planarization steps? There are four primary types

of planarization performed in IC manufacturing: oxide chemical mechanical polish-

ing or planarization (CMP), Shallow Trench Isolation (STI) CMP, tungsten CMP,

and copper CMP. This thesis will focus on the modeling of STI and copper CMP.

STI CMP is performed in front-end fabrication to provide isolation between devices

using a damascene process that involves dual material planarization. Copper CMP

is performed in back-end fabrication to planarize the interconnect layers, and also

involves multiple material planarization. While the STI geometry is planarized using

traditional CMP, copper interconnects can be planarized one of two ways: by conven-

tional CMP, or through a newly established process using voltage application during

polishing known as electrochemical mechanical polishing, or eCMP.

Industry is starting to pull away from the intriguing thought of eCMP for copper

planarization, which has significant potential benefits in wafer level uniformity, sub-

stantially lower consumable costs, environmentally benign waste and increased ease

of process control. ECMP has typically been applied to bulk copper removal on the

first platen within a three platen planarization process; existing eCMP processes still

employ conventional CMP on the last two platens, to remove the remaining copper

and barrier metal after bulk copper removal by eCMP. For industry to get a substan-

tial return on investment (ROI) from this technology, it must replace more of the

three-platen process and planarize the full copper layer down to the barrier, and pos-

sibly the barrier metal layer as well, using eCMP-based processes. To develop models

that extend to a full range of eCMP processes is a large and intriguing challenge.

In order to see a more immediate and significant ROI, most semiconductor compa-

nies also need more accurate predictive conventional CMP models that are empirical

in nature but physically based on the pad’s properties. It is for this reason that the

first half of this thesis will focus on CMP modeling of the STI process using novel

slurries for consumable reduction and end-point accuracy. The second half of this the-

16



sis will then return to the modeling of eCMP, to lay the groundwork for the potential

use of eCMP in future technology generations.

1.2 Background: Planarization

Planarization is arguably one of the most critical and expensive parts of the silicon

integrated circuit (IC) chip fabrication process; ironically it is also considered among

the least understood and controlled processes. In 2003, the International Technol-

ogy Roadmap for Semiconductors (ITRS) stated that “increasingly, planarization has

become the enabling step for interconnect solutions. As materials and structures be-

come less conventional and demands on planarization tolerances become more exact-

ing, planarization processes themselves become more closely coupled to the choice of

integration scheme” [12]. And again in the 2008 updates, ITRS identifies “planariza-

tion effects” as one of the “difficult challenges” for sub-22nm technology development

[13].

Originally developed by IBM, chemical mechanical polishing (CMP) is the ac-

cepted process for planarizing both dielectric and metal layers. It has helped enable

the increase in number of metal layers and the decrease in dimensions and tolerances

over the years, but it is quickly approaching its limits in its current state. The su-

percession of Moore’s law by the faster creation of new IC chips with more metal

layers and complex scaled structures is placing more stringent demands on CMP that

may be difficult to meet without the creation of novel process enhancements. Thus,

there is an imperative need for “applications to expand to chemically complex materi-

als and mechanically fragile structures which requires aggressive development of and

improvements in all aspects of CMP, slurries, pads, and machines” [14]. These afore-

mentioned applications must be implemented in order to maintain and/or reaffirm

CMP as the “state of the art technology” for planarization. Since the mid-1990’s,

when the switch from aluminum to copper began, CMP has had a monopoly on the

planarization processes in IC fabrication. It was not until industry began to approach

the 65nm node that conventional CMP started to reveal difficult and possibly inher-
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ent limitations. It was then that technologists realized that to continue device scaling

with thinner interconnect layers and low-k dielectric films, and to allow the use of

higher-resolution optics for photolithography with more stringent requirements, there

had to be tighter planarization specifications and process control with lower down-

force. It is not yet known if conventional CMP will be able to meet these future needs.

A possible alternative solution is electrochemical mechanical planarization (eCMP)

technology. As proposed by Applied Materials, eCMP seeks to rise to the challenge by

providing a planarization process with dramatically lower downforce, ultra-low shear

force, precise process control and reduced dishing and erosion, but with one caveat:

it still requires conventional CMP to complete the removal of the remaining Cu and

barrier metals [2].

1.2.1 Chemical Mechanical Polishing (Planarization)

for Shallow Trench Isolation

In IC fabrication there are many process steps that require planarization, to build

multi-layer structures as well as to create in-laid features. Primarily, conventional

CMP is performed in the front-end to planarize dielectrics and damascene structures,

including both single and dual material planarization in fabrication techniques like the

commonly used Shallow Trench Isolation (STI), which is modeled in this thesis. STI

is the only isolation scheme used in semiconductor manufacturing which can achieve

active area pitches in the sub-0.25 µm regime. Device isolation is desired in order to

form a dielectric separation between the source and drain of neighboring transistors,

preventing current leakage [15]. The STI process is the preferred isolation technique

not only because it enables effective segregation of devices, but also because it has

near zero field encroachment, good scalability, low junction capacitance, and good

planarity [1]. STI structures are fabricated using a damascene, or inlaid material,

process as shown in Figure 1-1.

First a thin pad oxide layer (approximately 100Å) is thermally grown to serve

as an intercessory layer between the silicon substrate and the silicon nitride layer;
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Figure 1.5 STI process flow summary: (a) pad oxide and nitride deposition, (b)
anisotropic trench etch, (c) trench sidewall passivation, (d) trench fill, (e)
CMP planarization, (f) nitride and pad oxide strip.

STI is able to achieve near zero field encroachment because an anisotropic etch is

used to form the isolation trenches. The sidewalls are nearly vertical, and the angle of the

sidewalls is limited by the trench fill capability of the oxide used [3]. The width of the

isolation trenches is defined exactly by the lithography step, hence, STI can be scaled

with each technology generation.

The depth of the trenches depends on the anisotropic etch process. Trenches of

arbitrary depths can be fabricated by varying the etch time. Deeper trenches increase

latch-up immunity, decrease junction capacitance, and decrease junction leakage [3]. In

practice, the aspect ratio of the trench (ratio of height to width) is limited by the trench

fill capability of the oxide used as mentioned earlier.

Several techniques have been developed to achieve planarization and most of

them use CMP [1]-[3],[10]-[12]. However, the amount of material removed during CMP

nitride

pad oxide

silicon

CVD oxide(a) (d)

(e)

(f)(c)

(b)

Figure 1-1: STI process flow summary: (a) pad oxide and nitride deposition, (b)
anisotropic trench etch, (c) trench sidewall passivation, (d) trench fill, (e) CMP pla-
narization, (f) nitride and pad oxide strip [1]

.

the nitride layer (approximately 1500Å) is deposited using chemical vapor deposition

(CVD). Next, the trenches are fabricated using a lithography process and dry-etched

to create approximately 5000Å deep trenches in the silicon substrate. The trenches

are then filled with silicon oxide using CVD, forming a thick layer over both the

nitride area and trenches. CMP is then used to remove the overburden of oxide until

all of the oxide above the nitride has been removed. Requirements for the CMP

process include high selectivity to stop planarization on the nitride, low erosion of

the nitride, and low dishing to the oxide trenches. After planarization, the nitride

and pad oxide are stripped, forming the inlaid structures as seen in Figure 1-1.

1.2.2 Electro-chemical Mechanical Polishing (Planarization)

In the back-end of the IC fabrication process, planarization is used to form the metal

interconnect layers. Currently copper is the metal of choice for interconnects because

of its conductivity and reduced proclivity to electro-migration [7]. Traditionally,

tungsten and aluminum have been used to form interconnects, and the aluminum lines

have been fabricated with a subtractive dry etch process. Copper is very difficult to

19



dry etch, thus another CMP damascene process is used to create copper interconnects.

This process is similar to that of dual material STI planarization, with the exception

that its aim is to “clear the overburden copper and remove the barrier on top of the

dielectric spaces separating the copper interconnect lines” [16].

As in STI CMP, requirements on the planarization include low erosion of the

dielectric between copper features, and minimal dishing of the copper features. Since

there is a highly conductive layer on the surface of the wafer in the damascene copper

process, voltage application can be employed to aid in removal, thus the motivating

advent of the eCMP process. ECMP is a process in which electrochemical removal

is used as a replacement for the chemical-mechanical removal of copper in CMP.

Brought to market by Applied Materials in 2005 [17], eCMP creates an equivalent

two-electrode electrochemical cell in which the pad and the copper on its back surface

serves as the cathode, and the Cu wafer serves as the anode as illustrated in Figure 1-2.
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Figure 1-2: Illustration of eCMP setup.

Voltage is applied between the two electrodes; rather than using the traditional

CMP slurry, an electrolyte is used to provide an ionic solution, which facilitates the

oxidation of the copper atoms. In order to ensure that current is freely flowing from

the positively biased pad electrode to the negatively biased wafer when voltage is

applied, the wafer is grounded at a wafer contact region consisting of copper beads

20



which provide sufficient contact at the edge of the wafer [8]. This is shown in the

basic hybrid eCMP setup in Figure 1-3.
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Figure 1-3: Illustration of hybrid eCMP setup.

Once the bias voltages reach a range of 1 to 3V, the applied potential initiates

the oxidation (removal of one or two electrons) of the copper in its metallic form to

its ions Cu2+ (Cu1+) as shown in Equations 1.1 and 1.2.

Cu→ Cu+2 + 2e− (1.1)

Cu→ Cu+1 + 1e− (1.2)

There exist two competing theories as to what happens next in the process. The

first theory is that once oxidation occurs, the resulting Cu ions (Cu2+/Cu1+) interact

with the inhibitor in the electrolyte to create a soft passivation layer on the wafer

surface which can easily be removed with relatively low downforce (less than 1 psi)

while simultaenously protecting the trenches from dishing during planarization [18].

The second theory asserts that a layer of some protective polymer or other thin film

is deposited on the Cu surface that has a much higher resistance than the exposed

areas, and thus when it is mechanically removed by the pad it allows for localized Cu

dissolution/removal [19]. In either case, the working assumption is that exposed Cu

oxidizes into Cu2+ such that Cu removal can be calculated: for every two electrons of

charge delivered, one Cu atom will be removed [8]. Therefore current density J and
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time of current application can be used to calculate and model removal, which will

be discussed in further detail in Chapter 3. However, the caveat to this process is

that the Applied Materials tool still uses a three platen process, in which the second

and third platens use conventional CMP to complete the Cu planarization process,

as shown in Figure 1-4, because eCMP is currently unable to completely remove the

remaining Cu and barrier metal.

Figure 1-4: Reflexion LK eCMP process sequence [2].

1.3 Background: Modeling

The fundamental reason why planarization is only partially understood and thus

difficult to control is the large number of mechanisms which can affect it, including

chemical, mechanical, physical, and now even electrical processes. Modeling helps

to provide a foundation upon which we can derive an understanding of the matrix

of mechanisms that affect the CMP process and its variation. Models allow us the

flexibility to try and isolate from the matrix the contribution of a few key parameters

in an attempt to predict the dominant effects as well as the variation of the process.

Modeling not only aids semiconductor manufacturers in immediate returns on in-

vestment like increased yield and decreased consumable costs, but models are essen-

tial to understand the mechanisms that enable removal of material and cause process

variation, which affects device performance and process efficiency. In this thesis we

will focus on two primary types of variation: die-level variation in STI CMP and

wafer-level variation in eCMP. Die-level variation is the variation within a single die
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or chip, which typically includes layout or pattern dependent variations in polishing

rate, dishing, and erosion. Wafer-level variation is the variation over the entire wafer,

which is typically observed as a non-uniformity of some geometric or material param-

eter, most commonly material thickness. Wafer-level modeling differs from that of

die-level modeling in that it will capture tool limitations and process control issues,

which is where the key learning begins for a new process like eCMP. In contrast,

die-level models focus on the planarization capability of well-defined structures and

processes, in order to create more viable process operating windows and pinpoint lay-

out design weaknesses; this is more appropriate for a well developed existing process

like STI CMP [7].

Much work has been done in the Boning research group here at MIT, to develop

die-level and wafer-level, physical and semi-empirical models for STI and metal (cop-

per) planarization. The work undertaken in this thesis is only possible because of the

learning from the work of the following. Stine et al. demonstrated the strong corre-

lation between CMP removal rate and pattern-density, to develop a pattern-density

based model [20]. Observing possibilities for model improvements in accounting for

pad deformation, Ouma et al. demonstrated the importance of effective pattern-

density calculated using an elliptic weighting function [21]. After the advent of the

IMEC step-height based model, Smith et al. demonstrated an integrated Pattern-

Density and Step-Height (PDSH) model [22]. Bridging the gap between Ouma and

Smith’s work, Lee et al. devised an integrated PDSH model using effective pattern-

density [23]. Gan et al. investigated reverse tone etch back CMP models, which

study dishing and erosion predictors in this variant of STI processes [1]. Tugbawa et

al. demonstrated a dual-material damascene CMP model [24]. In an effort to return

modeling to a more physically-based approach, Xie et al. developed physically-based

pattern-density step-height models, based on a detailed physical model that extracts

pad and process dependent parameters [7]. Cai et al. created pattern-density and

feature size dependent models of copper CMP, and coupled these with models of the

electroplating process [25]. A preliminary wafer-level non-ohmic eCMP model was

developed by Truque et al [8]. However, as pad design, layout dimensions and de-
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signs, and slurry chemistries change, the model must be refined, expanded, and in

the case of eCMP, newly developed.

1.3.1 STI CMP Modeling

Extensive die-level modeling of the damascene process to fabricate STI structures in

the Boning group, most recently the work of Xiaolin Xie [7], is contributing to the

academic study of CMP, as well as to the industrial optimization of the process in pro-

duction through fruitful corporate interactions with major semiconductor companies.

Most of the previous work focused on pure pattern-density models. These models were

based around two central assumptions. The first assumption is a linear dependence

of removal rate on pressure, as stated in the Preston equation, RR = κPν, where

RR is the removal rate of the material, κ is the Preston coefficient (lumped factor

of all other effects), P is the applied pressure, and ν is the relative velocity between

the wafer and pad. The second assumption is that there exists a strong relationship

between pattern-density and removal rates based on a sophisticated weighting sys-

tem of contributing neighboring die features, which defines a “planarization length.”

Planarization length is a concept adapted by Stine [20], which assumes that the local

pressure is only affected by the topography of a finite nearby region of the die. This

neighborhood area is defined by the planarization length, and an averaging filter is

used to create what will be referred to as the effective pattern-density, as depicted in

Figure 1-5.

Figure 1-5: Method for calculating effective pattern density.
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Xie’s work took these models even further by adding in a physically-based set of

assumptions, in which the polishing pad is modeled explicitly to estimate pressure

in the active and field areas, based on effective topography, step-height, and inter-

actions with the pad. The pad is decoupled into the bulk and the asperities on the

surface, yielding two new model parameters, the effective Young’s modulus of the

pad and a characteristic pad asperity height. Integrating the former pattern-density

models, step-height evolution models, and physically based model, Xie was also able

to generate an approximate exponential Pattern-Density Step-Height (PDSH) model,

which will be used as the foundation for the modeling done in this thesis. It is a semi-

empirical model, which assumes a continuous dependence on step-height and effective

pattern-density, accounting for pressure dependence and step-height reduction effects.

This model was hypothesized to be applicable to both dual and single material STI

planarization using conventional and non-conventional slurries. However, the model

was primarily tuned and demostrated for conventional STI CMP, particularly for ox-

ide stages in the STI CMP process. Our goal is to effectively model practical dual

material STI planarization and non-conventional slurry processes, particularly for re-

alistic sized features and topographies used in typical IC products, thus motivating

the model extensions proposed in this thesis.

1.3.2 eCMP Modeling

Applied Materials has shown that eCMP is a viable process compared to traditional

CMP for the removal of bulk copper, with the introduction of their eCMP tool in

July of 2005 [11]. However, a substantial challenge remains to show that eCMP can

replace the traditional three platen process for planarizing copper, and new process

development is needed to also use eCMP to replace the CMP removal of the barrier

metal. In this thesis, we attempt to model this process by adding a third component,

electrochemistry, to the traditional planarization picture.

The value of eCMP over the widely accepted traditional CMP process, lies in

this third component of electrochemistry. The eCMP material removal mechanism

is almost purely electrochemical, as opposed to the wear-driven CMP process. This
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allows for the lowering of applied pressure of the polish pad to below 0.3 psi in eCMP,

dramatically lower than the traditional CMP standard of 1.5-3 psi. Reduction of

the applied pressure has multifaceted benefits: negligible damage to fragile low-K

dielectrics, longer pad life, and reduction of pattern dependency [11]. Additionally,

the electrolyte used in eCMP, which replaces the need for traditional slurry, is con-

siderably cheaper, potentially enabling a consumable cost reduction of up to 30%,

in addition to increasing the throughput by up to 25%. With the combination of

the mechanics of CMP and the reactions of electrochemical planarization (EP), the

process of eCMP offers the unique possibility to maximize the capabilities to not

only reduce dishing and erosion of features, but also reduce cost. ECMP is unique

because the electrochemical interactions at the interface of the wafer and the elec-

trolyte creates a passivation, or coating, layer protecting the recessed areas during

planarization, which reduces dishing considerably in larger features [11]. This soft

passivation layer is thought to be easily removed by the mechanics of the pad, only

or predominantly from the raised features. Additionally, some of the process control

issues of traditional CMP are avoided, because the direct relationship between charge

and removal rate makes the endpoint stable and repeatable [11].

Electrochemistry brings value to the eCMP process, but it also brings challenges

to eCMP modeling, because the application of electrochemistry to planarization is

poorly understood and it is not yet a complete process. Thus, the modeling of a

somewhat ambiguous black box of reactions poses significant challenges and intriguing

questions.

1.4 Thesis Contributions

The contributions of this thesis can be split into two specific aims or categories:

die-level CMP models for STI CMP and wafer-level eCMP models for Cu CMP.
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1.4.1 Evolution of Pattern Density Die-Level CMP Model

for STI

In this thesis a die-level CMP model for STI is presented, primarily focused on the

previously unexplored premise that pattern-density is a function of deposition profile

and time (step-height reduction). This model seeks to attack one of the key unknowns

in CMP and thus improve the modeling of the process for future technology gener-

ations: we improve the physical intuition and understanding of how the deposition

profile of the oxide and the morphological changes of the structures being planarized

affect the polishing rate of nearby structures. The model proposed in Chapter 2 pro-

vides new insight into the deposition profile bias effects and pattern-density effects

over time, with the focus of understanding the physical and geometrical changes of

the structures being planarized in-situ.

1.4.2 Full Electrochemical Die-Level Modeling for eCMP

In this thesis, a framework for a wafer-level eCMP model for Cu CMP is presented,

primarily focused on an accurate representation of the dominant mechanism of elec-

trochemistry. Previous models have been either purely semi-empirical or incomplete

representations of the electrochemical reactions taking place in the eCMP process.

The model proposed in Chapter 3 takes into account a wider set of the electrochem-

ical reactions taking place in the eCMP process, treating the wafer-electrolyte-pad

combination like a prototypical electrochemical cell. This extended model enables

accurate representation fo removal rate versus applied voltage, and enables full 3D

modeling of eCMP wafer-level uniformity.

1.5 Thesis Organization

This thesis seeks to make theoretical extensions and modeling advancements to eCMP

and CMP models, that will allow both processes to take/maintain their place in the

overall IC fabrication process. This first chapter served as an introduction to the im-
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petus for advanced integrated circuit planarization processes and provided a literature

review of these two planarization processes and their respective models. Chapter 2

describes the evolution of die-level CMP models for STI, and the framework for a new

evolution of pattern-density die-level CMP model. Chapter 3 describes the history of

wafer-level eCMP models for Cu, and the framework for a full electrochemical wafer-

level eCMP model. Chapter 4 summarizes the major aims, results, and contributions

from Chapters 2 and 3, and suggests key areas for future work.

28



Chapter 2

Evolution of Pattern-Density

Die-Level CMP Model for STI

This chapter will propose an evolution of pattern-density die-level CMP model which

seeks to account for the deposition profile effects and topography geometry changes

which determine pattern-density with respect to time and step-height reduction. A

chronological literature review of all previous die-level CMP models for STI from the

Boning research group of MIT is presented. The objectives and framework of the new

model is then explained in greater detail. Experimental verification for the evolution

of pattern-density CMP model is described, followed by a summary.

2.1 Evolution of Die-Level CMP Models

Since 1997 extensive and prototypical die-level models have been explored for both

STI and copper CMP. Trending over the past 12 years has generally shown steady

improvement in the accuracy, or reduction in the error, of empirical modeling of

pattern-varying removal in test layouts and/or structures, as shown in Figure 2-1.

Closely observing the trend in Figure 2-1, the aforementioned steady error re-

duction is seen until 2002, when there appears to be a transition upwards in RMS

error. All of the models prior to 2002, by Stine, Ouma, Smith, and Lee were em-

ploying the use of empirical parameters to verify the physical intuition explaining the
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Figure 2-1: Illustration of model evolution of STI for CMP:
reported root mean squared (RMS) model error of film thickness predictions from
previous work is shown.

pattern-dependent oxide thickness variation, and subsequent removal through model-

ing. Take for instance the use of the parameter of planarization length; this empirical

parameter seeks to provide a “characteristic length over which neighboring topology

is affective based on long range pad deformation and pressure distribution.” These

models have been primarily empirical or semi-empirical in nature, successively adding

effects to improve accuracy, at the price of increasingly complex modeling with more

semi-empirical model parameters. In 2002, Xie began work to use physical parameters

to verify the physical intuition to explain and explicitly model the pad and surface

asperities. Xie’s work on a physically-based CMP model uses physical properties

like applied pressure, pad Young’s modulus, and pad asperity height to find the dis-

cretized point pressure. Most notably, Xie’s implementation of this physically-based

model into a PDSH model was able to capitalize on the physical intuition yielded by

the physically-based model while also reducing the number of fit parameters without

significantly degrading model error.

Although CMP has steadily increased in usage and process precision in state of

the art IC manufacturing, the fundamental physical understanding of how the process

30



actually works has not advanced greatly in the past five years or so. Xie’s exponential

pattern-density step-height model was able to show promise in modeling explicit phys-

ical components, using the extracted physical properties as parameters and providing

a more physically sound basis upon which to better empirically model topography

morphology during removal. However, there were several components absent from his

modeling approach, including the attention to the time-evolving morphology of the

structures being planarized, and the respective step-height dependent pattern densi-

ties as a result of that evolution. Our goal in this portion of the thesis is to review

previous CMP models, and then consider this key improvement to the model.

2.1.1 Pattern-Density CMP Model

One of the earliest models to present a closed form solution for effectively predicting

removal and ILD thickness variation using a semi-empirical CMP model was proposed

by Stine et al. [20]. This model established a baseline for analytical modeling of CMP,

on the premise that the key parameter in predicting removal of topography was the

pattern-density of the layout, thus focusing the model on explaining the principal vice

of planarization using CMP, the variation caused by systematic pattern sensitivies [3].

The key parameter of effective pattern-density, referred to as ρ, is defined and

established in Stine’s work as a function of deposition profile, polish time, and the

lateral spatial range over which it is computed. This premise is sound; however,

Stine makes several limiting assumptions. The first assumption is that the oxide

deposition profile is a direct vertical translation of an underlying metal profile as

shown in Figure 2-2 below, and thus the raised oxide and the metal layer share the

same pattern-density.

This assumption works effectively for relatively large features, e.g., for pitches

greater than 250µm and line widths greater than 20µm, in which there are no sig-

nificant lateral deposition effects. However, when considering smaller feature sizes

using diverse deposition techniques like the more conformal chemical vapor deposi-

tion (CVD) versus a high density plasma CVD, one must consider these deposition

effects which yield a profile similar to the general case shown in Figure 2-3 below,
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2

(1)

where D0 is the ratio of the polish rate of “down” areas to “up” areas,S is the step height,S0 is the initial step

height, and U is the polish rate of “up” areas. This equation states that the polish rate is proportional to the

step height, but the physical motivation or mechanism for this assumption is not clear.

Hayashide et al. have proposed a model where the polish characteristic of the whole chip is evaluated

by partitioning the chip into cells and determining the remo val rate of a cell as functions of cell density ,

height and an enhancement factor. The enhancement factor is obtained by an FEM analysis of the bending

characteristics of the pad. This results in possible prediction of edge rounding and polish characteristics of

down areas. The density within a cell changes with time b ut the model does not specify ho w this is evalu-

ated. The numerical thickness prediction also minimizes the utility of the model for quick evaluation of the

relative removal rates of various layout patterns.

Renteln has presented a program which simulates the polishing characteristics of a die gi ven the

topography scan of the surface prior to polishing. The details of the implementation of the program are not

presented and the utility of the program is limited by its availability.

III. PATTERN DENSITY DEFINITIONS

As reported in the literature [3, 4, 11, 12, 13] and as apparent from simple visual inspection of pat-

terned post-CMP wafers, underlying pattern density is a k ey factor affecting polish in CMP processes. A

major obstacle to modeling pattern density dependencies in CMP rests with finding a suitable and compact

definition for a density metric. In this section, we give a specific definition of pattern density and of interac-

tion distance. We then examine the relationship between interaction distance and planarization length often

discussed in the literature.

An example helps to define and illustrate subtleties in the definition of pattern density . Figure 1

shows a simple cross section through a fictitious test structure composed of two 1mm wide metal lines sepa-

rated by 1 mm and a 5 mm line which is separated from the 1 mm lines by 3.5 mm. Since the lines are very

wide, we can assume that the deposition profile can be approximated by the metal profile. In this example, a

1.5 m layer of oxide was deposited. We note that In many situations the deposition is conformal and not as

shown in Figure 1, and the oxide profile cannot al ways be approximated by the metal profile; this is most

evident in tight pitches or small spaces. F or this reason, computations of pattern density also depend upon

accurate deposition profiles or models, and deposition parameters, tools, and materials are an important inte-

gration/modeling issue in CMP.

Figure 1. A simple example to aid in defining pattern density.
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Figure 2-2: Deposition profile: simple example to aid in defining pattern-density [3].

used also to illustrate the definitions used to develop Stine’s model.
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Fig. 2. Pattern effect in oxide CMP: A1 goes through step density regions while A2 passes through a constant density, varying pitch region. Each plot shows the
measured thickness for three polish times.

the effective pattern density across the chip [7]. This approach
is similar to that presented by Tung [8], Hayashideet al. [9],
and others, with a key difference being that the approach is cou-
pled to a rapid characterization methodology using test patterns
and test masks, so that the essential model parameters can be
estimated for a given CMP process [10], [11]. In this paper,
we adopt and extend this approach for the efficient and accu-
rate characterization and chip-scale modeling of oxide CMP
using planarization length and pattern density concepts. In par-
ticular, we contribute a formal definition of planarization length
based on pad bending concepts, extend the previous character-
ization test masks for improved extraction of the planarization
length parameter, describe efficient calculation of pattern den-
sity across the chip using the fast Fourier transform (FFT), and
validate the integrated characterization and modeling approach
using product layout pattern data.

In Section II, we review the underlying analytic oxide CMP
model, where the key theme is the calculation of the effective
pattern density at any spatial location on the die. The model is
expanded in Section III, where the density weighting function
is introduced as an impulse response of the polish pad under
a given set of process conditions. This section also defines the
planarization length as the characteristic length of the density
weighting function. Section IV outlines computation of effec-
tive pattern density, including the importance of accounting for
deposition profile effects by “biasing” the layout before den-
sity calculation to account for lateral or triangular shaped depo-
sition. The characterization methodology for the extraction of
the planarization length is presented in Section V, together with
the characterization mask for oxide CMP. The application of the
model is verified for different times and on a product layout. A
brief summary of the performance of alternate weighting func-
tions is presented in Section VI for comparison with the elliptic
weighting function. The paper is concluded in Section VII.

II. PATTERN DENSITY BASED OXIDE CMP MODEL

Previous work has shown that variation in pattern density
across a die is the dominant factor resulting in large interlevel
dielectric (ILD) thickness variation after CMP [10]. This is il-

Fig. 3. Definition of terms used in the basic model.

lustrated in Fig. 2 which shows the final oxide thickness mea-
sured across sections of a die with different layout patterns. A1
cuts across a region of varying pattern density while A2 passes
through a region of constant density, but varying pitch (where
pitch is the sum of line width and line space). Three polish times
are shown. The data is taken from raised area (over metal) sites
as illustrated in the inset. The initial deposition thickness for all
regions is a uniform 2.2 m. We see that pitch has little effect
(all pitch regions are 50% density and polish uniformly), while
the pattern density variation in region A1 creates a large range
of approximately 5000 in final oxide thickness.

Based on this observation, Stineet al. proposed a pat-
tern-density-based oxide CMP model as summarized below
[7]. Fig. 3 defines the key variables. The model reformulates
Preston’s equation [12] (which has a dependency on pressure
, relative velocity , and empirical Preston coefficient) into

a function of blanket wafer polish rate and effective pattern
density

(1)

The equation is then solved for the oxide thickness,, under
the assumption that no “down area” polishing occurs until the
local step, , has been removed, after which the pattern factor
is turned off. This is captured by expressing the effective density
as

(2)

Figure 2-3: General CVD deposition profile, defining variables used in Stine’s model
[4].

The second assumption made by Stine is that the pattern-density as a function

of time is a negligible secondary effect in features of this size, such that the pattern-

density is held constant prior to step-height removal as shown at time A and only

changed to ρ = 1, after the step-height is removed as shown in time B as illustrated

in Figures 2-2 and 2-3 above. In agreement with the former use of the metal vertical

deposition profile translation, as long as a step-height exists, ρ remains the same

until removed and it then becomes 1, or the equivalent of a blanket wafer with 100%

pattern-density.

The third assumption holds that the range over which the effective pattern-density

is computed is a square surface area, Ar, that has a width known as the interac-

tion distance over which the pad conforms to contact the wafer’s surface, facilitating
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planarization. The physical intuition behind this assumption is based upon an in-

compressible pad model, illustrated in Figure 2-4 below, which implies that the pad

is only in contact with the up areas and not the down areas, until there is no step

present (essentially planarization is complete) at a specific transition time, tt. In other

words, a simple square-shaped filter is employed as a “weighting function” to calcu-

late effective pattern-density, where the interaction distance (id) is equivalent to the

planarization length, which is loosely described as the width of the transition ramp

between low and high density region thickness variation as pictured in Figure 2-5.
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Figure 2-4: Illustration of incompressible vs. compressible pad model [5].

As a result of the three aforementioned assumptions, the calculations for this

model are very simple to follow, as shown in Equations 2.1 through 2.5. The derivation

begins with the widely accepted Prestonian relation in Equation 2.1, which states that

the blanket removal rate is proportional to the product of pressure, velocity, and some

proportionality constant, κ. If the pressure term is replaced with force per area (F/A),

A can represent the oxide area contacted by the pad in order to rewrite Equation 2.1

as Equation 2.2.

RRup = κPν (2.1)

RRup =
κFν

(id)2ρ(x, y, z)
(2.2)

As previously mentioned, ρ(x, y, z) is the effective pattern-density as a function

of x, y, its position on the chip, and z, the thickness of the oxide layer. A is repre-
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sented as (id)2ρ(x, y, z), or the oxide area in contact with the pad according to our

square weighting function assumption. Then, we can define the blanket removal rate,

K = κPν and replace its constant as shown in Equation 2.3, to arrive at the rate

of up area removal, dz
dt

.

dz

dt
=

K

ρ(x, y, z)
(2.3)

The third assumption is incorporated in the definition of Equation 2.4, where the

dependence on step height is only a matter of the presence of the active step, or up

area. The pattern-density is either the effective pattern-density, ρ, or 1, a blanket

wafer with 100% pattern-density.

ρ(x, y, z) =





ρ0(x, y) z ≥ z0 − z1

1 z < z0 − z1

(2.4)

A fourth assumption is that the removal in the down areas is negligible compared

to removal in the up areas while any step-height remains and is thus not considered

during the removal of the step (up area removal); down areas are then assumed to be

polished at the blanket rate, after the removal of the step (down area removal). The

differential of Equation 2.3 is thus solved for zup before and after the transition time,

or the time at which the step is removed, in Equation 2.5.

zup =





z0 −
[

Kt
ρ0(x,y)

]
Kt ≤ ρ0(x, y)z1

z0 − z1 −Kt− ρ0(x, y)z1 Kt > ρ0(x, y)z1

(2.5)

This model yields good results in localized structures that are relatively large

in size, as previously described, with a simple approach that requires very few pa-

rameters. However, the model lacks the complexity and flexibility needed to model

smaller, more realistic structures/layouts with non-conventional deposition profiles

and process conditions.
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2.1.2 Pattern-Density CMP Model with Elliptic Density

Function Weighting

Following Stine’s work, the model was extended to address some of the limiting as-

sumptions. In particular, planarization length was generalized, refining the concept

of effective pattern-density [21]. Ouma’s work challenges the third assumption made

by Stine, considering the physical motivation for averaging the local pattern-density

to arrive at the effective pattern density proposed by Stine. Rather than use a square

averaging window, Ouma considered long range pad deformation arising from the

pad’s properties and process conditions, and approximated the response of the pad

to an impulse of raised pattern-density, with the use of an elliptic weighting function.

Thus the effective pattern-density and therefore the local pressure exerted at any lo-

cation (x, y) is influenced by neighboring topography in a decreasing function as one

gets further from (x, y) .

The square averaging filter used by Stine is equivalent to a simple notion of pla-

narization length shown in Figure 2-5. The interaction distance in Stine’s model

corresponds to the distance over which the pad can bend or conform to wafer surface

height differences. At distances greater than id (or planarization length PL) , the pad

essentially deflects and polishes both regions at the blanket rate. On the contrary, at

distances much smaller than id or PL, however, the pad cannot bend and thus only

contacts raised features.

4

computed using a square window as described above, that the interaction distance is identical to the pla-

narization length. The equality of planarization distance to interaction distance lends physical intuition to the

concept of interaction distance.

IV. DERIVATION OF MODEL

The derivation of a closed form e xpression for ILD thickness variation begins with the well known

Preston equation which states that the removal rate on blanket wafers is proportional to the product of pres-

sure and velocity:

(2)

where  is a proportionality constant. If the pressure term is represented as F/A where A is the oxide area

contacted by the pad then Preston’s equation can be rewritten as:

. (3)

In (3), (x,y,z) is pattern density and is a function of x,y since it varies across the chip, and is a function of z

since as oxide is removed the pattern density changes (as in Figure 1). Also, note that the removal rate, RR,

has been rewritten as a differential and that A has been replaced by (id)2 x,y,z) – which is the oxide area

contacted by the pad at a particular z. In (3), we can lump constants together and rewrite the equation as:

(4)

and K can be interpreted as the removal rate of a blanket wafer (or 100% density region).

Realistically, (x,y,z) can be e xpected to also be a function of deposition conditions and local line

width and space. For an initial oxide step height of z1 and an initial oxide thickness of z0 (see Figure 4), and

assuming the deposition profile can be approximated vertically using the metal profile, the pattern density

can be approximated as:

. (5)

Figure 3. Definition of Planarization Distance Figure 4. Important definitions used to develop
the closed form ILD thickness variation model.
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Figure 2-5: Simple example to aid in defining planarization length [3].

In order to effectively model this long range pad deformation, Ouma considered
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the mechanics of pad bending to re-evaluate the distance over which raised topogra-

phy influences local removal rates. A density weighting function is employed to find

the effective pattern-density, and is defined as the “spatial density impulse response

of the pad for a given process condition” [4]. The pad deformation is based on the

fact that the pad is made of polyurethane, a non-linear elastic material, which can

be modeled by a symmetric elliptic weighting function commonly used for elastic

materials. This also gives a formal definition to planarization length; instead of just

being the width of the square averaging area, it now takes into account the neigh-

boring topography in order to properly account for the weight of their contribution

to the calculation of the effective pattern-density and removal rate for a particular

discretized point on the die layout. Figure 2-6 shows that the local layout density

(b) is convolved with the elliptic weighting function, resulting in a smoother effective

density profile (c).

(a) Mask Layout (b) Local Pattern-Density Profile (c) Effective Pattern-Density
Profile

Figure 2-6: Local pattern-density across die evaluated in 40mm by 40 mm cells using
the elliptic planarization response function to produce an effective density map [4].

Ouma’s model also addressed the first assumption of Stine’s model which ignored

deposition profile effects, by accounting for the initial deposited film topography with

a bias adjustment to account for lateral deposition effects. This is of particular

importance to relatively small features which, during high density plasma (HDP)

deposition, can sometimes result in small triangular peak profiles, as opposed to the

square profiles shown in Figure 2-2, giving areas with these features a local pattern-
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density of nearly 0%. These layout features and all other features are adjusted by a

bias value or shrinkage value, B, when extracting the local density.

Aside from these two extensions to the model, the primary calculation of zup

remains from the previous section. Now, however, the effective pattern-density can

be calculated for each discretized point on the die as in Equations 2.6 to 2.8 below,

where d(x, y) is the local pattern-density extracted with the bias, f(x, y) is the elliptic

weighting function, and ρeff (x, y) is the new effective pattern-density. Here, the

convolution or weighted averaging filter operation can be performed using the discrete

Fast Fourier Transform to speed up the calculation.

ρ(x, y) = d(x, y)⊗ f(x, y) (2.6)

ρ(n1, n2) =
∞∑

k1=−∞

∞∑

k2=−∞
d(n1, n2)f(n1 − k1, n2 − k2) (2.7)

ρeff (n1, n2) = IFFT [FFT [d(n1, n2)] · FFT [f(n1, n2)]] (2.8)

Thus, replacing Stine’s pattern-density with the new effective pattern-density,

ρeff (x, y), the equations for zup are virtually the same, as given by Equation 2.9.

zup =





z0 −
[

Kt
ρeff (x,y,z)

]
Kt ≤ ρeff (x, y)z1

z0 − z1 −Kt− ρeff (x, y)z1 Kt > ρeff (x, y)z1



 (2.9)

Addressing the long range pad deformation through the weighted effective pattern-

density calculation, and addressing the initial deposition profile effect through the

biasing of the local pattern-density extraction, significantly improved the model’s

accuracy. However, this model still retains several of the assumptions of the previous

model, including those related to down area removal, pattern-density as a function of

time or step height, and use of the incompressible pad model.

2.1.3 Pattern-Density Step-Height CMP Model

Ouma’s work was a significant step towards understanding long range pad deforma-

tion; however, it still focused on an incompressible pad model and thus was unable
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to effectively model field (down area) removal between small features. In the interim

between Ouma and Smith [22], a refined pad model was proposed by J. Grillaert et al.

at IMEC [5]. This model asserts that the pad is in fact compressible, such that both

the up and down areas are in contact with the pad for step heights less than some

specific contact step-height, h1. The IMEC model suggests that the removal rates

converge exponentially in time to the blanket removal rate, consistent with Tseng

et al. [26]. Smith’s work integrates the IMEC model to explain pad contact in the

up and down areas, with Stine’s pattern-density model to explain localized density

effects on thickness and removal variation.

The key parameters in this model now include contact step-height, h1, in addi-

tion to planarization length and pattern-density. The contact step-height now splits

removal into two regimes: prior to the contact step-height, removal follows Stine’s

model; below the contact step-height, removal is exponential according to Tseng’s

model, as shown in Figure 2-6.Figure 1. The MIT density model.

Figure 2. The removal rates of the raised and
down areas using the IMEC time-dependent model.
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Figure 3. Removal rates of the density and time-
dependent models.

Figure 4. Percent difference in removal predic-
tions between the density and IMEC models.
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Figure 5. Actual and predicted post-polish thick-
ness of the raised areas using the density model. Figure 6. Actual and predicted post-polish thick-
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Figure 2-7: Comparison of Stine’s (MIT) model and the IMEC model’s removal rates
[6].

Thus, the calculation now has many terms which must be fitted, as opposed to just

two parameters of the two previous models (planarization length and blanket rate). In

the derivation below, the additional model parameters include the transition (contact)

38



step-height, h1, defined as

h1 = h0 −
K

ρ
tc (2.10)

where h0 is the initial step-height. Additionally, there is an exponential time constant,

τ , and the actual transition or contact time, tc.

Essentially, the derivation is according to the theory as previously mentioned,

with the removal rates given with respect to contact time (i.e., contact step-height

achieved) as opposed to a transition time when the step-height is removed as in Stine’s

model.

RRup =





K
ρ

tp ≤ tc

K + (1− ρ)h1

τ
e
−(tp−tc)

τ tp > tc
(2.11)

RRdown =





0 tp ≤ tc

K − ρh1

τ
e
−(tp−tc)

τ tp > tc
(2.12)

As traditionally derived, we can calculate amount of material removed from the

differential equations of removal rate for both the up and down areas, giving Equations

2.13 and 2.14.

zup =





K
ρ
tp tp ≤ tc

K
ρ
tc +K(tp − tc) + (1− ρ)h1(1− e

−(tp−tc)
τ ) tp > tc

(2.13)

zdown =





0 tp ≤ tc

K(tp − tc)− ρh1(1− e
−(tp−tc)

τ ) tp > tc
(2.14)

As a result of the combinative power of both Stine’s pattern-density model and the

IMEC model, Smith was able to show a 50% reduction in RMS error in this pattern-

density step-height model, showing excellent accuracy in the modeling of both up and

down area removal in large features. A detrimental artifact of combining these two
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models, is the 50% increase in the number of model parameters which are fitted and

thus an increase in computational complexity and decrease in statistical reliability.

Furthermore, although greater accuracy is achieved using this model versus using

Stine’s model, there is still poor down area fitting between features, and remaining

assumptions that are not addressed.

2.1.4 PDSH CMP Model with

Elliptic Density Function Weighting

Following Stine’s work, there was still a void between advancements in the effective

pattern-density model [21] which accurately addressed long range pad deformation

and advancements in the pattern-density step-height (PDSH) model [22] which effi-

ciently addressed pad contact behavior in the up and down areas. Lee’s [27] work

integrates the two models forcing the contact step-height, h1, of Smith’s PDSH model

to depend on the effective pattern-density, ρeff .

Accordingly, there are the same key parameters as in the PDSH model; however,

in this integrated model the contact step-height is dependent on the effective pattern-

density derived using the elliptic weighting function,

h1 = a1 + a2 · eρeff/a3 (2.15)

where a1, a2, and a3 are fitting constants. However, the removal rate and z equations

for both the up and down areas remain the same, Equations 2.13 and 2.14.

This integrated model yielded substantial improvements, reducing the RMS error

of both the up and down area removal. It should be noted that there was still some

significant model error of the down areas in lower pattern-density regions. Although

approximately 100Å accuracy is reached, there remains a large number of parameters

to fit. Several approximations and assumptions remain, including the fact that accu-

racy is only achieved for relatively large features, which are much larger than product

(memory or logic chip) feature sizes, the lack of physically-based parameters, and the

use of constant pattern-density as opposed to a time or deposition profile dependent
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pattern density.

2.1.5 Physically-Based Exponential PDSH CMP Model

As mentioned in the introduction to Section 2.1, the work of Xie [7] diverts from

another extension of the previous semi-empirical models with multiple fitting param-

eters, to the creation of a physically-based model which seeks to extract parameters

that will contribute to the physical understanding of the planarization mechanism

of the pad. Xie’s physically-based model specifically considers the pad bulk and

asperities as separate entities, as shown in Figure 2-8, with the goal of modeling pres-

sure dependence as a function of step-height and local pattern-density. Furthermore,

the parameters extracted from the physically-based model are used to improve Lee’s

PDSH model, by introducing an exponential dependence of removal rate on step-

height. Both models are verified using a new test mask designed with realistically

sized test structures, as well as actual memory and logic product structures.

Figure 3-7: Polishing pad can be decomposed into bulk material and surface asperities.

assumed to sit face up in the direction of z-axis, and the polishing pad is pressed

down onto the wafer surface. Here, w(x, y) is used to describe the z-coordinate of

the nominal separation point between the bulk and asperities of the pad, and z(x, y)

is used to describe the wafer surface. The distance between the wafer surface and

nominal bulk pad position is w(x, y)− z(x, y).

Figure 3-8: Polishing pad can be decomposed to bulk material and surface asperities.

Modeling of Bulk Materials

The bulk material is assumed to be elastic, and can be modeled using a contact

wear model, as described in Appendix B. In summary, the bulk surface displacement

w(x, y) and the pressure P (x, y) satisfythe following relationship:

w(x, y)− w0 = F (x, y)⊗ P (x, y) (3.9)

114

Figure 2-8: Illustration of the decomposition of the polishing pad’s bulk and asperities
[7].

The key parameters of the physically-based model are effective Young’s Modulus

E, the applied pressure of the tool P0, and characteristic asperity height, λ. As

previously mentioned, the pad bulk and pad asperities are decoupled in this model.
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Consequently, the bulk can be modeled as an elastic body of material, and a contact-

wear model used to calculate pad deflections explicitly, as in Equation 2.16.

w(x, y)− w0 = F (x, y)⊗ P (x, y) (2.16)

Here w(x, y) is the bulk surface displacement, P (x, y) is the applied pressure, and

F (x, y) is the deformation impulse response to a point pressure. The deformation

response F (x, y) is inversely proportional to the effective Young’s modulus of the

pad, allowing one to extract this physical attribute from the model output.

On the other hand, asperities are modeled as separate bodies with negligible width

and an exponential height distribution, eh/λ. Since the force exerted is assumed to

be proportional to the compressed distance, Hooke’s law gives the local pressure as a

function of feature step-height as shown in Equation 2.17.

P (x, y) = k · (ρ(x, y) + (1− ρ(x, y))e
−h(x,y)

λ ) · λe
−(w(x,y)−zup(x,y))

λ (2.17)

where k is a spring constant. The parameters of the physically-based model are

exploited in the PDSH model by using λ to determine the nature of the pressure

dependence on step-height, as shown in Equation 2.18 below.

P (x, y) =





Pup(x, y) = e
h(x,y)
λ

1+ρ(e
h(x,y)
λ

−1)
P

Pdown(x, y) = 1

1+ρ(e
h(x,y)
λ

−1)
P

(2.18)

For comparison, the parameters of the physically-based model can also be replaced

in the PDSH model by assuming that that the pressure dependence on step height is

exponentially dependent on whether the asperity is in contact with the wafer surface,

and compressed using the characteristic step-height variable as shown in Equation

2.19 below.

P (x, y) =





Pup(x, y) = 1
ρ
P0 − 1−ρ

ρ
P0 · e−ρh/h∗

Pdown(x, y) = Po · e−h/h∗
(2.19)
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As seen in Figure 2-9 below, both models (the physically-based PDSH model and

exponential step-height model) extract two parameters; the former uses planarization

length and λ, the latter uses planarization length and characteristic asperity height

h∗.

Figure 3-9: Relationship between local pressure and step-height (a) in the exponential
PDSH model, and (b) in the physically based PDSH model.

different step-height dependence based on an exponential asperity height distribution

can be generated. The resulting physically based PDSH model, using the dependence

of pressure on step-height as in Equation 3.15, gives

⎧
⎨
⎩

Pd = 1
1+ρ(eh/λ−1)

P0

Pu = eh/λ

1+ρ(eh/λ−1)
P0

. (3.21)

This model has two model parameters, LP and λ. Thus the empirical value h∗ is

replaced with a physical pad parameter, λ. For comparison, we can plot the pressure

versus step-height relationships for those two new PDSH models. Figure 3-9 (a) shows

the exponential step height dependence, including the effect of the pattern-density on

the the pressure decay with step height. Figure 3-9 (b) shows the pressure dependence

on step height for Equation 3.21. Qualitatively, these two are similar, and both have

a smooth dependence on step height, in contrast to Figure 3-4 which had a sharp

break at some hc.

3.4 Applying PDSH Die-Level CMP Models

In this section, the PDSH models are applied to simulate the polishing of either sin-

gle material or dual material structures using either conventional or non-conventional

slurry. The examples have illustrated a number of points and provide useful infor-

119

(a) Exponentially-Based PDSH Model

Figure 3-9: Relationship between local pressure and step-height (a) in the exponential
PDSH model, and (b) in the physically based PDSH model.

different step-height dependence based on an exponential asperity height distribution

can be generated. The resulting physically based PDSH model, using the dependence

of pressure on step-height as in Equation 3.15, gives

⎧
⎨
⎩

Pd = 1
1+ρ(eh/λ−1)

P0

Pu = eh/λ

1+ρ(eh/λ−1)
P0

. (3.21)

This model has two model parameters, LP and λ. Thus the empirical value h∗ is

replaced with a physical pad parameter, λ. For comparison, we can plot the pressure

versus step-height relationships for those two new PDSH models. Figure 3-9 (a) shows

the exponential step height dependence, including the effect of the pattern-density on

the the pressure decay with step height. Figure 3-9 (b) shows the pressure dependence

on step height for Equation 3.21. Qualitatively, these two are similar, and both have

a smooth dependence on step height, in contrast to Figure 3-4 which had a sharp

break at some hc.

3.4 Applying PDSH Die-Level CMP Models

In this section, the PDSH models are applied to simulate the polishing of either sin-

gle material or dual material structures using either conventional or non-conventional

slurry. The examples have illustrated a number of points and provide useful infor-

119

(b) Physically-Based PDSH Model

Figure 2-9: Relationship between local pressure and step-height [7].

From the figure we can observe that the two applications of the PDSH model

are qualitatively similar, with a smooth transition in pressure dependence based on a

characteristic step-height or physical asperity height distribution using λ, as compared

to the previous models which had a much sharper transition. Nevertheless, these two

models are quantitatively different in that the physically-based PDSH model yields

higher experimental data fit errors than the exponentially-based PDSH model.

Recall that the exponentially-based PDSH model has removal rate equations as

shown in Equation 2.20.

K(x, y) =





Kup(x, y) = 1
ρ
K0 − 1−ρ

ρ
K0 · e−ρh/h∗

Kdown(x, y) = K0 · e−ρh/h∗
(2.20)

With these removal rate equations, one can integrate to derive thickness z and the
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step-height, h update equation,

zup =
1

ρ
K0 · t−

1− ρ
ρ

zdown (2.21)

zdown = h∗ln[1 + e−ρ/h
∗
(eK0t/h∗−1)] (2.22)

h = h0 + zdown − zup (2.23)

These can also be extended to dual material polishing using the selectivity as a

further model parameter.

The exponential PDSH model does achieve the same order of accuracy as seen

for the previous models, applied to large structures. However, the exponential PDSH

model can now be applied and verified using structures, pitches and line widths that

are half the size or smaller than that of the previous model, and the model is still

achieving an accuracy at or above manufacturing design standards. Additionally, this

model’s enhancements are based on physical intuition and fewer fitting parameters,

simultaneously improving the ease of computation while creating more realistic as-

sumptions and statistical reliability verified with more realistic structures. However,

one remaining assumption is that pattern-density does not change as a function of

time. Our motivation is to build on these previous models, but also consider the

effect of topography evolution on pattern density in time. The only piece missing

analytically is the limited assumption of pattern-density as a function of time.

2.2 Objectives and Framework of Evolution of

Pattern-Density Die-Level CMP Model for STI

Originally, the premise of the work proposed in this thesis was to explore the previous

exponential PDSH model, and work in collaboration with National Semiconductor to

verify its flexibility by extending the model to a single wafer per platen polishing

tool (as opposed to the batch tool originally used) and a non-conventional Ceria
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slurry. However, we were met with two challenges which opened up the opportunity to

transform and further evolve the modeling with respect to understanding the physical

basis for the polishing of deposited topography.

The first challenge arose from our observation of accuracy limitations using the

existing exponential PDSH model on the oxide-only stage of STI polishing. New

experiments using the STI CMP test mask were performed and the existing model

fit to measurements, as shown in Figures 2-10 and 2-11. Shown here are the first 20

measurement points in Figure 2-10 and the second 20 measurement points in Figure

2-11 (as described in Appendix A, Figure A-4) during the oxide stage of STI pla-

narization. While several regions in the die fit quite well, we also note regions at the

left of the die where the model substantially underestimates the amount of polish.

Improvement of the model to overcome this model limitation thus is a key goal.
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Figure 2-10: Model fit (lines) of exponential PDSH model to new experimental data
(“x” points) during oxide stage of STI CMP.

The second challenge was to reassess a continuing assumptions in previous mod-

els about pattern-density as a function of time and deposition profile. In all of the

45



0 5 10 15 20
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Measurement Sites

A
m

ou
nt

 R
em

ov
ed

 in
 U

p 
A

re
a 

(A
)

0 5 10 15 20
0

200

400

600

800

1000

1200

Measurement Sites

A
m

ou
nt

 R
em

ov
ed

 in
 D

ow
n 

A
re

a 
(A

)

Figure 2-11: Model fit (lines) of evolution of pattern density exponential PDSH model
to new experimental data (“x” points) during oxide stage of STI CMP.

previously mentioned models, local pattern-density is assumed to remain constant

throughout the planarization process. However, our intuition, motivated by Figure 2-

12, is that the pattern-density changes with respect to step-height reduction when

the deposition profile is non-vertical. In some versions of the PDSH CMP model, the

deposition profile is biased once by some bias factor B to account for an “average” de-

position profile geometry, and that “biased” local pattern-density is used throughout

the polish. None of our previous models, however, addresses the change in geometry

over time, i.e., with respect to step-height reduction.

2.2.1 Objective of Evolution of Pattern-Density Model for

STI

The objective of the evolution of pattern-density model is to address the two afore-

mentioned challenges by considering pattern-density as a function of both time and

deposition profile, as shown in Figure 2-12 below.
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Time, t0

β/2

β= 0

β

Figure 2-12: Evolution of deposition profile geomery and pattern-density over time.

2.2.2 Role of Evolving Pattern-Density

We can build our physical intuition of the deposition and how it evolves during

polishing through AFM measurements of test wafer profiles. The AFM images shown

in Figure 2-13 were taken at the initial planarization time step (24 seconds), in the

EA region of the test mask as described in Appendix A, Figure A-4. The EA01

structures are designed to be 1µm wide by 1µm long, with a spacing of 2µm between

structures; the EA04 region has structures 0.5µm wide by 0.25µm long, with 2µm

spacing. In these AFM images, after 24 seconds of polishing, a pyramidal profile is

seen, consistent with the schematic diagram of Figure 2-12.

47



(a) EA01 Region (b) EA04 Region

Figure 2-13: AFM images of test structures on MIT STI test wafers from NSC ex-
periments.

Based on the presence of non-vertical deposition profiles, we challenge the assump-

tion that the local pattern-density remains constant over the course of the polish time,

and instead assert that the deposition profile evolution plays a key role in determining

pattern-density. Our hypothesis is that pattern-density will change over time, with

the bias-induced geometry of the deposition profile affecting the removal rate and

resulting amount removed as a function of pattern-density, feature size, step-height,

and polish time.

In order to determine if our new hypothesis that local pattern-density changes

with step-height and polish time, and to understand the possible magnitude of the

effect, we performed some theoretically-based mathematical simulations of specific

structure on three areas of the chip assuming a geometric deposition profile as pic-

tured in Figure 2-12. These simulations show that, as the step-height is reduced, the

local oxide pattern-density increases. In Figure 2-14, we observe a nearly constant

dependence of pattern-density on step-height in features that are in the 70-100 µm

size range (LRPD region). There is a slight linear increase in pattern density, from

0.487 at h = 5500 Å, to ρs = 0.5 at h = 0 Å. On the same figure, we observe a

relatively small change in pattern-density with primarily linear dependence, slightly
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quadratic, of pattern-density on step-height in features that are in the 30-60 µm range

(ED region). However, for the smallest structures investigated, in the 1-10 µm range,

we find a very large effect of step-height on pattern-density of almost 30% , and in this

case we also clearly observe a quadratic dependence of pattern-density on step-height

(EA region). Considering these different regions, we clearly see that small structures

are substantially affected by deposition profile, while large structures are perturbed

only slightly.
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Figure 2-14: Comparison of pattern-density vs. step-height (LRPD, ED, and EA
regions).

This dependence can also be seen in the relationship between time and local

pattern-density which increase together as shown in Figure 2-15. Note that all three

of these regions (LRPD, EA, and ED) have layout pattern densities of approximately

50%; depending on the size of the feature and the step-height vs. polish time, however,

the pattern density of topography contacting the pad can vary dramatically.

In order to understand how the deposition profile or biasing effect might impact

an example layout, we consider the local pattern-density for our test mask with dif-
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Figure 2-15: Comparison of pattern-density vs. time (LRPD, ED, and EA regions).

ferent amounts of biasing. Consistent with Figure 2-12, we consider three variants of

pattern-density extractions from our test chip, as shown in Figure 2-16. First, the

density map labeled ρβ is generated by shrinking all layout geometries by a lateral di-

mension of β, then performing the pattern-density extraction in each 40µm by 40µm

cell. The map labeled ρβ/2 corresponds to a β/2 shrinkage of all geometries, while ρ0

is the “unbiased” or direct pattern density map of the original layout. We see that

the deposition profile plays an integral role in pattern-density and its changes over

time.

We believe that each of these biases represent a snapshot of the increased pattern-

density in time: the β bias case represents the initial deposition profile, as previously

proposed, the β/2 case represents the local pattern-density in each cell when half the

step-height has been removed, and the case with no bias represents the near com-

pletely planarized case. Interestingly enough in Figure 2-15, in each of the snapshots

we see that the region with the smallest features, the EA region (< 10µm feature
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ρβ ρβ/2 ρ0

β β/2
β=0

Figure 2-16: Local layout pattern-density based on deposition profile bias.

size), is most significantly affected by this pattern-density evolution. The premise

of our model is established around the key parameter of time evolving, step-height

dependent local pattern-density, as the deposition profile geometry evolves during the

polish. The presence, in Figure 2-16, of regions that change in local pattern-density so

dramatically during the process, offers hope for improved model accuracy in nearby

regions. Once spatial averaging of the local pattern-density is performed, regions on

the chip within a planarization length of these regions will experience a change in

effective pattern-density over time as well. Our model will seek to include this neigh-

borhood impact to improve accuracy in polish predictions for structures in or near

small feature regions on the chip.

2.2.3 Modeling Framework

The framework for a model to incorporate this idea of time-evolving pattern-density

is primarily based on the ability to derive specific geometric profile parameters for

each discretized point, based on the local pattern-density extractions in the three
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previously mentioned cases: without bias, with β/2 bias, and with β bias. We can

use those values to approximate the pattern-density at the initial, middle, and final

step-heights, and then use an equation to predict the pattern-density at all the other

step-heights.

In order to derive the equation relating pattern-density to step-height, we consider

the extraction window, illustrated in Figure 2-17. We assume there are multiple

structures inside of that window whose active areas have a length of ai or aj and a

width of bi or bj. Geometries labeled with subscript i are assumed to be rectangles

fully enclosed within area α, while geometries subscripted j are “clipped” rectangles

only partially within area α. The layout dimension a′i depends on the step-height, h.

When h = 0, a′i is the original layout dimension ai, and decreases to a′i = ai−2 h
h0
β as

h increases from 0 to h0. A similar shrinkage occurs for dimension bi. In the case of

the clipped rectangles, only one side of aj or bj shrinks within the extraction window,

so a′j = aj − h
h0
β

Figure 2-17: Pattern-density extraction based on profile geometry.

A simple geometrical calculation of surface area thus results for each geometry of

these two types:

Active Surface Area





Si(h) = a′i · b′i = (ai − 2h
ho
β)(bi − 2h

ho
β)

Sj(h) = a′j · b′j = (aj − h
ho
β)(bj − h

ho
β)

(2.24)
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Next, we calculate the pattern-density based on the area of the extraction window,

ρs(h) =
1

α
(ΣiSi + ΣjSj) (2.25)

ρs(h) =
1
α

(Σiaibi − 2hβ
ho

Σi(ai + bi) + 4h2

h2
o
β2+

Σjajbj − hβ
ho

Σj(aj + bj) + h2

h2
o
β2)

(2.26)

Grouping terms in power of h, we clearly see that pattern-density has a quadratic

dependence on step-height. Thus we can lump the parameters around the step-height

variable, h, into three parameters A, B, and C, simplifying Equation 2.26 above into

Equation 2.27.

ρs(h) =
1

α
(A+B · h+ C · h2) (2.27)

Using the three biased layout extractions described in the previous section, we

can relate A, B, and C to the extracted pattern densities ρ0, ρβ and ρβ/2.

ρβ = ρs(h = ho) = 1
α

(A+Bho + Ch2
o)

ρβ/2 = ρs(h = ho
2

) = 1
α

(A+B ho
2

+ C h2
o

4
)

ρo = ρs(h = 0) = A
α

(2.28)

We can now solve for A, B, and C as shown in Equation 2.29.

A = αρo

B = α
ho

(4ρβ/2 − ρβ − 3ρ0)

C = 2α
h2
0
(ρβ + ρ0 − 2ρβ/2)

(2.29)

.

The quadratic form of our equations here confirm the response in pattern density

seen in simulation and in the assumed pattern-density evolution over time and/or

step-height reduction in the EA Region.
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2.3 Verification of Evolution of Pattern-Density

Die-Level CMP Model for STI

This section will present the experimental setup for the verification of the proposed

model in detail and then present the model fitting versus the experimental data.

2.3.1 Experimental Setup

The exponential PDSH model and evolution of pattern-density PDSH models are

verified and calibrated using data measurements from experiments done on the Mirra

CMP tool at National Semiconductor’s South Portland Maine Fabrication Facility. In

order to verify the previous model work and compare tool effects on model accuracy

(SpeedFam CMP tool previously used by Xie [7]), the STI test mask described in

Appendix A, Figure A-1 was used to pattern the test wafers which were planarized

on the Mirra CMP tool. Experimental runs use the conventional silica slurry and

the respective time splits are shown in Appendix B, Table B-1. The table shows the

single process variable of applied downforce. For this thesis, we only show results for

the pressure of 3psi.

The initial STI structure is fabricated as follows (Figure 2-18). The 200 mm silicon

p-type test wafers began with a thermally grown 90 Åpad oxide. This was followed

by a CVD of 1190 Åof silicon nitride. The wafers are patterned with the STI test

mask and etched for a trench depth of 5500 Å. The trench is then filled with oxide

for an overburden of 550 Å.

2.3.2 Verifying Model with Experimental Data

We model the CMP process on the new Mirra tool, using the measurements from

these experiments and the exponential PDSH model extended to incorporate the

new evolving pattern-density. Figure 2-18 shows a relatively good fit, finding the

empirical parameters to be 3.69 mm for the planarization length and 904.3Å for the

characteristic step-height, with an RMS error of approximately 435Å. In comparison

54



3670 Å

90 Å
1190 Å

250 Å

5500 Å

silicon
pad oxide
silicon nitride
trench oxide
STI oxide
overburden

550 Å

z1 = 4950Å*z0 = 
5500Å
*approx. 5600A 
seen in actual 
data
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Figure 2-18: Initial STI deposition thicknesses.

to runs that were nearly identical on the previous tool (in Xie’s work), the error is

slightly lower here, but the empirical parameters are comparable, suggesting that the

model form is tool independent, relatively good fit of the model to experimental data

is seen in Figures 2-10 and 2-11, except in regions near to small feature regions on

the chip. In order to obtain new results with the pattern-density evolution model,

refinements to the previous model and the model fit strategy were adopted to enable

new ways of effectively modeling STI processes for CMP.

The first refinement made was adopting a coding strategy which used the model

simulation of the purely oxide time step data of the polish, to fit the empirical oxide

model parameters without the dual material data (i.e., after the nitride clears). Once

these parameters were fitted with the purely oxide data, they were input into the

dual material component simulation for analysis and fitting of the remaining selec-

tivity parameter, as shown in Appendix C, Figure C-1. This reorganization of the

calibration strategy within the model itself enabled us to properly calibrate the dual

versus the single material removal parameters.

The second refinement involved incorporating the evolving pattern-density model
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concept into the exponential PDSH model as shown in Appendix C. This required

changing the model to calculate removal rates based on a fine time interval (1 sec.),

shown in Figure C-2, as opposed to direct calculation of final step-height and thickness

solutions at the given experimental time intervals, as in the previous model also

shown in Figure C-3. The code was extended to input the 40µm by 40µm discretized

extracted pattern density maps for β, β/2, and zero bias. The projected pattern-

densities as a function of step-height are calculated and updated with each time step,

as subsequent step-height reduction occurs. This model is more computationally

intensive because of the time stepping; however, it updates the local pattern-density,

effective pattern-density, and the current step-height with each time step in order to

calculate a more physical simulation of deposited topography removal.

The third refinement involved the handling of negative ρ values. In features that

have a side length less than that of the step-height, it is not uncommon that their

deposition profile results in a triangular peak as previously mentioned. This will

cause the concavity of the pattern density distribution over decreasing step-height

(i.e., increasing polish time) to decrease, eventually becoming negative, and then

with increasing time and step-height reduction, to become positive once again, as

shown in Figure 2-19.

In order to avoid faulty modeling using the negative ρ values with no physical

significance, we employ a clipping of any ρ values at 0, as shown in Figure 2-20. This

ensures that in the model there are no negative pattern densities, since physically

there are no pattern densities which increase, decrease, and then increase once again

within one polish. It is our assumption that for small features, the pattern density

will be well-approximated by zero, until the step-height falls below some point at

which time the pattern-density will increase as shown in Figure 2-19.

Once these three refinements were made, we were able to fit the evolution of

pattern density PDSH model against the same experimental data. A small decrease

in error (roughly 4 %) results, as shown in Figure 2-20 and Figure 2-11 as compared

to 2-10 and Figure 2-11. The planarization length of 1.47mm and a characteristic step

height of approximately 841 Åare fit by the model. All of our measurement points
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Figure 2-19: EA03 region pattern-density vs. step-height.
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Figure 2-20: EA03 region pattern-density vs. step-height with clipping.

are in the relatively large LRPD region. However, considering the periodic nature of

the die position on the wafer, we are able to see that the fitting at the edge which

would be nearest to the EA region, i.e.,the first five points, are better fit to the data

in that region than in the previous version of the model.
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Figure 2-21: Model fit (lines) of exponential PDSH model to new experimental data
(“x” points) during oxide stage of STI CMP.
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Figure 2-22: Model fit (lines) of evolution of pattern density exponential PDSH model
to new experimental data (“x” points) during oxide stage of STI CMP.

2.4 Summary

Using our evolving pattern-density model concept integrated with the exponential

PDSH model, we are able to reduce the model RMS error by 4%. However, the test
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structures that are measured to verify the model as outlined in Appendix A, Figure

A-4, are all larger than the 1-10 µm size range proven to be the most affected by our

model in Section 2.2. Therefore we are currently taking dense measurements in the

EA region with feature sizes in the 1-10µm range in order to explore model accuracy

in feature sizes that are more dependent on pattern-density evolution, which are the

features closest to those found in actual products.
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Chapter 3

Full Electrochemical Wafer-Level

Modeling for eCMP

In this chapter, we first review previous work on wafer-level eCMP models in Section

3.1. A new model that considers the electrochemistry at both the anode and cathode

is then presented in Section 3.2. A semi-3D version of the model is described in

Section 3.3, and preliminary results are presented in Section 3.4.

3.1 Evolution of Wafer-Level eCMP Models

Our group at MIT was among the first to take on the challenge of modeling the wafer-

level uniformity of the eCMP process, in an attempt to understand its case as a viable

alternative to conventional copper CMP. Such a model, coupled to die-level modeling

of topography evolution, is also important as extensions are sought to enable eCMP

in a three platen process in which copper is not only thinned but also removed to the

barrier, and then the barrier metal is removed as well.

3.1.1 Ohmic eCMP Model

A first generation physical, non-empirical model to predict the removal and control-

ling mechanisms of eCMP was a “time-stepped finite element approach to calculate
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copper removal” developed by Truque et al. [8]. The crux of the model is an ohmic

relationship between voltage and current, coupled with the direct electrochemical

relationship between applied charge at the cathode and removal rate as shown in

Equation 3.1.

I

[
C

sec

]
· 1

area [cm2]
· 1atomCu

2e− [C]
· 1moleCu
NAatomsCu

· 63.546gCU
1moleCu

·

cm3

8.941gCu
· 107nm

1cm
· 60sec

1min
= RR

[ nm
min

]
(3.1)

The derivation of this equation can be described as follows. Applied current,

a charge transfer per second, I(C/sec), is divided by the area to give the current

density. Employing the assumptions that two electrons are required for the removal

for every one atom of Cu, the molar weight and density are factored by the number

of atoms per electron to give the scaled removal rate in nm/min. If this removal rate

is then divided by the current, I, the removal rate per unit charge can be obtained

as shown in Equation 3.1. This equation is derived both in Truque’s thesis [8] and by

Smekalin et al. [19] such that for a 300 mm wafer the rate becomes 30 nm/(A−min),

or in layman’s terms, “for every minute 1 amp of current is applied to the wafer

polish process an average Cu thickness of 30 nm is removed” [8]. There can be

model adjustments made for edge exclusion [16], grain boundaries in polycrystalline

structures, and etching effects due to oxidizing action.

The current density distribution, J , is calculated using a 3-D discretization of the

wafer and the electrolyte using a stack of resistance meshes as shown in Figure 3-1.

The first mesh at the bottom of the figure represents the Cu layer on the wafer

surface, and is made up of nodes which connect to the respective nodes of the meshes

above it, which represent n mesh levels of the electrolyte. The electrolyte is composed

of n mesh levels to extend the model to view the current distribution both laterally

and vertically through all conductive components (pad, electrolyte, and wafer) and

all voltage zones.

The “ohmic” assumption of the model is implemented in the algorithm used to
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Figure 3-1: Ohmic model mesh representation [8].

compute the conductance matrix, which represents all of the mesh layers. The cir-

cuit representation of the model is shown in Figure 3-2. The conductance matrix is

assembled in the commonly defined pattern of Kirchoff’s Current Law (KCL) equa-

tions for each of the respective nodes in a 2-D matrix. The node position (layer), Cu

thickness, and neighboring nodes are all kept in a linked matrix to the conductance

matrix. At the Cu mesh level, conductances vary only by average thickness between

horizontally neighboring nodes, such that gcu = σcu
T

where σcu is the conductivity of

annealed Cu after electroplating and T is the Cu thickness. At the n electrolyte mesh

levels, the horizontal conductances vary by cross-sectional areas and thickness given

by their position, such that gh = σelect·h
n

, whereas the vertical conductances between

the layers vary with gν = n · σelect·d2
h

where d is the discretization size used, σelect

is the conductivity of the electrolyte, and h is the equivalent electrolyte thickness.
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Figure 3-2: Equivalent circuit representation of ohmic model.

The equivalent electrolyte thickness serves as a lumped fitting parameter as opposed

to an actual thickness approximation, to account for the perforated structure of the

polishing pad, where holes are opened to expose the electrolyte to the metal electrode

underlying the pad. Once all of the values of the conductance matrix are properly

assigned, the system is solved using the corresponding voltage drops across the matrix

based on the voltage applied in each zone, and with the wafer contact region acting

as virtual ground. Given the calculated voltages, the static current density defined

by Equation 3.2 is found:

J = σ∇φ (3.2)

Here σ is the lumped ionic electrical conductivity of the electrolyte (previously men-

tioned as σelect) and φ is the electrical potential assuming that the wafer and pad are

static as circuit elements. In order to accurately model the rotation of the pad and

wafer on the eCMP platen, the current values are radially averaged in the time frame

of a minute, and then divided by the area of the discretized units to give the current

64



density per node to find the removal rate using Equation 3.1. The removal rate is

then multiplied by the time step to obtain removal amount, and the Cu thickness

map and conductance matrix are updated for the following time step, until the final

time step is reached.

 ( ) ( )
0

,,0,,
=

Φ
∂
∂−=

z
zz zyx

z
yxJ σ . (7) 

The instantaneous local copper removal rate (in units of length per time) is then calculated as 
)/( ρzFMJRR z= , where F is the Faraday constant, z = 2 for copper is the charge per ion, and ρ and M 

are the density and the molar mass of copper. Taking into account the revolution of the wafer and 
assuming that the wafer rotation period is much shorter than the duration of polishing, the average 
removal rate at radius r over the polishing time T is calculated as 

  ( ) ( ) ( ) πθθω
π

2,,
2

00

drRRTdttrRRrRR
T

∫∫ ≈=  (8) 

where ( ) ( )πθθ 2,, += rRRrRR  and πω 2>>T .  

EXPERIMENTS 

To examine the possibility that the reduced removal at the wafer edge is a result of the presence of the 
anode contact zone, we conduct experiments in which we use different fixed head positions relative to the 
cathode platen (without head sweep), and bias the zones with V1, V2, V3 = 2, 1, 3 V. These process 
conditions are selected to pronounce the spatial interactions between the ECMP voltage zones, and are not 
settings that would be used during highly uniform production runs. Copper blanket wafers with starting 
thickness of approximately 2 µm are used for all experiments. The amount of copper removal for head 
positions L = 5.0, 5.5, and 6.0 inches are shown with fitting by the basic ohmic model in Figure 3 (left). 
We first note that by adjusting the size of the wafer anode contact zone in our model, we are able to 
accurately fit the pronounced transitions in removal rate observed from 75 mm to 100 mm in Figure 3 
(left) arising from the movement of these radial points into and out of the 0 V wafer contact zone near the 
center of the platen. However, we also see that there is substantial error near the center of the wafer (from 
0 to 35 mm), and improvements to the model are next considered to address this lack of fit. 

  

Figure 3: Amount of copper removal for head position of 5.0, 5.5, and 6.0 inches, and voltage zone 
settings of V1, V2, V3 = 2, 1, 3 V. (Left) Basic ohmic model versus data. The RMS error of this fit is 
531 Å. (Right) Non-ohmic model versus data. The RMS error of this fit is 412 Å, a 22% improvement. 

EXTENSION TO NON-OHMIC MODEL 

The ohmic model works well when the bias condition for a zone (Vx) is either 3V or 0V. When we 
have cathode zones biased at different voltages, however, the fit is not as good across the entire wafer. A 
likely cause is that the system contains important nonlinearities with respect to bias voltage. We verify the 
presence of nonlinearity by a second set of experiments. Here, we bias zone 1 and zone 3 at 0V, but set 
zone 2 to five different voltages; we maintain a fixed head position at 6.0 inches, and we keep our other 
conditions the same. The amount of removal is shown in Figure 4, where a nonlinear relationship between 

Figure 3-3: Amount of Cu removal for head positions of 5.0, 5.5, and 6.0 inches, and
voltage zone setting of V1, V2, V3 = 2, 1, 3V. Basic ohmic model versus data. The
RMS error of this fit is 532Å [9].

Though this model was a first attempt, it is able to capture the principal spatial-

trends of the wafer-level uniformity as shown in Figure 3-3. In Figure 3-3, one can see

that the model is fitting fairly well everywhere, with the exception of the first 25 mm

(center) and the furthest 25 mm (edge). The discrepancies expose the weaknesses of

the model, which will predict spatial dependence of the Cu removal rate based on the

spatial distribution of current flow as a function of the applied voltage in different

cathode zones. The model does not take into account the “non-ideal” electrochemical

reactions at the wafer surface which are the actual source of the current, as the model

instead focuses on current flow within the electrolyte and wafer copper layer as a

function of the spatial voltage zones, which are modeled as ideal voltage sources. The

voltage sources can be modeled as ideal; however, the value of the current is not based

solely on a linear resistance, but is rather based on the electrochemical reactions at
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the electrodes.

3.1.2 Non-Ohmic eCMP Model

As an extension of the ohmic model, the next phase of eCMP modeling sought to

account for the non-idealities at the wafer center and edge. There are many physically-

based hypotheses as to the cause of these discrepancies, including the area of the wafer

in electrical contact with the grounding region at the center of the pad having different

bias conditions, the effect of the location of the polish head relative to the cathode

voltage zones, and uneven electrolyte distribution due to the pad pressure and speed

variations [9]. However, prior to exploring the empirical effect of each of these process

and tool limitations, the actual mechanisms of removal must be further researched,

understood, and implemented into the model, most importantly the mechanism of

electrochemistry.

The ohmic eCMP model was shown to fit fairly well for a cathode zone voltage

biased at 3V or 0V but poorly for intermediate voltages, suggesting that there are

non-idealities with respect to biased voltages. Additional experiments were conducted

using only one cathode zone biased at five different voltages with a fixed head position,

and a nonlinear relationship was observed between removal rate and applied voltage

[9] as shown in Figure 3-4.

This observation of nonlinearity is the core of the “non-ohmic” assumption used

to correct the non-idealities of the previous model. In Figure 3-4 there is a non-

linear relationship observed between the amount of Cu removed and the voltage

applied to the cathode zone. Noting that the electrochemical reactions taking place

at the anode are a key mechanism for Cu removal, we must take into account the

Butler-Volmer model of electrode kinetics. The Butler-Volmer equation relates the

surface overpotential at the electrode-electrolyte interface to the current density [10],

which will give us the expected nonlinear relationship between the voltage and current

density. Equation 3.3 shows this relation in the form of a boundary-value problem

on boundary surface ΓA, in which the current at the anode and cathode is summed

as the Faradaic current contribution, and is set equal to the conduction current or
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removal amount and bias voltage is indeed observed. Based on electrochemical interactions, the expected 
nonlinear relationship is between the voltage and current density. Specifically, a non-ohmic component of 
the system that has been neglected in our basic model is the overpotential, the potential drop at the solid 
electrode and electrolyte solution interphase. Taking into account the surface overpotential, which is 
related to current density j by the Butler-Volmer equation [4], the boundary-value problem for the 
electrical potential Φ in domain Ω has a new boundary condition at the electrodes,  
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where R is the universal gas constant, T is temperature, j0  is the exchange current density, and αa and αc 
are the apparent transfer coefficients. 

 Instead of solving this modified boundary-value problem directly, we propose a simple 1-D model as 
an approximation. The presence of the polishing pad with punched holes largely prevents global ion 
diffusion, drift, or convection. The effective horizontal conductivity is assumed, to first order, to be much 
smaller than the vertical conductivity, and thus each hole subsystem is independent from others. Hence, 
we consider the electrolyte contained in a hole, the cathode surface, and the wafer surface at the two ends 
of the hole as an isolated subsystem. The electrolyte in the hole is ohmic, and is electrically equivalent to 
a resistor. The current density and overpotential at electrolyte-electrode interphase obeys the Butler-

Volmer equation, which has a high-overpotential approximation, s
a

RT

F

ejj
ηα

0= , and this is equivalent to a 

diode. Therefore, the equivalent circuit for current flow from wafer to cathode in a punched hole on the 
pad is simply a resistor and a diode, as pictured in Figure 5. Given the voltage V at the cathode surface at 
one end of the hole, and with the wafer surface on the other end of hole being grounded, we simply solve 

the equation pair s
a

RT

F

Rz ejVj
η

α

σ 0== and VV sR =+η numerically. The rest of the model remains 

unchanged. A comparison between the model and measured data is shown in Figure 3 (right). We see that 
the modified model (with vertical current flow only, but still with time-averaging due to wafer rotation) is 
able to match the inner wafer region much better. In this model, the extracted value for V0 is 0.053V, σz is 
1.5, 1,4, 1.2 S/m for L=5.0, 5.5, 6.0 inch, and j0 =1e-5 A/m2. 

 

 

 

 

 

Figure 4: Experimentally measured copper removal in 80 seconds 
for five different values of V2 (with V1 = V3 = 0V). Figure inset 
shows the observed nonlinear relationship between V2 and the 
removal amount (current density) for one selected wafer radius. 

Figure 5: Equivalent circuit for 
a vertically punched hole in 
pad. 
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Figure 3-4: Experimentally measured Cu removal in 89 seconds for five different
values of V2 (V1 and V2 held at 0V). Figure inset shows the nonlinear relationship
observed between V2 and the removal amount for a selected wafer radius [9].

“ohmic” relation used in the previous version of the model [9].

−σ∇φ · n = io

(
e
αaF
RT

φ − e−αcFRT φ
)

on ΓA (3.3)

Here i0 is the exchange current density, αa and αc are the kinetic transfer coef-

ficients of the anodic and cathodic components, respectively, of the electrochemical

reaction relating how the applied potential favors one direction of the reaction over the

other. Also, αaF
RT

represent the Tafel slope which depends on the transfer coefficient,

temperature and universal gas constant.

In this case, solving the boundary-value problem was superseded by the necessity

to accurately model, one-dimensionally, the electrochemical interaction effect on the

current density and thus the removal rate, as shown in the schematic configuration

in Figure 3-5. The configuration consisting of a perforated pad allows for the use

of Equation 3.2 without additional effects like “global ion diffusion, drift, or convec-
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this section, we review the mathematical formulation of an improved version of this model. During 
polishing, an electrical potential is applied between the cathode platen and anode as shown in Figure 1. 
The copper contact points in the wafer contact zone provide a conductive path from the copper surface of 
the wafer to the anode. The conductivity of the contact points is 7 orders of magnitude higher than 
electrolyte; therefore, the whole wafer surface is assumed to be grounded. Current flows from the biased 
cathode through the electrolyte; this current can be solved given the cathode bias conditions, conductivity 
of the electrolyte, and the geometry of the system. Electrical current oxidizes the copper atoms on the 
wafer surface, and copper ions dissolve in the electrolyte. The copper removal rate is proportional to the 
current density, with a proportionality defined by a constant from Faraday's law of electrolysis. 

 

 

Figure 1: The ECMP system (not to scale). A side view along 
x-y horizontal plane. 

Figure 2: Schematic view of the relative 
position of wafer and cathode zones. The 
wafer center is typically swept 
sinusoidally 5-6 in. from platen center. 

The wafer surface is grounded, the cathode zones are biased at different electrical potentials, and the 
electrolyte conducts current. We solve the continuity equation on a cylindrical domain Ω,  
 0=•∇ J  (1) 
 Φ∇−= σJ  (2) 

where Φ is the electrical potential, J  is the current density, and σ is the lumped ionic electrical 
conductivity of the electrolyte. The presence of a nonconductive polymer pad with vertical punched holes 
impedes diffusion, drift, and convection in the horizontal direction. The medium is assumed to be 
macroscopically anisotropic with horizontal and vertical conductivities xσ and zσ . Continuity requires 
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For boundary conditions, the domain Ω is bounded by a surface Γ  that is composed of zones of cathode 
platen 

CΓ  where the voltage bias condition is given, the wafer surface and the anode surface 
AΓ  which are 

grounded, and the side wall of the cylinder 
IΓ where we assume no normal direction current flow: 

 n•Φ∇ =0 on 
IΓ , (4) 

 ) ,3 ,2 ,1( LVVVcΦ=Φ  on 
CΓ , (5) 

 0=Φ  on 
AΓ . (6) 

The functional form of 
cΦ  is determined by the biases in the cathode zones (V1, V2, V3), and the head 

position L, which is the horizontal distance from cathode platen center to wafer center (Figure 2). This 
boundary-value problem can be solved numerically by the finite difference method. after Φ is calculated, 
the current density at the wafer surface in the direction normal to surface is given by 

L 
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Figure 3-5: eCMP configuration for non-ohmic model [9].

tion” [9], by confining an invariably small and non-mobile amount of electrolyte with

virtual direct contact with the pad and the Cu wafer. The lateral currents within

the electrolyte are also neglected in the belief that the currents in each hole are in-

dependent of one another. In effect, each hole is an individual system decoupled

from the whole to maintain an ohmic or “resistor-like” behavior for the electrolyte,

and a Butler-Volmer relation or “diode-like” behavior only exists at the wafer (an-

ode) and the pad (cathode). An important approximation is made here to allow the

Butler-Volmer overpotential for both the anode and cathode to be represented by one

equivalent diode with Equation 3.4.

j = j0e
αaF
RT

ηs (3.4)

Here ηs is the surface overpotential at the cathode and j0 is the exchange current

density at equilibrium rate constant. Therefore, the equivalent circuit looks like

Figure 3-6 as opposed to Figure 3-2, which was the basic 1-D equivalent circuit of the

purely ohmic model.

Furthermore, since this is a 1-D model, the calculation is straight forward, but the

introduction of electrochemical parameters calls for more fitting. Given the applied
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Figure 3-6: Equivalent circuit model for non-ohmic eCMP model.

voltage, V , of the cathode zone (comprised of the voltage across the electrolyte and

the surface overpotential at the electrodes) the calculation is now just solving for

overpotential of the equivalent currents of Equation 3.4 and Ohm’s law, as shown in

Equation 3.5 below.

σzVR = j0e
αaF
RT

ηs (3.5)

The one-dimensional currents are calculated for discretized points across the sur-

face of the wafer, and a similar time-average as in the previous model is used to

determine removal rates as a function of distance from the wafer center. This non-

ohmic eCMP model yields considerably more accurate results than that of the ohmic

eCMP model, as shown in Figure 3-7.

Nevertheless, there are still lingering concerns about the fitting at the wafer edge,

where the model is still overestimating removal. Initially, one must question the via-

bility of the one-diode assumption made for combining the electrochemical reactions

at both the anode and cathode. Another component of the electrochemical reactions

taking place at the electrodes is that of the aforementioned passivation layer of soft

Cu2+ which forms at the wafer surface, blocking removal in the recesses until there is

69



 ( ) ( )
0

,,0,,
=

Φ
∂
∂−=

z
zz zyx

z
yxJ σ . (7) 

The instantaneous local copper removal rate (in units of length per time) is then calculated as 
)/( ρzFMJRR z= , where F is the Faraday constant, z = 2 for copper is the charge per ion, and ρ and M 

are the density and the molar mass of copper. Taking into account the revolution of the wafer and 
assuming that the wafer rotation period is much shorter than the duration of polishing, the average 
removal rate at radius r over the polishing time T is calculated as 

  ( ) ( ) ( ) πθθω
π

2,,
2

00

drRRTdttrRRrRR
T

∫∫ ≈=  (8) 

where ( ) ( )πθθ 2,, += rRRrRR  and πω 2>>T .  

EXPERIMENTS 

To examine the possibility that the reduced removal at the wafer edge is a result of the presence of the 
anode contact zone, we conduct experiments in which we use different fixed head positions relative to the 
cathode platen (without head sweep), and bias the zones with V1, V2, V3 = 2, 1, 3 V. These process 
conditions are selected to pronounce the spatial interactions between the ECMP voltage zones, and are not 
settings that would be used during highly uniform production runs. Copper blanket wafers with starting 
thickness of approximately 2 µm are used for all experiments. The amount of copper removal for head 
positions L = 5.0, 5.5, and 6.0 inches are shown with fitting by the basic ohmic model in Figure 3 (left). 
We first note that by adjusting the size of the wafer anode contact zone in our model, we are able to 
accurately fit the pronounced transitions in removal rate observed from 75 mm to 100 mm in Figure 3 
(left) arising from the movement of these radial points into and out of the 0 V wafer contact zone near the 
center of the platen. However, we also see that there is substantial error near the center of the wafer (from 
0 to 35 mm), and improvements to the model are next considered to address this lack of fit. 

  

Figure 3: Amount of copper removal for head position of 5.0, 5.5, and 6.0 inches, and voltage zone 
settings of V1, V2, V3 = 2, 1, 3 V. (Left) Basic ohmic model versus data. The RMS error of this fit is 
531 Å. (Right) Non-ohmic model versus data. The RMS error of this fit is 412 Å, a 22% improvement. 

EXTENSION TO NON-OHMIC MODEL 

The ohmic model works well when the bias condition for a zone (Vx) is either 3V or 0V. When we 
have cathode zones biased at different voltages, however, the fit is not as good across the entire wafer. A 
likely cause is that the system contains important nonlinearities with respect to bias voltage. We verify the 
presence of nonlinearity by a second set of experiments. Here, we bias zone 1 and zone 3 at 0V, but set 
zone 2 to five different voltages; we maintain a fixed head position at 6.0 inches, and we keep our other 
conditions the same. The amount of removal is shown in Figure 4, where a nonlinear relationship between 

Figure 3-7: Amount of Cu removal for head positions of 5.0, 5.5, and 6.0 inches, and
voltage zone setting of V1, V2, V3 = 2,1,3V. Non-ohmic model versus data. The
RMS error of this fit is 412Å, a 22% improvement [9].

sufficient downforce and planarity with the up areas. The passivation layer may not

be uniformly layered across the wafer, and may not be instantaneously removed as

previously assumed. An additional overriding assumption is that the zone voltages

each are high enough to facilitate current flow that equals the conduction current and

thus directly translates to copper removal, whereas in traditional electrochemistry

[10] there exists an activation overpotential at which the current jumps higher than

the conduction current such that it becomes the dominant current source, at which

point current is no longer equal to conduction current but rather is a substantially

higher value.

3.2 Two-Diode Non-Ohmic eCMP Model

In order to transform this modeling effort beyond simply extending the model with

incremental gains in error or “goodness of fit,” one must understand the driving

mechanisms of the current density and its facilitation of Cu removal. In the previous

section we have established that the primary driver is the electrochemical reactions
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taking place at the electrode-electrolyte interface. However, thus far there have only

been assumptions based on empirical evidence as opposed to electrochemical analysis

of the system itself. Deeper electrochemical understanding will allow us not only to

model eCMP for the first platen, but in the future for all three platens because a com-

plete model based in physical understanding of the process itself is more extendable

to additional metals and materials.

To begin with, we consider a typical electrochemical cell as shown in Figure 3-8.

This will allow a more complete electrochemical analysis of the reactions and kinetics

that drive the model parameters to accurately characterize the eCMP process. The

following will explain the convention of the electrical current contributions, chemical

reactions, and electrochemical kinetics which are known to govern a typical elec-

trochemical cell like that of Figure 3-8, and relate them to the electrochemical cell

created by the eCMP process.

Electrochemistry Basics 
& Terminology

electrochemical reaction: a pair of chemical 
redox reactions driven by an external applied 
voltage.

potential:
• equilibrium potential: measure of the energy of 

the species when there is no current flow.
• electrochemical potential: measure of the 

energy of the species when there is an applied 
voltage.

• surface overpotential (ŋs): potential between the 
two electrodes. Driving force of electrochemical  
reactions.

current:
• cathodic current (ic): @ negative potential (flow 

of electrons into the cathode and then into the 
solution.)

• anodic current (ia): @ positive potential (flow of 
positive charges into the anode and then into 
the solution.)

anode cathode

electrolyte

Electrolyte 

- +

Electrons

Cathode Anode 

Ions 

Current

Voltage 
Source 

- -
-

-
-
-

Electrochemical System

ianodicicathodic

Figure 3-8: Electrochemical cell (After [10]).

71



 

 
 

   

          

 
Electrolyte

Anode (-) 

C C C
C

C

CC C

Pad 

 Dielectric

Cu

Cathode (+) 
Power 
Supply  

CC C
C CC C C

Figure 3-9: Schematic of eCMP Setup

There are three key components of the electrochemical cell: the electrodes, elec-

trolyte, and an external conductor. The typical electrochemical cell has two electrodes

where reactions can occur: a cathode, where electrons enter the cell and a reduction

reaction occurs, and an anode, where electrons leave the cell and oxidation occurs.

In the eCMP process, the Cu plated wafer is the anode, which is where the intended

dissolution of Cu or oxidation occurs, and the platen behind the pad serves as the

cathode, which is where Cu is slowly replated or reduction occurs. The next com-

ponent is the electrolyte which is the solution in which ions are the mobile species,

as opposed to the electrodes where electrons are the mobile species, allowing for the

conductive movement of Cu ions. Lastly, there is an external conductor which pro-

vides the continuity of the circuit; in the eCMP process this enables the externally

biased zone voltages. The external conductor, or voltage source, provides what is

called the conduction current; it follows the Ohm’s law calculation of the former

ohmic eCMP model. The two electrodes create the Faradaic current which follows

the Butler-Volmer relationship for each of their respective reactions, yielding equal

and opposite currents as shown in the Equation 3.6. Here αa and αc are the kinetic

transfer coefficients of the anodic and cathodic components of the electrochemical

reaction, relating how the applied potential favors the direction of one reaction over
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the other.

i

io
= e

αaF
RT

ηs − e−αcFRT ηs (3.6)

We observe once again in Equation 3.6, io is the exchange current density, and now

ηs is the surface overpotential created by the electrochemical reacton at the interface,

which from the exponential term known as the Tafel slope, is also dependent upon the

transfer coefficient determining the reaction rate [10]. The previous assumption in the

non-ohmic eCMP model is to cancel the term of the cathodic contribution since the

anodic reaction is favored in eCMP (Cu dissolution). The electrolyte also generates

different currents when an electric field is applied, but using the assumption of the

perforated pad from the former non-ohmic eCMP model, we can neglect migration,

diffusion and convection currents to yield an equivalent circuit model for the two-diode

non-ohmic eCMP model as shown in Figure 3-10.
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Wafer (Anode) 

j = σzVr

j = joe
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RT ηs

j = joe
αaF
RT ηs

Electrolyte 

Wafer (Anode) 

Platen (Cathode) 

j = σzVr

j = joe
αaF
RT ηs

Power Supply

Figure 3-10: Equivalent circuit model for two-diode non-ohmic eCMP model.

Now that we are able to more accurately model the electrochemical reactions

and potential distributions at the anode, cathode, and within the electrolyte, the

calculations can be re-derived into a form similar to the non-ohmic eCMP model

for a 1-D case. Using Newman’s derivation of applied voltage, Equation 3.6 and
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measurements from a conventional three-electrode experimental measurement to find

the two surface overpotentials, we can solve for the only unknown, ∇φohm,sol [10].

Vapp = ηs,anode + Eeqbm +∇φohm,sol − ηs,cathode (3.7)

Then we can plug this value into the equivalent equation from the previous non-

ohmic eCMP Model, Equation 3.6, for the value of VR. Additionally, experimental

electrochemical measurements can replace the fitting of the Tafel slope, such that the

only fitting done will be that of the exchange current density, jo.

This model is still neglecting the lateral current distribution within the electrolyte,

because it is only meant to serve as an accurate 1-D electrochemically-based approx-

imation for each mesh level (2-D), as shown in the mesh level representations of the

eCMP setup which will be explored in the next section.

3.3 Objectives and Framework of Semi 3-D Two

Diode eCMP Model

Equipped with the necessary understanding of the electrochemical mechanism that

governs the Cu removal in eCMP, the model can transition back to a 3-D model as

originally developed in the ohmic eCMP model case. In particular, the contribution

of the lateral currents can be added back in, with the advent of the second and third

dimensions of the model.

We have determined that, much like the initial ohmic eCMP model, a full 3-D

is possible but very computationally intensive; thus, we have settled on a semi 3-D

version of the model. Initially we will set up a 3-D resistor and diode grid, consisting

of a similar conductance matrix as in the initial model, but now with the non-linear

elements to express the anode and cathode reactions, as shown in Figure 3-11, for

each of the mesh levels.

The current across each circuit element and voltage at each node will be calculated

74



Figure 3-11: 2-D and 3-D representation of matrix for resistor and diode elements in
eCMP model setup.

for a given snapshot in time, using the derived Equation 3.7 from the two-diode non-

ohmic eCMP model and Kirchoff’s current law (KCL). Then, instead of 3-D time

averaging and calculation, we will do a 2-D radial time average of the current values

in the time frame of a minute, and then divide by the area of the discretized units to

give the current density per node, to find the removal rate using Equation 3.1.

3.4 Verification of Two Diode Non-Ohmic eCMP

Model

The semi 3-D numerical implementation of the two-diode non-ohmic eCMP model

proposed in this thesis has been performed by Wei Fan. Here, we show the experi-

mental setup and preliminary results from this numerical model, and discuss on-going

work to fit and verify the new model using experimental data.

3.4.1 Experimental Setup

The eCMP modeling work will be verified and calibrated using data measurements

from experiments done on the Applied Materials Reflexion LK eCMP tool by Truque[8],
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in collaboration with Chris Borst of SUNY Albany. The tool has a three platen setup,

the first of which is where the eCMP takes place, and the latter two platens and steps

used to perform conventional CMP to complete the remaining Cu removal and bar-

rier removal, as shown in Figure 3-12. This tool setup consists of three concentric

voltage zones for the polishing pad to more evenly remove material from the three

key regions of the wafer when desired, as shown in Figure 3-13. There is also a wafer

contact region, which serves as the central contact from the pad to the wafer edge.

The proprietary electrolyte used is composed of a “diluted citric acid solution mixed

with hydrogen peroxide and proprietary additives” [8] and is allowed to flow freely

between the pad and the wafer. This setup is used during the first platen process of

the Cu planarization and is the only platen modeled in this thesis.

The process conditions which were varied included that of the head position,

varied at 5, 5.5, and 6 inches. In addition, the voltage zones were varied as previously

mentioned, typically with the following voltages: V1, V2, V3 = 2, 1, 3V.

Figure 3-12: Applied Materials Reflexion LK eCMP platform [11].
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Figure 3-13: Voltage zone top-down view over wafer configuration.

3.4.2 Semi-3D Model

Wei Fan has performed the initial simulation for the semi-3D model implementation

as shown in the following figures. Figures 3-14 through 3-16 show the application

of the model for each voltage zone applied independently with the remaining voltage

zones left at 0V. Here we see the voltage distribution at the wafer surface and the time

averaged result based on the distance from the wafer’s center. These simulations are

based on assumed (literature) values for all electrochemical parameters (i.e. αa,αc,

etc.). Future work includes fitting these to the available experiment eCMP data. Once

fitted with previous experimental data we will be able to determine the accuracy of

this semi-3D approach.
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Figure 3-14: Voltage across wafer surface and time-averaged result, Zone 1 = 1V.
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Figure 3-15: Voltage across wafer surface and time-averaged result, Zone 2 = 1V.
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3.5 Summary

The premise of a new two-diode non-ohmic eCMP model is established in this chap-

ter. This model seeks to more precisely account for the electrochemical reactions at

both the interface of the anode and cathode to properly determine the behavior of

the current driving removal in copper eCMP. The implementation of this model in a

semi 3D model and the simulation capabilities are currently being investigated in col-

laboration with Wei Fan, to verify the improved model accuracy against experimental

data.
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Chapter 4

Conclusions

4.1 Thesis Contributions

This thesis makes several contributions to the theoretical modeling and physical un-

derstanding of the mechanisms behind both the STI CMP process and eCMP pro-

cesses, at their respective scales. The following sections succintly describe the primary

contributions and future work in both areas.

4.1.1 Evolution of Pattern Density Die-Level Model for STI

CMP

The evolution of pattern density die-level model is an important contribution to the

understanding of the physical mechanisms, deposition profile effects and geometri-

cal topography changes taking place during planarization using CMP. This model

addresses the previous assumptions of constant pattern-density by defining the de-

position profile geometry resulting from the deposition process parameters and sim-

ulating its evolving pattern density effects, which has not been done previously. We

have shown numerical simulation verification of the practicality of this model and

once verified using product-size features, the model is expected to yield a significant

increase in model accuracy in both the up and down areas of sub-10µm features.
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4.1.2 Full Electrochemical Wafer-Level Model for eCMP

Through the two diode eCMP model proposed in this thesis, we contribute a more

complete and accurate picture of the electrochemical cell that drives removal in the

eCMP planarization process. The improved model captures the nonlinear dependence

on applied voltages in multiple zones in eCMP tools, and incorporates electrochemical

effects that are important for eCMP of copper and potentially other metals. A deeper

understanding of how the current from the electrochemical reactions at the surface of

the anode and cathode, which drive planarization, is employed to allow us to better

understand nonlinear removal and possibly aid in future process control. Coupled

with the complete simulation of the semi 3-D two diode eCMP model, this model

will allow for extension to not only the complete copper removal but additionally

provides the flexibility needed to extend to the barrier metal as well. Thus this

model framework has laid the foundation for a full eCMP process to be modeled

without the use of conventional CMP.

4.2 Future Work

In both models explored in this thesis there is work that could be done to further

their accuracy and efficiency. In the case of the STI CMP model we are currently in

the process of taking dense sets of AFM and Wyko measurements of the EA Region

in our test wafers in order to verify the quadratic dependence of pattern density on

step-height in small features. Additionally, we have yet to explore non-conventional

slurry effects on removal rate, atypical layout effects and more explicit physically-

based phenomena models in order to improve our semi-empirical PDSH model, all

of which we hope to explore in the near future. In terms of the eCMP model we

are currently fitting the semi-3D implementation of the two-diode non-ohmic eCMP

model to experimental data in order to determine the accuracy of the new model.

Furthermore, in the area of eCMP there has been very little modeling done which

leaves many areas for further work including better chemical composition models,

electrochemical reaction models, and models for eCMP tools with conductive pads.
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Appendix A

STI Test Mask Documentation

5/25 

Characterization mask is designed to produce one 21mm x 21mm die and floor plan is 

shown in Figure 1. 
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Figure 1. STI Mask Floor Plan 

 
 
 
The structures are grouped into four categories: 

1. Long-range pattern density dependence structures; 
2. Bias structures 
3. Edge-acceleration effect structures; 
4. Dishing and Erosion structures, and L-shape and X-shape structures; 
5. National Product cells 

 

Figure A-1: STI mask floor plan [7].
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Figure A-2: STI mask local pattern-density map [7].
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Figure A-3: Density distribution of STI mask floor plan [7].
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Figure A-4: Feature size specifications and measurement locations of STI mask floor
plan. Measurement sites 1 to 20 are from left to right along top cutline, and sites 21
to 40 are from left to right along second cutline.
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Appendix B

NSC STI Experiment

Documentation
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Figure B-1: Silica slurry experiments run table.
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Appendix C

Modeling Illustrations
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