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ABSTRACT

The baroclinic instability of simple and highly structured one-
dimensional basic states is studied using a frictionless, adiabatic, quasi-
geostrophic model on a s-plane. Square-root-pressure coordinates are used
at 48 levels in the vertical and calculations are made for the upper boun-
dary conditions 4' = 0 and w' = 0. Many properties of the unstable waves
are considered: instability source, wavelength, growthrate, phase velocity,
steering levels, and the vertical structure of their amplitude, phase,
meridional entropy transport, and potential to kinetic energy conversion.
First, simple basic states are assumed. Their shear and static stability
each have a single value from 1000 to 250 mb, and another, independent value
from 250 to 0 mb. These simple basic states are determined by 3 parameters:
a shear ratio, a static stability ratio, and a generalized 8 parameter. A
wide expanse of parameter space is considered. The highly structured basic
states have zonal velocities and static stabilities obtained from one month
averaged data for latitudes 250N to 650N and for months (January, April,
July, and October), which represent seasonal extremes and transitions.

The longwave modes discovered by Green (1960) are shown to have
several interesting properties. To exist, they require a non-zero value of
qy and are destabilized by the presence of a Stratosphere or rigid lid.
Doubling times are moderately short (about 1 week) and their meridional cir-
culation in the lower stratosphere agrees with observations. Pressure ampli-
tudes, kinetic energy destruction, and meridional entropy transport are par-
ticularly strong in the lower stratosphere (relative to other levels).
Their kinetic energy is generated in the troposphere. Their entropy trans-
ports are countergradient in the lower stratosphere when a reversed shear
exists in that region.

Quasi-geostrophic potential vorticity meridional gradient profiles
(qy) for the one month averaged data possess a considerable number of zeros.
These zeros and their associated negative qy regions have a substantial ef-
fect on the unstable mode spectrum._ Some modes' growthrates are drastically
reduced when a particular negative qy region is removed. New modes (dis-
tinct from those discovered by Eady, Charney, and Green) exist only when
certain negative qy regions are present. Some of the new modes are poten-
tially important for the general circulation of specific regions of the
atmosphere. In particular, longwave modes, in addition to those discovered
by Green, could be important for the stratospheric circulation, and some are
examples of in situ stratospheric baroclinic instability.

_I ^_ ~111__~ ~ _ _____
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The unstable mode spectrum is also shown to be sensitive to small
changes in the unperturbed state. It is shown that only those changes
which drastically alter the negative regions and associated zeros of the qy
profile result in a substantial change in the unstable mode spectrum.
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CHAPTER I

INTRODUCTION

1.1 Background and Problems to be Addressed

One of the oldest and most interesting problems of dynamic meteor-

ology is the stability of a horizontally uniform steady flow. The flow is

said to be baroclinically unstable when there exist perturbations which

grow exponentially with time, and which derive their energy from the available

potential energy of the mean zonal flow. Investigation of the baroclinic in-

stability problem began with the works of Charney (1947) and Eady (1949).

Eady's model assumed a linear velocity profile, no variation of the corio-

lis parameter (P3= 0), and rigid lids at the top and bottom. Unstable modes

were found above a certain wavelength. Charney's model atmosphere had a

rigid bottom but an unbounded top. A linear velocity profile was assumed

(with the velocity constant above a certain height) and variation of the

coriolis parameter was permitted. Charney found instability only for waves

shorter than a certain wavelength which depended on the value of P (or on

the value of the wind shear).

Burger (1962) established for a continuous model with constant p 3 0

that all wavelengths have an exponentially unstable mode associated with

them except for certain isolated wavelengths. Modes on the longwave side

of these isolated wavelengths always grew more slowly than those on the

shortwave side.

Green (1960) in a numerical model had also found that all resolved

wavelengths were unstable (with the exception of isolated wavelengths) when

P # 0. Green also extended Eady's and Charney's results to include a semi-

------- --



infinite "stratosphere" of increased constant static stability. The shears

however, was kept uniform throughout his atmosphere. The effect of the

"stratosphere" was to make longer waves more unstable. His growth rate

spectrum is similar to that for SR = 1 in Figure 3.4, given below. The

shorter modes to the right of the cusp point in Figure 3.4 will be referred

to as Charney or Eady modes. Those on the other, longwave side will be

called Green modes.

Green showed that the fastest growing Eady mode did not have much

vertical structure. However, Geisler and Garcia's (1977) numerical calcula-

tions found the Green modes to have streamfunction amplitudes in the stratosphere

an order of magnitude larger than those in the troposphere. Geisler and

Garcia assumed a reference state temperature characteristic of a mid- lati-

tude winter, and both a linear and a mid-latitude winter mean zonal velo-

city profile. Both Green and Geisler and Garcia found growth rates of the

Green modes to be much less than those of the Eady modes. However, there

is no certainty that modes of largest growth rate must dominate. In fact,

Gall (1976) and Staley and Gall (1977) have shown that the longer unstable

waves can have a longer time to grow than the shorter waves because they

extend higher into the atmosphere to regions where their growth is not halt-

ed as quickly by interactions with the mean flow (see also the discussion

in Section IV-13). The Green modes, therefore, could be of great importance

to the upper atmospheric circulation. Many of their properties remain un-

investigated; in particular, their kinetic energy release and entropy trans-

port. Also uninvestigated is the dependence of the vertical structure of these

waves on 6, the shear of the mean zonal flow, and the static stability. The

study of these properties of the Green modes is one major concern in this thesis.



One- of the properties of the baroclinic modes which is essential to

the atmospheric general circulation is their transport of heat. The trans-

port is generally poleward and upwards, down the horizontal gradient of the

mean temperature (Oort and Rasmusson, 1971), and accounts for a substantial

part of the total heat flux at mid and high latitudes (Oort, 1971; Palmen

and Newton, 1969, pp. 62-63). The eddy heat fluxes prevent the occurrence

of very large meridional temperature gradients and associated intense west-

erlies. The theoretical study of Stone (1972) shows that the baroclinic

eddies are essential to the determination of the atmospheric temperature

structure. The studies of Phillips (1954) and Kuo (1956) show that the

eddies help drive the mean meridional circulation. Models of the atmosphere,

consequently, must include the effects of these baroclinic eddies.

The lower stratosphere (from the tropopause to 30 mb) presents a cur-

ious exception to the general description of atmospheric heat flux given

above. Murgatroyd (1969) points out that the latitudinal heating gradient

opposes the latitudinal temperature gradient in winter and summer and this

requires a net countergradient meridional heat flux. The contribution of

the mean meridional circulation to the horizontal flux has been calculated

from observations of Oort and Rasmusson (1971) at 100 mb. At this level,

the mean flux tends to be weaker (by a factor of 4 or more) than either the

transient or stationary eddy flux and is generally equatorward. However,

the observation of Oort and Rasmusson (1971) and Newell et al. (1974) show

the eddy heat fluxes to be poleward up to 10 mb and countergradient between

the tropopause and 30 mb. The transient eddy fluxes are about 1/2 to 2/3

as strong as those of the stationary eddies. Newell (1964a) has described



the lower stratosphere as a refrigerator which maintains the temperature

minimum at the equator through countergradient eddy heat fluxes.

The origin of the observed lower stratosphere net countergradient

heat flux has not been determined. The lone observations of Oort and

Rasmusson at 100 mb are not strong enough to discount the mean meridional

circulation from playing an important role in determining the net heat flux.

The non-interaction theory begun by Charney and Drazin (1961) and extended by

Holton (1974) , Boyd (1976) and Andrews and McIntyre (1976) tequires that, in the

absence of diabatic effects and dissipation, the heat (and momentum) fluxes of

stationary eddies (even if these eddies have harmonic time variations) are

exactly balanced by transports of an induced mean meridional circulation.

Thus, only transient eddy motion or a circulation in which diabatic or

dissipative effects are important remain as candidates for producing the

net countergradient heat flux in the lower stratosphere. Diabatic heatinq

rates are small in the lower stratosphere (< .50K/day; Newell et al. (1969),

Murgatroyd (1969), Houghton (1978)) but still may be important to the heat

budget (Vincent, 1968). Viscous dissipation is likely to be small compared

to radiative damping (Holton, 1975). Although a circulation with diabati-

city and possibly dissipation is a possible mechanism for generating the

net countergradient heat flux, this mechanism is outside the scope of the

current study.

The transient eddy component o the net countergradient heat flux is

unlikely to come from in situ stratospheric baroclinic instability (Holton

(1975), Simmons (1972)). Most of the transient eddy activity in the lower

stratosphere, Holton claims, is probably due to the remnants of baroclini-

cally unstable modes which originate in the troposphere. Green (1960) and



Peng (1965) have shown by numerical studies that the heat fluxes of the dominant

Eady mode are very weak in the stratosphere. Green's (1960) fluxes for the domi-

nant Eady mode were down gradient as he did not consider the reversed strato-

spheric temperature gradient. The strength of the Green mode amplitude in the

stratosphere and the results of Gall (1976) mentioned above, indicate that these

modes may possess strong stratospheric heat fluxes. The possibility that these

fluxes may be significant and countergradient will be investigated, and impli-

cations for the parameterization of stratospheric eddy heat fluxes will be

discussed.

Necessary conditions for baroclinic instability were derived by Charney

and Stern (1962) . They found that, in the absence of boundary temperature gra-

dients, the quasi-geostrophic potential vorticity gradient (q y) profile must

possess a zero for baroclinic instability to occur (for a more detailed discus-

sion of this result, see section 111-2). The calculations of Leovy in Charney

and Stern (1962) show zeros in q above 100 mb for data of 14 October, 1957. Leovy

and Webster (1976) also suggest that qy may also have zeros on the tropical side

of the stratospheric jet. Furthermore, Charney and Stern (1962) showed that

such zeros are necessary conditions for an internal instability; they, as well

as Green (1972) , McIntyre (1972) , Simmons (1972, 1974) and Dickinson (1973) have

shown that a zero in qy is a sufficient condition for instability in a number of

special cases. Therefore, detailed profiles of u and T, closer to those found

in the atmosphere than the simple linear profiles studied by previous authors,

may possess zeros in which have associated unstable modes. Detailed profiles

of u and T are also of interest because small variations in their detail have been

shown to alter significantly the growth rate spectrum of the Eady modes

JGall and Blakeslee, 1977; Staley and Gall, 1977). In this thesis, the,

_~ ~_ ~I _ __



effect of the structure of the u and T profiles on the baroclinic insta-

bility problem will be considered along with the sensitivity of the results

to small variations in these profiles.

1.2 Outline of the thesis

The problems raised in the discussion above will be addressed through a

comprehensive study of the baroclinic instability of both simple and highly

structured one-dimensional basic states. Many properties of the unstable

waves are considered: instability source, wavelength, growth rate, phase

velocity, steering levels, and the vertical structure of their pressure

amplitude, phase, meridional entropy transport and kinetic energy genera-

tion. The model used is the quasi-geostrophic s-plane model of Green (1960)

written in square-root-pressure coordinates. This choice of vertical coor-

dinate gives an equal number of levels in the upper layer (stratosphere)

and lower layer (troposphere). The upper layer is thereby given sufficient

resolution without having an unnecessary number of levels in regions of

very little mass. In Chapter II the mathematics of the model are devel-

oped and the numerical accuracy of the integration scheme is checked.

This study first extends Green's results by a "two-layer multi-level

model" (Chapter III). Within each layer, the shear, u , and static stabil-

1 d In 8
ity, P P dp , are constant but can have independent values. A 3-

parameter family results. In addition to Green's generalized 8-parameter,

- 8o Poo 2  up (upper layer)
Y , there is a shear ratio SRer layer) and static sta-T f2u0  u (lower layer)

r (upper layer)
bility ratio a (lower layer) Green's assumption of the same shear in

both layers has been relaxed. A wide expanse of the three-dimensional

* Klein (1974) addressed the same baroclinic stability problem, but confined
himself to profiles of zonal wind and temperature which are characteristic
of a mid-latitude winter. In addition, he was restricted by his method
of analysis to only the most unstable mode at each wavelength.



parameter space is explored. The dependence of the Eady and Green mode's

properties on the parameter values is studied in detail. In particular,

it is shown that the Green modes do have strong countergradient heat fluxes

in the lower stratosphere although nearly all of their kinetic energy is

drawn from the troposphere.

Chapter IV presents a further extension of Green's model to more

realistic u and T profiles for the basic state. The profiles are obtained

from monthly averaged data at different latitudes and are one-dimensional.

One cannot rigorously justify using monthly averaged data for the unperturbed

state, since the u and T profiles from monthly averaged data do contain the

effects of atmospheric eddies, and the unperturbed flow does not vary on a

much slower time scale than the eddies. Nevertheless, the use of monthly

averaged data for the unperturbed state can be viewed as a reasonable way

of relaxing the simplified representation of u and T in previous baroclinic

instability studies. It is a reasonable "next step" which allows one to,

see how the unstable modes are affected by detail in the structure of the

basic state.

The one-dimensionality of the basic state is justified partly by the

work of Moura and Stone (1976). They found that if the unperturbed state

is locally unstable, it is globally unstable. Local conditions (e.g. at a

single latitude) are important in determining instability even if meridional

variations are included and if the unstable modes have large meridional

scales. The one-dimensional basic state is also justified by the secondary

role that the meridional variations are found to have in determining the

depth and location of'regions of negative q y. Calculations in Chapter IV



will show that vertical variations alone represent well the features of the

qy profile which are important in determining stability properties.

As in Chapter III, the Green and Eady modes are studied in detail,

and the Green mode is again shown to possess strong countergradient heat

fluxes in the lower stratosphere. In addition to the Green and Eady modes,

other long and short wave modes are shown to exist for the more detailed u

and T profiles. This reveals an advantage of the eigenvalue approach over

the numerical time integration approach. The latter gives only the most

unstable eigenvalue at each wavelength; the former gives all the unstable

modes. Many of the new long and short wave modes are shown to exist only

when certain negative qy regions exist. The existence of negative qy regions

is shown to be very sensitive to small variations in the basic state. In-

deed, small variations in the basic state are shown to affect the unstable

mode spectra significantly only when they result in changes in the depth

and location of negative qy regions.

Most of the model calculations were done with the upper boundary con-

dition 9' = 0 at p = 0 (?' is the perturbation stream function). However,

to allow for a possible source of instability at p = 0, results assuming

W' = 0 at p = O0 are presented and explained whenever these differ signi-

ficantly from those assuming Y' = 0 at p = 0. Chapter II discusses the

choice of the upper boundary condition in more detail.



CHAPTER II

THE MODEL

2.1 The Model Eigenvalue Equation

The quasi-geostrophic model on a a-plane is well-suited for the

purposes of this study. It is simple enough to allow a detailed parameter

study of large-scale motions and it still provides a good approximation to

the properties of such motion. The equations for such a model, written in

7 = (p) coordinates, n being an arbitrary function of pressure, are:

-- (f +  ) = f w' (1)Dt o (1

D crTr' - (2)
Dt - f

0

where x, y, t are the eastward, northward, and time coordinates, 4 is the

horizontal streamfunction, f = fo + By is the Coriolis parameter, a =

1 d in 6s is the reference state static stability, dp is the vertical
p dp dt

dvelocity, i 2 D
velocity, 7' - = +  is the vorticity, and

dp , x2  y2 Dt t
d i d

y dx x dy

One next non-dimentionalizes with scales p - poo x,y - L, , ~ Lu0

L PooUo
t - , w . Then, following Phillips (1954), one defines:

uo  L

S= + qp'

ik (x-ct)
' = Y(T) cos y e

x yy = 0

Stime variation of the mean flw, is hen of o
The time variation of the mean flow, -- is then of order i' . With the
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above substitutions, the differential equations become:

(T - (u-c) p2) = TP 7 TP2~
T ik fL2u dTr (3)

[ TPoo 1
(u-c) T - uf = mi- (4)

T 7T i fL2UO

where all quantities except those in brackets [ ] are non-dimensional and

B aTPoo 2  2 (k2+p2) TPoo2

Y - is the generalized P parameter, and P - 2 is
T - f2Uo f

the non-dimensional wavenumber. Using Phillips' 1954 grid, one writes the

vorticity equation at odd levels and the thermodynamic equation at even

levels. Combining these finite difference equations as Phillips did results

in: i
0 = T (u -c2)P2 ) _ - H (u -c) - (u -c T

T-n -- n n n-2 n n n+2 n

(5)
+ Z T (u -c)T + + + (u -c)

n n n n-2 n n n n+2

where n is odd and runs from 1 to N-1 = 97 (N is defined as the value of n at

the ground level and equals twice the number of levels at which ~ is written),

means the value of ( ) at level n,
n

Sr I 1i 7 TI +

+ n n+l p- n n-l and En T/nl
n ( ) 2  n (A) 2 nl

With appropriate boundary conditions (discussed below), eigenvalues

of this system of equations are found by the OR algorithm. The algorithm

is one of the most efficient methods known for solving the complete eigen-

value problem for symmetric or non-symmetric matrices (Dahlquistand Bjbrck,

1969). It is most efficient if the matrix value whose eigenvalues are

desired is in Hessenberg form. The eigenvalue matrix is balanced, and put

into Hessenberg form and solved for its eigenvalues by EISPACK subroutines

*In the equations and symbols below aT is the nominal tropospheric value
of c given in Section 3.3.
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provided by the MIT Information Processing Service (IPS). The IPS publica-

tion AP-42 describes these subroutines.

Eigenfunctions are obtained by assuming Real[j3 = Real 2l = 1 if

the boundary condition is t' = 0 at the top, or by assuming RealY 3  =

Im3 = 1 if the condition is P' = 0 at the top. The eigenvalue equation

is then used to integrate downwards. The homogeneity of the eigenvalue

equation justifies the arbitrary choice forY1 orY3.

2.2 Boundary Conditions

At the bottom 0. This is justified because in the first approxi-

mation for quasi-geostrophic motions ) 2 -gpw. In the atmosphere for motions

of synoptic or larger scale, the other terms in the & - w equation are small-

er by an order of magnitude or more. The &.= 0 lower boundary condition

also filters out horizontally propagating acoustic waves. The lower boun-

dary condition is applied at level N. It results in an equation relating

- tofN-3 This relation between 1 andN 3 is obtained by writingN-1 N-3 N-l N-3

the eigenvalue equation (Eq. 5) at level N with TT+ =0.
N-l

At p = 0, the top of the model atmosphere, both the author and

Holton (1975) have found that only the W = 0 boundary condition has been

used in the literature for quasi-geostrophic models. While being exact in

theory, this condition can act as a rigid lid. It can introduce spurious

free oscillations which may be unstable, and cause reflections of vertically

propagating modes (Lindzen,A1968; Cardelino, 1978).

Geisler and Garcia (1977) assumed 4)'= 0 at a level "(typically 100

km) where solutions of interest have already decayed to a negligible value",



their model is in geometric coordinates. Indeed, asymptotic solutions of

the quasi-geostrophic equations for U profiles linear with height show that

I ' grows or decays exponentially. Assuming i' =0 ina geometric coordi-

nate model retains only the realistic decaying solution. Charney inMorel

et al. (1973) requires that the upward energy flux ps 4'w' is zero at z =

C. This is satisfied if the decaying solution is selected because lim

ps*$ = lim p k'w'. The assumption behind the upper boundary conditionz s

lim I j = lim p P'w' = 0 is that one's solution should decay away from
Z-)c Zo

energy sources which are at finite heights.

For the model used here, problems with up constant have uz ̂u -- 0 as

z ->, so that the available potential energy goes to zero as z-.o. For this

case, which has no energy source near the top, Charney and Pedlosky (1963)

have shown that the energy flux of the disturbance will decay at least ex-

ponentially with height. The disturbance will then decay to zero amplitude

at the top. Thus, T' = 0 is a realistic boundary condition.

Consideration of energy sources above the stratosphere is not with-

in the scope of the current study. Calculations, therefore, are presented

primarily with Y' = 0 as the upper boundary condition. However, comparisons

will be made with calculations which have c' = 0 as the upper boundary con-

dition. Important differences in the calculations resulting from the differ-

ent boundary conditions will be pointed out and their physics will be discussed.

In particular, it will be seen that the long wave Green mode experiences

a behavior analogous to reflection when t' = 0 is used.

Implementation of upper boundary conditions in the reduction of the num-

berofmodel levels from 49 to 48 (Figure 2.1 shows the height and pres-

sure of model levels). The condition w0 = 0 is replaced by l' = 0 and



the remaining 48 equations at levels 3 to 97 are solved for their eigen-

values.

2.3 Fluxes and Energetics

To obtain the horizontal entropy fluxes, one first uses the hydro-

a 1 Poo Kstatic and Poisson relations: (6); 6 = (°) T (7); and theap fo p  P

ideal gas law P = pRT (8); to relate 8 to the streamfunction:

fo PooK a _
R P p (9)

The meridional velocity is simply v' = Ox' and the vertical velocity is

related to ) through the thermodynamic equation. With the additional as-

sumption that =even = (m+ + m- ), one multiplies the expressions for
m-even 2 m+l m-l

v and 0, w and 0, and 0 and 4. Then averaging zonally and simplifying

results in:

' 1-K 1 *
(v'8') = P kme Real i - IF

aT 2 -K 1 A K-l tan -1
('8') (--) P kmE ((L)2 - 8 tan y + -u

* *
* Real (i -' 1 - 2c. Real {(i

+ + i N 1 T-1 ++1

+ c. I P + i
1 -1 -1 £+i ' £+i

- ' Lc * * ]

k , 9 4kn - £+ +l T t+l 1

(u + u1 - 2cr ) Real {i -i +
+l U1 r E-1 £+1



where m = cos py, = eklit , C and c. are the real and imaginary parts
r 1

of the phase speed and ) is even. Given eigenvalues and eigenfunctions,

the above non-dimensional correlations are then computed. The last cor-

relation is often called the "pressure work term" for reasons given below.

The quasi-geostrophic energy equations have been derived by Charney

(in Morel, 1973) for geometric corrdinates. Their counterparts for pres-

sure coordinates are:

dX Poo K 1
d - u'' u dy dp - 'O' ( ) dy dp

dt y Ro PO 0 p

''dy = CK + CE + BE

dE F U v' u dy dp ( I v - 2K I
dt u y d y (o) dy dp

P

R- f Jdy = CK + CA + BE
o fp

Poo P dy dp - _ v'' y Poo )  dy dp = -CE +CA

where, = L /L , (L = is the radius of deformation)
6' r r fZ.

1

= C + C +Bi-1 ---- 2

*Note: Once r(p)is known, writing the energy equations in Tr coordinates
requires only a very simple transformation.



31, E , andA are the Eddy Kinetic Energy, Total Eddy Energy, and Eddy Avail-

able Potential Energy, respectively (Lorenz, 1967). The power integral CK,

which represents transfer of kinetic energy between zonal mean and eddy flow,

is not present for this one-dimensional model since U = 0. The power inte-

gral CA, which represents the transfer of available potential energy between

zonal mean and eddy flows is studied by presenting profiles of the hori-

zontal heat flux. The horizontal heat flux has the more direct effect on

temperatures. Profiles of the full power integral CE are presented because

CE describes the source regions for Eddy Kinetic Energy. The last term,

BE, describes the transfer of eddy kinetic energy into or out of a given

pressure layer P1 to P2. Since p is always -90° out of phase with v, the

M't' correlation reveals the relation of poleward to downward velocities

throughout the atmosphere. It will be used to relate model eddy motions to

observations.

2.4 Numerical Accuracy

The numerical method described above is a second order scheme, and

numerical experiments didshow the error in growth rates varying inversely

with the square of the number of levels when7 = P is the coordinate.

For nominal values of the stratosphere/troposphere shear ratio, SR = -1.5,

and static stability ratio a = 50 (see Chapter III for the calculation 6f these
p

values), Figure 2.2 illustrates the Eady mode's growth rate accuracy as a function

of YT (YT = 2 is nominal). Note that many more levels are needed to obtain

accurate growth rates for higher 'T because the most unstable wavelength

becomes shorter, and the associated vertical structure becomes finer.
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The model resolution of 48 levels is of good accuracy at least to wavenumber

P = 6 or wavelength = 1.8 x 103 km. In low latitudes yT can be large and
T

one would need 15 or more levels to even detect instability if YT = 10.
T

The results in Figure 2.2 are identical for both upper boundary con-

ditions. The Green mode, however, which has the longer wavelength of 8.3

x 103 km (P = 1.3)' for nominal parameter values, is resolved much better

when Y'P = 0 is the upper boundary condition. In this case, the

doubling time is determined to within 2% of its 48 level value (6.1 days)

when only 13 levels are used. However, when w' is the upper boun-

dary condition, 37 levels are required for the doubling time to be within

2% of its 49 level value (14.7 days) (the marked differences between these

estimates of the Green mode doubling time is discussed with the Chapter III

&)I = 0 calculations). The above and additional calculations showed that

when doubling times of long-wave modes were calculated, calculations using

(P'.O = 0 converged more rapidly than those using the more common Oj('p=

= O upper boundary condition.

The ability of the model to converge over the entire range of the

vertical coordinate is illustrated in Figure 2.3, which shows results valid

for both upper boundary conditions. For the meridional entropy flux of the

Eady mode, good convergence is obtained for the model resolution of 48

levels (49 levels, for the w' = 0 boundary condition).
(p=0 )

For entropy fluxes of the Eady mode at higher YT values and shorter

wave lengths, Figures 2.4 and 2.5 show model convergence (their results are

identical for both upper boundary conditions). The quantities v'8' and
T

v'e' are the mass weighted zonally averaged meridional entropy fluxes for
s



the troposphere and stratosphere, respectively. Each profile of v'9' has

been normalized, i.e. the maximum value for all levels in the profiles has

been set equal to 1. Good convergence on values of v'e' T and v'e's exists

for modes with zonal wavelengths as small as 1.8 x 103 km.

Three additional checks were made on model accuracy. The first is

a check for satisfaction (numerically) of the lower boundary condition.

Both upper and lower boundary conditions were, of course, used to determine

the eigenvalues. Determination of the eigenfunctions, however, started

with the upper boundary equationY 1 = 0 and assumed an amplitude and phase

forY3 (see the earlier discussion in this chapter for a justification of

this assumption). Then the model eigenvalue equation (Eq. 5) is used to

determine values of Y at lower levels. The value of Yat the lowest level,

YN-1' is obtained from the eigenvalue equation written at level N-3, which

relatesL to -3 and y . The remaining Yequation, written at level
N-l N-3 N-5

N-1 contains the lower boundary condition. It must be satisfied by the

N- and N-3 values, which were determined by the eigenvalue equationN-l N-3

written at higher levels. Satisfaction of this lower boundary equation was

checked for all model results.

Asecond check is satisfaction of Howard's Semicircle Theorem Test

(see Pedlosky (1964) for application of this theorem to quasi-geostrophic

models). All values of the eigenvalues were found to be within the theo-

retical limits of the test.

A final check on the model's validity is its ability to reproduce

-1
previous results. A plot of growth rate contours vs rT-1 and wavelength
27r

2for Green's linear u profile reproduces his Figure 3 exactly (see FigureP



2.6 and Green (1960), Figure 3).

(w' or w' = 0) at the top.

Both calculations used a rigid lid
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CHAPTER III

TWO-LAYER MULTI-LEVEL MODEL RESULTS

3.1 Introduction and Overview

This chapter treats the atmosphere as a 2-layer system having a

troposphere and stratosphere. Each layer has an independent shear and

static stability, and these unperturbed flow parameters are constant

within each layer. This approach simplifies the parametric study of how

the unperturbed state affects the perturbations. Within each layer are

24 levels so that the vertical structure of the perturbations can be studied

in fine detail.

Three parameters completely determine the unperturbed state: Y', the

generalized n-parameter, defined in chapter II; SR, the shear ratio
du) dudu stratosphere/ (dptropospher) ; and , the static stability ratio
dp stratosphere dp troposphere

/- . The velocity field, u = n ranges from 0 to
stratosphere troposphere n

uo

p 1 1
1 between ground and tropopause ( - ) and from 1 to 1 + SR between

Poo 4 3

tropopause and p = 0:

4 1
1 - SR p + 3 SR stratosphere

U =

4
4 (l-) troposphere

The static stability parameter, = 1 for m > 49 and = 1- , for m <49
m mo 'o

(note: m $ 49,as m is even). When values for YT, SR, and 69 are chosen,

the model eigenvalue equation is ready to be solved to any specified non-

dimensional wavenumber P.

Solutions will first be obtained for combinations of special and

nominal values of the parameters. "Nominal" values are defined as those

11I~~. u~~l-* -------



appropriate for mid-latitude winter conditions: YT = 2, SR = -1.5, and

0-= 50 (these values are calculated below). Special values used are

YT=0 (no -effect),SR = 1 (uniform shear throughout the atmosphere), SR = 0

(no shear above P/ = 1/4), and = 1 (no stratosphere, uniform static

stability throughout the atmosphere). Every combination of these parameter

values will be studied. This will enable one to see the effects of: uni-

form shear, zero shear above p/P o o = 1/4, and nominal shear above P/Poo =

1/4, both with and without a stratosphere, and with and without the ,-effect.

The second part of this parameter study will use the nominal para-

meter values to define an origin in parameter space. The study will include

parameter values on axes through the origin along each of which only one

parameter varies. Both the first and second parts of the parameter study

will treat in detail mode growth rates and phase speeds, and the vertical

structures of streamfunction amplitude and phase, of meridional heat trans-

port and of eddy kinetic energy generation. This will be done for both the

Eady and Green modes.

The third part of the parameter study will discuss growth rates of

the Eady and Green modes on YT = constant planes in parameter space. Inter-

esting vertical structure properties will be noted.

Finally, calculations will be presented to point out how changing

the upper boundary condition from )' = 0 to o' = 0 affects the perturbations.

3.2 Necessary Conditions for Baroclinic Instability

An important part of this study will be the relation of unstable

modes to the necessary conditions for baroclinic instability, given by the



Charney-Stern theorem. Charney (in Morel, 1973) derives the theorem for

geometric coordinates with a zero energy flux condition at the upper boun-

dary (lim 9'w' = lim 'I '= 0), z =oo. The derivation in pressure coor-
z-3c z.- oo 7

dinates for W' = 0 at p = 0 is similar and results in the equation (analo-

gous to Charney's equation 9.18): (1)

S f 2  ,,2 f 2 d
C p 0 i ) dy - ( d-U) dy + JYdy 0

1c P=0 -c p p1 -c I

2 1- 25SE -u f u ) - f (1 ) ( 2)
yy o dpp o p

For the profiles of this section (linear u, constant 0), Y' = 0 at p = 0

forces lim = 0. This (for any U andX) results in lim P'cO' = 0,p-o P pe- o

i.e. no energy flux at p = 0. Also, ~y'=0atp=0results (for any u and C)

in the disappearance of the first integral in the above equation. The

upper boundary condition >' = 0 would allow this integral to remain. Thus

the upper boundary condition V' = 0 has as necessary conditions for baro-

clinic instability:

(1) q = 0 in the fluid in the absence of a temperature gradient 6 au
Sy p

at the lower boundary, or

(2) a balance between the lower boundary integral and the qY integral.

The w' = 0 upper boundary condition would have as necessary conditions for

baroclinic instability:

(1) q = 0 in the fluid in the absence of temperature gradients at both

boundaries, or

(2) a balance between upper boundary, lower boundary, and qy integrals.

* It is not consistent to use the a term in quasi-geostrophic models.
Calculations show that this term is y small. It is used only in the
calculations of Tables 4.1 to 4.4.



The o' = 0 case has the distinction that a temperature gradient at the upper

boundary as well as a temperature gradient at the lower boundary and an in-

ternal zero of q is a potential source for baroclinic instability. Indeed,

later calculations show that there are modes which depend on a non-zero value

of & at p = 0 for their existence, that there are other modes which depend

on specific zeros of Ei, for their existence, and that there are still other

modes which exist when y / 0 at the ground. The modes which exist only

fore 5 0 at p = 0 may not be realistic for the atmosphere; however, they
y

may play a role in laboratory experiments or oceanic flows. They

will be discussed with the W'p = 0 calculations.

3.3 Nominal Parameter Values

The origin or "nominal" point is chosen to approximate a winter

stratosphere and troposphere at 450N. Using U.S. Standard Atmospheric

values for January 45°N at 1000, 250, and 28 mb one has:

AZ 2 AZn 9 m 10200 m 2 n 327-In 273 -5
T gAp AZ secc 75000 nt/mn2 10200 m 4 sec2  -2

S m 14000 m 2 In 599-in 327 = .169 x 10 - 3

sec 23200 nt/m 14000 mm 4 2  -2
m sec2 kg- 2

thus:

a = 52.5; u28  13 m/sec, u2 50 = 24 m/sec, and U000 = 0
P 281000

give for the shear ratio: SR = -1.55 and 24 m/sec for U .

-11 -1 -1 5 m -4 -1
S= 1.64 x 10 m sec , P =10 nt/m, f =10 sec and u0 and CT

from above give: y = 2.19.
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The winter values of yT = 2.19, SR = -1.55, 6= 52.5 are rounded to the

nominal values Y = 2, SR = -1.5, = 50. It should be noted that YT and

P are analogous to the Y and P parameters of Green (1960), and, as in Green,

2 2
0 for all calculations. Since pappears only in the combination k +P,

the results for any value of . can be recovered by a reinterpretation of

the value of k. In this chapter, k represents the number of waves in a

latitude circle at 450

It-is also interesting to note that the value of 'T corresponding to

the critical shear of the Phillips (1954) 2-level model is:

ST=  A= 2.06 where u = (R is the gas constant, see
T 2F' Uc c fl

Stone (1978). The winter value of YT = 2.19 is very close to Phillips'

critical value. This shows again that the mid-latitude troposphere is

remarkably close to two-level neutral stability for time averages of over

a few (3) months (see also Moura and Stone (1974) and Stone (1978)).

3.4 Results for Special and Nominal Parameter Values

Figures 3.1 to 3.4 present the doubling times and phase velocities

of the unstable modes for special and nominal parameter values. It is

immediately apparent that the presence or absence of a stratosphere or of

the #-effect affects the results much more than variation of the upper

layer's shear. The presence of a greater static stability in the upper

layer, not surnrisingly, lessens further the influence of upper layer shear

variation. Eady modes grow faster for a reversed upper layer shear if no

stratosphere is present and very slightly more slowly if there is a strato-

sphere. The overall shape of the doubling time curves is little affected
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by variation of SR. This is not the case for YT. As pointed out by Green

(1960), zero A-effect stabilizes short waves. Also, when SR = 1 and there

is no stratosphere in addition to no A-effect, all modes are stable; this

differs from Green's results for a rigid lid (see discussion of W' = 0 atp=0

calculations). As 'T increases, short waves become more unstable (see Fig-

ures 3.17 and 3.18). The presence of a stratosphere lessens doubling times

of the Eady mode for all values of SR and "T from about 2 1/2 to 1 1/2

days. When both the stratosphere and a-effect are present, the long wave

"Green Mode appears and has its fastest doubling time (6 days) for the nominal,

reversed stratospheric shear. The doubling time and wave number of the most

unstable Green and Eady modes for the parameter values CT', SR, Op = 2, 1,

50 compare well with those calculated by Geisler and Garcia (1977) for a

constant shear and more realistic temperature profile. Differences are

less than 10%.

Phase velocities calculated by Geisler and Garcia are almost twice

as large as this model's values for T, SR, f = 2, i, 50. The difference

is due to the much larger u values in the former model. A fairer compari-

son between this model and that of Geisler and Garcia will be made in the

next chapter. For zero 6-effect, phase velocities are very large at long

wavelengths (note the change of scale in Figures 3.1 and 3.2). When there

is both a 4-effect and a stratosphere present, the phase velocity goes

to zero with the growth rate at a "critical" wavelength which defines the

separation between the Eady and Green modes. The existence of neutral waves

stationary relative to the surface wind at this critical wavelength was dis-

covered by Green (1960). Steering levels, as in Green's study are below

the mid level (p/p = 1/2) for all wavelengths.
oo



-Iu,

Streamfunction amplitudes and phases are presented for the most un-

stable Eady and Green Modes in Figures 3.5 to 3.8. For the Eady mode, the

presence of a stratosphere causes a sharp peak in YI at the tropopause

independent of 8-effect and shear variation. This peak is approximately

equal to the peak at the ground. The latter is narrower for YT 0; this

also was observed by Green (1960). Variation in SR has negligible effect

when hen = 50, but when larger values of MIP occur around the tropo-

pause as SR goes to negative values (Figures 3.6 and 3.7). The Green mode,

existing only for T 0, o 1 has a strong peak in the stratosphere

which moves up from 180 mb to 120 mb as the stratospheric shear reverses.

Streamfunction phases are constant throughout the upper layer when

YT = 0 or o = i1. When there is both a p-effect and a stratosphere, the

pressure wave tilts westward with height in the stratosphere for both Eady

and Green modes, the Green mode having a much greater tilt. In the tropo-

sphere the Green mode also has a greater westward tilt.

For quasi-geostrophic disturbances, a westward tilt of the wave with

height means entropy is transported poleward (Lorenz, 1951). The model

calculations of v'&' , Figures 3.9 to 3.12, illustrate this property for

the fastest growing Eady and Green modes: all tilts are westward and all

v' ' values are positive. When there is no d-effect v'9' is independent

of 0 and SR values and is zero in the upper layer, reflecting the con-

stancy of phase there. In the presence of both a stratosphere and a B-

effect, entropy transports are significant in the stratosphere, for both

modes. The Green mode has a much stronger stratospheric transport. It

peaks at the tropopause and remains large in the lower stratosphere. The



flux is strongest for the case of reversed shear. Thus, nominal conditions

produce modes which have larger stratospheric heat transports than all the

other cases considered.

A local maximum in the entropy flux in the lower stratosphere is observed

(Oort and Rasmusson, 1971; Newell et al., 1974). Thus, the Green mode could

be very important.for lower stratospheric dynamics. This problem will be

addressed in more detail in the next chapter.

Except for the Green mode with uniform shear (SR = 1), no modes have

kinetic energy generated in the upper layer (see Figures 3.13 to 3.16).

Only this Green mode and an Eady mode with no stratosphere and SR = 1

have their kinetic energy destroyed in any region of the lower layer. In

all cases there is, of course, a net generation of mode kinetic energy

when the entire model atmosphere is considered. And in all cases, there

is a net mode kinetic energy generation in the troposphere and net loss in

the stratosphere. The maximum mode kinetic energy generation is in the mid

to low troposphere for all cases except the Green mode with reversed strato-

spheric shear. This latter mode has its strongest kinetic energy genera-

tion in the upper troposphere.

Earlier discussion pointed out that for no stratosphere and uniform

shear there was apparently no Green mode for YT = 0 or 2, and there were no

unstable modes for SR = 1, (7 = 1 and Y T = 0. Is there a Green mode for a

stronger effect? What happens to it for small #? These questions are

answered by a graph (Figure 3.17) similar to Green's (1960) figure 3 with

the difference that Green's rigid lid is replaced byf' = 0 at p = 0*

* Differences between this graph and Green's Figure 3 are discussed with
the 0' = 0 at p = 0 calculation later in this chapter.
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The Green mode is seen to exist for large 8-effect (or small tropospheric

shear, u ) but is very weak, and its wavelength becomes infinite as yT or

q = 8 goes to zero. Also, as yT or q goes to zero, growth rate per unit

YT remains constant so that the growth rate approaches zero with yT or q .

When SR and have their nominal values, and rT varies, the situ-
ation is much different (see Figure 3.18). The fastest growing Eady mode

growth rate changes little as ycE~r~ to zero, and the Green mode is much

stronger and is at a shorter wavelength for IT < 10.

3.5 Results for variation of one parameter with others fixed at nominal
values

In this section two parameters are held at their nominal values and

the third varies over a wide range of parameter space. Doubling times and

phase velocities are obtained for zonal wave numbers 0 to 15, and vertical

structures of wave properties are presented for the fastest growing Green

and Eady modes. Shorter modes are trapped near the ground and are outside

the stratospheric focus of this thesis (Chapter IV illustrates properties

of these waves for realistic T and U profiles).

Figures 3.19 to 3.21 show that the doubling time of the fastest

growing Green mode is much more sensitive to parameter variation than is

the doubling time of the fastest growing Eady mode. The wave numbers of

the most unstable Green and Eady modes are not very sensitive to the vari-

ation of SR and 0 but increase markedly as T increases. This increase of

most unstable mode wavenumber with YT was pointed out earlier (see Figures

3.17 and 3.18). As SR takes on values from -12 to 4, the Green mode re-

mains constant in strength for reversed shear in the stratosphere but be-



comes much weaker for large positive SR. The Eady mode, however, becomes

slightly stronger and the wavelength for which it is most unstable slightly

increases with SR throughout its range. For values of 0- between 1 and

1000, the Green mode has its fastest doubling time, 6 days, near the nomi-

nal value, = 50 (intermediate calculations, not shown, refines this

value of a to be 60). As yT varies from 0 to 10 there is a dramatic de-

crease in the Green mode's fastest doubling time - from 12 days (IT = 1)

to 3 days (YT = 10). The wavenumber of the fastest growing Green mode

increases from 2.0 to 7.5. Thus, at high YT the Green mode is no longer

long-wave. Green (1960) has shown that longer waves are expected to have

longer doubling times because they only weakly satisfy the necessary con-

dition for instability, viz., that particle paths have an average slope

between that of the isentropes and the horizontal. -Green's heuristic argu-

ment was for rigid lids at top and bottom. To the extent that a 50-fold

increase in the static stability approximates a rigid lid, one can say

that the Green mode grows slower at lower (T when ~'= 0 in the upper boun-

dary conditions because it is at a longer wavelength.

The phase velocities, shown in Figures 3.22 to 3.24, all haveasharp

minimum at .the wavenumber which, by definition, separates the Green and

Eady modes. The Green mode is defined to include all wavenumbers less than

that of the sharp minimum in the phase velocity. There are other, weaker

minima in some of the phase velocity curves. These are found to be asso-

ciated with weak minima (which may not be resolved) in the doubling time

curves. Phase velocities are most strongly influenced by changes in 'fT

For all wavelengths, phase velocities decrease with increasing T. And,

for all wavenumbers and parameter combinations of this section (except SR



< -2), the unstable modes have a single steering level in the lower tropo-

sphere. For a strongly reversed stratospheric shear (SR < -2) some modes

have an additional steering level in the stratosphere.

Streamfunction amplitudes and phases for the fastest growing Eady

and Green modes are presented in Figures 3.25 to 3.36. The structure of

the Eady mode amplitude in the troposphere is little affected by varying

SR and a- (except when .' = 1). Peaks of the pressure amplitude occur at

the ground and tropopause. The peaks are of approximately equal value and

the one at the tropopause decays less rapidly into the stratosphere for

small - , when y = 10. When )T begins to increase beyond 3, the tropo-

pause peak begins to weaken substantially. Stratospheric Eady mode pres-

sure amplitudes are largest when yT is near its nominal value.

The Green mode has larger streamfunction amplitudes in the strato-

sphere than the Eady mode for all parameter combinations of this section.

Figures 3.8 and 3.28 through 3.30 show that the Green mode's amplitude peaks

higher in the stratosphere, and has larger values there (relative to those

of other levels) when the parameters are near their nominal values. The

peak, for near nominal parameter values, occurs at 120 mb, and the ampli-

tude remains greater than half the peak value from below the troponause to

30 mb. For YT A 7, there are pressure amplitude peaks at the tropopause

and 75 mb which are separated by a sharp minimum at 140 mb (see Figure 3.30).

The upper peak is weaker and has a value of .7 times the tropopause peak

value. The Green mode also has a peak at the ground which is as strong as

the peak in the stratosphere when 4 10 or SR - -4. In comparison with

that of the Eady mode, the vertical structure of the Green mode's pressure

---- --- --' -- --



amplitude is much more sensitive to variations of SR orO . The same was

seen to be true regarding the doubling times of the Eady and Green modes,

and, as subsequent figures illustrate, the same is also true for the ver-

tical structure of mode phase, meridional entropy transport and kinetic

energy generation. The larger amplitude of the Green mode at stratospheric

levels renders it more sensitive to variations of SR and 0 , which are

really variations in the stratospheric shear and static stability because

YT is held constant.

The phase of the Eady mode streamfunction varies much less with

height than does the phase of the Green mode (Figures 3.31 to 3.36). Ex-

cept for the case of a very stable stratosphere, > 1000, the Eady mode

pressure wave has only a slight westward tilt with height. The tilt of the

Green mode is very strongly westward with height and is most strongly west-

ward when YT or C are large or when SR = -4. The Green mode has its most

rapid vertical phase variation concentrated in a region just above the

tropopause (100-250 mb) and in the lower troposphere (550-750 mb). The

phase can change 1800 in these regions. The Green mode and, at a slower

rate, the Eady mode vertical wavelength approaches zero in the stratosphere

as 30 --- 0. Amplitudes of both modes also approach zero in the strato-

sphere as -- 0>cand are negligible for 0 > 1000.

The meridional entropy transports, v'O', of both modes (Figures 3.37

to 3.42) are all poleward, as expected for quasi-geostrophic waves which

tilt westward with height. The stratospheric transports are generally

very weak for the Eady mode (in comparison to the tropospheric transports)

except when the stratospheric shear is easterly (SR < 0), but even these
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transports are far shallower than those of the Green mode in the lower

stratosphere. Tropospheric Eady mode v'&' values are little affected by

changes in SR and 6, but as YT increases, they decrease rapidly at all

levels except near the ground. The entropy transports of the Green mode

in the lower stratosphere are generally stronger than those in the tropo-

sphere except for transports near the ground when SR is positive,@ , < 10,

or y 7. The stratospheric Green mode fluxes are countergradient and are
T

strongest when the parameters are near their normal values. They have

their strongest peak at the tropopause and remain at greater than half the

peak value up to 130 mb. Stratospheric Green mode v'O' values are weakest

for SR positive or 0 5< 10.

The generation of mode kinetic energy for both Eady and Green modes

occurs only in the troposphere except for the Green mode when SR > 0 (see

Figures 3.43 to 3.48). In this unique case there is a weak, shallow region

above the tropopause where Green mode kinetic energy is generated. The

generation of Eady mode kinetic energy is stronger in the lower and mid-

troposphere (except for YT = 10; in this case alone there is a weak destruc-

tion of mode kinetic energy in a region of the troposphere). The generation

of Eady mode kinetic energy is affected only slightly by variations of SR

or 9,; however, the generation decreases rapidly as (T increases. The

generation of Green mode kinetic energy when SR4 0, 5 Z 10, or 'T < 7

is nearly constant throughout the troposphere except near the ground where

it goes to zero with o; when SR> 0, p = 10, or (T >- 7, there is a mid-

tropospheric destruction of Green mode kinetic energy. The strongest Green

mode kinetic energy generation is always in the lower troposphere. In

summary, the strongest generation of both Eady and Green mode kinetic energy

- -



is in the troposphere. Therefore, both modes are tropospheric in origin.

They drive the stratosphere, i.e. they lose kinetic energy in that region

and build up zonal available potential energy there with counter-gradient

entropy fluxes when SR< 0. The Green mode has much stronger and deeper

stratospheric entropy transports and kinetic energy losses in comparison

to its tropospheric values of these quantities than does the Eady mode.

It is also a (zonally) longer wave mode and can, according to Gall (1976)

more easily penetrate into the stratosphere. Therefore, the Green mode

could be of much greater importance to lower stratospheric dynamics than

the Eady mode.

3.6 Results for constant YT planes in parameter snace

This section explores a much wider expanse of parameter space. It

focuses on the growth rate of the most unstable Eadv and Green modes and

discusses properties of their vertical structure which may be of importance

to the general circulation at specific levels of the atmosphere. It also

ascertains whether any new modes appear in the range of parameter space

which it covers. Parameter space of this model has 4 dimensions represen-

ted by (T, SR, Gp, and P. The value of the wavenumber P is always chosen

to be that of a local maximum in the curve of growth rate vs P. The re-

maining 3 dimensions are sampled by examining planes of constant YT at YT

= .5, 2, and 6. On these planes, ' varies from 1 to 1000 and SR varies

from 14 or 0 to -14, depending on the value of YT and the mode presented.

The doubling time of the fastest growing Eady mode is contoured on

the constant YT planes in Figures 3.49 to 3.51. On all planes there is

only a slight variation of doubling time with SR-and CT when r > 20; and
jP f
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the variation is even slighter for larger Y . Most doubling times are be-

* tween 1.5 and 2.0 days. There is a lengthening of doubling time to 3 or 4

days for small a and ISRI > 10. As seen in the previous section, wavenum-

bers of the most unstable Eady mode increase with Y . When YT is not large,

* they also increase as ap approaches 1 and SR becomes large and negative.

When 0 > 20 they vary little with SR and a . The wavenumber will typically

double from SR=-2 to SR=-10 (p = 2, y = .5or 2) ; it will also double from

a a =50to r =2 (SR=-14, y = .5 or 2) with the most rapid increase at the
P p T

smallest values of a . On the YT= 2 plane, the most unstable wavenumber

is between 6 and 7 for a > 20 and is near 15 for SR < -8 and a < 2.

The fastest-growing Green mode undergoes a much less smooth variation

of doubling time with SR and a (Figures 3.52 to 3.54). It is much shorter

for higher YT , independent of the values of SR and Cp. On all the YT planes,

the fastest doubling times are when ap is small and SR is large and negative;

this is the same region where the Eady mode is weakest. The longest doubling times

occur for small a and SR going positive. For YT = .5 or 2 there is a region of

shorter doubling times for nominal and larger values of a and SR near -2.

The nominal point (SR= -1.5, 9p = 50, YT = 2) occurs in a local region of shorter

doubling times whose values are about 6 days. The YT = 2 plane shows the most

complicated variation of Green mode doubling time with SR and a . This, in

part, could be due to the difficulty in defining a fastest growing Green

mode when there is no minimum of growth rate between the Green and Eady modes

(see the SR = -4 curve in Figure 3.19). In this case, a point .6 zonal wave-

numbers to the left of the point of greatest curvature was chosen to be the

wavenumber of the fastest growing Green mode (e.g. 3.6 was chosen as the

wavenumber of the fastest growing Green mode on the SR= -4 curveof Figure

eNo
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3.19). In all cases there was a minimum in the phase velocity curve which

separated the Green and Eady modes, and the point of greatest curvature of the

doubling time curves was always on the long-wave (Green mode) side of this mini-

mum. The wavenumber of the most unstable Green mode varies with the parameters

in a manner similar to that of the Eady mode. On the T = 2 plane the wave-

number is between 3 and 4 when a > 20 and is near 8 when SR <-10 and a < 5.
p p

Much of what was discussed in the previous section about the Eady and Green

mode vertical structure also holds true for the much larger expanse of parameter

space considered in this section. Exceptions are presented below.

Stratospheric Green mode l$i values are weaker when yT < 2. The Eady

mode peak values of [I at the ground and tropopause are equal except when

P < 10 or YT > 3; then the tropopause peak becomes weaker. The peaks of

the Green mode streamfunction amplitude are at the qround and in the lower

stratosphere with the latter being much stronger except (1) when a < 15

and SR < 0, and (2) when Y = .5 and SR is large and negative. The strato-

spheric peak of the Green mode amplitude is strongest when parameters are

all near their nominal values, and when y = 6 with SR and a near their
T p

nominal values.

The streamfunction phases of the Eady mode and Green mode behave as

described in the previous section, except when y = 6 and -8 < SR < -2.

In this case the phase varies about twice as rapidly for both modes.

The stratospheric v'8' peak of the Green modes is weak when a < 20.

It is strongest when parameters are near their nominal values and also when

Y = .5 or 6; SR is near its nominal value, and a > 30.
T P-



The previous discussion of this section has centered on the Eady and

Green modes. For the parameter value combinations considered in earlier

sections of this chapter, there was only one conjugate unstable eigenvalue

for each wavenumber; this contained the Eady and Green modes. The mean

flow in all previous sections possessed no zeros of qc. Therefore, the un-

stable eigenvalue containing the Eady and Green modes owed its existence

to a temperature gradient at the ground.

In this section one has the possibility of an internal zero of qy

helping to satisfy the necessary condition for instability. This zero may

occur only at the boundary between the two layers (P = -). The value of

qy for the simple profiles of this chapter is easily obtained, as upp, y

T are all zero except at the internal boundary where there is a jump in u
p p

1 -
and 0. Thus, everywhere except at p=, q = . There is a S-function in

- 1 - 1
q at = , so qy goes through a zero at P = ~ if

1- 1
whereL 31/4 denotes the jump in Fu pacross = In terms of the para-

meters describing the profiles, this means:

-1
SR < if u 0 for p )

Jp 4

p p4 p 4 for p)-- 1

SR )> if u < 0 for p >
Sp 4

The case with u = 0 in the lower layer was applied to the underside of the
P

polar night jet by Murray (1960) and Simmons (1972). The condition SR > C

is applicable to the profiles of the present model. Since the upper layer
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of the present model is assumed to be more stable than the lower layer,

(T > 1), for there to be an internal zero of q , the shear in the upper

layer must therefore be more westerly than that of the lower layer (SR > 1).

This does not represent the situation at the earth's tropopause but does

approximate conditions just beneath the polar night jet.

Both Simmons and the author find that an unstable conjugate eigen-

value is associated with the zero of a caused by discontinuities in u

and O. It occurs only when SR > 0 for all values of yT. For the present

model the eigenvalue is not well determined, even for 48 levels. The dif-

ficulty is in resolving a mode whose strongest amolitude and v'O' values are

concentrated in a very shallow region around the internal boundary. Results

for 48 levels when T = 2, SR = 10, bp = 5 give doubling times of about

one week for wavenumber 8, and a vertical decay scale (from the internal

boundary) of about 40 mb. The phase speed is westerly at 30 m/sec which

places the steering level at 225 mb. Simmons' doubling times are slightly

longer than a week and his vertical decay scale is only a few kilometers.

The pressure wave of the mode tilts very slightly westward with height;

the total phase change from p = 0 to the ground is .1 radians. Essentially

all of the mode's kinetic energy is generated at the internal boundary.

This mode will be referred to as the "internal boundary mode".

3.7 Calculations for a' = 0 at P = 0

In the discussion of numerical accuracy (Chapter II), it was pointed

out that the fastest growing Eady mode growth rate and vertical structure

was not affected by changing the upper boundary condition from , = 0 to



' = 0 if a nominal stratosphere was present. A comparison of Figures 2.6

and 3.17 shows that this is far from the case if there is no stratosphere

(SR = 1, O, = 1). These two figures' results are calculated from identical

assumptions, except for the upper boundary condition. The Eady mode, in-

stead of changing little with yT (for o' = 0 at p = 0), becomes stable as

YT --- 0 when Y' = 0 at p = 0. Also, when i' = 0 at p = 0, the Green mode's

wavenumber approaches zero as YT decreases below 3, and the mode becomes

very weak (the doubling time is longer than 60 days). This compares with

a zonal wavenumber of 2.5 for small YT and a doubling time of 20 days for

the W' = 0 at p = 0 calculations. When nominal values of the parameters

are assumed, the fastest growing Green mode's doubling time is twice as

long when W' = 0 at the top. This contrasts with the small effect on the

Eady mode when the upper boundary condition is changed and a nominal stra-

tosphere is present.

The streamfunction amplitude of the Eady and Green mode for the case

of no stratosphere, SR = 1, and w'Ip 0 = 0, both had peak values at the

bottom and top of the model atmosphere; the peaks were of equal value (see

Green, 1960, Figures 5 and 6). Forcing 9' = 0 at the top placed a severe

constraint on these modes, causing their growth rates to be much smaller.

On the other hand, for nominal values of 0- and YT, and SR = -1.5,

0, or 1, the fastest growing Eady mode streamfunction amplitude went to zero

at the top for both upper boundary conditions, and the mode's growth rate

was unchanged (to within 2%). For the same parameter values, however, the

fastest growing Green mode amplitude peaks, which occur in the lower strato-

sphere (Figure 3.8), are replaced by a node in that region and 2 peaks near



the top and at the tropopause when the upper boundary condition is changed

to o' = 0 (see Figure 3.55). The effect is analogous to what happens when

one gets spurious reflections; the effect results in the doubling of the

Green modes' doubling time (sic.). For the case using o' = 0 at P = 0, the

fastest growing Green mode has a weak region of kinetic energy generation

within 15 mb of the top.

When c' = 0 at p = 0 and one parameter value is varied and the others

are held at their nominal value, one finds that for XT = 3, 4p > 40, or

-3< SR < -1 the same behavior analogous to reflection and destructive

interference occurs. For the Green modes at other parameter values, the

change in the upper boundary condition from W' = 0 to V' = 0 lowers the level

of the (II peak from the top down to the mid stratosphere; the growth rate

of these Green modes are substantially reduced.

For all parameter combinations where Y o and p > 10, the meri-

dional entropy transport for the Green and Eady modes is not strongly af-

fected by changing the upper boundary condition. The transports are very

weak near p = 0 for both modes and both boundary conditions.

The kinetic energy loss in the upper stratosphere for the Green mode

is smaller when LO' = 0 at p = 0. Green mode kinetic energy loss or genera-

tion is little affected at other levels. The kinetic energy loss or gene-

ration for the Eady mode is unaffected by changing the upper boundary con-

dition.

A new type of mode appears for w' p=0 when there is a stratosphere

and when SR > the nominal value (compare Figures 3.19 and 3.56). The wave-

number of its growth 'rate peak for YT and 0? nominal varies from zonal wave-

number 4 to wavenumber 1 as SR increases from -1 to 30; the value of the
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fastest doubling time remains constant at 4 - days, as does the steering

level (800 mb). The streamfunction amplitude peaks at the top and decreases

as a linear function of pressure to about 10% as much at the tropopause.

It remains close to this value below the topopause. The wave tilts west-

ward with height. Entropy transports are everywhere poleward and are es-

pecially strong in the lower stratosphere; the peak flux is at the tropo-

pause. Mode kinetic energy is destroyed in the lower stratosphere but is

generated everywhere else with greatest generation in the troposphere. The

mode is only present when the temperature gradient at the upper boundary

is able to play a role in fulfilling the necessary condition for instability.

A second conjugate pair of eigenvalues (one eigenvalue of each pair

represents an unstable mode) exists when SR < 0 and C' = 0 at P = 0 (see

Figure 3.57). When 4' = 0 was the upper boundary condition, there was only

one conjugate unstable eigenvalue solution to the model's differential equa-

tion except for the internal boundary mode which exists when SR ) Cp . This

new solution for W' = 0 at P = 0 exists only when the temperature gradient

at the top boundary is positive (warmer toward the poles). The new solu-

tion has growth rates which exceed those of the other solution (which con-

tains the Eady and Green modes) when the Richardson number of the upper

layer is less than that of the lower layer. The ratio of the two Richard-

son numbers (upper/lower) equals O7/ SR2 . Thus, y < SR2 is the condition

for dominance of the new solution; as illustrated by Figure 3.58. It can

also be seen from Figure 3.58 that the doubling times of the fastest grow-

ing mode of the new solution decreases quickly with R. of the upper layer.

The zonal wavenumber :- the fastest growing mode ranges from 3 when SR = -14,

0 > 40, and 'T = 2 to 9 when SR < -3, p = 2, YT = 2. Phase velocities



are large and easterly; at T = 2, SR = -8 and P = 50, the phase velocity

of the most unstable mode is -28 m/sec. The phase velocity becomes more

negative as SR becomes more negative so that steering levels remain

around 50 mb. Streamfunction amplitudes peak at the top and decrease rapid-

ly toward the tropopause where they are approximately 30% as large. In

the troposphere, the amplitude gradually decreases to a value of 20% (of

the peak value) at the ground. The phases show a strong eastward tilt of

the pressure wave with height in the stratosphere, a very slight eastward

tilt just below the tropopause and a slight westward tilt in the troposphere.

The phase change in the stratosphere is about :/2 radians. Correspondingly

the entropy transports are strong and equatorward in the stratosphere, weak

and equatorward in the upper troposphere, and weak and polewardin the lower

troposphere. There is a strong generation of mode kinetic energy in the

stratosphere with the greatest generation being at the steering level. Mode

kinetic energy is lost in the troposphere but in a smaller amount.

The picture of this new conjugate eigenvalue that emerges is one of

a mode which is generated in the stratosphere and "drives" the upper tropo-

sphere (through a loss of its kinetic energy) with weak counter-gradient

entropy fluxes. In a general sense, its properties mirror those of the

Eady mode: It is destabilized by a temperature gradient at the opposite

boundary and drives the upper troposphere instead of the lower stratosphere.

The internal boundary mode described earlier undergoes substantial

changes in growth rate and vertical structure when the upper boundary con-

dition changes to c' = 0. Its doubling time for the most unstable mode is

extremely short when ' = 0 at p = 0, and becomes much shorter when SR>> , .

When Y , SR, 7 = 2, 10, 5, the doubling time is only 3/4 of a day and the



zonal wavenumber is 5. Unlike the situation when (' = 0 at P = 0, the

eigenvalue is well resolved for the N' = 0 upper boundary condition. The

difficulty of resolving a mode whose pressure amplitude has a single very

sharp peak has been removed; the pressure amplitude now peaks at the top

and decreases only gradually to a value of 30% (of the peak value) at the

250 mb internal boundary. The amplitude in the lower layer gradually de-

creases to a value of .15 (of the peak value) near the ground. The phase

speed and steering level are about the same as for the 0' = 0 upper boun-

dary condition: 30 m/sec and 225 mb, respectively. The entropy transports

are strongest in the bottom of the upper layer, peaking at the internal

boundary; they are poleward (down gradient) and do not decrease to half the

peak value until 120 mb. There are weak equatorward transports in the upper

part of the lower layer, and weak poleward transports near the ground. The

eddy kinetic energy is generated in a region just above the internal boun-

dary and destroyed in a region just below it, just like the new conjugate

mode described above.
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curves are identical.
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Figure 3.11. As in Figure 3.9, for YT = 2, a = 50, and SR = -1.5 (solid),
0 (dot), and 1 (dash) .
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Figure 3.12. Vertical structure of the meridional entropy transport for
the fastest growing Green mode for same cases as in Figure 3.8.
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Wady mode for the same cases as in Figure 3.5.
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fastest growing Eady mode for the same cases as in Figure 3.19.
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Figure 3.37. Vertical structure of the meridional entropy transport for
the fastest growing Eady mode, for the same cases as in ifigure 3.19. Where
cases are not shown, they coincide with those presented: the curve for SR
= -8 coincides with that of SR = -12 at somelevels; the curves of SR = 0
and SR = +4 coincide with that of SR = -4 at some levels.



92

0-

200 -

400 I

w ,1

600

800

1000 I I I
-1.0 -.8 -6 -.4 -.2 0 .2 .4 .6 .8 1.0

v'8

Figure 3.38. As in Figure 3.37, except for the cases YT = 2, SR = -1.5,
and a = 1 (dot), 10 (dash dot),40 (solid), 100 (dash), and 1000 (cross).
Where cases are not shown, they coincide with those presented: below
250 mb, the Up = 40. 100, and 1000 coincide.

- -"YY 1III11"'



93

O-

200 -

400 -

E

I

A'

800 -

S\ *

1000J

-1.0 -.8 -.6 -.4 -. 2 O .2 .4 .6 .8 1.0

Figure 3.39. As in Figure 3.37, exceptfor tie cases SR= -1.5, p = 50,
and y = 0 (dot), 1 (dash dot), 3 (solid), 5 ((Ia7,'hi), 7 (cross), and 10
(long dash).
(long dash) .



I I I I

-.8 -.6 -.4 -.2 0

V' e'

0

200

p\

'1

I.:\.\\ ;. N,

I I I I I

.2 .4 .6 .8 1.0

Figure 3.40. Vertical structure of the meridional entropy transport for
the fastest growing Green mode, for the same cases as in Figure 3.19.

I

II,

I.

\"

\*

400 -

600

800

1000
-I.(0

R B nn I N 8 I m m g



O r

200

400 -

600 -

800 I-

1000 I I I I

fII

II

'I
*I

'

A '

SI
Il

~1

-1.0 -.8 -.6 -.4 -. 2 0 .2 .4 .6 .8 1.0

Figure 3.41. As in Figure
and cr = 10 (dash dot), 40

3.40, except for the cases Y. = 2, SR = -1.5,
(solid), 100 (dash), and 1000 (cross).

~



0-

00 - I

400 -

0 0 ItU I,
v'i

600

I ''II

800

1000
-1.0 -8 -.6 -.4 -.2 0 .2 .4 .6 .8 1.0

Figure 3.42. As in Figure 3.40, except for the cases SR = -1.5, ap = 50,

and y = 1 (dash dot), 3 (solid), 5 (dash), 7 (cross), and 10 (long dash).

~~~~__I__ ____~~__ I It, 11A, ill



0-

200

/ ,,

400 -/

E K

600

/00w ,cI

600

-1.0 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1.0

CE ( KE - P )
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CHAPTER IV

RESULTS FOR THE HIGHLY STRUCTURED BASIC STATES

4.1 Introduction

The simplified temperature and zonal velocity profiles of the pre-

vious section do not contain the detail found in true atmospheric profiles.

The goal of this chapter is to include such detail. The static stability

and unperturbed state of the model atmosphere will be chosen to include

seasonal variations. These variations will be represented by monthly aver-

aged u and T data for the months January, April, July, and October. Lati-

tudes from 200N to 700N in 50 intervals will be included.

These months represent seasonal transitions and extremes. The data

available allow fine detail to be included in the vertical structure of

the unperturbed state. The basic state is kept one-dimensional; longitudi-

nal and meridional variations are excluded.

In calculating the stability characteristics of these detailed basic

states, it will be of particular interest to determine how the modes of the

simplified profiles are changed; what new modes, if any, appear, whether the

modes grow fast enough to reach significant amplitude; and whether these

modes could play a significant role in the general circulation of specific

regions of the troposphere and stratosphere. These questions are addressed

in this chapter by discussing the longitudinal scale, growth rates and phase

speeds of the unstable modes, and by examining the vertical structure of

their pressure amplitude, their meridional entropy transport, their meri-

dional-vertical velocity correlations, and their conversion of available

potential energy to eddy kinetic energy.
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4.2 Criteria for Choosing Input Data for the Model

There are 44 pairs of u and T profiles from the four months and 11

latitudes selected. The pairs used in the calculations will be chosen from

these 44 pairs according to two criteria: First, low, middle, and high

latitudes should be represented in each seasonal month; the latitudes 250N,

450 N, and 650N are selected to meet this criterion. The second criter-

ion is more complicated and requires discussion. The Charney-Stern theorem

states that in the absence of boundary temperature gradients a zero in the

potential vorticity meridional gradient (q ) is a necessary condition for

instability. Furthermore, studies of Green (1972), Murray (1960) as cor-

rected by McIntyre (1972), Simmons (1972, 1974), and Dickinson (1973) have

shown that a zero in qY has associated unstable disturbances. The studies

of Simmons (1974, 1972) also show that pressure amplitudes and meridional

heat fluxes of the unstable modes are confined to a region which extends

only a few kilometers above or below the height of the zero in q . These

results indicate that a zero in the q, profile may result in unstable modes

and the location of the zero may be important in determining the vertical

structure of those modes. Therefore, when choosing u and T profiles for

the model, this second criterion will be observed: Profiles will be selec-

ted which represent all the qy zeros present in the larger data set of 11

latitudes and 4 months.

The second criterion applies, of course, to the one-dimensional cal-

culations of q,; because the basic states are one-dimensional; meridional varia-

tions inu and a (T) are ignored. However, calculations of qy, including both

vertical and meridional variability of -u and 6 (T) are made for all data
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sets and are compared with calculations which exclude meridional variations.

Regions where the two methods of q calculation differ are found to be re-

gions where u is large. However, the zeros of qy are found to be little
yy y

affected by the exclusion of meridional variations; thus, the one-dimension-

al calculation of q is qualitatively realistic. The second criterion,

therefore, allows for an adequate representation of potential source regions

for baroclinic instability.

4.3 The Data Sets

The data sets are chosen to cover more than one year where possible,

so that the study is climatologically representative. Data from the north-

ern hemisphere is more plentiful and thus better suited for a climatological

study. Four data sets are used and are described below. They will be re-

ferred to as Data Sources 1 to 4, respectively.

1) Oort and Rasmusson (1971) provide 5-year means (May 1958 to April

1963) for all months, for latitudes 100 S to 750N in 50 intervals and for

levels at 1000, 950, 900, 850, 700, 500, 300, 200, 100, and 50 millibars.

2) R. Newell has provided the tables of u and T (for the years 1964

to 1968) from which the plots in Newell et al. (1974) were made; this

data covered all months and latitudes 200N, 250 N, 300N, ... 850 N, and

is for levels at 200, 150, 100, 50, 30, and 10 millibars.

3) Tahnk and Newell (1975) supply u and T values at 5 mb and 2 mb;

these data were available only in 100 intervals from 150N to 750N,

and the data set is only for one year, 1972.

4) Finally, for levels between 1 and .1 mb, data from Newell and Tahnk

(in preparation) are used; the data are from Meteorological Rocket

Network observations (MRN); the data cover an 11-year period (1961 to

1971), but are only for North America.
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Because the last two data sets are very limited as to time and/or spatial

coverage, they are used only as guides to extrapolate u and T profiles

above 10 mb. It should be noted that 1) the data sets are from different

time periods, 2) they suffer from poor station coverage at levels above

100 mb, and 3) they employ different analysis techniques. These three

factors account for the differences among the data sets' values of u, T,

and hence, values of qY in regions where they overlap. The u and T values

of these data sets are presented in the appendix.

4.4 Calculation of q y

The calculation of qy is done for all data sets, with and without

meridional variations in u and 0 (T). First, a cubic spline was applied to

the u and T profiles within each data set to find values at model levels.

The cubic spline assures that vertical second derivatives are continuous;

this eliminates the possibility of spurious ; values. The splined T pro-

file yields p and -profiles from Equations 6, 8, and 9 in Chapter II, and the

definition of 0, and these profiles are used with that of _ in the exact

definitions, Equation 2 of Chapter III, and in the model approximation:

2 1
q - f ( u ) (1)

to obtain the two sets of qy values. The results are in Tables 1 to 8.

In the _q calculations which include U and 0 terms, there is a
I yy y

dominance of positive values which is due to the P effect and vertical shear

variation. There is a tendency towards negative values of q at low levels

(below 750 mb) for most latitudes. These negative regions start at levels
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ranging from the surface to 900 mb, and in some cases are associated with

2 1 -
two zeros. They are caused by large values of the term f ( r U )p. This

same term results in the high latitude 600-750 mb negative -y regions in

January, April, and October, and the July high latitude 375-500 mb negative

q region. There is little seasonal continuity of qy at higher levels for

the 5 year data sets; only July has significant negative q, values above

600 mb. The other months have a few weakly negative - regions in levels

covered by both the Oort and Rasmusson (1971) and Newell et al. (1974) data

sets, but none of these appears in both sets. In July, the only negative

q region below 5 mb in which the horizontal shear term is comparable to

the vertical shear term is that at low latitudes between 125 and 175 mb.

u , although relatively small in the regions at 550 and 650, 90 to 150 mb,

and in the region at 650, 30 to 60 mb, is just enough to tip the balance

from positive to negative q values. These negative q regions will not be

present in the model calculations of q.

The Tahnk and Newell (1975) data set has q zeros at 30 mb for lati-

tudes 450 and 500N for all seasons. At 650N there is a zero at 25 mb for

April and a zero at 50 mb for Ocrober. These zeros are due to large values

2 1
of f C u ) . They are not present in the 5-year Newell et al. (1974)

data set. Also, the zeros occur in a region where data points are sparse

(there is no data in the Tahnk and Newell (1975) data set between 10 and

100 mb). Therefore, their climatological importance is questionable and

they will not be included in U and T profiles used in the model.

The MNR data have zeros at high and low latitudes between 1 mb and

5 mb. These are due to large u and may result in instabilities which are

barotropic in character (Holton (1975), p. 88).
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The calculations of Leovy in Charney and Stern (1972) show zeros in

qy above 100 mb for 14 October 1957 at 150W. These zeros are not present

in the October monthly averaged data. This is not surprising as one data

set is only for a specific day and longitude and the other is averaged over

one month and all longitudes. Leovy and Webster (1976) suggest (without

presenting calculations) that I may have zeros in winter on the tropical

side of the stratospheric jet (they used hemispheric daily u data to calcu-

late l ). The MRN data for January have similar zeros but this data is only

for North America. The zeros are not in the Tahnk and Newell (1975) data

set. Both the Leovy and Webster (1976) and the MRN data q zeros are due

to large horizontal curvature, and instabilities associated with these zeros

would be expected to be barotropic in nature (Leovy and Webster, 1976).

The values of qy calculated for the model (Eq. 1 of Ch. IV) when com-

pared with q values calculated from Eq. 2 ofCh. III) reveal the contribution

of meridional shear variation. The term involving meridional variation of

70is a factor of 5 or more smaller than u . The u term is large and
YY YY

negative between 75 and 450 mb south of 350N in April and January and Octo-

ber. July values are strongly negative (nearly as large as January values)

at the same levels but for latitudes 400N and 450 N. In all data sets ex-

cept the MRN, July is the only month with large positive u values; these
yy

are at 250N and 300N between 175 and 350 mb; this, of course, reflects the

more northerly position of the summer zonal velocity jet. The region where

juyy 1 is large are those regions where the model values of q differ most

from the observed values. There is a negligible effect on the zeros of

below 175 mb for all months. In January and October there are some differ-

ences above 175 mb, but the zeros here in the observed _q do not appear in
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both data sets. In July there is a greater difference, as noted above, and,

in addition, in the region 400N to 500N, 50 mb to 120 mb. The MRN data set

has q zeros resulting from large u yy ; there are almost no zeros among the

corresponding model values.

Overall, however, meridional variations in u and a do not have a

substantial effect on the number and location of q zeros calculated from

zonally and monthly averaged data. Therefore, one-dimensional _4 calcula-

tions are qualitatively representative of the full two-dimensional y field.

A one-dimensional basic state thus includes essentially all the potential

sources of baroclinic instability that would be included in a two-dimension-

al basic state. This gives further support to the qualitative realism of

studying the baroclinic instability of one-dimensional unperturbed flow.

4.5 Processing the Data for Input to the Model

The profiles of u and T for the four months, January, April, July

and October and latitudes 250N, 450N, 65
0 N have already been chosen to be

used in the model. Examination of the q fields (model values) reveals

that January 350N and October 500N merit study for associated unstable modes.

January 350N provides q zeros at high (50, 100 mb ) and mid (480, 600 mb)

levels. October 500N provides a close comparison to October 45
0 N with the

major difference being in strength of the negative q region or closeness

of the q zeros.

None of the data sets includes all model levels. In order to obtain

a single u or T profile for all levels, the datawere plotted and smoothed

by hand. The Oort and Rasmusson data were followed closely to about 100 mb;

the Newell et al. (1974) data from 100 mb to 10 mb. Between 10 and 2 mb,
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the Tahnk and Newell (1975) data were used. Above 2 mb, the Newell and

Tahnk (in preparation) data were used as a guide. Care was taken so that

zeros of qY were affected minimally. The smoothed profiles appear in Fig-

ures 4.1 to 4.8.

To minimize error due to interpolation, points at levels for which

the data sets have values are then read from the smoothed u and T profiles .

Next, a cubic spline is applied to each set of u or T values to yield values

at model levels. The cubic spline again assures that vertical second deri-

vatives are continuous, and thereby avoids spurious q zeros and erroneous

small scale variations in model results. The splined u and T values consti-

tute the input i and T data for the model.

The q values associated with the model input profiles are in Tables

19 to+12. A comparison of these values with those q values from the model

calculations for individual data sets shows that joining the data sets

affected qy zeros only within the overlap region of the data sets. Three

negative q regions which appear in only one of the data sets do not appear

**

in the model q profiles . One negative q region (for January 350 N) re-

mains in the model profile, although it is present in only one data set.

The final model q profiles have a weak negative _q region for April 250N

at 400 mb which is not present in observed q profiles. Two negative qY

regions, July 250N, 125-175 mb and July 650N, 30-60 mb, are missing from

* The levels, 19 in number, are: .1, .2, .5, 1, 2, 5, 10, 30, 50, 100,
200, 300, 400, 500, 700, 850, 900, 950, and 10M0 millibars.

** These 3 negative q regions are for the Newell et al. (1974) data set.
They are: April 6 oN, levels 37-41; July 250N, levels 39-41; and Octo-
ber 450 N, levels 27-31.
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the final profiles; in the observations the latter region is weak and the

former is strong because of large meridional shear variation in u. Upper

level zeros in q are still present in the input data set of the model:

at January 350N (65-85 mb), July 450 N (85-125 mb), and July 65°N (140-175

mb). Therefore, the u and T profiles chosen for this instability study

on the whole give a reasonably accurate representation of mean atmospheric

qy zeros, and thereby also give a good representation of some potential

sources of baroclinic instability in the real atmosphere which were not

studied before.

In addition to the complete E and T profiles, the reference values

S -5 4 -2 -2 +5 -1
S .321 x 10-5 m sec-2 , = 10 nt m-, and u = 0 m sec are

oo o

used in the numerical calculations. From these YT is obtained. The field

+ C-7  Rd P k-
of - is calculated from r and C= n (( ) T)] .

n n l T P a [ -

The parameter YT and the fields of u and are all now determined and the

model set of finite difference equations is ready to be solved for eigen-

values and eigenfunctions for any given wavenumber P.

4.6 Model Results- Classification of Modes

The doubling times and phase speeds of unstable modes associated with

the - and T profiles are presented in Figures 4.9 to 4.21. All calculations

assume 0 ' = 0 as the upper boundary condition. There is no figure for July

at 250 N because no unstable modes were found to exist in that case. This is

because there is no temperature gradient at the lower boundary nor any in-

ternal zero of q, associated with the July 250N data; the necessary condi-

tions for instability are thereby not met (the relation of the modes pre-

sented in Figures 4.9 to 4.21 to the necessary conditions for instability

___ _ . _ ____I___ 111
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will be discussed at the end of this chapter). Modes are presented for

planetary wavenumbers .3 to 15 (when vertical resolution permits), except

for October at 250 N where the range is 3 to 18 (there are no unstable modes

less than wavenumber 3 for this case). Note that the physical wavelength

associated with the wavenumbers changes with latitude.

All cases except July 250N, October 250N show instability at all zonal

wavelengths resolved by the model except isolated wavelengths. Doubling times

tend to be longer for 650 N. Modes also tend to peak at shorter physical wavelengths

for higher latitudes, which may be due to the increase of 3 with latitude.

Within any given season, there is a large difference between the doubling

time and phase velocity curves at different latitudes. As one changes

season at the same latitude, there is somewhat less of adifference in these

curves only for 650N.

The modes presented in the 14 cases under discussion are divided

into 6 categories:

1) The Eady modes, whose fastest growing mode has the shortest doubling

time of all modes and usually occurs between wavenumbers 5 and 8.

2) The Green modes, which are on the long wave side of a cusp which sepa-

rates them from the Eady modes. Exceptions to this are the cases of April

and July at 650N, where the Green and Eady modes merge. There is still a

minimum in the phase velocity curve and the wavenumber of this minimum is

defined as the division between Eady and Green modes in these cases. The

Eady and Green modes are part of a single conjugate solution to the eigen-

value problem which are separated by a cusp point.
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3) The "shortwave Eady modes" which have a local growth rate maximum on

the shortwave side of the fastest growing Eady mode. These modes occur

only for January, April, and October at 65
0N. They are defined to exist

for wavenumbers greater than that of the local growtbrate minimum in the Eady

modes' curve. This minimum is at wavenumbers 6.4, 7.2, and 6.8, respectively,

for the 3 cases cited above.

4) The shortwave modes which have their shortest doubling time at the

wavenumbers of the local growthrate minimum of the Eady mode curve men-

tioned immediately above. They have a cutoff on both sides of the peak

value, and are always weaker than the Eady modes at the same wavenumbers.

These modes form a solution to the eigenvalue problem which is distinct

from that containing the Eady and Green modes.

5) Shortwave modes other than those of category 4, whose fastest growing

mode has a shorter wavelength than that of the fastest growing Eady mode.

These modes are a conjugate solution to the eigenvalue problem which is

separate from the solution containing the Green and Eady modes. Their

doubling times are generally much longer than that of the fastest growing

Eady mode.

6) Longwave modes, other than the Green modes. The fastest 4rowing long-

wave mode is defined to have a wavelength longer than that of the fastest

growing Eady mode.. These modes may occur either on the longwave side of a

cusp point which separates them from the Green modes (e.g. January, 450N),

or they may form a separate conjugate solution to the eigenvalue problem.

For ease of reference, the modes in the six respective categories are given

the symbols E, G, E , S , S, and L.
s m

_ ____ I__ 11111116
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Figures 4.9 to 4.21 give several examples of each mode category defined

above. Table 4.13 presents properties of the fastest growing mode of all

of these examples . Subsequent discussion of the unstable modes will,

like Table 4.13, be organized according to mode category.

4.7 The Eady Modes

The Eady modes are present for all cases except July at 250N. The

fastest growing E modes are usually between 3000 and 5500 km in wavelength

(planetary wavenumbers 5 to 8). A notable exception is October 250N, which

has A = 2000 km and pwn = 18 (see Table 4.13). Doubling times of the fast-

est growing E modes range between 1.5 and 4.3 days and average about 2 days;

they are shortest for 450 N. The case of January 450 N has pwn = 7.7 and

doubling time (D.T.) = 1.7 days; this compares well with pwn = 6.6 and D.T.

= 1.6 days for the fastest growing Eady mode, when nominal winter parameters

are used in constructing the u and Oprofiles. The fastest growing E mode

in Geisler and Garcia's (1977) calculation which used the Lindzen-Hong pro-

file (to simulate winter at 450 N) has a planetary wavenumber greater than 9

and a doubling time of 1.7 days. The doubling time agrees well with this

model's value for January 450N. The wavenumber is difficult to define be-

cause the E mode growth rate peak is very flat in the Geisler and Garcia.

calculation.

With the again notable exception of October 250N, phase velocities

* Modes with doubling times greater than 20 days are not included. The
fastest growing Green modes for April and July at 650N are chosen to be
those with their wavenumber just on the longwave side of the point of
maximum curvature in the Eady-Green mode growth rate curve.
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of all the E modes are positive except when the growth rate goes to zero.

The value of the phase velocity is less than 7 m/sec, so there are steering

levels for all the E modes in the lower troposphere. u = c also in the
r

upper stratosphere for some cases (see Table 4.13). The fastest growing

E mode has an easterly phase velocity only for October 250N, but the u pro-

file is such that in this case, as in all the others, there is a steering

level in the lower troposphere. The phase velocity curve for January 450N

is similar to that for the simple u and Oprofiles constructed from nomi-

nal winter parameters. Geisler and Garcia's (1977) Lindzen-Hong profile

phase velocities are higher (around 14 m/sec for the Eady modes), but the

Lindzen-Hong profile also has higher u values near the ground than does

the January 450N u profile, so that the steering levels forboth these cases

are at nearly the same height (2 km or 800 mb).

Some properties of the vertical structure of the fastest growing

Eady modes are presented in Table 4.13 for all the cases for which the mode

exists. The complete jWI, Phase (p), vO , and eddy energy transfer profiles

are presented in Fiqures 4.22 to 4.29 for 8 of the 13 cases. The cases of

January 450N, April 450N, and April 650N are similar in vertical structure

to that of January 650N, and the cases of October 450N and October 650N are

similar in vertical structure to that of October 500N.

The streamfunction amplitudes show a peak at the ground and near the

tropopause for all cases except April and October 250N. There is gener-

ally a strong resemblance to the case of simple profiles constructed from

* The tropopause is defined to be the pressure level where the temperature stops
decreasing as one ascends from the ground. It is between 200 and 100 mb

for the profiles of this section and is at lesser pressure for lower
latitudes.

MWM M11
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nominal winter parameters. The two exceptions decay rapidly in the upper

troposphere to extremely small values throughout the stratosphere; they also

have the highest planetary wave numbers of all the cases, as one would expect.

The phase profiles show that the pressure wave tilts gradually west-

ward with height except in the upper stratosphere where the westward tilt

is very strong. Calculations of the phase difference between v' and W'

show that the meridional circulation associated with this wave is strongly

poleward and upward throughout the troposphere and lower stratosphere and

changes over to poleward and downward circulation in the upper stratosphere

where [(( is small.

The meridional entropy transports are poleward throughout the model

atmosphere for nearly all cases. Weak shallow equatorward fluxes at the

ground for October 250N and January 650N are the only exceptions. The

transports are strong only in the lower troposphere and peaks there or at

the ground.

Mode kinetic energy release is strongest in the mid and/or lower

troposphere (depending on the input a and T profiles) and goes to zero with

w at the ground. The greatest destruction of mode kinetic energy is in the

lower stratosphere, but the amount of destruction is very small compared

to the amount of kinetic energy generated in the troposphere.

4.8 The Green Modes

The Green mode spectrum joins that of the Eady mode at a cusp point.

The Green modes are present with the Eady modes for all cases except July

250N. The fastest growing G modes have wavelengths between 5000 and 10000

km (planetary wavenumbers 2.5 to 5, except for a value of 7 for October 250N).
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Doubling times for the fastest growing G modes very from 4.6 to 19 days,

and average 8 1/2 days; the longest doubling times are for profiles at 65
0N.

The case of January 45*N has the fastest growing G mode at pwn = 4.8 with

D.T. = 6.9 days. This compares very well with Geisler and Garcia's values

of pwn = 5 and D.T. = 7.5 days for the Lindzen-Hong progile. Calculations

using simple ii and 7 profiles constructed from nominal winter parameters

give pwn = 3.3 and D.T. = 6 days for the fastest growing G mode.

Phase velocities for the G modes are positive except for April and

October at 250N. The range of phase velocity values is like that of the

E modes and steering levels are similar to those for the E modes. The G

modes for the case of January 45
0N shows the same disagreement with the

phase velocity calculations of Geisler and Garcia as did the E modes; the

reason for this was discussed above. The phase velocities of the G modes

for January 450N agree well with those for the case using nominal winter

parameters.

The vertical structures of the fastest growing G modes for 8 of the

13 cases are presented in Figures 4.30 to 4.37. The cases of April at 250N,

450N, 650N are similar to that of January 25
0N and the cases of July 650N

and October 450N are similar to that of October 25
0N, and thus these five

cases are not illustrated; all cases, however, are included in Table 4.13.

The streamfunction amplitudes show strong peaks in the stratosphere

and secondary peaks near the ground. The January and October 65
0N fastest

growing G modes have strong amplitudes throughout the stratosphere. Those

of January 450N and, especially, October 50
0N have very narrow peaks near

the top (p = 0). Stratospheric amplitudes are much-stronger than tropo-

spheric amplitudes for the fastest growing G modes; the opposite is true

I_ .
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for the dominant Eadymodes. Geisler and Garcia's stratospheric amplitudes

for the G mode in some cases are not much stronger than tropospheric values.

They attribute this to a very small difference between the minimum zonal

wind in the stratosphere and the mode phase speed. The case of January 450 N

has a large value for this difference: 6 m/sec. However, for the cases of

October 450N and 500N the difference is small (K 1 m/sec) yet the fastest

growing G modes for these cases have very strong peaks in the stratosphere.

Results from this model are inconclusive regarding the dependence of strato-

spheric G mode amplitudes on the difference between the stratospheric zonal

velocity minimum and mode phase speed.

The streamfunction phases indicate a westward tilt with height of the

fastest growing G mode pressure wave throughout the atmosphere for all cases

except for January 650 N and October 250 N, which have a shallow region of

eastward tilt at the ground. The westward tilt is strongest in the strato-

sphere and mid-troposphere for most cases. Calculations of the v' and W'

phase difference show that the meridional circulation of the fastest grow-

ing G modes is poleward and upward in the lower troposphere and poleward

and downward in the upper troposphere and stratosphere. January 65N and

October 650N are exceptions. In these cases, the circulation in the stra-

tosphere is poleward and upward. The stratospheric circulation of the

Green modes agrees well with the v'' covariance data presented in Newell

(1964b). Newell's 18-month data set shows poleward and downward transient

eddy motion at 70 and 45 mb in all seasons and latitudes 200 N to 700N

except for the case of winter and spring above 550N. In this case, the

circulation is poleward and upward.

* Molla and Loisel's (1962) v'w' covariance data (for only 2 months) pre-
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The meridional entropy transports are poleward with strong peaks in

the stratosphere for all cases except January 45
0N and 650N and July 450N.

The pressure wave' for the exceptional cases also hada weakwestward tilt

with height in the stratosphere. January 450N and October 500N are the

only cases which have peaks of v'S' near the top, at 20 and 10 mb, respec-

tively. The G modes in general have much stronger stratospheric v'8' rela-

tive to tropospheric values than do the E modes.

The release of mode kinetic energy is strongest in the lower tropo-

sphere with some modes also having strong values in the upper troposphere.

The destruction of mode kinetic energy is very strong in the stratosphere,

and it is much stronger (relative to tropospheric values) for the G modes

in comparison with the E modes. Exceotions are the cases of January 65
0N,

October 650 N, and July 450N; the first 2 of these exceptions actually have a

weak generation of mode kinetic energy in the stratosphere.

4.9 The Es and Sm Modes

The E and S modes always occur together. They exist only at 650N
s m

and are present in all seasons except summer. As shown by Table 4.13 and

Figures 4.13, 4.16, and 4.21, all the Es modes are remarkably similar to

each other as are all the S modes. The most unstable E and S modes are
m s m

(cont'd from previous page)

sents a similar picture for the lower stratosphere. However, Wallace (1977)

states that: "Calculations of the temporal correlation between vertical velo-

city and temperature by Molla and Loisel (1962) ... indicates that mean air

parcel trajectories in the waves slope upward toward the pole". No vertical

velocity-temperature correlations are presented in Molla and Loisel (1962).

Their v 'w covariances do show poleward-upward transient eddy motion in a

100-50 mb layer, but only above 550N for only the 2 months January and April 1958.

--1 9111111111Y
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planetary wavenumbers 13 and 6 1/2 and have doubling times of 3 and 5 days,

respectively. The phase speed and steering level height of the most unsta-

ble Es mode (2 m/sec, 1.5 km) are half of the respective values for the Sm

modes.

The vertical structures of the most unstable E and S modes are
s m

presented for January 650N (Figures 4.38 to 4.41); the structures of the

modes for April and October are very similar. The streamfunction amplitude

of the Sm mode peaks in the upper troposphere and secondly, near the ground.

The much shorter zonal wavelength Es mode peaks near the ground and is

trapped in the lower troposphere. The pressure waves of both modes tilt

gradually westward with height except for shallow regions of weak eastward

tilt near 750 mb and the ground. The meridional entropy transports in

these shallow regions are correspondingly weak and equatorward. The entropy

transports are primarily poleward for both modes. They are strong in the

mid and lower troposphere for the Sm mode and strong in the lower tropo-

sphere for the E mode. The meridional circulation for both modes shows a
s

strong poleward and upward correlation of v' and U' at all levels. The

generation of eddy kinetic energy is strongest in the mid troposphere for

the S mode and in the lower troposphere for the E mode. The destructionm s

of eddy kinetic energy is very weak and occurs in shallow regions. The Sm

and especially the Es modes are very short-wave modes and are strongly active

only in the lower or mid troposphere. They would be of little importance

to the stratospheric general circulation, because of their shallow depth.

4.10 S Modes

The short wave modes have zonal wavelengths less than 3700 km. They
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occur at a wide range of mid latitudes and, except for an Sm mode at 65*N,

they are not present in October. The doubling times of the most unstable

S modes varies from 4 to 15 days. The most unstable S mode for two cases,

April and July at 45N was not resolved by the model; they are both shorter

than 1500 km. Modes at pwn = 13 were taken to represent these cases. These

two cases also have a cusp point at wavenumber 5.7. At wavenumbers less

than 5.7 there are weaker longwave modes which form with the S modes, a

distinct unstable solution to the eigenvalue problem at all wavelengths

except that of the cusp point.

Phase velocities are high (4,-15 m/sec) for the S modes of low lati-

tudes (250N, 350N) and are low (Z 3 m/sec) for the S modes of higher lati-

tudes (450N, 650 N). The S modes whose fastest growing mode is unresolved

and their longwave counterparts have a remarkably constant phase velocity

for all wavenumbers except very near the cusp point. The phase velocity

is ~- 3 m/sec, and steering levels are at 890 mb. The other S modes have

steering levels higher up in the mid troposphere and in the stratosphere.

Figures 4.42 to 4.45 present the vertical structures of 4 of the 6

most unstable S modes. The two S modes for April 25
0N are similar in ver-

tical structure, as are the S modes for April and July at 45
0 N.

The streamfunction amplitudes for all the fastest growing S modes

except those which are unresolved are strong only in the upper troposphere

and peak just below the tropopause. The April and July 450N S modes for

pwn = 13 are trapped in the lower troposphere and peak at the ground.

The streamfunction phases vary very little with height except near

the ground and in the lower stratosphere. In the latter regions, the wave

tilts westward except for July 65
0N which has a substantial eastward tilt

- - ~ IYYIIIUI
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between 140 and 180 mb. Near the ground the April and July 450 N modes have

a westward tilt. For all seasons, the wave has a strong poleward-upward

v'I' correlation in the troposphere which becomes poleward-downward in the

stratosphere..

The meridional entropy transports are strongly poleward in the mid-

and/or upper troposphere for all cases except April and July at 450N. The

only appreciable transports for these two cases are poleward and near the

ground. Only July 650N has a significant region of equatorward transports

and these are near the tropopause.

Eddy kinetic energy is generated only in the upper troposphere for

all cases except April and July at 450 N. These two cases have all their

kinetic energy generated near the ground; kinetic energy for the S modes of

these cases is destroyed between 830 and 900 mb. The S modes for April

250 N lose their kinetic energy in the upper troposphere, just below the

tropopause and, to a lesser extent, in the mid-troposphere. January 350N

and July 650N have shallow regions in the mid and upper troposphere where

there is a small loss of mode kinetic energy.

4.11 The L Modes

There are no L modes at 250 N for all four months, nor are there any

L modes with doubling times shorter than 25 days for April. The wavelength

of the fastest growing L modes varies between 3.5 and 13.5 x 10 3 km. There

are only 2 L modes of wavelength less than 8 x 10 km, and these have the

longest doubling times (13 to 14 days). The doubling times for the most

unstable modes of wavelength 8 x 103 km or greater varies between 6 and 11

days. The phase velocity of the L modes varies between 2.5 and 7 m/sec
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except for the case of January 350N, whose L modes have much faster phase

velocities of 18 to 20 m/sec. The steering levels in the troposphere for

the L modes ranges from 920 to 390 mb. January 351N, July 45*N, and July

65N also have steering levels in the stratosphere (see Table 4.13).

The vertical structures of 4 of the 7 fastest growing L modes are pre-

sented in Figures 4.46 to 4.49. The omitted cases: January 450N (pwn= 2.3),

July 650N, and October 650N are similar in vertical structure to those of

January 45*N (pwn = 3.6), January 350N and January 65*N, respectively.

The streamfunction amplitude of all the fastest growing L modes peaks

at the tropopause or higher. The fastest growing L modes for January450 N,

January 650N and October 650N peak just below the top of the model atmosphere;

their structure would be resolved better if there were levels above 1 mb

(47 km), the highest level for which streamfunctions are calculated. Only

the L modes for July 450 N and January 350N have appreciable streamfunction

amplitudes in the troposphere; these occur in the upper troposphere.

The most unstable L mode's phases show that their pressure waves

have a zero or westward tilt with height throughout the model atmosphere

for all cases except January 350N and July 65
0N. These cases have a strong

eastward tilt between 350 and 75 mb. For all cases, the v'w' correlation

indicates a poleward upward circulation at lower levels which becomes pole-

ward and downward in the upper troposphere and stratosphere.

The meridional entropy transports for the fastest growing L modes

are everywhere zero or poleward except for January 35
0N and July 650N. For

these cases, there are strong equatorward transports in the region of the eastward

tilt of their pressure wave. The poleward transports of the fastest growing L modes

---- -- -- --IIY IYIIIHY III1 U
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all peak in the stratosphere, only July 450 N has a secondary peak at the

ground. The most unstable L modes whose streamfunction amplitude peaks

near the top also have their meridional entropy flux and eddy energy

transfer peaks at or near the top.

The fastest growing L.modes for July and January at 450N have most

of their kinetic energy generated in the troposphere between 850 and 250

mb. These modes also have a substantial amount of their kinetic energy

destroyed in the stratosphere. The remaining four fastest growing L modes

have most of their kinetic energy generation in the stratosphere and lose

their kinetic energy in the lower stratosphere or upper troposphere. These

four modes are examples of in situ baroclinic instability of the strato-

sphere. Two of these modes (those for January and October at 650 N) have

their peak v'&' and JIJ values at or near the top. An accurate represen-

tation of their structure above 10 mb would require more levels in that

region. The other two L modes (January 350N and July 650N) are well re-

solved. Their significance is discussed in the next two sections.

4.12 The Necessary Conditions for Instability and the Existence of Unstable
Modes

In the above discussion, it has been shown that there are long and

short wave modes (the L, S, and S modes) associated with the u and T pro-m

files obtained from monthly averaged data. Figures 4.9 to 4.21 show that

these modes exist at the same wavenumbers as the Green and Eady modes. In

one case (April 250 N) 2 S modes exist at the same wavenumbers as an E mode.

These long and short wave modes were not present for the parametric u and T pro-

files of the previous chapter. For 3 u and T profile pairs of this chapter,
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the Eady modes had a strong shortwave local maximum at approximately wave-

number 13; this also did not occur for the parametric profiles. Why do

these new long and shortwave modes exist? Why did the Eady modes' growth-

rates in some cases acquire a local maximum near wavenumber 13? The answers

to these questions come from an examination of the relevant quasi-geo-

strophic potential vorticity profiles.

The Eady and Green modes exist for the i and T profiles of this

chapter if 1) there is a temperature gradient at the lower boundary, or

2) there is a zero in the qy profile. The case of January 250N had a sur-

face temperature gradient and E and G modes, but no qy zeros. The case of

April 450N was altered without affecting the qy zeros so that it had no

surface temperature gradient; its E and G modes were only slightly affected.

The case of July 250N shows that indeed no modes exist if the necessary con-

ditions for instability are not met.

Removal of internal qy zeros or changing the surface temperature

gradient does substantially alter the gorwth rate spectra of the G and short-

wave E modes. Doubling the surface temperature gradient for January 250N

decreased the fastest G mode doubling time from 5.3 to 3.3 days. Removal

of the 600-730 mb negative q region for the cases of January, April, and

October 650N resulted in removing the local maximum of E mode growth rates

near wavenumber 13. (By definition, this means removing the Es modes).

The simple parametric u and Tprofiles do not have this negative q region.

Removal of the 730-800 mb negative qy region for the cases of April and

July at 450N increased the fastest growing G mode doubling time from about

8 1/2 to 17 days and .increased the doubling times of E modes between wave-

numbers 11 and 15 from about 2 1/2 to 10 days. The removal of the negative
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y region for the cases at 650N required increasing u by .3 m/sec at 700 mb

and by .1 m/sec at 500 mb; for the cases at 450 N, the removal was accom-

plished merely by increasing U at 850 mb by .3 m/sec. These and other cal-

culations show that a very small change in the U profile can result in a

drastic change in the zeros of the ( profile. This need not be the case.
y

The curvature of the u profile, u , is what has an important role in de-
PP

termining y. Substantial changes in the _ profile could be made without

significantly affecting the zeros of q if Upp is not appreciably affected.

The above calculations have shown that small changes in the E profile can

result in the removal of q zeros which drastically affects the growth rate

spectra. However, the cases of January, April and October at 650N have

widely differing u profiles, but very similar q profiles (all have zeros
y

at 600, 730, and 880 mb). Their growth rate spectra (and even the phase

velocities and mode structure) are remarkably similar. Thus, a substantial

change in the U profile need not have an important effect on the growth rate

spectra unless is it accompanied by a substantial change in the zeros of

the y profile. Calculations of Gall and Blakeslee (1977) and Staley and

Gall (1977) have also shown that the growth rate spectrum at short wave-

lengths is very sensitive to low level change in the G and static stability

profiles. They claimed that this was because the short waves "felt" only

the part of the 5 profile below 500 mb. This explanation could not apply

to the longwave Green modes of this study, which were affected by low level

changes in u. Gall and Blakeslee (1977) and Staley and Gall (1977) did not

discuss the effects of their low level changes in u and O on qy.

The S modes, like the E modes, do not exist if the 600-730 mb nega-
m s

tive qy region is removed. This is more than just removing a local maximum
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in a growth rate curve. An entire distinct conjugate solution to the eigen-

value problem exists only when a specific negative qy region (with its asso-

ciated zeros) also exists. The profile of qy requires negative values for

it to allow, in conjunction with the surface temperature gradient, the

bracketed term in Eq. 1 of Ch. III to be zero so that C. need not be zero for
1

the S modes. The E and G modes in these cases do not need negative values
m

of ' to meet the necessary conditions for instability.

The L modes (except for January 450 N) and S modes exist only when

certain negative qy regions are present; these regions are specified in

Table 4.13. These modes (with the exclusion of January 450 N) are part of

a conjugate solution to the eigenvalue problem which is distinct from that

containing the Green and Eady modes. The L modes for January 350 N and July 650N

are the only modes associated with negative q regions in the stratosphere. These

modes are an example of in situ stratospheric . baroclinic instability. They

have downgradient meridional entropy transports and have their kinetic ener-

gy generated at the levels of their associated negative qy regions.

The S , S, and L modes were not present when the simple parametric i
m

and T profiles were used. These modes are seen to exist for the more com-

plicated u and T profiles of this chapter because these profiles have 4

zeros not present in the simple parametric profiles. The S , S, L, and E
m s

modes which exist only when a specific negative q regions exists always

have downgradient meridional entropy fluxes at the levels of that region.

In about half the cases, the fluxes peak at one of the q zeros bounding

the negative y region (See Table 4.13). Modes which are associated with

the surface temperature gradient have downgradient fluxes at the surface.

Thus all modes have downgradient meridional entropy fluxes in the region of
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their source of instability, and their maximum entropy transport is generally

above or at the top level of their destabilizing negative qy regions.

Several cases indicate that the amount of negative is important in

determining the strength of the growth rate of the associated unstable mode or in

determining whether it exists at all. October 500 N, July 250N and January 350N

each have a negative qyvalue at only one level, and none have an unstable mode

associated with this negative qy region (to within model resolution). April 250 N

and October 450N each have negative q regions 2 levels deep and do have associated

unstable modes which have small growth rates and/or have small extent in wave-

number space. July 450N, April 450N, January 350N, January 650N, April 650N,

and October 650 N all have much larger negative q regions and all have associated

unstable modes of much larger growthrates.

4.13 Importance of the Unstable Modes to the General Circulation of Spe-
cific Regions

Foz modes of different wavelengths, one cannot conclude that the modes

with larger growth rates will dominate the general circulation; their growth may

cease sooner than those which have slower growth rates. This was shown by Gall

(1976) and Staley and Gall (1977) for the case of long vs. short waves. They found

that quasi-geostrophic unstable modes of wavelength < 3000 km were trapped below

500 mb whereas modes of wavelength > 4000 km extended through the depth of the tro-

posphere. They also showed that modes which were trapped in the lower troposphere

(the shortwave modes) stopped growing sooner than modes which extended to upper

levels. Therefore, the longwave G and L modes of this model, although having sig-

nificantly smaller growthrates than the E and Es modes, may be very important to

the general circulation in the upper troposphere and stratosphere.

All the fastest growing G modes (those discussed in this chapter,

and those associated with parametric u and T profiles of Chapter III) have
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their strongest streamfunction amplitudes inthe stratosphere and/or the

upper troposphere just below the tropopause. The peak value of the stream-

function amplitude always occurs near the tropopause. The meridional entropy

transports of the fastest growing G modes in all but four cases (see Table 4.13)

are strongest in the stratosphere with most cases having their strongest

transports in the lower stratosphere. The transports are poleward and may

be the cause of the observed secondary maximum of poleward transports

in the lower stratosphere (Oort and Rasmusson, 1971; Newell et al., 1974).

All but 3 of the fastest growing G modes have most of their kinetic energy

depleted in the stratosphere. The Green modes, then, are potentially very

important to the general circulation of the lower stratosphere and may also

be important for the general circulation of the upper stratosphere and the

region just below the tropopause.

The L modes, in addition to the G modes, have strong () .5 of their

peak value) amplitudes, meridional entropy transports, and kinetic energy

losses in the stratosphere. Four of the fastest growing L modes may be

important to the general circulation above the lower stratosphere. However,

these modes have large amplitudes and entropy fluxes very near or at the top of

the model atmosphere and may require more levels in this region for an accur-

ate determination of their vertical structure. The fastest growing L mode

for July 450N is the only L mode which has strong poleward entropy fluxes

in the lower stratosphere. The L modes for January 350N and July 650 N are

well resolved and are examples of stratospheric in situ baroclinic insta-

bility. They both have strong equatorward entropy transport in the lower

stratosphere. Observations of Oort and Rasmusson (1971) and Newell et al.

(1974) disagree as to the direction of the transport in the lower stratosphere
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for January 350N, but they agree that the transports are weak. For July

650 N, they'agree that the transports are weak and poleward. The G modes,

which have growth rates comparable to those of the L modes in these cases,

show weak poleward fluxes for January 350 N and strong poleward fluxes for

July 650N. Thus, the G modes and L modes arising from in situ baroclinic

instability may both be important to the general circulation of the lower

stratosphere for January 350N and July 650N.

Most S and Sm modes have strong streamfunction amplitudes throughout

the troposphere. Three cases, the S modes for April 250N and July 650N have strong

fluxes in the upper troposphere; all fluxes are poleward except for July 650N

which has a region of equatorward fluxes between 160 and 180 mb. All the other S

and S modes have poleward v's' values which are strongest in the mid or lowerm

troposphere. The S and S modes could be important for the general circulationm

of the upper troposphere. In the mid and lower troposphere they are likely

to be dominated by the E and Es modes which have strong amplitude and entropy

transports in these regions and which, in all cases except January 350N and

January 650 N, have much larger growth rates at the same wavenumbers.

The Eady modes, like the S and Sm modes, have strong streamfunction

amplitudes throughout the troposphere. In some cases the E modes have

strong amplitudes for about 20 mb above the tropopause. The meridional en-

tropy transports of the E modes is strong only in the lower troposphere as

is the generation of their kinetic energy (there are no regions where E

mode kinetic energy loss is large relative to the amount generated). The

above description of the Eady modes associated with the u and T profiles

of this chapter also applies to the Eady modes associated with u and T pro-

files generated from the parameter values: yT = 2, SR = 0, 1, or -1.5,
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and tr = 50. Thus, the general circulation of the troposphere, especially

the lower troposphere, is expected to be very strongly affected by the Eady

modes.

The Es modes and E modes of similar wavelength have strong ampli-

tudes, v'S' values, and eddy.energy transfer values only in the lower tro-

posphere. These modes are therefore likely to be important to the general

circulation of only the lower troposphere, with E modes being dominant.

The most unstable G modes have been shown to be potentially impor-

tant to the general circulation of the lower stratosphere, in contrast to

the most unstable E modes which have very weak amplitudes and fluxes in the

stratosphere (relative to those in the troposphere). The longest E modes

have wavelengths comparable to those of the Green modes. The question

arises as to whether they share some of the G mode properties and also are

potentially important to the stratospheric general circulation. Calcula-

tions for 10 of the basic states of this chapter show that the long wave

E modes, which are within half a planetary wave number of the cusp point

dividing them from the Green modes, do share many of the properties of the

Green modes. In particular, they have much stronger stratospheric ampli-

tudes and fluxes than those of the most unstable Eady mode. Amplitudes are

at a maximum usually at the tropopause. The v'8' values are greater than

1/2'the nominal value generally between 90 and 40 mb and sometimes between

the tropopause and 40 mb. The circulation-of these longwave E modes is

poleward and downward. Nearly all of their kinetic energy is generated in

the troposphere, and they have a much greater dstruction of kinetic energy

in the stratosphere than does the most unstable Eady mode. Thus, in addi-

tion to the G (and possibly L) modes, the longest wave E modes may be im-
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portant to the general circulation in the stratosphere.

4.14 Calculations for W' = 0 at p = 0

Changing the upper boundary condition in the parametric study of

Chapter III resulted in large changes, for some parameter combinations, in

the Eady and especially in the Green modes' growth rates, phase velocity,

and vertical structure. The changes were drastic when Oj equaled 1 (no

stratosphere). In addition, new modes appeared which were associated

with a temperature gradient at the upper boundary when t' = 0 was the upper

boundary condition.

The calculations of this chapter are virtually unaffected by a change

in the upper boundary condition from Y' = 0 to 0' = 0. This is because the

static stability, 0 , becomes very large near p = 0 and would damp out the

effects of the upper boundary condition. It would also not allow a temper-

ature gradient at the upper boundary to be of any importance in affecting

the necessary conditions for instability. From Eq. 1 ofCh. III one sees that

large 0 at the top allows one to neglect the integral whose integrand is

evaluated at the upper boundary. Thus, the necessary conditions for insta-

bility for ' = 0 at p = 0 become, for very large -at p = 0, nearly iden-

tical to those for Y' = 0 at p = 0. Thus, modes which are present for Y'

at p = 0 will also be present when N' = 0 at p = 0 and vice versa.

Since O at p = 0 is large but finite, there is a small difference

between calculations assuming different upper boundary conditions. When w'

= 0 at p = 0 there are for January 650N and October 650N additional long-

wave modes of planetary wavenumber ( 1.5 and doubling time > 2 weeks.
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These modes exist only when the temperature gradient at the upper boundary

is non-zero and only when 0' = 0 is the upper boundary condition. Their

kinetic energy is generated mostly in the stratosphere.
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Figure 4.22. Vertical structure of the streamfunction amplitude for the
fastest growing Eady mode. Cases: January 25,N (dot), January 350N (dash
dot), January 650N (solid), and April 25N (dash).
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Figure 4.23. As in Figure 4.22, for
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Figure 4.26. Vertical structure of the meridional entropy transport for
the fastest growing Eady mode. Cases are those in Figure 4.22.
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Figure 4.27. As in Figure 4.26, except for the cases July 450N (dot), July
65N (dash dot), October 250N (dash), and October 500N (solid).
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Figure 4.28. Vertical structure of the transfer of eddy kinetic to eddy
available potential energy (KE - PE is positive) for the fastest growing
Eady mode. Cases are those in Figure 4.22.
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As in Figure 4.30, except for the cases: July 450N (dot),
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Figure 4.35.
October 250N

As in Figure 4.34, except for the cases July 450 N (dot),
(solid), October 500N (dash dot), and October 650N (dash).
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Figure 4.41. Vertical structure of the transfer of eddy kinetic to eddy
available potential energy (KE-3 PE is positive) for the fastest growing
ES and Sm modes. Cases are those in Figure 4.38.
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Figure 4.43. Vertical structure of the streamfunction phase of the fastest
growing S modes. Cases are those in Figure 4.42.
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TABLE 4.1. QUASIGEOSTROPHIC P)TENTIAL VORTICITY MIRIDIONAL

JANUARY* SOURCES: LEVELS 25-97, #1 LEVELS 13-41. 1?

SEE SECTION IV-5 FOR A ODSCRIPTIQN OF THE DATA SOURCES.

LATITUDE()= 25

LEVEL

50 35

-531. 10913. 3258. 8944.
12677. -1141. 4426. 7507.
5818. 4385. -4111. 9718.

1195.
1134.
1615.
1778.
1935.
2084.
2224.
2349.
2455.
2537.
2589.
2609.

2330.
2126.
1894.
1611.
1298.
1138,
1152.
1149.
981.
479.
323.
2077.
5423.
5688.
4306.

1933.
1678.
1369.
1161.
990.
882.

816.
706.
445.
31.

915.

3913.
7893.
P487*
6809.

713.
716.

1267.
1324.
1354.
1365.
1359.
1341.
1320,
1303.
1303.
1342.

1318.
1101.
729.
511.
369.
257.
140.

30.
-86.
-41.

1316.
3925.
6898.
7426.
5999*

933.
705.
254.
37.

-27.
-25.
-17.
80.

304.
766.

1439.
2356.
3277.
3376.
2658,

GRADIENT (UJ) DATA (10 I/(MSEC)) FOR

LEVELS 7-29, 03, LEVELS 3-71 44o

40 45 50 5b 60 65

4118. 3836. 1064. 14153. 5772.

4681. 4038. -5937. 2782, 5447.

3630. 2030. -8508. 2740. 14149.

1986.
1823.
1589.
1217.
810.
368.

-105.
-591.

-1049.
-1406.
-1558.
-1394.

1221.
892.
317.
79.
95.
208.
312.
542.
937.
1507.
1568.
1436.
1164.
945.
b47.

1831.
1539.

992.
825.
954.
1109.
1128.
1216.
1408.
1690.
1386.
834.
134.

-118.
138.

4387.
4264.
3098.
2576,
1989.
1308.
524.

-355.
-1272.
-2088.
-2550.
-2369.

?449.
2155.

1629.
1472.
1593.
1727.
1724.
1772,
1894.
2046.
1577.
827.
-94.
-417.

-38.

2997.
2758.
2326.
2165.
2178.

2212.
21P3.
2210.
2305.
2407.
1873.
1053.

-181.
327.

5636.
5643.
4173.
37184.
3382.
2957.
2508.
2049.
1623.
1313.
1267.
1732.

3309.
3173.
2909.
2785.
2699.
2593.
2448.
2320*
2224.
213b.
1790.
1344.
874.
807.
1189.

n /2

*Level n is related to pressure level p by: where N=98.
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0 0 0

TAdLE 4.2. AS IN 4.1 FOR APHIL.

40 45 50 55 60 65

3044 2279. 31
1395. 1 b42. 3684.

14"p. 5701. 4473.

2659.2564.

21 1.
1977.
168 .*

1476.

1300.
1150.
1031.

2 .
*LT

2411*
2104.
171P.1 3 5.

042?6P1.
5'(0.

"77.

723.
14(107

507!.
5746.
4(4',.

2215.
1908.
1447.
1029.

63 q,
400.
324 4.
346.

1372.

2171.
3018 4.
3242.
2697.

2174.
1716.
1186.

719.

242*
220.
321.

1307.
1504.
167.
15h?.
1321.

2463. 18229
1590. 2172.

2464. 1157.

1 07.
1 t29.
1659.
1462.
1209.

e92.
501

37.
-4R2.

-"93.
-1377.
-1s88.

1 08.
1392.

770.
478.
4 A8.

4 74.431.

460.
641.
933.

1380.
1849.

1570.

1370.
1130;

549.
674.
790.
717.
630.

568.

579.
747.

1041.

13i'1.
1394.
11 54.

1343. 5542. -2395.
4550. 4626. -663.

1503. 691. 648.

1299.
Q09.585.

185.

-267.
-792.

-1409.
-2122.
-2'.01.
-3650.
-4173.
-4 271.

1741.

472.

773.

(7 .

876.
906.
075o

1100.1057.

7?24.
567.
479.

S24.

658.

666.
786.922 .

1059.
12071.
1448.
1756.
155?.
106.

361.
163.

275.
26'.

312.
215.

50.
-187*
-494.
-863.

-1269.
-1663.
-1966.
-2122.

639.
668.
717*

762.
820.
940.

1173.
1502.
1949.
2447.
1908.

A61.
-628.

-1325.
- 32.

30 35
LATITU'r : )

L EVEL

569.
779.

1559.

2064.
2176s
2334.
2357.

242F.
2473.
2516.
2551.
256P.
2556.
2504.

?4'5.2282.

2024.
1715.
1371.
114".
10P 4.
1046.

967.
813.

1083.
24~4.
491P.
5879.
4990.

'0
Ob



TABLE 4.? CONTINUfr).

LATITUEEPE): 25 30 35 40 45 so50 55 60 65

LEVEL

25 179a?. 169. 1284. 867. 1242. 774. 877. 600. 728.

27 1811. 1773. 13140 847. 979. 668; 739. 635. 791.

29 1722. 1802. 13480 044. 730. 553. 597. 679. R77o

31 1484. 1788o 1405. 85h. 510. 441o 462. 725. 978.

33 1426o 2041. 1641. 51. 4580 477. 449. 754. 990.

3 1556o 2501. 2000. 1094. 488. 577. 4923 782. 974

37 2010. 3221. 2515. 1323. 610. 740. 592. 817. 940.

S3097. 4377. 32f9. 16q7
-  

846. 9 3. 75?. 8620 P8o

41 5204. 6218. 4520. 231V 1241. 1330. 965. 920. 620.

43 8472. 918F. 6636 3395. 1886. 18?50 1309. 993. 736.

45 10664. 11 8a. 920 4677. 2661. 2302. 1590. 113t. 851.

47 11229. 13293. 10612. 5919. 3534. 2776. 1852o 1387. llP6,

49 109610 1361o 11813. 7312. 4723. 3460. 2258. 17q3. 173.

51 9546. 11762. 11427. 8635. 6397. 46009 29559 2513o 24553

53 6789. 6782. 80p6. 9409. 8855. 6701. 4288. 3975. 3880.

55 4652. 3596. 5764. 9869. 11123. 9344. 6061. 5925. 5b46.

57 30p0. 2522. 5205. 9638. 11852. 11087. 16000 7717. 7U90.

5 1~2? 16481. 4414. 772m. 9901. 9950. 7978. 8433o. 331.

61 21. 1147. 3572. 4233. 4580. 4278. 5673. 6117. 8214.

6' 306. 1177. 2703. 2C69. 1202. 851. 3519. 371P. 7317.

61 1413. 1470. 1809. 2005. 1449. 1679. 3462. 36190 6622.

67 2497. 1811. 1060. 2114. 151. 2642. 3432. 3547. 5173.

69 3510. 2166. !65. 2366. 2595. 35bsq9. 3423. 345. 3385.

71 354?. 242f. 11 62. 2415. 2834. 3655 3038. 281b. 2115.

73 3298. 2662. lqq5* 2458. 3035. 3532. 2(56* 2098' 1165.

75 305.3 2884. 2710. ?459. 3238. 3401. 22b5o 13917 241.

77 2798. 3103. 34ql. 249. 3414. 3301. 1922. 731. -654.

79 2560. 3303. 4229. 24q2 3574. 3172. 10- 17 -b15130

81 2330. 4 1 4h93. 7 540 3744. 3082. 12500 -4750 -2351.

F 2592. 2N84. '411. 1241. 2136. 27b?. 2048 1091. -687.

8, 3324. 1624. -110. -12S7. -1191. 2204. 4002. 4694. 3329.

87 4034. 613. -3188. -37!6. -4510. 1561. 6140. 8506. 6q549

89 4758. -2.. -530 -F117. -7824. 770. L98 12805. 9970.

1 28 3. 1Pebl. -2674. -33)3. -4223. -851. &8bt 93b0. v201e

93 -4344. 245P. 106. 926!0 11822. -30190 -6107. -113,9. -10305.

95 1279. 1937. 10822. 15)857. 9101. 8075. -15937. -29604. -16781o

97 2844. 2291. 7339o 9196. 5167. 6024. -4v45. -12071. -(206.

IJ

a a a aMIIM miI m iMIi - - .-



TABLE 4.3* AS IN 4.1* FOR JULy.

LATITUDEtN)= 25

LEVEL

30 35

-657o -220. -17.

253 1902. 2061.
3428. 2078. I9400

1298.
1791.
1630.
1575.
1521.
1470.
1420s
1371.
1321.
1271.
1218.
1170.

2594.
2454.
2359.
2249.
2096.
1946.
1804.
1623.
1442.
1328.
935.
296.

-888.

-2514.
-3737.

2362.
2298.
2220.
2107.
1945.
1798,
1669.
1503.
1305.
110'..
826.
562.

425.
221.

-172.

1409.
1674.
2107.
2405.
2620.
2763.
2837.
2846.
2791.
2676.
24qA .
2271.

2011.
1999.
1954.
1753.
1454.
1226.
1102.

960.
750.
45. *

S102.
2449.
3755.

357 .*

40 45 50

1480. 2507. 2255.
1587. 582. 93.

2019. 1427. 1786*

1758.
1673.

1143*
841.

586.
370.

189.
41.
-67.

-120.
-92.

61.

1690.
1670.
1618.
1376.
1006.

709.
530.
321.

14.
-389.

110.

1632.
4445.

6367.
5769e

1437.

1399.
1309.
1015.
588*
259.

82.
-94.

-310.
-500.

226.
1866.
4320.
5489,
4674.

1168.
1071.

913,
669.

187.

72.
-29.

-110.
-73.
475*

1508.
2773.

3061.
2378.

55 60 65

306. 2211. -207.1102o 3096. 2374.

523. -148. 275.

1086. -182.
k90. -328.

545. 176.
277. 282e

3 . 473.
-176. 746.
-375. 1091.
-560. 1482e

-730s 1877.
-872. 2202
-962. 2356

-968. 2231

924.
771.

538.
332.
194e1490

1630
236.

400.
719.
790.
792o
688.

471.
182.

692.
488.
209.

42.
22.

104.

222.
424.
758.

1251.
1043.

4H3.
-326.

-716o
-663.

4735

348.
143.
-31.

-106.
-42.
135.
427.
877.

1484.
1057.

99.
-1182.

-1656.
-1306.

..

.
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0

LATITUDEeJ)= 25

LEVEL

30 35 40 45 o5 5b

5367* 2389.
4659. 2440.

4962. 20897

2023.
2094.
2592.
2867.
3015o
3047*
2980.
2831.
2620.
2368.
2100.
1846.

2448o
2259.
2064.
1883.
1704.
1587.
1518.
1434.
1304.
1112.

147q.
2102.
1' 12.

2424.

2234.
1988.
1750.
1517.
136)o
1286.
119lH
1052.

170o1266o

2663.
3694.
3369.

-145. 646, . 5443.
226.b 4096. 1596.

252,24 376t. 3141.

1 65.
1595.
1952.
2025.
2041.
2006.
1 31.
1 430.
1718.1612.

1552.

1509.

2? 1.
2048.
1764.
1469.
1162.
942.

706.
587.
491.
H94.

2000.
3944.
5145.
4574.

193.
179C.
1459.
1156.

878.

574.

496o
451502o

1038.
2121.
3717.
4670.
4111.

2447.
2156.
1780.

1337.
902.

94,

-247.
-513.
-666.
-666.
-460.

1929.
1726.

1318.
994
741.559.

406.
307.

270.
358.
866.

1781o
3065.
3640.
3162.

3540. 3774. 9245. -3048.
1406. 2101, 6400. 7533.

1443. -1250. 5022. 2096.

18T0.
1601.
1096.

821.
730.
660.

339.

247.
265.
615.
1232.
2064.
236q9
1952.

2011.
19 6.
1926.
1686.
1375.
1106.
602.
190.

-100
-4 8R7
-b45.
-603.

1 H37.

14 5.
$67o
572a
558*

596.
512.
478o
512
623.
656.

722.
t29.
842.
716.

2020.
1651.

997.
684.
677.
753.
733.

789.
931.
1132.
930.
594.
187.

6.

92.

2072.
2240.
2094.
1863.
1558.
1191.
777.
343.
-71.

-405.
-583.
-532.

21b0.
1831.

1236.
q58

958.
1012.
946o
93b.
990.

10o91
850.
494.
74.
-92.

42.

TAPLE 4.4. AS IN q.1t FOR OCTOPER.

60 65
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TABLE 4.5. QUASIGEOSTROPHIC POTENTIAL VORTICITY MERIDIONAL GRADIENT 
(fy)t (10 I/M

* S
EC)). THE

MODEL APPROXIMATION, FOR JANUARY. SOURCES: LEVELS 25-97, #1o LEVELS 13-41, 82, LEVELS 7-299

#3, LEVELS 3-7. #4. SEE SECTION IV-3 FOR A DESCRIPTION OF THE DATA SOURCES.

30 35 40 45 50 55 60 . 65

948. 2313. 1845. 2312.
2995. 1806. 2970. 2328.
1995. 2418. 1731. 2503.

3
5
7

7
9
11
13
15
17

19
21
23
25
27
29

13
15
17
19
21
23
25
27
29
31
33
35
37
39
41

1700.
1594.
1886,
1918.
1961.
2009.
2059.
2106.
2142.
2162*
2157,
2121.

2134.
2051.
1903.
1649.
1304.
1063.
945.
785,
513.
94.
164.

1862.
4544.
4628.
3438.

2030.
1826.
1493.
1168.
820.
541.
314.
30.

-396.
-929.
-278*
2232.
5553.
5892.
4316.

1598.
1432.
1735.
1667.
1588.
1501.

1407.
1311.
1219.
1140.

1085.
1069.

1894.
1592.
1102.
737.
431.
180.
-56.

-286.
-524.
-621.
436.
2615.
5161.
5516.
4146.

1790.
1426.
831.
476.

280.
173.
104.
157.

382.
883.
1565.
2461.
3345.
338R0
2702.

2446. 2891. 3619. 4118. 1790.
2586. 2704. 1856. 802. -295.
2327. 1998. 1184. 2231. 1875.

2274.
2183.
2023.
1763.1416.

987.

485.
-63.
-609.

-1072.
-1337.
-1297,

1789.
1409.
776.
488.
461.
533.
606.
834.
1260.
e199.
2039.
1985.
1769.
15740
14590

1882.
1547.
966.
797.
957.
1168.
1271.
1467.
1780.
2178.
1959.
1461.

786.
534.
766.

3310.
3406.
2567.
2273.
18350
1242.

492.
-398o

-1363.

-2254.
-2803.
-2720.

2063.
1811.
1328.
1220.
1402.
1613.
1702.
1855.
2088.
2348.
1975.
1307.
454.
184.
603.

2244,
2099.
1754.
1665.
1740.
1844.
1892.
1998.
2176.
2369.
1933.
1210.
331.
109.
638.

3337.
3787.
2841.
2775.
2630.
2404.

2104.
1752.
1397.

1133.
1119.
1602.

2339.
2311.
2135.
2067.
2025.
1986.
1931.
1896.
1888.
1874.
1577.
1166.
729.
703.

1.135.

LATITUDEfN)z 25

LEVEL
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TABLE 4.6. AS IN 4.5, FOR APRIL.

LATITUOFtI= 25

LEVEL

2248.
1924.

2131.

1869.
1846.
1960.
1992e
2034.
2085.

2141.
2198.

2250,
2287.
2298.
2271.

2104.
2016.
1864.
16289
1317.
1092.
975.

841.
651.
431.
635.
1832.
3942.
4645.
3811.

30 35 40 45

2169. 1820. 1817. 1866*
1876. 2098. 1983. 1922.

2210. 2496. 2399. 2199.

2065.
1896.
1605.
1272.
881.
588.
431.
304.

208.
254.
780*

2093.
3918.
4426.
3554.

lqq7,

1975.
1838.
1752*
1641.
1503.
1339.
1155.
9f3.
789.

673.
663.

19900
1742.

1312.
920.
540.

188.
343.

7H21291.

2075.
292?2.
3012.
2410o

1877.
1569.
1031.
633.
361.
233.
205.

313.
612.

11 68*
1487.
1770.
1964.
1872.
1536.

1801.
1730.

1575,
1399.
1161.

R52.

463.
-5.

-529.

-1048,
-1435.

1680.

1336.
742.

448.
448.

476.

571.
784.

1056.
14417.

1848.
1858.
1495,

50 55 60 65

1737. 1437. 1523. 1082.
2277. 2770. 2488. 1226.
1748. 1363. 865. 1047.

1400.
11721.
656.
488.

618.
765.
744.

735.
743.
801,

970.
1234.
1518.
1536.
1282.

1495e
1346.
12180
930.
542.

39.
-593.
-1352.

-2205.
-3050.
-3691,
-3926,

1099.
935.
680.
601.
709e
840.
895.

980.
1106.

1285.
1277.
1178.
998.
b88.
858.

830.
737.
613.
592.
688.

824.
962.

1159.

1433.
1766*
1547.
1038.

317.
20,

228.

609.
392
612.
428.
197.
-85.

-420.
-803.

-1212.
-1604.
-1906.

-2062.

582.
568.
587.
598.
625.
734.
973.
1312.
1774.
2292.

1771.
740.

-738.
-1432.
-942.
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TABLE 4*7. AS IN *5, FOR JULY.

LATITUDE&)= 25

LEVEL

30 35 40 45 50 55 60 65

1706. 1828. 1692. 1563.

1719. 1627. 1675. 1552.

2114. 1943. 1782. 1613,

1831.
1791.
1735.

1621.
146R.
1370.

1341.
1317.

1297.
1307.
12'~?.
1254.
1375.
1475.
1320,

1554.
1530

1518.
1533.
1558.
1590.
1626.
1657.
1677.
1677.
1649.
1590.

1656.

1613.
1553.
1368.
1096.
1.87.
763.
605.

373.
60.

83.
662,

220.
3698.
3632.

1457.

139 4.

1044.
657.

87.
-226.
-675.

-1296.
-971.

350.
30lf *
482106
4 106.

1625.
1608H

1257.
1109.
934.
731.

505.
260.

lb.

-204.
-565.

-416.

1248.
1156.
1024.
717.
282.

-330.
-610.
-954.
-1283.
-705.

782.
3076.
4058.
3054.

1557. 1356. 1012. 798.
997. 1290, 1845. 1671.

1723. 1226. 566. 283.

1045.
905.
700.

427.
131.

-211,
-314.
-389.
-337.

232.

1275.
2525.
2770.
1994.

1139.
1079.
908.

799.
b69.
516.
339e
141.
-69.

-271.

-437.
-528.

869.
698.
444.
231o
101.

72.
116.
244.
492.

923.
1120.
1244.
1240.
1093.
844.

712.528R

253e

88.780

169.

311.
559.
957.
1528.
1400.

916.
177.

-140.
-40.

-186.
-3271.
222.
388.
625.
928.

1290.
1687
2079.
2395.
2536.
2394.

554.
408.
1950

44.
4.

85.
266.
565.

1037.
1685.
1321.

4300
-797.

-1243.
-900.

1529.
1900.
2170.

2069.
2122.
1947.
1935.
1Q24o

1913.
1901.
1889.
1876.
1860.
1843.

1079.

1972.
1951.
1923o
1828.
1687.
1607.
1613.
1646.
1725.
1905.
1833e
1538.
766.

-354.
-1150.
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TABLE 4o8. AS IN 4.5,

LATITUDE &)= 25

LEVEL

2439, 2309.
2256. 2191.
2423. 2460.

1974.
1894.
2052.
2009.
1957o
1897.
1831.
1763.
1699.
1647.
1615.
1622.

2103.
2039o
1929.
1778.
1604.
1506.
1473.
1433.
1371.
1302.
1244.
1460.
2207.
2859.
2730.

2050.
1936.
1740.
1515,
1275.
1128.
1053.
964.
835.
683.
714.

1283.
2638.
3564o
3212.

35 40 45 50

2095. 2207. 1950.
2115. 1943. 1720.

2670. 2822. 2680.

1791,
1635.
1843.
1751.
1641.
1519.
1 '8o9.
12c1.

1144.
1052.
1000.

1011.

1973.
1 10.
1528.

1250.

694.
556.

.18.
261.
134.
448.

143,.
3236.
4302.
3830.

1880.1661.
1280.

932.
604.
36P.
205.

-21.-|q.
-1 .
444.

1444.

3P29.
3211.

2133.
2004.
1871.
1611.

1295.
936.
554.

177.
-160.
-414o
-5370
-471,

1798.
1538.
10810
730.

461.

102.
-150

-72.
-6.

4 54.
1304.
2510.
3(j00.
241?7o

55 60 65

1847. 2008. 2228. 2132.
1992. 2529. 2121. b1502.

1677. 646. 1700. 1528.

1750.
1442.
895.
591.
491.
436.

299.
206o
167o
226.

581.
1182.

1q90.
?271.
18370

1965.
18640
1763o
1!21*

1217.
P62.

477.

-257.
-520.
-6317.
-5560

1747o
1412.

0oo.
018.

524.
583.
526.
532o

615.784.

876.
992.

1134.
i 156.
1015.

17470
1424.
808.
539.
571.
685.

668.
713.
957.

1211.

4930
1 0 q 0*4.3.354.
454.

1829.
1 k15.
16060
1403.
1130.
796.
417.
20.

-355.
-645.
-775.
-678.

1697.
1418.
859.
629.
684.
791.

177.

823.
939.

1102.
921.
621.
249o

1293~.
295.

FOR OCTOBFH.
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TABLf 4.'0. OUASIG[,OfGPI'HI( POTtNTIAL VORTICITY MERIDIONAL
GAl[ .T 4(5y)t (tOI (.ef)), MODFL APPROXIMATION AND

CO POIT L FOR ALL )ATA SORCESt F(OR JANUARY.

2 .5 45 65LA.ITITOLL E

LLVLL

2097,
S19 8.
2228.
2224.
2161.
20 5.

119.
1742.
1549.

1303.
1 (Ib6.

C. C, 0

2.1411.2219.
37811,
5 781.
611h3.

7040.
C613.
5553.

15 .
4 , 7..

2344464•9.14, .h23.,
5 '' .? .419h.5396,

1 84 I1 744.

I i
'
.1502.1374.

14q2.
1481.

273A.
1473.
2101.
2164.

1871.
1672.
1920.
147P.
1063.

332.
-304.
-478.
-3,1.

63.
124.
14,25.
232b.
2841,
3926.
5346.
7185.

84 44.
8532.
7244.

7066.

A491

727 .
4205.r

-143.
-1874.
-1052.
-271
4O'0.

1 ?, .

1q24.

1 '74.

10 79.

2213.
2472.
2422.
2004.
1421.

1024.
903.

1212.
1256.

1317.
1357
1315.

1253.
1170.
1093.
1171,
1322.
1541.
1853.

2302.
?" 65.
3562.

4028.
4617 .
5416.
61,75,.
7812.
8423.

7705.
4'66.
28339
2654.
26352
2759.
2565.

2391
2246.
2127.
2041.

2 1'?.

2312.

-8707.
-4980.

500.
2102.
3265.
3310.
2357.
2159.
2188.
2639.
2450.
2057.
1629.
1368.
1140.
970.

881.
779.
711.

(179.

689.
740

876.
1052.
1306.
1717.
239b.
3562.
4642.
5292.
5476.
4777.

4140.
4199.
4127.
3915.
2706.
1316.
-22.

-1243.
-2311.
-3230.
-1664.
1943,

470~
65E@.

4163.
-39 73.
-2h543.
-15604.

I

~"
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TAqL( 4.11. AS 1 4.99 F(' JULY.

L AT I TL)t.e )= 2' 45 45

L VEL

3 1 bt, 1541. oh216
17'-0. 2030. 1197.

7 2230. 113. "P23.
9 2284. 1048. 557.

11 1942* 1 44! 491i
13 1P?1. 145be 439o
15 17&4. 1157o 4?P.
17 1P09. 5.60 450.
1 o 1, 12. 453. 331.

21 ;CO . 71t. 103.
23 29. P e iP 1 * 4 
25 207. 700. 273.
27 115. 39 . 672.
P9 15, -4S. 1313*
,1 12, 7. - 9. 2009.
33 039. -537 1491.
35 600. -1 . 76*
17 3L.I 443. -1L39.

S 30! 1'P8. -1677.
41 9179. 3303. -21.
43 301 -. t) 346. 224e.
45 4 /. 4 2. 3 1 q*
47 'l 1. 19?24. 4454.
4o 444o, 4c'7 o
51 2P24. 11041. 5311.

p n0. I 47. 547bo
, 0f1. 4 6. 6145.

t,7 1 ), .
" 
1 . 6,15 #1

19 2044. . 1 5f00.
1 74( 3. 1'9P0. 2017.

t ?440. 1227. -b32.
U' 1 74. 1074 -6b7o
(,7 14(1. 1021. -A55.
ro e s. 1168o 101.
71 1027. 1580. (,27.
7! 1414. 2068. 1024.
7' 1I I 21 55. 1 40.
7 Z 1. 7. .! 71. 1617.
79 2 , 3'430. 1 102.
pr 1 33 " • 1, ; ;I ,:3 " 0?

,' 3. 2C00. 2204.
r'7. -14'.?. 1110.

/ f 
, 
. -4f 7. 1 3.5 5.

5' . *420. '3,
11 1 4. -2"?0. -11 2.
3 -1,,. 104 ".' -'13.

• 1011. 7L,6. -4P2.
7 1 f '4. ' ( ( . "13
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Table 4.13. Summary of unstable mode properties. Explanation of columns:

1) MODE-mode types as defined in sections IV-6. 2) MO-monthof profile.

3) LAT - latitude of profile (ON). 4) WL - wavelength. 5) PWN - planetary

wavenumber. 6) DT - doubling time. 7) CP - real part of the phase spe4d.

8) CI - imaginary part of the phase speed. 9) S.L. - steering level(s).

10) 1 IPK - pressure level of the maximum value of the streamfunction amplitude

11) FIPK - pressure level of the maximum absolute value of the meridional

entropy flux. The v'e' peaks are .positive unless a "-" preceeds the entry.

12) 17I >.5 - the region where the streamfunction amplitude is greater, than

1/2 the maximum absolute value. 13) Iv'e'j > .5 - the region(s) where the

absolute value of the meridional entropy flux is greater than 1/2 the maxi-

mum absolute value. The regions contain positive v'O' values unless other-

wise indicated by (*). 14) ICEI > .5 - the regions where the absolute

value of the eddy kinetic to eddy available potential energy transfer is

greater than half the maximum absolute value. The regions are for kinetic

energy generation unless otherwise indicated by (*). 15) Qy < 0 - regions

(1) where the quasi-geostrophic potential energy vorticity meridional gra-

dient is less than zero and (2) which are associated with the given un-

stable mode. See section IV-12. Each mode described is the fastest grow-

ing mode for the mode type given.



TABLE 4.13
MODE MO AT YL PwN T Ce CI S.L. I I-i l 9 II>.5 Iv-j >.5 ICI>.5

(K(M) (DAYS) (M/SEC) (M/SEC) (PR) t(8E) (H) (8B) IMn) tIp)

E 1 25 5400 6.8 1.9 1.72 3.59 843 362 1000 115-1000 00-1000 440- 940
E 1 35 5500 6.6 1.5 8.17 4.53 755 230 1000 110-1000 900-1000 250- 830
E 1 45 3700 7.7 1.7 6040 2.71 770 1000 920 150-1000 720-1000 500- 940
E 1 65 3500 4.8 300 2.20 1.49 780 338 880 140-1000 820- 940 400- 670

800- 920
E 4 25 3900 9.4 2.2 0.39 2.32 843, 1000 880 430-1000 820-1000 8RO0- 20

60*15,1
E 4 45 3500 8.2 1.7 6.12 2.62 730, 315 735 150-1000 600- 830 530- 810

50.15 920-1000
E 4 65 3100 5.4 2.3 3000 1.71 752. 1000 880 180-1000 810- 950 430- 690

20 770- 920
E 7 45 3700 7.7 2.0 4.92 2.33 735 230 1000 130-1000 620- 820 300- 810

76 910-1000
E 7 65 2700 6.2 4.0 1.32 0.89 770 270 840 170-1000 690-1000 330- 900

88
E 10 ?5 2000 18.2 4.3 -2.21 0.60 8709 820 880 630- 980 810- 900 820- 900

50.30
E 10 45 3700 7.7 1.6 6.89 2.84 750 1000 1000 130-1000 680-1000 500- 840
E 10 50 3200 8.1 1.b 7.45 2.70 770 1000 1000 170-1000 790-1000 540- 920

E 10 65 3200 5.2 2.5 3044 1.66 752 1000 80 160-1000 810- 960 400- 700
770- 920

6 1 25 10000 3.6 5.3 2.84 2.46 806 175 60 60- 400 50- 100 50- 140*
860-1000 830- 880

G 1 35 10000 3o3 9.6 9.31 1.37 735 160 1000 70- 310 45- 55 45- 65*
900-1000 900-1000 720- 840

6 1 45 5900 4.8 6.9 5.95 1.06 806 8 20 10- 60 10- 70 20- 150*
300- 390

6 1 65 6500 2.6 19.0 1.96 0.43 820 211 880 10- 500 830- 950 820- 920
900-1000

G 4 25 8300 4.4 4.6 0.72 2.31 862, 175 70. 60- 350 55- 110 55- 140W
50910o2 970-1000 810- 900

6 4 45 8000 3.6 8.1 6.83 1.19 700, 193 70 60- 400 55- 170 55- 180*
5010 820-1000 700- 750

G 4 65 7400 2.6 13.0 2.96 0.64 752( 130 42 30- 440 25- 90 25- 120
20 850-1000 800- 910

G 7 45 8000 3.6 8.6 5.75 1.16 7001 193 1000 90- 350 240- 300 680- 800
80 940-1000 660-820.910-1000

G 7 65 5000 3.4 17.1 1.36 0.39 770S 230 107 150- 430 85- 200 85- 200
88

G 10 25 5200 700 1007 -2.32 0.63 8805 211 70 80- 450 60- 100 60- 150 R
6015 830- 880

G 10 45 9300 3.1 7.7 8.10 1.50 700 143 60 60- 320 35- 200 45- 180
820-1000 680- 810

G 10 t0 6300 4.1 7.4 7.84 1.16 750 5 10 5- 20 10- 60 50- 180*
130- 200 750- 900

6 10 65 5600 3.0 15.0 2.95 0.48 790 230 880 10- 510 810- 960 820- 920
920-1000



TABLE 4.13 CONTINUED

WL PWN OT CP CI S.L. IvpI 17 I
(k) (DAY.) (V/SEC) (M/SEC) (m*) ( Mr) (Mp

1400 12.'4 .5.
1200 14.2 2.r

1200 13.1 2.8

ES 1
C9 4

ES 10

SM I1

SM 4

SM 10

S 1
S 4

S 4
S 4

S 7

S 7
s 7

L I

L 1
L IL I
L 1
L 7

L 7

L 10

1.5F 0.50 843
1.9b 0.01 840

18

2.38 0.56 840

3.17 0.77 650

3.9P 0.60 650
30

4.32 0.65 650

16.90

16.00

14.60

3.52

?.oO
3.90

19.10

6.94
7.40
2.69
P065

4.45

3.54

1.30

0.40

0.31

0.24

0.36

0.12

1.52

1.56
1.75
1.33
0.48

0.34

1.02

510
7', 4
380
96
413
94
880

900
67
435
155

491

752
735
717
920
65
386
165
740

940 880
1000 880

1000 880

360

360

340

290

230

210

1000

1000

290

110

3
1
b

210

160

3

600

600

600

480

110

110

1000

1000

400

-80

10
0
10
70

-170

20

IYI>.5
(MB)

800-1000
790-1000

800-1000

190-1000

210-1000

190-1000

140- 590

140- 380

110- 350

930-1000

9$0-1000

190- 460

40-

2-
2-
3

100-

110-

3-

2600 6.4

2300 7.2

2500 6.P

'I ).5
(MB)

840- 930
830- 930

940- 950

MODE MO LAT

4.3

5.0

4.9

3.6

10.0

15.4

11.0

8.0

15.6

11.3

6.03
8.9

11.00
14.0

13.1

11o.0

430-
830-
400-
820-
400-
R20-

670
930
670
920
670
960

tI C*I.S5
(MB)

840- 920
840- 920

830- 920

430- 660

430- 660

430- 660

350- 520

95- 150 *
240- 410
240- 410

860- 890 4
910-1000
860- 890 *6
910-1000
J30- 440

3100

3200

3700

2200

P200

1500

13500

8000
12400
12000
5000

3500

8400

10.0

11.6

10.0

13.0

13.0

11.4

2.2

3.6
2.3
1.4
5.4

5.0

2.0

(M)

600- 730
600- 730

600- 730

600- 730

600- 730

600- 730

480-

380-

730-

730-

400-

50- E0

360- 530

95- 150

100- 420

qP0-1000

920-1000

160- 180*
310- 440

65- 110*

5- 20
0- 20
5- 60

65- 110
940-1000
160- 200*

5- 60

71-

2-
0-
5-

65-
250-
160-

10-

120

10
10

400
200

30

600-

140-

600-

730
F80

1) 0

730
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CHAPTER V

SUIMMARY OF IMPORTANT RESULTS

The climatological profiles are shown to be unstable to severallong

and short wave modes. This may due in part to the absence of thermal and

frictional dissipation. Newtonian cooling would lessen the growth rate of

long wave modes (Geisler and Garcia, 1977), and surface frictional dissi-

pation would tend to stabilize the short wave modes which are confined to

the ground. In the more realistic case, which includes thermal driving

and dissipation, the unstable mean flow supplies potential energy to the

perturbations to balance the loss of perturbation potential energy through

thermal dissipation, and the loss of perturbation kinetic energy through

frictional dissipation (Charney, 1959; Pedlosky, 1970, 1971; Stone, 1972).

The long wave modes discovered by Green (1960) are shown to have

several interesting properties. To exist, they require a non-zero valueof

y and are made -muchmore unstable by a stratosphere or rigid lid. Their

wavelength becomes c as yT (or 8) goes to zero, and the Green modes becomeT
shortwave modes as yT becomes large. Doubling times of the fastest grow-

ing Green modes are moderately short: about 6 days in the case of a nomi-

nal winter stratosphere with linear u and T profiles, and less than 10 days

for most of the climatological profiles. In the parameter study, the Green

mode amplitudes are particularly strong in the lower stratosphere (relative

to other levels) when nominal winter conditions are assumed. Amplitudes

are. also strong in the lower stratosphere for the cases in the climatologi-

cal study. For both the parametric and climatological studies, the stream-

function phase of the Green modes varied much more than that of the Eady

modes, and the variation was usually confined to small regions in the lower

stratosphere and mid troposphere. The phase difference between the meri-
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dional and vertical velocities indicates that the Green modes have a meridional

circulation in the lower stratosphere like that observed. The meridional en-

tropy transport for the Green modes in the parameter study is countergradient

and particularly strong in the lower stratosphere when nominal winter condi-

tions are assumed. In the climatological study, transports are strong and

polewards in the stratosphere in nearly all cases; they are countergradient

for the cases with reversed shear. The Green modes' amplitude, meridional

heat flux, and kinetic energy destruction are much larger in the strato-

sphere than are the same quantities for the Eady mode; this is true for both the

parametric and climatological studies. The Green modes are thereby more

sensitive to changes in the unperturbed state of the upper layer.

Quasi-geostrophic potential vorticity meridional gradient profiles

calculated from monthly averaged u and Y values possess a considerable number

of zeros. The zeros and their associated negative regions of qy have a sub-

stantial effect on the spectra of the unstable modes. Some modes had their

growth rate drastically reduced when a negative y region was removed. New

modes, distinct from the Eady and Green modes, were shown to exist because cer-

tain negative q, regions are present, and these modes tend to have a larger growth

rate when their associated q regions extend over greater depths. Their fluxes
y

at the levels of those regions are always downgradient. Certain of the new modes

are potentially important for the general circulation of specific regions

of the atmosphere. Some S and S modes could be important for the circula-m

tion of the upper troposphere. The E 'and some S modes could influence
s

middle and lower tropospheric circulation. In addition to the G modes,

some L modes could be important for the stratospheric circulation. Two of

these L modes are destabilized by negative q regions in the stratosphere
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and are examples of in situ stratospheric baroclinic instability.

A very small change in the u profile (.3 m/sec or less) can have a

drastic effect on the unstable mode spectra by reducing growthrates or by

entirely eliminating certain modes. Both long and short wave modes are

affected. Staley and Gall (1977) and Gall and Blakeslee (1977) reported

extreme sensitivity of short wave mode growth rates to small low level

changes in U and the static stability. They attributed this to the short-

wave vertical structure which they claim causes the mode to "feel" only

low level parts of the basic state profiles. This explanation cannot hold

for the long wave modes of this study, which were affected by low level

changes in W. Rather, it was shown that only the small changes in 1 which

drastically alter the stability properties of the qy profiles (by removing

negative qy regions and their associated zeros) result in a substantial

change in the unstable mode spectra.

In the stratosphere, long wave modes have been shown to be poten-

tially important in transporting most of the heat, even when the flux is

countergradient (see Section III-4 and -5, and IV-8, -11, and -13). Most

parameterizations of the eddy heat flux (e.g. Green, 1970; Stone, 1972;

and Held, 1978) have assumed that the most unstable Eady mode is respon- .

sible for the eddy heat flux. These parameterizations are therefore not

likely to be capable of representing the stratospheric heat flux. Most

of the long wave modes which are potentially important for stratospheric

heat transport have their kinetic energy generated in the troposphere.

Therefore, a successful parameterization of the stratospheric heat fluxes

is likely to have to rconsider these long wave modes and to treat the

stratosphere and troposphere together.
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APPENDIX

Zonal Velocity and Temperature Data
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