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ABSTRACT 

Pursuant to a 1986 NRC ruling, the MIT Reactor (MITR) is planning on converting from the use of 

highly enriched uranium (HEU) to low enriched uranium (LEU) for fuel. Prior studies have shown that 

the MITR will be able to operate using monolithic U-Mo LEU fuel while achieving neutron fluxes close 

to that of an HEU core. However, to date, detailed studies on fuel management and burnup while using 

LEU fuel have not been performed. In this work, a code package is developed for performing detailed 

fuel management studies at the MITR that is easy to use and is based on state-of-the-art computational 

methodologies. 

A wrapper was written that enables fuel management operations to be modeled using MCODE, a code 

developed at MIT that couples MCNP to the point-depletion code ORIGEN. To explicitly model the 

movement of the control blades in the MITR as the core is being depleted, a criticality search algorithm 

was implemented to determine the critical position of the control blades at each depletion timestep. 

Additionally, a graphical user interface (GUI) was developed to automate the creation of model input 

files. The fuel management wrapper and GUI were developed in Python, with the PyQt4 extension being 

used for GUI-specific features. 

The MCODE fuel management wrapper has been shown to perform reliably based on a number of 

studies. An LEU equilibrium core was modeled and burned for 640 days with the fuel being moved in the 

same pattern every 80 days. The control blade movement and nuclide concentrations were shown to be in 

agreement with what one would intuitively predict. The fuel management capabilities of REBUS-PC and 

the MCODE fuel management wrapper were compared by modeling the same refueling scheme using an 

HEU core. The element power peaking factors for the two models showed remarkable agreement. 

Together, the fuel management wrapper and graphical user interface will help the staff at the MITR 

perform in-core fuel management calculations quickly and with a higher level of detail than that 

previously possible. 

Thesis Supervisor: Benoit Forget 

Title: Assistant Professor of Nuclear Science and Engineering 
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1 Introduction 

1.1 Motivation 

Historically, many research and test reactors across the world have been designed for use with highly 

enriched uranium (HEU) fuels because the relatively small size of such reactors makes it difficult to 

achieve useful neutron fluxes without a high enrichment. However, in light of U.S. non-proliferation 

policy aimed at minimizing the use of HEU in civilian applications, the U.S. Department of Energy 

initiated the Reduced Enrichment for Research and Test Reactors (RERTR) Program in 1978 with the 

intent of developing the technical means to convert research and test reactors fueled with (HEU) to low 

enriched uranium (LEU) [1]. The main functions of this program are the development of high-density 

LEU fuels and targets and assisting existing research reactors and isotope production facilities in the 

conversion process. Following the establishment of the RERTR program, the U.S. Nuclear Regulatory 

Commission (NRC) ruled in 1986 that all domestic research reactors would be required to convert to LEU 

fuel contingent upon the availability of Federal funds and fuel suitable for use in each particular reactor 

[2]. 

In 2004, the RERTR program was placed under the National Nuclear Security Administration as part of 

the Global Threat Reduction Initiative in light of renewed focus on removing proliferation-sensitive 

material in the civilian fuel cycle, and an aggressive goal of converting all domestic research reactors by 

September 2014 was established [3]. Since 1978, 11 currently operating U.S. research reactors have 

converted to LEU fuel under the purview of the RERTR program, and NNSA plans to convert another 

seven reactors by 2014. Two of these seven reactors are on schedule to be converted by September 2009 

[4,5]. The remaining five reactors are unable to convert using currently qualified LEU fuels. Of these five 

reactors, two are university research reactors, one being the MIT reactor (MITR) and the other being the 

University of Missouri Research Reactor Center (MURR) at the University of Missouri-Columbia. 

1.2 Objectives 

Over the half-century that the MITR has been in operation, it has been fueled with HEU which enables it 

to achieve a high neutron flux that can be used as a source for in-core and ex-core experiments. As much 

of the operating revenue at the MITR is derived from the use of the neutron flux for experiments, 

maintaining current flux levels in the future is essential to the continued operation of the MITR. 

Replacing the HEU fuel with currently qualified LEU fuel would impose serious technical challenges on 

the design and operation of the MITR. For one, it would be hard to achieve criticality with the current 

geometry, and even if criticality were to be obtained, the neutron flux to experiments would be 

significantly reduced. Thus, converting to LEU based on currently qualified fuels is not feasible as an 

option for conversion. As such, the MITR and four other reactors await the development of a high-density 

monolithic LEU fuel composed of an alloy of uranium and molybdenum. The high-density monolithic 

fuel being developed will have a density of 17 g/cm
3
 [6]. To give some perspective, the highest density 

LEU fuel that is currently qualified for use by the NRC is 4.8 g/cm
3
 [7]. The high-density fuel will allow 
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a large enough fuel loading for the compact MITR core to achieve criticality even with enrichments 

below 20%. 

Prior studies have shown that the MITR will be able to operate using monolithic U-Mo LEU fuel while 

achieving neutron fluxes close to that of an HEU core [8]. However, to date, detailed studies on fuel 

management and burnup while using LEU fuel have not been performed. The objective of this thesis is to 

develop an interface for performing detailed fuel management studies at the MITR that is easy to use and 

is based on state-of-the-art computational methodologies. Such an interface and code package would 

represent a significant improvement over the decades-old fuel management practices currently being 

utilized at the MITR.  

1.3 Description of the MIT Reactor 

1.3.1 History 

The MIT Reactor is one of the oldest university research reactors in the U.S., achieving initial criticality 

on July 21, 1958 [9]. The original version of the reactor (MITR-I) was heavy-water moderated and cooled 

and used an open array of plate-type fuel assemblies. After re-evaluating the research needs of the reactor 

and further optimization studies, the core was redesigned and the current reactor (MITR-II) was built and 

achieved criticality on August 14, 1975. 

1.3.2 MITR-II Description 

The MITR-II differs significantly from the original design. Rather than having an open array of fuel 

elements, the MITR-II uses a close-packed array of finned, plate-type assemblies cooled and moderated 

by light-water. The fuel assemblies (colloquially called fuel elements) have a rhombus-shaped cross-

section. This allows the fuel elements to be arranged in three radial rings, one composed of three elements 

(A-ring), one composed of nine elements (B-ring), and one composed of 15 elements (C-ring). The 

geometric arrangement of the MITR-II core is shown in Figure 1-1. Typically, at least three fuel positions 

are occupied by either an in-core experimental facility or a solid aluminum “dummy” element that helps 

reduce power peaking. The remaining positions are filled with standard fuel elements. The reactor is 

currently licensed to operate at a steady-state power of 5 MW. 
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Figure 1-1   Plan view of the MITR-II core 

The core is light-water moderated and cooled and is surrounded by a heavy water reflector. Beyond the 

heavy water reflector is a secondary reflector made of graphite. Boron impregnated stainless steel control 

blades are located at the periphery of the core on each of the sides of the hexagon. In addition to the 

control blades, a single cadmium regulating rod is also present at the periphery of the core. 

In 1999, relicensing documents were submitted to the U.S. Nuclear Regulatory Commission which would 

increase the operational power to 6 MW [10]. This license application is referred to as MITR-III even 

though the core configuration and operation conditions are the same as for the MITR-II core. The power 

up-rate in this request is achieved by taking advantage of excess safety margin in the MITR-II design. 

1.3.3 Fuel Element Design 

The design of HEU and LEU fuel elements is different is several respects. The HEU fuel elements contain 

fifteen aluminum-clad fuel plates with 93% enriched uranium in an aluminide cermet matrix. An 

engineering drawing showing a horizontal cross-section of an HEU fuel element with dimensions is 

shown in Figure 1-2. The thickness of the fuel meat is 0.030 in (0.762 mm) with 0.015 in (0.381 mm) of 

aluminum cladding. In addition to the cladding, there are 0.010 in by 0.010 in (0.254 mm) longitudinal 

aluminum fins on the plates to enhance the heat transfer. An engineering drawing section showing the 

dimension for a fuel plate is shown in Figure 1-3.  
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Figure 1-2   Engineering drawing of MITR-II HEU fuel element cross-section [11] 

 

Figure 1-3   Engineering drawing of MITR-II HEU fuel plate [11] 
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The HEU fuel originally used in the MITR-II had a density of 3.4 g/cm
3
 with a total loading of 445 g of 

235
U in each fuel element [8]. After 1990, higher density fuel (3.7 g/cm

3
) was used with total loading of 

506 g of 
235

U in each fuel element. The fuel meat is tapered at the ends of the fuel plates as shown in 

Figure 1-4. 

 

Figure 1-4   Engineering drawing of MITR-II HEU fuel element [11] 

In contrast to the HEU fuel elements, the LEU fuel elements have eighteen aluminum-clad fuel plates 

with a monolithic uranium-molybdenum alloy. The choice of using 18 plates rather than 15 is the result of 

thermal-hydraulic optimization studies [12]. The fuel meat itself is 10 wt% molybdenum, and the uranium 

is enriched to 19.75%. Table 1-1 shows a summary of the chemical specification of the low-enriched 

uranium supplied to research reactors [13]. The U-10Mo alloy has a density of 17.02 g/cm
3
 [14]. The 

vastly denser fuel results in a high enough fuel loading to reach criticality in the same configuration as an 

HEU core despite having a much lower enrichment.  

Table 1-1   Chemical specification of uranium metal supplied to research reactors 

Element Concentration 
232

U  ≤ 0.002 µg/gU 
234

U ≤ 0.260 wt% 
235

U 19.75 ± 0.20 wt% 
236

U ≤ 4600 Bq/gU 

Activation Product ≤ 100.0 Bq/gU 

Fission Products ≤ 600.0 Bq/gU 

Total Impurities ≤ 1.2 mg/gU 

The thickness of the fuel meat in the LEU fuel elements is 0.020 in (0.508 mm) with 0.010 in (0.381 mm) 

of aluminum cladding. Again, 0.010 in by 0.010 in (0.254 mm) longitudinal fins are employed to enhance 

heat transfer. Engineering drawings for an LEU fuel element have not been created yet since the design is 

still tentative. 

1.4 Neutronic and Burnup Modeling 

1.4.1 Previous Models and Codes 

Over the 35 year history of the MITR-II, many neutronics models have been developed and used for core 

analysis, fuel management, and design studies. The first physics evaluations of the MITR-II design were 

made by Addae [15] in 1970 using the EXTERMINATOR-II and PDQ-7 diffusion theory codes. These 
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models were subsequently used by Kadak [16] to develop a fuel management strategy using the 

HARMONY option in PDQ. 

During the mid 1970s, the focus of the experimental programs at the MITR-II shifted from use of the 

beam ports for neutrons to in-core irradiation facilities that would allow for a higher fluence in irradiated 

materials. Because Kadak‟s fuel management strategy had been predicated on the assumption that there 

would be only one in-core facility, the strategy was no longer applicable and the need for a new strategy 

emerged. In tandem with developing a new fuel management strategy, it was decided to develop new 

calculational methods as well. Bernard developed a fuel management code for the MITR-II using the 

CITATION finite-difference diffusion theory code [17]. The CITATION model for the MITR-II remains 

in use today for routine fuel management calculations. 

1.4.2 MCNP Model 

Most, if not all, modern Monte Carlo transport codes use combinational geometry to model complex 

arrangements of physical materials. The advantage of using combinational geometry over a discretized 

mesh as is common in deterministic transport codes is the ability for the user to easily model complex 

geometries and the lack of approximations (so long as all surfaces being modeled are second-order or 

less). In addition, Monte Carlo codes are able to utilize continuous-energy cross-sections, thus obviating 

the need to construct multi-group cross-sections. Given these advantages, Monte Carlo codes are 

considered the “gold standard” for performing reactor physics calculations. Even so, any user of such a 

code must be aware that stochastic uncertainties, poor coupling with depletion, and poor source 

convergence for problems with high dominance ratios may lead to erroneous results. Monte Carlo codes 

are a powerful tool for solving the transport equation, but only if used properly. 

Using Monte Carlo methods in a primary design role in lieu of deterministic methods has become 

possible in recent years, especially for small cores such as the MITR. Recognizing this, an MCNP model 

of the MITR-II was constructed by Redmond, Yanch, and Harling [18] in the early 1990s. MCNP [19] is 

a generalized geometry, continuous-energy Monte Carlo transport code developed by Los Alamos 

National Laboratory and can simulate neutrons, photons, and electrons. The MCNP model was 

established for several configurations including three depleted cores with fuel data generated by 

Bernard‟s aforementioned fuel management code based on CITATION. These models were validated by 

comparing predictions for keff and the fast neutron flux in two in-core experimental facilities against 

experimental data. The MCNP model has been widely used and adapted for various neutronics studies at 

the MITR due to its accuracy and ease of use. 

The MCNP model for the MITR-II is highly detailed and contains very few approximations. A cross-

section of the MCNP model for MITR-II core configuration #2 with five aluminum dummy elements is 

shown in Figure 1-5. Each fuel plate is modeled discretely according to fuel specifications, and all reactor 

structures out to the outer edge of the graphite reflector are modeled. The fins on the fuel plates are not 

modeled explicitly as they are not neutronically important and are instead treated by extending the clad to 

preserve the mass of clad and water. The tapering on the ends of the fuel meat are not modeled either, but 

again, the active fuel length is set to ensure that the proper mass of fuel is present in each plate. For 

steady-state calculations, cross-sections are evaluated at 300 K and adjusted by using MCNP‟s built-in 

free-gas thermal treatment. 
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Figure 1-5   MCNP model of MITR-II core configuration #2 

Notwithstanding the above considerations, the ability of the MCNP model to correctly predict reactor 

physics parameters is fundamentally limited not by the geometrical accuracy of the model but by our own 

limited knowledge of the material compositions, “as-built” dimensions due to manufacturing tolerances, 

and of course uncertainty in the evaluated cross-section data sets. 

In order to convert from the current HEU core to an LEU core, it will be necessary to perform burnup 

modeling and fuel management calculations. However, MCNP provides only a snapshot of the physics in 

a system, i.e. material compositions are not affected by the nuclear reactions that take place. Thus, to 

analyze burnup in an MCNP model, the calculated fluxes and reaction rates must be passed to another 

code, e.g. ORIGEN2, that is capable of solving the Bateman equations for nuclear irradiation and decay. 

Several codes have been developed to do exactly that as will be discussed later. However, none of these 

MCNP-ORIGEN linkage codes have the capability to shuffle fuel. Thus, early in the LEU conversion fuel 

management studies, it was decided to create a model of the MITR in REBUS-PC, a fuel cycle analysis 

code based on diffusion theory, since it had the necessary fuel management capabilities. 

1.4.3 REBUS-PC Model 

REBUS-PC [20] is a system of codes based on DIF3D that is designed specifically for the analyses of 

research reactor fuel cycles. It is capable of solving for equilibrium conditions under a fixed fuel 

management scheme or explicit cycle-by-cycle operation under a specified fuel management program. 

The DIF3D neutronics processor within REBUS-PC is fully capable of solving problems using a 

triangular or hexagonal mesh. 

In the REBUS-PC model of the MITR-II [21], shown in Figure 1-6, each fuel element is homogenized 

and consists of an 8 by 16 triangular mesh. As a result, the entire reactor core consists of a radial mesh of 
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542 by 312 triangles. The core is modeled using a triangular-Z mesh due to the rhomboid shape of the 

fuel elements in the MITR-II. Any circular boundaries such as the reactor tank are modeled by a jagged 

boundary based on mesh centroid radii. The WIMS-ANL 1D transport code [22] is used to generate 7-

group neutron cross-section libraries. To model the reactor in WIMS-ANL, a series of 17 input files were 

created, each which accurately calculates the spectrum in a different physical region of the core. 

 

Figure 1-6   REBUS-PC model of the MITR-II core 

Preliminary validation of the REBUS-PC model was very promising. For the MITR-II core, a comparison 

of the power profile and integral control blade worth curves calculated with REBUS-PC and MCNP 

showed very good agreement. Figure 1-7 shows the element peaking factors for the core #2 configuration 

calculated with REBUS-PC and MCNP. Figure 1-8 shows the integral control blade worth calculated with 

REBUS-PC and MCNP. This core configuration used five solid aluminum dummies as shown in Figure 

1-7 with no fixed absorbers. It was operated at 2.5 MW for several months in 1976 [8].  
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Figure 1-7   Element radial peaking factors in HEU core #2, MCNP and REBUS-PC results, from [21] 

 

Figure 1-8   HEU core #2 integral control blade worth curves, adapted from [21] 

Despite the success in modeling the MITR-II HEU core using REBUS-PC, the results for an LEU core 

have been rather discouraging. To date, the cross-sections generated by WIMS-ANL for an LEU core 

have not produced accurate results when used in REBUS-PC. After many struggles attempting to 

accurately model an LEU core in REBUS-PC, it was decided to pursue using MCNP for fuel management 

calculations with the added burden of developing the needed fuel management capabilities in tandem with 

the model development efforts on for REBUS-PC. The development of an interface that allows fuel 

management calculations to be performed using MCODE [23], a code developed at MIT that couples 

MCNP to the point-depletion code ORIGEN, is the focus of this thesis. 
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1.4.4 MCODE Depletion Code 

Numerous codes have been developed to couple the continuous-energy Monte Carlo code MCNP to the 

point-depletion code ORIGEN2 [24] for performing burnup calculations. The first attempt to do this was 

a program called MOCUP (MCNP-ORIGEN Coupling Utility Program) [25] which was developed at 

Idaho National Engineering Laboratory (now Idaho National Laboratory). Shortly afterwards, Los 

Alamos National Laboratory also developed their own MCNP-ORIGEN coupling tool called 

MONTEBURNS [26]. While these are the two most well known MCNP-ORIGEN coupling codes, 

several others have been developed over time. 

It is the opinion of many people that both MOCUP and MONTEBURNS are not user-friendly and require 

considerable effort to learn and use. Thus, to overcome the difficulties of using these codes, an effort to 

develop a new MCNP-ORIGEN coupling code at MIT started around 2002. The result of this effort was 

MCODE [23], an MCNP-ORIGEN Depletion Program, a tool for performing depletion calculations that 

focuses on functionality, versatility, and usability. 

The current version, MCODE-2.2, is written entirely in ANSI C making it portable between different 

operating systems. Beyond being easier to use than MOCUP and MONTEBURNS, the depletion 

algorithm in MCODE is more accurate as well. To illustrate the differences in the algorithms, let us look 

at the transmutation equations. The rate at which material compositions change under irradiation is given 

by the following equation, also known as the Bateman equation [23]: 

 𝑑𝑋𝑖𝑗

𝑑𝑡
=  𝑙𝑘→𝑗𝜆𝑘𝑋𝑖𝑘

𝑁𝑖

𝑘=1

+  𝑓𝑘→𝑗𝑋𝑖𝑘  𝑑𝐸 𝜎𝑘 𝐸 𝜙𝑖 𝐸 

𝑁𝑖

𝑘=1

− 𝜆𝑗𝑋𝑖𝑗 − 𝑋𝑖𝑗  𝑑𝐸 𝜎𝑗  𝐸 𝜙𝑖 𝐸  (1.1) 

where 

𝑋𝑖𝑗 = atom number density of nuclide j in material i; 

𝑁𝑖 =  number of nuclides in material i; 

𝑙𝑘→𝑗 = fraction of radioactive disintegrations by k that lead to formation of j; 

𝜆𝑘 = radioactive decay constant of nuclide k; 

𝑓𝑘→𝑗 = fraction of neutron absorptions by k that lead to formation of j; 

𝜙𝑖 𝐸 = spatial-average neutron energy spectrum in cell i; 

𝜎𝑘 𝐸 = neutron absorption cross section of nuclide k. 

Recognizing that Eq. (1.2) is a system of first-order linear differential equations, we can rewrite it in 

vector form: 

 𝑑𝑿𝑖 𝑡 

𝑑𝑡
= 𝑨𝑖 𝑡 𝑿𝑖 𝑡 . (1.2) 

where the matrix 𝑨 is called the transition matrix. If one assumes that the transition matrix is constant 

over time, the formal solution to Eq. (1.2) is: 

 𝑿𝑖 𝑡 = 𝑒𝑨𝑡𝑿𝑖 0 . (1.3) 
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However, when a material is irradiated, the reaction rates do change with time since both the cross 

sections and fluxes are time-dependent. The total burnup time of a problem of interest is usually divided 

into time-steps over which the reaction rates are not expected to change appreciably so that the solution 

from Eq. (1.3) is valid. That being said, the manner in which the transition matrix is evaluated will have a 

considerable effect on how accurate the depletion algorithm is. 

There are several methods for treating the transition matrix. The most obvious method is to simply take 

the reaction rates at the beginning of a time-step (𝑡𝑙−1) and use them to predict the end-of-step (𝑡𝑙) 

nuclides concentrations. This can be stated mathematically as: 

 𝑿𝑖 𝑡𝑙 = 𝑒𝑨𝑖 𝑡𝑙−1 ⋅ 𝑡𝑙−𝑡𝑙−1 𝑿𝑖 𝑡𝑙−1 . (1.4) 

This is the method that is used by MOCUP to predict end-of-step nuclide concentrations. While it is the 

simplest approach, it is also the most prone to error since it does not attempt to account for the fact that 

the reaction rates change over the time-step. A slightly better approach is taken by MONTEBURNS, 

which uses the middle-of-step reaction rates to predict the end-of-step nuclide concentrations, i.e. 

 
𝑿𝑖 𝑡𝑙 =  exp  𝑨𝑖  

𝑡𝑙−1 + 𝑡𝑙
2

 ⋅  𝑡𝑙 − 𝑡𝑙−1   𝑿𝑖 𝑡𝑙−1 . (1.5) 

MCODE-2.2 instead uses a predictor-corrector method as is used in CASMO-4 [27]. In this approach, 

two depletion calculations are performed. The end-of-step nuclide concentrations are calculated by taking 

the average of the compositions determined by depleting based on beginning-of-step reaction rates as well 

as predicted end-of-step reaction rates. This approach can be written as follows: 

 𝑿𝑖
𝑃 𝑡𝑙 = 𝑒𝑨𝑖 𝑡𝑙−1 ⋅ 𝑡𝑙−𝑡𝑙−1 𝑿𝑖 𝑡𝑙−1  

𝑿𝑖
𝐶 𝑡𝑙 = 𝑒𝑨𝑖

𝑃  𝑡𝑙 ⋅ 𝑡𝑙−𝑡𝑙−1 𝑿𝑖 𝑡𝑙−1  

𝑿𝑖 𝑡𝑙 =
𝑿𝑖

𝑃 𝑡𝑙 + 𝑿𝑖
𝐶 𝑡𝑙 

2
. 

(1.6) 

The predictor-corrector approach is a proven methodology that has been shown to produce more accurate 

results than the aforementioned approaches [28]. 

1.4.5 Comparison of Execution Time 

As the speed of computers has continued to increase over time, the feasibility of using Monte Carlo 

methods is becoming more attractive thanks to their accuracy and ability to easily model complex 

geometries as discussed previously. That being said, the fact remains that simulations using Monte Carlo 

codes may take considerably longer than their deterministic counterparts, especially when determining 

local quantities such as power distributions. It is important to consider the time requirements for the 

various neutronic simulation options. 

While Monte Carlo methods benefit from the use of combinatorial geometry, the very nature of 

simulating individual particles making random walks through the problem makes Monte Carlo codes very 

computationally expensive. As a result, Monte Carlo calculations are usually limited by how much raw 

processing power is available to the user. Solving the transport equation via deterministic methods is less 
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computationally expensive than doing so via Monte Carlo methods. However, deterministic methods may 

be limited by the memory of the computer depending on the size of the problem of interest. To solve very 

large problems, one might be forced to use domain decomposition to split the spatial domain of the 

problem into smaller pieces that can be stored on a single processing node. 

By assuming a linearly anisotropic angular distribution of the neutron flux (i.e. diffusion approximation), 

one can solve neutron transport problems even faster than would be possible with higher-order 

deterministic transport methods. However, this comes at the expense of the accuracy of the solution 

obtained. For the MITR, solving a full-core depletion calculation using the diffusion theory code REBUS-

PC will generally take on the order of 10 hours. With MCODE and the fuel management wrapper 

developed in this thesis, an equivalent calculation may take on the order of several days. That being said, 

MCNP can be run in parallel whereas REBUS-PC is currently only capable of serial calculations. 

Significant reductions in run times may be possible by running MCNP on many processors in parallel if 

the problem scales well. Furthermore, algorithmic improvements to MCODE may further reduce run 

times as discussed in section 5.2.1. 

1.5 Using MCODE for Fuel Management 

Despite the inherent advantages of using MCNP/MCODE over REBUS-PC for performing neutronics 

calculations, the fact remains that MCODE-2.2 does not have the ability to perform fuel management 

operations during irradiation and thus is of limited use for fuel management calculations. We are faced 

with two options as to how to deal with this shortcoming. The first option is to simply manipulate the 

input files ourselves at each point in time we desire to shuffle fuel assemblies and insert/remove fuel 

elements. However, when one considers that there are likely to be hundreds of materials being depleted 

separately in a single run, the task of performing detailed in-core fuel management calculations by doing 

the fuel management operations by hand begins to appear quite onerous and prone to human-error. 

A better approach for performing fuel management operations is to develop software that automates the 

input file generation, data manipulation, and post-processing of the output data for analysis. To achieve 

this, two pieces of software have been developed. The first is a graphical user interface that serves as the 

front-end for allowing a user to define all the necessary data in a fuel management calculation. The 

second is a fuel management wrapper which reads the user data from the GUI, creates and runs an 

MCODE input file for each cycle, and handles the transfer of data between cycles. 
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2 Interface Development 

2.1 Data Model and Abstraction 

To meet the goal of an interface that would be applicable to more than one reactor type and to aid future 

developers in understanding the code, an object-oriented approach was taken whereby the data and its‟ 

associated procedures are abstracted. The data model consists of five main classes: RunData, Path, 

Element, Material, and Location. 

The RunData class is the top-level class that holds all the data pertinent to a fuel-management run. This 

class stores the power level of the reactor used for calculating reaction rates, the power fraction at each 

cycle (effectively allowing the user to define a power history), and the times at which fuel management 

operations are to be performed. 

An instance of the Path class contains information on an individual fuel assembly path, i.e. the physical 

path that a fuel assembly takes as it is depleted and moved through the reactor, and specifies which fuel 

element is to be used at the start of a path. Since the fuel elements in the MITR are commonly flipped and 

rotated to even out the burnup, this class also contains attributes which describe if the fuel element is to be 

flipped or rotated at any time during burnup. 

An instance of the Element class defines a single fuel element, the radial and axial mesh that subdivides 

the element into separate depletion nodes, and the materials to be used for each depletion node. The 

number of plates in the Element can be specified to account for the fact that the HEU and LEU fuel 

elements have a different number of fuel plates. 

The Location class describes a fixed physical location that a Path may occupy at any given time. For the 

purposes of rendering the shape of the fuel location in the GUI, the Location contains information on the 

points of a polygon that defines the shape of the fuel location as well as a translation and rotation. Being 

able to specify a translation and rotation for each fuel location is particularly useful since most reactors 

use fuel assemblies that are the same shape but are translated and rotated in different arrangements. 

Lastly, the Material class describes a physical material and its constituents. The density and atom/weight 

fractions of the material follow MCNP conventions. If the density is specified as a positive real number, it 

is interpreted as the density in atom/barn-cm. If the density is specified as a negative real number, it is 

interpreted as the density in g/cm
3
. To specify atom fractions for each individual nuclide, one would 

specify the fraction as a positive number whereas weight fractions would be specified with negative 

numbers. 

We summarize the relations between the classes as follows. A fuel Element is assigned to beginning of 

each fuel Path. Each depletion node in an Element contains a Material. Additionally, a Location is 

specified for each cycle in the fuel Path. These associations are summarized in Figure 2-1, a Uniform 

Modeling Language (UML) class diagram. 



26 

 

 

Figure 2-1   UML class diagram for the data modeling of a burn-up run 

We note an important distinction between the classes used in the graphical user interface and those used 

for the fuel management wrapper. When the burnup run is performed using the fuel management wrapper, 

every depletion node of each fuel element has a unique material such that even fuel paths that have the 

same fuel element are still defined by distinct materials. Thus, there is no need for a separate Element 

class in the data model for the fuel management wrapper. 

2.2 Graphical User Interface 

2.2.1 Programming Language Choice 

There are many programming languages available that are capable of building graphical user interfaces. 

These range from low-level, e.g. C, to the very-high-level, e.g. MATLAB. To complicate matters further, 

many popular GUI toolkits have bindings for several languages. That being said, each language 

considered should be evaluated based on the project‟s particular objectives. Like any project, this one had 

unique features that shaped the ultimate decision on what language and GUI toolkit to use. The factors 

considered when evaluating each language for its suitability were: 

 Easy learning curve 

 Code conciseness 

 Availability of GUI libraries 

 Code readability 

 Free and open source (FOSS) 
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 Cross-platform portability 

 Activity of development community 

The languages considered for this project were C, C++, Java, Python, Perl, Ruby, and MATLAB. A 

comparison of these languages based on the objectives outlined above is shown in Table 2-1. The color 

coding of the cells signifies how well each languages meets the particular objective, green being the best 

and red being the worst. 

Table 2-1   Comparison of programming languages 

 Learning 

Curve 

Code 

Conciseness 
FOSS GUI Libraries Available 

C    Only APIs 

C++    APIs, Many 

Java    APIs, Many 

Python    GTK, Qt, Tk, wxWidgets 

Perl    GTK, Qt, Tk, wxWidgets 

Ruby    GTK, Qt, Tk, wxWidgets 

MATLAB    Native 

While this particular comparison is rather subjective as it is the author‟s own evaluation, it is fairly 

obvious that the learning curve, code conciseness, and code readability will generally go hand-in-hand. C 

and C++ have the worst learning curve and code conciseness as a result of being low-level languages. 

Python, Perl, and Ruby are all high-level languages that are considered to be easy to learn and have very 

good code conciseness. C and C++ were ruled out as options based on the longer development times that 

are typical of a low-level, compiled, statically-typed language. The main reason to pursue a language such 

as C or C++ would be the vastly better execution speed over Java or any interpreted languages, but this 

was not a limiting constraint for this project. 

Java is simpler than C or C++ due to features like garbage collection. However, it is still a statically-typed 

compiled language which leads to lower productivity. For this project where high productivity and rapid 

development were essential, we opted to rule out Java as an option in favor of a dynamically-typed 

interpreted language such as Python, Perl, or Ruby. MATLAB was considered for a brief time as it is very 

simple, has powerful array-processing capabilities, and has native support for building GUIs, but the fact 

that it is commercial software led us to rule it out too. 

The comparison in Table 2-1 indicates that Python, Perl, and Ruby all have a small learning curve, have 

concise code, are free and open-source, and have bindings for all the major GUI libraries available. While 

Perl is arguably the most concise and fastest scripting language, this comes at the expense of code 

readability and simple data structures. This allowed us to narrow the choice down to Python and Ruby. At 

that point, it became a matter of personal preference as there are many similarities between these two 

languages. Ultimately, Python was chosen because of its large development community, intuitive 

handling of lists/arrays and hashes/dictionaries, and the availability of third-party libraries. 

There are existing instances of others in the nuclear industry using Python for GUI development, e.g. the 

work of Touran [29]. As indicated earlier, all major GUI toolkits have bindings available for Python. 

While Touran had used the wxWidgets library for implementing GUI widgets, we have opted to use the 
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PyQt4 library, which provides Python bindings for Qt4. This particular library was chosen due to its 

cross-platform portability, rich widget set, and stable application programming interface (API). 

2.2.2 Description of Modules 

The GUI source code is divided into nine different modules as follows: 

 interface.pyw: No-console script that displays the GUI 

 gui/mainWindow.py: Main window for the GUI 

 gui/listElementDialog.py: Dialog window listing all elements in the run 

 gui/listMaterialDialog.py: Dialog window listing all materials in the run 

 gui/editElementDialog.py: Dialog window to edit a fuel element 

 gui/editMaterialDialog.py: Dialog window to edit a material 

 gui/editPathDialog.py: Dialog window to edit a fuel path 

 gui/editTimeDialog.py: Dialog window to define the cycle times 

 gui/geometry.py: Defines the problem geometry 

Together, these modules combine for a total of about 1600 lines of source code. 

2.2.3 Installing 

Since Python is an interpreted language, the GUI does not have to be compiled. Any system can run the 

GUI if Python and PyQt4 are installed. On Linux, Python and PyQt4 can be installed through package 

managers, whereas on Windows machines, Python and PyQt4 need to be downloaded and installed. It is 

required to use Python 2.6 or higher due to the use of the new string formatting style standard in Python 

3.0 (Python 2.5 and lower do not support the new string formatting style). Given that a Windows user 

may not wish to install Python and PyQt4 just to run the GUI, a Windows installer was created using the 

py2exe extension [30] and the Nullsoft Scriptable Install System (NSIS) [31] that includes all the 

necessary dynamic-link libraries. Figure 2-2 shows the dialog window when using the NSIS installer. 

 

Figure 2-2   NSIS installer for the GUI 
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2.2.4 Main Window 

The main window, shown in Figure 2-3, for the GUI displays a layout of the core for a given cycle where 

those positions shaded in dark gray are occupied by fuel assemblies and those in light gray by dummy 

assemblies. Each position occupied by a fuel assembly also has a label that shows the name of the fuel 

path. By default, the name of the fuel path will be the name of the fuel location that it originated in and 

the cycle at which it was introduced in parentheses. 

The user can select a fuel location on the core layout and add a fuel path, edit an existing path, or remove 

an existing path. When setting up a run, the first thing that the user should do, although not strictly 

necessary, is define the cycle times, i.e. the times at which fuel is to be introduced, moved, or removed 

from the reactor. Above the core layout, the user can click a button to open a dialog window to edit the 

cycle times, shown in Figure 2-4. Once this is done, the user can select the cycle from the „Select Time:‟ 

drop-down box. 

 

Figure 2-3   Main window for the graphical user interface 
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Figure 2-4   Dialog window editing cycle times 

2.2.5 Creating/Editing Paths 

When a user chooses to add or edit a fuel path from the main window, a separate dialog window appears 

as shown in Figure 2-5. From this dialog, the user simply clicks the fuel locations in the order that the fuel 

is to move from one to another. Additionally, the user can flip or rotate a fuel element at a certain cycle 

via the buttons at the bottom left side of the dialog window. A fuel element that has already been defined 

can be assigned to the fuel path from a drop-down box. Additionally, there is an option labeled „New 

Element…‟ on the drop-down box that will open up a separate dialog window that allows the user to 

define a new fuel element. If the user does not assign a fuel element to the path, the drop-down box will 

be colored red to draw attention. All fuel paths must have fuel elements assigned to them in order for the 

run to be exported to an input file that can be read by the fuel management wrapper. 
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Figure 2-5   Dialog window for specifying fuel locations in a fuel path 

2.2.6 Creating/Editing Fuel Elements 

If the user chooses the „New Element…‟ option on the drop-down box when defining a fuel path, a dialog 

window appears as shown in Figure 2-6. From here, the user can adjust the number of axial and radial 

nodes. Since the fuel assemblies in the MITR have fuel plates, specifying a radial mesh allows multiple 

plates to share a single material that is depleted (grouped plates are displayed with the same color as in 

Figure 2-6). This is ideal in locations where the power gradient is small. The axial mesh subdivides each 

radial mesh node into equal segments. The user can select a particular node using the visual interface and 

the „Current Node‟ drop-down box and then apply a material using the „Current Material‟ drop-down box. 

One option on the „Current Material‟ drop-down box is titled „New material…‟ that allows the user to 

define a new material to use. 

If the user wants to group several plates to share a single depletion node, this is done by dragging a box 

with the mouse that intersects the plates that are to be grouped and then clicking the „Group Radial‟ 

button. Similarly, selecting several plates and clicking the „Ungroup Radial‟ button causes each plate to 

have its own depletion node. 
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Figure 2-6   Dialog window for specifying the radial/axial mesh and assigning materials 

In addition to being able to add a new fuel element directly from the fuel path dialog window, the user 

can also view a list of all the fuel elements defined by selecting the Edit  Elements option on the menu-

bar for the main window of the GUI. This option displays a dialog window as shown in Figure 2-7. From 

this dialog, the user can add, edit and remove fuel elements. Additionally, the user can load an element 

from a previous run with depleted materials by clicking the „Load Element…‟ button.  

 

Figure 2-7   Dialog window displaying all fuel elements in the run 

2.2.7 Creating/Editing Materials 

When a user chooses to add a new material when defining a fuel element, a dialog window appears as 

shown in Figure 2-8. This dialog window allows the user to define a material in terms of its density, 

isotopes, and the atom/weight percentage of each isotope. As mentioned before, the density and 

atom/weight fractions follow the MCNP conventions for specifying material compositions. 
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Figure 2-8   Dialog window for specifying a material composition 

In addition to being able to add a new material directly when defining a fuel element, the user can also 

view a list of all the materials in the run by selecting the Edit  Materials option on the menu-bar for the 

main window of the GUI. This option displays a dialog window as shown in Figure 2-9. From this dialog, 

the user can add, edit and remove materials. Additionally, the user can load materials from an MCNP 

input file by clicking the „Load Material…‟ button. Any materials that are added are listed under „Global 

Materials‟. These are materials that are accessible when defining any fuel element. „Fuel Element 

Materials‟, on the other hand, only appear in a single fuel element when the user chooses to add a material 

from the fuel element dialog window.  

 

Figure 2-9   Dialog window displaying all materials in the run 

2.2.8 Saving/Exporting a Run 

At any time, the user can save the run by selecting the File > Save Run… option from the menu-bar on 

the main window of the GUI. This option saves all the fuel paths, fuel elements, materials, and associated 

run data in a binary file with a .run extension. 
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The user can also export the run to an input file that can in turn be read by the MCODE fuel management 

wrapper. In order to do so, the run must be completely specified, i.e. each fuel path must have a fuel 

element assigned to it, each node of each fuel element must have a material assigned to it, and all the 

cycle times must be defined. The exported file is an ASCII file that is fairly “intuitive” to read. This 

makes it easy for the user to make small changes to the input file, e.g. changing materials or cross-

sections, without having to do so via the graphical user interface. Of course, the GUI may be the preferred 

option for changing run data anyway. 

2.3 Summary 

A graphical user interface was developed to automate the creation of input files to be read by MCODE-

FM, the wrapper code that handles the fuel management operations in MCODE. While it currently is 

specific to the MITR, the object-oriented approach taken should make it fairly simple to extend the 

graphical user interface to be used with other reactor types. Python was chosen as the programming 

language for development thanks to its easy learning curve, code conciseness and readability, large 

development community, intuitive handling of lists/arrays and hashes/dictionaries, and the availability of 

third-party libraries. PyQt4 was chosen as the GUI development extension. 

The GUI requires no installation on machines where adequate versions of Python and PyQt4 are installed. 

On Windows machines, a package is available that allows the user to install the GUI without having 

Python or PyQt4 installed. 

Using the GUI to setup a run is simple and intuitive. The user can setup a run by successively defining the 

fuel paths, which describe where each fuel element moves from cycle to cycle; fuel elements, which 

describe the number of depletion nodes to be used and the materials to be assigned to each node; and the 

materials themselves. Once the run is completely defined, the user can save the run to be opened at a later 

time or export it to an input file that can be read by the fuel management wrapper, to be described in the 

following chapter.    
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3 Fuel Management Wrapper Development 

3.1 Methodology 

There are generally two approaches one can take to perform fuel management operations
1
 when using 

MCODE. The first approach, which was taken in prior work [32], is to swap material numbers in MCNP 

every time a fuel assembly is to be moved. This approach has the advantage that the geometry needn‟t be 

changed in the MCNP input file even when a fuel assembly is being moved from one location to another. 

However, the downside is that a single fuel assembly is difficult to track from cycle-to-cycle. 

Additionally, for a core such as the MIT Reactor (MITR) whereby dummy assemblies are utilized, it is 

not possible for the locations of the dummies to also move from cycle-to-cycle. Introducing new fuel into 

the core after the first cycle adds yet another difficulty. 

The second approach to perform fuel management operations is to change the geometry of the MCNP 

input file for each cycle while keeping the material numbers in each assembly the same. In one sense, this 

is more complicated than the first approach since the input file must actually be changed, but the 

bookkeeping required is simpler since each depletion node in each assembly always has the same material 

number assigned to it. This approach is clearly the more “intuitive” approach and was thus chosen for the 

fuel management wrapper. 

3.2 MCODE Modification 

In order for this process to work properly, it was necessary to make a small change in MCODE. As time 

progresses in an MCODE run, MCNP does not track all the isotopes that ORIGEN does because many 

isotopes are not important as far as neutron absorption rates are concerned and not all ORIGEN isotopes 

have corresponding MCNP cross-section libraries. Normally, at the beginning of an MCODE run, the 

only isotopes present in the problem are completely specified by the MCNP data. For our purposes, at the 

beginning of a new cycle, we want to retain all the ORIGEN isotopes in each material from the previous 

cycle. 

MCODE was modified to be able to distinguish whether a material is “fresh” or whether ORIGEN data is 

already present, i.e. the material has been burned, through a new user input option. A single parameter 

was added to the irradiation material specification card in MCODE that tells it whether or not the material 

has been previously burned. The new irradiation material specification is: 

                                                      
1
 By fuel management operation, we mean the physical movement of a fuel assembly from one in-core location to 

another, the introduction of a fresh fuel assembly, or the removal of a depleted fuel assembly. 
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Figure 3-1   New MCODE irradiation material specification 

By specifying a material as burned, MCODE will know that a PCH file with all the ORIGEN nuclide 

number densities is already present in the temporary directory (tmpdir11, by default) and thus will not 

need to perform the extra depletion step normally required to determine what isotopes to track in MCNP 

and will not assume zero for all the other ORIGEN nuclides. 

3.3 Wrapper Description 

3.3.1 Language Choice 

While the earlier version of the fuel management wrapper was written in Fortran 90, we have opted again 

to use Python to maintain consistency with the graphical user interface, as well as for the reasons 

previously discussed. Python is particularly suited for this task as performing fuel management operations 

entails creating and manipulating text files and moving data to and from files. In addition, the same data 

classes that the GUI uses for storing fuel path, fuel element, and material data can be used for the fuel 

management wrapper as well. 

3.3.2 Description of Modules 

The fuel management wrapper source code is divided into nine different modules as follows: 

 mcodeFM.py: Main script that handles execution of MCODE 

 subs.py: Various subroutines for fuel management wrapper 

 fileIO.py: Subroutines for loading data from MCNP files 

 data/classes.py: Data classes describe in section 2.1 

 data/fuelLocations.py: Definitions of fuel locations for use in MCNP 

 utils/keffsearch.py: Criticality search module 

Format: 

mt-num    vol    ORG-XS-lib    TEMP   IMP    MCNP-XS-opt    ntal   burned 

where mt-num = irradiation material number (defined in the MCNP material block); 

vol = occupied volume (in units of cm
3
); 

ORG-XS-lib = attached ORIGEN one-group cross section library; 

TEMP = temperature (an integer in unit of K); 

IMP = the neutron absorption fraction threshold; 

MCNP-XS-opt = MCNP cross section library option 

  0 = use user-specified MCNP cross section library, 

  1 = use MCNP cross section library as indicated by preproc; 

ntal = MCNP F4 tally number (between 0 and 99); 

burned = fresh or depleted material option 

  0 = fresh material, 

  1 = depleted material (PCH file already present). 
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 utils/power_profile.py: Utility to determine power distribution 

 utils/isotope.py: Profiles the concentration of specific isotopes 

Together, these modules combine for a total of about 1300 lines of source code. Thus, with the graphical 

user interface, the entire code package is contained in less than 3000 lines of source code. 

3.3.3 Code Logic 

The logic behind the fuel management wrapper is rather simple. First, the wrapper reads the input file 

exported from the GUI. This input file has information about what materials are in each fuel element and 

where each fuel element is to move from cycle to cycle. Based on this, it creates an MCODE input file 

with the appropriate geometry and a new directory for the first cycle. The MCODE input file is based on 

the data exported from the GUI as well as a “skeleton” MCNP input file. The skeleton input file is a 

normal MCNP file with all the geometry of the reactor defined except for the fuel elements themselves. 

Figure 3-2 shows the geometry of a skeleton input file for the MITR. 

 

Figure 3-2   “Skeleton” MCNP model of the MITR with no fuel assembly detail 

Since the skeleton input file does not have any fuel element geometry in it, it can be used for HEU and 

LEU cores or transition cores that consist of both HEU and LEU fuel elements. 

When the fuel management wrapper creates an MCODE input file, it fills in the areas left blank in the 

skeleton input file with fuel elements as defined in the GUI. First, it defines surfaces to axially subdivide 

the fuel plates into several depletion nodes as needed. Then, with these surfaces as well as a series of 

surfaces already in the skeleton input file that define the radial boundary of the fuel plates, cells are 

constructed to define the fuel meat, fuel clad, and coolant in each fuel element. It should be noted that 

since the fuel plate surfaces are defined in the skeleton input file rather than being calculated by the fuel 

management wrapper, the wrapper will currently only work with fuel elements that have 15 or 18 plates 

(HEU and LEU, respectively). 
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After the cells for the fuel elements have been written, a cell for each fuel location is written and is filled 

with the universe corresponding to whatever fuel element should occupy that location at the given cycle. 

If a fuel location does not have a fuel element assigned to it, the cell will be filled with the universe for a 

dummy element by default. If the user desires to have an experimental facility in one of the fuel locations, 

this default behavior would have to be overridden for that particular fuel location. 

With the fuel locations and fuel elements defined, the geometry for the cycle is complete. The fuel 

management wrapper will then add data cards to specify temperatures for each of the cell cards that it 

created as well as the material definition for all irradiation materials. Lastly, the fuel management 

wrapper will write tally specification, irradiation material specification, and depletion option cards that 

MCODE reads in at the beginning of a cycle. At that point, the MCODE input file is complete and is 

ready for execution. 

In addition to writing the MCODE input file at each cycle, the fuel management wrapper will also write 

out a file called “data” that contains information on what cells and materials were assigned to each 

depletion node. The data file is useful for creating post-processing scripts that can read output from the 

MCODE run and rewrite it to a format that is more amenable for analysis. For instance, two post-

processing scripts were created for the MITR to simplify analysis. The first, a power profile utility, reads 

the output data and creates a comma-separated values (csv) file with the power produced by each plate. 

The second script is similar to the first; instead of outputting the power in each plate however, it outputs 

the number density of any given nuclide. By checking, for instance, the number density of 
235

U, the user 

can do a quick check to ensure that fuel elements are being moved to the correct fuel locations since the 

density of 
235

U should generally decrease with increasing burnup. 

Once the MCODE input file and “data” file have been written, the wrapper then calls MCODE and waits 

for the run to finish. After it has finished, the wrapper updates the material compositions of each depletion 

node based on the MCODE output. With the new material compositions and fuel path data at hand, a new 

MCODE input file for the next cycle can be created, placed in a new directory, and run. This process is 

repeated until all the cycles have finished. A logical flow chart for the fuel management wrapper is shown 

in Figure 3-3. 
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Figure 3-3   Logical flow chart for the fuel management wrapper 

3.4 Criticality Search 

Due to the MITR having control blades at its periphery, movement of the control blades can have a 

significant effect on the power distribution in the core. When the control blades are close to being fully 

inserted, this causes the power to shift more to the center of the core, causing higher peaking in the A- and 

B-rings. Conversely, when the control blades are fully withdrawn, the power flattens out in the A- and B-
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rings somewhat and the reflector peaks at the edge of the C-ring are exacerbated. Thus, to determine the 

location of the highest peaking in the core as it is being depleted, it is important to model the physical 

movement of the control blades in addition to the fuel movement from cycle to cycle. 

As the core is being depleted, the control blades should always be positioned at a height such that the core 

is critical. Thus, the critical position of the control blades must be determined at each depletion timestep 

before the neutron flux calculation is performed. In most reactors, the control device only moves in one 

dimension. The problem of determining the critical position of a control device is equivalent to 

determining the intersection of the multiplication factor as a function of the control device position and 

unity, i.e. solving the equation: 

 𝑘 𝑧 − 1 = 0  (3.1) 

where 𝑘 𝑧  is the multiplication factor as a function of the control device position, 𝑧. However, the form 

of the function 𝑘(𝑧) is not known a priori and we are forced to attempt a solution by means of a 

numerical algorithm. It is not possible to apply Newton‟s method to iteratively solve this equation since 

Newton‟s method requires evaluating the first derivative of the function 𝑘 𝑧 . However, we can use the 

secant method to iteratively solve for the critical position. The secant method entails evaluating the 

multiplication factor at two different positions, estimating the differential worth based on the evaluated 

multiplication factors, and extrapolating to determine a new estimated critical position. The updated 

differential worth at each iteration is: 

 
 
𝜕𝑘

𝜕𝑧
 
𝑖
≅

𝑘𝑖 − 𝑘𝑖−1

𝑧𝑖 − 𝑧𝑖−1
 (3.2) 

where 𝑘𝑖  is the eigenvalue at the i-th iteration and 𝑧𝑖  is the control device position at the i-th iteration. 

Then, the predicted critical position of the control device based on the calculated differential worth is: 

 
𝑧𝑖+1 = 𝑧𝑖 +   

𝜕𝑘

𝜕𝑧
 
𝑖
 
−1

⋅  1 − 𝑘𝑖  (3.3) 

Some care must be taken when using the secant method to solve Eq. (3.3). Firstly, because the neutron 

flux calculation is being performed using a Monte Carlo simulation, there will be a stochastic uncertainty 

on the calculated eigenvalues. As a result, it becomes important to consider the desired level of precision 

on the calculated eigenvalue, i.e. how many cycles should be run. If the control device is very far from its 

critical position, one only needs a rough estimate of the eigenvalue and thus it would be wasteful to 

calculate the eigenvalue very precisely. To reduce the time spent converging the control device to its 

critical position, an adaptive batching algorithm was implemented based on the control device search in 

MC21 [33]. 

The idea behind the adaptive batching algorithm is that if the distance the control device is to move is less 

than the uncertainty on the predicted critical position, it makes more sense to continue with the current 

iteration and find the eigenvalue to a higher precision. To calculate the uncertainty on the predicted 

position, we first need to know the uncertainty on the differential worth of the control device. By 

propagating the uncertainty on the calculated eigenvalues, the uncertainty on the differential worth is 

found to be: 
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where 𝜎 stands for the standard deviation of each quantity. The uncertainty on the predicted critical 

position is then: 

 
𝜎𝑧,𝑖+1

2 =  1 − 𝑘𝑖 
2 ⋅   

𝜕𝑘
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2 +   
𝜕𝑘

𝜕𝑧
 
𝑖
 
−2

⋅ 𝜎𝑘 ,𝑖
2  (3.5) 

The criterion for whether to move the control device based on the calculated uncertainty on the predicted 

critical position is: 

 𝑐 ⋅ 𝜎𝑧,𝑖+1 <  𝑧𝑖+1 − 𝑧𝑖  (3.6) 

In the MC21 implementation, the 1𝜎 uncertainty on the predicted critical position was used, i.e. 𝑐 = 1 

was used in Eq. (3.6). In our testing, using the 2𝜎 uncertainty resulted in a more stable approach to the 

critical position and was thus implemented in the criticality search. 

If between two successive iterations, the eigenvalue changes very little due to stochastic effects, the 

differential worth will be very small thus causing the predicted critical position from Eq. (3.3) to be very 

unreliable. To overcome this problem, the differential control device worth is set to a user-defined value if 

at any time the uncertainty in the differential worth is more than half the differential worth. A logical flow 

chart of the criticality search algorithm implemented is shown in Figure 3-4. 
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Figure 3-4   Logical flow chart for criticality search on control device 

Recall that MCODE-2.2 is based on a predictor-corrector burnup methodology. First, the beginning-of-

timestep (BOT) reaction rates from a flux calculation are used to predict the end-of-timestep (EOT) 

material compositions. Then, the predicted EOT material compositions are used to calculate EOT reaction 

rates from a flux calculation. A set of corrected EOT material compositions is calculated by re-depleting 

over the timestep using the EOT reaction rates with BOT material compositions. The final EOT materials 

compositions are taken to be the average of the predicted and corrected EOT material compositions. This 

methodology allows for the inclusion of a control device search for criticality whenever the neutron flux 

solution is computed. Although a change in the position of the control device will perturb the flux 

solution, the predictor-corrector approach will average out the difference in the reaction rates. 
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3.5 Summary 

In the fuel management wrapper developed, fuel management operations are performed by changing the 

geometry of the MCNP input file at the beginning of each cycle while keeping the material numbers in 

each assembly the same. This approach was found in practice to be more versatile than simply swapping 

material numbers to achieve the affect of fuel elements moving. Since a separate MCODE run is 

performed for each cycle, MCODE was modified to be able to distinguish whether a material is “fresh” or 

whether ORIGEN data is already present, i.e. the material has been burned, through a new user input 

option. 

The fuel management wrapper reads an input file exported from the GUI. This input file has information 

about what materials are in each fuel element and where each fuel element is to move from cycle to cycle. 

Based on this, it creates an MCODE input file with the appropriate geometry and a new directory for the 

first cycle. The wrapper then calls MCODE and waits for the run to finish. After it has finished, the 

wrapper updates the material compositions of each depletion node based on the MCODE output. With the 

new material compositions and fuel path data at hand, a new MCODE input file for the next cycle can be 

created, placed in a new directory, and run. This process is repeated until all the cycles have finished.  

Due to the MITR having control blades at its periphery, movement of the control blades can have a 

significant effect on the power distribution in the core. Thus, to determine the location of the highest 

peaking in the core as it is being depleted, it is important to model the physical movement of the control 

blades in addition to the fuel movement from cycle to cycle. A numerical algorithm was implemented 

based on a secant method that determines the critical position of a control device. In order to improve the 

speed of convergence, an adaptive batching algorithm was implemented based on the control device 

search in MC21 [33]. 

3.5.1 Input Requirements 

Several input files are required to initiate a run using the MCODE fuel management wrapper. The first 

input file is the data exported using the graphical user interface or created by hand. To create an MCODE 

file, the fuel management wrapper also requires a skeleton MCNP input file as discussed above. The fuel 

management wrapper assumes this file is named “skeleton_input” unless the user specifies otherwise. 

The control device criticality search can be utilized by writing a shell script that MCODE will call when it 

runs a flux calculation. The script should first run the criticality search on the MCODE input file to adjust 

the control blade position to the critical height and subsequently call MCNP to perform the actual flux 

calculation used to determine the reaction rates that are passed to ORIGEN. The control device search 

also requires its own input file that specifies what cells or surfaces compose the control device as well as 

the range of the control device. 

Lastly, if the user wants to use a source file to start each flux calculation in MCNP, a “srctp” from MCNP 

must be supplied as well. Examples of all of these input files are listed in Appendix C. Table 3-1 shows a 

summary of the required and optional input files for a run using the MCODE fuel management wrapper. 
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Table 3-1   Summary of input files for MCODE fuel management wrapper 

File Required Purpose 

mcodeFM_input Yes This file contains run data created in the 

graphical user interface. The data include what 

materials are in each fuel element and where 

each fuel element is to move from cycle to cycle, 

as well as the power of the reactor at each cycle, 

and the length of each cycle. 

skeleton_input Yes This file is a normal MCNP file with all the 

geometry of the reactor defined except for the 

fuel elements themselves. It is used as a template 

to create an MCODE input file. 

control_input No This file is optional and tells the criticality 

search utility what cells/surfaces define the 

control device and the range of the control 

device. 

mcnp.sh No Having MCODE call a script instead of MCNP 

directly allows a criticality search to be 

performed prior to the flux calculation in MCNP. 

srctp No In order to cut down on the number of inactive 

cycles, a source file can be used to converge the 

source distribution quickly. 
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4 Testing and Verification 

4.1 MCODE Modification 

In order to retain all the fission products from cycle to cycle when running the fuel management wrapper, 

MCODE was modified to be able to distinguish whether a material is “fresh” or whether ORIGEN data is 

already present, i.e. the material has been burned. It is instructive to ensure that the changes do not 

fundamentally alter the MCODE result. 

The problem chosen to test the MCODE modification is a simple pin-cell model that is distributed with 

MCODE. Figure 4-1 shows a simple drawing of the pin-cell model. The fuel is 10.34 g/cm
3
 and has an 

enrichment of 4.2 wt% 
235

U. The water is at 2200 psi and 600 °F. The gap is modeled as helium and the 

clad is modeled as natural zirconium. Reflective boundary conditions are applied on the outer sides and 

vacuum boundary conditions are applied on the top and bottom. The ENDF/B-VII.0 nuclear dataset was 

used for cross-section evaluation. 

 

Figure 4-1   Pin-cell test model for MCODE change validation 

This pin-cell model was burned in MCODE for 1350 days for two cases. In the first case, all timesteps 

were run using one MCODE input file. In the second case, an MCODE input file was created for each 

timestep with material compositions and ORIGEN isotope data files taken from the previous timestep. 

Each MCNP run used 5000 neutrons per cycle and 1000 cycles (990 active). The percent difference 

between the multiplication factor and isotope concentrations in the two cases is shown in Figure 4-2. 

  1.318 cm 

Fuel – 0.4096 cm radius 

Clad – 0.4750 cm radius 

Water 

Gap – 0.4178 cm radius 

4.0 cm 



46 

 

 

Figure 4-2   Percent difference between keff and isotope concentrations for MCODE test cases 

While the percent difference between the 
235

U concentrations in the two cases steadily increases with 

time, one must consider two important facts when interpreting this result. Firstly, since the reaction rates 

are determined stochastically, running the same case twice may give different reaction rates. Hence, there 

is an associated uncertainty in the multiplication factor and the isotope concentrations that is not reflected 

in Figure 4-2. This uncertainty is difficult to characterize since the stochastic uncertainties are not 

propagated through the depletion calculation. One must also keep in mind that the 
235

U concentration 

decreases by two orders of magnitude over the course of the run and thus the absolute error in the 

concentration is not increasing even though the relative error appears to increase. This can be confirmed 

by looking at the 
235

U concentration for the two cases as shown in Figure 4-3. 

 

Figure 4-3   
235

U concentration for MCODE test cases 
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4.2 LEU Equilibrium Core 

4.2.1 Description 

With the MCODE changes validated, the next step is to ensure that the fuel management wrapper also 

performs as expected. To test the functionality of the wrapper, a 24-element core with all fresh LEU fuel 

was burned for 640 days with the fuel being moved in the same pattern every 80 days. The material 

composition of the LEU fuel follows the Y-12 specification for LEU used in research reactor fuel. Table 

4-1 lists the weight fractions of the nuclides in the LEU fuel. The ENDF/B-VII.0 evaluated nuclear 

dataset was used for the cross-sections of the uranium isotopes and the ENDF/B-VI dataset was used for 

the natural molybdenum. 

Table 4-1   Material composition of LEU used in equilibrium core run 

Nuclide Weight Fraction 
234

U 0.00234 
235

U 0.17775 
238

U 0.71991 
Nat

Mo 0.10 

All fuel elements start with fresh fuel at the first cycle and follow the paths shown in Figure 4-4 at each 

successive cycle. Three fuel elements in the inner ring (A-1, A-2, and A-3) were removed at each cycle 

and three new fuel elements were placed in the middle ring (B-1, B-4, and B-7). The dummy elements 

were placed in rotationally symmetric positions (B-3, B-6, and B-9) so that after eight cycles, the material 

compositions in the core would be close to their equilibrium values for this particular fuel pattern. A 

criticality search on the control blade height was performed at every timestep using the utility described in 

section 3.4. 

 

Figure 4-4   Path for each fuel element in the LEU equilibrium core run 
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4.2.2 Control Blade Movement 

This particular test case was also run with an earlier version of the fuel management wrapper written in 

Fortran that existed before the development of the GUI. Rather than changing the geometry of the MCNP 

model at each cycle, the methodology used for performing fuel management operations in the Fortran fuel 

management wrapper was to swap material numbers whenever fuel needed to be moved rather than 

changing the geometry. Thus, we can compare the control blade height using both the old and new fuel 

management wrappers. A comparison of the control blade height from this run using the Fortran-based 

wrapper and the new Python-based wrapper is shown in Figure 4-5. 

 

Figure 4-5   Control blade height in LEU equilibrium core run 

There is a slight disagreement between the two wrappers towards the beginning of each cycle due to the 

use of longer timesteps in the run using the Fortran-based wrapper. However, the two wrappers do show 

excellent overall agreement. The behavior of the control blades is just as one would expect. At the 

beginning of each cycle when fresh fuel is introduced, the blades must be lowered to compensate for the 

positive reactivity from the new fuel but are quickly withdrawn over the course of the following three 

days to compensate for the buildup of equilibrium Xenon. The overall trend shows the transition from the 

fresh core at time zero to the near-equilibrium core at the end of the run. 

4.2.3 Nuclide Concentrations 

Another metric that we can use to verify expected physical behavior in this run is the concentration of 

particular nuclides of interest in each fuel element. We would expect that those fuel elements that have 

resided in the core for a longer period of time will have a lower concentration of 
235

U. This is exactly 

what is shown in Figure 4-6 where the relative 
235

U concentration decreases with residence time. One 

other effect that is noticeable in Figure 4-6 is that the outer plates of each fuel element have a higher 

burnup than the inner plates. This can be explained by the fact that the outer plates receive the highest 
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power as shown in Figure 4-7. The numbers displayed on top of the fuel elements indicate how many 

cycles each element has previously resided in the core. 

 

Figure 4-6   Relative 
235

U concentration for LEU equilibrium core 

 

Figure 4-7   Plate power peaking factors for LEU equilibrium core 

Additionally, we can check the buildup of 
239

Pu in the fuel elements. We would expect that those 

elements that have experienced a higher fluence will have a higher buildup of 
239

Pu. The observed 

behavior again matches our expectation. Figure 4-8 shows the density of 
239

Pu in atom/b-cm. It is clear 

from this figure that as a fuel element moves through the core, the 
239

Pu concentration builds up 

proportionally to its fluence. We note that at very high burnup, the concentration of 
239

Pu may actually 

begin to decrease if its destruction rate due to fission exceeds its production rate due to (n,γ) capture in 
238

U. However, for this case, the burnup is not sufficiently high to observe this effect. 
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Figure 4-8   
239

Pu concentration in atom/b-cm for LEU equilibrium core 

Looking at the C-ring fuel elements in Figure 4-8, one can see that the plates closer to the center of the 

core have a higher concentration of 
239

Pu. The spectrum gradually softens going from the center of the 

core to the edge due to the fact that fast neutrons born closer to the edge of the core are more likely to 

leak or be moderated in the D2O reflector and return to the core as thermal neutrons. Thus, the (n,γ) 

absorption rate in 
238

U will decrease towards the edge of the core as shown in Figure 4-9 since a softer 

spectrum will result in less resonance absorption in 
238

U. 

 

Figure 4-9   Relative radiative capture reaction rate in 
238

U for LEU equilibrium core 
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The equilibrium core run took about two days to run with MCNP running in parallel on six 2.2 GHz 

AMD Opteron processors. 

4.3 HEU “Equilibrium” Core 

4.3.1 Description 

While a pure LEU core has not been successfully modeled in REBUS to date, benchmarking done on the 

HEU model has shown good agreement with MCNP and experimental results. It is thus possible to 

compare the fuel management capabilities of REBUS and the MCODE fuel management wrapper by 

testing an HEU model. 

Although there is no set refueling scheme for the MITR-II core (HEU), new fuel is usually placed in the 

B-ring and run for several cycles prior to being moved to the C-ring in order to reduce power peaking at 

the edge of the core.  In modeling a transition from new fuel to a representative “equilibrium” core, the 

early operating history of the reactor was studied beginning with operation of the new HEU core #2 

which contained five solid Al dummies with 22 HEU fuel elements.  The representative refueling scheme 

from this core to an equilibrium core is shown in Table 4-2. 

Table 4-2   Fuel movements for transition from fresh HEU core to equilibrium core 

Refueling Movement Burnup (MWD) 

1 
 Initial five dummy core (core 

configuration #2) 
1000 

2 
 Replace two B-ring dummies with new 

fuel 
667 

3 

 Replace all fuel in B-ring with new fuel.  

 Flip A-ring elements 

 Flip all C-ring elements 

416 

4 

 Replace all fuel in B-ring with new fuel 

 Replace A-ring element with element 

removed in refueling 3 (flipped) 

 Flip all C-ring elements 

625 

4.3.2 Power Peaking 

These fuel movement and burnup parameters were input into both the REBUS model and the MCODE 

fuel management wrapper using the MCNP model and fuel element peaking results were compared with 

one another. It is not possible to compare individual plate power peaking since the fuel elements in the 

REBUS model are homogenized. In order to minimize differences in leakage, the end-of-life peaking 

factors from MCODE and REBUS were obtained by setting the control blades to the same height, in this 

case 21.3 cm (8.4 in). 

The REBUS and MCODE models show remarkable agreement in power peaking results as shown in 

Figure 4-10 [34]. It should be noted that 
135

Xe was allowed to decay in the REBUS model, while the 

MCODE model results are at xenon equilibrium with the blades lowered to the reference position. 

However, the differences in Xenon conditions have little effect on the power distribution since the Xenon 
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concentration at equilibrium is roughly proportional to the flux. In both cases, the xenon reactivity worth 

is about -2.3% k/k. 

 

Figure 4-10   Element power peaking in HEU “equilibrium” core for REBUS and MCODE 

Although the proposed equilibrium core models do not exactly mirror any given actual core 

configuration, these models appear to give an adequate representation of current operating conditions 

from which further evaluations can be made. 

4.4 Summary 

The MCODE fuel management wrapper has been shown to perform reliably based on a number of 

studies. The first step towards validating the new capabilities was to ensure that the small change made to 

MCODE to allow for fuel management operations did not fundamentally alter results given by MCODE. 

This was done by testing a pin-cell model that was distributed with MCODE. This test showed that even 

at high burnup, the results were not appreciably altered due to the change in MCODE. 

With the MCODE change verified, the next step was to ensure that the fuel management wrapper was 

correctly performing fuel management operations. To test the functionality of the wrapper, a 24-element 

core with all fresh LEU fuel was burned for 640 days with the fuel being moved in the same pattern every 

80 days. While the core starts as all fresh fuel, after 640 days, the material compositions should be close 

to their equilibrium values. The result of this run shows that the movement of the control blade with time 

is in agreement with what one would intuitively predict, moving out as the core is being depleted and 

moving in whenever new fuel is added. In addition, the concentration of 
235

U and 
239

Pu in each element, 

shown in Figure 4-6 and Figure 4-8, respectively, also are in agreement with our predictions. Fuel 

elements that have resided in the core for longer times have a lower concentration of 
235

U and a higher 

concentration of 
239

Pu. 
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While a pure LEU core has not been successfully modeled in REBUS to date, benchmarking done on an 

HEU model has shown good agreement with MCNP. It was thus possible to compare the fuel 

management capabilities of REBUS and the MCODE fuel management wrapper by testing an HEU 

model. This was done by running the same “equilibrium” refueling scheme for both REBUS and the 

MCODE fuel management wrapper. The representative refueling scheme included replacing depleted fuel 

with new fuel, shuffling fuel elements, and flipping fuel elements. The end-of-life element power peaking 

factors for the two models showed remarkable agreement as shown in Figure 4-10 despite being evaluated 

at different Xenon conditions. 
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5 Conclusions and Future Work 

5.1 Conclusions 

Until recently, the procedure for performing fuel management calculations for the MITR was based on a 

diffusion theory code developed in the 1970s [17]. With a need to perform detailed depletion-modeling of 

the MITR in support of an anticipated conversion from HEU to LEU fuel, a new fuel management 

wrapper for MCODE was developed herein to enable studies using full-core coupled Monte Carlo 

depletion. In addition to the fuel management wrapper, a graphical user interface was developed to 

automate the creation of input files for the fuel management wrapper. Together, these tools will help to 

simplify the onerous task of performing a detailed fuel management run in MCODE and analyzing the 

results from a run, all in a manner that is less prone to human error. This will enable the studies in support 

of the MITR conversion project to be carried out effectively and will greatly aid the MITR staff in 

performing routine in-core fuel management calculations after the conversion is complete. 

In analyzing the time-dependent neutronic behavior of the MITR, there are at least three effects which are 

important to model for the sake of ensuring that the all applicable safety limits are met. These are: 

 Changing material compositions due to irradiation and spatial rearrangement of the fuel; 

 Movement of the control blades to make up for lost reactivity due to burnup; and 

 Transient behavior. 

The fuel management wrapper developed allows the first effect here, i.e. depletion of materials and fuel 

shuffling, to be modeled explicitly for a structured fuel management pattern or irregular fuel management 

operations. For reasons described in section 3.4, the movement of the control blade can have a vast effect 

on the power distribution in the core and thus a general criticality search algorithm was developed to 

model this effect. By having MCODE call the criticality search at each flux calculation, this ensures that 

the correct reaction rates are used to predict end-of-timestep material compositions. 

Prior experience showed that even with a wrapper code to automate fuel management operations in 

MCODE, setting up the input file was still time-consuming [32]. The graphical user interface developed 

here makes setting up an input file for the fuel management wrapper simple and intuitive. The graphical 

user interface has been tested and shown to work on both Linux and Windows platforms and is expected 

to work on all other platforms that support Python and PyQt. 

With the fuel management wrapper and graphical user interface developed, several tests were performed 

to ensure that the specified irradiation materials were being depleted correctly, that the desired fuel 

management operations were being modeled correctly, and that the control blade movement made sense 

physically. Modeling of an LEU equilibrium core showed that the fuel management wrapper performed 

reliably and, moreover, that it was possible to do detailed depletion studies using a Monte Carlo code 

without the run time being too limiting. A typical refueling scheme for an HEU core was modeled using 
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both the fuel management wrapper for MCODE as well as the REBUS-PC diffusion theory code. The 

results showed that power peaking results were consistent between the two codes. 

5.2 Future Work 

5.2.1 Code and Algorithmic Improvements 

While many different codes exists that couple MCNP to ORIGEN for the purpose of performing 

depletion calculations, MCODE is, in the author‟s own biased opinion, one of the most versatile and easy-

to-use. Nevertheless, there are a number of improvements that could be made to MCODE to improve the 

accuracy of the results as well as the execution speed. One planned improvement to MCODE is updating 

ORIGEN from version 2.2 to ORIGEN-S, the latest version included in the SCALE package [35]. 

ORIGEN-S has free-form input processing and is able to utilize fluxes and cross-sections in any multi-

group energy structure. 

One downside of coupled Monte Carlo depletion systems as currently implemented is that as the number 

of nuclides builds up through the depletion, the computational expense becomes more prohibitive due to 

the increased number of reaction rate tallies necessary. Recent work has shown that tallying a very fine-

group flux and then using this flux to collapse the cross-sections into one-group cross sections rather than 

tallying the reaction rate in each nuclide can vastly improve the execution time [36]. While the prior work 

has used multi-group cross-sections to collapse the fine-group flux, studies will be performed at MIT to 

determine whether this method is feasible to implement using continuous-energy cross-sections. 

There are also opportunities to improve the coupling between MCNP and a depletion module. Rather than 

using a predictor-corrector method to predict the change in material compositions over a timestep, some 

have suggested that one should assume that the reaction rates vary linearly over the timestep. Such a 

change would require modification to the depletion solution algorithm itself, as has been done with the 

MC21 Monte Carlo code [37]. 

One area which may offer promise for improved execution time is development of a better criticality 

search algorithm. The secant method described in section 3.4 entails performing several flux calculations 

in MCNP at different control blade heights before the actual flux calculation to determine the reaction 

rates is even performed. This can in many cases increase the run time by a factor of between two and five. 

Any improvement which would make the criticality search algorithm faster would be a worthwhile 

endeavor. 

5.2.2 Graphical User Interface Improvements 

Although the graphical user interface and the fuel management wrapper as currently written have a 

number of features and subroutines that are specific to the MITR, the long-term vision of this project is to 

have an interface that requires little code modification in order to be used for a variety of different reactor 

designs. This will require having a standardized reactor template format that the GUI would be able to 

load in. The most substantive change would be to make the dialog window for specifying fuel assembly 

parameters, shown in Figure 2-6, customized to the particular assembly design.  
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One simple improvement that may be useful for certain purposes would be to implement the ability to run 

a calculation wherein each cycle ends when the control device hits a specified stop point. Additional 

planned improvements to the GUI and fuel management wrapper include the ability to allow fission 

products in the fuel to decay between cycles (since refueling will take several days) and adding visual 

aids for indicating when fuel elements are flipped or rotated in the GUI. 

5.2.3 Post-Processing Utilities 

The graphical user interface and fuel management wrapper automate the front-end of a fuel management 

calculation for the MITR. It is also desirable to have automation on the back-end of a calculation when 

one needs to analyze the data from a run previously performed. Several utilities have already been 

developed for this purpose. 

One such utility is a tool which can plot power distributions. The power distribution utility first tallies the 

fission reaction rate in each fuel plate and creates a comma-separated value (csv) file listing all the 

reaction rates where each column corresponds to a single fuel element. Then, a MATLAB script reads in 

the csv file and creates a plot with each fuel plate colored according to its fission reaction rate and 

displayed in its respective position. Several examples of plots produced using this utility are shown in 

Figure 4-7 and Figure 4-9. 

A similar utility developed plots the total concentration of any specified nuclide throughout the core. 

Examples of these plots are shown in Figure 4-3 and Figure 4-8. However, there is still room for 

improving the ability to quickly perform analysis on the data from a run, e.g. automatically plotting 

control blade heights through a run, producing power distribution plots without the use of MATLAB, etc.  

5.2.4 Optimizing Run Parameters 

While the user is free to choose how coarse or how fine they desire the depletion mesh over a fuel 

element to be, there is a tradeoff between execution speed and modeling accuracy when choosing the 

mesh. To date, no studies have been performed to determine how coarse or how fine the depletion mesh 

needs to be to obtain reasonable results. It is suggested that sensitivity studies be performed to examine 

the effect of the fineness of the mesh on power peaking and other parameters of interest. 

The manner in which the fuel management wrapper chooses timesteps for depletion is also arbitrary. 

Smaller timesteps are used at the beginning of a cycle when Xenon concentrations are rapidly changing to 

approach equilibrium, and longer timesteps are used once equilibrium Xenon has been achieved. 

However, because the size of the timesteps is arbitrary, it may be possible to utilize longer timesteps 

without adverse consequences on the accuracy of the results. Again, sensitivity studies would shed light 

on the appropriate length of timesteps. 

5.2.5 Validation against Experimental Data 

While the testing and comparisons outlined in chapter 4 are a good first step towards validating solutions 

obtained from the MCODE fuel management wrapper, further studies should be performed to verify to 

accuracy solutions for a wide variety of problems. While comparisons between REBUS-PC and MCODE 

have been made for HEU cores, the same has not been done yet for LEU cores due to aforementioned 
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difficulties in obtaining suitable cross-sections for LEU cores. Once REBUS-PC is able to model LEU 

cores correctly, comparisons should be made between MCODE and REBUS-PC solutions. 

To date, there have been very few comparisons against experimental data for any of the neutronic models. 

The conversion of the fuel from HEU to LEU will provide opportunities to validate code predictions to 

experimentally measured data. Plans are underway to make flux and reactivity measurements when LEU 

fuel is introduced. These measurements can then be compared to values computed using the MCODE fuel 

management wrapper or REBUS-PC. Additionally, if the MCODE fuel management wrapper is to be 

used for routine in-core fuel management calculations, it should be validated against data from previously 

burned cores. 

5.2.6 Fuel Conversion Studies 

Once sensitivity studies have been performed to determine the optimal choice of depletion mesh and 

depletion timesteps and validation studies are complete, the fuel management wrapper and graphical user 

interface will be used in support of the MITR fuel conversion studies. One issue of particular concern is 

that the high density U-Mo LEU fuel that will be used to convert the MITR will have never been resident 

in a reactor other than for basic irradiation and materials testing. As a result, there is a desire to slowly 

introduce LEU fuel elements into the core over the course of several cycles rather than replacing all of the 

HEU fuel at once. All the mixed core configurations will need to be analyzed to ensure that all applicable 

safety limits are met during the transition from all HEU to all LEU. It may be necessary to perform 

optimization studies to ensure that these limits and others are met. 
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Appendix A: Fuel Management Wrapper Source Code 

A.1 mcodeFM.py 

#!/usr/bin/env python 

 

from __future__ import division 

 

import sys 

import os 

import subprocess 

import subs 

from math import * 

 

 

__version__ = "0.8.4" 

 

#------------------------------------------------------------------------------- 

#----------------------------------- MAIN() ------------------------------------ 

#------------------------------------------------------------------------------- 

 

def main(): 

 

    # Parse command line options 

    from optparse import OptionParser 

    usage = "usage: %prog [options] file" 

    version = "MCODE-FM v{0}".format(__version__) 

    p = OptionParser(usage=usage, version=version) 

    p.add_option("-i", "--input-only", action="store_true", dest="inputOnly", 

                 help="only create input files at each cycle", 

                 default=False) 

    (options, args) = p.parse_args() 

    if not args or len(args) != 1: 

        p.print_help() 

        return 

    filename = args[0] 

 

    # get current working directory 

    cwd = os.getcwd() 

     

    # read in input from .run file 

    (surfs, cells, mats) = subs.findSurfsCellsMats('skeleton') 

    (data, paths) = subs.loadRun(filename, mats) 

    (fixedTimes, nCycles, time, power) = data 

 

    # Create universe for each path 

    # -Note- This could be improved by automatically reading what universes are 

    # present in the skeleton input file. 

    universes = set([0,2,35,36,45,46,54,55,56,62]) 

    for path in paths: 

        path.universe = subs.grabCard(universes) 

 

    # loop over cycles: 

    cycle = 0 

    while cycle < len(time): 

        directory = "{0}/cycle_{1}/".format(cwd,cycle+1) 

        if not os.path.isdir(directory): 

            os.mkdir(directory) 

        os.chdir(directory) 

        if cycle > 0: 

            if not options.inputOnly: 

                subs.updateMaterials(cwd, cycle, paths) 

            days = time[cycle] - time[cycle-1] 

        else: 
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            days = time[cycle] 

        subs.makeInput(cwd, cycle, days, power[cycle], paths, surfs, cells) 

        if not options.inputOnly: 

            subprocess.call(["preproc input"], shell=True) 

            subprocess.call(["mcode input"], shell=True) 

            subprocess.call(["mcodeout input -fm"], shell=True) 

        os.chdir(os.pardir) 

        cycle += 1 

 

if __name__ == "__main__": 

    main() 

 

A.2 subs.py 

#!/usr/bin/env python 

 

from __future__ import division 

 

import os 

import sys 

import copy 

import subprocess 

from math import * 

from data.classes import * 

import data.fuelLocations as fuel 

 

 

#------------------------------------------------------------------------------- 

#-------------------------------- SUBROUTINES ---------------------------------- 

#------------------------------------------------------------------------------- 

 

def loadRun(file, mats): 

    fh = None 

    paths = [] 

    elements = Container() 

    try: 

        fh = open(file,'r') 

        # Read run data 

        fixedTimes = eval(fh.readline().split()[1]) 

        nCycles = eval(fh.readline().split()[1]) 

        times = [eval(i) for i in fh.readline().split()[1:]] 

        power = [eval(i) for i in fh.readline().split()[1:]] 

        # Start reading remainder of file 

        while True: 

            line = fh.readline() 

            if not line: break 

            words = line.split() 

            if not words: continue 

            # Read path data 

            if words[0] == "path": 

                locations = [word if word.isdigit() else fuel.translate[word] 

                                  for word in words[1:]] 

                uid = fh.readline().split()[1] 

                time = eval(fh.readline().split()[1]) 

                path = Path("", locations, time, uid) 

                for word in fh.readline().split()[1:]: 

                    path.flip.add(eval(word)) 

                for word in fh.readline().split()[1:]: 

                    path.rotate.add(eval(word)) 

                paths.append(path) 

            # Read element data 

            if words[0] == 'element': 

                uid = words[1] 

                plates = eval(fh.readline().split()[1]) 

                axial = eval(fh.readline().split()[1]) 

                radial = [eval(i) for i in fh.readline().split()[1:]] 

                element = Element("", plates, axial, radial, uid) 
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                while True: 

                    position = fh.tell() 

                    words = fh.readline().split() 

                    if len(words) == 0: 

                        break 

                    if words[0] == 'material': 

                        radial = eval(words[1]) 

                        axial = eval(words[2]) 

                        density = words[3] 

                        nuclides = [] 

                        while True: 

                            position = fh.tell() 

                            words = fh.readline().split() 

                            if len(words) == 0: break 

                            if words[0] == 'material': break 

                            for i in range(len(words)//2): 

                                nuclides.append((words[2*i],words[2*i+1])) 

                        fh.seek(position) 

                        element.materials[(radial,axial)] = { 

                            'density': density, 

                            'nuclides': nuclides, 

                            'cells': set()} 

                elements.addItem(element) 

                fh.seek(position) 

    finally: 

        if fh is not None: 

            fh.close() 

    print '{0:15}{1}'.format('Fixed Time: ',fixedTimes) 

    print '{0:15}{1}'.format('Cycles:',nCycles) 

    print '{0:15}{1}'.format('Times:',times) 

    print '{0:15}{1}'.format('Power:',power) 

    print '\n' 

    for path in paths: 

        element = elements.getItem(path.uid) 

        path.plates = element.plates 

        path.axial = element.axial 

        path.radial = element.radial 

        path.materials = copy.deepcopy(element.materials) 

        for node in path.materials: 

            if not path.materials[node].has_key('mat'): 

                path.materials[node]['mat'] = grabCard(mats) 

        del path.element 

        print '{0:15}{1}'.format('Locations:',path.locations) 

        print '{0:15}{1}'.format('Time:',path.time) 

        print '{0:15}{1}'.format('Flip:',path.flip) 

        print '{0:15}{1}'.format('Rotate:',path.rotate) 

        print '{0:15}{1}'.format('# Plates:',path.plates) 

        print '{0:15}{1}'.format('# Axial:',path.axial) 

        print '{0:15}{1}'.format('Radial:',path.radial) 

        print '{0:15}{1}'.format('Materials:',path.materials.keys()) 

        print '\n' 

    data = (fixedTimes, nCycles, times, power) 

    return data, paths 

 

 

def findSurfsCellsMats(filename): 

    paragraph = 1 

    surfaces = set() 

    cells = set() 

    materials = set() 

    for line in open(filename,'r'): 

        line = line.rstrip() 

        if line == '': 

            paragraph += 1 

            continue 

        words = line.split() 

        if words[0].isdigit() and paragraph == 1: 

            cells.add(eval(words[0])) 

        if words[0].isdigit() and paragraph == 2: 

            surfaces.add(eval(words[0])) 

        if words[0][0] == 'm' and words[0][1].isdigit() and paragraph == 3: 
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            materials.add(eval(words[0][1:])) 

    for s in surfaces, cells, materials: 

        s.add(0) 

    for i in range(101,128): 

        cells.add(i) 

    return surfaces, cells, materials 

 

def grabCard(set): 

    a = min(set) 

    b = max(set) 

    while a <= b: 

        if a not in set: 

            break 

        set.remove(a) 

        a += 1 

    set.add(a) 

    return a 

                                 

def makeInput(cwd, cycle, days, power, paths, surfs, cells): 

 

    # Create set to keep track of added cells 

    originalCells = cells.copy() 

    originalSurfs = surfs.copy() 

 

    # Check how many different axial types 

    axialSet = set() 

    for path in paths: 

        axialSet.add(path.axial) 

             

    # Create axial surface information 

    axialSurfaces = {} 

    z = 56.8325/2 

    for n in axialSet: 

        axialSurfaces[n] = [(grabCard(surfs), z - i*56.8325/n) 

                            for i in range(n+1)] 

 

    # Open files for reading/writing 

    input = open("{0}/cycle_{1}/input".format(cwd,cycle+1),"w") 

    skel = open("{0}/skeleton".format(cwd),"r") 

 

    # Copy cells from skeleton 

    line = skel.readline().rstrip() 

    while line != '': 

        input.write(line + "\n") 

        line = skel.readline().rstrip() 

 

    # Determine which paths are present in current cycle 

    currentPaths = set() 

    lookupUniverse = {} 

    for path in paths: 

        for i in range(len(path.locations)): 

            if cycle == path.time + i: 

                lookupUniverse[path.locations[i]] = path.universe 

                currentPaths.add(path) 

    for i in range(101,128): 

        if str(i) not in lookupUniverse: 

            lookupUniverse[str(i)] = 35 

 

    # Write cells for fuel elements 

    writeTitle(input,"FUEL ELEMENTS") 

    importances = [] 

    steel = "6  6.0034-2   " 

    water = "1 -0.9967837  " 

    for path in currentPaths: 

        i = 1 

        addCell(input, path, cells, importances, 'water', 110, 120, i, i+1) 

        i += 1 

        for j in range(path.plates): 

            addCell(input, path, cells, importances, 'steel', 110, 120, i, i+1) 

            i += 1 

            addCell(input, path, cells, importances, 'steel', 110, 112, i, i+1) 
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            addCell(input, path, cells, importances, 'fuel', 112, 118, i, i+1, 

                    j, axialSurfaces) 

            addCell(input, path, cells, importances, 'steel', 118, 120, i, i+1) 

            i += 1 

            addCell(input, path, cells, importances, 'steel', 110, 120, i, i+1) 

            i += 1 

            addCell(input, path, cells, importances, 'water', 110, 120, i, i+1) 

            i += 1 

        addCell(input, path, cells, importances, 'steel', 100, 110, 1, i) 

        addCell(input, path, cells, importances, 'steel', 120, 130, 1, i) 

        cell = grabCard(cells) 

        input.write("{0!s:5} {1:41}     80 u={2}\n".format( 

            cell, "30 9.07359-2", path.universe)) 

        importances.append("{0!s:8}{1:14}1".format(cell,"2.5300e-8")) 

        cell = grabCard(cells) 

        input.write("{0!s:5} {1:41} -85    u={2}\n".format( 

            cell, "40 8.21151-2", path.universe)) 

        importances.append("{0!s:8}{1:14}1".format(cell,"2.5300e-8")) 

        addCell(input, path, cells, importances, 'water', 100, 130, '', 1) 

        addCell(input, path, cells, importances, 'water', 100, 130, i, '') 

        addCell(input, path, cells, importances, 'water', '', 100, '', '') 

        addCell(input, path, cells, importances, 'water', 130, '', '', '') 

        input.write("c\n") 

 

    # Write cells for fuel locations 

    writeTitle(input, "FUEL LOCATIONS") 

    for item in fuel.cards: 

        input.write(item[0] + "\n") 

        input.write("      {0}fill={1} {2}\n".format( 

            item[1], lookupUniverse[item[0][0:3]], item[2])) 

        importances.append("{0!s:8}{1:14}1".format(item[0][0:3],"2.5300e-8")) 

    input.write("\n") 

 

    # Copy surfaces from skeleton 

    line = skel.readline().rstrip() 

    while line != '': 

        input.write(line + "\n") 

        line = skel.readline().rstrip() 

 

    # Write surfaces from axialSurfaces 

    writeTitle(input, "FUEL SEGMENTATION") 

    for item in axialSurfaces.values(): 

        for card in item: 

            input.write("{0!s:8}pz    {1}\n".format(card[0],card[1])) 

    input.write("\n") 

 

    # Copy data from skeleton and include importances 

    line = skel.readline().rstrip() 

    while line != '': 

        input.write(line + "\n") 

        if line[0] == "#": 

            for card in importances: 

                input.write(card + "\n") 

        line = skel.readline().rstrip() 

 

    # If t = 0, write material for each element 

    # else, copy material from previous cycle 

    writeTitle(input, "MATERIALS") 

    for path in currentPaths: 

        for node in path.materials.values(): 

            input.write("m{0!s:5}".format(node['mat'])) 

            for i, nuclide in enumerate(node['nuclides']): 

                if not i%3 and i: 

                    input.write("\n      ") 

                input.write("{0} {1}  ".format(nuclide[0].upper(), nuclide[1])) 

            input.write("\n") 

    input.write("\n") 

 

    # Write tally materials 

    writeTitle(input, "MCODE TALLY MATERIALS") 

    for path in currentPaths: 
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        for key in path.materials: 

            if path.plates == 18: 

                thickness = 0.0508 

            if path.plates == 15: 

                thickness = 0.0762 

            radial = path.radial 

            volume = thickness * 5.223 * 56.8325 / path.axial 

            if key[0] == 1: 

                volume *= path.radial[0] 

            else: 

                volume *= path.radial[key[0]-1] - path.radial[key[0]-2] 

            input.write("{0} {1} pwrue.lib 300 0.999 0 {2} {3}\n".format( 

                path.materials[key]['mat'], volume, path.universe, 

                1 if cycle > path.time else "")) 

 

    # Copy MCNP/ORIGEN options from skeleton 

    writeTitle(input, "MCNP/ORIGEN OPTIONS") 

    line = skel.readline().rstrip() 

    while line != '': 

        input.write(line + "\n") 

        line = skel.readline().rstrip() 

 

    # Write tally cards 

    writeTitle(input, "MCODE TALLIES") 

    for path in currentPaths: 

        for node in path.materials.values(): 

            input.write("tal  {0} ({1})\n".format( 

                node['mat'], " ".join([str(i) for i in node['cells']]))) 

 

    # Write depletion options 

    writeTitle(input, "DEPLETION OPTIONS") 

    input.write("pow  {0:10.4e}\n".format(power)) 

    input.write("nor  2 0\n") 

    input.write("cor  3\n") 

    input.write("mci  -1\n") 

    if days > 10.0: 

        input.write("dep  D  1.0  1\n") 

        input.write("        3.0  1\n") 

        input.write("        10.0  1\n") 

        time = 40.0 

        while time < days: 

            input.write("        {0}  1\n".format(time)) 

            time += 30.0 

    elif days > 3.0 and days <= 10.0: 

        input.write("dep  D  1.0  1\n") 

        input.write("        3.0  1\n") 

    elif days > 1.0 and days <= 3.0: 

        input.write("dep  D  1.0  1\n") 

    input.write("        {0}  1\n".format(days)) 

 

    # Close files 

    input.close() 

    skel.close() 

 

    # Write out material/cell data 

    file = "{0}/cycle_{1}/data".format(cwd, cycle+1) 

    fh = open(file, "w") 

    for path in currentPaths: 

        fh.write("element {0} {1} {2}\n".format( 

            path.locations[cycle-path.time], path.plates, path.axial)) 

        fh.write("{0}\n".format(path.radial)) 

        materials = {} 

        for node in path.materials.keys(): 

            materials[node] = {'mat': path.materials[node]['mat'], 

                               'cells': path.materials[node]['cells']} 

        fh.write("{0}\n".format(materials)) 

    fh.close() 

 

    # Reset cells and surfaces 

    toAdd = originalCells.difference(cells) 

    toRemove = cells.difference(originalCells) 
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    for cell in toRemove: 

        cells.remove(cell) 

    for cell in toAdd: 

        cells.add(cell) 

    toAdd = originalSurfs.difference(surfs) 

    toRemove = surfs.difference(originalSurfs) 

    for surface in toRemove: 

        surfs.remove(surface) 

    for surface in toAdd: 

        surfs.add(surface) 

    for path in currentPaths: 

        for node in path.materials.values(): 

            node['cells'] = set() 

     

                         

def addCell(input, path, cells, imp, type, p1, p2, p3, p4, 

            plate=None, surfs=None): 

    # -Note- This currently only supports 15 or 18 plate elements 

    if path.plates == 18: 

        base = 51000 

    elif path.plates == 15: 

        base = 71000 

    else: 

        pass 

     

    if type == "fuel": 

        for node, num in enumerate(path.radial): 

            if plate < num: 

                radial = node+1 

                break 

        for axial in range(path.axial): 

            cell = grabCard(cells) 

            string = "{0!s:5} {1} {2} {3} {4} {5} {6} -{7} {8} u=-{9}\n".format( 

                cell, path.materials[radial,axial+1]['mat'], 

                path.materials[radial,axial+1]['density'], 

                -(base+p1), base+p2, -(base+p3), base+p4, 

                surfs[path.axial][axial][0], surfs[path.axial][axial+1][0], 

                path.universe) 

            path.materials[radial,axial+1]['cells'].add(cell) 

            imp.append("{0!s:8}{1:14}1".format(cell,"3.2154e-8")) 

            input.write(string) 

        return 

 

    cell = grabCard(cells) 

    if type == "water": 

        density = "1 -0.9967837   " 

        imp.append("{0!s:8}{1:14}1".format(cell,"2.8277e-8")) 

    elif type == "steel": 

        density = "6  6.0034-2    " 

        imp.append("{0!s:8}{1:14}1".format(cell,"3.2154e-8")) 

    p1 = p1 if not p1 else str(-(base + p1)) 

    p2 = p2 if not p2 else str(base + p2) 

    p3 = p3 if not p3 else str(-(base + p3)) 

    p4 = p4 if not p4 else str(base + p4) 

    string = "{0!s:5} {1} {2:6} {3:5} {4:6} {5:5} -80 85 u=".format( 

        cell, density, p1, p2, p3, p4) 

    if p1 and p2 and p3 and p4: 

        string += str(-path.universe) 

    else: 

        string += str(path.universe) 

    input.write(string + "\n") 

 

def writeTitle(input, title): 

    input.write("c\n") 

    input.write("c " + title + "\n") 

    input.write("c\n") 

 

def updateMaterials(cwd, cycle, paths): 

    # Determine which paths need updating 

    currentPaths = set() 

    for path in paths: 
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        for i in range(1,len(path.locations)): 

            if cycle == path.time + i: 

                currentPaths.add(path) 

                 

    # Check which timestep to read from 

    step = 1 

    while True: 

        file = "{0}/cycle_{1}/tmpdir11/mc{2:03d}".format(cwd,cycle,step) 

        if not os.path.exists(file): 

            file = oldfile 

            step = step - 1 

            break 

        oldfile = file 

        step += 1 

 

    # Read nuclide data from mc###i 

    paragraph = 1 

    nuclides = {} 

    fh = open(file + "i","r")   # Add try/finally with fh.close 

    while True: 

        line = fh.readline() 

        if not line: break 

        line = line.rstrip() 

        if line == "": 

            paragraph += 1 

            continue 

        words = line.split() 

        if paragraph==3 and words[0][0]=="m" and words[0][1].isdigit(): 

            mat = eval(words[0][1:]) 

            nuclides[mat] = [] 

            for i in range((len(words)-1)//2): 

                nuclides[mat].append((words[2*i+1],words[2*i+2])) 

            while True: 

                position = fh.tell() 

                line = fh.readline() 

                if len(line) < 5 or line[0:5].rstrip() != "": 

                    fh.seek(position) 

                    break 

                words = line.split() 

                for i in range(len(words)//2): 

                    nuclides[mat].append((words[2*i],words[2*i+1])) 

 

    # Update densities and copy PCH files 

    from_dir = "{0}/cycle_{1}/tmpdir11/".format(cwd,cycle) 

    to_dir = "{0}/cycle_{1}/tmpdir11/".format(cwd,cycle+1) 

    if not os.path.isdir(to_dir): 

        os.mkdir(to_dir) 

    for path in currentPaths: 

        for node in path.materials.values(): 

            node['nuclides'] = nuclides[node['mat']] 

            node['density'] = sum([eval(i[1]) for i in node['nuclides']]) 

            from_file = from_dir + "m{0}_{1:03d}.PCH".format(node['mat'],step) 

            to_file = to_dir + "m{0}_000.PCH".format(node['mat']) 

            subprocess.call(["cp {0} {1}".format(from_file,to_file)], shell=True) 

 

 

A.3 fileIO.py 

#!/usr/bin/env python 

 

from __future__ import division 

 

from math import * 

 

 

#------------------------------------------------------------------------------- 

#-------------------------------- SUBROUTINES ---------------------------------- 

#------------------------------------------------------------------------------- 
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def loadMCNPdata(filename): 

 

    # Set up data structures 

    density = {} 

    materials = {} 

    paragraph = 1 

    continueReading = False 

 

    # Begin reading MCNP file 

    for line in open(filename,"r"): 

         

        # Check for new paragraph and split line into words 

        line = line.rstrip() 

        if line == "": 

            paragraph += 1 

            continue 

        words = line.split() 

         

        # Obtain material densities from cell cards 

        try: 

            if paragraph == 1 and words[0][0].lower() != "c": 

                density[words[1]] = words[2] 

        except IndexError: pass 

         

        # If continuation line, add nuclides 

        if continueReading and line[:5].isspace(): 

            for i in range(0,len(words),2): 

                if words[i][0] == "$": 

                    break 

                materials[num]["nuclides"].append((words[i],words[i+1])) 

            continue 

        continueReading = False 

 

        # Read nuclides on first line of material 

        try: 

            if (paragraph == 3 and words[0][0] == "m" and 

                words[0][1] != "t"): 

                if len(words) % 2 != 1: raise InvalidMaterialError 

                num = words[0][1:] 

                if num in density: 

                    materials[num] = {"density": density[num], "nuclides": []} 

                else: 

                    materials[num] = {"density": "", "nuclides": []} 

                for i in range(1,len(words),2): 

                    if words[i][0] == "$": 

                        break 

                    materials[num]["nuclides"].append((words[i],words[i+1])) 

                continueReading = True 

        except IndexError: pass 

    return materials 

 

 

A.4 data/fuelLocations.py 

#!/usr/bin/env python 

 

cards = [("101   0  -740   750  -650   660   -65   100","*", 

          "(3.54592 0 0 30 120 90 60 30 90 90 90 0)"), 

         ("102   0  -550   560  -750   760   -65   100","*", 

          "(-1.7729619 -3.07086 0 30 -60 90 120 30 90 90 90 0)"), 

         ("103   0  -540   550  -640   650   -65   100","", 

          "(-1.7729619 3.07086 0 0 1 0 -1 0 0 0 0 1)"), 

         ("104   0  -555   565  -665   670   -65   100","", 

          "(9.22409 -3.69316 0 0 1 0 -1 0 0 0 0 1)"), 

         ("105   0  -565   570  -665   670   -65   100","", 

          "(5.67817 -9.83488 0 0 1 0 -1 0 0 0 0 1)"), 

         ("106   0  -565   570  -655   665   -65   100","", 
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          "(-1.413678 -9.83488 0 0 1 0 -1 0 0 0 0 1)"), 

         ("107    0 -635   645  -765   770   -65   100","*", 

          "(-7.810416 -6.14172 0 -30 240 90 60 -30 90 90 90 0)"), 

         ("108    0 -630   635  -765   770   -65   100","*", 

          "(-11.35634 0 0 -30 240 90 60 -30 90 90 90 0)"), 

         ("109   0  -630   635  -755   765   -65   100","*", 

          "(-7.810416 6.14172 0 -30 240 90 60 -30 90 90 90 0)"), 

         ("110   0  -735   745  -530   535   -65   100","*", 

          "(-1.413678 9.83488 0 210 120 90 300 210 90 90 90 0)"), 

         ("111   0  -730   735  -530   535   -65   100","*", 

          "(5.67817 9.83488 0 210 120 90 300 210 90 90 90 0)"), 

         ("112   0  -730   735  -535   545   -65   100","*", 

          "(9.22409 3.69316 0 210 120 90 300 210 90 90 90 0)"), 

         ("113   0  -555   565  -670   675   -65   100","", 

          "(16.315941 -3.69316 0 0 1 0 -1 0 0 0 0 1)"), 

         ("114   0  -565   570  -670   675   -65   100","", 

          "(12.770018 -9.83488 0 0 1 0 -1 0 0 0 0 1)"), 

         ("115   0  -570   575  -670   675   -65   100","", 

          "(9.22409 -15.9766 0 0 1 0 -1 0 0 0 0 1)"), 

         ("116   0  -570   575  -665   670   -65   100","", 

          "(2.132246 -15.9766 0 0 1 0 -1 0 0 0 0 1)"), 

         ("117   0  -570   575  -655   665   -65   100","", 

          "(-4.959601 -15.9766 0 0 1 0 -1 0 0 0 0 1)"), 

         ("118   0  -770   775  -635   645   -65   100","*", 

          "(-11.35634 -12.28344 0 -30 240 90 60 -30 90 90 90 0)"), 

         ("119   0  -770   775  -630   635   -65   100","*", 

          "(-14.902264 -6.14172 0 -30 240 90 60 -30 90 90 90 0)"), 

         ("120   0  -770   775  -625   630   -65   100","*", 

          "(-18.448188 0 0 -30 240 90 60 -30 90 90 90 0)"), 

         ("121   0 -765   770  -625   630   -65   100","*", 

          "(-14.902264 6.14172 0 -30 240 90 60 -30 90 90 90 0)"), 

         ("122   0  -755   765  -625   630   -65   100","*", 

          "(-11.35634 12.28344 0 -30 240 90 60 -30 90 90 90 0)"), 

         ("123    0 -735   745  -525   530   -65   100","*", 

          "(-4.959601 15.9766 0 210 120 90 300 210 90 90 90 0)"), 

         ("124   0  -730   735  -525   530   -65   100","*", 

          "(2.132246 15.9766 0 210 120 90 300 210 90 90 90 0)"), 

         ("125   0  -725   730  -525   530   -65   100","*", 

          "(9.22409 15.9766 0 210 120 90 300 210 90 90 90 0)"), 

         ("126   0  -725   730  -530   535   -65   100","*", 

          "(12.770018 9.83488 0 210 120 90 300 210 90 90 90 0)"), 

         ("127   0  -725   730  -535   545   -65   100","*", 

          "(16.315941 3.69316 0 210 120 90 300 210 90 90 90 0)")] 

 

translate = {"A1": "101", "A2": "102", "A3": "103", "B1": "104", "B2": "105", 

             "B3": "106", "B4": "107", "B5": "108", "B6": "109", "B7": "110", 

             "B8": "111", "B9": "112", "C1": "113", "C2": "114", "C3": "115", 

             "C4": "116", "C5": "117", "C6": "118", "C7": "119", "C8": "120", 

             "C9": "121", "C10": "122", "C11": "123", "C12": "124", 

             "C13": "125", "C14": "126", "C15": "127"} 

 

 

A.5 data/classes.py 

#!/usr/bin/env python 

 

import uuid 

 

class Container(object): 

    def __init__(self): 

        self.items = {} 

 

    def getItem(self, uid): 

        return self.items.get(uid) 

 

    def addItem(self, item): 

        self.items[item.uid] = item 
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    def removeItem(self, item): 

        del self.items[item.uid] 

        del item 

 

    def __iter__(self): 

        for item in self.items.values(): 

            yield item 

 

 

class RunData(object): 

    def __init__(self): 

        self.fixedTimes = True 

        self.nCycles = 1 

        self.time = [] 

        self.power = 5e6 

        self.powerFraction = [] 

 

 

class Path(object): 

    def __init__(self, name, locations=None, time=None, uid=None): 

        if uid: 

            self.uid = uid 

        else: 

            self.uid = str(uuid.uuid4()) 

        self.name = name 

        self.locations = locations if locations else [] 

        self.flip = set() 

        self.rotate = set() 

        self.time = time 

        self.element = None 

 

    def __len__(self): 

        return len(self.locations) 

 

 

class Element(object): 

    def __init__(self, name, plates=18, axial=1, radial=None, uid=None): 

        self.name = name 

        if uid: 

            self.uid = uid 

        else: 

            self.uid = str(uuid.uuid4()) 

        self.plates = plates 

        self.axial = axial 

        self.radial = radial if radial else [] 

        self.materials = {} 

 

    def nodes(self): 

        groups = [range(self.radial[0])] 

        for i in range(len(self.radial)-1): 

            groups.append(range(self.radial[i],self.radial[i+1])) 

        return groups 

 

 

class Material(object): 

    def __init__(self, name, density="1.0", nuclides=None, uid=None): 

        self.name = name 

        if uid: 

            self.uid = uid 

        else: 

            self.uid = str(uuid.uuid4()) 

        self.density = density 

        self.nuclides = nuclides if nuclides else [] 

 

    def __len__(self): 

        return len(self.nuclides) 
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A.5 utils/keffsearch.py 

#!/usr/bin/env python 

 

import sys, os, re 

import shutil 

import textwrap 

import subprocess 

from math import * 

 

#------------------------------------------------------------------------------- 

#---------------------------------- CLASSES ------------------------------------ 

#------------------------------------------------------------------------------- 

 

class search: 

    def __init__(self, value, paragraph, find, change): 

        self.value = str(value) 

        self.paragraph = paragraph 

        self.find = find 

        self.change = int(change) 

 

#------------------------------------------------------------------------------- 

#----------------------------------- MAIN() ------------------------------------ 

#------------------------------------------------------------------------------- 

 

def main(mcnpFile, controlFile, options=None): 

    if options: 

        tolerance = options.tolerance 

        useOriginal = options.useOriginal 

    DW = (0.0027, 0.0) 

 

    # Correct for "inp=" 

    if mcnpFile[0:4] == "inp=": 

        mcnpFile = mcnpFile[4:] 

 

    # Check if mcnp and control device input files exist 

    if not os.path.isfile(mcnpFile): 

        raiseError('%s does not exist.' % (mcnpFile)) 

        return False 

    if not os.path.isfile(controlFile): 

        raiseError('%s does not exist.' % (controlFile)) 

        return False 

 

    # Read control device input file 

    searchList = [] 

    try: 

        for line in open(controlFile,'r'): 

            words = line.strip().split() 

             

            # Material density (single cell) 

            if words[0] == 'cell': 

                searchList.append(search(words[1],1,1,3)) 

                 

            # Surface value 

            elif words[0] == 'surface': 

                searchList.append(search(words[1],2,1,words[2])) 

                 

            # Material density (all cells) 

            elif words[0] == 'material' and len(words) == 2: 

                searchList.append(search(words[1],1,2,3)) 

                allCells = True 

                 

            # Material composition 

            elif words[0] == 'material' and len(words) == 3: 

                searchList.append(search(words[1])) 

                 

            # General search 

            elif words[0] == 'general': 

                searchList.append(search(words[1],words[2],words[3],words[4])) 
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            elif words[0] == 'range': 

                controlMin = words[1] 

                controlMax = words[2] 

    except: 

        value = sys.exc_info()[1] 

        raiseError('Invalid control device specification.') 

        print('\n' + line) 

        return False 

 

    # Check for invalid input 

    paragraphs = set() 

    for item in searchList: 

        paragraphs.add(item.paragraph) 

    if len(paragraphs) > 1: 

        raiseError('Multiple paragraphs specified in control device input \ 

        file. This may be due to specifying a cell and a surface \ 

        simultaneously.') 

        return False 

    positions = set() 

    for item in searchList: 

        position = getPosition(mcnpFile,item) 

        positions.add(position) 

        if not position: 

            raiseError('Control device position not found.') 

            print('\nSearch for %s in position %i of paragraph %i' 

                  % (item.value, item.find, item.paragraph)) 

            print('---> Return position %i' % (item.change)) 

            return False 

    if len(positions) > 1: 

        raiseError('Control device position must be defined by a single number') 

        print('\nPositions found:') 

        for pos in positions: print('  %s' % (str(pos))) 

        return False 

 

    # Move control device only option 

    if options.moveDevice: 

        fh = open('position','r') 

        words = fh.readline().split() 

        fh.close() 

        moveControlDevice(mcnpFile, searchList, words[0]) 

        return 

 

    # Make a copy of the input file if necessary 

    if not useOriginal: 

        filecopy = 'srch' 

        shutil.copy(mcnpFile, filecopy) 

        mcnpFile = filecopy 

 

    # Change number of cycles 

    defaultCycles = 80 

    oldCycles = changeCycles(mcnpFile, defaultCycles) 

 

    # keff search 

    writeOutput('*'*19 + ' Beginning keff Search ' + '*'*19, lines=2) 

    z_new = eval(position) 

    converged = False 

    cycles = defaultCycles 

    i = 1 

    while not converged: 

        moveControlDevice(mcnpFile, searchList, z_new) 

        if cycles == defaultCycles: 

            writeOutput('i=%i   position=%6.3f   ' % (i,z_new), lines=0) 

        runMCNP(mcnpFile, cycles) 

        k_new = getKeff('srchm') 

        # converged if keff within tolerance 

        if (k_new[0] + k_new[1] < 1 + tolerance and 

            k_new[0] - k_new[1] > 1 - tolerance): 

            converged = True 

            writeOutput('cycles=%3i   ' % (cycles) + 

                        'keff = %.4f +/- %.4f' % k_new, lines=2) 

        else: 
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            if i > 1: 

                DW = ((k_new[0] - k_old[0])/(z_new - z_old), 

                      sqrt((k_new[1]**2 + k_old[1]**2)/(z_new - z_old)**4)) 

                # Is DW too small or unc too large 

                if DW[0] < 0.0010 or 2*DW[1] > DW[0]: 

                    DW = (0.0020, 0.0) 

            # Estimate critical position 

            z_crit = (z_new + (1 - k_new[0])/DW[0], 

                      sqrt((k_new[1]/DW[0])**2 + ((k_new[0]-1)*DW[1]/DW[0]**2)**2)) 

            # Adaptive batching algorithm 

            if 2*z_crit[1] < abs(z_crit[0] - z_new): 

                writeOutput('cycles=%3i   ' % (cycles) + 

                            'keff = %.4f +/- %.4f' % k_new) 

                k_old = k_new 

                z_old = z_new 

                z_new = z_crit[0] 

                i += 1 

                cycles = defaultCycles 

            else: 

                cycles = cycles + 30 

    fh = open('position','w') 

    fh.write("%s\n" % (z_new)) 

    fh.close() 

    subprocess.call(['rm srchr srctq'], shell=True, stderr=open('/dev/null','w')) 

 

#------------------------------------------------------------------------------- 

#-------------------------------- SUBROUTINES ---------------------------------- 

#------------------------------------------------------------------------------- 

 

def replaceWord(sentence, index, newWord): 

    p = re.compile(r'(\s*)((\S+\s+){' + str(index-1) + r',' \ 

                   + str(index-1) + r'})(\S+)(.*)') 

    return p.sub(r'\g<1>\g<2>' + newWord + r'\g<5>', sentence) 

 

def getPosition(file, search): 

    paragraph = 1 

    fh = open(file,'r') 

    fh.seek(0) 

    try: 

        for line in fh: 

            line = line.rstrip() 

            if line == '': paragraph += 1 

            words = line.split() 

            try: 

                if (paragraph == search.paragraph and 

                    words[search.find-1] == search.value): 

                    return words[search.change-1] 

            except IndexError: pass 

    finally: 

        if fh is not None: 

            fh.close() 

    return None 

 

# MOVECONTROLDEVICE moves the control device based on searchList to -position- 

#     which is specified as a float. 

 

def moveControlDevice(file, searchList, position): 

    paragraph = 1 

    newfile = [] 

    for line in open(file,'r'): 

        line = line.rstrip() 

        if line == '': paragraph += 1 

        words = line.split() 

        for item in searchList: 

            try: 

                if (paragraph == item.paragraph and 

                    words[item.find-1] == item.value): 

                    line = replaceWord(line, item.change, str(position)) 

            except IndexError: pass 

        newfile.append(line + '\n') 

    f = open(file,'w') 
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    f.writelines(newfile) 

 

def changeCycles(file, cycles): 

    newfile = [] 

    for line in open(file,'r'): 

        words = line.split() 

        try: 

            if words[0] == 'kcode': 

                oldCycles = words[4] 

                line = replaceWord(line, 5, str(cycles)) 

        except IndexError: pass 

        newfile.append(line) 

    f = open(file,'w') 

    f.writelines(newfile) 

    return oldCycles 

 

def runMCNP(file, cycles): 

    if cycles > 80: 

        continueFile = open('inpcont','w') 

        continueFile.writelines(['continue\n','kcode 3J %i\n' % cycles]) 

        continueFile.close() 

        subprocess.call(['rm srcho srchm'], shell=True, 

                        stderr=open('/dev/null','w')) 

        subprocess.call(['mcnp', 'cn', 'i=inpcont', 'o=srcho', 

                         'r=srchr', 'm=srchm', 'tasks 6']) 

        subprocess.call(['rm inpcont srctq'], shell=True, 

                        stderr=open('/dev/null','w')) 

    else: 

        subprocess.call(['rm srch?'], shell=True, stderr=open('/dev/null','w')) 

        subprocess.call(['mcnp', 'i=' + file, 'o=srcho', 'r=srchr', 

                         'm=srchm', 'tasks 6']) 

    # Need a way of checking that the mcnp run completed successfully 

 

def writeOutput(str, lines=1): 

    output = open('output_file','a') 

    str += '\n'*lines 

    output.write(str) 

    output.flush() 

 

# GETKEFF retrieves the final keff and uncertainty from an MCNP run as recorded 

#     in the mctal output file. 

 

def getKeff(mctal): 

    words = open(mctal,'r').readlines()[-2].split() 

    return (eval(words[1]), eval(words[2])) 

 

def raiseError(msg): 

    message = ' '.join(('ERROR: '+msg).split()) 

    for line in textwrap.wrap(message, width=80, subsequent_indent=' '*7): 

        print(line) 

 

#------------------------------------------------------------------------------- 

#---------------------------- COMMAND LINE OPTIONS ----------------------------- 

#------------------------------------------------------------------------------- 

 

if __name__ == '__main__': 

    from optparse import OptionParser 

    usage = 'usage: %prog [options] mcnpfile' 

    p = OptionParser(usage=usage) 

    p.add_option('-c', '--control', action='store', dest='controlFile', 

                 default='control_input', metavar='FILE', 

                 help='read control device definition from FILE') 

    p.add_option('-o', '--original', action='store_true', dest='useOriginal', 

                 default=False, help='use original file instead of a copy') 

    p.add_option('-t', '--tolerence', action='store', dest='tolerance', 

                 default=0.002, metavar='TOL', type='float', 

                 help='specify tolerence, TOL, on keff') 

    p.add_option('-m', '--move-device', action='store_true', dest='moveDevice', 

                 default=False, help='move control device only') 

    (options, args) = p.parse_args() 

    if not args: 
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        p.print_help() 

    else: 

        main(args[0], options.controlFile, options) 
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Appendix B: Graphical User Interface Source Code 

B.1 interface.pyw 

#!/usr/bin/env python 

 

import sys 

from PyQt4.QtCore import * 

from PyQt4.QtGui import * 

from gui.mainWindow import MainWindow 

 

if __name__ == "__main__": 

        app = QApplication(sys.argv) 

        form = MainWindow() 

        form.show() 

        app.exec_() 

 

 

B.2 gui/mainWindow.py 

#!/usr/bin/env python 

 

from __future__ import division 

 

import pickle 

import platform 

import os 

 

from math import * 

from mcodeFM import __version__ 

from data.classes import * 

import fileIO 

 

from PyQt4.QtCore import * 

from PyQt4.QtGui import * 

from gui.listElementDialog import ListElementDialog 

from gui.listMaterialDialog import ListMaterialDialog 

from gui.editPathDialog import EditPathDialog 

from gui.editTimeDialog import EditTimeDialog 

import gui.geometry as geometry 

 

 

class MainWindow(QMainWindow): 

 

    def __init__(self, parent=None): 

        super(MainWindow, self).__init__(parent) 

        self.setWindowTitle("MCODE Fuel Management Interface") 

 

#------------------------------------------------------------------------------- 

#-------------------------- INTERFACE INITIALIZATION --------------------------- 

#------------------------------------------------------------------------------- 

 

        # Create tab widget and associated tabs 

        self.main = QWidget() 

 

        # Create time selection 

        timeLabel = QLabel("Select Time:") 

        self.timeComboBox = QComboBox() 

        self.timeComboBox.setMinimumContentsLength(25) 

        self.timeButton = QPushButton("Edit Times") 

        topLayout = QHBoxLayout() 

        topLayout.addWidget(timeLabel) 
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        topLayout.addStretch() 

        topLayout.addWidget(self.timeComboBox) 

        topLayout.addWidget(self.timeButton) 

 

        # Create summary path view 

        self.scene = QGraphicsScene(self) 

        self.scene.setSceneRect(-250,-250,500,500) 

        self.view = QGraphicsView() 

        self.view.setRenderHint(QPainter.Antialiasing) 

        self.view.setMinimumSize(500,500) 

        self.view.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff) 

        self.view.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff) 

        self.view.setScene(self.scene) 

        self.addPathButton = QPushButton("Add Path") 

        self.editPathButton = QPushButton("Edit Path") 

        self.removePathButton = QPushButton("Remove Path") 

        buttonLayout = QVBoxLayout() 

        buttonLayout.addWidget(self.addPathButton) 

        buttonLayout.addWidget(self.editPathButton) 

        buttonLayout.addWidget(self.removePathButton) 

        buttonLayout.addStretch() 

        viewLayout = QHBoxLayout() 

        viewLayout.addWidget(self.view) 

        viewLayout.addLayout(buttonLayout) 

 

        # Setup main widget 

        line = QFrame(self.main) 

        line.setFrameShape(QFrame.HLine) 

        line.setFrameShadow(QFrame.Sunken) 

        layout = QVBoxLayout() 

        layout.addLayout(topLayout) 

        layout.addWidget(line) 

        layout.addLayout(viewLayout) 

        self.main.setLayout(layout) 

        self.setCentralWidget(self.main) 

 

        # Add menu items 

        self.menubar = QMenuBar(self) 

        self.menuFile = QMenu("&File",self.menubar) 

        self.menuEdit = QMenu("&Edit",self.menubar) 

        self.menuHelp = QMenu("&Help",self.menubar) 

        self.setMenuBar(self.menubar) 

        self.menubar.addActions([self.menuFile.menuAction(), 

                                 self.menuEdit.menuAction(), 

                                 self.menuHelp.menuAction()]) 

         

        self.actionNewMITR = QAction("&New MITR Run",self) 

        self.actionNewRun = QAction("New Run from Template...",self) 

        self.actionNewRun.setDisabled(True) 

        self.actionOpenRun = QAction("&Open Existing Run...",self) 

        self.actionSaveRun = QAction("&Save Run...",self) 

        self.actionExportRun = QAction("&Export Run...",self) 

        self.actionExit = QAction("E&xit",self) 

        self.menuFile.addActions([self.actionNewMITR,self.actionNewRun, 

                                  self.actionOpenRun,self.actionSaveRun, 

                                  self.actionExportRun, self.actionExit]) 

        self.menuFile.insertSeparator(self.actionExit) 

        self.actionElements = QAction("&Elements",self) 

        self.actionMaterials = QAction("&Materials",self) 

        self.menuEdit.addActions([self.actionElements,self.actionMaterials]) 

        self.actionAbout = QAction("&About",self) 

        self.menuHelp.addActions([self.actionAbout]) 

 

        # Menu Signals 

        self.connect(self.actionNewMITR, SIGNAL("triggered()"), self.newMitrRun) 

        self.connect(self.actionOpenRun, SIGNAL("triggered()"), self.openRun) 

        self.connect(self.actionSaveRun, SIGNAL("triggered()"), self.saveRun) 

        self.connect(self.actionExportRun, SIGNAL("triggered()"), self.exportRun) 

        self.connect(self.actionExit, SIGNAL("triggered()"), self.close) 

        self.connect(self.actionElements, SIGNAL("triggered()"), self.editElements) 

        self.connect(self.actionMaterials, SIGNAL("triggered()"), self.editMaterials) 
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        self.connect(self.actionAbout, SIGNAL("triggered()"), self.about) 

 

        # Run Editor Signals 

        self.connect(self.timeButton, SIGNAL("clicked()"), self.editTimes) 

        self.connect(self.scene, SIGNAL("selectionChanged()"), self.refreshView) 

        self.connect(self.timeComboBox, SIGNAL("currentIndexChanged(int)"), 

                     self.drawLocations) 

        self.connect(self.addPathButton, SIGNAL("clicked()"), self.addPath) 

        self.connect(self.editPathButton, SIGNAL("clicked()"), self.editPath) 

        self.connect(self.removePathButton, SIGNAL("clicked()"), self.removePath) 

 

        # Perform initial loading 

        QTimer.singleShot(0, self.initialLoad) 

 

    def initialLoad(self): 

        self.run = RunData() 

        self.paths = Container() 

        self.elements = Container() 

        self.materials = Container() 

         

        self.populateTimes() 

        self.drawLocations() 

        self.refreshView() 

 

 

#------------------------------------------------------------------------------- 

#---------------------------- RUN EDITOR FUNCTIONS  ---------------------------- 

#------------------------------------------------------------------------------- 

 

 

    def editTimes(self): 

        form = EditTimeDialog(self.run) 

        index = self.timeComboBox.currentIndex() 

        if form.exec_(): 

            self.populateTimes() 

            self.timeComboBox.setCurrentIndex(index) 

 

    def populateTimes(self): 

        self.timeComboBox.clear() 

        if self.run.fixedTimes: 

            if self.run.time: 

                for i, time in enumerate(self.run.time): 

                    self.timeComboBox.addItem( 

                        "Cycle {0}: {1:.1f} days - {2:.1f} days".format( 

                        i+1, 0 if i==0 else self.run.time[i-1], time)) 

            else: 

                self.timeComboBox.addItem("Cycle 1: 0.0 days -") 

        else: 

            self.timeComboBox.addItems( 

                ["Cycle "+str(item+1) for item in range(self.run.nCycles)]) 

 

    def drawLocations(self): 

        self.scene.clear() 

        self.locations = [] 

        time = self.timeComboBox.currentIndex() 

        for i, vals in enumerate(geometry.MITR_pairs): 

            location = geometry.Location( 

                geometry.MITR_ids[i], geometry.MITR_points, vals[0], vals[1]) 

            location.setAcceptHoverEvents(True) 

            for path in self.paths: 

                if time - path.time < 0: continue 

                try: 

                    currentLocation = path.locations[time-path.time] 

                    if currentLocation == location.uid: 

                        location.hasPath = True 

                        label = self.scene.addText(path.name) 

                        index = geometry.MITR_ids.index(currentLocation) 

                        pair = geometry.MITR_pairs[index] 

                        label.translate(pair[0][0], pair[0][1]) 

                        label.translate(geometry.MITR_offset[pair[1]][0], 

                                        geometry.MITR_offset[pair[1]][1]) 
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                        label.setZValue(1) 

                except IndexError: pass 

            self.locations.append(location) 

            self.scene.addItem(location) 

            location.refresh() 

 

    def refreshView(self): 

        for location in self.locations: 

            location.refresh() 

        if self.scene.selectedItems(): 

            self.addPathButton.setEnabled(True) 

            self.editPathButton.setEnabled(True) 

            self.removePathButton.setEnabled(True) 

        else: 

            self.addPathButton.setDisabled(True) 

            self.editPathButton.setDisabled(True) 

            self.removePathButton.setDisabled(True) 

             

 

    def addPath(self): 

        location = self.scene.selectedItems()[-1] 

        if location.hasPath: 

            QMessageBox.warning(self, "Can't Add Path", "This location " 

                                "already has a path for this cycle.") 

            return 

        time = self.timeComboBox.currentIndex() 

        path = Path("{0} ({1:0d})".format(location.uid, time), [location.uid], time) 

        form = EditPathDialog(path, self.elements, self.materials, self.run.time) 

        if form.exec_(): 

            self.paths.addItem(path) 

            self.drawLocations() 

 

    def editPath(self): 

        location = self.scene.selectedItems()[-1] 

        time = self.timeComboBox.currentIndex() 

        for path in self.paths: 

            if (time-path.time < 0 or 

                time-path.time > len(path.locations)-1): 

                continue 

            if path.locations[time-path.time] == location.uid: 

                form = EditPathDialog(path, self.elements, 

                                      self.materials, self.run.time) 

                if form.exec_(): 

                    pass 

        self.drawLocations() 

 

    def removePath(self): 

        if (QMessageBox.question(self, "Remove Path", 

                                 "Remove selected path(s)?", 

                                 QMessageBox.Yes|QMessageBox.No) == 

            QMessageBox.No): 

            return 

        for location in self.scene.selectedItems(): 

            time = self.timeComboBox.currentIndex() 

            for path in self.paths: 

                try: 

                    if path.locations[time-path.time] == location.uid: 

                        self.paths.removeItem(path) 

                except IndexError: pass 

        self.drawLocations() 

 

 

#------------------------------------------------------------------------------- 

#----------------------------- MENU FUNCTIONS ---------------------------------- 

#------------------------------------------------------------------------------- 

 

 

    def saveChanges(self): 

        msgBox = QMessageBox(self) 

        msgBox.setWindowTitle("Save Changes?") 

        msgBox.setIcon(QMessageBox.Question) 
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        msgBox.setText("The run has been modified.") 

        msgBox.setInformativeText("Do you want to save your changes?") 

        msgBox.setStandardButtons(QMessageBox.Save | QMessageBox.Discard | 

                                  QMessageBox.Cancel) 

        msgBox.setDefaultButton(QMessageBox.Save) 

        choice = msgBox.exec_() 

        if choice == QMessageBox.Cancel: 

            return False 

        elif choice == QMessageBox.Save: 

            if not self.saveRun(): 

                return False 

        return True 

 

    def newMitrRun(self): 

        if self.saveChanges(): 

            self.initialLoad() 

 

    def openRun(self): 

        filename = QFileDialog.getOpenFileName(self, "Load MCODE Run", "./", 

                                               "MCODE Runs (*.run)") 

        fh = None 

        if not filename.isEmpty(): 

            try: 

                fh = open(filename, "rb") 

                self.run = pickle.load(fh) 

                self.paths = pickle.load(fh) 

                self.elements = pickle.load(fh) 

                self.materials = pickle.load(fh) 

                for element in self.elements: 

                    for node in element.materials: 

                        for material in self.materials: 

                            if element.materials[node].uid == material.uid: 

                                del element.materials[node] 

                                element.materials[node] = material 

            finally: 

                if fh is not None: 

                    fh.close() 

            self.populateTimes() 

            self.drawLocations() 

 

    def saveRun(self): 

        filename = QFileDialog.getSaveFileName(self, "Save MCODE Run", "./", 

                                               "MCODE Runs (*.run)") 

        fh = None 

        try: 

            if filename[-4] != '.': 

                filename += '.run' 

            fh = open(filename, "wb") 

            pickle.dump(self.run, fh) 

            pickle.dump(self.paths, fh) 

            pickle.dump(self.elements, fh) 

            pickle.dump(self.materials, fh) 

            return True 

        except: 

            return False 

        finally: 

            if fh is not None: 

                fh.close() 

 

    def exportRun(self): 

        # Check if all paths have elements assigned 

        for path in self.paths: 

            if not path.element: 

                QMessageBox.critical(self, "Elements not assigned!", "All paths " 

                                     "do not have fuel elements assigned.") 

                return 

 

        # Export run 

        filename = QFileDialog.getSaveFileName( 

            self, "Save MCODE-FM Input", "./", "MCODE-FM Input (*)") 

        fh = None 
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        elementsSaved = set() 

        list2str = lambda list: " ".join([str(i) for i in list]) 

        try: 

            fh = open(filename,"w") 

            # Write run data 

            fh.write("fixed %s\n" % self.run.fixedTimes) 

            fh.write("nCycles %s\n" % self.run.nCycles) 

            fh.write("time " + list2str(self.run.time) + "\n") 

            fh.write("power " + list2str( 

                [self.run.power * i for i in self.run.powerFraction]) + "\n") 

            fh.write("\n") 

            # Write path data 

            for path in self.paths: 

                fh.write("path " + list2str(path.locations) + "\n") 

                fh.write("element %s\n" % path.element.uid) 

                fh.write("time %s\n" % path.time) 

                fh.write("flip " + list2str(path.flip) + "\n") 

                fh.write("rotate " + list2str(path.rotate) + "\n\n") 

                # Write element for path if not written 

                if path.element not in elementsSaved: 

                    fh.write("element %s\n" % path.element.uid) 

                    fh.write("plates %s\n" % path.element.plates) 

                    fh.write("axial %s\n" % path.element.axial) 

                    fh.write("radial " + list2str(path.element.radial) + "\n") 

                    for i in range(len(path.element.radial)): 

                        for j in range(path.element.axial): 

                            mat = path.element.materials[(i+1,j+1)] 

                            fh.write("material %s %s %s\n" % ( 

                                i+1, j+1, mat.density)) 

                            for k in range(len(mat.nuclides)): 

                                fh.write(list2str(mat.nuclides[k])) 

                                fh.write("\n" if (k+1) % 4 == 0 else " ") 

                            if (k+1) % 4 != 0: fh.write("\n") 

                    elementsSaved.add(path.element) 

                    fh.write("\n") 

        finally: 

            if fh is not None: 

                fh.close() 

 

    def editElements(self): 

        form = ListElementDialog(self.elements,self.materials) 

        if form.exec_(): 

            pass 

 

    def editMaterials(self): 

        form = ListMaterialDialog(self.materials,self.elements) 

        if form.exec_(): 

            pass 

 

    def about(self): 

        QMessageBox.about(self, "About MCODE Fuel Management Interface", 

                          """<b>MCODE Fuel Management Interface</b> v %s 

                          <p>Copyright &copy; 2009 Paul K. Romano. 

                          All Rights Reserved. 

                          <p>Python %s -- Qt %s -- PyQt %s on %s""" % 

                          (__version__, platform.python_version(),QT_VERSION_STR, 

                           PYQT_VERSION_STR, platform.system())) 

 

    def close(self): 

        if self.saveChanges(): 

            QMainWindow.close(self) 

 

 

B.3 gui/listElementDialog.py 

#!/usr/bin/env python 

 

import os 
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from PyQt4.QtCore import * 

from PyQt4.QtGui import * 

from gui.editElementDialog import EditElementDialog 

 

from data.classes import * 

import fileIO 

 

 

class ListElementDialog(QDialog): 

 

    def __init__(self, elements, materials, parent=None): 

        super(ListElementDialog, self).__init__(parent) 

 

        self.elements = elements 

        self.materials = materials 

 

        # Create widgets 

        self.elementsTree = QTreeWidget() 

        self.elementsTree.setColumnCount(1) 

        self.elementsTree.setHeaderLabels(["Fuel Elements"]) 

        self.elementsTree.setSelectionMode( 

            QAbstractItemView.ExtendedSelection) 

        self.addElementButton = QPushButton("Add Element") 

        self.editElementButton = QPushButton("Edit Element") 

        self.removeElementButton = QPushButton("Remove Element") 

        self.loadElementButton = QPushButton("Load Element...") 

        okButton = QDialogButtonBox(QDialogButtonBox.Ok) 

 

        # Create layout 

        buttonLayout = QVBoxLayout() 

        buttonLayout.addWidget(self.addElementButton) 

        buttonLayout.addWidget(self.editElementButton) 

        buttonLayout.addWidget(self.removeElementButton) 

        buttonLayout.addWidget(self.loadElementButton) 

        buttonLayout.addStretch() 

        buttonLayout.addWidget(okButton) 

        layout = QHBoxLayout() 

        layout.addWidget(self.elementsTree) 

        layout.addLayout(buttonLayout) 

        self.setLayout(layout) 

 

        # Create Signals 

        self.connect(self.addElementButton, SIGNAL("clicked()"), 

                     self.addElement) 

        self.connect(self.editElementButton, SIGNAL("clicked()"), 

                     self.editElement) 

        self.connect(self.removeElementButton, SIGNAL("clicked()"), 

                     self.removeElement) 

        self.connect(self.loadElementButton, SIGNAL("clicked()"), 

                     self.loadElement) 

        self.connect(okButton, SIGNAL("accepted()"), self.accept) 

 

 

        # Perform initial loading 

        self.setWindowTitle("Elements") 

        self.populateElements() 

 

#------------------------------------------------------------------------------- 

#----------------------- FUEL ELEMENT EDITOR FUNCTIONS ------------------------- 

#------------------------------------------------------------------------------- 

 

 

    def populateElements(self, selectedElement = None): 

        # Sort elements by name 

        sortedNames = [] 

        sortedElements = [] 

        for element in self.elements: 

            sortedNames.append(str(element.name)) 

        sortedNames.sort() 

        for name in sortedNames: 
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            for element in self.elements: 

                if element.name == name: 

                    sortedElements.append(element) 

        # Create item for each element 

        selected = None 

        self.elementsTree.clear() 

        for element in sortedElements: 

            item = QTreeWidgetItem(self.elementsTree, [element.name]) 

            item.setData(0, Qt.UserRole, QVariant(QString(element.uid))) 

            if selectedElement is not None and selectedElement == element.uid: 

                selected = item 

        if selected is not None: 

            selected.setSelected(True) 

            self.elementsTree.setCurrentItem(selected) 

 

    def currentElement(self): 

        item = self.elementsTree.currentItem() 

        if item is None: 

            return None 

        return self.elements.getItem(str(item.data(0,Qt.UserRole).toString())) 

 

    def addElement(self): 

        element = Element("Enter name here", radial=[1,4,14,17,18]) 

        form = EditElementDialog(element, self.materials) 

        if form.exec_(): 

            self.elements.addItem(element) 

            self.populateElements() 

 

    def editElement(self): 

        element = self.currentElement() 

        if element is not None: 

            form = EditElementDialog(element, self.materials) 

            if form.exec_(): 

                self.populateElements(element.uid) 

 

    def removeElement(self): 

        if (QMessageBox.question(self, "Remove Element", 

                                 "Remove selected element(s)?", 

                                 QMessageBox.Yes|QMessageBox.No) == 

            QMessageBox.No): 

            return 

        for item in self.elementsTree.selectedItems(): 

            element = self.elements.getItem( 

                str(item.data(0,Qt.UserRole).toString())) 

            self.elements.removeItem(element) 

        self.populateElements() 

 

    def loadElement(self): 

        filename = str(QFileDialog.getOpenFileName( 

            self, "Load datafile", "./", "Datafiles (data)")) 

        if not filename: 

            return 

 

        # Load element data from 'data' 

        fh = open(filename,"r") 

        line = fh.readline() 

        currentElements = set() 

        while line != '': 

            words = line.split() 

            (location, plates, axial) = (words[1], eval(words[2]), eval(words[3])) 

            radial = eval(fh.readline()) 

            data = eval(fh.readline()) 

            name = "{0}_{1}".format(filename,location) 

            newElement = Element(name,plates,axial,radial) 

            newElement.data = data 

            for node in newElement.data: 

                newElement.materials[node] = [] 

            currentElements.add(newElement) 

            self.elements.addItem(newElement) 

            line = fh.readline() 

        fh.close() 
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        # Determine whether to use beginning or end of cycle data 

        useEnd = QMessageBox.question(self, "Beginning or end?", 

                                      "Use beginning or end of cycle data?", 

                                      "Beginning","End") 

        directory = os.path.dirname(filename) 

        step = 0 

        if useEnd: 

            while True: 

                file = "{0}/tmpdir11/mc{1:03d}".format(directory,step) 

                if not os.path.exists(file): 

                    file = oldfile 

                    step = step - 1 

                    break 

                oldfile = file 

                step += 1 

 

        # Load material data from 'mc###i' 

        file = "{0}/tmpdir11/mc{1:03d}i".format(directory,step) 

        loadMat = fileIO.loadMCNPdata(file) 

        for element in currentElements: 

            for node in element.materials: 

                num = str(element.data[node]['mat']) 

                # -Note- Material name should be more descriptive 

                material = Material("{0}{1:s}".format(id(element),node), 

                                    loadMat[num]['density'], 

                                    loadMat[num]['nuclides']) 

                element.materials[node] = material 

        self.populateElements() 

 

 

B.4 gui/listMaterialDialog.py 

#!/usr/bin/env python 

 

from __future__ import division 

 

import os 

 

from PyQt4.QtCore import * 

from PyQt4.QtGui import * 

from gui.editMaterialDialog import * 

 

from data.classes import * 

import fileIO 

 

 

GLOBAL, ELEMENT = ["Global Materials", "Fuel Element Materials"] 

 

 

class ListMaterialDialog(QDialog): 

 

    def __init__(self, materials, elements, parent=None): 

        super(ListMaterialDialog, self).__init__(parent) 

 

        self.elements = elements 

        self.materials = materials 

         

        # Create widgets 

        self.materialsTree = QTreeWidget() 

        self.materialsTree.setColumnCount(1) 

        self.materialsTree.setHeaderLabels(["Materials"]) 

        self.materialsTree.setSelectionMode( 

            QAbstractItemView.ExtendedSelection) 

        self.materialsTree.setMinimumHeight(400) 

        self.addMatButton = QPushButton("Add Material") 

        self.editMatButton = QPushButton("Edit Material") 

        self.removeMatButton = QPushButton("Remove Material") 
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        self.loadMatButton = QPushButton("Load Material...") 

        self.groupMatButton = QPushButton("Group Materials") 

        okButton = QDialogButtonBox(QDialogButtonBox.Ok) 

 

        # Create layout 

        buttonLayout = QVBoxLayout() 

        buttonLayout.addWidget(self.addMatButton) 

        buttonLayout.addWidget(self.editMatButton) 

        buttonLayout.addWidget(self.removeMatButton) 

        buttonLayout.addWidget(self.loadMatButton) 

        buttonLayout.addStretch() 

        buttonLayout.addWidget(okButton) 

        layout = QHBoxLayout() 

        layout.addWidget(self.materialsTree) 

        layout.addLayout(buttonLayout) 

        self.setLayout(layout) 

 

        # self.actionLoadMDB = QAction("Load Materials Database...",self) 

        # self.actionSaveMDB = QAction("Save Materials Database...",self) 

        # self.menuFile.addActions([self.actionLoadMDB,self.actionSaveMDB]) 

        # self.connect(self.actionLoadMDB, SIGNAL("triggered()"), self.loadMaterialDB) 

        # self.connect(self.actionSaveMDB, SIGNAL("triggered()"), self.saveMaterialDB) 

 

        # Create Signals 

        self.connect(self.addMatButton, SIGNAL("clicked()"), 

                     self.addMaterial) 

        self.connect(self.editMatButton, SIGNAL("clicked()"), 

                     self.editMaterial) 

        self.connect(self.removeMatButton, SIGNAL("clicked()"), 

                     self.removeMaterial) 

        self.connect(self.loadMatButton, SIGNAL("clicked()"), 

                     self.loadMaterial) 

        self.connect(okButton, SIGNAL("accepted()"), self.accept) 

 

        self.setWindowTitle("Materials") 

        self.populateMaterials() 

 

    def populateMaterials(self, selectedMaterial=None): 

        elementSet = set() 

        globalSet = set() 

        for element in self.elements: 

            for material in element.materials.values(): 

                elementSet.add(material) 

        for material in self.materials: 

            globalSet.add(material) 

             

        elementSet = elementSet.symmetric_difference( 

            elementSet.intersection(globalSet)) 

        self.elementDict = {} 

        self.globalDict = {} 

        for material in elementSet: 

            self.elementDict[material.uid] = material 

        for material in globalSet: 

            self.globalDict[material.uid] = material 

 

        # Sort materials by name 

        sortedGlobalNames = [] 

        sortedGlobalMaterials = [] 

        sortedElementNames = [] 

        sortedElementMaterials = [] 

        for material in self.globalDict.values(): 

            sortedGlobalNames.append(str(material.name)) 

        sortedGlobalNames.sort() 

        for name in sortedGlobalNames: 

            for material in self.globalDict.values(): 

                if material.name == name: 

                    sortedGlobalMaterials.append(material) 

        for material in self.elementDict.values(): 

            sortedElementNames.append(str(material.name)) 

        sortedElementNames.sort() 

        for name in sortedElementNames: 
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            for material in self.elementDict.values(): 

                if material.name == name: 

                    sortedElementMaterials.append(material) 

                     

        # Create item for each material 

        selected = None 

        self.materialsTree.clear() 

        parent = QTreeWidgetItem(self.materialsTree, [GLOBAL]) 

        for material in sortedGlobalMaterials: 

            item = QTreeWidgetItem(parent, [material.name]) 

            item.setData(0, Qt.UserRole, QVariant(material.uid)) 

            self.materialsTree.expandItem(parent) 

        parent = QTreeWidgetItem(self.materialsTree, [ELEMENT]) 

        for material in sortedElementMaterials: 

            item = QTreeWidgetItem(parent, [material.name]) 

            item.setData(0, Qt.UserRole, QVariant(material.uid)) 

            self.materialsTree.expandItem(parent) 

 

    def currentMaterial(self): 

        item = self.materialsTree.currentItem() 

        if item is None: 

            return None 

        if item.parent().text(0) == GLOBAL: 

            return self.materials.getItem( 

                str(item.data(0,Qt.UserRole).toString())) 

        if item.parent().text(0) == ELEMENT: 

            return self.elementDict[str(item.data(0,Qt.UserRole).toString())] 

        return None 

 

    def addMaterial(self): 

        newMaterial = Material("Enter name here") 

        form = EditMaterialDialog(newMaterial) 

        if form.exec_(): 

            self.materials.addItem(newMaterial) 

            self.populateMaterials() 

 

    def editMaterial(self): 

        material = self.currentMaterial() 

        if material is not None: 

            form = EditMaterialDialog(material) 

            if form.exec_(): 

                self.populateMaterials(material.uid) 

 

    def removeMaterial(self): 

        if (QMessageBox.question(self, "Remove Material", 

                                 "Remove selected material(s)?", 

                                 QMessageBox.Yes|QMessageBox.No) == 

            QMessageBox.No): 

            return 

        for item in self.materialsTree.selectedItems(): 

            try: 

                material = self.materials.getItem( 

                    str(item.data(0,Qt.UserRole).toString())) 

                self.materials.removeItem(material) 

            except KeyError: pass 

        self.populateMaterials() 

 

    def loadMaterial(self): 

        filename = str(QFileDialog.getOpenFileName( 

            self, "Open MCNP File", "./", "All Files (*)")) 

        file = os.path.basename(filename) 

        loadMat = fileIO.loadMCNPdata(filename) 

        for mat in loadMat: 

            newMaterial = materials.Material(file + " - " + mat, 

                                             loadMat[mat]['density'], 

                                             loadMat[mat]['nuclides']) 

            self.materials.addItem(newMaterial) 

        self.populateMaterials() 

 

    def loadMaterialDB(self): 

        filename = QFileDialog.getOpenFileName(self, "Load Material Database", "./", 
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                                               "Material Databases (*.mmd)") 

        fh = None 

        if not filename.isEmpty(): 

            try: 

                fh = open(filename, "rb") 

                materialDB = cPickle.load(fh) 

                self.materials = materials.MaterialContainer() 

                for material in materialDB: 

                    self.materials.addItem(material) 

            finally: 

                if fh is not None: 

                    fh.close() 

                self.populateMaterials() 

        self.tabWidget.setCurrentWidget(self.materialsEditor) 

 

    def saveMaterialDB(self): 

        filename = QFileDialog.getSaveFileName(self, "Save Material Database", "./", 

                                               "Material Databases (*.mmd)") 

        fh = None 

        try: 

            if filename[-4] != '.': 

                filename += '.mmd' 

            fh = open(filename, "wb") 

            cPickle.dump(self.materials, fh) 

        finally: 

            if fh is not None: 

                fh.close() 

 

 

B.4 gui/editElementDialog.py 

#!/usr/bin/env python 

 

from __future__ import division 

 

from math import * 

from data.classes import * 

 

from PyQt4.QtCore import * 

from PyQt4.QtGui import * 

from gui.editMaterialDialog import * 

import gui.geometry as geometry 

 

 

length = 280 

width = length*cos(pi/6) 

 

class EditElementDialog(QDialog): 

 

    def __init__(self, element, materials, parent=None): 

        super(EditElementDialog, self).__init__(parent) 

 

        self.element = element 

        self.materials = materials 

 

        # Create view 

        self.scene = QGraphicsScene(self) 

        self.scene.setSceneRect(-150,-225,300,450) 

        self.view = QGraphicsView() 

        self.view.setRenderHint(QPainter.Antialiasing) 

        self.view.setMinimumSize(300,450) 

        self.view.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff) 

        self.view.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff) 

        self.view.setDragMode(QGraphicsView.RubberBandDrag) 

        self.view.setRubberBandSelectionMode(Qt.IntersectsItemShape) 

        self.view.setScene(self.scene) 

 

        # Create mesh options 
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        nameLabel = QLabel("Name:") 

        self.nameLineEdit = QLineEdit() 

        self.nameLineEdit.setAlignment(Qt.AlignHCenter) 

        nameLayout = QHBoxLayout() 

        nameLayout.addWidget(nameLabel) 

        nameLayout.addWidget(self.nameLineEdit) 

        platesLabel = QLabel("Number of Plates:") 

        self.platesComboBox = QComboBox() 

        self.platesComboBox.addItems(["15","18"]) 

        axialLabel = QLabel("Axial Nodes:") 

        self.axialSpinBox = QSpinBox() 

        self.axialSpinBox.setMinimum(1) 

        self.axialSpinBox.setValue(self.element.axial) 

        optionsLayout = QHBoxLayout() 

        optionsLayout.addWidget(platesLabel) 

        optionsLayout.addWidget(self.platesComboBox) 

        optionsLayout.addWidget(axialLabel) 

        optionsLayout.addWidget(self.axialSpinBox) 

 

        # Create node/material selection 

        hline = QFrame(self) 

        hline.setFrameShape(QFrame.HLine) 

        hline.setFrameShadow(QFrame.Sunken) 

        nodeLabel = QLabel("Current Node:") 

        self.nodeComboBox = QComboBox() 

        materialLabel = QLabel("Current Material:") 

        self.materialComboBox = QComboBox() 

        self.materialComboBox.setMinimumContentsLength(20) 

        gridLayout = QGridLayout() 

        gridLayout.addWidget(nodeLabel,0,0) 

        gridLayout.addWidget(self.nodeComboBox,0,1) 

        gridLayout.addWidget(materialLabel,1,0) 

        gridLayout.addWidget(self.materialComboBox,1,1) 

        self.groupButton = QPushButton("Group Radial") 

        self.ungroupButton = QPushButton("Ungroup Radial") 

        self.editMaterialButton = QPushButton("Edit Material") 

        self.allMaterialButton = QPushButton("Apply Material to All") 

        buttonLayout = QGridLayout() 

        buttonLayout.addWidget(self.groupButton,0,0) 

        buttonLayout.addWidget(self.ungroupButton,1,0) 

        buttonLayout.addWidget(self.editMaterialButton,0,1) 

        buttonLayout.addWidget(self.allMaterialButton,1,1) 

        buttonBox = QDialogButtonBox(QDialogButtonBox.Ok|QDialogButtonBox.Cancel) 

        sideLayout = QVBoxLayout() 

        sideLayout.addLayout(nameLayout) 

        sideLayout.addLayout(optionsLayout) 

        sideLayout.addWidget(hline) 

        sideLayout.addLayout(gridLayout) 

        sideLayout.addLayout(buttonLayout) 

        sideLayout.addStretch() 

        sideLayout.addWidget(buttonBox) 

         

        # Create overall layout 

        layout = QHBoxLayout() 

        layout.addWidget(self.view) 

        layout.addLayout(sideLayout) 

        self.setLayout(layout) 

 

        # Set connections 

        self.connect(self.platesComboBox, 

                     SIGNAL("currentIndexChanged(int)"), self.platesChanged) 

        self.connect(self.groupButton, SIGNAL("clicked()"), self.groupSelected) 

        self.connect(self.ungroupButton, SIGNAL("clicked()"), self.ungroupSelected) 

        self.connect(self.scene, SIGNAL("selectionChanged()"), self.update) 

        self.connect(self.axialSpinBox, SIGNAL("valueChanged(int)"), self.axialChanged) 

        self.connect(self.nodeComboBox, SIGNAL("activated(int)"), 

                     self.axialChanged) 

        self.connect(self.materialComboBox, SIGNAL("activated(int)"), 

                     self.changeMaterial) 

        self.connect(self.editMaterialButton, SIGNAL("clicked()"), 

                     self.editMaterial) 
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        self.connect(self.allMaterialButton, SIGNAL("clicked()"), 

                     self.applyMaterialToAll) 

        self.connect(buttonBox, SIGNAL("accepted()"), self.accept) 

        self.connect(buttonBox, SIGNAL("rejected()"), self.reject) 

 

        self.setWindowTitle("Edit Fuel Element") 

        self.initialLoad() 

 

    def initialLoad(self): 

        self.axialNode = 1 

       

        index = self.platesComboBox.findText(QString(str(self.element.plates))) 

        self.platesComboBox.setCurrentIndex(index) 

        self.createPlates() 

 

        localSet = set() 

        self.materialComboBox.addItems(["None","New material..."]) 

        for material in self.element.materials.values(): 

            localSet.add(material) 

        for material in self.materials: 

            localSet.add(material) 

        self.localMaterials = Container() 

        for material in localSet: 

            self.localMaterials.addItem(material) 

            self.materialComboBox.addItem( 

                material.name, QVariant(material.uid)) 

 

        self.nameLineEdit.setText(self.element.name) 

         

    def createPlates(self): 

        self.scene.clear() 

        self.plates = {} 

        points = [(0,0), (width,length/2), 

                  (width,length/2-length/self.element.plates), 

                  (0,-length/self.element.plates)] 

        position = length/2*sin(pi/6) 

        for i in range(self.element.plates): 

            plate = geometry.Location(i, points, (-width/2, position), 0) 

            plate.setAcceptHoverEvents(True) 

            self.plates[i] = plate 

            self.scene.addItem(plate) 

            position -= length/self.element.plates 

        self.update() 

 

    def update(self): 

        node = 0 

        colors = QColor.colorNames() 

        for i in range(self.element.plates): 

            if i+1 > self.element.radial[node]: 

                node += 1 

            self.plates[i].defaultColor = QColor(colors[node+16]) 

            self.plates[i].refresh() 

 

        nodes = self.selectedNodes() 

        if nodes: 

            low = nodes[0] 

            high = nodes[-1] 

            if low == high: 

                rangeString = str(low) + "R, " 

            else: 

                rangeString = str(low) + "-" + str(high) + "R, " 

            if self.element.materials.has_key((low,self.axialNode)): 

                index = self.materialComboBox.findText( 

                    self.element.materials[(low,self.axialNode)].name) 

                self.materialComboBox.setCurrentIndex(index) 

            else: 

                self.materialComboBox.setCurrentIndex(0) 

        else: 

            rangeString = "" 

            self.materialComboBox.setCurrentIndex(0) 

        self.nodeComboBox.clear() 
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        self.nodeComboBox.addItems([rangeString + str(i+1) + "A" 

                                    for i in range(self.element.axial)]) 

        self.nodeComboBox.setCurrentIndex(self.axialNode-1) 

 

    def selectedNodes(self): 

        nodes = set() 

        if self.scene.selectedItems(): 

            for plate in self.scene.selectedItems(): 

                for node, group in enumerate(self.element.nodes()): 

                    if plate.uid in group: nodes.add(node) 

        return [i+1 for i in list(nodes)] 

 

    def groupSelected(self): 

        if self.scene.selectedItems(): 

            index = [plate.uid for plate in self.scene.selectedItems()] 

            low = min(index) 

            high = max(index) 

            for node in self.element.radial[::-1]: 

                if low <= node and node-1 <= high: 

                    self.element.radial.remove(node) 

            if low > 0: self.element.radial.append(low) 

            self.element.radial.append(high+1) 

            self.element.radial.sort() 

            self.update() 

 

    def ungroupSelected(self): 

        if self.scene.selectedItems(): 

            for plate in self.scene.selectedItems(): 

                index = plate.uid 

                if index not in self.element.radial and index > 1: 

                    self.element.radial.append(index) 

                if index+1 not in self.element.radial: 

                    self.element.radial.append(index+1) 

            self.element.radial.sort() 

            self.update() 

 

    def platesChanged(self): 

        self.element.plates = self.platesComboBox.currentText().toInt()[0] 

        for node in self.element.radial[::-1]: 

            if node >= self.element.plates: self.element.radial.remove(node) 

        self.element.radial.append(self.element.plates) 

        self.element.radial.sort() 

        self.createPlates() 

 

    def axialChanged(self): 

        self.element.axial = self.axialSpinBox.value() 

        self.axialNode = self.nodeComboBox.currentIndex()+1 

        self.update() 

 

    def changeMaterial(self): 

        index = self.materialComboBox.currentIndex() 

        if index == 0: 

            for node in self.selectedNodes(): 

                self.element.materials.pop((node,self.axialNode),None) 

        else: 

            if index == 1: 

                material = Material("Enter name here") 

                form = EditMaterialDialog(material) 

                if not form.exec_(): 

                    del material 

                    return 

                self.localMaterials.addItem(material) 

                self.materialComboBox.addItem( 

                    material.name, QVariant(material.uid)) 

            else: 

                uid = str(self.materialComboBox.itemData(index).toString()) 

                material = self.localMaterials.getItem(uid) 

            for node in self.selectedNodes(): 

                self.element.materials[(node,self.axialNode)] = material 

        self.update() 
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    def editMaterial(self): 

        index = self.materialComboBox.currentIndex() 

        if index > 1: 

            uid = str(self.materialComboBox.itemData(index).toString()) 

            material = self.localMaterials.getItem(uid) 

            form = EditMaterialDialog(material) 

            if form.exec_(): 

                self.localMaterials.addItem(material) 

                self.materialComboBox.setItemText(index,material.name) 

                self.update() 

 

    def applyMaterialToAll(self): 

        if (QMessageBox.question(self, "Apply Material", 

                                 "Apply Material to all Nodes?", 

                                 QMessageBox.Yes|QMessageBox.No) == 

            QMessageBox.No): 

            return 

        index = self.materialComboBox.currentIndex() 

        if index > 1: 

            uid = str(self.materialComboBox.itemData(index).toString()) 

            material = self.localMaterials.getItem(uid) 

            for axial in range(self.element.axial): 

                for radial in range(len(self.element.radial)): 

                    self.element.materials[(radial+1,axial+1)] = material 

            self.update() 

 

    def accept(self): 

        self.element.axial = self.axialSpinBox.value() 

        self.element.plates = self.platesComboBox.currentText().toInt()[0] 

        self.element.name = self.nameLineEdit.text() 

        QDialog.accept(self) 

 

B.6 gui/editMaterialDialog.py 

#!/usr/bin/env python 

 

from PyQt4.QtCore import * 

from PyQt4.QtGui import * 

from data.classes import * 

 

class EditMaterialDialog(QDialog): 

 

    def __init__(self, material=None, parent=None): 

        super(EditMaterialDialog, self).__init__(parent) 

 

        self.material = material 

        self.nuclideTable = QTableWidget() 

        self.nuclideTable.setColumnCount(2) 

        self.nuclideTable.setHorizontalHeaderLabels( 

            ["Nuclide", "Atom/Weight Fraction"]) 

 

        nameLabel = QLabel("Material Name:") 

        self.nameLineEdit = QLineEdit() 

        self.nameLineEdit.setAlignment(Qt.AlignHCenter) 

        densityLabel = QLabel("MCNP Density:") 

        self.densityLineEdit = QLineEdit() 

        self.densityLineEdit.setAlignment(Qt.AlignHCenter) 

        addNuclideButton = QPushButton("&Add Nuclide") 

        removeNuclideButton = QPushButton("&Remove Nuclide") 

        okButton = QPushButton("&Ok") 

 

        gridLayout = QGridLayout() 

        gridLayout.addWidget(nameLabel,0,0) 

        gridLayout.addWidget(self.nameLineEdit,0,1) 

        gridLayout.addWidget(densityLabel,1,0) 

        gridLayout.addWidget(self.densityLineEdit,1,1) 

        buttonLayout = QHBoxLayout() 

        buttonLayout.addWidget(addNuclideButton) 

        buttonLayout.addWidget(removeNuclideButton) 
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        buttonLayout.addStretch() 

        buttonLayout.addWidget(okButton) 

        layout = QVBoxLayout() 

        layout.addLayout(gridLayout) 

        layout.addWidget(self.nuclideTable) 

        layout.addLayout(buttonLayout) 

        self.setLayout(layout) 

 

        self.connect(addNuclideButton, SIGNAL("clicked()"), self.addNuclide) 

        self.connect(removeNuclideButton, SIGNAL("clicked()"), self.removeNuclide) 

        self.connect(okButton, SIGNAL("clicked()"), self.accept) 

        self.connect(self.nuclideTable, SIGNAL("cellChanged(int,int)"), 

                     self.tableItemChanged) 

 

        self.setWindowTitle("Material Definition") 

        QTimer.singleShot(0, self.initialLoad) 

 

    def initialLoad(self): 

        self.nameLineEdit.setText(self.material.name) 

        self.nameLineEdit.selectAll() 

        self.densityLineEdit.setText(self.material.density) 

        self.populateTable() 

 

    def populateTable(self): 

        self.nuclideTable.clearContents() 

        self.nuclideTable.setRowCount(len(self.material.nuclides)) 

        for row in range(len(self.material.nuclides)): 

            self.nuclideTable.setItem(row, 0, QTableWidgetItem( 

                str(self.material.nuclides[row][0]))) 

            self.nuclideTable.setItem(row, 1, QTableWidgetItem( 

                str(self.material.nuclides[row][1]))) 

        self.nuclideTable.resizeColumnsToContents() 

 

    def tableItemChanged(self, row, column): 

        row = self.nuclideTable.currentRow() 

        column = self.nuclideTable.currentColumn() 

        if column == 0: 

            self.material.nuclides[row] = ( 

                str(self.nuclideTable.currentItem().text()), 

                self.material.nuclides[row][1]) 

        elif column == 1: 

            self.material.nuclides[row] = ( 

                self.material.nuclides[row][0], 

                str(self.nuclideTable.currentItem().text())) 

        self.nuclideTable.resizeColumnsToContents() 

 

 

    def addNuclide(self): 

        self.material.nuclides.append(('','1.0')) 

        self.populateTable() 

        self.nuclideTable.setFocus() 

        self.nuclideTable.setCurrentCell(self.nuclideTable.rowCount()-1,0) 

        self.nuclideTable.editItem(self.nuclideTable.currentItem()) 

 

    def removeNuclide(self): 

        index = self.nuclideTable.currentRow() 

        self.material.nuclides.pop(index) 

        self.populateTable() 

 

    def accept(self): 

        self.material.name = self.nameLineEdit.text() 

        self.material.density = self.densityLineEdit.text() 

        QDialog.accept(self) 

 

B.7 gui/editPathDialog.py 

#!/usr/bin/env python 

 

from __future__ import division 
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from PyQt4.QtCore import * 

from PyQt4.QtGui import * 

import gui.geometry as geometry 

from gui.editElementDialog import EditElementDialog 

 

from data.classes import Element 

 

class EditPathDialog(QDialog): 

 

    def __init__(self, path, elements, materials, time, parent=None): 

        super(EditPathDialog, self).__init__(parent) 

 

        self.path = path 

        self.elements = elements 

        self.materials = materials 

        self.time = time 

 

        # Create side panel 

        nameLabel = QLabel("Path Name:") 

        self.nameLineEdit = QLineEdit() 

        self.nameLineEdit.setAlignment(Qt.AlignHCenter) 

        elementLabel = QLabel("Element:") 

        self.elementComboBox = QComboBox() 

        self.pathList = QListWidget() 

        self.pathList.setSelectionMode(QAbstractItemView.ExtendedSelection) 

        self.upButton = QPushButton("Up") 

        self.removeButton = QPushButton("X") 

        self.downButton = QPushButton("Down") 

        gridLayout = QGridLayout() 

        gridLayout.addWidget(nameLabel,0,0) 

        gridLayout.addWidget(self.nameLineEdit,0,1) 

        gridLayout.addWidget(elementLabel,1,0) 

        gridLayout.addWidget(self.elementComboBox,1,1) 

        buttonLayout = QHBoxLayout() 

        buttonLayout.addWidget(self.upButton) 

        buttonLayout.addWidget(self.removeButton) 

        buttonLayout.addWidget(self.downButton) 

        sideLayout = QVBoxLayout() 

        sideLayout.addLayout(gridLayout) 

        sideLayout.addWidget(self.pathList) 

        sideLayout.addLayout(buttonLayout) 

 

        # Create view and top layout 

        self.scene = QGraphicsScene(self) 

        self.scene.setSceneRect(-250,-250,500,500) 

        self.view = QGraphicsView() 

        self.view.setRenderHint(QPainter.Antialiasing) 

        self.view.setMinimumSize(500,500) 

        self.view.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff) 

        self.view.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff) 

        self.view.setScene(self.scene) 

        topLayout = QHBoxLayout() 

        topLayout.addLayout(sideLayout) 

        topLayout.addWidget(self.view) 

 

        # Create lower buttons and layout 

        self.flipButton = QPushButton("Flip Element") 

        self.rotateButton = QPushButton("Rotate Element") 

        buttonBox = QDialogButtonBox(QDialogButtonBox.Ok|QDialogButtonBox.Cancel) 

        lowerLayout = QHBoxLayout() 

        lowerLayout.addWidget(self.flipButton) 

        lowerLayout.addWidget(self.rotateButton) 

        lowerLayout.addWidget(buttonBox) 

        line = QFrame(self) 

        line.setFrameShape(QFrame.HLine) 

        line.setFrameShadow(QFrame.Sunken) 

        layout = QVBoxLayout() 

        layout.addLayout(topLayout) 

        layout.addWidget(line) 

        layout.addLayout(lowerLayout) 
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        self.setLayout(layout) 

 

        # Set connections 

        self.connect(self.scene, SIGNAL("selectionChanged()"), self.addLocation) 

        self.connect(self.upButton, SIGNAL("clicked()"), self.moveLocationUp) 

        self.connect(self.removeButton, SIGNAL("clicked()"), self.removeLocation) 

        self.connect(self.downButton, SIGNAL("clicked()"), self.moveLocationDown) 

        self.connect(self.elementComboBox, SIGNAL("activated(int)"), 

                     self.changeElement) 

        self.connect(self.flipButton, SIGNAL("clicked()"), self.flipElement) 

        self.connect(self.rotateButton, SIGNAL("clicked()"), self.rotateElement) 

        self.connect(buttonBox, SIGNAL("accepted()"), self.accept) 

        self.connect(buttonBox, SIGNAL("rejected()"), self.reject) 

 

 

        self.setWindowTitle("Edit Path") 

        self.initialLoad() 

 

    def initialLoad(self): 

        self.nameLineEdit.setText(self.path.name) 

        self.nameLineEdit.selectAll() 

        # Sort elements by name 

        sortedNames = [] 

        sortedElements = [] 

        for element in self.elements: 

            sortedNames.append(str(element.name)) 

        sortedNames.sort() 

        for name in sortedNames: 

            for element in self.elements: 

                if element.name == name: 

                    sortedElements.append(element) 

        # Create item for each element 

        self.elementComboBox.addItems(["None","New element..."]) 

        for element in sortedElements: 

            self.elementComboBox.addItem( 

                element.name, QVariant(element.uid)) 

        # Create locations 

        self.locations = {} 

        for i, vals in enumerate(geometry.MITR_pairs): 

            uid = geometry.MITR_ids[i] 

            location = geometry.Location(uid, geometry.MITR_points, vals[0], vals[1]) 

            location.setAcceptHoverEvents(True) 

            self.locations[uid] = location 

            self.scene.addItem(location) 

        self.update() 

 

    def update(self): 

        # Update list of locations in path 

        self.pathList.clear() 

        n = len(self.path) 

        for location in self.locations.values(): 

            location.defaultColor = Qt.lightGray 

        for i, id in enumerate(self.path.locations): 

            self.locations[id].defaultColor = QColor(i/n*255,(n-i)/n*255,0) 

            try: 

                itemString = "{0} days - {1} days ---> {2}".format( 

                    0.0 if i==0 and self.path.time==0 else 

                    self.time[self.path.time+i-1], 

                    self.time[self.path.time+i], id) 

            except IndexError: 

                itemString = "No Time Specified ---> %s" % (id) 

            if i in self.path.flip: 

                if i in self.path.rotate: 

                    itemString += " (Flip,Rotate)" 

                else: 

                    itemString += " (Flip)" 

            else: 

                if i in self.path.rotate: 

                    itemString += " (Rotate)" 

            self.pathList.addItem(itemString) 

        for location in self.locations.values(): 
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            location.refresh() 

             

        # Update list of elements 

        if self.path.element: # Change to finding uid 

            index = self.elementComboBox.findText(self.path.element.name) 

            self.elementComboBox.setCurrentIndex(index) 

            self.elementComboBox.setPalette(QPalette()) 

        else: 

            self.elementComboBox.setCurrentIndex(0) 

            self.elementComboBox.setPalette(QPalette(Qt.red)) 

 

    def addLocation(self): 

        if self.scene.selectedItems(): 

            location = self.scene.selectedItems()[-1] 

            self.path.locations.append(location.uid) 

            self.update() 

 

    def removeLocation(self): 

        toDelete = [] 

        for item in self.pathList.selectedItems(): 

            self.pathList.setCurrentItem(item) 

            toDelete.append(self.pathList.currentRow()) 

        toDelete.sort() 

        toDelete.reverse() 

        for index in toDelete: 

            del self.path.locations[index] 

        self.scene.clearSelection() 

        self.update() 

 

    def moveLocationUp(self): 

        if not self.pathList.selectedItems(): return 

        index = self.pathList.currentRow() 

        if index > 0: 

            self.path.locations = self.path.locations[:index-1] + \ 

                                  [self.path.locations[index]] + \ 

                                  [self.path.locations[index-1]] + \ 

                                  self.path.locations[index+1:] 

            self.update() 

            self.pathList.setItemSelected(self.pathList.item(index-1), True) 

            self.pathList.setCurrentRow(index-1) 

 

    def moveLocationDown(self): 

        if not self.pathList.selectedItems(): return 

        index = self.pathList.currentRow() 

        if index < self.pathList.count()-1: 

            self.path.locations = self.path.locations[:index] + \ 

                                  [self.path.locations[index+1]] + \ 

                                  [self.path.locations[index]] + \ 

                                  self.path.locations[index+2:] 

            self.update() 

            self.pathList.setItemSelected(self.pathList.item(index+1), True) 

            self.pathList.setCurrentRow(index+1) 

 

    def changeElement(self): 

        index = self.elementComboBox.currentIndex() 

        if index == 0: 

            self.path.element = None 

        elif index == 1: 

            element = Element("Enter name here", radial=[1,4,14,17,18]) 

            form = EditElementDialog(element, self.materials) 

            if not form.exec_(): 

                del element 

                return 

            self.elements.addItem(element) 

            self.elementComboBox.addItem( 

                element.name, QVariant(element.uid)) 

            self.path.element = element 

        else: 

            uid = str(self.elementComboBox.itemData(index).toString()) 

            element = self.elements.getItem(uid) 

            self.path.element = element 
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        self.update() 

 

    def flipElement(self): 

        for item in self.pathList.selectedItems(): 

            index = self.pathList.row(item) 

            if index not in self.path.flip: 

                self.path.flip.add(index) 

            else: 

                self.path.flip.remove(index) 

        self.update() 

 

    def rotateElement(self): 

        for item in self.pathList.selectedItems(): 

            index = self.pathList.row(item) 

            if index not in self.path.rotate: 

                self.path.rotate.add(index) 

            else: 

                self.path.rotate.remove(index) 

            currentItem = item 

        self.update() 

 

    def accept(self): 

        self.path.name = self.nameLineEdit.text() 

        QDialog.accept(self) 

 

B.8 gui/editTimeDialog.py 

#!/usr/bin/env python 

 

from __future__ import division 

 

from PyQt4.QtCore import * 

from PyQt4.QtGui import * 

 

class EditTimeDialog(QDialog): 

 

    def __init__(self, runData, parent=None): 

        super(EditTimeDialog, self).__init__(parent) 

 

        self.run = runData 

 

        # Create top widgets 

        powerLabel = QLabel("Power (W):") 

        self.powerLineEdit = QLineEdit() 

        cycleLabel = QLabel("Number of Cycles:") 

        self.cycleSpinBox = QSpinBox() 

        self.cycleSpinBox.setValue(1) 

        self.cycleSpinBox.setMinimum(1) 

        self.fixedRadio = QRadioButton("Change fuel at fixed times") 

        self.controlRadio = QRadioButton("Change fuel based on control device") 

 

        # Create top layout 

        gridLayout = QGridLayout() 

        gridLayout.addWidget(powerLabel,0,0) 

        gridLayout.addWidget(self.powerLineEdit,0,1) 

        gridLayout.addWidget(cycleLabel,1,0) 

        gridLayout.addWidget(self.cycleSpinBox,1,1) 

        radioLayout = QVBoxLayout() 

        radioLayout.addWidget(self.fixedRadio) 

        radioLayout.addWidget(self.controlRadio) 

        topLine = QFrame(self) 

        topLine.setFrameShape(QFrame.VLine) 

        topLine.setFrameShadow(QFrame.Sunken) 

        topLayout = QHBoxLayout() 

        topLayout.addLayout(radioLayout) 

        topLayout.addWidget(topLine) 

        topLayout.addLayout(gridLayout) 

 

        # Create table and buttons 
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        self.timeTable = QTableWidget() 

        self.timeTable.setColumnCount(2) 

        self.timeTable.setHorizontalHeaderLabels(["Time (days)","Power (%)"]) 

        self.addTimeButton = QPushButton("&Add Time") 

        self.removeTimeButton = QPushButton("&Remove Time") 

        self.okButton = QPushButton("&Ok") 

 

        # Create overall layout 

        buttonLayout = QVBoxLayout() 

        buttonLayout.addWidget(self.addTimeButton) 

        buttonLayout.addWidget(self.removeTimeButton) 

        buttonLayout.addStretch() 

        buttonLayout.addWidget(self.okButton) 

        bottomLayout = QHBoxLayout() 

        bottomLayout.addWidget(self.timeTable) 

        bottomLayout.addLayout(buttonLayout) 

        layout = QVBoxLayout() 

        layout.addLayout(topLayout) 

        layout.addLayout(bottomLayout) 

        self.setLayout(layout) 

 

        # Set signals 

        self.connect(self.fixedRadio, SIGNAL("clicked()"), self.toggleTime) 

        self.connect(self.controlRadio, SIGNAL("clicked()"), self.toggleTime) 

        self.connect(self.addTimeButton, SIGNAL("clicked()"), self.addTime) 

        self.connect(self.removeTimeButton, SIGNAL("clicked()"), self.removeTime) 

        self.connect(self.okButton, SIGNAL("clicked()"), self.accept) 

        self.connect(self.timeTable, SIGNAL("cellChanged(int,int)"), self.tableItemChanged) 

 

        self.setWindowTitle("Edit Times") 

        self.initialLoad() 

 

    def toggleTime(self): 

        if self.fixedRadio.isChecked(): 

            self.cycleSpinBox.setDisabled(True) 

            self.timeTable.setDisabled(False) 

            self.run.fixedTimes = True 

        else: 

            self.cycleSpinBox.setDisabled(False) 

            self.timeTable.setDisabled(True) 

            self.run.fixedTimes = False 

 

    def initialLoad(self): 

        self.fixedRadio.setChecked(self.run.fixedTimes) 

        self.controlRadio.setChecked(not self.run.fixedTimes) 

        self.toggleTime() 

        self.cycleSpinBox.setValue(self.run.nCycles) 

 

        self.powerLineEdit.setText(str(self.run.power)) 

        self.populateTable() 

 

    def populateTable(self, selected=None): 

        self.timeTable.clearContents() 

        self.timeTable.setRowCount(len(self.run.time)) 

        for row in range(len(self.run.time)): 

            self.timeTable.setItem( 

                row, 0, QTableWidgetItem(str(self.run.time[row]))) 

            self.timeTable.setItem( 

                row, 1, QTableWidgetItem(str(self.run.powerFraction[row]*100))) 

 

    def tableItemChanged(self, row, column): 

        row = self.timeTable.currentRow() 

        column = self.timeTable.currentColumn() 

        if column == 0: 

            self.run.time[row] = self.timeTable.currentItem().text().toFloat()[0] 

        elif column == 1: 

            self.run.powerFraction[row] = float(self.timeTable.currentItem().text())/100 

         

    def addTime(self, selected=None): 

        self.run.time.append('') 

        self.run.powerFraction.append('') 



96 

 

        self.populateTable() 

 

        self.timeTable.setFocus() 

        self.timeTable.setCurrentCell(self.timeTable.rowCount()-1,0) 

        self.timeTable.editItem(self.timeTable.currentItem()) 

         

    def removeTime(self): 

        index = self.timeTable.currentRow() 

        self.run.time.pop(index) 

        self.run.powerFraction.pop(index) 

        self.populateTable() 

         

    def accept(self): 

        self.run.nCycles = self.cycleSpinBox.value() 

        self.run.power = self.powerLineEdit.text().toFloat()[0] 

        QDialog.accept(self) 

 

B.9 gui/geometry.py 

#!/usr/bin/env python 

 

from __future__ import division 

 

from math import * 

from PyQt4.QtCore import * 

from PyQt4.QtGui import * 

 

class Location(QGraphicsItem): 

 

    def __init__(self, uid, points, translation, rotation): 

        super(Location, self).__init__() 

        self.setFlags(QGraphicsItem.ItemIsSelectable) 

 

        self.uid = uid 

        self.points = points 

        self.translation = translation 

        self.rotation = rotation 

        self.defaultColor = Qt.lightGray 

        self.color = self.defaultColor 

        self.hasPath = False 

         

        self.path = QPainterPath() 

        self.path.addPolygon(QPolygonF([QPointF(x,y) for x,y in points])) 

        self.path.closeSubpath() 

        self.translate(translation[0], translation[1]) 

        self.rotate(rotation) 

 

    def boundingRect(self): 

        return self.path.boundingRect() 

 

    def shape(self): 

        return self.path 

 

    def paint(self, painter, option, widget=None): 

        painter.setPen(Qt.black) 

        painter.setBrush(QBrush(self.color)) 

        painter.drawPath(self.path) 

 

    def refresh(self): 

        try: 

            if self.isSelected(): 

                self.color = Qt.red 

            elif self.hasPath: 

                self.color = Qt.darkGray 

            else: 

                self.color = self.defaultColor 

            self.update() 

        except RuntimeError: pass 
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    def hoverEnterEvent(self, event): 

        self.color = Qt.gray 

        self.update() 

 

    def hoverLeaveEvent(self, event): 

        self.refresh() 

 

class Label(QGraphicsTextItem): 

 

    def __init__(self, text, points, translation, rotation): 

        super(Label, self).__init__() 

         

 

 

length = 75 

width = length*cos(pi/6) 

 

MITR_points = [(0,0), (width,length/2), (width,-length/2), (0,-length)] 

 

MITR_pairs = [((0,0),30), ((0,0),150),((0,0),270), # A-ring 

                      

              ((length,0),90), ((length/2,width),90), ((-length/2,width),90), # B-ring 

              ((-length/2,width),210), ((-length,0),210), ((-length/2,-width),210), 

              ((-length/2,-width), -30), ((length/2,-width), -30), ((length,0), -30), 

               

              ((2*length,0),90), ((3/2*length,width),90), ((length,2*width),90), #C-ring 

              ((0,2*width),90), ((-length,2*width),90), ((-length,2*width),210), 

              ((-3/2*length,width),210), ((-2*length,0),210), ((-3/2*length,-width),210), 

              ((-length,-2*width),210), ((-length,-2*width),-30), ((0,-2*width),-30), 

              ((length,-2*width),-30), ((3/2*length,-width),-30), ((2*length,0),-30)] 

 

MITR_ids = ['A1','A2','A3', # A-ring 

            'B1','B2','B3','B4','B5','B6','B7','B8','B9',# B-ring 

            'C1','C2','C3','C4','C5','C6','C7','C8','C9',# C-ring 

            'C10','C11','C12','C13','C14','C15'] # C-ring 

 

MITR_offset = {30: (0.3*length,0), 150: (-length/2,0.4*width),  

               270: (-length/2,-0.6*width), 90: (0,0.4*width), 

               210: (-0.7*length,0), -30: (0,-0.6*width)}  
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Appendix C: Example Files 

C.1 Example of mcodeFM_input 

fixed True 

nCycles 1 

time 80.0 160.0 240.0 

power 5000000.0 5000000.0 5000000.0 

 

path A1 B1 C1 

element c1152790-1c9a-408d-9ae8-7cd9258ef506 

time 0 

flip  

rotate  

 

element c1152790-1c9a-408d-9ae8-7cd9258ef506 

plates 18 

axial 1 

radial 9 18 

material 1 1 -17.02 

92238.70c -0.71991 92235.70c -0.17775 92234.70c -0.00234 42000.66c -0.10 

material 2 1 -17.02 

92238.70c -0.71991 92235.70c -0.17775 92234.70c -0.00234 42000.66c -0.10 

 

path B4 B5 C8 

element c1152790-1c9a-408d-9ae8-7cd9258ef506 

time 0 

flip  

rotate  

 

path C11 C12 C13 

element c1152790-1c9a-408d-9ae8-7cd9258ef506 

time 0 

flip  

rotate 

 

C.2 Example of control_input 

surface 860 5 

surface 864 5 

surface 868 5 

surface 872 4 

surface 874 4 

surface 876 4 

range 0.0 50.0 

 

C.3 Example of mcnp.sh 

#!/bin/sh 

 

keffsearch -c ../control_input -o $1          # Perform control blade search 

keffsearch -c ../control_input -m input       # Move blade in MCODE file 

keffsearch -c ../control_input -m ../skeleton # Move blade in skeleton 

mcnp $1 $2 $3 tasks 6                         # Run MCNP  
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