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ABSTRACT

The wet oxidation of human urine and feces was studied at pressures
ranging from 2275 to 4050 psig and temperatures from 277 C to 443 C. The
results can be used in the development of a closed environment life sup-
port system, a method being investigated as a way of recycling wastes to
grow plants to support life on board long term manned space missions.

A continuous flow system for oxidation at high temperatures and
pressures was designed and built. A dilute slurry of urine and feces
with a carbon concentration between 650 and 1800 ppm was oxidized with
pure oxygen in stoichiometric or slightly excess proportions.

Conversions ranging from 56% to 93% were obtained. Pressure and
temperature were found to increase conversion. Even at the lower conver-
sion the liquid product was clear and had only a slight odor. Concentra-
tions of calcium, magnesium, manganese, and phosphorous in the solid phase
increased after wet oxidation. Most of the nitrogen, carbon, hydrogen,
and potassium did not remain in the solid phase after oxidation.

The conversions obtained were lower than those obtained by others
at similar temperature, pressure and residence time. This difference is
discussed and an explanation given as to why this is the case. Recom-
mendations are also given as to how the conversions can be increased
and how quantitative data on the inorganic components can be obtained.

Thesis Supervisor: Michael Modell

Associate Professor of Chemical EngineeringTitle:
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Summary

I. Introduction

In the future long term manned space missions will require methods

that recycle supplies on board. Non-regenerative methods of life support

which have been used in the past will became too costly. Research has

been started on one such method, a closed environment life support sy-

stem (CELSS) in which all gaseous, liquid, and solid waste streams from

humans and animals must be recycled to plants grown aboard to support life.

The heart of a CELSS is an oxidation system to convert organic carbon, hy-

drogen, and oxygen to CO2 and H2 0. Lockheed Missiles and Space Company

has developed and demonstrated a wet oxidation system but like other re-

searchers failed to demonstrate how their waste processing system would

convert the waste to nutrients in a form that could be used by growing

plants. Direct comparison of the different systems is also difficult due

to the use of different waste input models. The results and reccmmenda-

tions of Lockheed and other researchers were used to build a wet oxida-

tion system and to define operating parameters for the initiation of a

program to carry wet oxidation from representative waste inputs to plant

nutrients.

II. Background

Wet oxidation is the term used to describe oxidation which takes

place in an aqueous environment. Carbonaceous organic matter is convert-

ed to CO2 and H20. Organic amine nitrogen is converted to ammonia, sulfur

compounds to sulfates, and phosphorous compounds to insoluble phosphates.

Wet oxidation has been operated from 1600C to 3200C and 600 to 2500



psig (1, 11, 9, 13, 20). It has been used to oxidize a variety of mater-

ials commercially and on a research level in order to study the kinetics

and mechanism of oxidation.

Most researchers agree that wet oxidation consists of thermal de-

composition followed by oxidation. TWet oxidation breaks down organic

ccorpounds producing lower organic acids whose conversion to CO2 and H20

is slower and appears to be the rate controlling step.

Because wet oxidation is a gas-liquid reaction, most researchers

have found that agitation enhances the rate of oxidation. Pruden and Le

(11) who used a bubbling reactor found mass transfer effects to be smrall.

Lockheed observed no effect of agitation on reduction in total organic

carbon (TOC) in their continuous flow system.

Pressure in most cases has been found to increase conversion. As

pressure increases its effect on conversion decreases. This verifies a

model presented by Pruden and Le which predicts that pressure has its

greatest effect near the vapor pressure of water.

The amount of oxidizing gas depends upon the TOC of the waste mater-

ial, the quantity of material, and the desired degree of oxidation. An

amount in excess of the theoretical has usually been found to be necessary.

Temperature was the major independent variable for most researchers.

Higher temperatures increased rate. One researcher , Teletze(16), claims

that the higher temperatures also increase final conversion, i.e. at lower

temperatures conversion leveled off at a lower level.

Residence time was also found to increase conversion, having the

greatest effect at higher temperatures. Residence times used vary from

20 to 90 minutes.



The Barber-Coleman caomany found that a pH between 1 and 5 should

produce an additional 10% reduction in Chemical Oxygen Demand (COD). Lock-

heed used a RuC13 catalyst to suppress ammonia formation causing the pH in

the reactor to be acidic. A reduction in TOC was also observed with the

catalyst which could have been due to the acidity.

Wet oxidation has an effect on chemical cah_ oSition of sludge also.

Scormers et al (12) claim that total nitrogen levels in sludges are de-

creased by more than 50%. Other components (P, Co, Zn, Ni, Cd, and Pb) re-

main unchanged. Total soluble phosphorous decreases and phosphorous in

the particulate phase increases. According to Modell et al (8) all mine-

ral nutrients including nitrogen are expected to stay in the aqueous phase

from which the heavy metal ions (Ca, Mg, Fe, Cu, Zn, Mn, etc.) will pre-

cipitate as insoluble phosphates and/or sulfates. Little carbonate pre-

cipitation should occur in the presence of these ions and loss of fixed

nitrogen should be smnall. Lockheed found most of the effluent carbon and

nitrogen in the gas phase and the sulfur and phosphorous in the liquid

phase.

III. Objectives

The general objectives are to fill in the gaps in the literature and

provide useful information to help build a CELSS. Specifically the object-

ives are to build a wet oxidation system to oxidize a slurry of urine and

feces, determine the effects of operating conditions upon the efficiency

of oxidation, close the material balance on carbon, and determine the ef--

fects of wet oxidation on other components of urine and feces.

The approach used to acccmplish these objectives was to design a

reactor without gas-liquid mass transfer effects. This meant a one phase



system in which the dissolved oxygen at reactor conditions and the feed

were in at least stoichianetric proportions. The work of previous re-

searchers was used to define operating parameters.

IV. Apparatus and Procedure

A continous flow system was used. The feed, a slurry of urine and

feces, deionized water, and oxygen were pumned up to pressure and the

volume of the feed and water pumped were measured with respect to time.

The water passed through a coiled length of tubing in a furnace to be

preheated to reactor temperature or higher. The hot water, feed, and oxy-

gen were then mixed together and passed through a Hastelloy reactor kept

hot by another furnace. There the oxidation reaction occurred. The re-

actor effluent passed through a heat exchanger to be cooled and a solid

product collector to have suspended particles removed. The stream then

passed through a back-pressure regulator and upon expanding the phases

were separated in a gas-liquid separator. The gas phase went to an on-

line gas chrcmatograph which periodically analyzed a sample. The liquid

passed to a collection bottle. Grab samples were periodically taken to

be subsequently analyzed for total carbon, inorganic carbon, and total

organic carbon with a TOC analyzer and inorganic ccmponents with ICPES.

During a run flowrates, pressures, and temperatures were monitored. Data

was collected once a system reached steady state. Figure 4-1 is a sche-

matic of the apparatus.

V. Results

A. Residence Times

Residence times were calculated from liquid flowrates and the den-

sity of water at reactor conditions. They are reported in Table 5-4.
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B. Gaseous Results

Gas ccmanposition with time was recorded for all runs. The average

concentration for each ccTponent normalized to account for the water vapor

is reported in Table 5-1 for each run. The average gas flowrates are also

reported.

C. Liquid Results

Liquid results are tabulated in Table 5-2. Total carbon in the feed,

organic carbon in the liquid effluent, and inorganic carbon in the liquid

effluent are reported in units of moles C/min and ppm.

Mobst of the liquid products were clear with a slight odor although

a few contained a small amount of either a brown or a white particulate.

Results of ICPES analysis of some of the liquid products are found in

Table 5-3.

D. Carbon Conversion and Carbon Balance

Carbon conversion was calculated from the change in organic carbon

concentration. The carbon in the feed, carbon in the product, and conver-

sion are reported in Table 5-4.

A carbon material balance was done by checking the amount of carbon

in the gas phase and liquid phase products against the amount of carbon

in the feed. These results are reported in Table 5-5.

E. Solid Results

Solid products were analyzed for inorganics using ICPES and organics

using an elemental analyzer. The results are presented in Table 5-6.



TABLE 5-1

Gas Results

Flow rate
(cc/min)

180.3 + 99.2

47.9

56.6

97.9

87.1

141 .1

123.3

135.7

127.1

171.0

16.2

28.2

11.9

22.1

6.8

5.7

11.3

4.8

13.2

Gas Composition (% by Volume)

46.553

8.029

9.912

7.084

3.041

27.708

31.161

17.234

3.575

22.364

H
2

.037

.105

.075

.014

.055

.260

.291

.339

.112

.557

CO
2

35.559

8.011

9.680

6.961

2.868

17.314

21.608

11.149

.309

12.381

50.773

88.851

87.072

89.654

94.517

69.221

65.762

79.874

93.313

74.434

.341

.552

.641

.373

.088

.577

.800

.287

.717

.414

"'4
.000

.000

.008

.008

.008

.045

.019

.025

.014

.405

a 10/19 run also had C3s with a concentration of

Date

7/8

8/8

8/11

8/14

8/24

9/1

9/6

9/22

9/24

10/19a

CO

10.982

.018

.232

.133

.173

10.219

9.458

6.018

3.222

9.426

C2s
.0123

.008

.008

.008

.008

.065

.038

.021

.015

.076

.015.



TABLE 5-2

Liquid Results

Feed
Flow rate
Total cc

min

16.79
+ .97

16.18
+ .74

16.31
+ .66

16.38
+ .89

16.19
+ .79

25.32
+ .49

25.96
+ .55

19.28
+ .27

26.11
+ .47

25.82
+1.25

Date Feed
Flow rate
noles C

min

0.00604
+ .00050

0.00100
+ .00010

0.00092
+ .00014

0.00112
+ .00015

0.00117
+ .00021

0.00352
+ .00013

0.00380
+ .00026

0.00284
+ .00016

0.00146
+ .00009

0.00356
+ .00028

1766
+ 118

713
+ 51

1653
+ 168

Organic
Carbon
in Liq.
Effluent
(ppm)

1876
+ 493

27
+ 129

318
+ 261

Total
Carbon
in Feed

(ppm)

4316
+ 450

742
+ 108

678
+ 110

819
+ 115

870
+ 149

1670
+ 76

1755
+ 121

207
+ 14

201
8

139
+ 20

51
+ 11

202
+ 21

Organic
Carbon
moles
min

0.00262
+ .00075

0.000037
+ .00018

0.00043
+ .00037

0.00020
+ .000007

0.00023
+ .000018

0.00044
+ .000038

0.00044
+ .000027

0.00022
+ .00003

0.00011
+ .000026

0.00043
+- .000066

Inorganic
Carbon
in Liq.
Effluent
(ppm)

36
+ 38

102
+ 28

144
+ 9

130
+ 4

133
+ 4

415
+ 22

423
+ 21

353
+100

386
+ 64

229
+137

Inorganic
Carbon
moles
min

0.00005
+ .000056

0.00014
+ .000041

0.00020
+ .000021

0.00018
+ .000014

0.00018
+ .000014

0.00088
+ .00006

0.00092
+ .000065

0.00057
+ .00017

0.00084
+ .000015

0.00049
+ .00032

150
5

170
6

7/8

8/8

8/11

8/14

8/24

9/1

9/6

9/22

9/24

10/19



Inorganic

Sample Number

9-24 #1 Blanka

9-24 #4

9-24 #5

9-24 #6

9-24 #7

10-19 #3b

10-19 #4

10-19 #2c

10-19 #3

TABLE

Components

Ca

<.001

<.001

<.001

<.001

<.001

<.001

<.001

<.001

<.001

5-3

in Liquid Productsd

P

N.D.e

0.8

7.0

12.0

15.0

white solids filtered with 5 micron filter

brown solids filtered

brown solids digested with concentrated HNO3 and 3% H20

units are mg/gm; multiply by 1000 to get ppm

N.D. - not detected

K

<.009

.041

.054

1.058

.075

.081

.091

.047

.055



TABLE 5-4

Carbon Conversion

P T 8
(psig) (OC) (min)

10/19 3850

277 23.2
+ 1.4

303 23.7
+ 0.9

292 23.3
+ 1.3

289 23.8
+ 1.3

295 23.9
+ 1.1

2275

2375

2275

3200

2550

4050

3825

3825

3825

4.1
+ 0.1

3.8.
+ 0.1

5.1
+ 0.1

3.7
+ 0.1

2.4
+ 0.1

Feed
(nmoles C/mirn

0.00604
+ 0.0005

0.00100
+ 0.0001

0.00092
+ 0.00014

0.00112
+ 0.00015

0.00117
+ 0.00021

0.00352
+ 0.00013

0.00380
+ 0.00026

0.00284
+ 0.00016

0.00155
+ 0.00009

0.00356
+ 0.00028

Date Total Organic
Carbon (TOC)
Liquid Effluent
(ppm)

1876
+ 428

27.2
129

Feed
(ppm)

4316
+ 450

742
+ 108

678
+ 110

819
+ 115

870
+ 149

1670
+ 76

1755
+ 121

1766
+ 118

713
+ 51

1653
+ 168

170
5.6

207
14

201
8

139
20

51
11

202
21

Liquid
Effluent

(moles C/mir

0.00262
+0.00075

0.000037
+0.00018

0.00043
+0.00037

0.00020
+0.000007

0.00023
+0.000018

0.00044
+0.000038

0.00044
+0.000027

0.00022
+0.00003

0.00011
+0.000026

0.00043
+0.00007

Conversion

56.5
+ 18.8

96.3
+474.4

53.1
+ 52.2

81.7
+ 14.1

80.5
+ 16.4

87.6
+ 9.9

88.5
+ 9.6

92.1
+ 19.4

92.8
+ 26.6

87.7
+ 18.0

318
261

150
5

7/8

8/8

8/11

8/14

8/24

9/1

9/6

9/22

9/24

409

400

404

402

443



TABLE 5-5

Date

.00020
+.00001

.00171
+.00013

Gas
Flow rate

( roles C
min

.0038
+.0021

.00017
+.00006

.00025
+.00012

.00031
+.00004

.00012
+.00003

.00175
+.00008

.00172
+.00008

.00104
+.00009

% of
Feed C

62.1
+34.9

17.0
+ 8.7

27.2
+21

27.7
+ 6.7

10.3
+ 3.9

49.7
+ 4.6

45.3
+ 3.1

36.6
+ 5.4

12.9
+ 1.0

48.0
+ 7.3

.00146
+.00009

.00356
+.00028

Liquid Effluent
(moles IC ) ( moles )

min min

Carbon Balance

Feed
( moles C

min

.00604
+.0005

.00100
+.0001

.00092
+.00014

.00112
+.00015

.00117
+.00021

.00352
+.00013

.00380
+.00026

.00284
+.00016

.00262
+.00075

.000037
+.00018

.00043
+.00037

.00020
+.000007

.00023
+.000018

.00044
+.000038

.00044
+.000027

.00022
+.00003

.00011
+.000026

.00043
+.00066

Carbon
Accounted
For (%)

106.3
+56.9

34.7
+22.3

95.6
+33.9

61.6
+13.5

45.3
+13.4

87.2
+ 8.4

81.8
+10.1

64.4
+13.7

.00005
+.000056

.00014
+.000041

.00020
+.000021

.00018
+.000014

.00018
+.000014

.00088
+.00006

.00092
+.000065

.00057
+.00017

.00084
+.000015

.00049
+.00032

78.8
+ 8.1

73.9
+18.2

7/8

8/8

8/11

8/14

8/24

9/1

9/6

9/22

9/24

10/19



TABLE 5-6

Organic and Inorganic Composition of

K Mg Mn P

2.42 .083 .0002 1.2

.91 .19 .0038 .71

<.0009 3.6 .087 16.0

<.0009 1.2 7.0

<.0009 3.0 .12 15.0

<.0009 5.0

Feed and

C

19.76

46.61

1.46

1.52

.38

1.43

2.34

Solid

H

4.7

6.82

.26

.35

.1

.21

.44

Productsa

N

20.50

4.44

.06

.14

.03

.02

.16

Sample

Urine

Feces

9-6-1

9-6-2
c

9-6-3
d

9-22-le

9-22-2
f

10-19g

aunits- weight %

bsolids deposited in fittings before reactor

Csolids collected in solid separator

dsolids deposited on reactor walls

fsolids washed out of the system after run was completed and collected at solid separator;supernatant

liquid was yellow and allowed to evaporate off without washing solids

e,g
solids washed out of the system at end of run

Ca

.21

.40

5.8

2.2

5.5

13.4

4.2 2.9

S

1.77

.5

Total

50.64

60.08

27.27

12.41

24.13

20.06

2.94

7.10



VI. Discussion of Results

A. Wet Oxidation System

The goal of building a wet oxidation system to oxidize urine and

feces was acccmplished but the system had operational problems which led

to errors in the results.

Temperature control was not very good and there was no way to mea-

sure the temperature inside the reactor.

Pressure control was better with average fluctuations of about 4%.

Clogs in the lines caused uncontolled pressure rises which eventually led

to shutdown.

The double diaphragm pump had difficulty pumping anything greater

than 170 mesh particle size so the feces had to be ground. There were

large errors in flowrate measurement because of the small pipet that was

used to measure flowrate.

Gas phase flowrates fluctuated a lot especially at subcritical con-

ditions.

Leaks in the reactor prevented start-up or caused shutdown. The re-

actor was the limiting factor in determining the number of runs which

could be completed. Attempts at making the reactor leak-free had a temp-

orary effect. This was one of the reasons the original set of experiments

was not completed.

Another was the oxygen flowrates which were too low for proper oper-

ation of the ccrpressor. The subcritical runs were not smooth and conver-

sions were low, therefore runs were made at supercritical conditions to

increase conversion and to achieve smooth operation.



B. Efficiency of Oxidation

Lockheed obtained higher conversions at similar pressure, tempera-

ture, and residence time 88% at 2880C and 2200psig caompared to 56% at

2920C and 2275 psig.

Other differences in the experiments may explain the differences in

conversion. Lockheed used agitation and their reactor was designed with

baffles. They used a much higher oxygen flowrate. They used a RuC1 3

catalyst to suppress ammonia formation and found that it enhanced oxida-

tion also. Their feed had about fifteen times as much urine as feces

with 28% carbon, whereas in this thesis equal amounts of urine and feces

were used resulting in a 41% carbon content.

The solid product obtained has less C, H, and N than Lockheed's.

This can probably be attributed to a longer solid residence time.

Other researchers obtained better results with sewage sludge.

Scame of the difference is probably due to reactor design and residence

time. Most used agitation and longer residence times.

C. Effect of Operating Conditions on Oxidation

The results show that conversion increases with pressure. Since the

conversions were so low, the oxygen concentration must not have reached

saturation. The rate of oxidation would have been higher otherwise. There

were probably two phases present in the reactor which did not have time to

equilibrate within a 20 minute residence time.

The supercritical runs had higher conversions although residence

times were shorter. The increased conversions are probably due to the

increased temperatures. The reaction also was not limited by oxygen sol-

bility since according to Pray (10) at supercritical conditions oxygen



must be infinitely soluble. These results are lower than those obtained

with other feeds at supercritical conditions such as glucose. This is

partially due to the shorter residence times used here.

D. Effects of Wet Oxidation cn Inorganic Components of Urine and Feces

Calcium, phosphorous, magnesium, and manganese have higher concen-

trations in the solid product than in the feed. The concentration of po-

tassium decreased in the solid phase. This is the expected result. This

result differs with Lockheed whose material balance test showed most of

the phosphorous in the liquid phase.

Calcium precipitates out as expected from the liquid phase because

very little was detected in it and a lot in the solid phase. Not much

more can be said about the effect of oxidation on inorganics in the liquid

phase since the concentrations in the feed are not known.

E. Carbon Balance Results

The results in Table 5-5 indicate that a lot of carbon is unaccount-

ed for. Only one run, gave a material balance closure greater than 90%.

Absorbed CO2 in the liquid product probably desorbed before TOC analysis

was done.

VII. Conclusions

1. Conversion obtained at a similar pressure, temperature, and resi-

dence time was less than that obtained by Lockheed. The differences

may be due to differences in pH, reactor configuration, oxygen flow-

rate, feed, the presence of a catalyst, or errors in both investi-

gators' results.

2. The wet oxidation system is capable of oxidizing waste but contains



several design deficiencies which cause errors in the results.

3. At subcritical conditions pressure increases lead to increases

in conversions and liquid phase resistance to oxygen diffusion

exists.

4. An increase in temperature causes an increase in conversion.

5. Wet oxidation of urine and feces at the conditions tested pro-

duces a solid product with a higher content of calcium, magnesium,

manganese, and phosphorous than in the feed.

6. Wet oxidation of urine and feces produces a clear liquid pro-

duct with a slight odor even at conversions as low as 56%.

7. Most of the nitrogen, carbon, hydrogen, and potassium do not

remain in the solid phase after oxidation.

VIII. Recommendations

1. Reduce error in the results through changes in the experimental

system.

2. After the design deficiencies in the system have been corrected

check the results in this thesis.

3. If better and acceptable conversions are obtained then pursue

the answers to other questions about wet oxidation of urine and feces.

4. If the conversions do not improve try one of the following:

a. Increase residence times, pressure, and/or oxygen flowrates.

b. Lower the pH to the acidic range in the reactor.

c. Devise a way to insure the pure water and oxygen are in

equilibrium before either enters the reactor.



I. Introduction

In the future long term manned space missions will require methods

that replenish or recycle supplies on board. Non-regenerative methods

of life support which have been used on space missions in the past will.

become too costly. The quantity of supplies will increase with the dur-

ation of the flight and since the cost of supplies required for the

journey is proportional to the weight at launch (8), the cost will also

increase. At some breakeven point launching and transporting the equip-

ment to recycle the supplies from waste will probably be less costly

than using the supplies up on a once-through basis. Thus a need for

study of the technology requirements for recycling supplies on board

exists.

Present research is aimed at closed environment life support sys-

tems (CELSS). In a CELSS all gaseous, liquid, and solid waste streams

from humans and animals must be recycled to plants grown aboard to

support life. The liquid and solid waste streams which will include

feces, urine, and the uneaten portions of animals and plants must be

converted to forms acceptable as nutrients by growing plants. The waste

processing system must do this as well as convert the organic carbon,

hydrogen, and oxygen into CO2 and H20 which are necessary for photo-

synthesis. After the oxidation step, separation of certain components

present and conversion of others to the proper ionic states suitable for

plant uptake will be required. The method of separation will depend

upon the method of oxidation.

The National Space and Aeronautics Administration (NASA) has spon-

sored previous research and development on such waste treatment systems.



Wet and dry oxidation systems have been built and tested on a demon-

stration scale. The input waste rrmodels were so different that no direct

comparison of the alternative methods of waste treatment could be made

without significant extrapolation of experimental results. The previous

research also failed to address how the waste processing scheme would

deal with the conversion of the waste to nutrients in a form that can be

used to grow vegetation. Thus a need for a standardized waste input

model and a program to carry through waste processing from representative

inputs to plant nutrients exists. Any research which further defines

wet or dry oxidation within the above context will help define the tech-

nology requirements for CELSS that would be appropriate for long term

space missions.

The NASA sponsored research on wet oxidation was performed by

lockheed Missiles and Space Company, Inc. A continuous flow system

was developed and demonstrated (18). The results and recommendations

of this research and other studies were used to build a wet oxidation

system and to define operating parameters for the initiation of a pro-

gram to carry wet oxidation from representative waste inputs to plant

nutrients.

II. Background

Wet oxidation is the term used to describe oxidation which takes

place in an aqueous environment. Insoluble carbonaceous organic matter

is converted to CO2 and H20. Organic amine nitrogen is ultimately con-

verted to armunia, sulfur compounds to sulfates, and phosphorous com-

pounds to insoluble phosphates (1).



Wet oxidation systems have been operated anywhere from 160C to

320 0 C and 600 to 2500 psig (1, 11, 9, 13, 20). A wet oxidation process

has been commercialized by Zimpro, Inc. called the Zimmerman Wet Air

Oxidation process. It has been put in operation in more than 160

locations around the world (19). Some of the applications of this pro-

cess are destruction of hazardous materials such as acrylonitrile and

coke oven gas scrubbing waste waters as well as conditioning of sewage

sludge. Researchers have also used wet oxidation to oxidize glucose,

the low molecular weight organic acids, proprionic and butyric (20),

phenol and nitrilotriacetic acid (11), ethyl alcohol, iso-octane, pyro-

gallic acid and charcoal (11). They have tried to study the kinetics

and the mechanism of wet oxidation.

Lockheed Missiles and Space Company is the only researcher to

study the wet oxidation of urine and feces solely. Their research was

also different from other researchers for another reason. Concentrated

industrial wastes are treated by wet oxidation to reduce Chemical Oxygen

Demand (COD) before discharge to receiving water or a municipal sewage

system. Sewage sludge is treated to eliminate potential health hazards

arising from ultimate disposal of solids and to economically reduce the

volume of solids. A 30% reduction in COD is usually sufficient to de-

stroy the slimy nature of sludge and 30-40% reduction destroys its cel-

lular and fibrous structure (16). Wet oxidation is used on urine and

feces to completely recycle them to useful products; therefore, complete

conversion is desirable.

Many researchers agree that wet oxidation consists of thermal de-

composition followed by oxidation (1, 13, 14, 17). Bridges and Fassell

(1) add that the overall wet oxidation reaction is a combination of



several chemical reactions which occur simultaneously and have rates

governed by a number of physical processes. The reactions are hydrolysis

of solids, heterogeneous (solid-surface) oxidation, and homogeneous

(liquid-phase) oxidation. The reactions seem to proceed in two apparent-

ly interconnected rate-limiting steps both pseudo-first order with

respect to COD content of the liquid phase and rate-determining over

a range of percentage reduction in COD. Waste materials are hydrolyzed

and/or oxidized rapidly from their initial complex structures to simpler,

lower molecular weight compounds such as lower fatty acids. The conver-

sion of these intermediates to CO2 and H2 0 is slower. This explains

why oxidation is rapid until about two-thirds of the original COD or-

ganics have been oxidized and then continues at one-tenth the rate for

the remainder. Williams et al. (20)also agree that wet air oxidation

breaks down organic compounds producing lower organic acids. The oxida-

tion of the acids is slow and may be the rate-controlling step. In

their studies of two low molecular acids, butyric and proprionic, they

detected the presence of aliphatic hydrocarbons in the product gases

and also conclude the existence of a free radical mechanism.

For two of the reactions to occur, the heterogeneous and homogeneous,

an oxidizing medium in intimate contact with the oxidizable waste mater-

ial is essential. Most workers claim the best way to accomplish this

is through the geometry of the reactor and through agitation. The

Barber-Coleman Company (1) employed vigorous agitation to disperse the

solid carbonaceous waste materials so that they are more accessible

to the liquid and gaseous phases. They say mixing disperses the oxidiz-

ing gas through the aqueous medium as fine bubbles thus increasing

the effective interfacial area for mass transfer. It also increases



rate of convection which accelerates the rate of dissolved gas diffusion

through the bulk of the liquid and therefore significantly affects the

rate of wet oxidation. As a result of some tests the company made, they

concluded that intensive agitation at moderate temperatures is ore

effective at equal time than non-agitated reactors at higher temperatures.

Most wet oxidation data obtained has been from reactor systems

which employ vigorous agitation. Such systems are also used to show

the absence of mass transfer effects. Williams et al (20) found that

with mixing wet oxidation was kinetically controlled below 288 C.

Higher temperatures were not tested. Since no effect of degree of mix-

ing could be detected, they concluded that if the rate of reaction was

independent of stirrer speed, the reaction could not be controlled by

02 transfer from the gas phase to the liquid.

Pruden and Lee (11) used a bubbling reactor to determine mass

transfer effects directly. They developed equations from which the

conditions at which mass transfer would control or kinetics would con-

trol could be predicted. They concluded that as the concentration of

the feed goes to zero the rate depends on that feed concentration no

matter what the mass transfer effects are. For the bubbling reactor,

the mass transfer effects were small. No mechanical agitation was

necessary to achieve conversions as high as 99%.

Lockheed (18) used mechanical agitation for a batch reactor and a

continuous flow reactor system for wet oxidation of urine and feces.

For the batch system, stirring was found to enhance oxidation whereas

stirring rate had no effect upon total organic carbon reduction of the

feed in the continuous flow system.

Hudgins and Siveston (5) used a rocking autoclave and because their
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rates had a small temperature dependence and decreasing the concentration

in the feed increased the rate they concluded mass transfer was control-

ling. They suggested agitation to get rid of mass transfer control.

Many workers have described the effect of pressure on conversion.

The pressure is determined by two factors: the vapor pressure of water

at the highest tenperature prevailing in the reactor plus the partial

pressure of any other gas present. Fassell and Bridges (1) recomrmend

maintaining a total pressure of between 50 and 200 psig above the vapor

pressure of oxygen and to provide sufficient 02 solubility in the liquid

phase. If the oxidizing gas is not pure 02, the total system to afford

a particular solubility will be even higher.

Pruden and Le (11) present an equation which explains and backs

up the above statements. They say that for reaction to occur, oxygen

from the gas bubbles has to diffuse through a gas, then a liquid inter-

face to the bulk liquid where it reacts with the substance being oxi-

dized. The gas phase resistance can usually be neglected for this type

of situation (4) and the problem is formulated in terms of the liquid

phase resistance and chemical reaction:

S(P-PHO )
- IHCO (/ C + a (Eqn. 2-1)

Co HCo kRC kLaS

where AC is the change in feed concentration, C is the feed concentra-

tion, kL is the mass transfer coefficient, a is the bubble surface per

unit reactor volume, 8 is the residence time in the reactor, kR is the

reaction rate constant, S is the stoichiometric ratio of feed to oxygen,

Co is the initial feed concentration, P is the total pressure, and

P20 is the vapor pressure of water, and H is Henry's law constant.H20
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Assuming that kLaS is constant, the effect of pressure increase will be

large when P is close to PoH20. Therefore pressures near the vapor pres-

sure of water should not be used for wet oxidation.

Pressure increases have been found to cause increases in conversion

for a given residence time and temperature. Ploos van Amstel's data (9)

was plotted on a graph of reduction in COD versus residence time at

2400C. Pressure was varied from 630 to 2205 psig. The effect of a pres-

sure increase decreased as pressure increased. This is what Equation 2-1

predicted. The effect of pressure on rate at higher pressures is greater

but going from 630 to 810 psig has a greater effect than going from

1470 to 2205 psig. This proves that the effect of pressure near the

vapor pressure of H20 is greater. At 240 0C the vapor pressure of H20

is 470 psig. Lockheed (18) also looked at the effect of pressure. An

increase in pressure from 1795 to 2200 psig at 2880C increased the reduc-

tion in total organic carbon (TOC).

The arount of oxidizing gas required depends upon the COD or TOC

of the waste material, the quantity of the material, and the desired

degree of oxidation. Researchers at Barber-Coleman Co. (1) have found

that even with efficient agitation, the oxygen input had to be 1.1 to 2

times the theoretical quantity to reduce the COD sufficiently. Lockheed

(18) looked at the effect of 02 flowrate on TOC reduction of urine and

feces. They achieved the best conversions at eight times stoichiometric

and if lowered to stoichiometric, conversion dropped from 91% to 78%.

Nbst workers say temperature is the major independent variable.

Fassell and Bridges (1) observed a more rapid reaction at higher tem-

peratures. They recommend an optimum temperature between 420 and 460 0F

(216-2380C) which they say is high enough for sufficient oxidation but



not so high that pressure has to be very high and equipment costs become

too high. Teletzke (16) concluded that at temperatures of 2500 C con-

version levels off in a very short time. At lower temperatures, longer

periods of time are required before a leveling off of conversion is

observed and the level of oxidation is also lower. Ploos van Amstel (9)

determined that temperature has a considerable affect on conversion rate.

Unlike Teletzke's findings, at low temperatures the levels of oxidation

were not much lower than at higher temperatures. It took much longer

to reach these levels at lower temperatures as Teletzke stated. At 1800C

and 1100 psig it took more than seven hours to reach a conversion of 90%.

At 290 0C conversion of 90% was reached in 40 minutes.

Residence time also has an effect upon conversion. Fassell and

Bridges (1) state that a 30 minute to 1 hour residence time is enough to

achieve 70% reduction in chemical oxygen demand of sewage sludge at

temperatures between 4350F and 4750F (234-2460C). Ploos Van Amstel's

results show that residence time has the greatest effect at higher tem-

peratures. At 2900C residence time has greatest effect at 20 minutes

or less. After 40 minutes, the effect is negligible. Lockheed varied

residence time from 90 minutes to 20 minutes at 2880C and 2200 psig;

conversion decreased from 96 to 88% which is a greater effect than Ploos

Van Amstel observed.

The Barber-Coleman Company also found an effect of pH on reaction

rate (1). A pH between 1 and 5 is supposed to produce an additional 10%

reduction in COD according to Fassell and Bridges of Barber-Coleman

Company. Lockheed used a ruthenium trichloride catalyst to suppress

formation of ammonia in the wet oxidation of urine and feces. As a

result of using this catalyst, the environment in the reactor was very



acidic. The reduction in TOC was greater with the catalyst. Lockheed

workers attributed it to the catalytic effect of ruthenium but it could

have been due to the acidity in the reactor.

Wet oxidation has an effect on the chemical composition of wastes

besides the effect on carbon. According to Sonmers et al total nitrogen

levels in sewage sludge decreases by more than 50%. Other components:

P, Co, Zn, Ni, Cd and Pb increase or remain unchanged. The concentration

of soluble total phosphorous decreases and phosphorous in the particulate

phase increases from 90 to more than 99%. According to Modell et al (8)

all mineral nutrients including nitrogen are expected to stay in aqueous

solutions from which heavy metal ions (Ca, Mg, Fe, Cu, Zn, Mn, etc.) will

precipitate as insoluble phosphates and/or sulfates. Little carbonate

precipitation should occur in the presence of these ions and loss of

fixed N2 should be small. Lockheed analyzed the liquid effluent samples

for many elements but only analyzed the feed for C, H, N, O, S, and P.

For the elements present in small amounts (N, S, and P) the error in an-

alysis was great. More of these elements were always detected in the

effluent than were present in the feed. Qualitatively, most of the

carbon and nitrogen in the effluent was in the gas phase and nost of the

sulfur and phosphorous was in the liquid phase. Lockheed's results are

different from what was expected.

III. Objectives and Approach

The general objective of this thesis is to fill in gaps in the

literature and provide useful information to help build a CELSS. Specif-

ically, the objectives are:



1. Build a wet oxidation system to oxidize a slurry of urine and

feces.

2. Determine effects of operating conditions upon efficiency of

oxidation using past research to define suitable operating

conditions.

3. Close the material balance on carbon.

4. Determine effects of wet oxidation on other components of urine

and feces.

The approach used to look at the effects of operating conditions on

the efficiency of oxidation was to design a reactor without gas-liquid

mass transfer effects. This goal could be achieved with a one phase

system in which the dissolved oxygen at reactor conditions and the feed

concentration are in stoichiometric proportion. The temperatures and

residence times were chosen based on the work of previous researchers.

The pressures were chosen based on those employed by previous researchers

as well but were increased so that the oxygen flow rate at standard

temperature and pressure would be reasonable and the liquid/oxygen

flow rate would be large. Henry's law was used to determine solubility

of oxygen in water. The stoichiometric feed concentration was determined

from this oxygen solubility. The original list of experiments is found

in Appendix G, Selection of Experiments.

IV. Apparatus and Procedure

The apparatus used for the experiments was a flow system. The feed,

a slurry of urine and feces, hot water, and oxygen, was pumped up to

pressure and the volume of the feed and water were measured with respect



to time. The water passed through a coiled length of tubing in a fur-

nace to preheat it to reactor temperature or higher. The hot water, feed,

and oxygen were then mixed together and passed through a Hastelloy reactor

kept hot by another furnace. There the oxidation reaction occurred. The

reactor effluent then passed through a heat exchanger to be cooled and

a solid product collector to have suspended solids removed. The stream

then passed through a back pressure regulator and upon expanding the

phases were separated. The gas phase went to an on-line gas chromato-

graph which periodically analyzed a sample. The liquid passed to a

collection bottle. Grab samples were periodically taken to be subse-

quently analyzed for total carbon, inorganic carbon, total organic car-

bon, and several inorganic components.

A. Apparatus

The flow system is pictured in Figure 4-1. Its description is

divided into the following sections: Feed, Preheating, Mixing, Reactor,

Separation, Pressure Measurement and Control, Temperature Measurement

and Control, Safety, Tubings and Fittings, and Analytical. Each piece

of equipment is numbered in Figure 4-1 and referred to in the text by the

corresponding number.

1. Feed System

A dual-head American Lewa pump (1), Type HKM-2 was used to feed the

water and slurry. The single diaphragm head with ruby balls and tungsten

carbide seats in the check valves pumped the water. The double diaphragm

head with Hastelloy C balls and seats in the check valves was used for the

slurry. Both heads had pressure ratings of 5000 psig. The motor provi-

ded a horsepower of 1/2 at 1725 rpm. The water was pumped from a poly-

propylene Nalgene bottle (2) through a 50 cc buret (3) which was used to
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measure flow rate. The slurry was pumped from a 1000 cc pyrex aspirator

bottle (4) through a 1 cc pipet (5) whose tip had been cut off. The

pipet was used to measure flow rate. When slurry was not being pumped,

a Hoke three-way ball valve (6) allowed switching to water contained

in a Nalgene bottle (7). The water used was distilled water treated

with a Barnsted Water Purification Nanopure A system equipped with four

cartridges: two mixed-resin cartridges using cation and strong base

anion resins for deionization, one cartridge for removal of organics and

chlorine, and one cartridge containing a .2,u filter for removal of sub-

micron particulates. Water with a resistance as high as 18 megaohm-cm

could be obtained.

After each pump head was a Hoke two-way ball bleed valve (8, 9) used

to rid the head of air which may have gotten trapped. Directly down-

stream of the single diaphragm head was a Hoke check valve (10) to

prevent any of the system contents from backing up when the bleed valve

was opened. Downstream of the double-diaphragm pump was another two-way

ball valve (11) which served the same purpose as the check valve after

the single diaphragm head.

The oxygen compressor (12) was an American Instrument Company

(AMNCO) motor driven diaphragm compressor 1Model No. J46-13411. It has

a compression ratio of 14 to 1 and a 10,000 psi pressure rating. An

oxygen compatible fluorinated oil was used to pulse the diaphragm. The

motor put out 1 HP at 1800 rpm. Wetted materials were 316 SS for the

valves and 302 SS for the diaphragm.

Upstream of the compressor was a 316 SS High Pressure Company (HIP)

surge valve (13), model number 30-41HF5-E, used as a safety precaution in

case the cylinder regulator failed. A 5L dry type filter (14), an
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AMINCO model number J49-14405, was also put in line upstream of the com-

pressor to protect the compressor diaphragm from particles. It was

rated at 30,000 psig and could handle 2.5 scfh of air with a pressure

drop of 5 psig. It could not be used with a pressure drop greater than

250 psig without deforming the sintered filter elements. Downstream of

the oxygen compressor irrmediately before oxygen was mixed with the other

stream was a HIP oxygen check valve (15), model number 10-41AF4-T which

served the purpose of preventing any back flow into the oxygen lines.

2. Preheating

To preheat the feed, water from the single diaphragm head at a flow

rate ratio of 2 to 1 or higher to the slurry was passed through a coil (16)

in a Lindberg Laboratory single zone tube furnace (17), model number

55451 controlled by a model number 58121 control console. The water

was heated to a temperature hot enough to insure that the temperature

after the water and slurry were mixed was close to the reactor tempera-

ture.

3. Mixing

From 7/8/80 to 9/6/80 the slurry was mixed into the water through a

tube in the middle of a 1/4" high-pressure tee (18) and then the oxygen

was introduced into this mixed stream similarly but in a Hastelloy C-276

1/4" high-pressure tee (19). The final mixture then went directly to the

reactor.

Due to clogging by deposited solids in the tees where mixing took

place the method of mixing was changed for the 9/22 run. A tube through

which undiluted slurry entered was put directly into the reactor. The

slurry mixed with previously mixed oxygen and water. The tube was of

very small ID and it soon clogged with solids as well. The tube was



removed for subsequent runs but the slurry came in at the same place.

The mixture of 02 and water was then mixed with slurry before entering

the reactor in a Hastelloy tee (20) (without a tube in the middle of the

stream). The latter set-up caused clogs at the reactor exit. The clogs

occurred long enough after a run began such that data could be gathered.

4. Reactor System

The reactor (21) was designed by Hydropak. It was made from Has-

telloy C-276 and rated at 5000 psi and 10000F (5380C). Its maximum pres-

sure rating is 11,000 psi at 100 0 F maximum. Hastelloy C-276 was chosen

as the material of construction because corrosion tests by researchers at

Lockheed (7) showed it to be the best material when compared to E-Brite

26, MP35N, Inconel 625, Zirconium, Zircaloy 2, Elgiloy, Tantalum, and

Tantalum-40% Colombium. Inconel 625 was the second choice. The reactor

design was an empty cavity without baffles or agitation, 1. 2' ID by

25.12" long. The seal was a nodified Bridgeman single end which after

use did not work very well. The system was down many times due to leaks

at the seal. The reactor inlet and exit were made for 1/4" high pressure

fittings. The reactor was kept heated with a three-zone Lindberg Labora-

tory Tube Furnace (22), model 55453, with a control console, model number

58321.

Irmediately following the reactor was a tube-in-tube heat exchanger

(23). Inconel was chosen for the inside tube because of its availability.

The dimensions of the tube were 1/4" OD by 3/8" ID. The reactor effluent

stream was cooled to room temperature to quench the reaction and to

protect subsequent pieces of equimwent from extremely hot temperatures.

Water from the tap was used for cooling and passed through the annulus

of the heat exchanger countercurrent to the reactor effluent.



5. Separation

The cooled stream leaving the heat-exchanger entered a solid pro-

duct collector (24). This consisted of a vertical tube with a dip tube

inside. The effluent entered through the annulus; the solids were sup-

posed to settle to the bottom and the resulting clean stream went up

the inside of the dip tube. Very few solids made it to the solid product

collector and some of those that did were so small in particle diameter

they did not settle. They stayed in the liquid product. The effluent

from the solids separator went to a 304 SS Wright Austin gas liquid

separator (25) which worked on a principle similar to a cyclone: by

centrifugal force and gravity. The separator was rated for 500 psi at

200 0F.

The separator was connected to a liquid-level controller (26).

The liquid level controller consisted of two 9/16" OD vertical tubes con-

nected at the top to the gas outlet, at the bottom to the liquid outlet,

and at the middle to the liquid outlet of the Wright Austin separator.

A wire was inserted a quarter of the length of both tubes into the tube

from the top. It was connected to an Asco 2-way normally closed solenoid

valve which was connected to a HIP air actuated valve (27). When the

liquid level rose to touch the wire, the solenoid valve was energized.

It opened and let air or nitrogen leave the cylinder, pass through the

solenoid valve and open the air-actuated valve. The air-actuated valve

was in the liquid effluent line and remained open until the level

dropped below the wire. When the liquid level did drop, the solenoid

valve was deenergized. It closed cutting off flow of air or N2 to the

air-actuated valve causing the latter to close. The valve stayed closed

until the liquid level rose again and the cycle was repeated. Air or N2



at 30 psig was used to actuate the valve. The solenoid valve had a con-

trol box (28) which provided main power and had a switch which could be

used to bypass the automatic mode and open the solenoid valve.

6. Tubings and Fittings

All tubing used in the cold part of the system and in the hot parts

which were exposed to water only was 316 SS but the dimensions varied

depending upon the part of the system. In the 02 feed system, the tubing

was 1/4" OD by 1/8" ID. In the water and slurry feed system downstream

of each pump'head the tubing was 1/8" OD by .06" ID. The tubing used for

the coil in the preheating section was 1/8" OD by .04" ID high pressure

tubing as was the tubing leading from the coil to the first mixing tee.

High pressure 1/4" Hastelloy tubing 1/4" OD by .083" ID was used in the

hot part of the system where 02 was present from the 02-water mixing

tee to the Inconel heat exchanger. The tubing from the solid product

collector to the analytical equipment was 1/4" OD by 1/8" ID or larger.

It was still capable of standing pressures greater than 5000 psig at

low temperatures.

Fittings in the low temperature part of the system were Swagelok

or low-pressure fittings from HIP, HEX, or Autoclave Engineers. Fittings

in the high-temperature part of the system were coned and threaded medium

or high pressure from HEX, HIP, or Autoclave Engineers. This included

couplings, tees, crosses, and adapters. The solid product collector and

liquid level controller were made from 9/16" OD medium pressure fittings

and 9/16" OD medium pressure tubing.

7. Pressure Measurement and Control

Four pressure gauges were used to monitor pressure and are represen-

ted by the letter P in Figure 4-1: a 1000 psi US Gauge gauge upstream



of the compressor, a 5000 psi US Gauge gauge immediately downstream of

the single diaphragm head, a 5000 psi Acco Helicoid Gauge on the slurry

line before the mixing tee, and a 5000 psi gauge immediately downstream

of the compressor. For the October 19 run, a pressure transducer (29),

BLH Electronics model STD-H, and a digital transducer indicator, BLH

Electronics model 450A, with a 10,000 psi range was installed after the

solid separator and before the back pressure regulator.

The back pressure regulator (30) controlled system pressure. It

was a spring loaded manually operated Tescom regulator which controls

pressure up to 6000 psi at a maximum temperature of 4250F.

8. Temperature Measurement and Control

Temperatures were monitored using COmega Type K thermocouples, one

Omega model 2160A digital temperature readout with a model 2161 multi-

point selector, and two Omega model 4002KC termperature controllers and

readouts. The furnaces were equipped with thermocouples and the temper-

ature controlled by the respective control console.

There were a total of six thermocouples: in-line before the reactor,

in-line after the reactor, middle of the reactor on the surface, reactor

thermowell, on the surface of the mixing tee before the reactor and in-

line after the heat exchanger. Usually just four or five of the six

thermocouples were used during a particular run. The thermocouples are

represented by the letter T in Figure 4-1.

Briskheat flexible electric heating tapes were used on the lines

between the preheater furnace and the reactor to prevent cooling. Vari-

acs were used to control the power to the heating tapes so the tempera-

ture of the mixed stream before the reactor could be controlled.



9. Safety Precautions

There were two safety precautions built into the system: a HIP

safety relief valve (31) with a 5500 psi rating and a furnace bypass.

The furnace bypass consisted of an Asco 2-way normally closed solenoid

valve connected to one of the Cega temperature controller-readouts and

to a HIP normally closed air actuated valve (32). When the temperature

at the reactor outlet which was indicated on the COmega temperature con-

troller/readout reached a temperature equal to a set point temperature,

the controller energized the solenoid valve. It opened allowing nitrogen

at 30 psig to open the actuated valve. When this happened, cold water

from the single diaphragm head bypassed the furnace and went through the

line containing the actuated valve directly to the furnace. This was

protection against an uncontrolled temperature rise. The safety relief

was protection against uncontrolled pressure rises.

10. Analytical Equipment

Liquid samples were analyzed for total carbon, inorganic carbon, and

total organic carbon on a Beckman Tocarmaster Total Organic Carbon Analy-

zer. Solid samples were analyzed for carbon, hydrogen, and nitrogen on

a Perkin Elmer elernental analyzer. Standard procedures recomrended by

the manufacturer were used. Liquid and solid samples were analyzed at

Georgia Institute of Technology for inorganic components using Inductive-

ly Coupled Plasma Emission Spectroscopy (ICPES).

Gas samples were analyzed using a Perkin Elmer Sigma IB gas chromat-

ograph. The columns used were a 12', 1/8" OD, Porapak T and a 3', 1/8"

OD, Molecular Sieve 5A, connected through a Valco 10-port Hastelloy valve

in series. The gas sample was injected onto the Porapak T. After H2,

02, N2' CH4 and CO eluted off the porapak onto the molecular sieve the



order of the columns was resequenced using the valve. Any gases left

on the porapak went to the detectors after elution. The other gases,

separated by the molecular sieve, eluted back on to the porapak before

going to the detectors. A thermal conductivity detector (TCD) was used

to detect CO, CO2 , 02' N2 ' CH4' and H2 . A flame ionization detector in

series with the TCD was used to analyze hydrocarbons. Appendix B, Analy-

sis of Gaseous Products explains how peak areas and concentrations were

determined.

B. Procedure

1. Feed Preparation

Freeze dried feces from GIT batch CFl, Sample No. 5 was ground to

170 mesh or smaller using a Tekmar model no. A-10.S laboratory grinder.

The feces used for the August 8 run had only been ground small enough to

pass through an 80 mesh sieve but that run indicated the particle size

had to be smaller for the slurry to be pumped smoothly and 170 mesh was

small enough.

The ground feces and the urine from batch GFl, Sample No. 1 were

weighed on a Mettler Type H6 Analytical balance and put in a blender. A

500 cc graduated cylinder was used to measure enough purified water. A

1000 cc volumetric flask was used once to make the solution but the slurry

foamed so much it was hard to measure. Water from the cylinder was added

to the blender and the slurry mixed a few seconds on a medium speed.

After mixing the slurry was poured into a 1000 cc Pyrex aspirator

bottle. A magnetic stirrer and bar were used to keep the particles sus-

pended in the slurry and to maintain homogeneity.

2. Start-up Procedure

The start-up procedure was the following:



1. Calibrate GC before run if necessary.

2. Turn on heat exchanger cooling water.

3. Turn on power to the thermocouples.

4. Turn on power to the liquid level controller.

5. Open gas cylinders that operate each valve and set correct pres-

sure on regulator (30 psig).

6. Turn on pumps. Set at flow rates specified for the run.

7. Adjust back-pressure regulator to the pressure specified for

the run.

8. When system reaches operating pressure, turn on heaters and

heating tapes, turning up slowly.

9. Measure flow rates in and out to help indicate presence of sys-

tem leaks.

10. When system reaches operating temperature, take a blank liquid

sample.

11. Turn on 02 compressor using calibration charts as approximate

guide for inlet pressure (The 02 flow rate is fixed by the inlet

and outlet pressure so it could be varied by adjusting the pres-

sure of 02 leaving cylinder).

12. Measure 02 outlet flow using a 100 cc soap bubble flow meter.

If not in the right range, adjust compressor suction pressure

accordingly.

13. If in the right range, switch feed to waste slurry.

3. Run and Shutdown Procedure

1. Record and monitor temperatures and pressures, and water, feed,

and gas product flow rates frequently.

2. Record and monitor liquid effluent flowrates a few times to in-



insure absence of leaks.

3. Take a gas sample every 20 minutes. (Each analysis took 20

minutes.)

4. Take small liquid samples frequently (1 oz. polyethylene bot-

tles make good containers) for carbon analysis. Label with

date, time, and sample type.

5. Take a few large liquid samples (16 oz.) for ICPES analysis.

6. If temperatures, pressures, or flow rates change significantly,

adjust appropriate piece of equipment: furnace set points,

variacs to heating tapes, back pressure regulator or pumps.

7. When all the feed is exhausted, switch back to water.

8. When a GC trace shows 99% 02 then most of feed is through the

system and 02 compressor can be turned off.

9. Slowly cool the system down by slowly lowering the set point

on the furnace controllers and the settings on the heating tape

variacs. When the variacs are down to zero and furnace control-

lers are down to 1500C, turn off the power to them.

10. Turn off pumps.

11. Turn off detectors on GC.

12. Close all cylinders which operate actuated valves.

13. Turn off power to liquid level controllers.

14. Turn off power to thermocouples.



V. Results

A. Residence Times

During each run, liquid flow rates were measured and recorded. They

are tabulated in Appendix A, Flow Rate Data. The flow rates were averaged

and their standard deviations and the 95% confidence limits using the

t-distribution were calculated. (See Appendix H, Error Analysis) From

the liquid flow rates and the density of water at reactor conditions, the

residence times are calculated. (See Appendix F, Residence Tine Determin-

ation) These residence times are reported in Table 5-4.

B. Gaseous Results

Gas composition with time was recorded for all runs. The gas com-

positions for the period the system was at steady state are reported in

Appendix B, Analysis of Gaseous Products. The average concentration

for each component is reported in Table 5-1 for each run. The gas is

assumed to be saturated with water so the gas compositions were normal-

ized to account for the 2.3% water vapor present. The gas flow rates

for each run are listed in Appendix A, Flow Rate Data. The average flow

rates along with the 95% confidence limits are reported in Table 5-1.

C. Liquid Results

Table 5-2 presents the liquid results. Total carbon in the feed,

inorganic carbon in the liquid effluent, and organic carbon in the liquid

effluent are reported in units of moles of carbon per minute (oles C/min)

and parts per million (ppm). Appendix D, Carbon Content of Feed shows

how the total carbon in the feed was obtained using the results of the

waste analysis in Appendix C and the liquid flow rate data in Appendix A.

The inorganic and organic carbon are the average arount of carbon in ppm



TABLE 5-1

Gas Results

Flow rate
(cc/min)

180.3 + 99.2

Date

7/8

8/8

8/11

8/14

8/24

9/1

9/6

9/22

9/24

10/19
a

+ 16.2

+ 28.2

+ 11.9

+ 22.1

+ 6.8

+ 5.7

+ 11.3

+ 4.8

+ 13.2

Gas Composition (% by Volume)

46.553

8.029

9.912

7.084

3.041

27.708

31.161

17.234

3.575

22.364

.037

.105

.075

.014

.055

.260

.291

.339

.112

.557

35.559

8.011

9.680

6.961

2.868

17.314

21.608

11.149

.309

12.381

02

50.773

88.851

87.072

89.654

94.517

69.221

65.762

79.874

93.313

74.434

.341

.552

.641

.373

.088

.577

.800

.287

.717

.414

CH4

.000

.000

.008

.008

.008

.045

.019

.025

.014

.405

a 10/19 run also had C3 s with a concentration of

47.9

56.6

97.9

87.1

141.1

123.3

135.7

127.1

171.0

CO

10.982

.018

.232

.133

.173

10.219

9.458

6.018

3.222

9.426

C2s

.0123

.008

.008

.008

.008

.065

.038

.021

.015

.076

.015.



TABLE 5-2

Liquid Results

Feed
Flow rate
Total cc

min

16.79
+ .97

16.18
+ .74

16.31
+ .66

16.38
+ .89

16.19
+ .79

25.32
+ .49

25.96
+ .55

19.28
+ .27

26.11
+ .47

25.82
+1.25

Date Feed
Flow rate
moles C

min

0.00604
+ .00050

0.00100
+ .00010

0.00092
+ .00014

0.00112
+ .00015

0.00117
+ .00021

0.00352
+ .00013

0.00380
+ .00026

0.00284
+ .00016

0.00146
+ .00009

0.00356
+ .00028

713
+ 51

1653
+ 168

Organic
Carbon
in Liq.
Effluent
(ppm)

1876
+ 493

Total
Carbon
in Feed
(ppm)

4316
+ 450

742
+ 108

678
+ 110

819
+ 115

870
+ 149

1670
+ 76

1755
+ 121

1766
+ 118

170
+ 6

207
+ 14

201
+ 8

139
+ 20

51
11

202
+ 21

Organic
Carbon
roles
min

0.00262
+ .00075

0.000037
+ .00018

0.00043
+ .00037

0.00020
+ .000007

0.00023
+ .000018

0.00044
+ .000038

0.00044
+ .000027

0.00022
+ .00003

0.00011
+ .000026

0.00043
+ .000066

Inorganic
Carbon
in Liq.
Effluent
(ppm)

36
+ 38

102
+ 28

144
+ 9

130
+ 4

133
+ 4

415
+ 22

423
+ 21

353
+100

386
+ 64

229
+137

Inorganic
Carbon
moles
min

0.00005
+ .000056

0.00014
+ .000041

0.00020
+ .000021

0.00018
+ .000014

0.00018
+ .000014

0.00088
+ .00006

0.00092
+ .000065

0.00057
+ .00017

0.00084
+ .000015

0.00049
+ .00032

27
129

318
261

150
5

7/8

8/8

8/11

8/14

8/24

9/1

9/6

9/22

9/24

10/19



calculated from the analysis of individual samples listed in Appendix E,

Analysis of Carbon Content in Liquid Effluent- Organic and Inorganic.

This average number was then multiplied by the average total flow rate

to obtain the result in moles C/min for each run.

The liquid product from the glucose run of 7/8/80 was slightly yel-

low but yellowed even more after storage. The concentration of carbon

was still greater than 2000 ppm which is higher than the starting mater-

ial in subsequent runs. The liquid products from the urine and feces

runs were clear and had a slight odor. Some of the samples contained a

white particulate. The samples from the 10/19 run had a small amount

of brown particulate which settled after the sample sat for a while.

During the 8/14 run, 02 flow was lost and the liquid product was brown

with brown particulates. Some of the liquid products were analyzed for

inorganic components by ICPES (Inductively Coupled Plasma Emission Spec-

troscopy). This data is reported in Table 5-3.

D. Carbon Conversion and Carbon Balance

Carbon Conversion was calculated from the change in organic carbon

concentration:

% Conversion = (1- ppm TOC effluent) x 100 (Eqn. 5-1)
ppm TOC feed

The carbon in the feed, carbon in the product, and conversion are tabu-

lated in Table 5-4.

To do a carbon balance, the amount of carbon in the gas phase and

liquid phase products in units of moles C/min are added and checked

against the moles of carbon in the feed in the same units:



Inorganic

Sample Number

9-24 #1 Blanka

9-24 #4

9-24 #5

9-24 #6

9-24 #7

10-19 #3b

10-19 #4

10-19 #2c

10-19 #3

TABLE

Components

Ca

<.001

:5.001

<.001

<.001

<.001

<.001

<.001

<.001

<.001

5-3

in Liquid Productsd

P

N.D.e

0.8

7.0

12.0

15.0

a white solids filtered with 5 micron filter

brown solids filtered

C brown solids digested with concentrated HNO3 and 3% H2 0

d units are mg/gm; multiply by 1000 to get ppm

e N.D. - not detected

K

<.009

.041

.054

1.058

.075

.081

.091

.047

.055



TABLE 5-4

Carbon Conversion

P T e
(psig) (°C) (min)

10/19 3850

277 23.2
+ 1.4

303 23.7
+ 0.9

292 23.3
+ 1.3

289 23.8
+ 1.3

295 23.9
+ 1.1

2275

2375

2275

3200

2550

4050

3825

3825

3825

4.1
+ 0.1

3.8
+ 0.1

5.1
+ 0.1

3.7
+ 0.1

2.4
+ 0.1

Feed
(moles C/mi

0.00604
+ 0.0005

0.00100
+ 0.0001

0.00092
+ 0.00014

0.00112
+ 0.00015

0.00117
+ 0.00021

0.00352
+ 0.00013

0.00380
+ 0.00026

0.00284
+ 0.00016

0.00155
+ 0.00009

0.00356
+ 0.00028

Date Total Organic
Carbon (TOC)
Liquid Effluent
(ppm)

1876
+ 428

27.2
+ 129

318
+ 261

Feed
(ppm)

4316
+ 450

742
+ 108

678
+ 110

819
+ 115

870
+ 149

1670
+ 76

1755
+ 121

1766
+ 118

713
+ 51

1653
+ 168

170
5.6

207
+ 14

201
+ 8

139
+ 20

51
+ 11

202
+ 21

Liquid
Effluent

(rmoles C/mig

0.00262
+0.00075

0.000037
+0.00018

0.00043
+0.00037

0.00020
+0.000007

0.00023
+0.000018

0.00044
+0.000038

0.00044
+0.000027

0.00022
+0.00003

0.00011
+0.000026

0.00043
+0.00007

%
Conversion

56.5
+ 18.8

96.3
+474.4

53.1
+ 52.2

81.7
+ 14.1

80.5
+ 16.4

87.6
+ 9.9

88.5
+ 9.6

92.1
+ 19.4

92.8
+ 26.6

87.7
+ 18.0

150
5

7/8

8/8

8/11

8/14

8/24

9/1

9/6

9/22

9/24

409

400

404

402

443



Carbon material = Gas phase C,moles + Liq. phase IC,moles + Liq. TOC,moles
balance closure(%) min min min

Feed Carbon,moles
min

x 100 (Eqn. 5-2)

These results are reported in Table 5-5.

E. Solid Results

Solid products deposited at many places in the system. The solids

collected on 9/6/80 came from that run and all preceding runs. The others

are from the run indicated. Inorganic constituents were analyzed using

ICPES and organic constituents using an elemental analyzer. The solids

were not weighed and therefore are not useful in the carbon balance. The

results are presented in Table 5-6.

VI. Discussion of Results

A. Wet Oxidation System

One goal of this thesis was to build a wet oxidation flow system to

oxidize a slurry of urine and feces. This goal was accomplished but pro-

blems in the operation of the system led to errors in the results.

Temperature control was not very good. There was no way of measur-

ing the temperature inside the reactor. The temperatures indicated by

the thermocouples placed before the reactor inline, on the reactor sur-

face in the middle, in the thermowell in the bottom of the reactor, and

after the reactor inline were usually different from each other. The

furnace used to heat the reactor and the insulation used did not keep the

reactor isothermal. The temperatures did remain constant during the

period the system was at steady state.

Pressure control was better. Pressure fluctuations averaged about



TABLE 5-5

Date

7/8

.00171
+.00013

Gas
Flow rate

( noles C
min'

.0038
+.0021

.00017
+.00006

.00025
+.00012

.00031
+.00004

.00012
+.00003

.00175
+.00008

.00172
+.00008

.00104
+.00009

.00020
+.00001

% of
Feed C

62.1
+34.9

17.0
+ 8.7

27.2
+21

27.7
+ 6.7

10.3
+ 3.9

49.7
+ 4.6

45.3
+ 3.1

36.6
+ 5.4

12.9
+ 1.0

48.0
+ 7.3

.00356
+.00028

Liquid Effluent
(noles IC) ( moles

min min

Carbon Balance

Feed
( moles C

min

.00604
+.0005

.00100
+.0001

.00092
+.00014

.00112
+.00015

.00117
+.00021

.00352
+.00013

.00380
+.00026

.00284
+.00016

.00146
+.00009

.00262
+.00075

.000037
+.00018

.00043
+.00037

.00020
+.000007

.00023
+.000018

.00044
+.000038

.00044
+.000027

.00022
+.00003

.00011
+.000026

.00043
+.00066

Carbon
Accounted
For (%)

106.3
+56.9

34.7
+22.3

95.6
+33.9

61.6
+13.5

45.3
+13.4

87.2
+ 8.4

81.8
+10.1

64.4
+13.7

78.8
+ 8.1

.00005
+.000056

.00014
+.000041

.00020
+.000021

.00018
+.000014

.00018
+.000014

.00088
+.00006

.00092
+.000065

.00057
+.00017

.00084
+.000015

.00049
+.00032

73.9
+18.2

8/8

8/11

8/14

8/24

9/1

9/6

9/22

9/24

10/19



TABLE 5-6

Organic and Inorganic Composition of

K Mg Mn P

2.42 .083 .0002 1.2

.91 .19 .0038 .71

<.0009 3.6 .087 16.0

<.0009 1.2 7.0

<.0009 3.0 .12 15.0

<.0009 5.0

Feed and

C

19.76

46.61

1.46

1.52

.38

1.43

2.34

Solid

H

4.7

6.82

.26

.35

.1

.21

.44

Productsa

N

20.50

4.44

.06

.14

.03

.02

.16

Sajmple

Urine

Feces

9-6-1

9-6- 2
c

9-6-3
d

9-22-le

9-22-2
f

10-19 g

aunits- weight %

bsolids deposited in fittings before reactor

Csolids collected in solid separator

dsolids deposited on reactor walls

fsolids washed out of the system after run was completed and collected at solid separator;supernatant
liquid was yellow and allowed to evaporate off without washing solids

e,g
solids washed out of the system at end of run

2.9

Ca

.21

.40

5.8

2.2

5.5

13.4

S

1.77

.5

4.2

Total

50.64

60.08

27.27

12.41

24.13

20.06

2.94

7.10



4% except for the runs on 8/14/80 and 9/1/80 when the pressure fluctua-

tions were 22% and 10% respectively. In both these cases the pressures

increased greatly such that on 8/14 the back pressure regulator had to be

turned down and on 9/1 the pumps had to be turned off. Later it was dis-

covered that clogs in the lines caused this behavior.

The diaphragm pump which pumped deionized water was very stable and

errors in water flowrates are due mostly to errors in measurement. The

double diaphragm pump used to pump the slurry was not as reliable. To

pump the slurry smoothly the particle size had to be 170 mesh or smaller.

This was the case for all runs except the 8/8 run where the particle size

was less than 80 mesh. The flow of feed was not steady and ceased com-

pletely twice. This explains some of the error for this run. The parti-

cle size was smaller for the 8/11 run but the feed flowrate was still not

steady although better than the 8/8 run. The errors in measurement for

the slurry are greater than those for the water because of the one cc

pipet which was used to measure volume pumped in a given time. The flow-

rate was fast enough to make it difficult to read the pipet.

Most of the errors in the gas phase were due to changing gas flow-

rates. No errors in measurement could account for the large differences

in gas flowrates observed (See Appendix A, Flowrate Data) in some of the

runs. The gas chromatograph accurately analyzed the gas but to close

the carbon balance the flowrate was very important. The flowrates for

the runs at supercritical conditions did not vary as much as those at sub-

critical conditions (See Appendix A, Table 9-2).

There were also problems with the equipment which caused a shutdown

or prevented start-up. These were clogs in the system at various places



which could cause the pressure to go out of control and prevent the con-

tinuation of a run or leaks in the reactor which prevented start-up. The

reactor was the limiting factor in determining the number of runs which

could be completed. When the reactor was disassembled for cleaning it

always leaked after reassembly. Attempts at making it leak-free usually

had a temporary effect. The reactor might remain leak-free until it was

disassembled again or just until the next run. Each time something dif-

ferent was tried. The sealing surface was polished well, grooves were

put in the sealing ring, and the ring was even silverplated. Nothing

worked permanently. This problem still exists.

The problem with the leaking reactor was the main reason the orig-

inal set of experiments was not completed. Another reason was the oxygen

flowrates. The ones specified were too low for proper operation of the

compressor, therefore higher flowrates were used and later higher carbon

concentration in the feed. The subcritical runs were not smooth and the

conversions were low. The decision was made to run at supercritical con-

ditions to increase conversion and to achieve smoother operation.

B. Efficiency of Oxidation

At subcritical conditions, 289-295 C and 2550-3200 psig, conversions

as high as 81% were obtained. At 2920C and 2275 psig the conversion was

only 56%. There was so much error in the 8/8 run that I have chosen to

disregard the result. To see how error was calculated, see Appendix H,

Error Analysis. At 288 0C and 2200 psig Lockheed achieved a conversion of

88% with a residence time of 19 minutes. Longer residence times gave high-

er conversions (see Table 6-1). This appears to be better than the results

obtained in this thesis. There are several differences between the Lock-



TABLE 6-1

Lockheed Wet Oxidation Results

(psig) (oC)
2200

2200

2200

2200

1795

Residence
Time (min)

% Reduction
TOC

288

288

288

288

288

940 243



heed wet oxidation experiments and these results. Lockheed utilized agi-

tation. Although they conclude that agitation was not necessary, only one

set of data was presented where agitation was not used, the material bal-
o

ance run at a temperature of 243 C, a pressure of 940 psig, and a 90 min-

ute residence time.

The Lockheed reactor also was designed with baffles which aid con-

tacting if two phases are present. Lockheed reports the reduction In TOC

but gives no indication of how much error is present in the result. They

did say that for all their runs they mixed the same amount of urine, feces,

and water but the TOC of the resulting slurry varied widely, how widely is

not known. For the material balance test they got a conversion of 91%

based on TOC in and TOC out. They also provide a carbon balance and if

those numbers are used conversion is 88%. The results for the carbon bal-

ance were obtained similarly to the way the results for this thesis were

obtained. The slurry and liquid effluent were freeze-dried and the carbon

analyzed by an elemental analyzer. The error in this number is due to the

presence of inorganic carbon. Since the conversion obtained by two dif-

ferent methods is close, the error involved in calculating conversion from

TOC is small at least for this run. The error in their other runs may or

may not be as small.

The flowrate of oxygen-used by Lockheed was much more in excess than

that used in this thesis. Since Lockheed presented data which shows that

conversion increased with an increase in oxygen flowrate this may be one

reason their conversions are higher.

Lockheed also used a catalyst to suppress ammonia formation. The

catalyst also enhanced oxidation. This may be due to the acidic environ-

mentcaused by the catalyst, RuCl 3 , rather than a real catalytic effect



since other researchers have seen positive effects on oxidation when the

pH in the reactor is less than five. Either way no catalyst was used in

this thesis nor was anything added to lower the pH.

One other difference is the characteristics of the feed. Lockheed

always used more urine than feces, about fifteen times as much. Using

the data from the material balance run, the amount of carbon in their

urine and feces can be calculated. They freeze-dried a standard slurry

and analyzed the resulting solid residue for carbon. It was 28% carbon.

In this thesis equal amounts of freeze-dried urine and feces were used.

The mixed urine and feces was 41% carbon.

The wet oxidation solid product obtained by Lockheed had a higher

percentage of carbon, hydrogen, and nitrogen, 7.92%,1.32%, and 1.7%

respectively. The solid products obtained in this research had less than

2.5% C, .5% H, and .2% N. This difference can probably be attributed to

the longer residence time of the latter solids which deposited and re-

mained in the reactor until the run was over up to three hours later.

Most other researchers obtained better results also, although the

feed used was usually sewage sludge. Some of these results are tabulated

in Table 6-2. Some of the difference can probably be attributed to

reactor design or type. Ploos Van Amstel (9) used a semi-batch type

reactor with agitation. The Barber-Coleman Company employed a compart-

mentalized reactor with agitation in each compartment. Besides agitation

the only other factor may be residence time. Some workers used lower

pressures and temperatures but the residence times were longer.



Researcher

McDonald

Tenwolde

Otlergraf

Barber-
Coleman

Ploos Van
Amstel

Feed

Sewage

Sewage
sludge

Sludge

Ship-
board
sewage

Sewage
sludge

TABLE 6-2

Other Wet Oxidation Results

P (psig) T (oC) Residence
Time (mrin)

350-1800 190-280 45

180-190 30

338

600

1100

1400

160

180

200

215-250

185

290

90

300

20

6

60

80

%Reduction
in TOC

43

67.4

76

80

76

70

70

73

75

69

77

90

75

94

94



C. Effect of Operating Conditions on Oxidation

The results show an effect of pressure:

TABLE 6-3

Effect of Pressure on Conversion

P (psig) T("C) Residence Time (min)

8/11 2275 292 23.3

8/24 2550 295 23.8

8/14 3200 289 23.8

% Conversion

53.1

80.5

81.7

Conversion increases with pressure. This result is exactly what Ploos

Van Amstel observed in his studies. As Pruden and Le(ll)predicted, the

effect of pressure decreases as pressure increases. The increase in con-

version is greatest at the lower pressure. Since the data follows the

equations presented by Pruden and Le, some liquid phase resistance to

diffusion of oxygen must exist. There are two phases present, but if the

resistance is small kinetics will still control.

According to Henry's law, when pressure increases at constant temp-

erature, the partial pressure of oxygen increases and the oxygen concen-

tration at saturation increases as the following table demonstrates:

TABLE 6-4

Effect of Pressure on Oxygen Solubility

Pu20 (psig)

1088

1088

1088

H (m3atm/kg)

7.63

7.63

7.63

C* (ppm)

3968

4888

7061

Feed C(ppm)

678

819

870

Since conversion and oxygen solubility increase with pressure then the

8/11

8/24

8/14

P (psig)

2275

2550

3200

T(°C)

290

290

290



rate of oxidation must depend upon the oxygen concentration in solution.

In all three runs above the oxygen concentration at saturation is greater

than stoichiometric so the conversion should be as great as that obtained

from a two-phase system with enough agitation to keep the dissolved oxy-

gen at a level sufficient for oxidation. The conversions were less than

those obtained by other researchers at similar conditions, therefore the

actual dissolved oxygen must have been less than the oxygen concentration

at saturation. Equilibrium was not reached. Further evidence to this

being the case is data on the time it takes the oxygen concentration to

reach equilibrium at various pressures. Taylor(15) presents times on the

order of hours, therefore all the oxygen did not have time to dissolve

within the twenty minute residence time of a run.

The supercritical runs had higher conversions. Compared to the sub-

critical runs pressures and temperatures were higher. Because the density

of water is low at these conditions, the residence times are shorter. The

conversions are probably higher due to the increased temperatures. The

reaction also probably was not limited by the solubility of oxygen. Ac-

cording to Pray(10) , at supercritical conditions oxygen must be infinite-

ly soluble in water and the Henry's law constant becomes relatively small.

Wet oxidation of other feeds at supercritical conditions has produced con-

versions greater than 99%. The results reported here are less than that.

The error in the results does not explain the lower conversions. The feed

was about 1700 ppm carbon and the effluent 200 pn. If 200 ppn in efflu-

ent represented a 99% reduction in carbon, the feed would have to have

had a carbon concentration of 20,000 ppm. The error in the determination

of carbon in the feed is not that large. It would have to be greater than

1000%. The residence times are shorter than those at which other feeds,

e.g. glucose, were oxidized. That may be the reason for the different



conversions observed although no effect of residence time is apparent in

the urine and feces results.

D. Effects of Wet Oxidation on Inorganic Components of Urine and Feces

Ccmparing the inorganic composition of the urine and feces feed and

the solid products gives sanme qualitative information about the effects

of wet oxidation on the inorganic components. Calcium, phosphorous, mag-

nesium, and manganese have higher concentrations in the solid product

than in the feed. The concentration of potassium decreased. This is the

expected result. All mineral nutrients are expected to stay in the aque-

ous solutions from which the heavy metal ions (Ca, Mg, Fe, Cu, Zn, Mn, etc)

will precipitate as insoluble phosphates and/or sulfates. This result

differs with Lockheed's whose material balance test showed most of the

phosphorous in the liquid phase.

The only conclusion to be drawn from the liquid product results are

that calcium precipitates out as expected. Very little was in the liquid

phase and a lot was in the solid phase. This was true for all samples.

Since the concentration of inorganics in the feed slurry was not known

not much more can be said about the effect of oxidation on inorganics in

the liquid phase.

E. Carbon Balance Results

The results of a carbon balance for each run presented in Table 5-5

indicate that a lot of the carbon in the feed remains unaccounted for.

Only one run gave a closure greater than 90%. One reason the carbon bal-

ance does not close is that absorbed CO2 in the liquid product desorbs

before TOC analysis is done.



VII. Conclusions

1. Conversion obtained at a similar pressure, temperature, and res-

idence time was less than that obtained by Lockheed. The dif-

ference may be due to differences in pH, reactor configuration,

oxygen flowrate, feed, and the presence of a catalyst. Also due

to errors in both investigators' results the differences in con-

conversion may not be so great.

2. The wet oxidation system is capable of oxidizing waste but con-

tains several design deficiencies which cause errors in the re-

sults.

3. At subcritical conditions pressure increases lead to increases

in conversion and liquid phase resistance to oxygen diffusion

exists.

4. An increase in temperature caused an increase in conversion.

5. Wet oxidation of urine and feces produces a clear liquid product

with a slight odor even at conversions as low as 56%.

6. Wet oxidation of urine and feces at the conditions tested pro-

duces a solid product with a higher content of calcium, magnesium,

manganese, and phosphorous than in the feed.

7. Most of the nitrogen, carbon, hydrogen, and potassium do not re-

main in the solid phase after oxidation.

8. The residence time of the solid precipitate is longer than that

of the fluid passing through the 'reactor because it builds up in

the reactor.



VIII. Recommendations

1. Reduce error in the results through changes in the experimental

system:

a. Devise a way to collect solid products so that they can be

weighed and used to close the material balance. Also devise

a way to prevent the lines frn clogging with the solid pre-

cipitate. Perhaps put a solid product collector before the

reactor.

b. Modify the reactor heating system to make the reactor more

isothermal. Either use smnething other than a furnace or

eliminate the heat losses at the ends of the present one.

c; Develop a way to measure the temperature inside the reactor.

d. Replace the one cc pipet with a larger one to reduce error

in waste flow measurement.

e. Hook up the oxygen rotameter with a pulsation dampener be-

fore the compressor to get accurate oxygen flowrates.

f. Obtain a larger feed container so that a run can last long-

er than two hours and more data can be collected.

2. After the design deficiencies in the system have been corrected

check the results in this thesis.

3. If better and acceptable results are obtained then pursue the

answers to other questions about wet oxidation of urine and feces:

a. Close the material balance so that the effect of oxidation

on inorganic components can be studied quantitatively.

b. Refine the gas chrcmatographic analysis to account for other

gases, especially nitrogen and sulfur compounds.



c. Analyze the liquid products to see what organic species

are present.

4. If the conversions do not improve try one of the following:

a. Increase residence times.

b. For subcritical runs increase pressure.

c. Increase oxygen flowrates.

d. Lower pH to the acidic range in the reactor.

e. Devise a way to insure the pure water and oxygen are in

equilibrium before either enters the reactor.



IX. APPENDIX

A. Flowrate Data

The flowrates for the water and waste feeds were measured using a

50 cc buret and a 1 cc pipet respectively. The time elapsed for a

specific volume of fluid or slurry to be pumped was recorded. The flow-

rate was calculated from the following equation:

Volume
Flowrate Volume (Eqn. 9-1)

A 100 cc soap bubble flowmeter and a dry test meter were used to measure

gaseous effluent flow rates. The same equation was applicable. Liquid

effluent flowrates were only measured intermittently to insure the opera-

tor of a leak-free system.

The flowrates reported in Table 9-1 are those measured during the

period the system was considered at steady state.



TABLE 9-1

Flow Rate Data

7/8 Water
12.06
12.24
12.66
12.90

12.46 s = .38

Water
12.57
12.63
12.73
12.47

12.60 s = .11

Water
12.30
12.40
12.50
12.44

12.41 s = .08

Water
12.50
12.18
12.44

12.37 s = .17

Glucose
4.21
4.26
4.19
4.67

4.33 s = .23

Waste
3.96
3.81
3.25
3.30

3.58 s = .36

Waste
4.29
3.68
3.41
3.48
3.38
3.35
5.00
4.59

3.90 s = .64

Waste
4.09
4.14
3.79

4.01 s = .19

Gas
121.80
254.96
121.80
121.80
339.90
121.80

180.34 s = 94.59

Gas
41.31
54.24
46.24

47.26 s = 6.53

Gas
50.10
49.90
69.69

56.56 s = 11.37

Gas
110.90

91.60
70.59

101.50
110.67
114.80
92.28

109.40
79.60

97.93 s = 15.47

8/8

8/11

8/14



TABLE 9-1 cont.

8/24 Water
12.44
12.37
12.73
12.63
12.77

12.58 s = .18

Water
18.18
17.87
17.64
17.96

17.91 s = .22

Gas
84.00
80.13
97.09

87.07 s = 8.89

Waste
4.63
4.21
3.10
4.00
2.89
2.70
3.82
3.56

3.61 s

Waste
7.62
7.33
7.40
7.44
7.44
7.22

7.41 s = .13

Gas
134.20
144.90
126.10
141.50
148.50
144.60
150.80
138.20

141.10 s = 8.1

9/6 Water
17.80
17.70
17.80
18.00
18.10
18.00

17.90 s = .15

Waste
8.21
8.00
8.70
7.65
8.00
7.80

8.06 s = .37

Gas
130.72
119.05
122.95
118.58
115.60
122.20
136.05
121.20

123.29 s = 6.79

= .68

9/1



TABLE 9-1 cont.

Water Waste
13.20 5.81
13.25 5.65
13.25 4.97
13.33 5.71
13.30 6.11
13.33 6.00
13.25 6.22
13.21 5.55
13.25 5.72
13.21 6.00
13.30 6.21

6.82
13.26 s = .05

0. /-

6.00
6.68
6.00
6.67

6.02 s = .46

Water
18.2
18.5
18.4
18.5

18.4 s = .14

Waste
7.70
7.65
7.50
8.0.0

7.71 s = .21

Gas
115.8
123.2
143.5
138.3
140.8
129.9
103.1
137.3
133.3
136.4
126.8
114.9
101.0
114.9
129.9
127.7
108.3
112.8
134.2
136.4
126.6
129.9
133.3
140.5
139.2

133.3
120.5

127.5 s = 12.0

9/22 Gas
193.5
144.0
128.5
122.0
118.6
124.5
120.2
135.4
113.6
129.3
191.0
147.0
124.0
135.1
143.9
117.2
124.5
129.9

135.7

9/24

s = 22.7



TABLE 9-1 cont.

10/19 Water
17.60
18.07
18.20

17.96 s = .32

Waste
7.70
7.70
6.54
6.67
6.84
9.79
8.22
8.00
7.44
8.13
8.93
7.50
9.00
7.29
7.10
8.22
8.68

7.87 s

Gas
182.9
172.9
174.9
174.4
174.4
146.3

170.97 s = 12.6

= .89



TABLE 9-2

Average Flowrates and 95%
Confidence Limits

Water Waste Gas
7/8 12.46 + .60 4.33 + .37 180.34 + 99.24

8/8 12.60 + .17 3.58 + .57 47.26 + 16.21

8/11 12.41 + .13 3.90 + .53 56.56 + 28.23

8/14 12.37 + .42 4.01 + .47 97.93 + 11.91

8/24 12.58 + .22 3.61 + .57 87.07 + 22.07

9/1 17.91 + .35 7.41 + .14 141.10 + 6.76

9/6 17.90 + .16 8.06 + .39 123.29 + 5.67

9/22 13.26 + .03 6.02 + .24 135.70 + 11.29

9/24 18.40 + .16 7.71 + .33 127.10 + 4.76

10/19 17.96 + .79 7.86 + .46 170.97 + 13.22



B. Analysis of Gaseous Products

The peak areas of a chromatograph trace were automatically calculated

by the Perkin-Elmer Sigma lB microprocessor using directions specified by

the user in the data processing section of a method generated by the user.

The directions also include response factors previously calculated by the

Sigma 1B using calibration standards. These response factors were then

used by the Sigma 1B to calculate concentrations. The calibration was

checked before each run and if it was necessary the calibration was

repeated. The standards used contained the following gases and corres-

ponding concentrations (yolume %):

TCD H2  1.00 FID C2H6  1.000

CO2  15.00 C2H4  1.000

CO 7.04 CH4  1.000

CH4  4.50 C2H2  1.000

N2  63.50

02 10.00

For runs on October 19 and after the standards were:

TCD H2  1.00 FID C2H6 , C2H4  10.1 ppm

CO2  15.00 CH4 , C2H 10.2

CO 7.04 C3H8, C3H6  9.92

CH4  4.50 Propyne 15.5

N2  66.50 I-butane 9.67

02 7.00 N-butane 9.60

The calibration standards for the FID were changed because previous

runs produced unidentified hydrocarbons although in very small amounts.

The gas compositions were normalized to 100% to account for changes

in sample volume. Any gases not detected within the analysis time were

not taken into account. Other gases may have been present such as

other hydrocarbons with longer residence times and products from oxidation



of sulfur and nitrogen in the feed. Such hydrocarbons make a small con-

tribution to the total amount of gas. The columns and analysis conditions

were either not suitable for detection of nitrogen and sulfur compounds

or the compounds were in concentrations too small to be detected by the

thermal conductivity detector. Water was accounted for in the gas

compositions reported in Table 9-3. The gas was assumed to be saturated

with H20. Its vapor pressure at 200C and 760 mm mercury is 17.535 mm of

mercury which is a concentration of 2.3%0. So the compositions in

Table 9-3 add up to 97.7%.

The gas compositions reported were only those believed to represent

the system at steady state. Figure 9-1 is a sample of the method used.

The method was the same for each run except for the response factors

which could change if the system was recalibrated. Figure 9-2 shows a

typical report from an analysis performed by the Sigma lB.



TABLE 9-3

Gas Compositions

7/8 7/8 H2  CO2  02 N2 CH4  CO C2H 6 + C2H 4

1 .043 27.760 56.894 .397 .000 12.594 .0110

2 .042 47.619 39.156 (.002 .000 10.868 .0146

3 .056 18.785 68.286 .000 .000 10.563 .0104

4 .059 51.073 34.411 .000 .000 12.157 .0229

5 .021 47.635 41.068 .000 .000 8.961 .0150

6 .000 20.481 64.821 1.647 .000 10.750 .0000

AVG .037 35.559 50.773 .341 .000 10.982 .0123
s = .02 13.549 13.155 .002 .000 1.177 .0068

8/8 H2 CO2  02 N2  CH4  CO C + C

1 .110 8.998 87.828 .540 .000 .224 4.008

2 .100 7.024 89.874 .565 .000 .137 4.008

AVG .105 8.011 88.851 .552 .000 .018 4.008

s = 1.396 1.447 .018 .000 .062

8/11 H2  CO2  02 N2 CH4  CO C2 6 + C2H4

1 .081 10.162 86.512 .727 <.008 .218 4.008

2 .077 9.718 87.055 .600 <.008 .250 <.008

3 .068 9.161 87.648 .596 <.008 .227 <.008

AVG .075 9.680 87.072 .641 <.008 .232, 1'.008

s = .007 .502 .568 .074 .016

8/14 H2 CO2  02 N2  CH4  CO C2H 6 + C2H

1 .002 6.694 90.633 .262 <.008 '.111 <.008

2 .042 6.943 90.197 .397 <.008 .121 <.008

3 .002 7.247 88.133 .461 <.008 .137 <.008

AVG .014 6.961 89.654 .373 .008 .123 4.008

s = .02 .226 1.09 .083 .011



TABLE 9-3 cont.

8/24 H2 CO2  02 N2  C 4  CO C2H 6 + C2H

1 .089 2.788 94.641 4.002 <.008 .182 <.008

2 .000 2.912 94.366 .264 <.008 .158 <.008

3 .075 2.903 94.543 <.002 <.008 .179 <.008

AVG .055 2.868 94.517 .088 <.008 .173 <.008

s = .039 .056 .114 .011

9/1 H2 CO2  02 N2 CH4 CO C2 6 + C2H 4

1 .236 16.488 71.138 .499 .041 9.237 .061

2 .266 17.821 68.113 .621 .045 10.765 .068

3 .277 17.632 68.412 .610 .048 10.654 .067

AVG .260 17.314 69.221 .577 .045 10.219 .065

s = .017 .589 1.361 .055 .003 .696 .003

9/6 H2 CO2  02 N2 C 4  CO C2H 6 + C2H

1 .290 20.508 67.061 .749 .018 9.037 .036

2 .286 20.217 67.365 .760 .018 9.018 .036

3 .308 22.962 63.167 .912 .021 10.309 .042

4 .293 21.645 65.456 .780 .019 9.469 .038

AVG .294 21.608 65.762 .800 .019 9.458 .038

s = .008 1.121 1.665 .065 .001 .523 .002

9/22 H2 CO2  02 N2  CH CO C2H 6 + C2H

1 .330 6.985 88.053 .05 .009 2.313 .001

2 .436 6.560 84.957 .245 .023 5.633 .019

3 .412 10.804 79.342 .173 .027 6.917 .025

4 .286 19.120 70.438 .442 .038 7.341 .034

5 .328 12.276 76.581 .576 .028 7.884 .026

AVG .339 11.149 79.874 .287 .025 6.018 .021

s = .046 4.546 .621 .202 .009 1.996 .011



TABLE 9-3 cont

9/24

1
2
3
4
5

H2
.102
.144
.147
.095
.073

C0
2

.273

.302

.308

.331

.332

AVG .112 .309
s = .029 .022

10/19
H2 CO2 0 2

02

93.268
93.615
93.965
92.640
93.076

93.313
.453

N
2

.617

.712

.555

.866

.836

.717

.121

CR4
.011
.012
.012
.019
.014

3.413
2.903
2.708
3.732
3.353

.014 3.222

.003 .369

N2 CH

C2H6 + C2H 4

.015

.013

.013

.018

.016

.015

.0019

C2H6 + C2H 4

1 .272 11.250 78.825
2 .446 12.183 71.131
3 .556 11.893 73.693
4 .955 14.196 74.087

AVG .557 12.381 74.434
s = .251 1.101 2.778

.256

.375

.592

.432

.147

.146

.146
1.181

6.950
13.350
10.746
6.658

.012

.014

.020

.414 .405 9.426 .015

.121 .448 3.211 .003

.057

.06G

.131

.076

.040



FIGURE 9-1

Method 200

ANALYZER CONTROL

INJ TEMP 200
DET ZONE 1.2
AUX TEMP 105
FLOW A,B 20
INIT OVEN TEMP,

150 150

20
TIME 80 3

TEMP RATE TIME
96 3.0 0

130 40.0 1
140 40.0 4

DATA PROC

STD WT, SMP WT
FACTOR, SCALE
TIMES 13.43
SENS-DET RANGE
UNK,AIR 1.000
TOL 0.0020
REF PK 0.000
STD NAME

0.0000 1.000.0 0
1 0

0.00
100

0.00
0.050
0.00

4.50 7.50 9.90
4 0.00 2 0

1.0
0.00 0.00

NAME
HYDROGEN
CARBON DIOXIDE
OXYGEN
NITROGEN
METHANE
CARRON MONOXIDE

EVENT CONTROL

13.00

RT
3.20
5.35
6.35
7.02
9.15
11.29

RF
2.637
0.515
0.658
0.596
0.709
0.613

CONC
1.0000

149.9968
100.0992
634.4960
45.0000
70.4000



FIGURE 9-1 cont.

ATTN-CHART-DELAY

TIME
0.00
0.00
0.01
0.03
0.50

*0.60
0.70
3.50
3.51
3.53
3.80
3.85
3.95

DEVICE
EXT
NO INT
EXT
EXT
NO INT
CHART
ATTN
NO INT
EXT
EXT
ZERO
NO INT
ATTN

10 1 0.20

FUNCTION NAME
-7

1
1

-1
0
10
2
1
2

-2
2
0
6

TCD
NO INT
INJECT
BLEED
INT
CHART
ATN
NO
RESEQ
BLEED
ZERO
INT
ATN



FIGURE 9-2

Sigma IB Analysis Report

ANAL 1 DET

RUN 2

SENSITIVITIES

11

2 METH 201 200 FILE 161

: 14.5 9/6/80

100 4

TIME

2.78
5.39
6.30
6.90
8.97

10.79

AREA BC RRT a RF b

0.0050
58.0505'
30.4243

213.6985
12.6041
22.9273

0.278
0.539
0.630
0.690
0.897
1.079

26.370
0.515
0.658
0.596
0.709
0.613

0.0668
14.9179

9.9894
63.5537

4.4592
7.0131

NAME

HYDROGEN:
CARBON DIOXIDE:
OXYGEN:
NITROGEN:
METHANE:
CARBON MONOXIDE:

Relative retention time

Response factor

Concentration (vol %)



C. Waste Analysis

The urine, Batch GF-1 Sample No. 1, and feces, Batch GF- Sample

No. 5 were shipped from Georgia Institute of Technology where they had

been collected and freeze-dried. The urine and feces were analyzed at

Georgia Tech for several elements including C, H, N, S, Ca, and Mn. At

MIT a Perkin-Elmer Elemental Analyzer was used for analysis of C, H, and

N in the urine and feces. The Georgia Tech and MIT results are both

reported, but only the MIT results are used in determination of the C, H,

and N content of the waste for use in further calculations. The MIT data

was obtained from analysis of ground (< 170'mesh) and unground ( 170<par-

ticle size<10 mesh) freeze-dried feces. The results agree well. Table

9-4 tabulates the results.



TABLE 9-4

Waste Analysis

FECES - MIT

C R N

46.21%o 6.89 4.00

46.73 6.83 4.36

46.65 6.67 4.27

46.20 6.77 4.27

47.09 6.92 4.81

46.80 6.91 4.94

46.61 6.83 4.44

s = .35 .10 .36

95% C.L. +.37 +.10 +.38

FECES - GIT

C H N S

45.93 6.57 4.15 - .5

46.02 6.64 4.01 4.5

45.63 6.62 4.07 <.5

45.86 6.61 4.08 <.5

s = .20 .04 .07

95% C.L. +.50 +.10 +.17

URINE - MIT

C H N

19.52 4.61 20.44

20.18 4.70 20.75

19.57 4.80 20.31

19.76 4.70 20.50

s = .37 .10 .23

95% C.L. +.92 +.25 +.57

URINE - GIT

C H N S

19.13 5.19 19.97 1.59

19.50 5.30 19.86 1.84

18.98 5.06 20.34 1.89

s = .27 .12 .25 .16

95% C.L. +.67 +.30 + .62 +.40



D. Carbon Content of Feed

For purposes of calculating conversion knowledge of the carbon

content of the feed stream in units of moles carbon/min is necessary.

This was obtained in the following way: For each run urine and feces

were weighed and a known volume of solution was made by adding deionized

H2 0. From the results of the C, H, N analysis in Appendix C, the carbon

content of the solution was calculated. Then the following equation

was used to calculate moles/min:

(gC/liter) x (1 liter/1000 cc) x waste,cc/rin) x (1 mole/12 gC)

= moles C/min CEqn. 9-2)

Table 9-5 lists the amounts of urine and feces used in each run, total

Carbon, the volume of resulting solution, the corresponding flowrate from

Table 9-1, Appendix A, and the result of application of the above equa-

tion.

Conversion was also measured in units of parts per million (ppm).

Total carbon in the feed in ppm was calculated from the following

equation:

mgcarbon in feed (Eqn. 9-3)
ppm = (water flowrate) (vol. of feed sol'n) vol. of feed sol'n

(waste flowrate) (in liters ) in liters

This is also reported in Table 9-5.



TABLE 9-5

Carbon Content of Feed

Date Urine(gm)

7/8

8/8

8/11

8/14

8/24

9/1

9/6

9/22

9/24

10/19

5.3999

4.3556

5.1641

5.0378

8.5388

8.5310

8.5988

11.4936

8.4763

Feces (gm)

5.5000

4.2378

4.9890

6.2366

8.6199

8.4791

8.4863

8.0585
8.0585

Total
Carbon(gm)

35.42
a

3.63 + .07

2.84 + .06

3.35 + .07

3.90 + .07

5.71 + .11

5.65 + .11

5.65 + .11

2.27 + .05

5.43 + .11

Solution Waste
Volume
(liters)

2.116

1.082

1.000

1.000

1.000

1.0000

1.0000

1.0000

1.0000

1.0000

Flowrate
(cc/min)

4.33 + .37

3.58 + .57

3.90 + .53

4.01 + .47

3.61 + .57

7.41 + .14

8.06 + .39

6.02 + .24

7.71 + .33

7.86 + .46

Waste
Flowrate

°(moles C/min)

.00604 + .0005

.00100 + .00018

.00092 + .00014

.00112 + .00015

.00117 + .00021

.00352 + .00013

.00380 + .00026

.00284 + .00016

.00146 + .00009

.00356 + .00028

Feed
Carbon
(ppm)

4316 + 450

742 + 108

678 + 110

819 + 115

870 + 149

1670 + 76

1755 + 121

1766 + 118

713 + 51

1653 + 168

97.4 gm nonohydrate = 88.55 gm glucose = 35.42 gm carbona. glucose



E. Analysis of Carbon Content in Liquid Effluent:
Organic and Inorganic

The liquid products were analyzed for total carbon and inorganic

carbon on a Beckman Tocamaster Total Organic Carbon Analyzer. The

total organic carbon is the difference between total and inorganic

carbon. Some of the samples were analyzed for total carbon soon after

collection. They were also later analyzed again for total carbon and

for inorganic carbon. In the interim the samples were stored in the

freezer or refrigerator. Table 9-6 shows any changes in total carbon.

Table 9-7 lists results of all samples along with averages, standard

deviations, and 957 confidence limits.



TABLE 9-6

Analysis of Carbon in Liquid Products:
Changes in TC with Storage Time

ANALYSIS DATES

9/17/80

8/8/80 LE 3

8/11/80 LE 3

8/14/80 LE 7

8/24/80 LE 3

9/1/80 Blank w/o 02

9/1/80 LE 3

9/1/80 LE 5

9/1/80 LE 7

9/1/80 LE 11

TC 94.8

TC 421

TC 290

TC 289

TC .5

11/14/80

TC 99.5
IC 82.9
TOC 16.6

TC 441
IC 144
TOC 297

TC 281
IC 130
TOC 150

TC 302
IC 133
TOC 170

TC 2.97
IC .06
TOC 2.91

TC 425
IC 252
TOC 174

TC 613
IC 399
TOC 215

TC 647
IC 426
TOC 221

TC 54.8
IC 49.2
TOC 5.6

TC 406

TC 557

TC 589

TC 55.1

SAMPLES



TABLE 9-6 cont.

SAMPLES ANALYSIS DATES

9/6/80 LE 3

9/6/80 LE 3B

9/6/80 LE 5A

9/6/80 LE 5B

9/6/80 LE 7

9/17/80

TC 660

TC 645

TC 673

11/14/80

TC 604
IC 401
TOC 203

TC 624
IC 426
TOC 198

TC 642
IC 459
TOC 194

TC 646
IC 426
TOC 220

TC 342
IC 201
TOC 141

TC 679

TC 379



TABLE 9-7

Analysis of Carbon in Liquid Products-
Inorganic and Organic

7/8/80

Total Carbon, TC
Inorganic Carbon, IC
Total Organic Carbon, TOC

1

1678
68.5
1609

2

1635
24.8
1610

Avg TOC = 1876

Avg IC = 36.4

8/8/80

TC
IC
TOC

8/14/80

TC
IC
TOC

8/24/80

TC
IC
TOC

9/1/80
1

TC 613
IC 399
TOC 215

9/6/80
1

TC 604
IC 401
TOC 203

s = 310

s= 24

2 Avg

99.5
82.9
16.6

159
122

37.7

129.2
102.4

27.2

957I C.L. + 493

95Y7 C.L. + 38

S.D. 95/ C.L.

42.1
27.6
14.9

378
240
129.6

281
130
150

1

302
133
170

2
594
397
197

2
593
394
199

3
647
426
221

3
624
426
198

4
620
420
200

4
653
459
194

5
638
434
204

5
642
445
197

Avg
622
415
207

6
646
426
220

7
607
410
197

S.D.
21
16
10

Avg
624
423
201

3

2128
39.2
2088

4

2208
13.0
2195

95%I C.L.
29
22

S.D.
23
23
9

95% C.L.
21
21
8
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TABLE 9-7 cont.

9/24/80

TC 306
IC 242
TOC 64.3

2

381
320
61.3

3

473
430
43.2

9 10 Avg S.D. 95% C.L.

TC 536
IC 507
TOC 29

10/19/80 1

TC
IC
TOC

339
133
206

386
319
66.8

437
386

51

2 3 4 Avg S.D. 95% C.L.

478 518 391 432
260 331 191 229
217 187 199 202

4

423
377
47

5
516
484
31.8

6

385
319
66.5

7

442
380
62.5

8

521
487
34.5

129
137

21



F. Residence Time Determination

Residence time was calculated from the following equation:

Residence Time(j) = Reactor volume,cc Eqn. 9-4)
Flowrate,cc/min

Reactor volume is 513 cc and flowrates are tabulated in Table 9-1. At

reactor conditions the density of water changes so that the flowrates are

different from those listed in Table 9-1. The actual flowrate at

reactor conditions is:

F,actual = F,at room x density of water at room T & P
T & P density of water at reactor conditions

(Eqn. 9-5)

Table 9-8 lists the measured flowrates, density of water at corresponding

reactor conditions, actual flowrate, and residence times for each run.

The density of water is taken to be 1 gm/cc at ambient conditions.



TABLE 9-8

Residence Time Determination

Fmeasured (cc/min) PH2 0a (g/cc)
16.79 + .97 .76

16.18 + .66 .73

16.31 + .89 .74

16.38 + .89 .76

16.19 + .79 .75

25.32 + .49 .2

25.96 + .55 .19

19.28 + .27 .19

26.11 + .47 .19

25.82 + 1.25 .12

Factual (cc/min)

22.09 + 1.28

22.16 + .90

22.04 + 1.20

21.51 + 1.17

21.59 + 1.05

126.60 + 2.45

136.63 + 2.89

101.47 + 1.42

137.42 + 2.47

215.17 + 10.42

a Holzer and Kennedy (2,3).

DATE

7/8

8/8

8/11

8/14

8/24

9/1

9/6

9/22

9/24

10/19

T (0 C)

277

303

292

289

295

409

400

404

402

443

P (psig)

2275

2375

2275

3200

2550

4050

3825

3825

3825

3850

(min)

23.22

23.15

23.28

23.85

23.76

4.05

3.75

5.06

3.73

2.38

1.35

.94

1.27

1.29

1.13

.08

.08

.07

.11

.11



G. Selection of Experiments

The original set of experiments were selected based on the criteria

that dissolved 02 be greater than stoichioametric, and the liquid /02

flowrate ratio at reactor conditions be high. The concentration of

feed was selected after 02 flowrate was selected using the criteria

above. Henry's Law was used to determine oxygen solubility. The Henry's

law constant was obtained fromn Pray et al (10) and Ploos Van Amstel and

Rietema (9). Table 9-9 lists the Henry's law constants at several

temperatures. Henry's Law states:
, p_0
C P- PT

SH20 Eqn. 9-6)
H

where P is total pressure, pOH20 is the vapor pressure of water, C is

the equilibrium concentration of oxygen at saturation and K is Henry's

Law constant.

For ease of experimentation it was decided to keep the feed concen-

tration a constant as well as the equilibrium concentration of oxygen.

Since H = f(T) only,,the equilibrium concentration for all runs would

have to be equal to the highest that can be attained at lowest temper-

ature (180°C). Using Henry's law and the maxim'm system operating

pressure (3700 psig) this concentration was calculated to be 3.17 x 10 - 4

moles 0 2 /cc which was enough for 3800 mg Carbon/liter. Table 9-10 lists

the original set of experiments. The oxygen flowrates chosen gave a

liquid/02 ratio of 100;:1 at 1800C and 3700 psi. This was enough

oxygen for a feed of 824 mg C/liter.



TABILE 9-9

Henry's Law Constant

P H20 (psia)

147

220

338

470

617

808

1088

H C atn/kg)

23.81

19.23

16.39

14.08

11.36

9.01

7.63

T COC)

180

200

220

240

255

270

290



TABLE 9-10

Wet Oxidation Experiment Set

Residence
Time (rin) Temp. COC)

180
180
180
180

220
220
220
220

255
255
255
255

290
290
290
290

P (psig)

3700
3700
3700
3700

2784
2784
2784
2784

2313
2313
2313
2313

2227
2227
2227
2227

02 flowrate

(cc/min at STP)

50.7
25.3
16.8
12.6

50.7
25.3
16.8
12.6

50.7
25.3
16.8
12.6

50.7
25.3
16.8
12.6



H. Error Analysis

All results were averaged, the standard deviations calculated, and

the 95% confidence limits determined from the t-distribution. Standard

deviations were calculated using a function on a Hewlett-Packard 34C

calculator. The equation used by the calculator was:

s =~nnx 2  - ( x) 2

n(n - 1) (Eqn. 9-7)

where x is the data point and n is the total number of data points. The

95% confidence limits were calculated from the standard deviations using

the following equation:

95% C.L. = ts/ _ (Eqn. 9-8)

where N is the ntmber of data points and s is the standard deviation.

Values for t were obtained from the Laboratory Techniques Manual, Volume 1,

Undergraduate Chemistry Laboratory, MIT Department of Chemical Engineering

c 1974, page 3-12.

The following rule was used when calculating errors on values which

were calculated from one or more measured values. When adding or subtract-

ing two numbers, absolute errors were added and when multiplying or

dividing, relative errors were added.

The error in the subcritical urine and feces runs is higher than in

the supercritical. Only two liquid effluents were analyzed which

were not very close in TOC for the 8/8 and 8/11 runs. These two runs

did not last long and large samples were used. The more samples there

are the less the error. The error in the 8/14 and 8/24 runs look lower

but the error is probably higher. Only one sample was analyzed for TOC

so no average could be taken. It is possible the samples were not

representative.
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