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ABSTRACT

Existing transport planning methodologies which have been applied to
hundreds of transport studies throughout the world for the past 30 years
involve a sequential process for predicting short-run transport equilibria,
often with four stages: trip generation, trip distribution, modal split and
traffic assignment. Unfortunately, the sequential approach has an inherent
weakness; its predictions need not be internally consistent. This defi-
ciency has precipitated attempts to predict all four stages simultaneously.
Review of previous studies illustrates the tradeoffs between behavioral and
computational aspects of the transport equilibrium problem. None of these
studies have been successful in addressing both issues.

In this thesis, a unified consistent framework for transportation
planning (i.e. the STEM methodology) has been developed and applied to a
real large-scale network, namely the intercity multimodal transport network
of EGYPT.

The STEM methodology can predict trip generation, trip distribution,
modal split, traffic assignment and the corresponding performance levels on
realistic transport systems simultaneously with a convergent algorithm.
The approach is reasonably efficient, in the computational sense, for
large-scale applications.

Within this framework, trip generation can depend upon the system's
performance through an accessibility measure that is based on the random
utility theory of users' behavior. Trip distribution is given by the well-
known logit model. Modal split can be given by a logit model or be user or
system optimized. Traffic assignment can be user or system optimized.



System's performance is reflected through a set of link user perceived cost
models as monotonically increasing functions of link flows.

In developing the STEM methodology, a family of Simultaneous Transport
Equilibrium Models (STEMs) have been specified and a family of Equivalent
Convex Programs (ECPs) have been formulated. By studying the qualitative
characteristics of the ECPs, existence and uniqueness of equilibrium on the
STEMs have been proven.

A convergent algorithm for the simultaneous prediction of equilibrium
on the STEMs by solving the ECPs has been developed.

The applicability of the STEM methodology behaviorally and computa-
tionally has been assessed by actually designing and analyzing a real case
study for passenger transport on the Egyptian intercity transport system.

Based on the findings of this thesis, further use and application of
the approach to other intercity and urban transport studies throughout the
world is strongly recommended.

Thesis Supervisor: Fred Moanvenzadeh

Title: Professor of Civil Engineering
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I. INTRODUCTION

During the last ten years, much of the research in transportation

planning has focused on ways to improve predictive modelling. One of the

most predominant themes of this research has been an effort to develop

comprehensive models, and related computational procedures, for computing

short-run transportation equilibria. These integrated models recognize

that user decisions concerning trip frequency, destination, mode and route

choices are inherently interrelated. By combining these user decisions,

the models aim to provide better predictions of transportation system's

performance (delay times, costs) and user travel behavior (demand patterns).

This trend toward integrated modelling contrasts sharply with earlier

methods for predicting traffic equilibria. The earlier procedures, which

have been applied to hundreds of transportation studies throughout the

world for the past 30 years and still are in use today, have viewed

transportation planning as a sequential process often with four stages--

trip generation, trip distribution, mode, and route choice. The Detroit

Metropolitan Area Traffic Study [1955], the Chicago Area Transport Study

[1960] and the Cairo Urban Transport Study [1981] illustrate this practice,

as do guidelines prepared by the U.S. Federal Highway Administration [1970,

1972] and the U.S. Urban Mass Transportation Administration [1976].

Unfortunately, the sequential approach has an inherent weakness; its pre-

dictions need not be internally consistent.

To explain this, we notice that performance on congested elements of

the transportation system is dependent upon demand and vice versa.



Therefore, in any sequential process (whether using aggregate or disaggre-

gate models), the performance or demand levels that one needs to assume as

given inputs at any one stage need not agree with those that one determines

as outputs from the other stages. This deficiency has precipitated

attempts to predict demand and performance levels of all stages simultaneously.

Research intended to meet this objective of the simultaneous predic-

tion of equilibrium has proceeded in three directions. One of these lines

of investigation has significant computational advantages; the others per-

mit richer modelling of user behavior. Regrettably, to date none of these

approaches has generated models that are both behaviorally acceptable and

computationally tractable for large-scale applications.

The first of the simultaneous approaches, which originates with the

early seminal research of Beckman et al [1956), views the equilibrium

model as an equivalent optimization problem that when solved yields the

desired equilibrium solution. The primary advantage of this formulation is

that the equilibrium problem becomes a convex optimization problem

(assuming monotonicity of demand and performance) that can be solved effi-

ciently by any of several convergent algorithms (Bruynooghe, Gibert, and

Sakorovitch [1968], Bertsekas and Gafni [1981), Dembo and Klincewicz

[1981), Leblanc [1973], Nguyen [1974, 1976a, 1976b], Golden [1975), and

Florian and Nguyen [1974]). The main disadvantage of this formulation is

behavioral. It requires strong modelling assumptions that frequently are

unrealistic, particularly an assumption that demand between each origin-

destination (O-D) pair depends solely upon the performance between that O-D

pair.



The basic equivalent optimization formulation has several modelling

enrichments. Evans [1976] extended the formulation to include trip

distribution, assuming fixed trip generation and an entropy model for trip

distribution. Using the fact that an entropy distribution model implies a

logit mode-split model, Florian and Nguyen [19781 further extended the

formulation to include modal split. Each of these extensions shares the

computational advantages of the equivalent optimization formulation.

Again, the deficiencies are behavioral; the entropy model is not based upon

any behavioral principles. Moreover, those modelling extensions are rigid.

Because the formulations incorporate entropy distribution and fixed trip

generation, the models are not flexible enough to accomodate situations in

which a goodness-of-fit test with observed data shows that the entropy

model is not a correct functional form or cases in which the policies of

interest to the analyst would have significant influences on total demand

generated on the system.

The second simultaneous approach views the equilibrium conditions

as a system of equations and inequalities to be solved directly. In

this form, the equilibrium conditions can be interpreted as describing

a nonlinear complementarity problem (Aashtiani and Magnanti [19811)

a stationary point problem (Asmuth [1978]), or a variational inequality

problem (Smith [1979], Dafermos [19803).

This approach has susbtantial behavioral advantages, but is limited

computationally. It permits general demand or performance functions and

yet insures existence and uniqueness of an equilibrium, even with only

mild continuity and/or monotonicity assumptions imposed upon the data. In



principle, this general model can be solved by convergent fixed point

algorithms (Hearn and Kuhn [1977], Asmuth [19781) or, by projection

algorithms (Dafermos [1980, 19811, Pang and Chan [19811). The fixed point

algorithms are limited, however, to very small problems. Similarly,

computational experience has suggested that the proposed projection

algorithms are inefficient for this type of application (see Fisk and

Nguyen [1980]). The general model can also be solved by an efficient

Newton type algorithm (Aashtiani [1979]), but this algorithm only

guarantees local convergence (Pang and Chan [1981]).

A third line of investigation enriches the modelling of user behavior

by permitting user perception of performance to be stochastic. Sheffi and

Daganzo [19801 view this stochastic equilibrium problem as a traffic

assignment problem on an extended network and cast the model as an

equivalent optimization problem. They use a disaggregate probit model for

demand and combine both deterministic and stochastic assignment of trips to

paths on the extended network. Although their algorithm is convergent

(with some restrictions imposed upon the probit model specification) the

procedure is limited in practice because it requires substantial

computational effort for even modestly-sized problems.

This summary of previous studies illustrates the tradeoffs between the

behavioral and the computational aspects of the problem of predicting

internally consistent demand and performance patterns on transportation

networks (i.e. the equilibrium problem). None of the previous models has

been successful in addressing both issues.



Our goal is, therefore, to develop a methodology that comes closer to

achieving both objectives. In specific terms, the goal of this thesis is:

"to develop a unified consistent methodology for transportation planning

within which trip generation, trip distribution, modal split, traffic

assignment and the corresponding performance levels can be predicted

simultaneously for a set of behaviorally acceptable demand and performance

models with a procedure that is guaranteed to converge to an equilibrium

(that is proven to exist and to be unique) and that is computationally

efficient for large-scale transportation networks."

In spite of prevailing views of many researchers concerning the beha-

vioral limitations of the usual optimization approach, we achieve this goal

by adopting the following methodology:

(1) Specify a Simultaneous Transportation
Equilibrium Model (STEM) which is based upon a
meaningful theory of users' behavior and a set
of behaviorally acceptable assumptions on demand
and performance,

(2) Formulate an optimization problem (ECP) and show
that under mild assumptions on demand and performance
the (ECP) problem has a unique solution that is
equivalent to the (STEM) model,

(3) Develop a convergent and computationally efficient
procedure for the simultaneous prediction of
equilibrium (SPND) through solving the (ECP) problem,
and then,

(4) Apply this methodology to a real large-scale
transportation system.

There are a countless number of (STEM) models that one would specify,

but there is no guarantee that there exist (ECP) problems which can be for-

mulated. Also, suppose that for some of these (STEM) models there exist

(ECP) problems which may be formulated, there is no guarantee that con-



vergent and computationally efficient algorithms can be developed for such

(ECP) problems. Furthermore, suppose that there exist (ECP) problems which

may be solved by convergent and computationally efficient algorithms, there

is no guarantee that the corresponding (STEM) models are behaviorally

acceptable. Given that we have chosen to adopt this approach the major

problem becomes one of oscilating back and forth between specifying (STEM)

models and formulating (ECP) problems with the objective of striking a

balance between the behavioral and the computational aspects of the

equilibrium problem. The second major challenge in this thesis is to

actually apply our methodology and assess its applicability behaviorally

and computationally.

The thesis is organized into two major parts. Part one is devoted to

the development of the methodology and includes Chapters II, III, and IV.

Part two involves the application of the proposed methodology to a real

large-scale system, namely the intercity transport multimodal system of

Egypt, and includes Chapters V, VI, and VII.

In Chapter II, we present the basic behavioral and modelling assump-

tions of a family of equilibrium models including the (STEM1) model.

In Chapter III, we prove existence and uniqueness of equilibrium on

the (STEM1) model by formulating an equivalent optimization problem (ECP1)

and studying its qualitative characteristics. In Chapter IV we develop an

algorithm for the simultaneous prediction of equilibrium on the (STEM1)

model and test its validity on a small hypothetical example. This

completes the development of the basic methodology.

In Chapter V we describe the basic features of the Egyptian intercity

transport system with more emphasis placed on the issues related to



passenger travel. In Chapter VI, we develop a specific case study with the

objective of addressing a set of the major behavioral as aell as computa-

tional issues. In Chapter VII, we actually apply the STEM methodology to

address these issues and discuss the results of analysis both from the

computational as well as the behavioral points of view.

Chapter VIII, includes summary and conclusions of the thesis.



PART ONE:

METHODOLOGY



II. A FAMILY OF SIMULTANEOUS TRANSPORTATION EQUILIBRIUM MODELS (STEM'S)

In this chapter we present the underlying theory and the basic

asssumptions of a family of equilibrium models that describe users' travel

behaviour in response to system's performance on a transportation network.

We first introduce some notation:

(N,A), a directed graph (i.e., any transportation network)
consisting of a set N of nodes and a set A of links;

i, an origin node in the set N;

j, a destination node in the set N;

ij, an origin-destination pair;

p, a simple (i.e., no node repeats) path in the network
(N,A);

a, a link in the set A;

I, the set of origin nodes (I !-N);

D., the set of destinations that are accessible
1 from a given origin i (D.Q N):

1

R, The set of origin-destination pairs;

P.., the set of simple paths from origin i to destination j;

P, the set of simple paths in the network

(P = U {P..:ieI,je D.})

Now let us describe the basic assumptions for the different components

of our STEM models.

2.1 USER UTILITY FUNCTIONS

We assume that a typical user travelling from a given origin i asso-

ciates a utility u.. with each destination j in the set D. of destinations
1J 1

perceived to be accessible from i. Because users do not usually have per-

fect information concerning the system and analysts cannot quantify all the

factors that influence users' utilities, we assume that utility functions



are random and may be decomposed into a measured (observed) utility com-

ponent plus an additive random (error) term; that is,

u.. = V.. + . , for all ijER (2.1)

where

u.. = utility of travel from i to j;

V.. = measured (observed) utility of travel from i
1i to j; and

e.. = random (unobserved) utility of travel from i to j.

We further assume that the measured utility is a function of socio-

economic characteristics of both the destination (e.g., consumption levels,

pupulation) and the user (e.g., income, profession, education) as well as

the system's performance, and may be expressed as follows:

W
V.. = - Ou.. + g (A j)

= - eu + A., for all ijeR.
ij 3

In this expression,

uij = the "perceived" cost of travel from i to j,

A = the value of the wth socio-economic variable that
J influences trip attraction at destination j;

g (A ) = a given function specifying how the wth socio-economic
W WJ variable, A ., influences trip attraction;

A. = the composite effect that the socio-economic variables
3 which are exogenous to the transport system, have on

trip attraction at destination j.

The quantities e and e for w = 1, ... , W are coefficients to be esti-

mated.

Notice that e is a positive coefficient; the negative sign associated



with it reflects the behavioral assumption that, everything else being

equal, the utility decreases as travel cost increases.

During the time period required to achieve short-run equilibrium which

we are predicting, the socio-economic activities in the system will remain

essentially unchanged. Consequently, we assume that the composite effect

of these acivities, Aj, is a fixed constant. That is, for a given specifi-

cation of the socio-economic system, we assume that the observed utility of

travel from i to j depends solely on the perceived travel cost, u ., that is,

V.. = V..(u ..), for all ijeR.

We will also assume that the perceived cost of travel from i to j on

any route is the sum of travel costs on the links that comprise that route.

We will elaborate on how transportation policies and the system's usage

influence perceived travel costs as we present the basic assumptions con-

cerning link cost functions, modal split, and traffic assignment.

2.2 ACCESSIBILITY

Accessibility is a term that is widely used, but rarely defined (and

measured) rigorously and satisfactorily (Dalvi and Martin [1976]). In order

to overcome this deficiency, Ben-Akiva and Lerman [1977] have defined

accessibility as "some composite measure which describes the charac-

teristics of a group of travel alternatives as they are perceived by a

particular individual". They also have considered accessibility measures

in the context of the random utility theory of users' behavior, which assumes

that utility functions are random and that users are utility maximizers.

Based on this theory, they have suggested that accessibility may be appror-

piately measured by the expected maximum utility to be obtained from a par-



ticular travel choice situation (other researchers such as Williams [19773

and Daganzo [1979] have also suggested and studied this measure).

Following this same line of thought, we define accessibility as a com-

posite measure of the transportation system's performance and the socio-

economic system's attractiveness as perceived by a typical user travelling

from a given origin. Accessibility of an origin will then be the value of

the expected maximum utility obtained by travelling from that origin; that

is,

S. = E [max u..], for all ieI (2.3)
i jeD. 1J

where i

S. = accessibility of origin i,
I

E = is the expectation operator, and the maximization is taken

over all destinations D. accessible from origin i.

Recall that the utility (as defined in section 2.1) has a random error

term. In order to obtain an operational measure of accessibility, we must

assume some probabilistic distribution for the random terms in the utility

functions. A well-known and often used assumption in travel demand analy-

sis is that the error terms are independent and identically distributed as

a type-I extreme value distribution (we will elaborate on this assumption

when discussing trip distribution). Making this assumption, the references

cited earlier show that accessibility is given by the natural logarithm of

the sum of exponentials of measured utilities to all accessible

destinations; that is,

Si  = n I exp (V..), for all id (2.4)
1 jeD. 1J

where V.. is given by (2.2).1J



2.3 TRIP GENERATION

We assume that trip generation is a function of socio-economic activi-

ties, socio-economic characteristics of the users, and the transport

system's performance. Specifically, we assume that trip generation is

given by a general linear model with the measure of accessibility as one of

its variables. That is,

L
G. = aS + I a f (E ) (2.5)

= CS. + E., for all ieI
where 1 1

G. = the number of trips generated from i;
1

th
E x = the value of the th socio-economic variable that

influences trip generation from origin i;

f (E i) = a given function specifying how the socio-economic
variable E ., influences trip generation; and

E the composite effect that the socio-economic variables,
which are exogenous to the transport system, have on trip
generation from origin i.

The quantities a and a for a = 1, ... , L are coefficients to be

estimated.

As noted earlier, since the socio-economic activities are essentially

unchanged in the short run, we assume that their composite effect, E., is a
1

fixed constant. That is, for a given specification of the socio-economic

system, we assume that trip generation is dependent solely on the system's

performance as measured by the accessibility variable; that is,

G i  Gi(S.), for all iEI.
1 1 1



Since the accessibility variable S. in our model is a natural

logarithm (expression (2.4)), its value may vary, in theory, between -

and + w. In practice, however, accessibility has some finite upper limit

(i.e., the system's attractiveness when travel costs are zero throughout

the system); we argue that it also has some finite lower limit.

Specifically, we assume that our specification of the network, and

particularly our definition of origins, implies that each accessibility

variable is nonnegative. A sufficient, though not necessarily required,

condition for S. to be nonnegative is that the measured utility of travel1

from i to at least one destination j in the set D. is nonnegative (i.e.,1

V.. > 0 for some jeD.). That is, at least one destination in the system is
1J 1

"attractive" to users at any given origin, an assumption that should be

satisfied in many, if not all, realistic systems. Suppose to the contrary,

that the minimum travel costs to all destinations in the set D. are1

sufficiently large to give negative values for all measured utilities.

Then either (i) no trips will be generated from i and thus, we might as

well have deleted that origin from the analysis, or (ii) some trips must be

generated from origin i regardless of the system's performance. In the

later case, we assume that when accessibility in (2.4) becomes negative it

no longer affects the number of trips generated; instead, the exogenous

socio-economic composite variable E. in (2.5) becomes predominant. That
i

is, E. trips must be generated due to socio-economic forces. Hence, we
1

assume that accessibility is nonnegative and specified as follows.

S. = max {0, an I exp(-eu.. + A.)} , for all iI. (2.6)
1 jeDi



2.4 TRIP DISTRIBUTION

Adopting the random utility theory of users' behavior, vwe say that the

probability (PR..) that a typical user at any given origin i chooses to

travel to any given desination j in the set D. is equal to the probability
i

that the utility of travel to j is greater than (or equal to) that of any

other destination k in the set D.. That is,
1

PR.. = Probability [u.. u.i for all keD ].
13 13 1k 1

Different assumptions on the probabilistic distribution of the random

(error) terms of the utility functions lead to different trip distribution

models. Since we are assuming that the error terns are independent and

identically distributed as type-I extreme value (Gumbel) distribution, trip

distribution is given by the well-known "logit" model:*

exp (-eu.. + A.)
T = G 1 3J , for all ijeR. (2.7)

13 i C exp (-eu. + A )
keD. ik k

Here T.. equals the number of trips travelling from i to j.

The type-I extreme value distribution describes the limiting distribu-

tion of the largest value of n independent and identically distributed ran-

dom variables as n becomes large, assuming that the common distribution has

an upper tail that falls off "in an exponential manner" as in the normal

distribution (see Gumbel [1958] for more details).

* See, for example, Domencich and McFadden [1975] for the derivation of

the logit model.



These assumptions are invoked frequently in travel demand analysis and

the resulting "logit" model is known to be very robust, practical and ana-

lytically tractable. These desirable features account for the model's

popularity. In addition, as we will demonstrate later, our logit distri-

bution model is quite flexible and general, compared to other gravity

models which may be viewed as special cases.

2.5 TRANSPORTATION SYSTEM'S PERFORMANCE

The performance of a transportation system may be viewed from the

perspective of users, operators or owners of that system. As far as the

prediction process is concerned, we look at the system's performance from

the users' perspective. Users are mainly concerned with the levels of ser-

vice of different elements of the system such as linehaul times, waiting

delays, access and egress delays, out-of-pocket fares, safety, discomfort,

etc. We assume that these performance measures can be reflected through a

set of "perceived" cost functions which are dependent upon transportation

policies and demand volumes. Thus, for a given specification of the

transportation system, the perceived cost is a function of the flow over

the network. Since the flow may be different on different links of the

network, we define these cost functions at the link level. Let C (F ) be
a a

the perceived cost of a unit flow on link aeA as a function of the total

flow (F ) on that link. We assume that C (F ) is continuous and non-
a a a

decreasing. The continuity assumption is a good approximation if the

system is used by a large number of users, which is usually the case in

practice. The monotonicity assumption is behaviorally sound in most prac-

tical applications. However, in some situations, where technology is

responsive to the demand at peak times, the perceived costs might be

decreasing as the link flows increase. Nevertheless, these assumptions are
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frequently invoked to reflect congestion effects on perceived costs.

2.6 MODAL SPLIT

Several alternative assumptions on modal split can be considered

within our framework. Let m denote a mode and M.. be the set of modes
13

available for travel from i to j. Similar to our assumptions on trip

distribution, we can assume that the probability (PRi ) that a typical

user travelling from a given origin i to a given desintation j chooses mode

meM is equal to the probability that the utility of travel by mode m is
ii

greater than (or equal to) that by any other mode m' in the set M... That

is,

m m m
PR. = Probability [u.. > u.. for all m eM..]

13 13 13 13

Invoking our earlier assumptions on the probabilistic distribution of

the error terms of the random utility functions, modal split can be

described by the following logit model.

exp(-eum  + A) (2.8)
Tl'. = T.. 13 ] (2.8)
13 13 I exp(-oum' + A.)

m'EM.. i 3
ii

where

m
T. = the number of trips travelling by mode m from i to j.

m
u.. the perceived cost of travel by mode m from i to j.
ij

Alternatively we can assume that users choose the mode with the mini-

mum perceived travel cost, or that modal split is such that the total

travel cost in the system is minimized (see next section for more details).



2.7 TRAFFIC ASSIGNMENT

There are two main behavioral assumptions which may characterize trip

assignment. The first is that each user is minimizing his own travel cost

(user optimization). The second is that a central authority is minimizing

the total travel cost for all users of the system under consideration

(system optimization). Our methodology is flexible enough to consider

either one of these behavioral assumptions.

A user optimized flow pattern corresponds to a situation where no user

can be better off by unilaterally changing his path of travel. In mathema-

tical terms, the total perceived cost of travel on all used paths between

a given O-D pair are equal and not greater than those on unused paths.

That is,

= U.. if H >0

S6 aC (F ) (2.9)
acA ap a a > U.. if H = 0

-- 13 p

J 1 if link a belongs to path p

ap 0 otherwise

A system optimized flow pattern corresponds to a situation where the

"marginal" costs on all used paths between a given O-D pair are equal and

not greater than those on unused paths. That is,

a TC (F ) = U if H > 0
6 a a 1iJ P (2.10)

asA ap Wa
> U.. if H = 0

where

TC (F ) F *C (F ) is the total cost of travel on link aeA.
a a a a a

aTC
= the marginal cost of travel on link aEA.

aF



These two assumptions imply that the behavior is deterministic. More

realistically the users' behavior is stochastic as we have assumed for

accessibility, trip distribution and modal split. However, in most prac-

tical applications where the system is congested, the deterministic assump-

tion is in fact a "good" approximation of reality (see Sheffi and Powell

[19783).

2.8 A FAMILY OF STEM MODELS

Considering alternative assumptions for modal split and traffic

assignment, we can specify a family of Simultaneous Transportation

Equilibrium Models (STEM's). Probably the simplist STEM model, as far as

notation is concerned, is the one that results from assuming that each user

chooses the mode and route combination which minimizes his total perceived

cost from the node of origin to the node of destination. Implied in this

assumption is the possibility of transferring from one mode to another in

the middle of any given trip. Combining the modelling ingredients of such

a model, we can specify the following STEM1 model

(STEM1)

G. = S + E, for all isI
Si 1

Si = max {0, zn ) exp(-euij + Aj)} , for all ieI
jeDi

exp(-eu.. + A )
Ti G1 3 ep(- for all ijeR

1j i exp(-eu. + A )
kD. k k

C =u.. ifH >0
p uij p

for all p
C > u.i if H = 0p-- i p



where

C =~
P aeA ap

C (F)
a a

A more interesting STEM model would be to assume that modal split is

given by a logit model and traffic assignment is user optimized; this

results in the following STEM3 model.

(STEM3):

G = aS
i i

for all ieI

Si = max {o, xn 2
jeDi meMij

m
exp(-euij + Aj)j, for all ieI

I exp(-e
mSM..

Ti" = G. Ij

keDo m M1 ik

T = T..S 13

m'EM..
13

m
uij + A j)

ik k

m
exp(-eu. + Aj)

exp(-eum. + A.)13 3

, for all ijeR

, for all m

Cm = u.

Cm > Um
p 13

where

if Hm  > o
P

if Hm = o
P

for all m and p

m
C aA
P asA

6 . Cm(Fmap a a

In fact we can specify as many as eight STEM models within our

approach, as depicted in Figure 2.1. Models such as STEM5 and STEM7 are

particularly useful when analyzing transportation systems owned by central
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authorities where system optimized flow patterns are more likely to occur.

In cases where the system is used by different types of users that interact

with each other in the usage of the system or where several modes on the

same link interact in using that link, the link cost functions will be

nonseparable. That is, a given cost function will depend upon the vector

of flows of the interacting users or modes. In such cases we require the

link cost functions to be convex and their Jacobian matrix to be symmetric.

A more elaborate discussion of these assumptions will be presented as we

develop the case study on the Egyptian intercity system (see Chapter VI).

However, as we continue the theoretical development of the basic methodo-

logy in the following two chapters we will consider the (STEM1) model for

simplicity.

2.9 SPECIAL AND LIMITING CASES

In this section we illustrate the generality and the range of

applications of the STEM models. Let us consider the STEM1 model. We

first show that a singly constrained gravity model with an exponential

delay function may be used within the STEM1 model to describe trip

distribution. This trip distribution model is a special case of the more

general logit model. We also show that the STEM1 model can be used to

appoximate as closely as desired any given doubly constrained gravity model

with fixed productions and attractions.

Let D. > 0 be the number of trips attracted to destination j. Also

let A. = anD.. Then the distribution model (2.7) becomes
. J

D.e-e uij
Tij = Gi  j

SDke-euik
k



This is a gravity model with an exponential delay function.

Now suppose that the number of trips generated at an origin i, Oi > 0,

is fixed, the number of trips D. attracted to any j is fixed, and that
3

0 = ( Dj.
1 j

We show that by a judicious choice of the data Aj, a and Ei, the STEM

model approximates these productions and attractions as e approaches 0.

First note that if all costs C are nonnegative, then all u.. are non-
a 1j

negative. Thus, if e > 0,

-eu.. + A. A.
S = xn e 13 J <  n e 3.
i jeD. jeD

1 i

Therefore,

A.
G. < K C (xa n e 3 + E ).

1 i jED. i
Assuming that C (F ) is continuous implies that

a a

K' = max max min C p(F)
i,j 0<F <K peP..-a- ij

exists. Here P.. denotes the set of available paths joining origin i and
13

destination j and C (F) = 6 C (F ). Since u.. < C (F) for any peP..,0
P a ap a a 1j p 1J

< u.. < K'. Therefore,
-- ij --

- u.. + A < A.,

- u.. + A > -OK' + A ,

and as 6 approaches 0,

-eu.. + A + A .13 j 3



Consequently,

exp (-eu..
13

approaches an .

- u. .+A.
+ A.) approaches exp (A.) and S = xn C e 13 3

3 3 1 j eD
A. 1
e 3 as 0 approaches zero. Thus

T = (aS + E )
exp(-euj + A)

T exp(-eu + A )
k 1k k

approaches

= (a zn e
3

AJ exp (Aj)

S ) exp (A )
k k

Now let A. = an D., let a > 0 be chosen sufficiently small so that a zn
J J j

D. < 0 for all i, and let E = 0 - a Z D. Then
i i j

XT i = a n I D + E =0j 1 j j i
for all i

and . T =
D.

( 0.) J =D
i k

k k

for all j.

Therefore for 6 > 0, but sufficiently small, the STEM1 model approximates

the doubly constrained gravity model as closely as desired.

T..
1J



III. EXISTENCE AND UNIQUENESS OF EQUILIBRIUM

In this chapter we formally prove existence and uniqueness of

equilibrium on the STEM models introduced in the preceding chapter. We

achieve this by formulating an optimization problem (ECP1) and showing that

under mild assumptions on demand and performance the (ECP1) problem has a

unique solution that is equivalent to the (STEM1) model. We also show that

(ECP1) is a convex program ; a great advantage as far as the computational

aspects of the equilibrium problem is concerned (see next chapter).

3.1 AN EQUIVALENT CONVEX PROGRAM (ECP1)

Consider the following optimization problem (ECP1):

Minimize Z(S,T,H) = J(S) + *(T) + ((H)

Subject to:

j Tij = a Si + Ei ,for all ieI (3.1)
JE~ i

J H = T.. , for all ijeR (3.2)
P 1Jpepij

S. > 0 , for all ilIS-

T. > 0 , for all ijER (3.3)
IJ-

H > 0, for all peP

where

I or2
J(S) = [-Si + a Si - (a Si + Ei) xn(a Si + Ei ) ] ,

isI

(T) 1 1 [T an T -A T -T 3,
SicI jeD ij ij j ij 1j

F
C(H) = I a c (w) dw, and

aeA o a



F = 6 a H . (3.4)
a p ap p

The constraints (3.1) and (3.2) are the flow conservation equations on

the transport network, stating that the number of trips distributed from a

given origin to all possible destinations should equal the total number

generated from that origin and that the number of trips on all paths

joining a given origin-destination pair should equal the total number

distributed from that origin to that destination. The constraints (3.3)

state that all the decision variables should be nonnegative as postulated

earlier. The expression (3.4) defines the link-path incidence

relationships stating that the flow on a given link equals the sum of flows

on all paths sharing that link.

The objective function Z has three sets of terms. The last of these,

O(H), corresponds to the familiar transformation introduced by Beckmann et

al [19563. The second set of terms, *(T), is similar to those used by

Evans [19763 and by Florian and Nguyen [1978, as well as in other related

models. The first set of terms, J(S), is new. In fact, what distinguishes

our formulation from other models is the definition of the accessibility

measure S., its introduction as a decision variable in the optimization
1

problem, and the specification of the first set of terms J(S) in the objec-

tive function of (ECP1).

The importance of the (ECP1) optimization problem is that even with

very mild assumptions imposed upon the problem data, it is a convex program

which has a unique solution that is equivalent to the (STEM1) equilibrium

model.
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We first show that (ECP1) has a solution.

Theorem 3.1 (Existence)

Suppose that e > o, a > o, E. >' 0 for all iel, and that each

performance function Ca (Fa) is real valued and nondecreasing over the

domain F >, o. Then (ECPI) has a solution.

Proof: we need the following definition and two theorems from Ortega and

Rheinboldt [1970]:

Definition: If g: DCRn+R1, then any nonempty set of the form

L(y) = {XeDIg(X)4y}, yeR1, is a level set of g.

Thm 4.2.2. (p. 98): If g: D Rn+R 1 is continuous and has a compact level

set, then there exists an X*cD such that g(X*)4 g(X) for all X e D.

Thm 4.3.2 (p.104): Let g: DCRn + R1, where D is unbounded. Then all level

sets of g are bounded if and only if lim g (Xk) = + w whenever {Xk} C D

k+c

and lim uxku = +- (the proofs are in Ortega and Rheinboldt (1970)).
k+ a

Where g is any real-valued function of the vector X, D is its domain,

Rn is the n-dimentional real space, {Xk} is a sequence of X, and u.ii

is a norm on Rn

Now we need to show that the objective function Z is continuous

and that the lim Z(Sk, Tk, Hk ) = + * whenever the sequence
k  k k kco k k

{S , T , H } is defined within its domain such that the lim uS , T

k k+-
H u = + *. First it is easy to see that J(S) and *(T) are

continuous. Also the integral in c(H) implies its continuity. Thus,

Z is continuous.

To see that the norm condition is also satisfied, notice that any

sequence {Sk } whose lim Sk = + - implies that J(S) approaches + c
Sk+O 1
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because of the dominance of its quadratic terms provided that e,a,

and E. for all ieI are positive as postulated. The same is true for
1

*(T) since T izn Tij approaches + w as Tij does. Also p(H) is increasing

because C (Fa) is nondecreasing and any sequence {Hk } such that

lim Hk = + c implies (H) approaches + -.
k+

Let T.ij n T.. = o whenever T = o, then the domain of Z is

closed and thus the above two theorems imply that (ECP1) has a solution.

Theorem 3.2 (Convexity and Equivalency)

Suppose that 6 > o, E. > a > o for all isI, and that each performance

function C (F ) is real valued, continuous and nondecreasing over the
a a

domain F a> o. Then (ECPI) is a convex program whose optimality conditions

are equivalent to the (STEMi) model.

proof: Since C is nondecreasing, its integral is convex (see Theorem
a

3.4.5 in Ortega and Rheinboldt [1970) and thus (H) is convex since it is

the sum of convex functions. Also *(T) is convex since its Hessian is a

semi positive definite matrix provided that 6 is positive and T > o as postu-

lated. To see that J(S) is also convex let

J(S) = Ji(S i ) where
1

J.(S ) = a S 2 + a S. - (aS. + E.) tn (a S + E.)
i1 ii 1 1 1 1 1

It is easy to see that the second derivative of J.(S.) is a (1- a i)

Thus, a sufficient, though not necessary, condition for this second

derivative to be non-negative is that a < E.; a condition to be satisfied
1

for each term in the set J(S), as postulated. Hence, the objective func-

tion Z is convex since it is the sum of convex functions. Observe that all

the constraints of (ECP1) are linear. Hence (ECP1) is a convex program and



its Kuhn-Tucker conditions for optimality are necessary and sufficient.

Such conditions exist if the objective function Z is differentiable

at the optimum solution. Notice that Z is not differentiable only when-

ever there is some T.. = o. T'ius, we need to show that this cannot occur

at any optimum solution. Let Xk = (Sk, Tk, Hk) be any feasible solution

with Tk > o (such a solution always exist since E. > o for all iII), and X*
1

be an optimum solution with some Tij = o. Clearly any solution X(n)

nXk + (1 - n) X* is also feasible. Let us evaluate the derivative of Z with

respect to n.

dz 1 k *
=- - 1 [aSi(n) - a xn (a Si(n)+Ei)] (Si - Si)

i

+- ! ( n T.(n)-A.)(Tk

+ 6 a C F (n)] (HkH*)
a ap a a P P

Whenever n approaches zero, this derivative approaches - = implying that

Z(Xk) < Z(X*) and that X* is not optimal; a contradiction. Thus, at

the optimum solution T.. > o for all ijeR and the K-T conditions exist.
13

Hence we can derive them to prove equivalency between (ECP1) and (STEM1).

The Lagrangian function may be written as follows:

f = Z(S,T,H) +i .I Yi Tij -CS. " E ) +ij  u.i (T ij H ) + 1 X(-S.)
il jeD. 13 1 ijeR 1J 1J pep P iel 1

+ 3 ('Tij) p(-Hp)
ijeR p

where yi for all FI, u.. for all ijeR, x. for all iI, r.. for all ijeR and



w for all peP are the dual variables of the (ECP1) problem.

The optimality conditions may now be derived as follows:

-a3 1 Si - a an(aSi+Ei)} - a Yi - xi = 0, for all i (3.5)

1

1 1
for all ii (3.6)

i = {n Tij - Aj} + Yi + uij - = 0 for all i (3.6)
13

S = ap Ca(Fa) - uij wp =0 for all p (3.7)
p asA

S.(x.) = 0 and x. > 0 for all i (3.8)
1 1 1

T .. ( ) = 0 and r.. > 0 for all ij (3.9)
ij ij 13

H (w) = 0 and w > 0 for all p (3.10)
P p p

First of all, notice that the constraint (3.1) of the (ECP1) problem

implies the trip generation of the (STEM1) model. From (3.9) and the fact

that T.. > o for all ijeR at the optimum solution, we have i.. = o for

all ijER. Hence (3.6) implies that,

T.. = exp (-ey i) exp(-eu.. + A.) (3.11)

Multiplying (3.5) by - we obtain

-ey = n(aS.+E.)- S. + i (3.12)

Substituting the right hand side of (3.12) in (3.11) implies that,

exp(-eu..+A.)
T. (aS + E.) 13 3 . (3.13)
ij 1 I xi

exp(Si - T)



Suming (3.13) over all jeD. and considering the constraint (3.1) in the

(ECP1) problem, we can see that,

exp(S. - .) = exp(-eu.. + A.) (3.14)
1 jeD 1J 3

i

The optimality condition (3.8), implies that whenever S. > o, we have
1

1. = o and (3.14) reduces to:
1

Si = in exp(-auij + Aj) > 0 (3.15)
jeD.

1

Also whenever S = o we have xi > o implying that the right hand side of

(3.15) is a negative value, and thus accessibility is always given by,

Si = max {0 , in I exp(-eu. +A.)} for all ieI (3.16)
1 jeD. 13 3

as postulated in our (STEM1) model. In either case (that is, whenever

S = o or S > o), (3.14) always hold at optimality implying that (3.13)
1 i
is given by

exp(-eu.. + A.)
T.. = (a S. + E.) 11 1 (3.17)

ij i exp(-eu ik+A )
keD. k k

1

Which is indeed the "logit" trip distribution of the (STEM1) model.

It remains to show that the optimum solution of (ECPI) implies a user

optimized modal split and traffic assignment on the (STEM1) model. This

can be easily seen from the optimality conditions (3.7) and (3.10), which

imply that,

C = 1 6 • C (F) = u.. whenever H >0 (3.18)
P asA ap a a lj p



Because in this case we have W = o. Also,
P

C > ui  whenever H =0 (3.19)

Because in this case W > o.
p

Thus, (ECP1) and (STEM1) are indeed equivalent.

3.2 EXISTENCE AND UNIQUENESS OF EQUILIBRIUM:

In the preceding section we have formulated an optimization problem

(ECP1) that was proven to have a solution that is equivalent to our (STEM1)

equilibrium model. We also showed that the (ECP1) problem is a convex

program. In this section we use these results to prove existence and uni-

queness of equilibrium on the (STEM1) model.

Theorem 3.3 (Existence and Uniqueness)

Suppose that e > o, E. > a > o for all isI, and that each performance

function C (F ) is real valued, continuous and nondecreasing over the
a a

domain F a o. Then the Simultaneous Transportation Equilibrium model
a

(STEMI) has an equilibriumwn. If E. > a for all isI and C is strictly

increasing for all asA, then the (STEM1) model has a unique equilibrium.

proof: Theorems 3.1 and 3.2 imply the existence of equilibrium on the (STEM1)

model. To prove uniqueness we only need to show that the objective function of

the (ECP1) problem is strictly convex. The assumption of E. > a for all iI
1

implies strict convexity of J(S), and the assumption of C being strictlya

increasing for all aeA implies strict convexity of (H). It is easy to see

that *(T) is strictly convex provided that T.. > o for all ijeR as demonstrated

earlier. Hence Z is strictly convex and uniqueness of equilibrium on the

(STEM1) model follows immediately.



IV. THE SIMULTANEOUS PREDICTION OF EQUILIBRIUM

In the preceding two chapters we have addressed the behavioral aspects

of the equilibrium problem. In this chapter we focus on the computational

issues of the problem. More specifically, our objective here is to develop

a procedure for the simultaneous prediction of equilibrium in our STEM

models. Such a procedure should be guaranteed to converge to the unique

equilibrium (that is proven to exist) and be computationally efficient for

large-scale transportation networks. We achieve this goal through solving

the (ECP1) problem since its solution is equivalent to our (STEM1)

equilibrium model.

4.1 THE (SPND1) ALGORITHM

The equivalent convex program (ECP1) is a nonlinear programming

problem (NLP) which may be solved by several methods; a good review of

these methods may be found in Zangwill [1969].

In particular, ECP1 involves minimizing a convex objective function Z

subject to a set of linear constraints, and feasible-direction methods

(originally due to Zoutendijk [1960]) are best suited for such a problem

(as will be seen shortly). Beginning with an initial feasible solution,

any feasible-direction method generates a sequence of feasible solutions.

At a given iteration the method involves two main steps. The first

step determines a direction for improvement. The second step determines

an optimum step size along that direction. The current solution is then

updated and the process is repeated until a convergence criterion is met.

In mathematical terms, consider the following NLP problem:



Minimize f(x)
xeX

where: X is the set of feasible points,

x is a vector of decision variables,

and f(x) is a nonlinear objective function.

Given an initial solution xeX, the method generates a sequence

(xo, x1 , . . . , xr ,..., x') where xreX; r=0,1,.... At a given iteration r,

the current solution is xr . A direction for improvement dr is determined.

Then f is minimized along dr yielding a new feasible solution xr+1=xr +

X*dr where X* is a scalar defining the optimum step size along the direc-

tion dr. The process is repeated until, for instance, the improvement in

the solution is negligible (shortly, a more elaborate explanation will be

provided).

Three main comments are now in order. The first is that there are

well-known standard algorithms for solving the one-dimensional minimization

problem (i.e. the second step of the above method) to determine the optimum

step size X* along dr, such as the golden-section and Bolzano search (see

Zangwill [1969]). The second comment is that there is no standard proce-

dure for determining a feasible direction dr (i.e. the first step of the

above method). The third comment is that the above method may not always

converge to the optimum solution.

Thus, if we choose to solve ECP1 with a feasible-direction method,

there are two main challenges to face, namely the efficient determination

of dr-at each iteration and the guarantee of convergence.

In 1956, Frank and Wolf proposed an algorithm for solving quadratic

programming problems. In their procedure, a feasible direction is deter-

mined by linearizing the objective function at a given feasible solution



Xr and solving the resulting linear programming problem (LP) with the

well-known simplex method. Let the solution to the LP be yr, then dr =
r r th

(y - Xr ) is the feasible direction at the r iteration. They proved the

convergence of the procedure given the constraint set is bounded and the

objective function is convex.

To have a greater understanding of how the procedure works, consider a

problem with two decision variables X1 and X2 (see Figure 4.1). We assume

that the problem has three inequality constraints in addition to the non-

negativity constraints of X1 and X2; this defines the feasible region shown

in Figure 4.1. The procedure starts with an initial feasible solution x0 .

Solving the linearized problem yields the solution yO which defines a

direction dO = (yO - x ) for improvement. The objective function is

minimized along do to yield a new solution xl. The process is repeated to

obtain x2 , x3 , x4 ,... until the optimum solution x* is reached.

In our case, however, the resulting LP would have very large number

of constraints and decision variables, and solving it with the simplex

method may be practically infeasible.

In 1973, Leblanc proposed an efficient algorithm for solving the

equivalent convex program of the traffic assignment problem with fixed

demand. The resulting LP, in such a case, may be decomposed into a set of

shortest path problems which can be solved efficiently by any of the well-

known shortest path algorithms, such as Dijkstra's [1959]. Considering the

case of elastic demand, almost the same efforts for solving the resulting

LP subproblem are involved (see Nguyen [19763). Combining trip

distribution, modal split and trip assignment, the direction-finding

involves solving a set of shortest path problems in addition to a Hitchcock

transportation problem at each iteration (see Florian and Nguyen [1978]).



Values of objective function: fi< f 2< f3< f4

Boundary of Feasible Region

yO, y2, . . .

Figure 4.1 The Frank - Wolf Method

X2



One might speculate that combining trip generation, trip distribution,

modal split and trip asignment (as in our case) would result in more

efforts for direction-finding con ared to the above combined model which

excludes trip generation, since we are adding more variables and relaxing

some assumptions.

It turns out that we are more than fortunate, in the sense that:

relaxing some restrictions may not cost us more computations, and in fact,

may save us some (probably considerable) costs!

As we will see shortly, at any give iteration the direction-finding in

our algorithm is almost as efficient as in Leblanc's algorithm for the

assignment problem with fixed demand, and is certainly more efficient than

in the case of combining trip distribution, modal split and assignment.

r

4.1.1 Determining a feasible direction d

Consider the equivalent convex program ECP1.

Let S = (....., S......) be the vector of accessibility variables, T =
1

(..., T..,...) be the vector of trip distribution variables, H = (...,H

.... ) be the vector of path flows, and X = (S,T,H) be the vector of all

decision variables in ECP1.

Suppose that Xr = (Sr, Tr, Hr) is a feasible solution to ECP1 at a

given iteration r. Let us linearize the objective function Z at Xr by a

first order Taylor's expansion, i.e. for any vector y

ZL(Y) = Z(Xr ) + vZ(Xr).(Y-Xr ) = [Z(Xr ) - VZ(xr)x r]  + z(xr).

Now, consider the linear programming problem of minimizing ZL (Y) sub-

ject to the original constraints of ECP1. We notice that ZL (Y) involves a

constant term which may be dropped without effecting the solution of the



LP problem.

Let y = (.....,L , ..... ;....,Dij....;....,B ..... )

= (L,D,B) be the vector of all decision variables for the

resulting LP problem (say LP1) where L, D and B have the same dimensions

and definitions as S,T and H respectively.

Then LP1 may be expressed, in terms of the new set of variables as

follows:

LP1: Minimize Z1r = VZ(Xr)y

= VJ (S r).L. + j VV. (T r).D
1 1 1 1 j i ij 13J

+ Jvo (Hr).v
a a

Subject to:

I D.. = cL. + E.
jeD.13  i 1

1

S B P D..
pEP

a ij pEp ap p
ij

L.>0
1-

D..>013-
B >0
where
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a a ij pep i

I 6 ap.C a1j pep - a
ij
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(4.3)

(4.4)



C..r = v .. (T.,r)

and C r = , p .C (F r)
P a ap a a

Then, LP1 may be written as follows:
Minimize Zr = L +  c D + C . r B

1 L .. 13 D o p
i13 i pPi

subject to: (4.1), (4.2), (4.3) and (4.4)

There is no doubt that LP1 is very large, even for moderate transpor-

tation networks, and solving it by the simplex method may be practically

infeasible. The admittedly large size of LP1 is mainly du- to the large

number of the decision variables B (i.e. there are as many variables B
p p

as the number of paths in the network). Fortunately, LP1 may be simplified

consi derably.

We first notice that, by definition, at iteration r Cr is a fixed
p

travel cost over some path pepj between some O-D pair ijeR. We claim

that, at the optimum solution of LP1, all the demand from i to j, Dij,

should be flowing over the minimum cost (shortest) path, p * P.. , for all

ijeR. Suppose otherwise, then the objective value of Zr inay be decreased

by re-routing the flow from other non-shortest paths to the shortest ones,

implying that we were non-optimal.

Hence we can replace I Cr * B in the objective function of LP1
r ep p  P

by Ui. Dij , for all ijeR whe Uir is the minimum cost of travel from i to

j. In fact we have already solved for the vector of path flows B, and we

may remove the constraints (4.2), (4.3) and the nonnegativity constraints B

> 0 in (4.4).

The above idea has been suggested and used before, by other

researchers. (Bruynooghe et al [1968), Leblanc (1973], etc.).

As a result of the above simplification, LP1 becomes the following

LP2.



LP2: Minimize Zr = 1a CrLi + i (Cr + u r.) D..
2 1 i ij 13 13

Subject to:

I D.. = a L. + E. , for all ieI
jeD. 13 1 1

1

Li > o , for all ieI

D.. > 0 , for all ijeR
13

There is no doubt that LP2 is considerably smaller than LP1, and it

might be practically feasible to solve it by the simplex method. But,

since we have to solve it repeatedly, one would expect such a procedure to

be inefficient for large-scale problems. Thus, it is of great importance

to find an efficient (if not extremely efficient ) procedure for solving

LP2, if we are interested in analyzing large-scale systems.

It turns out that we can achieve our goal. In fact, the basic contri-

bution of this chapter is in developing an efficient procedure for solving

the above LP2.

Let us first write LP2 in terms of the number of trips 0. generated
1

from origins icI and the number of trips D.. distributed from i to j, for

1
all icl and jsD.. Recall that,

O = aLi + E. (4.5)

implying that Li  1 (0 - E.)

Thus, a C.r L. CzC r.0 - E.)
1 1 i 1  1 11 1

= C ir.0 i - Cir E (4.6)

The quantity C~ E. in (4.6) is a constant at a given iteration r,
1



and hence can be dropped from the objective function Zr without

affecting the solution of LP2. Also by the definition of (4.5) above, we

can easily replace the right hand side of (4.1) by 0. for all ieI. And LP2
1

becomes the following LP3.

LP3: Minimize Z3r = i + wij*Dij
1 1,

Subject to:

SD.. = i

O.>E.

, for all iel

, for all ieI

, for all ijsRD0..>0
13-

wr = Cr + ur
i i i

, for all ijeR

(4.7)

(4.8)

<=> (4.1) by the definition of (4.5)

<=> L. > o, for all ilI
I 

Hence, LP3 <=> LP2.

Now, we claim that, at the optimum solution of LP3, all the trips

generated from a given origin ieI, 0., should be flowing over the shortest
1

path to a desintation j such that w * = mDin {w}. Suppose otherwise,
13 j Di I

then the objective value of Z'r may be decreased by shifting the trips,

r > w*r to that
going to other destinations jeDi where w > w* to that destination

1 13 13i

j*eD. where w r is the minimum among all destinations accessible from a
1 ij*

given origin iI, implying that we were non-optimal. This is true for each

idI. In mathematical terms, our claim may be expressed as follows:

r Dr r D 0
ijeR iI jeDi iI

(4.7)

where

(4.8)



Thus, we may replace C wi r D.. in the objective function Z r

r jeDi
by wij**Oi for each ieI. Consequently we can remove the constraints

(4.7) and the non-negativity constraints D > o, since we have already

solved for the vector D.

Then LP3 becomes the following LP4,

LP4: Minimize 4r = (C + wr)* 0

1 14rj

Subject to: oi > Ei , for all iel

where LP4 <=> LP3.

Now, the above LP4 is a trivial mathematical program, but unbounded from

above. So we may simply impose an upper bound on each variable to ensure

finite solutions, by adding the following constraints

, for all iIc

where Mi is a sufficiently large number (e.g. maximum trip generation from

origin i assuming zero transport cost anywhere on the network).

Thus, we end up with the following trivial linear program, LP5,

LP5: Minimize Z r = ur.0i
i

Subject to: E. < 0 < M
1- i- i

r r r
where Ui = Ci + wij*

, for all ide

, for all ieI

An optimum solution to LP5 is 0 = (...,0i ,** )

where 0 r =
i

Ei if Ui r > 0

M. otherwise1

The corresponding optimum solution to LP1 is y = (L , D , B ), where

0i < Mi



o if U.r > 0
1

Lr =
i MiEi otherwise

0 r if j = j*D.
1 1

Dr

o otherwise

Br r if p=p*eP

Br erwise
P o otherwise

, for all id

, for all ijeR

, for all pePij, for all ijeR

The path flows may be decomposed into link flows using the link-path

incidence relationship (4.3) as follows:

6 ap*.0i r if link "a" belongs to path

p* between some ij*.

o otherwise

Hence the feasible direction

with the following components:

di.r
13

D. r

dr
a

= L.r

= D..r

= yr
a

Thus, given a feasible solution

procedure, a feasible direction

at iteration r is the vector dr = (yr-Xr)

- S.r

- T.r
iF

F r

, for all ieI

, for all ijeR

, for all aeA

Xr = (Sr,TrFr) at some iteration r in the

dr is determined as follows:

Step 1.1 Update link costs by calculation C r = C (Fr) for all aeA.
a a a



Set i=1 in an ordered set of origins I.

Step 1.2 Find the minimum tree from i to all jeD.. [Use Dijkstra's

algorithm]. Let ur . be the cost over the shortest path from i to j.
13

r 1 r r
Step 1.3 Calculate wij = [n Tij-Aj ] + uij, for all jDi.

* r r
Step 1.4 Determine j such that wij* = min {w }

jeD.
r 1 r r r

Step 1.5 Calculate Ui = [Si - in (S i + Ei ) ] + ij

Step 1.6 Store the shortest path from i to j*. If i < I , then

i + i+1 and go to Step 1.2. Otherwise, continue.

Step 1.7 Find an optimum solution to LP1, y = (L ,D ,V ) and a feasible

direction dr = (yr - X ) as described above.

The main computational efforts in the above direction-finding

algorithm is associated with finding the set of shortest paths from all

origins to all destinations in Step 1.2, which is identical with that of

the traffic assignment problem with fixed demand. The additional calcula-

tions in Steps 1.3 - 1.5 are insignificant compared to Step 1.2. Step 1.7

is just loading the shortest paths to the most "needy" destinations with

the total demand, which is almost identical to the all-or-nothing loading

procedure.

Thus, at any given iteration the above direction-finding procedure

appears to be almost as efficient as that of the standard traffic assign-

ment problem; undoubtedly, a very fortunate result.

We refer to this procedure as the Shortest Path to the Needy

Destination or "SPND1" algorithm as dictated by its direction-finding.



4.1.2 Minimization Along Direction dr

This is the second main step in any feasible-direction method. In this

step, an optimum step size X* which minimizes the objective function Z along

the feasible direction dr, is determined. This is achieved by solving the

following one-dimensional minimization problem:

Minimize r(x) = J (Si r + Xd.r) +
1 1J

(T.r + Xd.r)
ij (ij 1j

(F r + xd r)
+ a a
a aa

C (w) dw
a

Subject to: o < X < 1.

As mentioned earlier there are well-known standard algorithms

the above problem such as the Golden section and Bolzano search.

involves evaluating the function Zr(x) at each iteration while the

involves evaluating the derivatives. We choose the second method

search) since in our case it is easier to evaluate the derivatives

objective rather that the function itself.

from solving

The first

later

(i.e. Bolzano

of the

4.1.3 Updating

Let x* be the optimum step size determined by solving the above one-

dimensional search. Then, the new feasible solution for the next iteration

Xr+1 is as follows:

= S.r

- Tr .1J

ij

= Fr
a

+ d.r

. r
+ x dij

+ X* dr
a

, for all ieI

, for all ijeR

, for all acA

where Z(X r + ) < Z(Xr).

S r+1

r+ 1
a



4.1.4 Convergence Criterion

As mentioned earlier, the above algorithm converges to the optimum

(equilibrium) solution provided that the objective function is convex (or

is concave when maximizing), the constraints are linear and the feasible

region is bounded (see Frank and Wolf [19561). Indeed, these assumptions

are satisfied in our ECP1 problem and thus, the (SPND1) algorithm is

guaranteed to converge to a unique optimum.

There are several convergence criteria which may be used as a stopping

rule for the algorithm. A criterion may be based on the properties of the

optimum solution (e.g. stop when the objective value becomes sufficiently

close to its minimum) or the equilibrium solution (e.g. stop when the flow

values are sufficiently close to equilibrium). Since we are primarily

interested in computing equilibrium rather than the optimum, let us con-

sider the following criterion:

Stop if: (1) G+1 - Gi for Ki% of origins iI.

(2) I Tjr+1 - T ( . eij for Kij% of 0-D pairs ijsR.

(3) 1 Fr +1 - Fri e for K % of links aeA.
a a a a

Where ei , eij and ea are three small positive values (i.e. tolerance

limits) and K., K.. and K are three high percentage values (i.e. con-
1 13ij a

fidence levels). The idea is simply to stop whenever the changes in most

of the flow variables between two successive iterations are sufficiently

small. The particular choice of whether to use (1), (2), and/or (3), and

of the value of e's and K's will depend on the purpose of analysis and com-

putational budget constraint. A more thorough search for the best con-

vergence criterion is presented in Chapter VII.



4.1.5 Initialization
r

To determine a feasible direction d we have always assumed that we

are given a feasible solution. Hence, the starting step in the algorithm

is to find an initial feasible solution X. There are many ways of doing

this. It seems a sensible initial solution would be as foliows:

Step 0 (Initialization)

Step 0.1 Assume that the network is empty and calculate the link costs,

i.e. set F0 = 0 and calculate Co = C (0) , for all aeA. Set i=1
a a a

in an ordered set of origins I

Step 0.2 Find the shortest tree to all jeD..

Step 0.3 Assign the total demand generated from i (say, E )

to alternative destinations and links as follows:

Go = E (That is, So = 0)
i i i

exp(-eu.. + A.)
To G. 1 .1 for all jeDi
13 1 exp(-euik + Ak)

keD.

F a jeDi ap 13 to shortest path p0
a i from i to j.

F0 otherwise
a

Step 0.4 If i < I , then i * i+1 and go to Step 0.2.

Otherwise the initial feasible solution is

0 0 0 0

X = (S , T , F ), where

So = (.....,o,.....; V icI)

To = (.....,T .... ; V ijeR)

F0 = (.....,Fa,...; V aeA)
a



In Chapter VII, we will see that this initialization procedure is modified

to account for the special feature of the Egyptian transport system.

4.2 VALIDATION OF THE (SPND1) ALGORITHM

To test the validity of the (SPND1) Algorithm we developed a computer code

for the procedure. The code is essentially an extension of a computer program

for traffic assignment with fixed demand developed earlier by Shlomit and Tarem

[1980].

The (SPND1) program is about 1000 executable lines; more than one fourth of

its statements belongs to the main program while the rest constitute twenty

subroutines and three functions. A listing of the program including the

necessary modification dictated by our case study is given in Appendix A.

A hypothetical example was constructed to test the validity of the

algorithm. In this example, the network consists of 5 nodes and 15 links as

shown in Figure 4.2. A list of the link data is given in Table 4.1; for each

link the following informations are given: Name of the "from" node, name of

the "to" node, length, and two coefficient values for the cost function

assuming linear functions for all links. One of the nodes is assumed to be

intermediate, the rest are origins and/or destinations defining 8 origin-

destination pairs in the network as shown in Table 4.2. The demand models are

assumed to be calibrated and the resulting parameter are as follows:

E. = 10 for all origins

A. = 10 for all destinations

M. = 40 for all origins
1

a = 2, 6 = 0.5

The computer program was run to predict equilibrium on the above

hypothetical system. The equilibrium solution is shown in Table 4.3.
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LINK NO. FROM

Cair

Cair

Cair

Tant

Tant

Al ex

Al ex

Al ex

Tant

Prts

Prts

Swes

Swes

Swes

Prts

Table 4.1 Hypothetical

TO

Alex

Tant

Prts

Alex

Prts

Cai r

Tant

Prts

Cair

Cair

Tant

Cair

Tant

Prts

Alex

Link Cost Function
1  2.C =C + Caa a a

Link Data

LENGTH

10.00

7.00

12.00

7.00

8.00

12.00

6.0

14.0

6.0

14.0

7.0

16.0

18.0

12.0

14.0

10.

0.0

10.

5.0

5.0

5.0

5.0

10.

4.0

10.

3.0

10.

4.0

3.0

4.0

2

a

2.0

3.0

2.0

2.0

2.0

3.0

2.0

2.0

3.0

2.0

2.0

1.0

2.0

3.0

2.0



Table 4.2 List of Origin-Destination Pairs

No. Origin Destination

1 Cair Alex

2 Cair Prts

3 Alex Cair

4 Alex Prts

5 Prts Cair

6 Swes Alex

7 Swes Cair

8 Swes Prts



The procedure was required to stop whenever the changes in link flows

between successive iterations were negligible or whenever the number of

iterations reached ten.

The final results shown in Table 4.3 are those of the 8th iteration.

One of the main observations about the performance of the (SPND1)

algorithm is that the value of the objective function is monotonically

decreasing. However, the rate of convergence decreases as the number of

iterations increases indicating the existence of what is known as the

tailing-off phenomenon (see Figure 4.3). This is a well-known property of

the Frank-Wolf procedure in general. The idea is that you gain a lot

during the early iterations in the procedure, but you don't gain much more

as you proceed.

The other main observation is that a convergence criterion based on

the flow values may not be satisfied monotonically; that is, at some

iteration such a criterion might be satisfied for, say, 70% of the links,

while at the next iteration only, say, 50% of the links might be satisfying

it. Thus our results are quite sensitive to the convergence criteria we

might use as stopping rules for the procedure (more elaborate discussion on

this issue may be found in Chapter VII).

Nevertheless, the results of our hypothetical example appear to be

quite reasonable at the 8th iteration. That is, you might find positive

flows on paths with higher than the minimum perceived costs but most of the

flows will be using the shortest paths, indicating that the user optimiza-

tion principle is reasonably satisfied.
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Table 4.3 Equilibrium Pattern (8th iteration)
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PART TWO:

APPLICATION



In the preceding chapters (part one) of the thesis we have developed

a methodology for transportation planning that simultaneously predicts

equilibrium on large-scale networks. In the coming chapters (part two) we

actually apply this methodology to a real large-scale system, namely the

intercity transport system of Egypt.*

Our objective in this part of the thesis is to assess the applicabi-

lity of the STEM methodology from the computational as well as the behav-

ioral points of view. Computationally, we are mainly interested in

finding out the best convergence criterion and evaluating the efficiency

of the approach. Behaviorally, we are mainly concerned with assessing the

ability of the STEM model to represent actual behavior and to predict beha-

vioral changes in response to policy changes on transport systems.

The convergence criterion to be used as a stopping rule for the

iterative prediction process is, by necessity, based on the algorithmic

procedure itself. Therefore, we expect our findings in this regard to be,

more or less, general and independent from any special characteristics of

the application under consideration.

The computational efficiency of the algorithm depends upon several

factors. Some of these factors are general such as network size (i.e.

*An extended and more general version of the STEM methodology developed
in this thesis is currently being applied to the overall movements of
passengers and freight on all three major modes, highway, railway and
waterway on the intercity transport system of Egypt. The application
is done through a joint project between MIT and Cairo University in
cooperation with the Egyptian Ministry of Transport. The project is spon-
sored by the U.S. Agency for International Development through the
Technology Adaptation Program directed by Professor Fred Moavenzodeh at
MIT. The author has been working as a research assistant on that project
for the last four years. Occasionally we will be referring to this project
as the Intercity Model or Intercity Project 982 .



number of origins, destinations, O-D pairs, nodes and links) and the nature

of the algorithm itself (e.g. the tailing-off phenomenon), and others are

dependent upon the special features of the system under consideration such

as the steepness of cost functions and the values of demand parameters.

Therefore, we expect our findings concerning computational efficiency not

to be as general as those pertaining to the convergence criterion. This

should not lead us to underestimate the usefulness of our computational

results because learning about the influence of systems' special features

on computational efficiency may be considered equally important. As a

matter of fact, the analysis of systems with such special features may be

looked upon as extreme or worst-case analysis and hence would add another

dimension to our computational (as well as behavioral) results. We still

do believe, however, that useful conclusions about the expected general

performance of the procedure can be drawn. For example, suppose that the

system under consideration has very steep cost functions. The performance

of the approach in this case may, in a sense, represent a "lower bound" on

its computational efficiency and hence we may conclude that the general

performance of the algorithm is expected to improve when applied to other

systems with more "general" features.

It should be mentioned at this point that there is no clear cut

definition that would enable us to declare a given procedure to be

"efficient" and another to be "inefficient". However, one may think of a

"wide" range of "efficient" algorithms beyond which there exist a class of

inefficient procedures. Within the range of efficient algorithms we may

think of relative efficiency by comparing alternative algorithms. We have

to be careful though in comparison since the "cost" of computation and the



"benefit" generated by different approaches may both be different. Of

course in cases where the comparison is made between two procedures to

solve the same problem, the concept of relative efficiency is perfectly

valid. Based on the theoretical development in the first part of the

thesis we can note that our algorithm falls into the domain of "efficient"

procedures since we are solving a convex program and moreover, the

computational effort spent at any given iteration in the process is almost

identical with that of the standard traffic assignment algorithm for fixed

demand problems. The concept of relative efficiency, as defined above, may

not be perfectly valild in our case since we are developing a methodology

with some distinguished behavioral features making the comparison more

difficult. Therefore, in analyzing our results we will try to be careful

in evaluating the computational efficiency of our approach.

The ability of the STEM methodology to represent actual behavior on

transportation systems depends upon several factors related to the

state-of-the-art of modelling behavior on transport systems, the behavioral

assumptions of the STEM methodology itself, the data and assumptions

associated with modelling the behavior of the system under consideration,

and any special behavioral features of that system. The state-of-the-art

of behavioral modelling of transport systems represents the domain within

which the STEM models exist. That is, our STEM methodology do not involve

an improvement over existing behavioral transport theories and models, it

rather selects those "acceptable" theories and models in the field and

combines them in an internally consistent manner. Therfore, the existing

state-of-the-art of behavioral transport theories and models forms an

"upper bound" on the ability of the STEM methodology to represent travel



behavior. It should be mentioned at this point that the state-of-the-art

does not provide us with a well defined theory of trip generation and trip

distribution behavior which may be applied to large-scale systems. This

represents one of the major limitations on the behavioral ability of our

methodology.

As far as the STEM methodology itself is concerned, its behavioral

assumptions, though acceptable, do not necessarily represent the best in

the field. Actually there are equilibrium models that are behaviorally

superior to our STEM model but are not, computationally. In fact, the

central theme of this thesis is based on recognizing the trade-offs between

the behavioral and the computational aspects of the problem of predicting

behavior on transport systems. The major challenge in the thesis is the

ability to strike a balance between both considerations of the problem.

Therefore, we expect our STEM model to stand somewhere in the "middle" of

the range of "behaviorally acceptable" transport planning models.

To assess the behavioral applicability of the STEM models we have to

apply it to a real transport system. This involves modelling travel

behavior on that system. The behavioral modelling of any given transport

system involves an additional set of assumptions implied in the

specification and calibration of different components of the STEM model.

These assumptions are, in a sense, related and influenced by the

availability of relevant data on that system. Therefore, we expect the set

of assumptions and data used in modelling the behavior on any given system

to affect the ability of the STEM model to represent behavior on that given

system. Furthermore, any given transport system would have a number of



special behavioral features that may be peculiar to our STEM model and thus

may not be accurately modelled. Therefore, we expect the existence of such

special features to introduce some difficulties in modelling the system and

hence in the ability of our methodology to represent actual behavior on

that system.

The ability of the STEM model to predict behavioral changes in

response to policy changes depends upon its ability to represent actual

behavior and its ability to represent alternative policies. These are

influenced by the factors mentioned above. Therefore, we expect the

assessment of this issue to be almost completely dependent on the preceding

one.

The above discussion of the behavioral issues seems to imply that our

behavioral results may be greatly influenced by the special features of the

system under consideration. In fact, this implication appears to be

particularly true in our application since the Egyptian intercity transport

system involves several special features whose influence is expected to

override that of other general features of the system. Therefore, we

expect our behavior results to be less general and hence less conclusive in

terms of the assessment of the behavioral applicability of the STEM

methodology. This should not lead us to underestimate the importance of

the expected results. In fact we do believe that learning about the

behavioral ability of the STEM model to accommodate different special

features may be as important as learning about its "general" behavioral

ability.

Based on these expectations about the degree of generality and

conclusiveness of our results, we expect the computational findings to be



more general (and hence more conclusive) compared to the behavioral

analysis. Again, the importance of the less general and less conclusive

results should not be undermined. After all, recall that this is the first

application of a general transport equilibrium model to a real large-scale

system.

The application of the STEM methodology on the intercity passenger

transport in Egypt is described in the next three chapters. In chapter V,

we describe the main features of the Egyptian intercity transport system

with a special emphasis on the major issues related to passenger transport.

In chapter VI we focus on the behavioral modelling of passenger transport

on the Egyptian system and design a case study. In chapter VII we actually

perform the analysis to address the major computational and behavioral

issues of the application and evaluate the results.



V. INTERCITY PASSENGER TRANSPORT IN EGYPT

The Egyptian intercity transport system consists of three major net-

works: highway, railway and waterway. In addition there is a pipeline

networi; used exclusively for liquid hydrocarbons (crude oil and petroleum

products) and natural gas. Since the waterway network is mainly used for

freight transport, we will limit our description to the other two networks

which are shared by both passengers and freight. Furthermore, since

we are m-inly concerned with passenger transport, more emphasis will be

placed on issues and problems related to passenger traffic.

We first describe the infrastructure and its related problems, then

discuss 'he issues related to traffic movements, transport fleets, tariffs

and costs, and transport management. It should be mentioned at this point

that no attempt is made to address all of these issues within this thesis;

they are described here, however, to help the reader becoming more familiar

with the basic features of the system under consideration. In addition,

some of these issues, though not directly addressed in our case study

developed in the next chapter, have indirect impacts on some of our assump-

tions in the case study and on interpretations of results.

5.1 HIGHWAY AND RAILWAY NETWORKS

The highway network has a total length of about 28,500 km (15,000 km

paved and 13,500 km unpaved), located mainly along the Nile River in Upper

Egypt, condensed in the Delta region with connections to the major cities

along the Suez Canal, and extended along the Red and the Mediterranean

seas. The NEDECO* study classifies the roads into three categories;

primary roads, connecting capitals of governorates, main seaports and

industrial areas; secondary roads, connecting marakez with capitals or



with the primary road network; and other (tertiary) roads, connecting

smaller towns and villages to the primary and secondary roads.

In 1979* almost 3,100 km of the paved roads (27% primary and 44%

secondary) were in "poor" condition requiring immediate rehabilitation;

about 3,670 km (44% primary and 20% secondary) were in "fair" condition

requiring rehabilitation within 5 to 10 years. In addition, the pavements

now considered to be in "good" condition are likely to deteriorate fairly

quickly. The severity of the problem of having 3,100 km in poor condition

is lessened by the fact that most of these roads are not primary while, on

the other hand, most of the intercity transport volumes (i.e. about 80%)

are using primary roads.

The fact that almost half of the total road length is unpaved repre-

sents a major problem especially during periods of heavy rain fall (mainly

in northern parts of the country). In addition, the very fact that these

roads are unpaved, greatly decreases the accessibility to and from cities

and villages located on them. This, consequently, discourages socio-

economic development projects to be established in such locations. It is

said that there is a general policy to pave roads provided that budget is

available.

The road network is not connected to about 1,314 villages (32% of the

total number of villages in Egypt). Policies for connecting these villages

with the existing network are set by the localities based on the relative

importance of the villages with respect to the governorates, each within

* This is phase II of Egypt National Transport Study conducted between
1979 and 1981 by Netherlands Engineering Consultants (NEDECO). The main
products of the study [(including phase I (1975-1977)] were the creation of

a comprehensive data base, the development of a national transport plan for
the period up to 1987 and a prospective long term master plan from 1987
until the year 2000.



its jurisdiction. Local authorities are required to inform the Highways

and Bridge Authority (HBA) periodically with the names of those villages

that have been connected, lately, to the network. There is a ministrial

decree of having a representative from HBA in each governorate council to

facilitate communications between them. How efficient these policies are

implemented is unknown.

There is no adequate safety for traffic movements on the road network.

This issue appears not to be related to the infrastructure while in fact it

does. Reasons are related to inadequate shoulder widths, lack of traffic

signs and road marks, and the existance of constructions within the right-

of-way. Road design standards are available but not actually implemented.

The main railway network is owned by the Egyptian Railway Authority

(E.R.) and has a total route length of about 3,260 km, excluding the Sinai

lines. The Ministry of Industry owns an iron-ore line from Baharia Oasis

to Tebbin (346 km) and is financing a new line between Qena and Safaga

(240 km) presently under construction. The total length of branches,

sidings and yards is 2,144 km; of which 1,555 km is estimated to be "in

operation". The main network has 951 km of double track; this includes 583

km (of the main line) between Asiut (in Upper Egypt) and Alexandria (at the

Mediterranean Sea) through Cairo (at the apex of the Delta Region); 53 km

between Tanta (on the main line) to Mansoura; 201 km between Banha (on the

main line) and Ismailia, then between Ismailia and Suez along the Suez

Canal; 25 km of electrified suburban line between Cairo and Helwan; and 15

km of suburban line eastward from Cairo. The network is classified into

three Classes I, II and III according to speed limits and gross tonnage

carried per day.

The railway embankments, especially in northern areas, are constructed



from weak soils with no facilities for drainage. This causes the ballast

bed to sink into the embankment, and hence, to be useless. The problem is

a major one, since 915 km of Classes I and II have "poor" ballast beds; the

above being the main reasons. There is a policy of using better ballast

types and gradations, renewal of ballast bed and reinforcement of weak

embankments. However, the issue is not yet resolved, posing a serious

problem before decision makers of the system.

About 820 km of Classes I and II lines have old 47 kg/m rails and 430

km of Class I lines have 52/54-g/m rails with an age over 20 years,

requiring immediate renewal. There is a general policy which was set a

long time ago (i.e. since 1956) for the annual renewal of 250 km of track,

including renewal of ballast bed. Sleepers are to be renewed according to

their type (i.e. wooden: every 20 years, iron: every 35 years, and concrete

sleepers: every 60-70 years). Associated with sleeper replacement is par-

tial renewal of ballast bed. Some officials say that about 40% of the

track is not currently renewed because of budget constraints.

About 95% of the network had mechanical signalling systems installed

about 50 years ago. This does not cause a problem except on lines with

heavy traffic volumes, which is indeed the case on many of the existing

lines (e.g. Alexandria-Cario). The policy is simply to install electrical

signalling systems on such lines [see NEDECO (1981) Annex V].

*The expected average lifetime, according to the ER standards, is 20 years.
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5.2 TRANSPORT MOVEMENTS

The intercity transportation system of Egypt is used to transport

passengers among different urban, rural and industrial centers of socio-

economic activities, and goods among different centers of production,

consumption, imports and exports. In 1979, the system transported about

15.3 billion ton-kilometers (corresponding to about 90 million tons) of

freight and 34.5 billion passenger-kilometers (representing almost 584

million trips) on all modes of the system.

Existing modes for intercity passenger transport are private car,

taxi, bus and rail. Historically, rail was the dominant mode. In

recent years, however, the Egyptian Railway (ER) has been quickly losing

its position in favor of the increasingly competing mode (the taxi). Table

5.1 shows the passenger-kms produced in 1974 and 1979 by each mode in the

system. In 1974, the system produced 23.5 billion passenger-kms, of which

55% was produced by ER, 22.5% by taxi, 14.5% by bus and 8% by private car.

In 1979, the system produced 34.5 billion passenger-kms (that is, an

increase of 12 billion pass-kms compared to 1974); only 0.9 billion of this

increase was absorbed by rail while 6 billion (that is, half of the

increase) was attracted to taxi. As a result, modal shares completely

changed; the ER share dropped from 55% to only 40% while the biggest jump

was in the taxi from 22.5 to 33%. The bus share had a modest increase from

14.5% to 18% and that of private car had a slight change from 8% to 9%. It

might be worth mentioning that, although the ER still was the dominant mode

in terms of pass-kms produced in 1979 as can be seen easily from the above

statistics of Table 5.1, in the same year the taxi had the largest share in

terms of the number of passenger trips (36%) followed by the ER (30%) as

shown in Table 5.2.



Table 5.1

PASSENGER TRANSPORT (1974 and 1979)

Mode

Private Car
Taxi
Public Bus
Railway

Total

PASS.-KMS
(BILLION), 1974

1.9 (8.0%)
5.3 (22.5%)
3.4 (14.5%)

12.9 (55.0%)

23.5 (100.0%)

PASS.-KMS
(BILLION), 1979

3.0 (9.0%)
11.3 (33.0%)
6.4 (18.0%)

13.8 (40.0%)

34.5 (100.0%)

Table 5.2

PASSENGER TRANSPORT (1979)*

MODE

Pri. Car
Taxi
Public Bus
Railway

Total

PASS.
(MI1ITON)

47.3 (8.0%)
215.8 (37.0%)
146.3 (25.0%)
174.2 (30.0%)

583.7 (100.0%)

PASS.-KMS
(BILLION)

3.0 (9.0%)
11.3 (33.0%)
6.4 (18.0%)

13.8 (40.0%)

34.5 (100.0%)

AVERAGE DISTANCE
(KMS)

63
52
44
79

* NEDECO (1981)

This trend of the ER losing its dominance in favor of the taxi, is

currently underway and is expected to continue for the next five years as

predicted by NEDECO (1981). They predicted a further decline of the ER

modal share from 40% in 1979 to 24% in 1987, in spite of an estimated

increase of its volume (in absolute terms) from 13.8 to 17.5 billion

pass-kms.

These facts and predictions are striking because the people are

shifting to the more expensive mode of travel.
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The main reasons for this counter intuitive behavior are related to

the poor level of service and the limited fleet carrying capacity of the ER

(and Bus). On the other hand, the taxi, unlike bus and rail, is more

flexible and responsive to demand.

5.3 TRANSPORT FLEET

Passengers and goods on the Egyptian intercity system are transported

by different types of vehicles and trains.

By the end of 1979, the total motor vehicle fleet for passenger and

freight on the highway network was slightly more than 485,000 vehicles.

The highway fleet increased dramatically during the period 1975-1979, par-

ticularly the trucking fleet, whose rate of increase was 25.4% per year;

the average annual rates of increase for private cars, taxis and buses were

16.6%, 11%, and 11.6% respectively.

The number of public buses increased from 5,080 (1975) to 6,067 (1979),

while that of private buses increased from 4,462 to 8,758; that is, the

private bus fleet doubled during the period 1975-1979 while the public

bus fleet increased only by one fifth during the same period. It should be

added that the bulk of the increase in the private bus fleet is not used

for intercity passenger travel which is still dominated by the 4 public bus

companies. However, there is a general policy of reinforcing intercity bus

travel whether it be by expanding the existing public companies or allowing

for other bus companies to operate in the system (let it be public, private

or whatever).

As far as the railway fleet is concerned, NEDECO (1981) states that

between 20 and 30% of all rolling stock registered as bookstock, in 1979,

was beyond repair. Officials add that by 1982, about 82% of the bookstock

will be beyond repair requiring replacement. The average availability of



the net effective stock ranges from 60% for non-air-conditioned coaches to

77% for locomotives. The average availability for freight cars is not

known and is guessed by NEDECO (1981) to be 40-50%. Railway fleet capacity

is mainly constrained by the availability of tractive power. In July 1976,

only 889 trains were run while 2,699 were cancelled, 2,614 of them for lack

of locomotives.* The apparent low availabilities of different fleet com-

ponents are due to inadequate and poor-quality maintenance. To resolve

these issues, new locomotives have been ordered and a new maintenance pro-

cedure is now being implemented by TRANSMARK**. However the railway fleet

problems have not yet been solved.

Third class travellers represent more than 95% of all trips by train

and more than 90% of passenger-kms produced. However, the quality of ser-

vice and maintenance of third class coaches is poor. Four hundred new

non-air- conditioned coaches were purchased to compensate for the previous

60% availability of such coaches. Nevertheless, this managerial attitude of

"purchase" rather than "maintenance" is costly and should be altered in the

future.

5.4 TARIFFS AND COSTS

Transport tariffs could be used as powerful tools to influence the level

and distribution of demand volumes on the system; to assure adequate revenues

for operations, maintenance and expansion of transport facilities; to help

achieve redistribution of income; and to help control congestion.

At present, the potential power of pricing policies has not been utilized

in the intercity transport system of Egypt. The main reason is the overriding

* The Egypt National Transport Study, Phase I, 1977.

**TRANSMARK



influence of capacity and/or operational constraints (in railway and waterway

modes) on transport movements. Such constraints exist because of many reasons

such as lmited investments, inadequate poor quality maintenance practices,

lack of sufficient skilled motivated labor and management, etc. These

factors, in addition, caused levels of service on these two modes

(particularly the railway) to deteriorate considerably over time, requiring

greater costs of investment, maintenance and operation to provide a reasonable

level of service or even to keep the level of service from further

deterioration. In addition, everything else being equal, the costs of

providing a given service level increased considerably over time, just due to

inflation (e.g. in fuel price). On the other hand, because of those capacity

constraints on railway and waterway, demands shifted to the more expensive

modes of travel (i.e. trucks for freight and taxis for passengers), resulting

in a great loss of revenues to the "constrained" modes especially the railway.

This created a gap between costs and revenues which widened more and more over

time, reflecting a serious problem to decision makers of the Egyptian

Transport system.

The problem can be explained more by looking at Table 5.3 which shows

revenues and costs of intercity passenger transport by rail, bus and taxi

in 1979. The revenues generated per pass-km were estimated at an average

of 2.37 milliems for rail, 6.65 milliems for bus, and 12.40 milliems for taxi.

These statistics indicate clearly that the ER has extremely low tarrifs

compared to other modes. This is striking because supposedly the ER should

be attracting almost all passenger demand but the reality is that people

are shifting away to the most expensive public mode.

The severity of the problem facing the ER is evident given the fact

that its financial costs incurred in providing passenger service was more
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than double the generated revenues in 1979 indicating a large deficit (see

Table 5.3). If we add to this the fact that at least 60% of the ER reve-

nues in 1979 were generated from passenger services, we can clearly see how

important this problem is to the ER, and hence to the Egyptian Ministry of

Table 5.3

REVENUES AND COSTS OF INTERCITY PASSENGER TRANSPORT IN EGYPT (1979)

REVENUES FINANCIAL COSTS
MODES SERVICE TYPES (MM. PER PASS.-KM) (MMS. PER PASS.-KM)

Airconditioned 4.94 19.9

Railway 2.37 6.41

Non-Airconditioned 2.14 5.22

Bus (52 Seats) 6.65 6.65

Taxi 12.40 12.40

Transport. The problem is becoming even more serious over time due to the

rapid increase of transport demand on the system. Statistics, available

for the period 1974-1979, show an average of 9% annual rate of increase of

the total pass-kms produced by the system.

It should be mentioned at this point that the policy of the government

was, until the approval of the new ER law by the People's Assembly late in

1980, to subsidize the ER for all its losses, regardless of the system's

performance. This policy may have created an atmosphere for less motiva-

tion and dedication to restore the mode. In fact it might have created

some incentive to keep tariffs as low as they were, regardless of costs, so

that more subsidies may have been generated. Now under the new law, the ER



will propose to the government its "preferred" tariff structure estimated

according to the actual costs incurred. The government would either

approve or reduce the proposed tariffs, and in this case will have to pay

the difference as revenues to the ER.

The implementation of the new E.R. law is undoubtedly one of the major

issues that decision makers and planners of the Egyptian transport system at

the ministry as well as the E.R. are faced with. Proposing high tariffs by

the E.R. without sufficiently increasing their level of service and relaxing

their capacity constraints may result in considerable loss of its demand

(depending on demand elasticities), and hence its revenues, without receiving

subsidies; a situation which might be even worse than before. Proposing lower

tariffs by the E.R. implies lower investment maintenance, and operations costs

which would mean that either they are becoming cost-efficient or they are

implementing modest development plans or both. The government, through the

Ministry of Transport (MOT), on the other hand, would like to approve the

tariff structure which minimizes its obligations toward the E.R. (i.e. pay-

ment of the difference) and at the same time be socially acceptable.

5.5 ORGANIZATION AND MANAGEMENT

One of the main characteristics of the Egyptian government system is its

high degree of centralization and bureaucratic control; the transport system

is no exception. This centrality has led to a tendency to channel too many

projects and decisions to the top of the transport planning system. In many

cases neither the time nor the relevant data are available 'at the top' to

make effective well-studied decisions. In addition, bureaucracy is manifested

in a great number of agencies, laws and regulations which are in some

instances, inconsistent and conflicting.



One clear example of conflict is the presidential decree No. 72 of 1975

which commissioned the Ministry of Housing and Reconstruction to:

- Provide comprehensive regional planning for reconstruction of the Canal

Zone, Sinai, the Western Desert and the Red Sea.

- Implement plans and policies of national reconstruction and other ones

in areas that should be specified by the decision of the President.

- Raise the standard of utilities in Greater Cairo and Alexandria (except

for transport and communications) and other cities as stipulated by

Cabinet decision.

These powers imply areas of conflict with both the Ministry of Transport

and certain Governorates. According to Law No. 43 of 1979, Governorates are

charged with constituting and supervising all public utilities and services

(except these considered to be national utilities by a decision of the Prime

Minister). Such conflicts are, supposedly, to be resolved by the Deputy Prime

Minister of Services.

Another example of conflict, at least in theory, exists within the

Ministry of Transport. Both the Department of Plans (belonging to the opera-

tions and budget sector) and the Transport Planning Authority (TPA) are sup-

posed (according to the law) to carry out the responsibility of formulating

general transport plans, setting priorities for plan execution, coordinating

these plans and following-up implemented projects. Moreover, the Department

of Transport Planning within the Ministry of Planning claims the same respon-

sibility [see NEDECO (1981), Annex VIII). However, some officials say that

in practice, there is no conflict and that the main responsibility of planning

lies within the TPA; the Ministry of Planning evaluates such plans in the con-

text of the National development plan of the country.
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Bureaucratic control still exists in the process of transport planning.

On the top of the TPA is the High Council for Inland Transport consisting of

40 members representing nearly all sectors of transportation, including repre-

sentatives of several Ministries (e.g. finance, planning, national economy,

agriculture, defense) and industries, and some outside experts. Officially,

this "high" council is concerned with the formulation of transport strategies

and policies. Practically, however, given the large nember of its members, the

fact that some of them are remotely related to policy making, and its twice-

yearly meetings, only very broad policies and strategies may be communicated

(but not practically discussed) among its members. Furthermore, even this

council does not have the ultimate decisive power regarding transport strate-

gies and policies. Since May 1980, the Deputy Prime Minister for Services

(supervising the Ministries of Transport, Maritime Transport, Housing and

Reconstruction, Irrigation, and Tourism and Civil Aviation) holds such a

power. It is not clear how efficient such a Ministerial committee would be,

given the fact that it consists of very busy Ministers, and that in-depth

discussions of a comprehensive transport plan are unlikely to take place in

such meetings.

As far as comprehensive planning is concerned, NEDECO (1981) concluded

that the existing legal framework for transport planning cannot ensure an

effective systematic development of comprehensive plans. "The system func-

tions on the basis of lists of projects which are alotted to annual budgets.

These budgets are - in turn - largely dictated by the financial means

available. Only in the case of large projects multi-year forecasts and

feasibility studies are made, very seldom however within the context of a

comprehensive plan...As most projects are originating from and generated by

actual problem situations (bottom-up approach) these tend to be confined to
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one specific mode of transport, leaving the connection with other modes almost

out of consideration...One of the serious drawbacks of the existing situation

is the lack of experienced transport planners/economists in the planning agen-

cies and TPA...Closely related to the lack of experienced professional staff

is the absence of well-established procedures of continuous and periodical

data collection, - processing and - recording." [NEDECO (1981), Annex XIII,

Chapter 21. The study proposed a modified organizational structure and a

training program with the objective of strengthening the position of the TPA

as the main agency for the development of comprehensive transport plans.

Finally, the existing civil service regulations impose severe

constraints on the management of the transport sector. Salaries of pro-

fessionals are inadequate; promotions are slow and are often not based on per-

formance; regulations prohibit the discharge of permanent employees,

Ministries and public sectors are required to provide jobs for a set quota of

university graduates, etc. Consequently, most of the skilled professionals

and workers would tend to leave the sector, and those who are still there do

not have enough motivation and/or skills to perform their duties optimally.



VI A CASE STUDY

In the preceeding chapter we have described the basic features of the

Egyptian intercity transport system with a special consideration for issues

related to passengers. In this chapter we develop a case study that is

relevant to addressing the major issues of our application. In the next

chapter we formally define the specific set of issues to be addressed,

perform the analysis, and evaluate the results. The objective in this and

the next chapter is to assess the applicability of the STEM methodology

computationally and behaviorally.

Modelling the system (or designing the case study) involves four major

tasks. The first is the definition of passenger types-choice sets mapping;

the second is the specification of modal split and traffic Assignment beha-

vior and network representation; the third is the development of cost

functions; and the fourth is the calibration of demand functions. The

following is a detailed description of each of these tasks.

6.1 PASSENGER TYPES-CHOICE SETS MAPPING

Passengers are obviously non-homogeneous in many respects and hence

may not be treated as one type. Categorization may be based upon income,

education, profession, etc. It seems that income is the most appropriate

basis for identifying passenger types especially on the Egyptian system.

Transport services are also different in their level of service attri-

butes such as travel time, tariff, comfort, safety, etc. In fact, service

types on the Egyptian system are designed such that each would be suitable

for a particular income level. For example, there are three types of

passenger trains for intercity travel: diesel units, express train and



local train. Diesel units include first and second class airconditioned

service, they stop only at Governorate Capitals, and they of course have

the highest fare on rail; this type of service is most suitable for high

income passengers. On the other hand, local trains are composed of third

class non-airconditioned cars, they stop at almost every town and village on

their routes, and have the lowest fare on the whole system; this type of

service is meant to be for low income passengers. Express trains are com-

posed of all types of services on rail (i.e. I-AC, II-AC, II and III

classes), they stop at Governorate Capitals and other major cities (i.e.

Marakez) but not all towns and villages, and they have different levels of

fares depending on the type of service; this type of service is mainly

designed for middle income people with provisions for high and low income

passengers. The same is true for intercity bus service [see NEDECO (1981),

Annexes IV and V1.

Thus it appears quite appropriate to assume the existence of some

"mapping" between passenger types (e.g. income groups) and choice sets

(e.g. service types).

To identify such a mapping we assume that there are three passenger

types in the system: high income, middle income and low income groups. We

also assume that the service types available in the system are: auto, taxi,

Lux bus (an aggregation of several bus services which may be considered

"excellent", "good" or "sufficient"), normal bus (an aggregation of two bus

services which are considered "moderate" and "poor"), diesel units, express

train and local train.

Based on the "quality index" associated with each service type [NEDECO

(1981)], discussions with Egyptian transport experts and our own experience

and knowledge of the system, we can identify the required mapping as shown
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in Figure 6.1. In the figure solid lines indicate main modes and dotted

lines indicate modes which may be chosen by the particular passenger group

whenever capacity is consumed on the main modes.

We may further refine our mapping by defining another mapping within

selected services such as express train and diesel units. Within express

train we may assume that high income uses I-AC only, middle income uses

II-AC and II classes and low income uses III-Class only. Within diesel we

may assume that middle income group would use II-AC.

Thus our mapping may be summarized as follows:

-low income group may choose among: local train, express train

(III-Class only), normal bus and taxi.

-Middle income group may choose among: express train (II-AC and II

classes), taxi, Lux bus and Diesel (II-AC class only).

-High income group may choose among: Auto, diesel, lux bus, express

train (I-AC class only) and taxi.

In our case study we will be focusing on low income passengers, since

they represent about 80% of rail users, 75% of bus users and more than 65%

of all users in the system (see section 6.4 of this chapter for sources and

calculations of these statistics).

6.2 MULTIMODAL COMPOSED NETWORKS

Within our framework (see Chapter II), modal split can be user opti-

mized (i.e. each user chooses the mode which minimizes his own perceived

cost), system optimized (i.e. modal split is such that the total travel

cost of all users on all modes is minimized), or given by a logit model.

Traffic assignment can be user or system optimized. To decide on the par-

ticular assumptions on modal split and traffic assignment in the Eqyptian



system, we need to gain more understanding of users' behavior in that

system.

We first notice that passengers travel as individuals or in small

groups and thus, it is more appropriate to assume that each user is trying

to minimize his own perceived cost rather than being concerned with mini-

mizing the total travel cost of all users in the system. Hence, in our

case study, traffic assignment is assumed to be in accordance with the user

optimization principle.

As far as modal split is concerned, it can either be user optimized

or in accordance with logit.

The logit assumption has the advantage of considering the "randomness"

in the system due to imperfect knowledge of users about the system and/or

inability of analysts to capture all factors that influence users' utili-

ties. However, it seems that logit may not be the most appropriate assump-

tion to represent modal choice behavior on the Egyptian network.

Discussion with Egyptian transport experts revealed the fact that

"transfer" between modes in the middle of any given trip may occur fre-

quently and thus, should be considered in the analysis. If we accept the

logit assumption, we would have to represent any possible transfer between

any two modes and a "new mode" in the logit formulation.

This creates a number of problems; first, we don't know in advance

these possible "new modes" and thus, we cannot simply identify them;

second, even if we could identify some of these "new modes" we would be

neglecting other possibliities and thus restricting the "transfer" behavior

in the system; third, and most important, if we are able to include all

possible "new modes" in our logit formulation we would expect the logit

assumptions of independence among alternative modes to be violated (since
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the new modes are essentially combinations of the original ones).

Furthermore, the Egyptian system is more or less stable over time as far as

the mode choice set is concerned and users are expected to have good

information about the characteristics of different modes in the system, and

thus their mode choice behavior may, in a sense, be deterministic.

Therefore, because of all of the above reasons we assume that modal

split is user optimized. In other words, modal split and traffic assign-

ment on the Egyptian intercity system are assumed to be in accordance with

the user optimization principle of user travel behavior.

This assumption has implications on the multimodal network represen-

tation. A given link on the actual network may be used by different modes

(e.g. taxi and bus may use the same highway link). This implies that the

cost of traversing that link is not unique; causing a problem in finding

the shortest paths on the network. The idea is, then, to create as many

copies of that link as the number of modes using it and to associate a

unique cost function with each copy. Transfer between modes may occur at

different cities (i.e. nodes) on the actual network. At a given node of

transfer, there are costs of loading and unloading for each transfer acti-

vity. This implies, again, that the cost of traversing that node is not

unique, and hence we need to create as many copies of that node as the

number of modes passing through it in addition to loading and unloading

links between each of these copies and the original node in the network.

If we extend this basic idea to the entire network, we will create what

may be referred to as the "multimodal composed network." An example of

such a composed network is shown in Figure 6.2. In this figure there are

two modes: express train and normal bus, and three zones where transfer

between modes can take place. The composed network in the figure consists
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of two modal networks connected through the three zonal centroids with

loading and unloading links that reflect our behavioral assumptions about

transfer between these two modes at each of these three zonal

centroids. For example, the rightmost zone is assumed to be a point of

loading and unloading for both modes while the leftmost zone is assumed to

be a point of unloading from both modes only (i.e. a destination but not an

origin). The middle zone is a point of loading and unloading for express

train and only of loading for bus. In fact, invoking alternative assump-

tions about loading and unloading for different modes in the choice set at

different zones in the system, allows us to analyze a variety of situations

within our framework.

In our case study we have created four major modal networks: express

train, local train, taxi and normal bus. The normal bus service is pro-

vided through four regional intercity public bus companies: East delta,

Middle delta, West delta and Upper Egypt. Essentially, we have created a

network for each of these companies. Figures 6.3 through 6.9 depicts these

seven modal networks.

Notice that Egypt's map in any of these figures contains 24 major

nodes; each is identified with a 4-character name. These nodes represent

the centroids of 24 non-overlapping traffic zones. This zoning system is

based on that proposed by NEDECO (1981), Accepted by the Egyptian Ministry

of Transport and adopted by the Intercity project (1982). NEDECO's zoning

system consists of 29 zones defined such that the boundaries of traffic

zones coinside with those of the 25 Governorates of Egypt* except for four

large Governorates where each is divided into two traffic zones. Table 6.1

*Egypt is divided into 25 administrative geographical areas; each is called
a Governorate
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shows the names of these 29 cities and Governorates (or portions of) that

they represent. The table also shows the correspondence between our 24

zones defined by their abbreviated names and NEDICO's 29 zones.

Essentially we have omitted four zones which have negligible passenger

traffic; these are New Valley (in the western desert), Port of Safaga (on

the Red sea coast), Sinai, and Marsa Matruh (on the Mediterranean sea near

the Libyian boarders). In addition, we have combined Giza and Cairo-CBD

into one traffic zone (i.e. Cairo) since both belong to one physical socio-

economic center; that is, Greater Cairo Region.

Also notice that the specification of links in the modal networks

shown in Figures 6.3 through 6.9, involves link-aggregation process aiming

at reducing the multimodal network size. That is, a given modal link in

these figures may represent a given path on the actual network. This

aggregation process was done by Egyptian transport experts within the

Intercity project (1982). The author reviewed their aggregated networks

and introduced minor modifications to the highway network; the resulting

modified aggregated networks are those shown in Figures 6.3 - 6.9 and used

in this thesis.

To form a multimodal composed network we need to make assumptions

about loading and unloading at different zonal centroids in the system. In

our case study we assume that loading and unloading for a given mode may

take place at all zonal centroids served by that mode. This assumption

implies almost no restriction on transfer between modes wherever it is

feasible to do so; this allows us to find out, from the analysis, the most

important points of transfer in the system.

In order to achieve the objectives of our case study we have specifed

three multimodal composed networks; the first includes express and local
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Table 6.1 The Zoning System

NEDECO's Zoning System our zoning system

Zone (Governorate) name zone centroid abbreviated names

____________________________________________ I
Cairo Central Business
Giza
Galyubia
Sharkia (South)
Sharkia (North)
Dakahlia (East)
Dakahlia (West)
Domiat
Port Said
Ismaillia
Swes
Minufia
Gharbiya (South)
Gharbiya (North)
Kafr El-Shaikh
Beheita (South)
Beheira (North)
Alexandri a
Western Desert
Sinai
El-Fayum
Bani-Swaif
El-Minia
Asyut
New Valley
Sohag
Qena
Aswan
Red Sea Coast

District CAIRO-CBD
Giza
Banha
Zagazig
Abu-Kebi r
Mansoura
Sherbin
Domiat
Port Said
Ismaillia
Swes
Shebin El-Kom
Tanta
Mahalla Kubra
Kafr El-Shaikh
Etay Baroud
Damanhour
Alexandri a
Marsa Matrah
E-Swes Tunnel
Fayum
Bani-Swai f
Mini a
Asyut
New Valley
Sohag
Qena
Aswan
Port Safaga

CAIR

BNHA
ZGZG
ABKB
MNSR
SHRB
DMIT
PRTS
ISML
SWES
SHKM
TANT
MHLK
KFRS
ETYB
DMHR
ALEX

FYUM
BSWF
MNIA
ASYT

SHAG
QENA
ASWN

--.
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trains only, the second includes bus in addition to express and local

trains, and the third includes taxi as well. Below is a brief description

of the size of each of these composed networks.

MULTIMODAL COMPOSED NETWORKS

MODES INCLUDED # LINKS* # NODES

1. Express and local trains 244 90

2. Express, Local and bus 394 125

3. Express, Local bus and taxi 534 152

A list of all the links in the third composed network (which include

the others as subsets) with the user cost inputs for each link (see next

section) are shown in appendix B.

6.3 USER PERCEIVED COST FUNCTIONS

In any transport system there are three major "actors" whose interac-

tive actions determine the performance of that system; these are users,

operators and owners of that system. Users represent transport demand and

they are mainly concerned with the levels of service of different elements

of the system such as linehaul travel times, waiting delays (e.g. at

terminals), access and egress delays (i.e., loading and unloading), out-of-

pocket fares, safety, discomfort, etc. Operators are those who provide

transport modes for the users. An operator is mainly concerned with

operation, investment and maintenance of his own fleet with the objective

to attract as many users as possible and/or to maximize his net profits.

Owners are those who provide the infrastructure for the benefit of users

* # links includes loading and unloading links.
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and operators. They are mainly concerned with the size and condition of

their networks with the objective to accommodate the weights and sizes of

existing and anticipated traffic.

System's performance may, then, be defined according to the perspective

of each of these actors. In predicting equilibrium it is natural to define

performance from the users' point of view.

As indicated in Chapter II, we assume that users perceive the system

through a set of "generalized" cost functions defined at the link level and

are dependent upon owners' and operators' policies as well as the system's

usage. For a given set of owners' and operators' policies, link user cost

is a function of the usage of that link.

For a given trip, average perceived cost may include the following

cost components,

average user cost = travel time cost

+ tariff cost

+ cost of delay at intermediate nodes

+ loading and unloading cost

The first three cost components are incurred on the linehaul modal

links while the fourth is incurred, by definition, on loading and unloading

links as defined in the multimodal composed network.

Below, is a description of each of the above cost components; we indi-

cate the basic assumptions involved in its calculation and the owner's and

operators' policies which might be reflected through its value.

It should be mentioned at this point that one of the major problems

in the Egyptian intercity system is the existence of fleet capacity

constraints on rail and bus services. In fact, according to our knowledge,
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the state-of-the-art has yet to provide us with a satisfactory solution to

this problem.* Nevertheless, we have attempted to provide an "approximate"

solution by letting travellers perceive very high costs on those elements

where fleet capacity has been exceeded assuming that the constraint may be

reflected at the link level. This is reflected through an additional term

in the user cost function (see subsection 6.3.5)

6.3.1 Travel Time Cost

For a given user type (in our case, low income group), travel time

cost of traversing a given modal link is the multiplication of the

"average" travel time of traversing that link (on that mode) by the "value

of time" for that user type. That is,

TTCk = VTk . TT
am am

where TTCk = travel time cost as perceived by user type "k"
am

traversing link "a" on mode "m". (in £.E.)

VTk = value of time of user type k (in £.E/Hour)

TT = average travel time of traversing link "a" on mode "m"
am

(in hours)

As far as the value of time is concerned, NEDECO (1981) has developed

the following relationship between the value of time and average annual

* A specific definition of the problem and a description of how it may be
resolved theoretically is provided in subsection 6.3.5.

**NEDECO (1981) conducted a modal split survey on the Cairo-Banha-Tanta-
Damanhour-Alexandria Corridor (its area of influence contains nearly one
half of the total population in the Delta). The sample size was 1716
passengers. The survey was conducted in 1979 and is considered to be the
main source of information about passenger characteristics and travel
behavior on the Egyptian intercity system.
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income,

VTM = 1.2+0.0026Y

where VTM = value of time (in milliems/minute)

Y = average annual income (in i.E.)

Therefore, to estimate VT (in i.E./hour) for the low income group in

our case study we need to obtain a reasonable estimate of their average

income. The modal split survey of NEDCO provides us with modal shares and

average income of users of each mode. Our passenger types-choice sets

mapping indicates that the main choices of low income people are third

class train and normal bus. Table 6.2 shows the split of low income

passengers between these two modes and the average annual income of users

of each mode [this table is extracted from NEDECO (1981), Annex II, pages

3.27 and 3.29].

Table 6.2 Modal split and average income of low income passengers

mode modal split average annual income (i.E.)

Normal bus 37 598

Third class train 63 450

Based on this table, the average annual income of low income

passengers is estimated at 505 (£.E) and consequently, their value of time

is estimated at 0.15078 (£.E./Hour).
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The average travel time on a given link depends upon a number of fac-

tors related to the link itself, the mode used to traverse that link, traf-

fic congestion, and operating regulations.

Factors related to the link may include # of lanes, lane and shoulder

width, right of way, grade, pavement condition, etc., for highway; and track

type (i.e. single or double), track condition, grade, etc, for railway. We

assume that such factors may be reasonably captured through the link (and

track) classification suggested in the Intercity project (1982) and shown

in tables 6.3 and 6.4. Notice that this classification also captures the

operating regulations pertaining to maximum and practical speed limits.

Factors related to the mode of travel may include weight, size, horse

power, age, condition, etc, for highway vehicles; and length, weight, trac-

tive power, etc., for trains. We assume that the effect of these modal

charactersitics on average travel time may be taken into consideration

through a set of "modal speed factors" defined as follows [see Intercity

Project (1982)],

mode speed factor (SF)

Taxi 0.9*

Normal bus 0.7

Express train 0.75

Local train 0.7

*This is assumed to include any delay at intermediate nodes.

These speed factors may be multiplied by link speeds to obtain "modal

speeds." Notice that operating regulations pertaining to priorities of

express over local trains is, in a sense, reflected through the difference

between their speed factors.
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HIGHWAY NETWORK

CLASSES

CLASS NAME

A 12 X 3.75 M
B 8 X 3.75 M
C 6 X 3.75 MC__6_X_3.75_M
2P 4 X 3.75 M
2 4 X 3.75 M

3P 2 X 3.75 M
3 2 X 3.75 M
4P 2 X 3.50 M
4 2 X 3.50 M
5P 2 X 3.25 M

5 2 X 3.25 M
6P 2 X 3.00 M
6 2 X 3.00 M
7 4 X 3.25 M URBAN

DESCRIPTION

12 X
8 X
6 X
4 X
4 X

2 X
2 X
2 X
2 X
2 X

3.75 M
3.75 M
3.75 n
3.75 M
3.75 M

3.75 M
3.75 M
3.50 M
3.50 M
3.25 M

2 X 3.25 M
2 X 3.00 M
2 X 3.00 M
4 X 3.25 M

1750
1750
1750
1750
1700

1650
1600
1110
1080
1090

PCE/HR/LANE
PCE/HR/LANE
PCE/HR/LANE
PCE/HR/LANE
PCE/HR/LANE

PCE/HR
PCE/HR
PCE/HR
PCE/HR
PCE/HR

1050 PCE/HR
1050 PCE/HR
1020 PCE/HR
750 PCE/HR/LANE

PAVED SHOULDERS
PAVED SHOULDERS
PAVED SHOULDERS
PAVED SHOULDERS

UNPAVED SHOULDERS

PAVED
UNPAVED

PAVED
UNPAVED

PAVED

SHOULDERS
SHOULDERS
SHOULDERS
SHOULDERS
SHOULDERS

UNPAVED SHOULDERS
PAVED SHOULDERS

UNPAVED SHOULDERS
URBAN DIVIDED

HIGHWAY CLASS

A 12 X 3.75 M
8 8 X 3.75 M
C 6 X 3.75 M
2P 4 X 3.75 M
2 4 X 3.75 M

3P 2 X 3.75 M
3 2 X 3.75 M
4P 2 X 3.50 M
4 2 X 3.50 M
5P_2 X 3.25 M

5 2 X 3.25 M
6P 2 X 3.00 M
6 2 X 3.00 M
7 4 X 3.25_M URBAN

FREE-FLOW SPEED AT LINK
WIDTH SHOULDERS SPEED CAPACITY CAPACITY

TYPE (M) (M) (KM/HR) (KM/HR) (PCE/HR)

DIVIDED
DIVIDED
DIVIDED
DIVIDED
DIVIDED

TWO-WAY
TWO-WAY
TWO-WAY
TWO-WAY
TWO-WAY

TWO-WAY
TWO-WAY
TWO-WAY
DIVIDED

45.0
30.0
22.5
15.0
15.0

7.5
7.5
7.0
7.0
6.5

6.5
6.0
6.0
13.0

5.0
5.0
5.0
5.0
0.0

2.0
0.0
2.0
0.0
2.0

0.0
2.0
0.0
6.0

100.
100.
100.
100.
100.

95.
95.
95.
95.
90.

90.
75.
75.
40.

55.
55.
55.
55.
55.

50.
50.
50.
50.
50.

50.
45.
45.
30.

21000.
14000.
10500.
7000.
6800.

1650.
1600.
1110.
1080.
1090.

1050.
1050.
1020.
3000.
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TRACK CLASSES

TRACK CLASS

TRACK-1
TRACK-2
TRACK-3
TRACK-4
TRACK-5

TRACK-6

DESCRIPTION

DOUBLE TRACK -- EXCEEDS 100 KPH OR 80000 TPD

SINGLE TRACK -- EXCEEDS 100 KPH OR 40000 TPD
DOUBLE TRACK -- EXCEEDS 60 KPH OR 30000 TPD
SINGLE TRACK -- EXCEEDS 60 KPH OR 15000 TPD
SINGLE TRACK -- BELOW 60 KPH OR 15000 TPD

SINGLE TRACK -- BELOW 60 KPH AND 15000 TPD

PA -: 3

TYPE

DOUBLE
SINGLE
DOUBLE
SINGLE
SINGLE

SINGLE

PRACTICAL
SPEED
(KM/HR)

100.
100.
60.
60.
40.

40.

DAILY
OPERATING

HOURS

24.0
24.0
24.0
24.0
24.0

12.0

BALLAST
(TONS/KM)

3600.
1800.
3000.
1500.
1200.

1200.



As far as traffic congestion is concerned, we assume that, on railway,

it has ;een captured through the definition of "practical speeds" on dif-

ferent track classes. On highway, it seems that most of the network is

practically not congested. NEDECO calculated the flow/capacity (V/C)

ratios for about 80 intercity road-sections; 80% of these road sections

were having (V/C) ratios less than 0.5 indicating stable (unrestricted)

flow conditions and that there is hardly any interaction between the indi-

vidual vehicles in the flow; 11% of these road sections were having (V/C)

ratios between 0.5 and 0.75 indicating the existence of some restrictions

on the operating speeds of fast vehicles (e.g. taxis); 5% of the road sec-

tions were having (V/C) ratios between 0.75 and 0.9 indicating more

restrictions on the operating speeds of all but slowest vehicles; 4% of the

road sections were having (R/C) ratios above 0.9 indicating that congested

flow conditions will arise during the peak hours (i.e. at most two hours

during the day). [see NEDECO (1981) Annex IV pages 4.37 - 4.411.

Therefore, we can safely assume that traffic congestion on the Egyptian

intercity highway network is not a problem and may be neglected in our

analysis.

Hence, average travel time on modal links will be calculated as

follows:

TT = L /(S .SF )
am a a m

where
L = Length of link a [km]
a

S = average speeds on link a (i.e., free-flow speed on
a

highway and practical speed on railway). [KPH]

SF = speed factor of mode "m"
m
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6.3.2 Tariff Cost (TF):

Tariff (or out-of-pocket) cost of traversing a given modal link is

calculated from the tariff per unit distance multiplied by the length of

that link. That is,

TFam = TF, . La

where

TFam = total tariff cost on mode "m" traversing link "a" (£.E.)

TF = tariff per unit distance on mode "m" (£.E./km)
am

This implies that unit tariffs are independent of the actual distance

travelled, an assumption that does not hold in the Egyptian system where

tariffs are distance dependent. However, it was necessary to assume some

"average" unit tariff since we do not know the actual distance travelled by

any of the users of the system. Based on the actual tariff structure and

the observed trip length distribution of differenct user types, the

Intercity Project (1982) calculated a "linearized" tariff structure (see

table 6.5). In table 6.5, the entry charge for any given mode is the value

of the linearized tariff at zero distance, we assume that such a cost is

incurred when entering that mode and added to costs on all loading links of

that mode. Also, in table 6.5, notice that we have assumed that the

linearized tariff of express train is 10% higher than that of local. This

assumption is based on a review of actual fares of III-class on express

train compared to local train.
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Table 6.5 Passenger Tariffs

Mode Entry Charge per km tariff Source

Local Train 0.027 0.0019 *

Express Train 0.0297 0.00209 Assumed (+10%)

Normal Bus 0.03893 0.0022

Intercity Taxi 0.15 0.00675 *

*Source: Intercity Model (1982)

6.3.3 Cost of Delay at Intermediate Nodes

Recall that a given modal link may represent a path on the actual net-

work. This implies the possibility of stopping at any of these inter-

mediate nodes when traversing that link. In fact, the major distinction

between express and local trains is that the first only stops at "major

cities and towns" while the later stops at all towns and villages. In

order to account for these intermediate stops in our analysis, we need to

identify all cities, towns and villages in the system, specify for each

mode those nodes that it stops at and the average delay incurred in each

stop. In the Intercity Project (1982), nodes were classified according to

their level of importance into three categories: Governorate capitals,

marakez (i.e., major cities and towns) and villages. Express train service

is assumed to stop at Governorate capitals and Marakez only, while local

trains are assumed to stop also at villages. The delay incurred at each

112



stop is assumed to be 0.2, 0.15, and 0.10 (hour) for Governorate capital,

Marakaz, and village respectively. Table 6.6 summarizes these assumptions.

Table 6.6 Delays at Stations*

*Source: Intercity Model (1982)

As far as other modes (i.e., Taxi and bus) is concerned we assume that

their speed factors capture delays at intermediate nodes as well.

Of course, the cost of these delays (for express and local trains) is

calculated by multiplying the delay incurred in traversing a given link by

the value of time.

6.3.4 Loading and Unloading Cost

The cost of loading and unloading includes the cost of waiting time

(for loading only) and the cost of travel between the actual point of

origin (or destination) and the terminal (of the mode under consideration)

at the zone of departure (or arrival).

Average waiting time for scheduled modes (i.e., bus, express train and
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local train) depends upon the expected time for purchasing a ticket (if

purchased before departure), the expected crowding of the mode at

departure, the expected delay of departure compared to the scheduled time,

and the schedule frequency. The expected time for purchasing a ticket

depends upon the advantages associated with obtaining a ticket before

departure such as reserving a seat or not paying a prespecified fine

on-board, and the expected delay on the queue. The expected crowding of

the mode will determine the amount of time a given passenger would be

willing to spend at the terminal (most probably waiting in the mode) before

departure time. The expected delay of departure depends upon several

management and operating constraints on the mode. The schedule frequency

may greatly influence the expected waiting time and hence mode choice. For

example, suppose that a given mode has a frequent daily service while

another has a non-frequent weekly service. The expected waiting time for

the first mode is far less than that for the second. This may be captured

in our model through the expected waiting time on loading links as a func-

tion of the service frequency provided that we invoke appropriate assump-

tions about service and passengers' arrival behaviors. Considering all of

the above factors we expect the average waiting time for scheduled modes to

increase as the number of passengers increases.

This may not be the case for the non-scheduled mode (i.e., the taxi).

Because it is more flexible and responsive to demand, a given taxi would be

filled with passengers quicker at higher levels of demand than at lower

levels. On the other hand, one might argue that waiting time for the taxi

increases as demand does, because at higher levels of demand there

would be more chance of not finding a taxi standing at the terminal at the

time of arrival of any given random passenger while the opposite is true at
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lower levels of demand. Which senario is closer to actual behavior is

dependent on the "responsiveness" of taxi to demand. Assuming that the taxi

is very responsive to demand, the first arguement would be more appropriate

and vice versa.

The average cost of travel to/from the terminal from/to the point of

origin/destination depends upon so many factors that are not directly

related to intercity transport such as the distribution of intercity

passengers within any given zone, intra-zonal travel cost between different

locations of passengers and different modal terminals and the passenger

type under consideration. As the size of the zone becomes larger and its

population becomes more dense ' we expect loading and unloading cost to

increase.

Estimating the above costs (for waiting time and intrazonal travel)

appears to be a tedious task. In general we need to estimate 96 (i.e., 24

zones x 4 modes) values for waiting time and 96 values for intrazonal travel

costs (assuming that it is the same for loading and unloading at a given

zone). Each value requires a considerable amount of information about the

zone under consideration. As of now the information available to us from

the Intercity project (1982) is the average delay of loading and unloading

for the four modes at different zones and is shown in table 6.7.

Essentially they assume that waiting time is 1, 1, 0.5 and zero (hour) for

local train, express train, bus and taxi respectively; and this applies to

all zones. Intrazonal delay is assumed to vary for different zones and

modes. The basis for these assumptions are not known and the information

provided may be considered, as far as the author is concerned, as "crude"

estimates. Nevertheless, these estimates are used in our case study. On

loading links we multiply loading delays (from table 6.7) by the value of
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Table 6.7 Loading/Unloading Delays (Hr)*

* Source: Intercity Model

** assumed

(1982)

zone Local Train Express Train Norma' Bus Taxi
Loading Unldg. Loading Unldg.,Loading Unldg. Loading Unidg.

ALEX 1.7 0.7 1.7 0.7 1.2 0.7 0.7 0.7
DMHR 1.7 0.7 1.5 0.5 1.6 1.1 0.7 0.7
ETYB 2.2 1.2 1.9 0.9 2.3 1.8 1.2 1.2
KFRS 1.8 0.8 1.6 0.6 1.7 1.2 0.8 0.8
MHLK 1.0 0.1** 1.0 0.1** 0.5 0.1** 0.1 0.1**
TANT 1.2 0.2 1.2 0.2 0.7 0.2 0.2 0.2
SHKM 1.4 0.4 1.3 0.3 1.0 0.5 0.4 0.4
BNHA 1.2 0.2 1.2 0.2 0.8 0.3 0.2 0.2
CAIR 1.3 0.3 1.3 0.3 0.8 0.3 0.3 0.3
ZGZG 1.4 0.4 1.3 0.3 1.1 0.6 0.4 0.4
ABKB 1.3 0.3 1.2 0.2 0.9 0.4 0.3 0.3

MNSR 1.7 0.7 1.5 0.5 1.5 1.0 0.7 0.7
SHRB 1.4 0.4 1.3 0.3 1.1 0.6 0.4 0.4
DMIT 1.1 0.1 1.1 0.1 0.7 0.2 0.1 0.1
PRTS 1.2 0.2 1.2 0.2 0.7 0.2 0.2 0.2
ISML 1.1 0.1 1.1 0.1 0.7 0.2 0.1 0.1
SWES 1.2 0.2 1.2 0.2 0.7 0.2 0.2 0.2
FYUM 1.2 0.2 1.1 0.1 0.8 0.3 0.2 0.2
BSWF 1.4 0.4 1.3 0.3 1.1 0.6 0.4 0.4
MNIA 1.9 0.9 1.7 0.7 1.8 1.3 0.9 0.9
ASYT 1.6 0.6 1.4 0.4 1.3 0.8 0.6 0.6
SHAG 1.6 0.6 1.5 0.5 - - 0.6 0.6

QENA 2.4 1.4 2.0 1.0 - - 1.4 1.4

ASWN 1.8 0.8 1.6 0.6 - - 0.8 0.8
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time (estimated in subsection 6.3.1) and add the entry change (from the

linearized tariffs of subsection 6.3.2). The cost on unloading links is

the multiplication of unloading delays and the value of time.

6.3.5 Fleet-Capacity-Constraint Cost

As indicated earlier, fleet capacity constraints on railway and inter-

city bus is a major problem in the Egyptian transport system and cannot be

ignored in our analysis. According to our knowledge there exists no satis-

factory solution to this problem in the available literature. In this sub-

section we will attempt to provide an "approximate" solution to the problem.

In our discussion we will focus on the railway where the problem is more

serious than it is on the bus; also it turns out that its solution for

railway is more challenging, as will be seen shortly.

The railway passenger fleet includes different components (e.g., I and

II class airconditioned cars, II and III class non-airconditioned cars,

different types of locomotives) and is owned by the Egyptian Railway

Authority (ERA). The size, condition, and operation of fleet components

depend upon the investment, maintanence and operating policies of the ERA

(i.e., the railway operator). The fleet capacity constraint is, by

definition, a characteristic of the individual fleet components but is

realized at the operator level. In other words, whether the capacity of a

given fleet component is constrained or not depends upon the operator's

policies related to that component in response to the current demand. To

be more specific, recall that tractive power is the major fleet capacity

constraint on rail (see chapter V). Locomotives are used to pull trains

composed of different types of cars and classes carrying different types of

passengers. Therefore, the required tractive power will depend upon the
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demands of different types of passengers, the train composition and

schedule. The available tractive power, on the other hand, depends upon

the investment, maintenance and allocation of tractive power to different

service types. If the required tractive power happened to exceed the

available, the capacity of that component is considered to be constrained.

The most accurate approach to deal with this problem is to introduce a

set of constraints to the optimization problem. A given fleet capacity

constraint in the mathematical formulation would be as follows:

TTam Namc ca m

where
T = available hours of component "c"

c
N = required number of components "c" to accommodate flow of
amc

of all passenger types on mode "m" traversing link "a".

TT = travel time of traversing link "a" by mode "m"
am

The required number of components "c", Namc , is generally a non-convex

non-concave function of the vector of flows of all user types on mode "m".

Therefore, the addition of such constraints to the optimization problem

will create computational difficulties in terms of efficiency and con-

vergence.

An approximate solution to the problem is to introduce a term in the

link user cost function that drives the user cost to a very high value

whenever the fleet capacity is exceeded. Such a term might, in general, be

of the following form:

FCCk ( FLOW
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where

FCCam = fleet-capacity-constraint cost as erceived
by user type k" travelling on link "a" by
mode "m",

6 and B are positive constants

This term is very similar to the usual congestion term on cost

functions except that the constants 6 and B are to be determined to reflect

very low values whenever the flow/capacity ratio is less than one and very

high value wherever the ratio exceeds one. That is, 6 should be as small

as possible and B as large as possible. In addition, the "capacity" in

this expression refers to the fleet and not the link per se.

The choice of values for 6 and B affects the steepness of the cost

function which would have implications on the computational efficiency of

the prediction process; the steeper the cost function is, the more computer

time would be requied to achieve a given level of accuracy. On the other

hand, our accuracy of representing the fleet capacity constraint increases

as the cost function becomes steeper; that is, as 6 decreases and a

increases. In our case study we assume a "sufficiently" small value for 6

(i.e., 6=0.1) and a sufficiently large value for B (i.e., B=20). It may be

useful to mention at this point that similar approximations to deal with

the problem of hard link capacity constraints have been suggested by

several researchers such as Daganzo [1977] and Hearn [1979].

In the flow/capacity ratio, "capacity" refers to the available fleet

capacity for a given user type on a given modal link. For the scheduled

modes (i.e. bus, express train, and local train) fleet capacity may be

calculated given the passenger types-choice sets mapping, train com-

position, load factors and the daily schedule. Table 6.8 shows this

information and how the calculations may be carried out. The output of
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these calculations should give us the number of a given passenger type

which can be transported daily on lifferent modal links given the modal

schedules.

Thble 6.8 Fleet Capacities

# Item Local Express Normal Intercity
Train Train Bus Taxi

1 # Components/train 6 III 5 III
class class

2 # Seats/Component i 304 304 69

3 Load factor 1.5 1.0 1.26 1.29

4 Occupancy 2736. 1520. 87 5.7*
per train or
vehicle

I-L

5 # Vehicles/link See Schedules, Intercity Model **

I-

6 Fleet Capacity (# of vehicles/link).(occupancy per vehicle)

Source of Information: Intercity Model (1982)

* Source: NEDECO (1981)
**Calculated as shown in subsection 6.3.5

As far as the taxi is concerned, its fleet capacities on different

links is much more difficult to obtain since the taxi has no schedules, it

is rather responsive to demand. Fortunately, in our case study the taxi is

not one of the major modes and we expect it to carry only the demand which

120



exceeds the fleet capacity of the other three modes. Therefore, a rough

estimate of the taxi's fleet capacities would be sufficient for our pur-

pose. Our task (see table 6.8) is to obtain a reasonable estimate of the

number of taxis which would be available to travel on each link of the net-

work. From the Intercity project (1982) we know highway link capacities

(in PCE/Hr) and average daily operating hours for the taxi (i.e., daily

operating hours = 6.7 hrs). It remains to estimate average percentage of

taxis (in PCE/Hr) on different highway links. NEDECO (1981) calculated

vehicle composition on highway in 1979 and the PCE* factors for different

vehicle types. Based on their results, we calculated average % taxis on

highway links (at 12.2%) as shown in table 6.9. We assume that, since the

taxi is responsive to demand, the number of taxis on any given link may

increase until that link approaches its capacity given the average vehicle

composition.

Table 6.9 Highway Vehicle Composition

% Highway Vehicle
Vehicle Composition PCE Factor % PCE (calculated)

Auto 20 1 8.8

Taxi 28 1 12.2

Pick-up 11 1 4.8

Bus 5 4.7 10.2

Single Truck 25 3.1 33.8

Truck Combinations 11 6.3 30.2

That is, the maximum number of taxis on any given link may be estimated at

Passenger Car Equivalence
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12.2% of the capacity of that link. In specific terms,

# taxis/Link = Link capacity (PCE/hr)

X daily operating hours

X % taxis on that link (% PCE/hr)

In the flow/capacity ratio, "flow" refers to the number of a given

passenger type on a given modal link. The "flow" value is a variable

obtained from the traffic assignment results on the multimodal composed

network at any given iteration in the prediction process. Whenever the

"flow" exceeds "capacity" on a given link at a given iteration, the cost of

that link at the next iteration will be very high indicating that portion

of the flow should be shifted to another unconstrained link. These

adjustments in the flow pattern continue until we arrive at a state of

equilibrium where demands on different modes are practically feasible

(i.e., within the available fleet capacity) and at the same time in

accordance with the behavioral assumptions of the system (see chapter II).

Inputs to all of the above terms in the perceived user cost functions

(obtained as indicated above) for all links in the multimodal composed net-

works are presented in appendix B.

As a final comment in this section, notice that our cost functions are

separable (i.e, non-interacting). Maintaining this characteristic of cost

functions is essential for our approach to predict an "exact" equilibrium.

We were able to maintain this separability because the Egyptian intercity

system is not congested with traffic (in the usual sense) and because we

were able through our passenger-choice set mapping to separate the effects

of fleet capacity constraints on low income passengers from others'. In

other applications, however, especially in urban areas, interaction due
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to traffic congestion among several modes, would be an issue that should be

explicitly addressed. In these situations we can still use the STEM metho-

dology provided that the user cost functions are convex and their Jacobian

matrix is symmetric. The convexity assumption may not be restrictive in

many situations since it conforms with congestion characteristics espe-

cially on highway networks. The symmetry assumption implies that the

congestion effect that one additional passenger (say, on bus) has on, say,

an auto user is identical with the congestion effect that an addition auto

user has on a bus passenger. This is an unrealistic assumption since auto

and bus are quite different in terms of their congestion effects on each

other, their occupancy rates, their speeds, etc. The violation of this

assumption as would be expected in practice, implies that our pedictions do

not converge to the exact equilibrium; instead, we would obtain an approxi-

mate solution. The magnitude and direction of the bias will depend upon

the asymmetry of the Jacobian matrix. One would expect, for instance, that

in cases of weak interactions and/or interactions between "similar" modes,

the results would be reasonably close to the exact equilibrium. Also the

violation of the symmetry assumption may imply non-uniqueness of the

results. As a matter of fact it is very interesting to investigate these

points in future applications of the STEM methodology.*

6.4 DEMAND FUNCTIONS

As indicated in chapter II, we assume that trip generation is given by

*The STEM methodology is currently being aplied within the Intercity
Project (1982) assuming the existence of interactions in the system. The
results of this application should be quite useful in that respect.
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a general linear model and trip distribution is given by a logit model. To

apply the STEM methodology to any transport system we need to calibrate

these demand models. That is, we need to specify each demand function and

estimate a, a for x=1,...L of the trip generation model and 6, a for

w=1,...w of the trip distribution model, for each passenger type (see

chapter II). The calibration approach consists of two steps. In the first

step, a logit distribution model is calibrated. In the second step, a

general linear trip generation model is calibrated with the accessibility

variable calculated from the distribution model calibrated in the first

step.*

As indicated earlier, our ability to represent demand behavior is

constrained by the lack of a well-defined theory of trip generation and

trip distribution behavior. On the Egyptian system we are constrained more

by the lack of appropriate data as will be seen shortly.

Within these constraints we present the basic assumptions and results

of the calibration of these demand models for our case study. We start by

identifying the data available for calibration then discuss the calibration

of the trip distribution model and finally introduce the results of the

trip generation model.

6.4.1 Data for Calibration

Calibration using disaggregate data is thought to produce better

results than using aggregate data, because in the later case we are losing

some variability in the data due to aggregation. However, on the Egyptian

system disaggregate data is not available and we have to calibrate our

*Recall that accessibility equals the natural logarithm of the denominator
of the trip distribution model.
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demand models with the available aggregate data, this is expected to

introduce some aggregation bias in our results.

The main types of data required for calibration are O-D matrices of

trips and costs, and socio-economic data of passengers and zones. Our main

source of data is NEDECO (1981).

0-D matrices are available for auto, taxi, bus and rail trips in 1979

(see appendix C). The highway O-D matrices (i.e., for auto, taxi and bus)

are obtained in part from the in-bus and roadside surveys done in October

1979. The missing data is synthesized from the 1976 0-D matrices by

fitting a doubly-constrained gravity model. The railway O-D matrix is

obtained in part from the available data on registered passengers for the

month of January 1979. The movement of "other passengers", which may

represent about 50% of total railway passenger transport, is estimated

based on sample survey. As far as the reliability of these O-D matrices is

concerned, we notice that some items are synthesized and some others are

estimated from a sample survey. This weakens their reliability. Egyptian

transport experts believe, however, that these are the most reliable values

which they could obtain.

O-D cost matrices are not available. Instead an O-D distance matrix

is used for calibration (see appendix C).

The only available socio-economic data is the zonal population divided

into urban and rural (see appendixc C). This indicates that we are very

poor in terms of the availability of socio-economic explanatory variables

for our demand functions. Limited data on the socio-economic character-

istics of passengers is available in the modal split survey on the Cairo-

Alexandria corridor. As will be seen shortly, we use this limited data to

estimate the portion of low income passengers on different modes of travel.
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6.4.2 Trip Distribution 'Model

The caliSration results of the trip distribution model will depend

up:n the type and quality of data, number of observations used for estima-

ti,:n, number of parameters to be estimated, definition of passenger types

and model specification.

As indicated in preceding subsection, the available trip distribution

matrices are not reliable, and there is no socio-economic data available

for calibration except for population.

The number of observations to be used in calibration is very large and

the number of parameters to be estimated is very low (given the limitation

in explanatory variables), and hence we expect to obtain reliable estimates

for the model parameters given the input information.

As far as passenger types is concerned, we have already divided

passengers into three categories and focused on low income group. The

available O-D matrices of trips are given by mode and not by passenger

type. Thus, in order to have a meaningful correspondence between any modal

and passenger-type results we need to obtain a reasonable estimate of modal

split particularly for the low income passengers. The modal split survey

conducted within NEDECO in 1979 provides us with table 6.10 indicating the

modal shares of different service types (i.e., disaggregated modes) which

are classified according to a "quality index" reflecting their levels of

service. According to our passenger types-choice sets mapping (see section

6.1), the main services in the choice set of low income passengers include

fast bus (aggregated and classified as normal bus in our choice set

definition), and third class train (including III-class on express trains),

we assume that these types of service are mainly designed for low income

people or alternatively that low income passengers are mostly captive to
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these services. Hence, with simply calculations based on the modal shares

of table 6.10 we estimate that low income group constitute about 80% of

rail passengers and about 75% of bus riders. The estimate of low-income

rail passengers based on the modal split survey is strengthened by the fact

that about 79% of passenger-kms produced by rail in 1979 belongs to

III-class passengers as shown in table 6.11.

The model specification is very much affected by the lack of a well

defined theory of trip distribution behavior and of the lack of relevant

explanatory variables particularly on the Egyptian intercity system. It

seems that the starting point to overcome this defficiency is to conduct a

trip distribution survey for selected origins and destinations in the

system. The second stage would be to develop a regional socio-economic

data base which include the most important variables that influence trip

distribution behavior in the Egyptian system. In fact such variables would

be very useful for other regional planning studies as well. Of course such

efforts would constitute a complete study by itself and is yet to be done.*

Nevertheless, given the current lack of theory and supportive variables,

the model specification used in the Intercity Project (1982)** is as

follows:

exp(-e d.. + e n D.)
T.. = G o 1 1 n j

1'J i exp(-eo d + 01 e D )
o ik 1 n k

k

* the same applies to trip generation

**the specification and calibration using modal O-D matrices of trip
distribution model were performed by Abdel Nasser (1982) of Cairo Univ.
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Table 6.10 Modal split on Cairo-Alexandria Corridor*

Quality index

1. "Excellent"

2. "Good"

3. "Sufficient"

4. "Moderate"

5. "Poor"

Main modes

: Lux Pullmann

Super Lix Pullmann

First class train airco

: Flight Pullmann

Second class train airco

: Arrow

First class bus

Taxi

: Fast bus

Second class train other

: Normal bus

Third class train

*Modal split survey, National Transport Study, phase II (NEDECO), 1981.

Table 6.11 E. R. passenger-kms, 1979

I-C1 as

I I-Cl as

III-Cl as

*Source: NEDCO (1981)

E. R. passenger-kms, 1979
(millions)

s 507 (3.

s 2431 (17.

s 11065 (7!

1400

5%)

5%)

9%)

(100%)
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pct

0.4

0.4

2.2

0.2

4.4

0.5

6.8

11.1

22.4

4.1

3.3

43.9

--

3.0

4.6

18.4

26.5

47.2



where

d.. = distance between i and j (km)
13

D
j = number of trips attracted to j (per day)

e and e, are parameters to be estimated

There are three comments related to the specification of this distri-

bution model. The first is that the only attractiveness variable used is

the number of trips attracted to different destinations and not even the

population variable; this was thought to be more appropriate (given the

lack of theory and data) since the variable D. represents the resultant of

the effects of all "unobserved" variables in addition to population. The

second is the inclusion of D. in a natural logarithmic form; this form has

been suggested by Lerman (1975) particularly for variables that measure the

"size" of destinations. We may assume that D. is a "size" variable in the
3

sense that each trip in D. is presumably attracted to a given attraction

point within the destination j and consequently it is reasonable to assume

that D. is a proxy variable for the number of attractive activities in that
J

destination (i.e., elemental destination in Lerman's terminology), which in

turn may be considered as the "size" of attraction of that destination. The

third comment is that distance is used to reflect impedence between 0-D

pairs; of course this is a very simplified representation of 0-D costs

which implies perfect correlation between perceived user cost and distance,

an assumption that is not necessarily true and that need to be corrected

for.

The above trip distribution model has been calibrated within the

Intercity Project (1982) by Abdel-Nasser of Cairo University for each of

the four major modes: auto, taxi, bus and rail. The estimates of e and
O
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1l were based on minimizing the sum of squares errors 
between predicted

trips given by the above model (T..) and observed trips shown in appendix

C. That is,

0 2
Minimize F(e0,e1 ) = i (Tij - Tij)

ij

The Gauss Least-squares method was used to solve the above unconstrained

minimization problem. The calibration results are shown in table 6.12. In

table 6.12, the values between brackets are the t-statistics of the usual

t-test; notice that those values are very high indicating a very high

confidence that the true values of e0 and el are significantly different

from zero.

To obtain the corresponding calibration results for the low-income-

passengers trip distribution model we calculate a weighted average of 8

and 81 where the weights correspond to the modal split of low income group

between bus and rail. That is,

0.75 0.80
(eo) 0.75+0.80 o) + 7+0.80 (o) .

Low Bus Rail

The same applies to el. The results of this calculation implies the

following values of o and 0 for low income people:o 1

0 = 0.01402

e = 1.1044
1
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Table 6.12 Modal calibration results of trip
distribution models

The attraction variable, A j, may then be calculated

A. = 1.1044 zn 0.75 (D ) + 0.80 (D.)
j3 J Bus 1 JRail

as follows:

] for all j

Table 6.13 shows the calculated attraction of all destinations in the

system.

It remains to estimate the parameter o such that o d.. = ~ U where
o 13 13

U.. is the minimum perceived cost of travel between i and j. This

requires obtaining a reasonable estimate for U.., then 6 may be calculated

for selected O-D pairs; a weighted average of those e values would be our

estimate of a for low income users. We assume that U.. is the minimum 0-0

cost at free flow conditions obtained from our initial solution. That is,

we calculate link user costs at zero flows and find out the shortest paths
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mode model parameters

eo  el

Auto 0.014279 1.130864
(20.40) (28.94)

Taxi 0.020746 1.048772
(29.97) (28.96)

Bus 0.013261 1.172638
(13.33) (50.36)

Rail 0.014730 1.040413
(21.25) (23.36)



Table 6.13 Attraction of

No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

all destinations (Aj)

Destination

DMHR
ETYB
KFRS
MHLK
TANT
SHKM
BNHA
CAIR
ZGZG
ABKB
MNSR
SHRB
DMIT
PRTS
ISML
FYUM
BSWF
SWES
MNIA
ASYT
SHAG
QENA
ASWN
ALEX
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Attraction

10.52950
9.64800

10.29700
10.16300
11.65900
11.51100
12.26200
13.08300
11.03100
9.55400

10.92000
10.32100
9.64560
8.83300
9.85770

10.38750
10.39200
8.80574
9.82340

10.10730
9.82340
9.61220
8.69430

11.23350



between all O-D pairs in the system; the resulting O-D costs are shown in

table 6.14. We select six major O-D pairs in the system (each having Cairo

as its origin and all represent about 76% of total trips generated from

Cairo); we calculate e and the number of trips distributed, for each of

these six 0-0 pairs; the results are shown in table 6.15. The parameter 0

is then estimated as the weighted average of the six values of table 6.15

where the weights correspond to the number of trips distributed between

different O-D pairs. That is,

6 = 1.50714

Before ending this subsection we need to define our set of O-D pairs in

the system. We make no constraints on O-D movements; that is, we assume

that a traveller at a given origin can choose to go to any other zone in

the system. This implies that the number of O-D pairs is 24 x 23 = 552.

Notice that there are many constraints one can impose on transport move-

ment in the system just by redefining the set of O-D pairs.

Table 6.15 e and observed trips for selected O-D pairs

O-D 0 T..o

CAIR-ALEX 2.053 8,579.
CAIR-BNHA 1.368 56,886.
CAIR-TANT 1.81 7,316.
CAIR-SHKM 1.38 11,031.
CAIR-ZGZG 1.533 8,931.
CAIR-BSWF 1.912 4,106.

96,849.

6.4.3 Trip Generation Model

As indicated earlier, we assume that trip generation is given by a

general linear model, (see chapter II), that is,
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TableNf'14 Initial O-D matrix of minimum perceived costs

TO ALEXX
FROI--------
ALEX 0.000
DMIhR 0.598
ETYB 0.804
KE'RS 0.86b
MHLK 0.827
TPST n1.744
S iKH 0.895
BNIHA 0.959
CAIB 1.263
ZCZG 1.342
ABKB 1.403
FiNSR 1.353
SIiRB 1.250
i)MIT 1.620
PETS 1.898
ISML 1.644
SWkS 2.316
FYUM 2.092
BSF 2.082
NIA 2.778

AST 3.398
SHAG 3.909
QENA 4.693
ASWN 5.861

----------

0.598
0.001
0.493
0.683
0.646
0.562
0.714
0.777
1.062
3.860
1.211
0.872
1.0b9
1.313
1.7 16
1.373
1.835
1.911
1.743
2.439
3.060
3.571
4.355
5.523

t.TY I!

0.493
0.000O.(~6q4

0.h23
0.513
0.70
0.747
1.023
0.850
1.139
0."62
1.008
1.241
1.673
1.301
1.776
1.853
1.672
2.367
2.988
3.499
4.351
5.451

TA II SiW
--------------

0.165
o .t8b3

0.391
r; .47 f.
0.626
0.b91
1.007
0.774
1.135
:. ,17
0.639
1.025
1.,22
1.376
1.760
1.836
1.891
2.537
3.157
3.668
4.453
5.621

*L 41
0.660
0.637
S.405

,..262
.. 4 13
0.477
0.793
0.560
%.773
,).3,49
0.569
0.602
1.193
1.137
1.545
1.622
1.507
2.93
2.823
3.334
4.1.19
5.287

0.744
0.562
0.513
0.476
0.240

0.9 16
0.380
0.695
0.463
0 *'24
0.474
0.671
0.053
1.319
1.013
1.448
1.524
1.384
2.080
2.790
3.211
3.995
5.163

0.295
0.714
0.704
0.628
0.399
0.316
0.000
0.333
0.628
0.529
0.613
0.625
0.804
0.933
1.181
0.854
1.245
1.457
1.407
2.103
2.723
3.234
4.019
5.187

NKFA CAI Z(;ZG
--------------------------

0 * ' 59
0.777
0.747
0.691

0.3I3

0.000
0.502
0.389
0.473
0 .b14
0.664
0.793
1.041
0.714
1.lP5

1.331
1.150
1. b46
2.466
2.977
3.762
4.930

1.263
1,082
1.023
1.007
0.779

0.628
0.502
0.0(00
0.694
0.778
0.970
1.020
1.149
1.345
1.319
0.753
0. 29
0.902
1,598
2.218
2.729
3.513
4.681

1.042
0.860
0.950
0,774
0.546
0.463
0.529
0.389
0.694
0.000
0.361
0.5f54
0.604
0.733
0.92
0.602
0.993
1.523
1.351
2.047
2.668
3.179
3.963
5.131

VrYe MP!'LK
---------------

O-D MATRIX (CONTINUED)

DMIT PRTS IS- L SWJES FYIIM

1.620 . 1.898 1.644 2.016 2. 92
1.313 1.716 1.573 1.P35 1,)11
1.241 1.673 1.301 1.771 1. 53
1.325 1.322 1 .76 1.710 1.P36

.7b68 1.179 1.123 1.531 1.Ct O
0.953 1.319 1.013 1.44 * 1.524
0.93 1.181 . 54 1 .245 1.457
0.193 1.041 0.71, 1I.1J I. 31
1.149 1.345 1.019 0.753 n0.29
C.733 0.929 B.f02 t .493 1].5?

71b 0.05 t.3. .503 0.' 95 1.oo07
0.568 0.845 Do0r. 1.19 1.799
0.406 0.683 .eR56E 1.25r 1.A50
0.i100 0.44? .,7h9 1.160 1. 78

0.442 0.'00 n.92 .. 63io 2.174
0.769 0.992 '3.000 0.556 1.84
1.160 0.?63 0.5 6 C.0" 1 '.

1.97;6 .17 4 1."4n ., . e
1.943 2. 75 1.7' 1f.,, '.42n
2.63 2.711 .5 2. 1 1.71
3.259 3.191 3.'20 ?.'il 1. sP

3.771 f. 3.) C12 3.b 1 ! ., 2 .
4.559 4.6 :7 4.315 4.L 2 C ,.? t
5.72 3 b.)os5 . .951 4.4 1

FSWF

2.062
1.74 3
1.672
1.841
1.493
1 .3P4
1.4,7
1 .1

,.902

1.- 42
1.734
1.814
1 .04 .
2. 75
1.704

. 42 0

* .'i t

YNI A AYT
----------------

2.776 3.398
2.439 3.060
2.367 2.)P8
2.537 3.157
.l9 2.,09

2.006 2.700
.1 n3 2.723

1.14£ 2.4^6
1.598 2.216
2.047 2. F, i
2.23t 2.' P" .
2.429 3.050
2.510 3.130
2.639 3.29
2.771 3.3941
2.399 3.n?

T.; '7 ?.' 71
1.077 1 . 9
0. , 4 1. 7 r 4
'.* (Or, (.0 I

1.4',1 0.7'S
2.211 1.'577
3.444 2 .74t

II A(C

3.906
3.568
3.496
3.665
3. '17
3.208

2.'74
2.726
3.176
3. !,66
3.558
3.638
3.7 67

4 -.q C)
3.528

2.497

3. 7'J
9. .00

1. 191

,EVA A WN
---------------

4.693 5.861
4.355 5.523
4.2b3 5.451
4.453 5.621
4.105 5.?73
3.9~5 5.163
4.'19 5 .187
3,762 4.1930
3.513 4.681
S. 3 51131
4.154 5.522
4.345 5.513
4.426 S.394
4.r55 9 .72
4.6 7 5.855
4.315 5.4b3
4.2h6 5.434

3.2 5 4.453
2.18,5 4. 13'
2 .2iP1 ,.94
1.',77 2.7'4
1. t4 2. 262
9.000 1.617
1.617 0.100

ABKB MNSR
--------------

1.403 1.053
1.211 0.872
1.139 0.862
1.135 0.617
0.750 0.335
0.824 0.474
0.613 0.625
0.473 0.614
0.778 0.970
0.361 0.554
0.000 0.526
0.526 0.000
0.576 0.439
0.705 0,568
0.830 0.845
0.503 0.808
0.895 1.194
1.607 1.799
1.542 1.734
2.238 2.429
2.858 3.050
3.369 3.561
4.154 4.345
5.322 5.513

A LEX
DSHR
ETY8
KFRS
M IILI(

SIIKM
H 11 H1
CAIR
ZGZ3
ABKB
H NSH

S HB1188
DMIT
1P HTS
ISHL
3WES
FYU1

, NIA
ASYT
S HIAG

AS WN

SHRB

1.250
1.069
1.908
0.639
0.555

0 .6 71
0.804
0.664
1.020
0.604
0. ') 76
0.439
0.000

0.683
0.858
1.250
1.850
1.814
2.510
3.130
3.641
4.426
5.594



G. = a S. + E. for all i
1 1 1

where G. and S. are variables to be predicted within the STEM methodology,
1 1

and a and E. for all i are constants to be estimated and input to the pre-
1

diction process. Recall that E. may in general be the summation of a
1

number of terms, each reflects the effect that a given socio-economic

variable has on trip generation. Also, recall that the accessibility

variable, S., is assumed to be non-negative. This implies that whenever
1

the system becomes more accessible (i.e., S. increases) we expect more

trips to be generated, and whenever the system becomes non-attractive we

expect socio-economic forces to become predominant and that E. trips must

be generated due to these forces.

Our objective in this subsection is to estimate the sensitivity of

demand to the accessibility of the system (i.e., the parameter a) and the

minimum number of trips which must be generated due to socio-economic

forces (i.e., E. for all i) on the Egyptian intercity system.
1

Factors which would affect our estimation have been discussed in the

preceding subsection. Here we only need to emphasize the lack of well

defined theory for trip generation behavior and the lack of relevant

explanatory variables. We expect that the development of such a theory and

socio-economic data base would be among the major tasks related to the

application of the STEM methodology on the Egyptian system and elsewhere.

In our case study, we are given the observed trip generation by auto,

taxi, bus and rail (see appendix C). We calculate trip generation of low

income passengers as the weighted average of bus and rail passengers simi-

lar to what we did in the preceding subsection. That is,

o 0.75 o 0.80 o
(G) 1.55 (G) + 1.55 (Gi)

Low Bus Rail
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The corresponding accessibility, So , is calculated as the natural

logarithm of the denominator of the trip distribution model.

As far as the value of E. is concerned, we assume that the "majority"

of low income passengers observed on the system are motiviated primarily by

the socio-economic environment. That is, there is a large portion of low

income passengers who must travel for socio-economic reasons. However,

there is no data available to help us estimate that portion and it seems

that we have to make a "reasonable" guess. We assume that this portion is

about 90%. This should be considered as a rough estimate of E., that is,
1

0
Ei = 0.90 G for all i

The parameter a may now be calculated for each origin as follows:

Go - E.
1. = i for all i

1 o
Si

Table 6.16 shows the values of G?, S?, Ei and ai for our 24 zones,

calculated as described above. In table 6.16, we observe that a. is large
1

for the major generators of traffic in the system; that is, Cairo, Banha,

Shebin Kom and Alexandria. For the remaining zones the value of a. is less

than about 200. Therefore, given the wide variability of a. among zones we

expect our demand results to be sensitive to our choice of a, a large value

would result in over estimation of trip generation from zones with low

a. and vice versa. In our case study, we assume that a=2 00 ; this would
1

lead to underestimating total demands from the major generators. For the

purposes of our case study, these rough estimates of trip generation data

(i.e., a and E.) should not have major adverse impacts on our analysis.
1
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Table 6.16 Trip Generation Data

Zone

CAIR

BNHA

ZGZG

ABKB

MNSR

SHRB

DMIT

PRTS

I SML

SWES

SHKM

TANT

MHLK

FKRS

ETYB

DMHR

ALEX

FYUM

BSWF

MNIA

ASYT

SHAG

QENA

ASWN

125,540.

81,240.

20,178.

6,803.

21,004.

9,700.

6,494.

2,323.

7,846.

2,580.

33,200.

38,677.

9,781.

11,706.

6.000.

13,682.

26,615.

11,226.

13,751.

6,237.

9,867.

6,934.

6,062.

2,834.

9.363

9.9286

9.9134

9.9134

9.6107

9.6107

8.894

8.3537

9.1587

8.5713

10.0362

9.3537

9.3537

9.538

9.334

9.334

8.5737

8.9846

8.7727

7.3347

6.31

5.948

4.9553

2.4167

137

112,986.

73,116.

18,160.

6,123.

18,904.

8,730.

5,845.

2,091.

7,061.

2,322.

29,880.

34,809.

8,803.

10,535.

5,400.

12,314

23,954

10,103.

12,376.

5,613.

8,880.

6,241

5,456.

2,550.

1340

818

204

69

212

101

73

28

86

30

331

414

105

123

64

147

310.

125

157

85

156

117

122

118



VII. ANALYSIS AND RESULTS

As indicated earlier, the objective of our application is to assess

the applicability of the STEM methodoloy, both from the computational as

well as the behavioral points of view. In this chapter we actually perform

the analysis and evaluate the results.

7.1 PERFORMING THE ANALYSIS

In order to perform the analysis we need to specifically define the

set of issues to be addressed and then design the analysis to address these

issues.

From the computational point of view, the major issues are related to

convergence and efficiency. Specifically, we are interested in answering

the following two questions:

(1) What is the "best" convergence criterion to be used as a

stopping rule for the iterative prediction process?

(2) How much computer time is required to arrive at an equilibrium

that is "sufficiently" close to the exact solution?

From the behavioral point of view, we are assessing the ability of the

STEM model to represent actual behavior and to predict behavioral responses

to changes in the system. Specifically, we would like to answer the

following two questions:

(3) How do our predictions compare with observed data? Suppose

that there are considerable differences between predicted and

observed values, what are the reasons?

(4) Suppose that the fleet capacity of express train is doubled
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everywhere in the system, how would low income passengers respond

to that change?

To address the first issue we suggest several convergence criteria,

analyze the performance of each and recommend the "best" one, if any.

As far as the second issue is concerned, there are several factors

that would affect computational efficiency such as network size, fleet

capacity constraints, initialization, steepness of link cost functions,

parameters (a and 6) of demand functions, etc. The network size may be

expressed in terms of the number of nodes, links, O-D pairs, origins and

destinations. Computer time required to find the shortest tree from a

given node (i.e., a given origin) to all other nodes, depends upon the

number of nodes and links in the network (i.e., in the multimodal composed

network). At a given interation we need to calculate the shortest tree as

many times as the number of origins in the network. The number of itera-

tions required to equilibrate trip distribution depends upon the number of

O-D pairs and origins since at each iteration we find a direction for

improvement by selecting the most "needy" destination for each origin.

That is, the number of O-D pairs to be equilibrated at a given iteration

equals the number of origins in the network. In our analysis we fix the

number of origins and O-D pairs, and vary the number of nodes and links.

Specifically, we create three multimodal composed networks: the first

includes express and local trains only, the second includes normal bus

in addition, and the third includes all four modes: express, local, bus

and taxi. We assume that trips may originate from each of the 24-zones

and terminate at any of the other 23-zones on the system. That is, each net-

work has 24 origins and 552 O-D pairs. The number of nodes and links on

each composed network is as indicated earlier in section 6.2 of Chapter VI.
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The existence of fleet capacity constraints in the system has direct

and indirect implications on computational efficiency. As indicated in

subsection 6.3.5 of Chapter VI, there is a strong correlation between the

accurate representation of fleet capacity constraints at the link level and

the steepness of cost functions; in our case study we have chosen to have

very steep cost functions in order to obtain a "sufficiently" accurate

representation of such constraints, and hence we expect that more

iterations would be required to achieve a given level of accuracy of

predictions at equilibrium.

Also the existence of fleet capacity constraints have implications on

the initialization of the prediction process as well as the final predic-

tions at equilibrium. Neglecting such constraints in the initialization

would result in an "infeasible" and unrealistic initial solution, and hence

we would expect that more iterations would be required to arrive at an

equilibrium solution that would be "reasonably feasible". In fact, if we

continue neglecting such constraints in subsequent iterations there is no

guarantee that our equilibrium solution would be "feasible" after a

"reasonable" number of iterations. As a matter of fact, in our initial

computer runs we did ignore fleet capacities; our initial modal split and

traffic assignment were very unrealistic and after 250 iterations we were

still not "reasonably feasible" on a good number of modal links on the net-

work (see Appendix D). In the initial solution, no one single passenger

used local train, less than 0.1% used taxi, and the rest used express train

(which was reasonably loaded) and normal bus. The four intercity bus com-

panies were, unrealistically, carrying about ten times their existing fleet

capacities. The most unrealistic flow was found on the East Delta bus from

Banha to Shebin El-Kom where there is only one bus per day with
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overcrowding capacity of 87 passengers; the flow assigned to that modal

link was 12,844 trips, which is about 148 times its existing fleet capacity.

After 250 iterations, of course there has been a lot of improvement but we

still observe that flow is over "fleet" capacity on 96 out of 534 modal links

in the network; the flow/capacity ratio is about 1.5 or more on about one-

third of the 96 links. Thus, neglecting fleet capacity constraints par

ticularly in the initial solution will have computational as well as beha-

vioral implications. Computationally, we will need a considerable number

of iterations to arrive at a "reasonably feasible" solution. Behaviorally,

if we stop at a "practically infeasible" solution, it will not reflect a

meaningful behavior of users in the system and hence would bias our beha-

vioral and policy analysis.

Therefore, the existence of fleet capacity constraints should be taken

into account in the initialization of the prediction process and in sub-

sequent iterations as well. That is, we need to start with an initial

solution that is "reasonably feasible" and to maintain "feasibility" as we

proceed in subsequent iterations. This requires two modifications in our

SPND algorithm. The first modification is in the initialization step and

the second is in the one-dimensional search. As far as the initialization

is concerned, we essentially assume, as before, that trip generation is

given by its minimum value and trip distribution is given by a logit model

calculated using the minimum perceived costs in the system (see Chapter

IV). Traffic assignment on the multimodal composed network is performed

incrementally where the increments are defined based on the available

fleet capacities. Formally, the modified initialization procedure may be

described as follows:

141



Step 0 (Initialization)

Step 0.1 Assume that the network is empty and calculate minimum

link perceived costs, i.e., set Fo = 0 and calculate Co =

C (0), for all a E A. Set i = 1 in an ordered set of

origins I.

Step 0.2 Find the shortest tree from i to all other destinations.

That is, U.. for all je D.. Set j = 1 in an ordered set of

O-D pairs D..
1

Step 0.3 Calculate initial trip generation and trip distribution as

follows:

G= E. ;
i 1

exp(-euj + A.)
To = G1 for all j Es D

13 1 I exp (-euo + A ) 1
keD. ik k

if i < I, then i+i + 1 and go to step 0.2 ;

otherwise, set i = 1 and j = 1, and continue

o
Step 0.4 Determine the increment, ATij , to be assigned to the short-

est path, p , from i to j such that the fleet capacity on any
o

link on P may not be exceeded by more than 20%. That is,

(CAPACITY) + 1.2 * (CAPACITY) for all aspo
a a

(CAPACITY) o = min (CAPACITY)
P aEpO a

O O
ATij = min{Tij , (CAPACITY)po}

Step 0.5 Assign the increment ATij and update link fleet capacities
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and flows. That is,

Fo + AT?. if a e pO
a 3

a Fo  otherwise ;
a

(CAPACITY) + (CAPACITY) - AT?. for all a E pO ;
a a 13

0 0 0
Tij + Tij - ATij ;

If j < D., then 4+j + 1 and go to step 0.4;
1

otherwise, continue.

Step 0.6 Update link co.ts and shortest trees. That is,

Co = C (Fo) for all a c A ;
a a a

If i < I, then i+ i + 1, find the shortest tree and go to

step 0.4.

Otherwise, continue.

Step 0.7 Check for termination. That is,

if T0 . = 0 for all ij, then stop; an initial "feasible"
ij

solution is obtained.

If To. # 0 for some O-D pairs but has been constant for the
ij

last two iterations, then stop; an initial "feasible"

solution could not be obtained.

Otherwise, set i = 1 and j = 1, and go to step 0.4.

As far as the one-dimensional search is concerned, we essentially re-

strict the step size in such a way to maintain "reasonable feasibility" of

the solution as we proceed. The idea has been suggested before by Daganzo

(1977). Formally, we introduce the following modifications:

143



Step 2 (One-Dimensional Search)

Step 2.1 Calculate maximum step size, Xmax, as follows:

(CAPACITY)a - F
X = min{1, min a a
max d >0 da

a
where

d is the descent direction on link a.
a

(CAPACITY) + 1.3 * (CAPACITY)
a a

Step 2.2 Minimize Z(,)

subject to 0 4 x 4 x
max

The above modifications have been incorporated in the computer code pre-

sented in Appendix A.

In order for the above modified procedure to converge, Daganzo [1977]

invokes a strong assumption that is not satisfied in our case, namely he

requires the link cost to approach infinity as the link flow approaches its

"capacity". Hearn and Ribera [1981] proved convergence of this modified

procedure under a weaker and more natural assumption. They require that

whenever the flow approaches capacity, the link cost should be "sufficiently"

large such that the integral p(Ho) in the objective function, at the initial

solution is strictly less than that (Hc) where the flows are at their capa-

cities. This assumption is satisfied in our modified procedure since the

flows in any initial solution cannot exceed more than 20% of "capacities"

while in subsequent iterations the flows can reach up to 30% more than "capa-

cities". The corresponding costs are magnified with a power of 20, implying

that the value of P(Hc) where the flows are at their "relaxed capacities"

should always be strictly greater than that (Ho) at the initial solution.
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The other factors which would affect computational efficiency (e.g.,

parameters d of demand functions) are assumed to be fixed constants

obtained as described in Chapter VI.

To address the third issue we simply compare our predictions on NET3

(which represent the existing situation) and "observed" behavior, and

interpret the results. To answer the fourth question we double the fleet

capacity of express train on each link and predict equilibrium on the

multimodal composed network of all four modes before and after the change

in fleet capacities.

In the following sections we present and discuss our findings in rela-

tion to each of these four issues.

7.2. CONVERGENCE CRITERION

We know from Chapter IV that the SPND algorithm does converge to the

exact equilibrium asymptotically. We also know from the preceding section

that the modified algorithm is convergent as well. Practically, however,

we would be willing to accept a solution that is "sufficiently" close to

the exact one. The "best" criterion to use as a stopping rule for the

procedure is a one that monotonically approaches a given value which is

known prior to beginning the process; the stopping rule would be simply to

stop whenever this measurement is within a prespecified tolerance limit

from that given value. This "best" criterion may not always be available.

For example, we know that the value of the objective function Z is

monotonically decreasing but we do not know its optimum value apriori.

Alternatively, we know that at optimality the difference between the last

two iterations is zero, but there is no guarantee that this difference is

monotonically decreasing along the process. Therefore, in our search for
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the "best" convergence criterion we will be looking for the measure which

possess the above desireable features.

In our search we have investigated the following converence

criteria:

Stop whenever,

- Zr)/IZrI( < %

r r-1 Ir %CC2: 100*IGi - Gi 1/Gi

Gi r r-1 2
CC3: TGRMSE = ~ TG (Gi - Gi )

1

CC4: 100*IT r . - Tr l 1 1/Tr. < e% for
13 13 ij

i T  r r-1 2
CC5: TDRMSE = ~- (Tij - Tij )

CC6: 100*IFr - Fr- 1 1/Fr for K%a a a

r
a r r-1 2

CC7: LFRMSE = TL (F - F )
a

for K% of origins

K% of O-D pairs

of links

CC8: step size X' e

r r
CC9: 100*ITij - (Tij)logitl/(Tij)logit e % for K% O-D pairs

T.Tij r r 2
CCIO: LRMSE = TTG (Tij - (Tij)logit)

j
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CC11: ERMSE = (ur)2  e

where

r = current iteration

TGRMSE, TDRMSE and LFRMSE are the weighted average of the root mean

square errors of trip generation, trip distribution and link flows respec-

tively.

LRMSE is the weighted average of the root mean square error between

predicted trip distribution and logit calculations.

ERMSE is the total root mean square error of equilibrium.

TTG = total number of trips generated in the system

TLF = total link flows

C = a predetermined tolerance limit

K = a predetermined confidence limit

The convergence criteria CC1 through CC7, are essentially measuring

the difference between the last two iterations. It should be obvious that

there is a strong positive correlation between any of these measures and

the step size (i.e., the criterion CC8). Whenever xr is relatively small,

we expect that the values of CC1 through CC7 are also relatively small,

and vice versa. The correlation is not perfect, however, because the cur-

vature of the objective function Z may not be identical in different direc-

tions. That is, if the step size is the same at two different iterations,

the difference in Z at these iterations may not be identical. Neverthe-

less, the strong correlation, does exist as may be observed from Figure

7.1**. Notice that the absolute value of Z is monotonically decreasing

**The figure 7.1 depicts the results of initial computer runs where we
have neglected the existence of fleet capacities in the initial solution.
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(see figure 7-6) in spite of the fact that the percent change in Z is not,

as shown in figure 7-1. Therefore, to evaluate the performance of CC1

through CC7, it suffices to consider CC8 only.

The convergence criteria CC9 and CC10 are essentially comparing the

predicted trip distribution matrix with the corresponding logit

distribution model.

The logit test can be constructed at any given iteration in the

process as follows:

(1) Given the predicted trip distribution matrix, find the minimum

perceived cost matrix on the network (i.e., find the costs on

the shortest paths between all O-D pairs in the network).

(2) Given the cost matrix calculated in (1), calculate a trip distri-

bution matrix according to the logit model postulated and calibra-

ted earlier.

(3) Compare the predicted trip distribution matrix with the "logit"

by calculating CC9 and/or CC1O.

At equilibrium the predicted and the logit values should coincide and

thus, the value of CCIO should asymptotically approach zero.

The convergence criterion CC11 is based on the calculations of direc-

tion finding for trip generation at each iteration of the algorithm.

Recall from Chapter IV that,

Sr 1 rUri -I LS - zn(aSr + Ei )]+ [Zn Tij - Aj*] + Uij*

where j* is the most "needy" destination in the set D. as determined in the
1

direction finding step at iteration r. That is, j* is a destination that

is relatively "near" and/or "attractive" compared to other destinations in
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the set D. out is still not getting its "fair" distribution of trips

generated from i. .r may be looked upon as the marginal cost of generating
1

an additional trip from origin i going through the shortest path to the

most neeiy destination. If Ur is negative then we are willing to increase

the current level of demand generated at i, and vise versa. Therefore, at

equilibrium Ui should satisfy the following conditions:

(1) U. = 0 if E. < G. < M.
1 1 1 1

(2) U > 0 if E. = G
1 1 1

(3) U* < 0 if G* = M.
i 1

In most practical situations we expect Gi to be strictly within its

lower and upper bounds, and hence Ui to equal zero; consequently we expect

ERMSE to approach zero at equilibrium. Notice that our choice of M. may

always be such that G will never approach it. As for the lower bound
1

(i.e., E ), we know from our definition of the accessibility variable, S ,

that as long as there is at least one "attractive" destination in the

system (for each origin), the value of S. will always be strictly positive
1

and hence G will be strictly greater than E . If, however, there is some
1 1

G. = E we might as well neglect that origin in calculating ERMSE. Thus,
1 i

we can always be sure that the value of ERMSE at equilibrium is indeed

zero. In fact if it turns out that ERMSE is monotonically approaching

zero, we would be more inclined to recommend it as the "real best"

convergence criterion.

Calculations of the above convergence criteria have been incorporated

into our computer code and their results were produced at each iteration; the
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computer output at a typical iteration is shown in Table 7.1. In addition

to calculating the above eleven measures at each iteration, the computer

output includes the current value of the objective function, the CPU time

consumed in different steps of the procedure at that iteration, number of

inner iterations of the one-dimensional search, total travel cost, total

passenger-kms produced in the system and additional information for the

logit convergence test (i.e., CC9).

To evaluate the performance of the measures CC1 through CC8, we focus

on CC8 as a "representative" of the "group". Figures 7.2 and 7.3 depict

the relationship between the optimum step size (x) and the number of itera-

tions (ITER) for NET3 (i.e., the network which includes express train,

local train, normal bus and taxi) and NET2 (i.e., the network which inclu-

des express train, local train and normal bus), respectively. The figures

show the results of each iteration uptil ITER = 192. The randomness of

the step size is quite apparent in both figures; we can hardly observe any

systematic variation in its value. In fact we notice that very early in

the procedure (e.g., ITER = 13 in Figure 7.2 and ITER = 14 in Figure 7.3)

the step size is very small indicating very small values for any of the

measures CC1 through CC7 as well. So if we were to stop based on any of

these criteria, it is obvious that we would stop prematurely. This simple

fact leads us to exclude CC1-CC8 from consideration. Also notice that the

variation in Figure 7.3 is relatively smaller than that in Figure 7.2;

this is due to the existence of fleet capacity constraints on NET2 while

NET3 is less constrained. In fact, this additional observation should

strengthen our decision to exclude CC1-CC8 from further consideration.

To evaluate the performance of the logit convergence test (i.e., CC9

and CC10O) we choose CC10 to be its "representative". Figure 7.4 depicts
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fable 7.1 Computer output of the 52nd iteraton of che overall network
(i.e. Express, Local, Bus and Taxi)

ITERATION NUMBER 52 :

THE OBJtCTIVE VALUE IS
PREVIOUS VALUE IS wrIlHIN

THE %DIFFERE NCE IN
FOR 24 OUT OF
AND 543 OUT OF
AND 532 OUT OF
IS WITHIh 5.00

FLC
24

55b
534
FETCE

BETWEEN LAST
ORIGI.NE,
O-D PAIPS,
LINKS,

1NT

-55 .. 65*500
0.013"4

TUC ITEhTIONS:

OF THV CUREL"'T ONF

NUMBER OF INNER ITEHATIONS= 1
OFTIMUM STE SIZE= 0.00186

TCTAL TRAVEL COST =
TCTAL TRAVEL DISTANCE =

RCOTE MEAN SCUARE ERRORS OF:

ECUILIBEIUM= 27.169
TRIP GENIFTION= 3.258

TRIP DISTRIBLTICN
=  41,7;7

MCDAL LINK FIOWS= 59.266

CPU TIME FOP DIRECTION FINDIING=
CPU TIML FOR ONE DIMENSIONAL SEARCH=

CFU TIME FOR CONVERGENCE TEST
=

CPU TIME FOR CUTPUT CALCUIAIIONS
=

532408.93b
5214164. 00

2,53
0.3p

0.16
O *If

ICGIT CONVLRGENCE TEST:

IT CALCULATES THE %DIFFERENCE BLTWEEN 'PRLDICTED 0-D rFMAND AND THAT CILCULATIEC HY A L)GIT MCDEL.

PREDICTIONS CF 82 CUT CF 552 U-D PAIDS APE WITHIN 5% CF TlE IOGIT MCEL
PREDICTIONS CF 162 CUT CF 552 C-D FPINS ARE WITHIN 10% OF THE ICGIT MOREL

PREDICTIONS CF 289 OUT Ck 552 O-D PAIPS ARE WIT I! 20% OF THE ICGIT Fr'OEL
PREDICTIONS CF 331 CUT CF 552 O-D PAIRS LEE WITEI 0% OF THE LCGIT MOEL
PREDICTIONS CF 353 CUT CF 552 0-D I 'RS APE WITHIN 40% OF Tu" ICGIT MCE5L

PREDICTIONS CF 379 OUT CF 552 u-D PAIFS APE WITHIN 60% CF T11IE LCGIT MIl:EL

PFEDICTICNS CF 415 "UT CF 5c2 O-D PAIRS ihE WITHIN P0%' CF THE LCGIT ,,?CEL

PREDICTICNS CF 412 CUT Cf 552 O-D PAIRS AFE WITHIIIN 10% OF THE LCCIT MCDEI.

THERE ARE 225 C-D F IHS WHICH HAVE LIES THAN 1-f TlEli'S

AMONG THE fREAININC 142 C-D AI}PS, 77 HAVE 1'Fr;ICTIONS LI;S T''l'PA

RCOT iMAN SUARE LHHOi PEITWfLN ,C;lL I'REDICT~:N; Nl: IC(,T

TTAI, HM'31:= 0 b (1!

SECCNDS
SECONDS
SECCNDS
SECCNDS

130 TH I'T
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the LRMSE versus ITER for both NET2 and NET3. Recall that at equilibrium

we expect LRMSE to equal zero; it would be interesting if LRMSE is monoto-

nically decreasing. Unfortunately, this is not the case; one can easily

see from Figure 7.4 that LRMSE is fluctuating up and down. However, taking

a more closer look at Figure 7.4 and imagining a "moving average" of LRMSE,

we could observe that such an average is decreasing, more or less,

monotonically. In fact we can easily observe that the fluctuations in the

first 100 iterations or so are mostly between 3,000 ~ 2,000, while from

ITER = 100 ~ 150 the fluctuations are mostly between 2,500 ~ 1,500 and from

ITER = 150 ~ 200 the fluctuations are mostly between 2,000 ~ 1,000. This

indicates that such an average value of LRMSE would be a reasonable measure

to consider. For reasons which should be obvious shortly, we did not

proceed in that direction. A last comment on Figure 7.4 is related to the

comparison between the LRMSE for NET2 and NET3. We can easily see that

LRMSE is in general much higher for NET2 than it is for NET3; the reasons

are again related to the existence of more "capacity" constraints on the

former network compared to the later one.

It remains to evaluate the performance of the "equilibrium test", that

is CC11. Recall that ERMSE should equal zero at equilibrium provided that

trip generation values are strictly within their bounds. Figure 7.5

depicts the relationship between ERMSE and ITER for all four networks in

our analysis, that is NET1 (i.e., express and local trains only), NET2,

NET3 and NET4 (i.e., NET3 with the fleet capacity doubled on express

train) networks.

The first glance at Figure 7.5 reveals the desirable property which

we are looking for in all convergence criteria, that is monotonicity.
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Particularly for the largest two "unconstrained" networks, ERMSE is

indeed monotonically d::reasing. The relationship between ERMSE and the

level of fl~et capacity constraints in the system is evident; the rate of

decrease of ERMSE is the highest for NET4 and decreases as the network

becomes more constrained. In fact for NET1, which is severely constrained,

ERMSE stabilized at the value of about 36; for NET2 the ERMSE value was

monotonically decreasing (with a rate less than larger networks) until the

total demand in the network reached its "constrained" level, it began to

exhibit slight fluctuations (when ERMSE was about 20) while it was still,

on the average, decreasing but with a lesser rate than before. These

results are very interesting because we have found a criterion that

monotonically approaches its optimum value that is known as apriori.

Therefore, we can safely conclude that the "best" convergence criterion is,

undoubtedly, the ERMSE value (or any other measure based on the value of

U. for all i). However, in applying the test we have to be more careful in

terms of detecting whether the system is severely constrained or not. That

is, we may decide to stop whenever ERMSE comes within a predetermined

tolerance limit or whenever its value stays almost constant over a given

number of successive iterations. That is, a suggested convergence

criterion may be as follows:

CC11: IF ERMSE , stop we are at equilibrium

Otherwise,

IF 1 STOP the system

is severely constrained (or congested).

where ' 1 are prespecified tolerance

limits and n is a prespecified number of iterations.
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7.3. COMPUTATIONAL EFFICIENCY

As mentioned earlier, computational efficiency depends upon many

factors such as network size, fleet capacity constraints, initialization,

steepness of cost functions, parameters of demand functions, and the nature

of the algorithm itself. In our analysis we are investigating the effect

of two major factors, these are network size and fleet capacity

constraints. The implications of the fleet capacity constraints on the

steepness of cost functions, initialization and the one-dimensional search

have been taken into account as explained earlier in section 7.1 of this

chapter.

Recall that in our analysis we have four different problems. For

the purpose of investigating computational efficiency we may distinguish

among these problems based on their network sizes and fleet capacities,

as shown in Table 7.2. All four problems have 24 origins and 552 O-D

pairs. The first three networks are different in their sizes (i.e.,

number of nodes and links) and fleet capacities. The third and the fourth

networks have the same size but the later has more relaxed fleet capacity

(i.e., because the express train fleet capacity is doubled).

The CPU time required for the simultaneous prediction of equilib-

rium on any network using the SPND algorithm may be decomposed into a

number of components based on the task performed by the algorithm. At a

given iteration in the process, CPU time is mainly consumed in direction

finding and one-dimensional search in addition to the calculations of

convergence test, intermediate output, updating, etc. At the beginning

of the process, CPU time is consumed in predicting the initial solution

and at the end in producing the final output. In general, the CPU time

consumed in any typical iteration (including initialization and final
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Major Characteristics of the Four Problems in the Analysis

Network Size

Name Description .. .. Fleet Capacity
# Origin #0-D Pair # Nodes # Links

NET1 Express and Local 24 552 90 224 Severly Constrained

NET2 Express, Local and
Normal Bus 24 552 125 394 Less Constrained

NET3 Express, Local,
Normal Bus and Taxi 24 552 152 534 Not Constrained

NET4 Express(doubled),
Local, Normal Bus 24 552 152 534 More Relaxed than NET3
and Taxi

Table 7.2



output calculations) depends mainly upon the network size, while the

number of iterations required to achieve equilibrium would be more

influenced by the nature of the algorithm itself as well as the problem at

hand. In our case study, however, the network size and the fleet capacity

constraints do interact in determining the CPU time for initilization, and

one-dimensional search at different iterations.

Table 7.3 displays the different components of the CPU time for

all four problems. The CPU time for initialization was the highest for the

second problem (NET2), that is about 3.5 times the value for the larger

problems NET3 and NET4. This may be explained if we know that NET2 is

constrained by fleet capacity-while NET3 and NET4 are not (after 5

iterations, we still could not assign 928 trips to NET2 while we were able

to assign all the demand to NET3 and NET4 in 3 iterations). Strangely

enough, the existence of severe fleet capacity constraints on the first

problem (NET1) did not result in an increase in its CPU time for initiali-

zation similar to that for NET2. This may also be explained by noticing

that after 4 iterations we could not assign 3537 trips to NET1 which

implies more saving in terms of assignment efforts compared to NET2, NET3

and NET4; in addition, NET1 is the smallest.

The CPU time for one-dimensional search varies depending on the

number of inner iterations required to arrive at the optimum step size.

Again, because of the existence of fleet capacity constraints the step

size is constrained (according to the modifications introduced in section

7.1) and thus, less inner iterations would be required to reach the

optimum value. In fact, before introducing these modifications the

number of inner iterations was 8; the modified procedure requires 3

inner iterations only.
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Computer CPU Time (in seconds) on VAX-11/VMS

162

Problem Name
CPU Time
Components

NET1 NET2 NET3 NET4

Initialization 11.5 68 20.2 19.4

Direction Finding 1.37 1.95 2.57 2.57

o

4- One-Dimensional
Search 0.2^,0.5 0.3~u0.5 0.38-0.75 0.38-0.75

Convergence Test
Intermediate Output 0.26 0.35 0.38 0.38

Total / Iteration 1.98 2.7. 3.5 3.5

Final Output 6.13 8. 8.85 8.85

Total CPU Time
(for 100 Iterations) 215.63 346. 379. 378.2

- - - - 1.1.1. . ... ..I.

Table 7.3



The CPU time for convergence test and intermediate output (in Table

7.3) is "relatively" high because we are testing several criteria and pro-

ducing "relatively" more intermediate output than would be required in

practice. Based on our conclusions in the preceding section, this com-

ponent of CPU time should be neglegible.

The CPU time for producing the final output is dependent on the

problem size and the specific needs of the application at hand. For

example, in other applications there might not be a need to print out a

detailed information for each modal link, this would save considerable

amount of effort.

To complete the discussion we need to know how many iterations would

be required to arrive at a-"sufficiently" good solution. To answer this

question we plot the value of the objective function Z against the

number of iterations for all four problems (see Figure 7.6). Looking at

the figure, the performance of the SPND algorithm is as expected; the rate

of decrease of Z decreases as the number of iterations increase exhibiting

the well-known "tailing-off" phenomenon of the Frank-Wolf procedure.

Notice That we gained in the first 100 about 5 to 6 times what we gained in

the remaining 100 iterations. Also notice that Z improves more rapidly in

a "relative" sense, for problems that are more relaxed in terms of

fleet capacities. This is consistent with our earlier results in Figures

7.2, 7.3 and 7.5. It should be mentioned at this point that the rate of

convergence (of all four problems) is constrained by the modification

introduced in the one-dimensional search and we would expect the algorithm

to perform relatively better in other applications.

The rate of convergence for different types of variables in the

system may not be identical. In fact, we observe (e.g., see Figure 7.4)
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that trip distribution variables have the slowest rate of convergence while

trip generation variables are the fastest. This is so because on one hand

we have 552 trip distribution variables and at each iteration we

equilibrate only 24 of these large number, on the other hand we only have

24 trip generation variables and all are equilibrated at each iteration.

The rate of convergence of modal link flows would be somewhere in the middle

between trip generation and trip distribution variables, since we have

244-534 links and at each iteration we equilibrate the flows on the 24

shortest paths determined in the direction finding step.

At any rate, suppose that a "sufficiently" good solution may be

obtained after 100 iterations, then the total CPU time required would be

3.6 ~ 6.3 minutes; this cost is almost negligible when compared with the

anticipated benefit of such an analysis. In fact, if we are talking

about making decisions to invest millions of dollars on transport

projects, even if the analysis would require hours of computer time

the cost would still be negligible. As indicated earlier, there is no

clear cut definition of what is an efficient procedure. Nevertheless,

based on our computational results so far, we may say that the SPND

algorithm appears to be "reasonably" efficient for analyzing large-scale

systems. In fact we believe that there is still more room for improvement

in the computational efficiency of our procedure.
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7.4 ABILITY TO REPRESENT ACTUAL BEHAVIOR

In the pr2ceding twc sections we have analyzed the results from the

computational .oint of view. In this section we would like to assess the

ability of our STEM model to represent actual behavior on transport

systems, in gen2ral, and on the Egyptian intercity system in particular.

In the next section we would like to focus on the ability to predict beha-

vioral responses to changes in the system.

As indicated earlier, the ability of the STEM methodology to represent

actual behavior on transport systems depends upon the state-of-the-art of

modelling travel behavior and the behavioral assumptions of the STEM model

itself. The ability to represent behavior on a given system is constrained

by the above facters and the ability of modelling travel behavior on that

particular system which may, in turn, be constrained by the lack of

appropriate and reliable data and the existence of some special peculiar

features on that system. The major limitation in relation to the state-of-

the-art is the lack of a well defined theory of trip generation and trip

distribution behavior. The STEM model itself stands somewhere in the

middle of the range of behaviorally "acceptable" transport planning models.

The behavioral modelling of the Egyptian intercity system (see chapter VI)

appears to be reasonable in some, but not all, of its components. The main

areas of limitation seems to be the calibration of demand models (because

of the lack of theory and supportive data), the estimation of loading and

unloading delays (because of the considerable amount of research and data

collection efforts required to obtain better estimates), and the modelling

of fleet capacity constraints (because of the limitation of the state-

of-the-art). These limitations, particularly those related to the

Egyptian system, are expected to constrain the ability of our methodology
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to represent behavior on that system. The major special features of the

Egyptian intercity transport system are the non-existence of the usual

traffic congestion, the existence of fleet capacity constraints on major

modes and the topology of the network (i.e., a very dense network in Lower

Egypt and one corridor in Upper Egypt). The existence of these special

features is expected to limit the generality of our results. We do belive,

however, that learning about the behavioral implications of these special

and limiting aspects of the application is as useful as learning about the

general behavioral acceptability of the STEM methodology.

To assess the behavioral ability of the STEM model we compare our pre-

dictions with "observed" data. The "observed" data used in the comparison

is partially estimated and synthesized as explained in chapter VI, and

hence may not be as reliable as desired. For the purposes of comparison,

however, we assume that this "observed" data is representing the actual

behavior on the Egyptian transport system. This assumption, though may not

be true, is reasonable since it has already been implied in our design of

the case study. That is, we have actually used these "observed" data to

calibrate our demand models. The trip generation model, in particular, may

be considered as a function of "observed" data. In fact, our assumption

that the minimum trip generation is 90% of the "observed" value would imply

that our predictions of trip generation may be reasonably close to

"observed" data; of course we still expect some differences due to the

averaging of the parameter a. Nevertheless apart from that, we expect the

comparison between predicted and "observed" values to be very fruitful in

terms of identifying the different capacities and limitations of the

approach in the particular application at hand.

Table 7.4 compares the "observed" trip generation and trip attraction
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data with those predicted on the network representing the existing

situation (i.e., NET3). Looking at the last row in table 7.4, we notice

that the total demand predicted on NET3 is within 1.5% from the

corresponding observed value; this indicates that our results on the

aggregate level are quite satisfactory. Looking at the trip generation

data, we can see that the percent difference between predicted and

observed values is less than 10% for all origins with more than 10,000

trips and is less than 20% for almost all origins with less than 10,000

trips; again this is very reasonable. The highest differences, percentage

wise, are observed for PRTS and SWES (i.e., +63.8% and +57.8%

respectively). In absolute terms, however, these differences are 1,482 and

1,490 trips, respectively, and should not be overemphasized. The largest

differences, in absolute terms, are those of CAIR and BNHA; again this

should not be overemphasized since their percent differences are reasonably

low (i.e., -8.6% and -7.7%, respectively). The main reason for these

discrepancies between predicted and observed trip generation demands is

related to our choice of the parameter "a". Recall that, in chapter VI, we

have calculated a. for each origin then selected some "average" value
i

(i.e., a = 200). If we compare the differences in table 7.4 and those be-

tween a. and a in tables 6.16, we can clearly see that the correlation is
1

almost perfect; whenever a. is greater than a, we tend to underestimate

G. and vice versa; the difference between predicted and observed values
1

is positively correlated with the difference between ai and a. This

suggests that trip generation predictions, in general, may be improved by

defining an a. for each origin rather than an average value for all origins;

notice that the STEM methodology allows this modification to be incor-

porated in the model very easily.
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Table 7.4 Comparison between Predicted and Observed
Trip Generation and Attraction

I I I
Trip Generation I Trip Attraction I

ZONE I I
II I I I I 1
NET3 I Observed I %Diff. I NET3 I Observed I %Diff. I

I I I I I
ALEX 25,688 I 26,615 -3.5 I 14,125 I 26,150 I -46 1

_ _I _I I I I
I i I I I I

DMHR 14,093 13,682 I +3 I 13,898 I 13,824 +0.5
I I I I I I I

ETYB 7,187 I 6,000 +19.8 7,953 I 6,224 1 +27.8 Ii I 1 I 1 I I
I I I I I

KFRS 12,331 11,706 I +5.3 I 9,820 I 11,196 I -12.3 1
I I I I I I

I I I I I I I
MHLK 10,644 9,781 I +8.8 I 12,776 I 9,924 I +28.7 I

I I I I I
TANT I 36,644 I 38,677 I -5.21 48,555 I 38,452 1 +26.3 I

I I I I I I I
I I I I I I

SHKM 31,719 I 33,200 I -4.5 I 44,208 I 33,628 I +31.5 I
SI I I I I I I

i I I I I I I
BNHA 74,949 I 81,240 I -7.7 I 88,104 I 66,383 I +32.7 I

I I I I 1 I I
I I I I I

CAIR 114,739 I 125,540 I -8.6 110,823 1 139,565 I -20.6 I
I I I I I I

ZGZG 19,992 I 20,178 I -0.9 I 29,205 I 21,768 I +34.2 1
I I I I I I

1 I I I I
ABKB 7,939 6,803 I +16.7 8,385 I 5,716 I +46.7 I

II I I I
i I I I I I

MNSR 20,708 21,004 -1.4 18,178 19,692 -7.7

SHRB 10,519 I 9,700 I +8.4 1 9,765 I 11,447 1 -14.7 I
II I
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Table 7.4 (continued)

I I I
Trip Generation I Trip Attraction I

ZONE I I
I i I I I I I

NET3 I Observed I %Diff. I NET3 I Observed I %Di ff. I
I I I I I I I
I I I I I

DMIT 7,605 I 6,494 I +17.1 4,024 I 6,209 1-35.2 1
I I I I I I I
! I I i I I I

PRTS I 3,805 2,323 +63.8 I 2,018 2,975 I -32.2 1
I I I I i I I

ISML I 8,827 7,846 +12.5 6,476 7,524 -13.9 I
I I I I I I I
I II I i I I

SWES I 4,070 I 2,580 I +57.8 1 2,550 I 2,903 1 -12.1 I
I I I I I I I
I iI I I I

FYUM I11,826 I 11,226 +5.3 I 8,156 I 12,156 1 -32.9 I
1 I I I I I II I i I I I

BSWF I14,102 13,751 I +2.6 11,571 I 12,206 -5.2 1
I I I I I I I

I I I
MNIA 7,211 6,237 +15.6 I 4,607 I 6,777 I -32 I

I I I I I I I

ASYT 10,368 I 9,867 I +5.1 1 6,871 I 9,432 I -2.7
I I I I I I I

I I I I I I
SHAG I 7,662 1 6,934 I +10.5 1 5,702 I 7,294 I -21.8

I I I I I I I
I I I I I I I

QENA 6,754 I 6,062 1 +11.4 I 4,115 I 6,025 I -55.7
I I I I I I I
I I I I I I I

ASWN I 3,664 I 2,834 I +29.31 1,162 I 2,624 I -55.7 I
I I I I I I I

SI I I I I I I
TOTAL I 473,045 1 480,280 i -1.51 I 473,045 I 480,280 I -1.5 I

I I I I I I I
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Looking at the trip attraction data in table 7.4, we find that the

discrepancies between predicted and observed values are in general higher

compared to trip generation; however, for the majority of destinations,

these differences may still be considered relatively reasonable.

Unfortunately, the highest differences, in absolute terms, are observed

for the most important destinations in the system (i.e., CAIR, BNHA, TANTA,

SHKM and ALEX). Recall that our model predicts trip attraction

indirectly through trip distribution, and hence our trip attraction results

are mainly influenced by the parameters and the specification of the trip

distribution logit model, as well as the 0-0 perceived costs in the system.

The O-D perceived costs, in turn, are influenced to a great extent by the

existence of fleet capacity constraints in the system as reflected through

the link cost functions. Therefore, it seems that the reasons for these

relatively high discrepancies in trip attraction results (particularly of

the above five mentioned destinations) are related to the trip distribution

model itself and/or to the existence of fleet capacity constraints in the

system.

As far as the trip distribution model is concerned, it seems that the

attractiveness measure, A., is misspecified. It is true that a measure
J

based on the "number of trips attracted" should be quite reasonable (given

the lack of socio-economic data), but it appears that the "total number of

trips attracted", D., is "too aggregate" to capture the variability in
3

destination choice behavior of users at different origins. To see this,

let us suggest an alternative measure of attractiveness and compare it with

the current one in terms of their implications on trip distribution predic-

tions. We simply suggest the use of T.. instead of D. to represent the

attractiveness of destination j. That is we define A.. = xn T.., instead
- 13 13
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of A = l n D., as our alternative attractiveness variable. This implies

that the attractiveness of a given destination j would, in general, vary

according to the origin i fre which a given user is travelling; this

measure should be able to cap-ure the variability in behavior at different

origins which the current mea:ure failed to reflect. To see how the

current misspecification affected our trip distribution (and consequently

trip attraction) results, let us assume that the effect of perceived cost

on trip distribution is negligible (i.e., the value of e is very close to

zero), and that 61 = 1.0. Then, a simple transformation shows us that trip

distribution will be given by either one of the following models according

to the attractiveness measure we use, that is,

A T..
Al: T.. = G 13j (if A = zn T ), for all ij

D0
A2: T.. = G. (if A = n D ), for all ij

where ̂  indicates that the value is predicted.

Now let us analyze the movement between CAIR and BNHA since, as we

will see shortly, it represents, more or less, the "worst case" in our

demand predictions; table 7.5 (including tables 7.5.1 through 7.5.4) shows

the results of this analysis. From the information on observed trips

(table 7.5.1.) we can see the great importance of BNHA to CAIR and vice

versa. About 87% of total trips generated from Banha goes to Cairo repre-

senting more than 50% of the total trips attracted to Cairo. On the other

hand, more than 45% of the trips generated from Cairo is attracted to

Banha representing more than 85% of its total trip attraction. Also

notice that the volume of demand between Cairo and Banha represents more
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than one fourth of the total demand in the system (recall that we are

dealing with low income passengers only).

Invoking the above hypothetical assumptions and calculating trip

distribution by A2, our predictions would be as shown in table 7.5.2. The

values in table 7.5.2 are very low compared to the observed data indi-

cating that we have greatly underestimated the importance of each one of

these zones with respect to the passengers travelling from the other.

Specifically we have assumed that the relative importance of Cairo is 29%

(as suggested by observed values on the national level) while for tra-

vellers from Banha, Cairo is in fact relatively 87% important compared with

other destinations (as suggested by observed values at Banha); similar

assumptions affected the movement in the other direction. To correct for

this bias, we again invoked the same hypothetical assumptions and calcu-

lated trip distribution by Al; the results are shown in table 7.5.3. It

is clear that our predictions in table 7.5.3 are far better than those in

table 7.5.2. In fact our new predictions are very close to the observed

values; the remaining differences between predicted and observed values

are due to the differences in our trip generation predictions. Comparing

these results (particularly those of table 7.5.2) with our actual predic-

tions on NET3 (shown in table 7.5.4) reveals to us a number of interesting

points. First, we notice that our trip distribution predictions on NET3

are far better than those of table 7.5.2; they are still, however, con-

siderably less than observed values. The difference between the results

of table 7.5.2 and on NET3 is attributable to introducing the effect of

the perceived cost on trip distribution on NET3. It seems that the effect

of cost, in this particular situation, was in the positive direction

because Cairo and Banha are very near to each other and the perceived cost
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Table 7.5 Analysis of Deman Between Cairo & 3anha

Table 7.5.1 Observed Tips

Table 7.5.2 Predicted Trips (A2)

I I I
To I CAIR I BNHA I Gi

From I I 1

CAIR - I 15,834 I 114,739 I
I I I

Ii I I I
BNHA 21,735 I I 74,949 I

I I I I
i I I

DI . I I 473,045 1
I I I
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Table 7.5 (continued)

Table 7.5.3 Predicted trips (Al)

To I CAIR I BNHA I Gi
From I I

I I I I
CAIR - I 51,977 I 114,739 I

I I I

BNHA 65,206 - 74,949 I

D -I 473,045 I
I I I

Table 7.5.4 Predicted Trips (NET3)

I I I
Tol CAIR BNHA Gi

From I

CAIR - I 38,549 I 114,739
I I I I
I I I i

BAHA I 32,080 I - I 74,949 I
I I I I

I I I
0. 110,823 I 88,104 I 473,045 II I I
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between them would be relatively low encouraging more trips to travel bet-

ween them; of course, in general, this may not be the case. Second, we

notice that the resultant error, of the biases in trip distribution values,

on the predictions of total trip attraction is unpredictable; for Banha the

error is +32.7% (i.e., an overestimation of 21,721 trips) and for Cairo it

is -20.6% (i.e., an underestimation of 28,742 trips). The reasons are

obvious. The magnitude and direction of prediction errors due to the above

effects are, in general, different from one O-D pair to another. In addi-

tion, there are other factors that affect trip distribution predictions and

we have yet to take their effects into account.

It seems that the second major factor (beside the misspecification of

attractiveness) is the existence of fleet capacity constraints in the

system. This factor will be discussed in detail from all its aspects in

the following section. Here we only mention one example which should

be sufficient to prove our point. Comparison between NET3 and NET4 (see

section 7.5) revealed that there is about 5,563 trips diverted to SHKM

(Shebin El-Kom) because of the fleet capacity constraints on the Cairo-

Banha-Tanta corridor. That is, more than half the difference between pre-

dicted total trip attraction at SHKM on NET3 and observed value (i.e.,

5,563 out of 10,580 trips or about 53%) is due to such constraints.

A third factor which would introduce biases in trip distribution beha-

vior is the parameter e. Recall that 6 has been calculated as an "average"

value based on a selected number of 0-D pairs having Cairo as their common

origin (see chapter VI). Therefore, depending upon the variability of

users' behavior at different origins (as far as their sensitivity to travel

cost is concerned), this "averaging" would bias trip distribution predic-

tions. Behaviorally, we expect users' sensitivity to travel cost to depend

176



upon their socio-economic characteristics which may be captured through the

definition of user types; in our case categorization is based on income.

One might argue that for a given income level, social life would vary from

one zone to another such that their sensitivity to travel cost would be

significantly different. Or, in general, there might be some other socio-

economic factors which are not captured in our categorization of

passengers, but are specific for each zone. In such a case it would be

preferable to specify a parameter a. for each origin i instead of an

"average" a; our methodology does allow such modifications. Nevertheless,

in our case study, it seems that the errors due to an average e are not

significant enough to suggest such a change.

The Comparison between modal split predictions on NET3 and observed values

is shown in table 7.6. The observed values are calculated from table 5.2

(see chapter V) assuming, as before, that low income passengers constitute

80% of rail movement and 75% of intercity bus traffic. Looking at table

7.6, we can clearly see that our predictions imply more longer trips than

observed; that is, the average distance is 56% more on NET3 than it is

observed. This is one of the implications of the misspecification of

attractiveness in the trip distribution model. That is, we have overesti-

mated the relative importance of destinations in Upper Egypt (Lower Egypt)

to users originating from Lower Egypt (Upper Egypt) and underestimated the

relative importance of destinations in the same region, particularly those

of Upper Egypt. For example, on the aggregate level, BNHA is the second

attractive destination in the system (after CAIR). For users in ASWN, BNHA

is among the least attractive destinations (see appendix C). This would

result in overestimating trips from ASWN to BNHA and underestimating trips

to other zones in Upper Egypt which became relatively less important. The

177



Table 7.6 Comparison of Modal split Predictions on NET3 and Observed Values

Passenger Passenger-kms (1000) Average distance (km)
MODE

Observed Predicted %a Observed Predicted %A Observed Predicted %A

Rail 381,808 348,861 -8.6 30,247 43,268 +43 79 124 +57

Bus 300,616 75,707 -7.5 13,151 5,035 -62 44 66.5 +51

Taxi - 59,097 - - 3,903 - 52 66 +27

TOTAL 682,424 519,615 -24 43,398 52,206 +20.3 64 100 +56



reader can verify that the same argument is true for almost all O-D pairs

with one end in Upper Egypt and the other in Lower Egypt (see appendix C).

This will lead us to predict more longer trips since the distances between

zones in Upper Egypt and those in Lower Egypt are relatively long. Keeping

this in mind, we can see that the railway results in table 7.6 are quite

consistent and reasonable. As for the results of normal bus travel, our

predictions are far below the observed values both for passengers and

passenger-kms travelled. Recall that our assumption on the observed low

income passengers on bus (i.e., 75%) is based on the modal split survey

conducted by NEDECO (1981) on the Cairo-Alexandria corridor. It seems that

low income bus ridership along this corridor is relatively above national

average, and hence the average percentage of low income travellers on bus

may actually be far below 75%. Unfortunately, the available data could not

provide us with a better estimate. In addition, notice that in our analy-

sis we have assumed that low income passengers would choose normal buses

only and under no circumstances would they travel by Lux bus. It seems

that this assumption is too restrictive. Recall from table 6.10 that "Lux"

bus is an aggregation of "five" types of bus service, these are: First

class bus, Arrow, Flight Pullmann, Lux Pullmann and Super Lux Pullmann.

The quality index in table 6.10, indicates that First class and Arrow ser-

vices are considered "sufficient" similar to the taxi. Therefore, it seems

more appropriate to include these types of bus service in the choice set as

we did for the taxi.

At the aggregate level, comparison between predicted total passengers

and passenger-kms produced on all modes and observed values, indicates that

the results are in general comparable, except for the fact that our

predictions implies more longer trips than observed, as explained earlier.
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As far as traffic assignment is concerned, it is greatly influenced by

fleet capacity constraints on the system, zs expected.

To conclude this section, *.e note that the major differences between

predicted and "observed" behavicr are related to the misspecification of

the trip distribution model and ihe approximation of modelling fleet capa-

city constraints. We have suggested an alternative, more disaggregate,

specification for the trip distribution model and have demonstrated its

capability to produce better predictions. We do believe, however, that our

demand models still have a lot of potentialities which we could not

demonstrate; the major limitations are the lack of theory and supportive

socio-economic data, particularly on the Egyptian intercity transport

system. The approximate approach of modelling fleet capacity constraints

introduces fictitious cost on the system which influences travel behavior.

This fictitious cost should be negligible at equilibrium provided that the

system is not globally or regionally constrained. Our results indicate

that after about 200 iterations the system appears to be constrained in the

Middle Delta region and hence the fictitious cost still has a relatively

significant influence on travel behavior, particularly on that of trip

distribution. The problem may be considered as a special one since in

general we would expect the effect of the usual congestion to be predomi-

nant. On the other hand, the inability of the state-of-the-art to provide

a practically accurate solution for this problem is a general concern. In

fact, regardless of how you look at it, the existence of fleet capacity

constraints on the Egyptian system did not allow us to demonstrate one of

the expected major potentialities of our STEM methodology, that is the abi-

lity to represent the usual congestion effects.
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7.5 ABILITY TO PREDICT BEHAVIORAL CHANGES

An important issue in assessing the applicability of the STEM methodo-

logy is its ability to predict changes of users' behavior in response to

changes of the system. In this section we investigate this issue.

Let us first assume that our predictions on NET3 represent the actual

behavior in the system. Of course, in view of the comparison between NET3

and observed values in section 7.4, this assumption is not valid but is

necessary for the purpose of analysis in this section.

Now suppose that express train schedules are doubled everywhere in the

system; what are the implications of this change on the user's behavior.

To answer this question we compare our predictions before (i.e., NET3) and

after the change (i.e., NET4). The final results of both problems are

included in Appendix E. For the sake of analysis, we have extracted some

results as shown in tables 7.7 to 7.9.

Table 7.7 compares trip generation and trip attraction results of NET3

and NET4. Our first observation is related to the total demand, there is

almost no difference between NET3 and NET4 in this regard (results show a

0.1% increase in total demand). This indicates that on the aggregate level

the system was essentially unconstrained. Looking at the trip generation

results in table 7.7, we notice that the predictions of NET4 are con-

sistently exhibiting a very slight increase over those of NET3; in absolute

terms, the difference is surprisingly constant at about 27 trips for each

origin. It seems that the incremental change in the accessibility variable

was the same for each origin due to the "uniformity" of the change in the

system.

181



Table 7.7 Comparison Between Predicted Trip Generation and
Attraction of problems NET3 and NET4

Trip Generation I Trip Attraction I
ZONE I i

I I 1i I I
NET3 I NET4 I %A 1 NET3 NET4 I %A I

I I I I I I I
I I I I I I I

ALEX 25,688 25,714 I +0.1 14,125 I 14,501 +2.7 I
_ I I II I

I I I I I
DMHR 14,093 14,120 +0.2 i 13,898 I 12,9301 -7 I

I I I I I I I

ETYB 7,187 I 7,214 I +0.4 I 7,953 I 6,586 I -17 I
_ I I I I I I
I I I I I I I

KFRS 12,311 I 12,358 +0.2 I 9,820 1 8,634 I -12 I
_ I I I I I

I I I I I I
MHLK 10,644 I 10,671 I +0.25 1 12,776 I 13,8041 +8 I

I I I I I I I
f I I I I I

TANT 36,644 1 36,672 +0.07 1 48,555 I 51,090 1 +5.2
I I I I I I I

I I I I I I
SHKM 31,719 i 31,746 I +0.08 1 44,208 I 38,645 1 -12.6 1

I I I I I I I
I I I I I

BNHA 74,949 1 74,976 I +0.041 88,104 I 89,832 1 +2 I

I I I I I I
CAIR 114,7391 114,7651 +0.02 1 110,823 I 116,133 +5 I

I I I I I I I
I I I I I I

ZGZG 19,992 I 20,019 I +0.1 I 29,205 I 28,0981 -3.8 I
I I I I I I I

I I I I I I
ABKB 7,939 7,966 I +0.3 I 8,385 I 7,157 I -14.6 I

_ I I I I I I
I I I I I I

MNSR 20,708 I 20,735 1 +0.1 I 18,178 I 17,3701 -4.41
I I I I I I I

I I I I I I
SHRB 10,519 I 10,546 I +0.2 1 9,765 j 9,020 I -7.6 1

I I I I I I I
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Table 7.7 (continued)

I I I
Trip Generation I Trip Attraction I

ZONE
I I I I I I I
NET3 NET4 % I NET3 I NET4 I %A I

I I I I I

DMIT 7,605 I 7,631 1 +0.31 4,024 4,362 +8.41
I I I I I I I

PRTS 3,805 3,830 I +0.6 I 2,018 I 2,470 I +22.4 I
I I I I I I I

ISML 8,827 I 8,853 I +0.3 1 6,476 I 7,121 I +10. I
I I I I I I I
1 I I I I I I

SWES 4,070 I 4,096 I +0.6 I 2,550 1 2,633 j +3.3 I
I I I I I I I
SI I I I i I

FYUM 11,826 I 11,852 I +0.21 8,156 I 7,555 I -7.41
I I I I I I I
I I I I I I I

BSWF 14,102 I 14,128 I +0.2 11,571 I 12,074 1 +4.3 I
I I I I I I I I

I I I I I I I
I MNIA 7,211 I 7,234 I +0.4 4,607 I 4,245 I -7.91

I I I I I I I
I I I I I I I

ASYT I 10,368 I 10,390 I +0.2 1 6,871 I 6,753 1 -1.7

SHAG 7,662 7,683 +0.31 5,702 6,005 +5.31

I I I I I I i i
QENA 6,754 I 6,773 I +0.41 4,115 I 4,927 I +20 1

_ I I I I I I
I I I I I I i

ASWN 3,664 I 3,681 I +0.6 1,162 I 1,708 I +47 I
I I I I I I I
I I I I I I I
I I I I I I I

TOTALI 473,0451 473,6541 +0.11 473,045 I 473,6541 +0.11
I I I I I I I
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Trip attraction results exhibit variable differences (in terms of

their magnitudes and signs) which are in general relatively greater than

those of trip generation results. This indicates that the system was

constrained by its fleet capacity at various locations. The "apparently"

random discrepancies between trip attraction predictions of NET3 and NET4

are, in fact, not random at all and may be explained and fully understood

if we analyze trip distribution results. Table 7.8 compares trip distribu-

tion predictions from/to Cairo for NET3 and NET4. Focusing on the Middle

Delta region we notice that trips from Cairo to Banha and Tanta increased

while those going to Shebin El-Kom (SHKM) decreased; in fact the decrease

of trips to SHKM is almost identical with the increase to Tanta. This

indicates that because of the fleet capacity constraint, on the Cairo -

Banha - Tanta corridor, about 3,000 trips diverted to SHKM instead of

Tanta. The trips that were supposed to go to Banha (i.e., about 2,300

trips) diverted to ZGZG and ABKB (this explains the results of ZGZG and

ABKB in table 7.8). The results of Upper Egypt show a decrease to all

zones in the area, this indicates that again because of the constraints in

the Middle Delta region trips were diverted to Upper Egypt instead of going

to their preferred destinations in Lower Egypt, this explains the increase

in the results of ALEX, DMHR, MNSR, SHRB, DMIT and ISML. Referring to the

results of trips attracted to Cairo (see table 7.8), we find an increase in

trips coming from all zones in Lower Egypt (except SHKM, ZGZG and ABKB; the

reasons pertaining to these zones have been already explained). This again

indicates the tremendous effect of the constraints which existed on the

Cairo-Banha-Tanta corridor; it prevented about 8,500 trips coming from dif-

ferent zones in Lower Egypt to terminate at Cairo, they were diverted to

other zones "around" the constrained region or to Upper Egypt. This type
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Table 7.8 Trip Distribution Predictions From/To Cairo

FROM CAIRO I TO CAIRO
ZONE I I

I i I I I I
NET3 NET4 I Diff. I NET3 i NET4 Diff.

_ I I I I I I
I I I I I I

ALEX 3710 1 4063 I +354 5,484 I 6398 I +914
I I I I I I I
I I I I I

DMHR 2644 3058 I +4141 2,629 I 3,402 +773
I I I I I I I
I i I I I I I

ETYB I 1666 I 1626 I -40j 13771 I 1,759 I +388 1
I I I I I I I
I I I I I I I

KFRS 1773 I 1624 I -149 I 2,118 I 2,311 I +193
I I I I I I I
I I I I I I I

MHLK 1 2286 1 3936 I +16501 1995 I 2392 I +397
I I I I I I I

I I I II
TANT 12659 1 15,710 1 +30511 9,174 I 11,396 I +2322

I I I I I I I
I I I I I I I

SHKM 15792 I 12,686 I -3106 I 10,092 I 8,907 I -1135
SI I I I I 1

1 I I I I
BNHA 38,549 I 40,869 I +2320 I 32,080 1 33,967 1 +1887 I

I I I I I I
I I I I

CAIR - - -I -I -l -
I I I I I I I

ZGZG 10,627 I 9,857 I -7701 7,053 1 6,688 I -365
I I I I I I I
I I I I I I I

ABKB I 3,460 I 1,718 I -17421 2,418 I 2,211 I -207 1
I I I I I I I
F I I I I I I

MNSR 3,427 I 4,017 I +5901 2,834 I 4,609 I +775
I I I I I I I
SI I I I II

SHRB 1,679 I 1,708 I +291 1,762 1 2209 I +447 I_ I I I I I I I
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Table 7.8 (continued)

FROM CAIRO I TO CAIRO
ZONE I I

I I I I I
NET3 I NET4 I Diff. I NET3 I NET4 I Diff.

I I I I I I I
I I I I I I

DMIT 586 I 599 I +131 1,240 1 1,531 I +291
I I I I I I I
-i II I I I

PRTS 430 393 -371 880 985 +105
I I I I I I I

-I I I I
ISML 2,049 3079 +10301 2,740 2,759 +19

SWES 1 1,129 1049 -801 2,184 I 2,042 I +19

SI I I I
FYUM 3,740 I 2656 I -10841 5,968 I 5,850 I -118

SI I I I I
I I I I I

BSWF 4,706 377.1 I -9351 7,647 7,040 I -607

I I i I I
MNIA 1,275 I 642 I -6331 3,043 2,911 I -132

I I I I I I
I I I I I

ASYT 1,253 I 810 I -4431 3,581 I 3,261 I -320
I I I I I I I
i I I I I I I

SHAG 545 I 189 I -3561 2,102 I 1,911 I -191
I I I I I I I
I I I I I I I

QENA 622 I 614 I -81 1,161 I 1,215 I +54
SI I I I I I I
I I I I I I

ASWN 132 911 -411 417 379 -38
TOTALI I I I I +261 110
T TI I f I I I

TOTAL 114,739 114,765 I +261 110,823 I 16,133 I +5310
I I I I I I 1
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of analysis when applied to different zones, should clearly indicate the

existence of fleet capacity constraints (particularly in the Middle Delta

region) and the effect of such constraints on trip distribution behavior.

It should be obvious at this point that users' responses are quite rational

and justified (assuming of course that our inputs represent their actual

behavior as mentoned earlier).

As far as modal split behavior is concerned, results are quite con-

sistent with the above observations. Table 7.9 shows modal passsenger-kms

produced on NET3 and NET4. Modal split results show an increase of about

8% in total passenger-kms on NET4 compared to NET3. They may be explained

by the fact that the constraihts on NET3 prevented many trips from going to

their preferred destinations and, as a consequence, they diverted to other

"nearer" destinations, so to speak. As expected, the results indicate

decreases in modal shares of all modes but the express train. The increase

in passenger-kms on express train is not 100% (as would be expected if the

existing constraints were uniformly spread all over the network) because

the existing constraints were, more or less, limited in terms of location;

the increase is about 37% only. The greatest decrease in absolute terms

and percentage wise may be observed on local train (and not the taxi). At

the first glance, this is a surprising result. However, if we recall that

users on NET3 are more inclined towards longer trips compared to the actual

system (see secton 7.4), we can understand why local train is perceived (on

NET3 and NET4) to be relatively "expensive"! Recall that local trains stop

at every city and village and are expected, by definition, to be used by

low income people for "local" travel. For longer trips, the delay on local

trains becomes enormous discouraging their use. Therefore, we have to be

very cautious to draw conclusions concerning the usefulness of local train
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Table 7.9 Modal passenger-kms produced jer day (in 1979),
on NET3 and NET4

Mode NET3

Express 31,248,279

NET4

42,714,006

Local 12,020,035 1 23 6,203,618 11

Bus 5,034,687 9.6 4,570,475 8

Taxi 3,903,161 7.4 2,757,805 5

Total 52,206,162 100% 56,245,904 100%
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service on the actual Egyptian system based on this analysis. In fact, our

assumption that trips may originate or terminate at the 24-zone centroids

only (as assumed in the intercity project [1982]) is not "fair" to evaluate

local train service, because such an assumption does not reflect the real

benefit of using local trains while, on the other hand, travel cost on

local train is fully taken into account.

As far as traffic assignment is concerned, we notice that the results

on NET4 represent the "net" effect of the above mentioned factors on the

modal link flows. Hence analyzing such results would involve unnecessary

repetitions.

To conclude this section we note that the ability to predict behavioral

changes is obviously dependent upon the ability to represent behavior, in

the first place. Therefore, because our results on the ability to repre-

sent behavior were, in a sense, inconclusive, we tend to think of the

results on the ability to predict behavioral changes as being also

inconclusive. However, in view of the above analysis, there are strong

indications that the STEM model would be capable of predicting rational

behavioral responses of users to policy changes in the system.
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VIII SUMMARY AND CONCLUSIONS

Existing transport planning methodologies, which have Seen applied to

hundreds of transport studies throughout the world for the ')ast 30 years,

involve a "aey evrta peo~aa" for predicting short-run trav port

equilibria often with four stages: trip generation, trip distribution,

modal split and traffic assignment. Unfortunately, the sequential approach

(whether using aggregate or disaggregate models) has an inherent weakness;

its predictions need not be internally consistent. That is, because user

decisions concerning trip frequency, destination, mode and route choices are

inherently interrelated, the performance or demand levels that one needs to

assume as given inputs at any one stage in the process neeo )t agree with

those that one determines as outputs from the other stages.

This deficiency has precipitated attempts to predict all four stages

simultaneously. Research intended to meet this objective of the simulta-

neous prediction of equilibrium has proceeded in three directions. One of

these lines of investigation has significant computational advantages

(Beckman et al [1956], Bruynooghe et al [1968], Leblanc [1973], Nguyen

[1974], Golden [19751, Evans [1976], Florian and Nguyen [1978]1); the others

permit richer modelling of user behavior (Asmuth [1978], Smith [1979],

Aashtiani [1979], Dafermos [1980, 1981], Sheffi and Daganzo [1980].

Aashtiani and Magnanti [1981], Pang and Chan [1981], Friesz et al [1982]).

Regrettably, to date none of these studies has generated models that are

both behaviorally acceptable and computationally tractable for large-scale

applications. Review of these, and other related studies illustrates the

tradeoffs between the behavioral and computational aspects of the

equilibrium problem.

Therefore, our objective in this thesis has been to strike a balance



between the behavioral and practical considerations of the problem. That

is, to develop a unified consistent methodology for transportation planning

within which trip generation, trip distribution, modal split, traffic

assignment and the corresponding performance levels can be predicted

simultaneously for a set of behaviorally acceptable demand and performance

models, with an algorithm that is convergent and computationally efficient

for large-scale applications.

Towards the achievement of that objective, we have specified a family

of Simultaneous Transportation Equilibrium Models (STEM's). In any STEM

model, trip generation is given by a general linear model which can depend

upon the system's performance through an accessibility measure that is

based on the random utility theory of users' behavior. Trip distribution

is given by the well known logit model. Alternative assumptions on modal

split and traffic assignment can be considered within our framework. Modal

split can be user optimized, system optimized or a logit model. Traffic

assignment can be user or system optimized.

In order to prove existence and uniqueness of equilibrium on any STEM

model, and more importantly, to develop a convergent and efficient

algorithm for predicting that equilibrium, we have formulated a family of

optimization problems. Considering one of these optimization problems, we

have proven that it has a solution (i.e., theorem 3.1) and under mild

assumptions on demand and performance models it is a convex program that is

equivalent to a given STEM model (i.e., theorem 3.2). Based on these

results we have proved existence and uniqueness of equilibrium on that STEM

model (i.e., theorem 3.3). The results can easily be extended to other

STEM's in the family. In any of these Equivalent Convex programs (ECP's),

we are minimizing a convex objective function subject to a set of linear
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constraints. The constraints in any ECP problem represent the flow conser-

vation equations on any given transportation network in addition to the

non-negativity constraints. The objective function is composed of three

sets of terms; two of them may be familiar to the reader while the third

set, J(S), is new. In fact, any ECP problem can be distinguished from

other formulations if we recognize the definition of the accessibility

measure S. and its introduction as a decision variable in the problem, and
1

the specificaion of the set of terms J(S) in its objective function.

In our methodology we predict equilibrium on any STEM model by

solving the corresponding ECP problem. In this respect, we have developed

a convergent and computationally "efficient" algorithm (SPND) for the

simultaneous prediction of equilibrium on our STEM models. The SPND

algorithm belongs essentially to the class of feasible direction methods

for solving nonlinear optimization problems. At any given iteration in the

process, the algorithm performs two basic steps; in the first step it

determines a direction for improvement and in the second, it performs a

one-dimensional search for a better solution in that direction. The direc-

tion finding in the first step is performed according to the Frank-Wolf

[1956] procedure of solving quadratic optimization problems (i.e., we solve

a linearized ECP problem). The efficient solution of this linearized ECP

problem is indeed the most distinguishable feature of the SPND algorithm.

Essentially the direction for improvement is found by assigning total

demand from a given origin on the shortest path going to the most "needy"

destination, and that is precisely why we call it the SPND algorithm. The

second step is performed using the bisection method (i.e., a standard

procedure). The procedure has been programmed on a computer and tested on

a small hypothetical example for validation. This completes the develop-
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ment of the methodology.

In order to assess the applicability of the STEM methodology we have

actually applied it to a real large-scale system, namely the Egyptian

intercity transport multimodal network. The main features of the Egyptian

transport system have been described with more emphasis placed on issues

related to passenger transport. Specifically, we have described the

existing issues and policies related to the infrastructure, transport move-

ments, transport fleet, tariffs and costs, and management.

To address the major computational and behavioral issues of the analy-

sis, we have designed a case study on the Egyptian intercity system.

Modelling the system (or designing the case study) involved four major

tasks. In the first task (i.e., passenger types-choice sets mapping), we

have categorized passengers into three income groups: high, middle and

low, and existing transport services into eleven types: auto, taxi, inter-

city bus (lux and normal), diesel units (I-AC and II-AC classes), express

trains (I-AC, II-AC, II and III classes) and local trains (III-class).

Then, we defined a "mapping" between these passenger types and available

transport services. In the second task, (i.e., multimodal composed

networks), we have modelled mode and route choice behavior of users on the

system. We have assumed that modal split and traffic assignment are both

given in accordance with the user optimization travel behavior. The tech-

nical representation of this behavioral assumption required creating a copy

of the network for each service type and connecting these copies through

loading and unloading links; that is, we have constructed a set of multimo-

dal composed networks. In the third task, we have modelled the system's

performance as perceived by users by specifying a set of link user per-

ceived cost functions consistent with our postulated assumption that these
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are monotonically increasing functions of link flows. The user cost com-

ponents taken into consideration are those of travel time, tariff, delay at

intermadiate nodes, loading and unloading. Fleet capacity constraints--

considered to be a major problem on the Egyptian intercity system--have

been approximated by an additional term in the link user cost functions.

In the fourth task, we modelled trip generation and trip distribution beha-

vior in the system. We have identified the data required for calibration

of demand models, commented on data availability and calibration results,

and invoked the necessary assumptions to, hopefully, produce reasonable

representation of actual user behavior in the system.

In the analysis we focused on one passenger type, the low income

group since they represent the majority of users in the system. We have

also defined a set of issues to be addressed. From the computational point

of view, we have focused on two major issues: convergence criterion and

efficiency. From the behavioral point of view, we have concentrated on

assessing the ability of the STEM methodology to represent actual behaviour

and its ability to predict behavioral responses to changes in the system.

In order to address these issues we have analyzed four problems: NET1

(includes express and local trains only), NET2 (includes express, local and

normal bus), NET3 (includes express, local, normal bus and taxi), and NET4

(the same as NET3 except that the fleet capacity of express train is

doubled). Before presenting our conclusions pertaining to each of these

issues, we would like to indicate that the existence of fleet capacity

constraints as a major problem in the system, necessitated two

modifications in the procedure (one in the initial solution and the other

in the one-dimensional search) to assure "feasibility".

Below is a brief definition of each of these four issues, description

of the analysis involved and summary of conclusions.
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(1) Convergence Criterion:

The issue here is to find the "best" convergence criterion to

be used as a stopping rule for the iterative prediction process.

We have investigated eleven criteria; of them seven are based on

measuring the difference between the last two iterations, two is

based on comparison between trip distribution predictions and

logit calculations, one is simply the step size of the one-

dimensional search and one is based on an internal calculation in

the direction finding step of the procedure. We found that there

is a strong positive correlation between the first seven criteria

and the step size. The step size was found to be, more or less,

"random". Therfore, it was concluded that, in general, the cri-

teria based on the difference between the last two iterations are

not appropriate since they exhibit a random pattern of behavior

which would cause the procedure to stop prematurely. The logit

criterion was found to be fluctuating around some "moving" average

which appears to be slowly decreasing; it was concluded that

although this criterion is better than the previous eight, it is

still not desirable because of these fluctuations. The last cri-

terion was found to monotonically approach its optimum value as

long as there is a feasible solution to the problems. The basis of

the measure may be interpreted as the marginal cost of assigning

one additional trip from a given origin on the shortest path to the

"needy" destination. At equilibrium this cost should be zero as

long as trip generation is strictly within its bounds as would be

expected whenever the system is unconstrained. Therefore we refer

to this measure as the "equilibrium criterion". We have concluded
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that this criterion is indeed tne best since it is onotonially

approaching an optimum value that is kno-, apriori.

(2) Computational Efficiency:

The question addressed here w(s: how muc' computer time is required

to arrive at an equilibrium that is "sufficiently" close to the

exact solution? While computational efficiency may be influenced

by many factors, in our analysis we have considered the effect of

what appears to be the most two important factors; these are net-

work size and fleet capacity constraints. As far as the network

size is concerned, we have considered three networks all having 24

origins and 552 O-D pairs. The smallest network had 90 nodes and

244 links, and the largest had 152 nodes and 534 links. Fleet

capacity constraints were accounted for in the initialization pro-

cess and by modifying the one dimensional search at each iteration.

We found that the average CPU time per iteration varies between 2

seconds on the smallest network and 3.5 on the largest one. As

expected, fleet capacity constraint was found to reduce the step

size in the one-dimensional search, and hence to increase the

number of iterations required to arrive at a given level of

accuracy. The initial solution was found to consume more CPU time

when fleet capacity constraints were "moderate" compared to either

severe constraints or relatively unconstrained situations. As far

as the general performance of the algorithm is concerned, we found

that, again as expected, the rate of convergence decreases as the

solution approached equilibrium; that is, the algorithm exhibits

the tailing-off phenomenon of the Frank-Wolf approach. The gain in
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the first 100 iterations was found to be about 5 times the gain in

the later 100 iterations. Assuming that a "sufficiently" good

solution may be obtained after 100 iterations, the total CPU time

required would be 3.6 to 6.3 minutes. Based on these results and

the fact that there is no clear cut definition of computational

efficiency we have concluded that our approach appears to be reaso-

nably efficient for large-scale applications. In fact, if we are

talking about making decisions to invest millions of dollars, even

if the analysis required hours of computer time the cost would

still be acceptable. We have also noted that in our case the step

size was constrained and the cost functions were very steep. In

general, however, the step size is not constrained and the cost

functions are expected to be mild and hence, the algorithm is

expected to perform relatively better.

(3) Ability to represent actual behavior:

The objective here was to assess the ability of the STEM model to

represent actual behavior on transport systems in gerneral, and on

the Egyptian intercity system in particular. We have addressed

this issue by comparing predicted and "observed" behavior. We have

found that major differences exist between predicted and "observed"

data and that the main reasons are the misspecification of the trip

distribution model and the approximation of modelling fleet capa-

city constraints. We have suggested an alternative, more disaggre-

gate, specification for the logit distribution model and have

demonstrated its capability to produce better predictions. We have

noted, however, that our demand models still have a lot of poten-
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tialities which could not be demonstrated because of the lack of

theory and supportive socio-economic data, particularly on the

Egyptian intercity system. The approximate approach cf modelling

fleet capacity constraints resulted in very steep cost functions

with fictitious costs that had a significant influence on travel

behavior, particularly on that of trip distribution. We have noted

that the existence of fleet capacity constraints may be considered

as a special feature of the Egyptian intercity system and that the

state-of-the-art has yet to provide us with a satisfactory solution

to the problem. We have concluded that the existence of such

constraints on the Egyptian system did not allow us t. demonstrate

one of the expected major potentialities of our STEM methodology,

that is the ability to represent the usual congestion effects.

(4) Ability to predict behavioral changes:

The objective in this issue was to assess the ability of the STEM

methodology to predict behavioral responses of users to policy

changes in the system. We have noted that this issue is obviously

dependent upon the previous one and therefore, because our results

on the ability to represent behavior were, in a sense, inconclusive

we tend to think of the results on the ability to predict beha-

vioral changes as being also inconclusive. We have concluded,

however, that in view of our analysis there are clear indications

that the STEM model would be capable of predicting rational beha-

vioral responses of users to policy changes in the system provided

that it can represent existing behavior in an acceptable fashion.
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At the conclusion, we may summarize the main contributions of this

thesis in the following points:

[1] We have included a general trip generation model, which can depend

upon the system's performance through an accessibility variable based

on the random utility theory of users' behavior, and a logit trip

distribution model, in an equilibrium (STEM) framework. In other

words, we have specified a family of STEM models which include the

above behaviorally acceptable features in an internally consistent

manner.

[2] We have formulated a family of optimization problems which have

desirable qualitative characteristics (i.e., a given optimization

problem in the family has a solution that is unique and that can be

obtained by minimizing a convex function subject to a set of linear

constraints), and at the same time equivalent to the above behaviorally

acceptable and internally consistent STEM models.

[3] We have developed a convergent algorithm for the simultaneous

.prediction of equilibrium on any of the STEM models. The algorithm is

"reasonably" efficient for large-scale applications.

[4] The contributions in [1], [2], and [3] all together implies the devel-

opment of a unified consistent methodology for transportation plan-

ning, within which, trip generation, trip distribution, modal split,

traffic assignment and the corresponding performance levels for

realistic systems can be predicted simultaneously and efficiently

with a convergent algorithm.

[5] We have actually applied the STEM methodology to a real large-scale

system, namely the intercity multimodal transport system of EGYPT.
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We have assessed the applicability of the approach computationally and

behaviorally.

[61 We have suggested a new convergence criterion for our STEM model,

which out performs traditional criteria used in other equilibrium

models.

As far as future research is concerned, there are several directions

for investigations of topics generated by the developments in this thesis.

One natural direction is to apply the STEM methodology to other large-

scale systems elsewhere. Notice that the Egyptian intercity system exhi-

bits some special features, such as the non-existence of the usual

congestion of urban travel, the existence of fleet capacity constraints,

and the very fact that it is an intercity system instead of urban system.

Therefore, applying the methodology to other, particularly urban, systems

may prove to be very fruitful.

Another direction of research would be to further improve the com-

putational efficiency of the approach. Notice that our algorithm utilizes

only first order information. It would be interesting to investigate ways

of incorporating second order information into the algorithmic procedure.

A third direction would be to investigate the practical implications

of including more general nonseparable cost functions into the approach.

In fact, as indicated earlier, an extended version of the STEM methodology

which includes this general feature is currently being applied to the same

Egyptian system.

A fourth direction would be to focus on the development of a well

defined theory of trip generation and trip distribution behavior in inter-

city as well as urban contexts.
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A fifth direction is to view the STEM model as a component of the more

general equilibrium problem of economic spatially separated markets. Hence,

we would proceed to develop a more general equilibrium model.

A sixth direction would be to extend the basic notion of the STEM

methodology to predict equilibrium simultaneously on other non-transport

large-sclae systems.

As a final comment, this thesis is not by any means the end of the road

in the field of transport equilibrium modelling. To the contrary, it may be

more properly viewed as a starting point on the road to the "wilderness" of

application of general transport equilibrium models after years of living

in the "luxury" of pure academic research.
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C
C A PROGRAM FOR THE SIMULTANECUS PREDICTION CF ECUILIBRIUM
C ON TRANSPCRTATICN NETWORKS.
C
C DEVELOPED BY K. NABIL ALI SAFUAT• JUNE 1982.
C

REAL X(2048)1 Y(2048) COST(e48),SIC(512),T(2048) 1(204 8) 00000020

1 COEF(5,2048),LASTF,NAME(512),NMI ,N2, NN/ 'N/,CLDX(2048),
2 EPS,EFS1,AXVCL(2048),ARGI(26),C(5),1,11,A/'A*/,YES/YES'/ 01000040

REAL TG(512),TGP(512),S(512),SP(512 ),D(2048) ,DP(2048),BS,
1 TA(512) ,i(5 (51,H(512),AT(512),ALPHATHETAMINZ,HAXS(512),
2 PCZ,FCTG(512),FClD(2048) ,CX(2048) ,CFll4 ,CPU12,CFU23,CFU34,
3 OLDTG(512),CLTC(2048),01EZ,CFUC1,SPCI(2048) ,IAI(512),
4 PIDL (2J48),TDL(204 ) ,TTI
REAL TI C,TX,TCSQ,TDSQ,XSQ,TGRMS,GMSS, SXBMS
INTLGEE*4 CODL,IIANDLE,CPU1,CPU2,CPU3,CFU4,CPUC,CPU5 (
INTEGE*2 NAPC3,NRIG,NDSI,0P,CEPPj,
INTEGEE*2 NARC,NEWSR,NT,ORIG(2048),N,rEST(2048),BACK,ISPC(512), 00000050
I FFRO(2048),TC(2348),I,J,FWC(512),N fXT(2048),IIER,MITER,IACT,TI,P,00000060
2 P1,ONE/I/,NARC1,NAC2o,,K,6T1, ID,SIIP(2048),ITERIBFISN/0/, 00000070
3 ITMAX,NT2,NCPIGI
INTrGEk FILE 00000090

LOGICAI*1 FLAC,FL1/.FALSE./ 00000100

DATA ORIG,DEST/4'96*1G000/,T/2048'0.0/ 00000110

DATA ARGI/'ASSI ',SAVE' , 'EXIT 'ADDA ,'ADDO''CELA','DELO,'UPEA 0 0000120
1 'UPDC',rEISP', REH.,'IHELF', CTO, ADDP ,'GENE'* 'ATTR' ,
2 'CONT', "ARCS 'OD-P, 'PAThI', ORGN',*DeTN','AON, 'CB,' USER',

S 3 SYST'/ C
0 HANDLE=l

CALL LIBSINII_TINER(IANDLE)
C CALL EbRSET(215,0,200,1) 00000150

NAME(1)=YES 00000160

WRITE (6,13) 3000170

13 FCFMAT(''1,78('*')/' * A PRCGRAM FOR PEDICTING TRIP GENERATION'* 18
10,TRIP DISTRIRUTICN,*,T79,'*'/
2' * HOCAL SPLIT AND ThIP ASSIGNMENT SIMULTANIOUSLY'T79•'**/
.3° **,179,'**'/ * BY K. NAblL ALI AFWAT,IN MAY 1981',T79,'*'/
40 *',Tl9,'*6/
5' * THE PROGRAM IS AN EXTENSICN OF A TPAFFIC ASSIGNMENT CODE',
6 T79,'*/' * DEVLCPID EAhIlE BY SHLCMIT AND 2VI TAREM, IN '
7JANUAE 1980.',179,'*'/' ',78('*'))
WRITE (6,5)

490 CALL INPUI(NARC,T,N*,CRBIG,ESI,L,EAXVCI,FRCM,TC,FWD.NEXT,N,EPS,
1 EP1 ,COEF,NARC2,X, L1,NAME,ISN,IMnAX,E,ATR,A.FHATHETA)

130 WRITE (6,49) 00000290

49 FCRMAT(' ENTEF NEXT ACTION:°) 00000300
CALL ACTION(IACT,AfGI1,1,16,ISN)

530 GC TO (170,14i,12C,210,220,23 ,24 ',250,260,270,490,519,40,110',
1 120,1300),IAC[

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 39000330
C HEL C 00000340

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00000350
510 WRITE (6,5) 03000360

5 FORMAT(/' A LEGAL ACTION I'-- ONE OF THE FOLLCWING: '/. *ASSIGN#*', 3)03 70

1 6, 66SAVi', "EXIT", 'ADDARCS'', 'ADDODPAIRS', ''DELARC'° , 00000380
2 ', L*ELCDPAIH,'/O ''UILARC', "'UP"DFAIP"'', DISPLAY*,, '' 00D005
3 ' **CIOLFhANCE*, "iFkIEA* , *'IIFIrF'',*' ''ADDPARA4rIETEPS'.
4 ' GiN ATI3N ' ' AIHACTION''.')
GO TO 136 00000410

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00000420



CC
210
28

441
440

ADDING AN ARC TO THF NETWORK
CCCCCCCC (CCCCCCCCCCCC CC cCCCCCC CC
WRTTE(6128)
FCRMAT( ENTER ARC DATA:')
NARCI=NARC+1
CALL GETAPC(FIT1,L,C1,M1,NAC1I,NAME,NMI,NM2N,Fl1)
IF (FLI) CO TO 130
CALL SEARCH(P,P1,F1,T1,FWD,NEXT,TO)
IF (P.E.O) GC TC 420
IF (FI.NE.0) CO TC 253
N=N+1
F1=N
NAME(N)=NM1

253 IF (TI.NE.0) GO TC 254
N=h+l
TI=N
NAME(N)=NH2

254 NARC=NARCI
NARC2=NARC2+1
DO 252 KK=1,5

252 CCEF(KK,NARC)=C1(KK)
FROM(NRC)=FI
TO(NARC)=T1
L(NRC)=L1
MAXVOL(NARC)=Ml
NEXT(NARC)=O0
IF (P.NE.0O) GO TC 430
FWD(F1)=NARC
GO TO 441

430 NEXT(Pl)=NARC
GO TO 441

420 WRITE (6,29)
29 FORMAT(' THIS ARC AIREADY EXISTS. REENTERs')

GO TC 44n
CCCC CCCCCCCC CCCCCCCCC CCCCCCCCC C C C

ADDING AN O-D PAIR IC THE NEIWCRK
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
220 WRITE (6,37)
37 FChMAT(' ENTER C-D FAIR DATAA*)

461 NTI=NT41
460 CALL CETOb(Nll,C,C,12,NAME,N,FLI)

IF (FL) GO TO 130
CALL SRCIICD(C,D,OHIG,rEST,K,MID, NT)
Ii (K.NE.0) GO TO 450
IF (O.EQ.0.OR.r.I.C) GO TC 451
CALL INSCE(C,C,T2,CRIG,DEST,T,NT,MID)
N=NTi
GO TO 461

450 WRITE (6,38)
38 FCRHAT(' THIS PAIR ALREADY FXISTS. REENTER:')

GO TO 460
451 WRITE (6,62)
62 FCFMAT( ° JOINT NAME INCORRECT. REENTER:')

GO TO 460)
CCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DELETING AN ARC FROM THE NETWORK
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
230 WRITE (6,36)

36 FOI'AT(' ENTER FfOM AND TO uF ARC TO BY DELETF '/' XXXX XXXX'
READ (1,45) lL,NM1,NM2
IF (LN~..NN) GO TC 600

t. 000430
C 0 300440

00000450
10003463
30000470
000004P0
3300 490
3000;500
30000510
3000520
00000530
00000540
00000550
00000560
00000570
00000580
00000590
00000603
00000610
00000620
03003630
00000640
03000650
00000660
00000670
00000680
000U690
00000700
00000710
00000720
33003730
00000740
00000750
00000760
00000770
00000780
30003790
00000800
00000810
00000820
00000.30
00000840
30000950
0000060
00000870
0000880
00)0090
D3000.00

00000910
0 00' 20
03000930
13000940
00000950
)0001)060
00o0097P
39003980
00003990
30001000
0001 10
00001020
S00001 030

(

C~

)



WRI A6,43)

43 FORMAT(' ENTER ARC NUMBERt'/' XXXX')
READ (1,63) I

63 FORMAT(X,1I4)
IF (I.GT.NARC) GC TO 570
F1=FROP(I)
Tl=TO(I)
GC TC 610

600 CALL CCNV(NMINM2,Fo1,11NAME,N)
IF (F1.EQ.0.CR.T1.EQ.0) GO TO 570

610 CALL SEARCH(F,P1,FI,TI,FW.DNEXTTC)
IF (.EQ.0) GO TC 570
IF (P1.EQ.0) FWC(FRCM(P))=c
IF (P1.NE.0) NEXT(PI)=NEXT(P)
FROM(P)=0
NARC2=NARC2-1
GO TO 130

570 WRITi (6,27)
GO TO 230

CCCC CC CCC C CCCCCCCCCCCCCCCCC C

C DELETING AN O-D PAIR FROP THE NETWORK
C.C C C C C C C C C C C C C C C C C C C C C C C C C C C C C

240 WRITE (6,42)
42 FORMAT(' ENTER ORIG AND DEST CF PAIR TC BE DELETECL'/

1 ' XXXX XXXX')
READ (1,45) RL,NMN,NM2
IF (RL.NE.NN) GO TC 620
WRITE (6,64)

3 64 FORMAT(' ENTER OE PAIR NUMEER:'/' XXXX')
READ (1,63) K
IF (K.GT.NT) GCC TC 500
GO TO 630

620 CALL CCNV(NMNNH2,C,DNAMEN)
IF (O.EQ.0.O.ORD.1Q.) GO TC 5C00
CALL SRCHOD(O,C,CRIG,DEST,K,HID,NT)
IF (K. 0.0) GO TC 500

630 NT=NT-1
,CALL DELCC(ORIC,DEST,INT, )
GO TO 130

500 WRITE (6,41).
GO TO 240

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C UPCATING AN O-D PAIR
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

260 WRITE (6,39)
39 FORPAT(' ENTER FAIh TC BE CPANGEFr:)

480 CALL GETOD(ONF,0,D2,NIIAE,N,FLI)
IF (O.EQ.0.DR.D.EC.0) CO TC 471
CALL SPCHCD(C,D,OBIG,DEST,K,MID,NT)
IF (K.EQ.C) GO TO 470
'I(K)=12
GO TO 130

470 WRITE (6,41)
41 FORMAT(' THIS PAIR DCES NOT EXIST. REENTER:*)

GO TO 480
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C UPP ING AN APC
CCC CCCCCC CCC CC ( C C CCCC C CCCCCCCC
.250 WRITE (6,28)
410 CALL GFTAC(FI,T1,L1,C1,Mi,ONk,NAME,NMI,N M2,N,F 1)

IF (F1.EO.0.CH.Tl.EC.) CO TO 400

CCCC CC
C

CCCCCC

CCCC C

CCCCC

CCCC C

CCCCC

30001040
00001050
00001060
C 0000170
00001080
00001090
00001100
30001110
03001120
00001130
03001140
00001150
00001160
30001170
00001180
00001190
00001200
00001210
00001220
00031230
003001240
30001250
i0001260

0000127.0

30001280
00001290
00001300
00001310
00001320
00001330
00001340
00001350
13001360
00001370
00001380
10001390
00001400
00001410
O3001420
30001430
00001440
00001450
00001460
00001470
00001480
00001490
000001500
00001510
33001520
10001530
30001540
"00001550
1 10015 60
1' 001 709
10001580

.10001590
So00U01600

10001(.10
00001620
I 000 1(30



CALL SE'I ...,H(PP l,Fl1,TI FWD,NEXTTO) 00001640

IF (P.EQ.0) GO TC 400 30001650
MAXVOL(P)=MlI 1P001660
DC 251 KK=1,5 00001670

251 CCEF(KK,P)=C1(KK) 0P001680
GO TO 130 0001690

400 WRITE (6o27) 30001700
27 FORMAT(' THIS ARC DOES NOT EXIST. RLLNTER:') 30001710

GO TO 410 00001720
C C C C C C ( C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00001730
C LISPLAYING DESIRED DATA C 30001743

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00001750
270 WRITE (6,21) 00001760

21 FOHMAT(' ENTER DESIFED QUANTITY (ARCS, GD-FAIRS s PATH , ORGNS',
1 ' OR ESTNS:') 00001770
CALL ACTION(IACT,ARG1,18?,2,ISN) 00001780

GO TO (280,290,580,1400,15C0),IACT C
280 WRITE (6,44) 00001800

44 FCRMAT(' ENTER FROM AND TO CF ARC OR ENTER "A" (FCR O'ALL0)', 00001810
1 ' IN COLUMN 1:/ XXXX XXXX') 00001820 r

283 READ (1,45) L,NMI,NM2 00001830
45 FCRMAT(A1,A4,IX,A4) 00001d40

IF (RL.FO.A) GO TO 281 300001d50
CALL CCNV(NM1,NM2 ,F ,1,NAME,N) 00001860
IF (F1.EQ.0.CR.T1.EQ.0) GO TO 282 00001870
CALL SIARCH(F,P1,F1,TI,FWD,NEXT,TC) 00001880
IF (F~iQ.0) GC TC 282 00001890
WRITE (6,24) 09001900

, C CC C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00001910
IDISPLAYING ARC DATA C 00001920

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 90001930
24 FCRMAT(' NO. FROM TO LEN MAXVOL C(1) C(2) *, 00001940

1 ' C(3) C(4) C(5)0/'+___ ---------- ',------ 00001950
2 ____ ) 00001960
WRITE (6,34) P,NAME(FRCN(P)),NAME(TO(f)),I(P),MAXVOI (P), 00001970

1 (COEF(J,P),J=1,5) i001980
34 FCRMAT(IX,14,2(1X,A4) ,1X,F6.2,1X,F9.2,5(1X,F9.5)) 00001990

GO TO 130 00002000
282 WRITi (6,27) 00002010

GO TO 283 3000?020
281 IF (NARC.EO.0) GC TC 130 00002030

WRITE (6,24) 0002040
DC 310 I=I,NAPC P0002050
IF (FRCM(I).EO.P) CC TO 31f 10002060
WRITE (6o34) I,NAME(FROM(I)),NAME(TO(I)),L(I),MAXVOL(I), 01002070

1 (COEF(J,I),J=1,5) 30002980
310 CONTINUE 10002090

GO TO 130 33002100
290 WRITE (6,47) 10002110
47 FORMAI(' ENTER ORIG AND DEST CF FAIR CH ENTER 'A" (FOR "AIL'-00002120

1 ') IN COLUMN Is*/* YXXX XXXX') 33002130
293 READ (1,45) RL,NMI,NN2 10002140

IF (RL.EQ.A) GO TC 291 30002150
CALL CCNV(Nl ,NN2,C,D,NAME,N) 00002160
IF (O.kQ.0.OH.D.OQ.P) GO TC 292 * 00C02170
CALL SBCHCD(C,D,CEIG,DLST,K,MID, NT) 300021Ht
IF (K.eQ.0) GO TO 292 00002190

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00002200
C DISPLAYING OD PAIHS CATA. C 00002210
C c C C C C C C C C C C C C C C C C C C C C 0002220

WHT'I'F (A.2b) f00002230



25 FCEMAT NO. OIC CEST DEVANr*/+__ *) 00002240
WRITE (6,35) KNAME(ORIG(K)),NAME(DEST(K)),T(K) 00002250

35 FORMAT(IX,14 ,2(1X,A4 ),XF.2) 00002260
GO TO 130 00002270

292 WRITE (6,41) 00002280
GC TO 293 :0002290

291 IF (NT.EQ.O) GC TC 130 0002300
WRITE (6,25) 0C002310
DO 320 I=1,NI 00002320
IF (ORIG(I)EQO.0) GCC TO 320 00002330
WPITE (6,35) I,NAME(CRIG(1)) NAME(DES(I)),T(I) 00002340

320 CONTINUE 00002350
GO TO 130 00002360

580 WRITE (6,56) 00002370
56 FCPMAT(o ENTER OFIG AND DEST:*'/ XXXX XXXX') 00002380

581 RED (1,45) i,NHiNF2 00002390
CALL CCNV(NH1,NN2,0,D,NAME,N) 0002400

IF (O.EO.O.OR.D.EQ.0) GO TC 582. 00002410
CALL SIUPATII(CCSTC,ISPC,SPC,TC,FWL,NEXI,N) 00002420

J=NARC 0C002430
SlIP(NAEC)=D 0C002440
I=ISPC(D) 00002450

550 IF (I.EQ.0) GO TC 540 00002460

J=J-1 00002470
SHP(J)=FRCM(I) 00002480

I=ISPC(FRON(I)) 00002490
GO TO .50 00002500

C C C C C C C C C C CC C C C C C C C C C C CC C C C C C C C C C C C C 00002510
C DISPLAYING A SUBSIDERY SHCRTEST PATH. C 00002520

C CC C C C C C C CCC C C C C C C C C C C C C C C C C C C C C C C C C C C 00002t30
540 WRITE (6,57) NAMNAM),NAME(C),SPC(r),(NAME(SHP(I)),I=J,NARC) 0002540

57 FORMAT( ° THE ROUT FRON eA4, TO ',A4, ° CCSTS*,F8.3,, AND IS:$/ 00002550
1 19(15(1X,A4)/)) 00002560
GO TO 130 30002570

582 WRITE (6,61) 03002580

61 FCHMAT(* WRONG JUNCTICN NAME. REENTEB:') 00002590
GO TO 581

1400 WSITE(6,970)
NOIG=1
ODPR=1

1403 IF(ODPR.GT.NT) GO TC 1408
R=ORIG(ODPR)
WRITE(6,1402) NORIG,NAME(R),E(R)

1402 FCPMAT(X ,I4,4X,A4,4X ,F10.3)
DC 1406 I=ODFB,NT
IF(ORIC(I).NE.R) GO TC 1407

1406 CONTINLE
1407 ODPR=I

NOPIG=NORIG41
GO TC 1403

1408 GC TO 130
1500 WRITE(6,980)

EDEST=1
ODFE=1

1533 R=I'ST(ODFR)
WH1TE(,1501) NDFST,NAME(P),A (R)

1501 FOPMATT(IX,14,X,A4,4X,F 0.!)
1502 ODPh=OPPR+1

OD = OD I °I

IF(ODPF.C IN) CC TC 130
DC I ,'' T=I,CD)



IF(DEST_ ,i.EQ.DEET(CDPh)) GO TO 1502
1505 CONTINUE

NDEST=NDEST+1
GC TC 1503

1100 VRITE(6,llO1)
1101 FORMAI(// ENTER PARAMETERS:'/

1 I ---------------- '// ALPHA
----------- /

3 ' XXXXX.)XXX XXX.XXXXXX')
READ(1,1110) ALFFA,THETA

1110 FORMAT (1X,Fl C.4 ,4X,F1.6)
WRITE(E,1120) ALPHA,THETA

1120 FCPHAT(' ALPHA=',2X,F10.4,' AND IHETA=',2X,F10.6)
GC TO 130

1200 CALL GENERATION(NCRIGNT,CFIG,DEST,NAMEE)
GO TO 13C

1300 CALL AITRACTION(NDESTNTOIIG,DESI,NAME,AT)
GO TO 130

CCCCC CCCCCCCCCCCCCCCCCCCCCCCCCC
PERFORMING THE ANALYETS

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
170 FLI=.FALSE.

WRITE (6,58)
58 FCRMAT(' ENTER DESIRED OPTIMIZATICN MCLE (''USER'" OR S'

1 *):*)
CALL ACTION(IACTARG1,25,26,ISN)
IF (IACT.EQ.2) FL1=.TRUE.
WRITE (6,65)

65 FORMAT(' ENTER CUTPUT FILE NUMBER (DEFAUILT IS 6)*'/' XX')
READ (1,66) FILE

66 FOEMAT(31)
IF (FIIE.EQ.O) FILL=6
WRITE(FILE,930)

930 FCBMAT(' PRCBIFM DEFINITICN:6/' ===================///)
WRITZ(0ILE,932)

932 FORMAT( ' LINK DATA:',
1 * CCST=C1*LENGTH+(C2*(FLOW/CAPACITY)**C3)+C4*.,
2 'LENGH+CS'///
3 * LINK FROM TO LENGTH C1l C2 C3
4 ' C5 - CAPACITY'/

C C C C 00002610
C 00002620

C C C C 00002630
00002640
00002650

YSTFM9',00002660
00002670
00002680
90002690
00002740
00002750
00002760
3000?770
00002780

C4a,,

5 0 -------- ------------------------ -------------------- ,

6 '---- -------- --------- ')
DO 945 I=1,NARC
IF(FRO?(I).EC.0) GC TC 945
WRITe(fILEF,940) ],NIME(FRC(I)),NAME(TC(I)),L(I),

1 (COEF(J,I),J=1,5 ),MAXVOL(I)
940 FORMAT(1X,I4,2(1X,A4),1X,FT.2,5(1Y,F9.5),IX,F9.2)
945 CONTINUE

GO TO OG0E
WRITE(FILE,95)

950 FOhMAI(//' CFIGIN-DESTINATION PAISS:*/
1 ' ----------------------

ODPR=1
951 IF(ODF .GT.NT) GO TO 957

R=ORIG(ODFR)
DO 955 I=ODPR,NT
IF(ORIC(I).NE.R) 00 TO 956
WBITE(fILE,952) I,NAME(H),NAME(DEST(I))

952 FCEMAT(X,I4,2(4X,A4))
955 CONTINUE
956 Ol IU= I

THETA'/
* ----- ----



GO TO 951
957 WRITE(FILE,96P) ALPHA,THETA
960 FORMAT(// ALPHA= F10.3,4X,'AND THFTA =  ',F7.5)
8000 DC 40 ]=1,NABC

IF(FRO(I).GC.0) GO TO 40

Y(I)=0. 00002810

X(1)=0.C
OLCX(I)=o0.
COST(I )=C(I, X1,CEF, iHAXY1) 00002830

40 CONTINUE
NiWSR=

700 IF(NEEWR.GT.N7) GO T O86
R=CBIG(NEWSB)
TA(h)=%.
TG(R)=E(R)
S(M)=0.
OLLTG()=TG(B)
CALL SFPATH(COST,R,ISFC,SPC,TC,FWrNgX,N)
CO 710 J=NEWSR,NT
IF(ORIC(J).NE.R) GO TO 720
TA(R)= A(P)+EXF(-THETA*SPC(DEST(J))+ATP(DEST(J)))
TD(J)=IG(B)*EXP(-THE[A*SPC(DEST(J))+ATR(DESI(J)))

710 CONTINUE
720 NEWSR=J

GO TO 700
986 NiWSR=1
988 IF(NEWER.GT.NT) CC 10 974

R=ORIG(NEWSR)
NAXS(R)=ALOG(TA(E))
M(R)=AIPHA*MAXS(B)+E(B)
DO 987 I=NEWSR,NT
IF(ORIG(I).h .) GO TO 989
TD(I)=D(I)/TA(R)
OLLTD(I)=TD(1)

987 CONTINUE
989 NEWSR=I

GO TO 988
974 WRITE(FIIE,91C)
970 FORMAT(ITRIP GENERATION DATA'/

1 ------------------------'//
2 * NO. ORIGIN MIN. GENERATION MAX. GENERATION',
3 ' MAX. ACCESSIPILITY'/
4 *---- ------ --------------- --------------- '

5 ------------------ ')
NORTG=I
ODPR=1

972 IF(ODPF.GT.NI) GC TC 977
R=CRIG(ODPR)
WRITE(OILE,973) NCRIGNAME(B),E(R),M(R),MAXS(R)

973 FORMAT(IX,l4,4X,A4,4X,F10.3,6X,F1 0.3,AX,F1.5)
DO 975 I=CDFR,NI
IF(ORIG(I).NE.R) GO lu 976

975 CONTINUE
976 OLPR=I

NOfIG=INOHIG+1
GC TO 972

977 WIjTE(iILE,98n)
980 FChIAT('1781i ARITFACTICN DPTA'/

1 * -------------------- //I
2 * No. DESTINAUION ATTRACTI'cNs/
3 ' ---- ------- ------ 5)



NDESTa=
CDPR=1

981 B=DEST(ODER)
WRTTE(FILE,982) NDESTNAME(R),ATR(R)

982 FORMAT(1X,I4,4X,A4,6X,F10.5)
983 ODIR=OrPR+1

ODP=ODIR-1
IF (ODER.GT.NT) CO TO 730
LO 985 I=1,ODP
IF(DLST(I).EQ.DE!T(CDPB)) GO TO 983

985 CCNTINUE
NDEST=NDFST+1
GO TO 981

730 NORIG=NORIG-1
WRITi(FILE,6000) NNARC2,NT,NCRIG ,NDEST

6000 FORMAT(///o THE NETWCRK HAS:,1X,I6,2X,'NCDES'I
1 * 'I1XI6s2XoLINKS'/
2 * ',1XI6,2X,*O-r PAIRS'/
3 *' ,1X,I6,2X,ORIGINS'/
4 * ,1X, I6,2X, 'DESTINATIONS')
WRITE(FILE,3000)

3000 FCRMAT('1INIIIAL SCIUTION:'/- ---------------- //
1 ' TRIT GENERATION= MHI.IMUM TRIP GENERATION'/
2 * ACCESSIBILITY = ZEO'/# TRIP LISTRIP.UTION IS GIVEN BY ',
3 'A LCGIT MOCEL'/' C-D TRAVEL COST= MINIMUM O-D CCST'/
4 * MODAL SPLIT & TRAFFIC ASSIGNMENT IS CONSTRAINED BY FLEET',
5 ' CAPACIIEiS'//)
CALL INITIAL(CRIG,NSFC,NT,DEST,X,TDISPC,FROM,COST,TOFWD,NEXI,
1 FILE,TGNAME,L,MAXVOL,NARC,COEF)
WRITE(FILE,3500)

3500 FObMAT(IINITIAL MuAL SPLIT AND TRAFFIC ASSIGNMENT:'/
1 * ====== = ..... ========//
2 * LINK FROM TJ LENGTH CAPACITY FLOW INITIAL',
3 * COST'/' -------- ---------- -------------------------------- '

DO 745 I=I,NARC
IF(FRG(I).EC.O) CC TC 745
WRITE(FILE,3200) I,NAME(FROM(I)),AME(TC(1)),I (1),MAXVOI(1),
1 X(I),COST(I)

3200 FChMAT(IX,I4T,T7,A4,T12,A17,F7, .2,T25,F9.2,T35,F10.3,T46,
1 F12.5)
IF(X(I).EC.0.O) CC IC 745
OLLX(I)=X(I)
COST(I)=C(I,X,COEF,L,MAXVOI)

745 CCNTINUE
ITR=O 00002840
MITER=i.
OLLZ=Z(NARC,NT,OEIG,kST,ALPHA,THETAS,E,TD,ATB,CCEF,X,L ,MAXVOI,
1 FROM)
WRITE(6,5100) CIDZ

5100 FOFMAT(' INITIAL VALUE OF 2 = ',F30.2)
CODE=2
CALL LIB$STAT_TIME(CODE,CFUO,HANCrLF)
CPIJ4=CPUO
CfUU01=CPUC

* . 1

WRITE(FILE,3600) LLtZ,CPUC1
3600 FORMAT(//' INITIAl VALUE OF CPJECTIVE FUNCTTON=',F30.2//

1 ' CFU TIME FCR INITIALIZA IO.k= ',I10.2,2X,' SECONDS')
NORIGl=3

520 ITN=I.iC(O1
CA T TI Vv(O FI(-.N .!-:PC. T.PI.'T .Y. r,TSFC,F ROM,C CST,T ,FWD,NEXT,
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"ALL LIBSSTAI_TInER(CCDE,CFU3,IANELE)
WRITE(,5000) ITER,FCZBS

5000 FORMAT(1X,I4,2X,F30.2,2Y,F7.5)
CALL OUTPUT(NARC,X,COST,L,MAXVOL,FROM, C,ITEF,ITER ,NAMFFILE,
1 COEF,DTG,SFC,Tr,0EI,DESI,FVD,NEXT,NT,N,ISPC,MINZ,NABC2,NARC

- ,

2 EPS1,)LPHATHETA,NGRIG,NUPIG1,NT2,PCTG,PCTD,PCXPCZ,FLAG,Bc,
3 ITMAX,ATR,TGR EMMS,TDRS,XRMS)

CALL LIB$STA_TIMER(CCD)E,Cf(t4,IiAN rLE)
CPU2 = (CPU2-CEU5) *0.01
CPU23=(CPU3-CPU2)*0.Cl
CPU34=(CPU4-CPU3)*0.01+(CPU5CPU IJI)*3.01
WRITE(FILE,2250) CPU14,CPUl2,CPU23,CPU34

2250 FCFMAT(//* CPU TIME FCR DIBECTION FINDING= ',F10O.2,2X,' ECCr,

1'NrS'/o CPU TIME FOR CNE DIMENSIONAL SEARCH=',F10.2,2X,' SECCNrF'/
2 * CFU TIME FOE CONVERGENCE 'IEST= 'F10.2,2X,' SECONECS/
3 ' CPU TIME FOR CUTPUT CALCULATIONS= ',F10.2,2X,' SECONDS')

IF(FLAG.AND.(ITER.LT.ITMAX)) GO TC 520
WRITE(FILE,2260) ITER,CPU4

2260 FOhMAT(//* THE FINAL EQUILIBRIUM IS OBTAINED AT THE',2X,I4,2X,
1 'TH ITERATION.'/' TOTAL CPU TIME=',2X,I15,'XO.01 SECONDS')
GO TO 130

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 30003060
C SAVING DATA CN AN EXTERNAL FILE C 00003070

C CC C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00003080
140 CALL SAVE(NARC,T,NT,ORIG,DEST,L,MAXVOI,FBCM,TC,FWD,NEXT,N,EPS, 00003090

I EPSI,COEF,NARC2,COST,X,NAME,ITMAX,ALPHA,TIETA,E,ATR)
GO TO 130 19003110

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00003120
C CHANCING TOLERANCES AND ITMAX C 00003130

C C C C C C C C C C C C C C C C C C C.C C C C C C C C C C C C C C C C C 00003140
640 WRITE (6,67) 00003150

67 FORMAT( * ENTER TCLERANCE LIMITS AND',
1 'MAX NUMNER OF ITERATIONS.'/ 00003170

2 ' USE THE FCLLOWING FORMAT:'/
3 * Z ATOL FLOWTOL ITMAX'/
4 ' XXXX.XXXXX XXXX.XXXXX XXX') 00003190

READ (1,66) EPS,EFS1,ITMAY 00003200

IF (ITFAX.EO.0) IMAX=200
IF (E.-.EC.O.) EFS=.01 00003220

IF (EPSI.EQ.0.) EPS1=5. 0003230

68 FOUMAT(2(1X,Fl.5 ),lX,I3) 00003240
WRITE (6,69) EPS,EPS1,ITMAX 00003250

69 FCRMAT( * %TCLEHR'NCE CF Z= *,F8.5/
1 ' *TCLERANCE CF DEMANDS= ",r8.5/
2 ' MAXIMUt NUMFER OF ITERATIONS=',14)
GO TO 130 00003280

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00003290

C EXITING FROM FROCGRAM, WITh SAVE CFTICN C 90003300

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 0?003310
120 WRITE (6,51) P0003320

51 FOCRMAT(' DO YCU WANT TO SAVE? LNTERH'YES'' OR NC)''s)
READ (1,52) FL 0003340

52 FCRMAT(A3) 000350
WRITE (6,53) RL 300n3360

53 FOMAT(' ',A3) 03003370

IF (RL.EQ.YES) CALL SAVE(NARC,T,NT,0RIG,DEST,L,AXVCL,FROM,TC,F , 00003380
1 NEXT,EI,EPSESI,COEF,NARC2,CCST,X,NAME,ITMAX,ALPHA,IIEIA,E, AlL)

STOP
END 00003410



SUBRCUTINE INI I AL(CbI-, NoSPC,NT DEST Y,TLsISTCo FRCNL jT1 TC,
1 FWD. NEXT,FItE,TC,A1E,L,IMAXVCL,h RRC,CCFEF)

C CC CC C CC CC C cC CC cC cC CC CC cC cC C CC C CC CC
C SUBROUTINE INITIAL PEFORMS AN INITIAl. ALL-OR-NOTHING ASSIGNMENT C
C C C c CC C C CC CC C C CC c C C C C C CC CC CC CC c ('cc C

1 LUt) ,IAXVOt( 1),CAP(2048), Gl(512 ),TrTG,TDI(2P~e),TD2(204e)o
2 C0EFt5,2V4P),VZ;A
INTEGEF FILL

1 NEWSBh 1,3 JBACK CPI"-(I) lTER,NAP~C
TTG=O.*C

ITER=3
NEWSR 1

5 IF(NEWSR.CT.NT) CC TO 12
R=ORIG (NEWSR)

DO 10 J=NEWSRNT
Ik'(QRII(J).NloR) GO TC It

TD2(J)=TD(J)
10 CCNTIt'UE
11 NEWSiI=J

GO TO 5
12 DO 20 I=I,NABC

IF(FRC?!(I).FC.0) GO TO 20
T( I)=0 41
IF(IIAXVOL(I)*EO.1.) GO TO 20
CAP(I)=NAXVOI(I)

20 CONTiNE
30 ITFR=IIER41

IM(TEF.GT*10) 'C TC 130

40 IF(NEWER.GT. KT) GO TO 120
R=CfRIG(NEWSR)
&F(TG1(H).E0*0*3) CC TO 50

CALL SEP AT11(COST, B, IS!ECoSPC,TC:,FEr, NE.17 N)
50 DO 1013 J=,*FWSR,NT

IF(ORI(;(J.NL.R) GO Tu. 110
Ir('D2(J).FV.11.) GC TO VrC

BACK=l~kC(DkST(J))
60 IF(BACY.EQ.0) k-jn TOU 80

IF(?IPXVOL(i3ACK).LC.eI.) GO TC 71,
IF(CAl (BACK) .UT.TDI(QJ)) GC TC 70

70 BACK=IcPC(FECm(BACW)
GO TO 6,^

80 IFTD1(J.EQ.01* ) GC TU 95
BACKlSPC!(DFcl(J ,)

90 IF(BACIC.EC.P) GC' TC 95
Y(PACK)=Y(bACK)+TD1(J)
IF(M/ 1 XV')L(:1ACK).r.Q.1.) GO TO 92
CAI(iFACK )=CAF (PACK )-T01(J
COST( bPCY~)=C( IACK ,Y,CCFF,L,MIAXVOI.)

92 BACK=1SVC(F!PCM(PACK))
GO TO Sfl

95 TV?(J)=TD2(J)- ldb(J)



TG1(R)=TG1(R )TD2(J)
100 CONTINUE
110 NEWSR=J

TTG=TTG+TG1(B)
GO TO 4'

120 WRITE(6,125) ITER,TIG
125 FORMAT(16,' IRIES BENAINING=',FlO.0)

WRITE(FILE,12b) ITER,TTG
IF(TTG.EQ.O.0) GC TC 130
IF(TTG.EQ.TTG1) CC TO 150
TTGI=TIG
TTG=0 .0
GO TO 33

130 IF(TTG.NE.0.0) GC TC 150
WRITE(FILE,140) ITER

140 FORMAT(//" INITIAL FEASIBLE SCLUTION CPTATNED AFTER',I6
1 ' ITERATIONS')
WRITE(6,140) ITER
GO TO 210

150 WRITM(ILE,160) ITER,TTG
160 FCRMAT(//* AFTEP',I6,

' ITEPATIONSWE STILL CANNOT ASSIGN',
1 F1G,.,' TRIFS 0O THE SYSTEN')
WRITE(6,160) ITER,TIG

210 WRIT (FILE,2C )
200 FORMAT(//6 OBIGIN-DESTINATION TRIF DISTRIBUTION MATRIX')

CALL DMATRIX(TD,NAME,NT,ORIG,rEST,FILE,TT1)
WRITE(FILE,32)

320 FOhMAT(//O10IGIN-DESTINATION HINIMUM IERCEIVED COST',
1 o MATFIXs'//)
CALL CATRIX(SPC1,NAME,NT,CRIG,DEST,FILE)
RETURN
ENE



SUBRCUTINE SCVE(CFIG,N,SfC,NT, EST,Y,TD,ISFC,FRCMs--ST,TO,FWr,
I NEXT,E,,ATB,ALPHA,THiTA,S,SP,TGF,TDF,SPC1,TA1,NCRIGNOPIG1,G7MS)

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00006830

C SUBROUTINE SOLVE FINDS A DLCENT DIRECIION GIVEN IIIE CURRENT C
C SOLUTICN . IT RETURNS THE TRIAL SCLUTION IN VECICPS Y,TrP,TCP. C
C C C C C C C C C C C ( C C C C C C C C C C C C C C C C C C C C C C C C 00006860

REAL SIC(1),Y(1),COST(1),Tc(1),E(1),M(1),ATR(1),ALPIIA,TIIETA,WnITN,
1 W(p2048),CR,S(1),SP(1),TGF(),TDP(l),SrCl(1),TAI( ),CRMS,CESQ

INTEGES*2 N,NT,D ST(1),ISIPC(1),T (1),FWD( I ), IXT(1),FROF(1),NNSB,00006880
1 RI, J,ND,BACK,CRIG(1 ),NOPI, NOPICI
CRSQ=0.
NEWSI=1 00006900

90 IF (NEWSR.GT.NT) GO TO 200
R=GRIG (JENSR)
'TA1(B)=0.0
CALL SIPATH(CCST,R,ISPC,SPC,TC,FwH,NENX,N) 90006930
WMlN=O .1E+30
DO 60 J=NEWSB,NT 00006940

IF (OPIC(J).N.PR) GC TO 40 00006950

SPC1(J )=SC(EEST(J))
TA1(R)=TA1(R)+EXP(-TETA*SkC1(J)+ATR(DEST(J)))
TDP(J)=O.
W(J)=(1./IHEIA)*(ALCG(TD(J))-ATR(DEST(J)))+SPC(DEST(J))
IE(WNIN.L .W(J)) GO TO 60
9NIN=W(J)
ND=J

60 CONTINUE
40 NEWSR=J

CP=(1./THETA)*(S(CRIG(ND))-ALCG(AIPHA*S(ORIG(NC))4E(ORIG(ND))))
1 +WHI
CRSQ=CFSQ4CR*CR
IF(CH..E.O.) GO TO 130
SP(ORIG(KD))=0.
TGP(ORIG(ND))=E(ORIG(ND))
GO TC 140

130 SP(R IC(Nt))=( (ORIG(ND))-E(ORIG(ND)) )/4LPIIA
TGF(ORIG(NC))=H(ORIG(ND))

140 TDP(ND)TGP(CRIC(ND))
BACK=ISPC(DEST(NC))

80 IF (BACK.EQ.0) CC TC 90
Y( PACK )=Y(BACK)-TDP(ND)
BACK=ISPC(FRCM(bACK))
GO TO 80

200 GPS=SCRT(CRSQ)
RETUHN
END



SUBROUIINE BSZMIN(NHBC,NT,CRIGDEc-T,TG.TGFS.S1,TD,TD' .AY,
1 EoATRoALPHATHETIlTERITEB1 ,COEFoFLAG,Ftl.EPS,LPSI,MINZ,PSoC(SI.
2 1,IrAlVOLvFRCM)

cC C CCc Cc c CcC cC C C CcC C C CcCC c cC c Cc C c c
C SUBROUTINE BSZHIN IIINIKIZFS THE OEJ9'ECTIVE FUNCTION ALONGE THE C
C DECENT DIRECTION USING 'II4 BISECTING IMETHCD C

REAL 12.,T(1TG()S)S(1)T(1Tt(),()(1)
1 E(1),ATB"(I),ALPHA1 THiTA,CCEF(5,1),EPS,-,PS1.MINZ.COST(1),
2 GZ1,G22,GZS,GZSB(512),TDF(2C48)XPh(2,J48),1(1),HAXVOL(1),
3 CAP(2048),BMAX
ItNTEGW~2 I,J,NARC,t4'.CRIG(1),DEST( 1),ITEB.TTEB1,B.ODPBR,
1 FROMM1
LOGICAL*1 FLAG,FL1
ITLP1=(
FLG=.F ALSE.

P'2=1.
DO 6 I=1,NARC
IF(FROth(I).EQ.U) GO TO 6
IF(MAXVOL(I).EQ.1.) CC TO 6
IF(Y(I).LE.X(I)) GO '10 6

BIAX=(CAP(I)-%(I ))/(Y(I)-X(I))
IF(LbKAX.LT*B2) B2=BMAX

6 CONTINUE
ES=(B1+B2 )/2*

5 IlER1IlTEB141
G71=0.
GZ2=C.
GZ S 0.

8 IF(ODPFsCT.NI) CC TC 14

SP(RO=S( B)+BS*CSP(B)-S(R))
CZI=GZ 1+ (SB( B)-ALOG(ALPHA*SB( R)+E (P))*(SP(R)-S(R)
DO 10 J=ODPER,NT
IF(ORIC(J).NE.P) CC TC 12
TIb(J )=TD (J ) 4I3S*(TDI (J )-TD (3)

* GZ2=GZ 2+ (ALOG(TDB (3 )-ATh (CEST(J))(TDP(J)-TE(J))

GC TO E
14 DC, 16 I=1,N.RC

IF(FROMi(I)*EC.0) GOO'116

CtOST(T )=C(I,XB,CCEF#LIIAXYCL)
CZ3=GZ3+CCST(I)*(Y(l)-X(l))

16 CCNTINUE
GZ=( ALIHA /THIETA )*CZ1 1 0. TIIETA)*G72+GZ3
IF(ABS(GjZ).tE.0..:1) GC TC 30
IF((B2-B1).LE'.0.11) GC TO 3'
IF(GZ.CT.O.) CO TC 2C
B1=Bs
GO TO 25

20 B2=kiS
25 BEc(131492)/2.

GO TO 5
30 Bc.'(131s2)/?.

0 D Pf 1(
.31 JF(ul11F .0 .NTf) CU 'ICd 3f



TG(Ro=lG( F)+FS*(TGP(R)-TG(Hf))
DO 32 J=OLPRpNT
IF(OBIG(J).NE.E) GO TO 33
TD(J)=ID(J)+BS*(TDP(J)-TD(J))

32 CONTINUE
33 OIrPP=J

GO TO !I
34 Do 35 11 ,NARC

IF(FRCI'(I).EG.O) GO TC 35
XC I)=X(I)+BS'c(Y(l)-X(l))

35 CCIITTtNUE
40 MIN Z=Z(NAiHC,NT,0RlG ,DEST,IHATHETA ,S,E,TLATR*CCEF,

1 X,L,MAXVCL,FROl)
RETURN
END



SUBROUTINE LOGIT(TG,IAI,TD,SPC1,AIP,CBIG,DESToT,PTEL,TDL,
h 1 FILE,IHETA)

C
C THIS PROGRAN APPLIES A CONVERGENCE TEST ON THE PREDICTED

C. TRIP DISTbIBUTICN BY COMPARING IT WITH LOGIT CALCULATIONS.
C

REAL TC(1),TA1(1 ),TC(1),SPCI(1),ATPR(1),PTDL(1),TDL(1),THETA,
1 TTD,TELSO,WTDLSQ,TCLRMS,NIDLRMS
INTEGEB FILE
INTEGER*2 NT,I,J,N(10),TOL(8),ORIC( 1),DEST(1),NI
DATA TCL/b,10,20,30,40,60,80,100/
TTD=0.
TCISQ=C.
WTELSQ=0.
DC 2 I=1,10
N(I)=O

2 CONTINUE
DO 80 I=1,NT
TCL(I)=TGC(ORIG(I))*EXF(-TIIETA*SPCI(I)ATR(DEST(I)))/TAI(ORIG(T))
TELSQ=IDLSQ+(TD(I)-TDL(I))*(TD(I)-TDL(I))
WTDLSQ=WTLLSQ+TC(I)*(TD(I)-TDL(I))*(TD(I)-TDL(I))
TTD=TTr+TD(I)
IF(TDL(I).IT.1.3) TrL(I)=1.0

PTDL(I)=100.O*(TD(I)- IDL(I))/TDL(I)
IF(ABS(PTDL(I)).GT.IOL(1)) 0O TO 5

N(1)=N(I)+1
5 IF(ABS(PTDL(I)).GT.TOL(2)) GO TO 10o

N(2)=N(2)+1
10 IF(AS(PTEL(I)).GT.TOL(3)) GO TO 20

N(3)=N(3)+1
20 IF(ABS(PTDL(I)).G.TOI(4)) GO TO 30

N(4)=N(4)+1
30 IF(AHS(PTDL(I)).GT.TCL(5)) CO TO 40

N(5)=N(5)41
40 IF(ABS(PTEL(I)).GT.IOL(6)) GO TO 50

?(6)=N(6)+l
50 IF(APS(PTDL(I)).GT.TO1(7)) CO TO 60

N(7)=N(7)41
60 IF(ABS(PTDL(I)).GT.TOL(8)) GO TO P7

N(8)=N(8) 1
: 70 IF(TD(1).GT.100.) GC TO 8C

N(9)=N(9)+1
IF(PTDI(I).LT.TCL(8)) CO TC 80
N(1o)=N( lr)+l

80 CONTINCE
WRITE(FILE,10,)

100 FCHMAT(//*11CGIT CONVERGENCE TEST:'/23('-')//

1 ' IT CALCULATES TIIE XDIFFERENCE BETWEEN PREDICTED C-D DEPANE*,

2 * AND THAT CALCULATED BY A LOGIT MODEL.'//)
WRIT (FILE,20 ) (N(I),NTTOL(I),I=1,8)

200 FCFMAT(' FPEDICTI(NS OF',Ito CUT OF',16,' O-D PAIRS ARE
1 'WITH]N',I6,' OF THF LCGICrT ODEI' )

Nl=NT-h(8)
WRITE( IL,25 0) N(9)

250 FO0iAT(// THr;FP APE°,Ih,
' U-D 1AIRS WliICHI HAVE LESS THN IOn',

1 * TRIF'')
WRITE(FILE,300) N1,N(10)

300 FOM:AT(//' AwONG THE R~EAINING',I ,' C-D PAIRS,',16,
I ' HAVE PREDICTIONS LESS THAN 100 THIFS')

TDI MS=SQHT(TDTl.;Q)
In I l Il s u C -- l O It # :tl In? f.' rl j4 Sl OI



.. ITE(FILE,400) TDLRMS,WTDIRMS
400 FORMAT(//' RCOT MEAN SQUARE LBROR BETWEEN MODEL PREDICTIONS'*

1 ' AND LOGITs'/' TOTAL RMSE= *,F10.3/
2 " EIGHTED AVERAGE=',F1O.3)

RETURN
END
SUPROUIINE ZCONV(FC?,CLDZ,MINZ,EPS,FLAG)

C
C THIS IS A CONVERGENCE TEST ON THE OBJECTIVE FUNCTION
C

REAL PCZ,OLDZMINZ,EPS
LOGICAl*1 FLAG
IF(AHS(PCZ).GT.EPS) FLAG=.TRUE.
RETURN
END

)



SUBROUTINE CUTPUT(NARC,XC']STL,MAXVCL,FPOM,TC,ITE:R,rI. Al,

I NAME,FILE,CCEF,S,IC,SEC,Tr,OBIGrEST,FWD,NEXT,KT,N,ISPC,HIN?,
2 NARC2 ,NAC3,EFS1 ,AI F A,TIIETA,NOBIG,NCEIG1,NT2,PCTG,PCTD,PCXPC2,
3 FLAG,PS,ITMAX,ATR,4GhMS,GEMS,TDRMS,XRMS)

CC C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00006090

C SUBROUTINE OUTPUT WRITES THE RESULTS CF THE ASSIGNMENT CN AN C 00006100
C ARBITRARY CUTPUT FILE. THE DEFAULT IS FILE 6 (THE IFRMINAL). C 09006110

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00006120

REAL X(1),COST(l),L(1),MAXVOL(1),NAME(1),CCFF(5,1),S(1),
1 TG(1),SPC(l),TD(1),ALPHA,THETA,MIIZ,EPSI ,CTG() ,PCTD(1),PCX(1),
2 PCZ,B?,TTG(30),TTA(30),TT,SFC1( 2048),TDL(2046),TAI(512),
3 FTDL(2J48),ATH(1),RATIO(2C48),TGFMS,cFCS,IDPVS,XEMS,'L
INTECGE*2 NARC,I ,FRCH(1),TC(1),ITER,ITlERIK,NT,CRIG(1),NCRIC,N!2
IDEST(I), FWD(1),NEXT( 1),R,CDPP,ISPC( I),NAEC2,NARC3,JNORIG I,

2 ITMAX,NARC4,ITER2(16)
DATA I1IB2/5,10,20, 30,40,5U,6U.,70,80,90,100,120,140,160,180,20C/
INITEGE FILE 00006150

LOGICAI1 FLI,FLAG
FLI=.FALSE. 00006210

TOTT=0.0 00006220

TOTL=C.D 00006230
DO 100 I=I,NARC 00006240

IF(FROF(I).EQ.0) GC TO 100

TOTT=TCTT+Y(1)*COST() 30006320

TOTL=TCTL+X(I)*L(I) 3000633

100 CONTINUE
WRITE(FILE,70)

70 FORMAT('I OUTPUT CF TlE OCrEL:'/
1 '=)
WRITE(FILE,80) ITER,MINZ,PCZ

80 FCRHAT(///* ITEPATICN NUMBERO,14,4X,':i/
1 - -------------------------0/
2 ' THE OBJECTIVE VALUE IS',F30.3/" PREVIOUS VALUE IS WITHIN',

3 F28.3,'% OF TilE CURRENT ONE'//
4 ' THE 7.DIFFEPENCL IN FLOW BETWEEN L.AST TWC ITERATIONSt')
WRITE(FILE,9) NOhEIG1,hORI(,NT2,TNT,NABC3,NAPC?,EPSI

90 FCPMAT(' oJR°,I5,3X,*CUT OF',15,
1 3Y,' CRIGINS,'/° ANL*,15,3X,OUT OF,I5,3X,' C-D PAIRS,'/
2 ' AND',15,3X,'CUT CF,I15,3X,' LINKS.*/
3 ' IS kTTHIN',3Y,Eb.2," IERCENT')
WRITE(FILE,60) ITER1,BS

60 FCEMAT(//' NUMBER CF INNER ITEPATIONS=',1X,I4/
1 * OPTIMUM STEP SIZE=',7X,F7.5/)
WRITE(FILE,3) TCTT,IOTL

3 FORMAT(/' TOTAL TRAVEL CCSI =*,F30.3/' TOTAL TRAVEL DISTANCE =', 00006360

1 F26.2)
WRITE (fLE,64,) (PMS,T 1PMS,TDMS,XRMS

640 FORMAT(// ROOTE HEAN SQUARE ERRORS CF:'/

1 ' EFUILIBRIUM= ',F10.3/
2 ' TRII GFNERATION= $,10.3/
3 * TRIF DISTFIBUTION=  ',l10.3/
4 ' MODIL LINK FL(WS =  ,}10.?)
DO 600 1=1,16
IF(TTEP2(I).NE.ITER) GO TO 60
WhITt.(t,61q) ITiR

610 FORMAT(' DO YCU WAN' 10 SEE ILIDAL SPLI11 TRAFFIC ASSIGNNENT',

1 * OF',I6,' IIl ITERATION?'/' TYPE *YFS"'O ''NC''O ' )

READ(1,620) L
620 FORMAT(A3)

WRTTE((,630) 4L
01l F M IMAT(' '.A3)



£F(RL.NE.'YES') FETURN
GO TO 26

600 CCNTINUE
IF(FLAG.AND.(ITERL .TER.LTMAX)) RETURN
ODPR=1

11 IF(OCPF.GT.NT) GC TC 20
R=CRIG(ODPR)
TA1(h)=3.
CALL SEPAIH(CCST,B,ISFC,SPC,TC,Fut,NEXT,N)
DO 15 I=ODPR,NT
IF(ORIC(I).NE.R) GO TO 16
SPCI(I)=SPC(CEST(I))
TA1([)=TA(BR)+EXP(-THETA*SFC1(I)+ATR(DEST(I)))

15 CONTINUE
16 CDFR=I

GO TO 11
20 CALL LCGIT(TG,TA1,TD,SPC1,ATR,ORIGDESINT,PTELTDLFILE,

1 THETA)
WRITE(FILE,1)

1 FCRMAT(//'1TBIP GENERATION:*/' ===============')
WRITE(FILE,4)

4 FORMAT(/' NO, ',1X,'ORIGIN ',1X,*TRIP GENEPATION',1X,
V'ACCESEIBILITY',1X,'%CHANGi OF DEMAND'/

2 * ---- ------ ---------------

2 ' -------------- "-----------------)
NORIG=1
ODPR=I

8 IF(ODIR,GI.NI) GC TC 9

B=GRIG(ODFBR)
WRITE(FILE,5) NORIG,NAME(R),TG(R),S(B),PCTG(R)

5 FORMAT(1X,I1 ,4 I,A,3X,F12.3,4 X,F1 0.5,5X,F 0.3)
DC 6 I=ODPR,NT
If(ORIC(I).NE.R) GO TO 7

6 CONTINUE
7 CDPR=I

NOEIG=NORIG41
GO TO a

9 WRITE(FILE,300)
300 FOhMAT('1CRIGIN-VESTINATION TRIP rISTRIBUTICN PATRIX AT',

1 EQUILIPRIUMIt/' =====================================,
2 ==========I====T== '/* I INCLUrES TRIPS PREEICTED,*,
3 * CALCULATED BY LOGIT AND %DIFFEFENCE BETWEEN BOTI.'/

4 * IT iLSC TNCLUDk:S TOTAL EMISSIONS AND ATTRACTIONS AT EACH',
5 * ZONF, AS WLLI AS TCTAL TRIPS IN ThE SYSTEM (PER DAY).'//)

CAlL CEMARIX(TIr,I ,PTDL,NAMF,NT,CRIGCESTFIIE,7I1)
WRITE(FILE,660)

660 FORMAT("IORIGIN-DESTINATION ThlF rISTFIEUTICN MATRIX AT',
1 * EQUILIbBIUM (Ph~DICTED)')

CALL rrATPTX(TD,NAME,NT,ORIG,tTI,FILE,TT1)
WRITE(OIE,50)

500 FO1LMAT('CIGf1GIN-rIES IINATION PERCLIVEL CIS' MAThTX AT',

1 ' EQUILIFIUP:'/54('=')//)
CALL CATFIX(SP,AENh,T,CIG,DT,FII1)

26 WRITF(FILF,21)
21 FCPMAT(//'1MODAL SPLIT AND TRIP AFSIGNVrNl:'/

1 ' -=== = *')

WRITE(FII.E,22)
22 FCFRT(/' L.INK FR(Cn TO LI.NGTri FLW /CAP FLOW COST ,

I' %CHANGE OF FIC'/ ' ---- --- ---- ------ ---------

2')



,0 25 I=INAPC
IF(FPC.(I).EO.0) GO TO 25
RATIO(I)=X(I)/MAXVOL(I)
IF(MAXVOL(I).EC.1.O) GO TO 24
IF(RATIO(I).LE. 1.0) GO TO 24
NA RC4=NARC4+1

24 WBITE(FILE,23) I,NAME(FROM(I)),NAME(TC(I)),L(I),RATIO(I),
1 X(I),COST(I),PCX(I)

23 FORMAT(IX,I4,1 X,A4, IXA4 , 1,F6.2,1XF9 .2,1x,9 .3,X,F12.5,1Y,
1 F7.2)

25 CONTINUE
WPITE(FILE,200) NAIC4,NAPC2

200 FCHEAT(//' FLCW IS CVER CAIACITY CN',16,' CUT CF',I6,
1 ' MODAL LINKS IN THE NETWORK.')

RLTUhN
END



SUBROUTINE INPUT(NARC,T,b,0IIG,ESI ,1,MAYVCIFpCM,T,irWD,NFXw ,N, 00004810

1 ES,ES1 ,CCEF,NARC2,X,FLI,NAME,IN,II
MAX,E,AIFAIPHA "THETA)

C C C C C C C C C C C C C C C C C C CCC C C C C C C C C C C C C C c C 00004830

C SUBROUTINE INPUT RE;DS IN THE NETWORK DATA RCOM AN EXTERNAL FILL OF C 00004943

C FROM THE TERMINAL. 
C 00004850

C C C C C C C C C C C C C C C C C C C C C C CC C C C C C C C C C C C C 0004860

REAL CCEF(9,1),0YAVCL(1),'(1),ME2)/ R/,C(5),L 0470
1 L(1),(1),!4AME( I),N1I,NM2,E(1),AIi(1I),ALPIIATHETA

INTEGER*2 N,NARC,NT,I,FROM(I) ,TC(1) ,FWC( ),NEXT(1 ),K,IACT,P,PI, 00004e90

1 OPIG( 1),EST(I),NT1 T,T2,T5,Fl 'tAC2,ADMI, NA BC I IS N IT M PX  00004900

INTFGEF FILE,N1 00004910

LCGICAI*1 FL,FLI 00004920

WRITE (6,14) 00004930

14 FCRMAT(' ENTER NETWCRK INIUT MEDIUM (''TERMINAL'' OR ''FXTERNA', 09004940

1 '.''):') 00004950

CALL ACTIKN(IACT,MED,1,2,ISN) 00004960

GO TO (190,200),IACT 09004970

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00004980

C BEADING NETWOCK FROM AN EXTERNAL FILE. C 00004990

S CC C C C C C C C C C C CCC C C C C C CCC C C C C C C CC C C C C 00005000
200 FLI=.IFUE. 00005010

WRITE (6,21) 90005020

21 FORMAT(' ENTER INPUT FILE ;UMBER:'/' XX') 00005q30

READ (1,22) FILE .00005040

22 FORMAT(I3) 00005050

WRITE (6,17) FILE 00005p60

17 FCRMAT(' THE NETWCRK WILL PE READ FROM FILE ',12, .') 00005070

READ (FILE,15) N,NARC2,NT,EfS,FPSI,NARC,ITMAX,ALPHA,THETA
15 FCPMAT(20A4) 00005090

WRITE (6,9) N,NARC2,NT 00005100

9 FORMAT(* ',I4, NCDES ',14,' ARCS, ',14,0 C-D PAIRS,') 00005110

WRITE (6,62) EPS,EPS1,ITMAX 00005120

62 FORMAT( 0 TOLERANCE FCR MINIMUM F =',7,.4,' , TOLERANCE FOR', 00005130

1 * FINAL CONVERGANCE =",F7.4/' MAX NUMPER CF ITERATIONS =0,13) 00005140

WITE(6,63) ALPliA,THETA
63 FCRMAT(' ALPHA=',2X,F10.4,' AND IHETA=',2X,F10.6)

IF (14NEQ.0) GO TO 240 00005150

READ (FILE,15) (hAKE(I),FWL(I),I=1,N) 00005160

240 IF (NAFC.EQ.0) GO TC 250 10005170

READ (EILE,1E) (FPO(),TO(I),L(1),(CCEF(JI),J=1,5),MAX
V O I (I), 00005180

1 NEXT(1),X(I),I=I,NARC) 90005190

250 IF (NT.EQ.0) GO TO 26P 00005200

READ (FILE,15) (OPIG(I),DEST(I),T(I),4(ORIG(I)),ATR(DEST(I)),
1 I=1,NI)

260 REWIND FILE 0000522C

WRITE (6,19) 00005230

19 FORMAT(' DATA WAS READ.') 00005240

RETUEN 03005250

190 FL1=.FALSE. 00005260

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C r C 00005270

C READING THE N.'TWCEK FRCM 1TE TERMINAL, C n005280

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 0005290

WRITE (6,1) 1 005300
1 FOhiAT( * ENTER JINIMUH F TOLERANCE CCNVEPGANCE TCLFERANCE ANL ', 30005310

1 'MAX NUMPER CF IfERATIONS.'/ n9005320

2 ' USE THE FCLLCWINC FaRMAT:'/' NIN F TOL CONV TOL ITMAX'/ 00005330

3 * XXXY.XXXXX XXXX.XXXXX XiXX ) -)005A49

READ (1,2) t.P,LS1,IFiNAX ?0005350

2 FORMAT(?(1X,Fl0.5 ),1X,13) n000b360

IF (TT NAX.FQ.0) ITAX=2. 00005'70

IF (K,'V.':. 7~ ) !';-O.nl o) 00 ,Hf



LF (EP 1.EQ.0.0) EPS1=0.1
WRITE (6,62) EFS,ES1,ITnHA

NA C=0O
NT=3
DO 180 I=1,512

180 FWD(I)=O
WRITL (6,3)

3 FOEAIII(' EITEI R ATA 10B EACH AHC. USE THE FOLLCWING FORMAT'/

1 ' FROM TO LENGTH COEF(1) COEF(2) COEF(3) COEF(4)',

2 ' CCEF(5) MAX VCIUME'/* XXXX XXXX XXX.XX XXX.XXXXX X',

3 'XX.XXXXX XXX.XXXXX XXX.XXXXX XXX.XXXXX XXXXXX.XX')

CCCCC CCCCC CCCCCCCCCCCCCCCCCCCCCCC
READIND ABC DATA.
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
123 NABC1=NAC+1
120 CALL GETAIC(FI,15,11,C1,MI,NARCI,NAME,NM1,NM2,N,FL)

IF (FL) GC TC 100
CALL SFARCH(P,P1,F1,T5,FWD,NEXI,TC)
IF (PLE,0) GO TO 140
NAhC=NA C1
IF (F1.NE.e) GO TC 121
N=N+1
F1=N
NAVE(N)=NMI

121 IF (TS.NE.O) GC 'C 122
N=N+1
TS=N

Q NAME(N)=NM2
122 DC 99 FK=1,5
99 CCLF(KK,NARC)=C1(KK)

FRCM( N AC)=F1
TC(NARC)=T5
L( NAC )=L1
MAXVOL(NARC)=M
NLXT(NARC)=0
IF (F1.NE.0) CO TC 110
FWD(FR(C(NARC))=NARC
GO TO 123

140 WRIT (6,8)
8 FORPAT(' THiIS APC ALRFADY EXIFTS. REN'IEP:')

GO TO 12u
110 NEYT(P1)=NAPC

GO TO 123
100 WRITE (6,6)

6 FCbIdAT(' ENTER DATA FUc EACH C-D FAIR. USE THE FOLLOWING F-OPMAl: '

1 ' ()PIC DEST CEAND'/ XYXXX XYXX XXXX.XXXXX*)

CCCCCC CCCCCCCCCCC CCCCCCCCCCCCCCCC C

C READING CD PAIR DATA. C

CCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCC
231 NT1=NT41
230 CALL GETOL(NT1,C,V,T3,NAHE,N,FL)

IF (FL) GC TC 150
CALL SRCHCD(C,D,CRIG,ljEST,K ,MID,N)
IF (K.NE.9) GC TC 220
IF (C.EO.G.C1.D.Co.) CO IC 221
CALL INSO C( , ,T ! ,OHI(;,DEST ,T ,NT, RID))
NT=NTI
GO TO 231

220 WrITE (6,24)
94 VCIMA'I(' 'llHIE PA1 ALEFADY FX11TS. HEENTEtI')

30005670
00005680
0005690

10035700
93005710
n0005720
00005730
00005740
00005750
90035760
00005770
3600 780
:C00S790
0005800

0 ?03 5 1 0

9 0 0 05920
00005i30

/00305840
90005850
10005P60
'3005Q70
)0005d80
10035990
'2005900
,0005910
33005920
' 305 13

'0005 940
S3 005950

000005960
000005970
300054 10
00005990

00005390
90005400
03005410
00095420
00005437
n0005440
20005450
0005460
00005470
00005480
0005490
i0005500

CC 000510

C 00005520
c C 00005530

00005540
00095550
00005560
00005573
00005560
00005590
00005600
69005610
V00562
"0005639
30005640
00005650
30005660



GO TO 230 00006000
221 WRITE (6,61) 00006010

61 FORMAT(' JUNCION NAMES INVALID. i LNTER') 00006020
GO TO 230 00006030

150 NAFC2=EARC 00006040
RETURN 0000650
END 00006160
SUBROUTINE GENEIATION(NORlG,NT,OBIG,iSTNAME,F)

CCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
REAL BI/' */,F/'F'/oEX/*E'/eNAME(I)EE(I),E1,K
INTEGFF*2 I,NORIG,OtPO R,BOPIG(1) ,EST( 1),NT
WRITE(6,1)

1 FOhMAT(' ENTER GENERATION DATA:)
NCRI'= 1
ODPR=1

7 IF(ODPP.GI.N) GO TC 8
R=ORIG(ODFR)

22 WRITE(f,2) NCRIG,NANE(P)
2 FCRMAT(X,I4,4X,A4,*: )

33 READ(l,3) K,E1
3 FCBMAT(A1,16X,F10.3)

IE(K.EC.BI) GO TC 10
IF(K.EC.F) GC TC 20
IF(K.NE.EX) GO TC 3(
RETURN

10 NRITE(6,) K,NORIG,NAHE(B),F1
4 FCRMAT(A,I4,4X,A4,4X,F4X 0.3)

E(R)=EI
DO 5 I=ODRF,NT
IF(ORIC(I).NE.R) GC TC 6

5 CONTINUE
6 ODIR=I

NOFIG=NOBIG+ 1
GO TO 7

8 WRITE(f,9)
9 FORMAT(' END OF ORIGINS')

RETURN
20 WRITE(6,21)
21 FOPMAT(' NO, CRIGIN HIN. GENERATION'/

1 -- --- ---------- 0/

2 XXXX XXXX XXXXXX.XXX')
GO TO 22

30 WRITE(6,31)
31 FOhMAT(' INVALID CONTROL ChARACTEP. kiEENTEP:z)

GO TO !3
END

SUBROUTINE ATTRACTION(NDEST T,,CBIG, EST,NAME, ATB)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCC

REAL Bl/' "/,F/F'/,EX/'E'/,NAME(1), (1),AT1,K
INTEGE "? I,NDESTT,CRIG( I),DLST( ) ,RCDFP,CD
WRITE(6,1)

1 FORMAT(' ENTER ATTRACTION LATA:')
NDEST=1
ODPP=I

7 R=DST (JDPH)
22 WRITE((,2) N1LST,NAMF(R)

2 FORMAT (1X,14,4X,A4,':')
33 READ(1,3) K,ATRI

3 FCkMAT(AI,19X,FIc.3)
IF(K,LC,1l) CC TC ir



z(K.NE.EX) GO TO 30
RETURN

10 VRITE(E,4) K,NCEST,KAME(R),ATI
4 FORMAT(A1,I4,4X,r4,7X,F10.3)

ATR(R)=ATR1
11 ODPR=OEPR+1

ODP=ODFR-1
IF(ODPF.GT.NT) GC TC 18
DO 15 I=1,0ODP
IF(DES(I).EQ.DEST(ODPR)) GO TO 11

15 CONTINUE
NDEST=NDEST+ 1
GO TO 7

18 wNITE(6,19)
19 FORMAT(' END OF DESTINATIONS')

WETIJ1N
20 WRITE(6,21)
21 FCBMAT(' NO. DESTINATION A1TRACTION'/

1 /
2 ' XXXX XXXX XXXXXX.XXX')

GC TO 22
30 WRITE(6,31)
31 FGOMAT( INVALID CCNTRCL CEARACTEP. RENTEPW')

GO TO 33
END



SUBROUTINE SHPATH(COST,ISPC,SPC,TC,WD,NFX'I,N )
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CC
C SUBRCUTINE SHPATH FINES THE SHCRTEST FATH FROM NCDE R TC ANY CTHER C

C NODE IN THE NETWCRK. IT USES DIJKFTRA'S IPPOVED AI.GORITHM. C

CCCCCC CCC CCCCCCCCC CCCCCCCCCCCCCCCCCC
REAL CCST(1),SPC(1),TREE(512)
INTeGEB*2 R,IISF;TC1),TC(1),FWD(1),NEXT(1),N,IMIN,K,I,N,II,NN,JJ
LOGICA1*1 FINAL(2048)
DO 10 I=I,N
SPC(I)=.30

10 FItNAL(I)=.FALE.
FINAL ( +1 )=.TRUE.
SPC(R)=q.
FIN.L( )=.TPUF.
ISrC(R)=0

0 II=ALOG(XN)/ALOG(2.)+0.999
N1=2*']1
DC 15 I=I,N1

15 TREE(I)=I.E30
1=R

20 NN=FWD(I)
30 IF (NN.EQ.O) GC TC 40

K=TO(NN)
IF (FINAL(K)) GO TO 50

70 IF (SPC(K).ILE.SPC(I)+COST(NN)) GC TO 53
SPC(K)=SPC(I)+CCST(NN)
ISIFC(K)=NN
CALL UTDTRE(SPC,N1,MIN,TREE,K)

50 NN=NEX'(NN)
GO TO 30

40 FINAL(IMI N)=.TRUE.
I=IMIN
CALL KILL(SPC,FIN AL,N ,IMIN,TPEE)

IF (.NCT.FINAL(ININ)) GO TC 2C
J=FWD(I)

60 IF (J.EO.0) RETURN
Q IF (.NCT.FINA1(TC(J))) GO 10 2.'

J=NEXT(J)
GO TO 60

C. RETURN
END
SUBUCUTINE UPDTRE(SPC,IN1IMINTREEK)

CCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCC C C

C SUBROUTINE UPDTHE PFFCBRMS THE UPDATING OF 'HE SCETING TREE WHEN A C

C SPC VALUE CHANGES. C

CCC C C C C C C C C C C C C C C C CC C C CC C C C C C C C C c C
REAL TEEE(1),SPC(1)
INTEGEF*2 P,K,NI,IMIN
P=( K+N1-1 )/

10 IF (P.EQ.P) GO TC 20
IF (THEE(1).LE.SPC(K)) PETURN
TREE(F)=SPC(K)
P= i/2
GO TO I ,

20 ININ=K
RETURN
END
SUBROUTINE KILL(SPC,FINAI,N1,IMIN,TREE)

C SUROUTI KILLC C C C C C C C C C C C C C C C C SC CT o T SCTI c

C SUBROUTINE KILL LkLLTiE Till' PhREVIOUSE MINIMUM VALUE IUM Till. SV'TI '1;C

00003420
00003430
00003440
01003450
00003460
0000470
03003480
00003490
03003500

00003510
00003520
30003530
0003540
00003550
90003560
00003570
00003580
00003590
00003600
03003610
00003620
30003630
03003640
03003650
1 033660
00003670
09003680
00003690
00003700
00003710
00003720
30003730
00003740
00003750
03003760
00003770
00003780
03003790
00003e80
00003810
00003p20
00003e30

00003840
00003850
03003860
00003870
00003880
I0003890
00003900
00003910
30003920
)0003930
01003940
3 1003953

0"003o70
'0 93' b 0

?003990
10004000

0.004 12 0



C lg f AND QFDATES IT,
CCC CCC CCC CCC C C CC C CC CCC CC CC CCC CC c

REAL TFEE(1)oSPC(1)
INTeGEP*2 P1,IMIb,N1,P,P2
LOGICAI*1 FINAL(1)
P 1=IMINE
P=(PI+Nl-1)/2
P2=P1+1
IF (P1/2*2.EQ.P1) P2=P1-1
TPLE( )=1. 30
IF (.NCT.FINAL(P2)) TPEE(M)=SFC(P2)

30 PI=P
P=P/2
IF (P.EQ.) GC TO 4C
P2=Pl+1
IF (P1/2*2.NE.P1) P2=P1-1
TREE(P)=TREE(P1)
IF (T~EE(Fl).CT.IBEE(P2)) TREE(P)=TREE(P2)
GO TO 3r0

4u IMIN=1
70 IMIN=IYIN*2

IF (IHIN.GT.N1-1) GC TO 80
IF (ThEE(IMIN).Gr.TPEE(IMIN+1)) IMIN=IMIN+1
GO TO 73

80 IMIN=IMIN-Nl+1
IF (FINAL(IMIN41)) FEIURRN
IF (FINAL(IMIN) CE.(SPC(IMIN) .GT.SPC(IMIN+1)))
RETURN
END

ININ=IMIN+I

C 03004C30
C 10094040

"9094 50
C3004060
10004C70
10004080
0004090

1,004100
??9004110
?0004120
0004130
0004140
C004 1'5
30004160
C1004170
00004180
00004190
00004200
03004210
000P4220
00004230
00004240
00004250
00004260
00004270
00004280
00004290
00004300
00004310



SUBROUTINE SAVE( NARC,T,NT,ORIG, DEST ,1 ,MAXVCI ,FROM,T,. D,NEXT ,N, oooo0000e740
1 EPS, EIS1 ,COEF, NAPC2,COST,X,NAME, ITMAX ,.ALPHAlHETA,E, ATF)

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00008760
C SUBROUTINE SAVE SAVES THE NETWCRK ON AN ARPITPARY EXTERNAL FILE. C 01008770

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00008780

REAL T(1),L(1),MAXVCL(1),CCEF(5,1),COST(1),X(1)NAME(1),ALPHA,
1 THETA,E(1),ATR(1)
INTEGEF*2 NAC,NT,C8IG(1),EFS (1 ),FRC (1),TC(1),FWD(1),EXT(1), 00006300

1 N,I,NAEC2,ITMAX 0008819
INTEGEF FILE 00093820
WRITE (6,21) 03008830

21 FOIMAT(* ENTER SAVE FILE NUMBER:'/' XX') 00008840
READ (1,22) FILE 30008850

22 FCRMAT(13) 09008860
WRITE (6,17) FILE 00008870

17 FCR AT(' THE NETWCRK WILL BE SAVEC ON FILE ',12,'.0) 00008980
W~ITE (FILE,15) N,NARC2,N'I,rPS,EPS1,NARC,ITHAX,ALPHA,TIETA

15 FCFMAT(20A4) 00008s00
IF (N.EQ.fl) GO TC I~ 000086910
WRITE (FILE,15) (NANE(I),FWD(I),I=1,N) 00008920

10 IF (NABC.FQ.O) GC TO 20
WPITE (FILE,15) (FRCM(I),TC ,L(,L(I),(CCEF(J,I),J=1,5),MAXVOL(I), 0000894

1 NLXT( ),X(I),I=1,NARC)
20 IF (NT.EQ.0) GO TO 30 .00008960

WRITE (FILE,15) (CRIG(I),DEST(I),1(I),E(ORIG(I)),ATR(DEST(I)),
1 I=1,N)

30 REWIND FILE 00008980
WRITE (6,19) 00008990

19 FCEMAT(' rATA WAS SAVED.*) 00009000
RETURN 0009C1 0
END 00009020



SUBROUTINE GETARC(FI,T,LI,CI,Ml ,I,NAI4,NMI,NN2,NFi
CCCCCCCCCC (CCCCCCCCCCCCCCCCCCCCCCC
SUBROUTINE GETAPC RPEDS THE DATA CF AN APRC
CCCCCCCCCCCCCCC CCCCCCCCCCCCCCCC CCC

REAL LI,M1,C1(1),)L/' '/,NAME(1) ,NIM,NM2,F/F'/,E/E*/,NN/'N'/
INTLGEF*2 I,J,F1,T1,N
INTEGEF NI
LOGICAI*1 FL

60 WRITE (6,4) I
4 FOFMAT(' ',14,';')

30 READ (1,5) R,NMI,NM2,lI1(CI(J),J=1,5),M1
5 FCi AT(AI,A4,1X,A4,1XF6.2,5(1X,F9.5),1Xo9.2)

IF (R.EQ.PL) GCC TC 50
IF (R.EC.F) GO TO If
IF (R.NF.E.AND.R.NE.NN) GO TO 20
FL=.TRUE.
RETURN

10 WRITE (6,16)
16 FORMAT(

1 * FROM 10 LENGTH COEF(1) COEF(2) COEF(3) COEF(4)',
2 * CCEF(5) MAX VCLUME'/* XXXX XXXX XXX.XX XXX.XXXXX X',
3 *XXYXXXX XXX.XXXXX XXX.XXXXX XXX.XXXXX XXXXXX.XX')

GC TO 6i
50 WRITE (6,6) NM1,NM2,L1,(C(J),J=1,5),M1
6 FORMAT(2(IX,A4) , XF6.2,5(1Y,F9.5), 1X,F9.2)
CALL CCNV(NMI ,NM2,F1,I, NAME, )
FL=.FAISE.
RETURN

20 WRITE (6,1)
1 FORMAT(' INVALID CONTROL CHARACTER. REENTER:')
GO TO 30
END -
SUBROUTINE SEARCH(P,PI,F,I,FWD,NFXT,TC)

CCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCC
SUBROUTINE SEARCH LOCKS FOR THE DESIRED ARC AND RETURNS A POINTER 7
THAT ARC AND TO THE ONE PRECEEDING IT.
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

INTLGEF*2 P,F,T,FWD(1),NEX'I(1),TC(1),P
Pl= (
p=q.
IF (F.eC.L) RETURN
IF (FWE(F).EC.0) BETUPN
P=PWD(F)

140 IF (TO(P).EQ.T) RETURN
PI=P
P=NEXT(P)
IF (P.NE.0) CC TC 140
RETURN
END
SUBROUTINE INSGD(O,D,TI,0RIG,DESI,T,NT,PIACE)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C SUBROUTINE INSOD INSERTS AN OD [AIR INTO '11E IIVT.
CCC CCC C C C CCCCCCC C C C CCCCCC C CCCCC CC

INTEGEij*? O,,OlC(1),IF:ST( 1),NT,PLACF ,K
REAL T(1)
IF (NT.GT.PLACE) (;C TC 20
ORIG(h T+I)=O
DEST(N1+1 )=L
T(IT+1)=TI
RI TURN

20 K=T'I'

30007060
00007070
00007080
"9007990
00007100
10007110
'0007120
00007130
C0007140
j0007150
00007160

10007160
09007190
C0007200
30007210
00007220
00007230
00007240
00007250
00007260
00007270
00007280
00007290

00007310
00007320
00o007330
00007340
00007350
00007360
"0007370
10007590

00007600
00007610
30007620
00007630
99007640
01007650
00007660
00037679
00007680
20007690
00007700
90007710
30007720
90007730
?9007740
00007753
"0007760

00007779
13007163
00007790
30')7H800
30007810
0007420

fn0074ln
J.)007840
00007850
000076)
rq i07r I 7 i

C
CC

C
C

C
C
C



- ORIG(K41)=CRIC(K)
DEST(K41)=DEST(K)
T(K+1)=T(K)

00007880
00007890
00007900

ft9Ifl A

K=K-1 .U u ua

IF (K.CT.FLACE) GC TO 10 00007920

ORIG(PIACE+1 )=C 00007930

DEST(FIACE+1)=C 10007940

T(PLACE+1)=Tl 10007950

RETURN i0007960

END 00007970

SUBROUTINE CELCD(ORIG,DESIT,NT,,FLACE) 000798

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C A09007990

C SUBROUTINE DELOD DELETES AN OD PAIR FROM THE LIST. C 0000800

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00000i10

INTEGEb*2 0PIG(1),DESl(1),FLACE,N,K 0300P002C
REAL T(1) 00008030

DC 10 K=PLACENT 00008040

ORIG(K)=ORIG(K+1) 00008050

DEST(K)=DEST(K+1) *00008060

10 T(K)=T(K+1) 00008070

RETURN 0008080

END 00008990

SUBROUTIN SRCHIOD(C,CORIG,DEST,K,MIC,NT) 0000810

C C C C C C C C C C C C C C C C C C C C C C CC C C C C C C C C C C C.00008110

C SUBROUTINE SRCHOD LCOKS FCR THE DESIRED 0r PAIR ANC RETURNS A POINTFR 00008120

C TO IT OR A POINTER TO THE PALCE AFTER WICH IT SlICULD BE INSERTED. C 00008130

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00008140

INTEGEB*2 O,,CPRIG(1),DEST(1),K,MID,NT,1,J,CNE 30008150

K=P 90008160

HID=q C0008170

IF (NT.EQ.O) RETURN 00008180

ONE=1 00008190

I=1 30006200

J=NT 0000P210

40 hIC=(IJ)/2 00008220

IF (O-CRIG(MID)) 10,20,30 09008230

10 IF (MIt.EQ.I) GO TC 10 00008?40

J=MID 00008250

GO TO 41 30008260

30 IF (MIL.EO.I) GC TC 1V0 70008270
I=MID 0OOP28C

GO TO 4 1 000890

20 I=MID g0f008300

21 IF (ORIG(T).NE.C) GC TO 6C 0000831(

IF (DET(I).EQ.) CC TO10 70 000092

I=I-1 0000033I

IF (I.GE.ONE) GO TO 21 0000834

60 DO 80 ]=MID,NT 3300035(

IF (ORIC(I).NE.O) RETUhN 0000~36(

IF (CET(I).EQ.D) GC TO 7t 0000937

80 CCNTINULI. 00838

MIL=NT qOfP 39

RETUEN C000940

70 K=I ' 00 41

RE UN 03J03042

100 IF (O.CT.CRIG(MID41)) MID=PID+1 'n00 43

RLTURN 10 q

END 0000645

SUPRUOTINE GL.IC0(I,C,P,T,NAMF,N ,FL) 100084

C C C C C C C C C C C C C C C C C C C C CC C C C C C C C CC C C C C 0000P47

C SUBEOUTINE ;ETOD hEAD; THE TRAVFL DEMAND CF AN or AIP. C 00004H

0

0

300

0



C C c C C C C C C C C C C C C C C C C C C C C C C C C C' . C C C C C 00008490

REAL BI/ */,NAME(I),NM1,NM2,F/'F'/,E/E/ ,NN/'N'/ 000500

INTEGES*2 I,C,E,N 90008510

LOGICA1*1 FL 30008520

* 20 WRITE (6,2) I 900008533

2 FCHMAT(' ',14,':') 0008540
50 READ (1,3) R,NM1,lhn2,1 1008550
3 FCRMAT(A1,A4,1XA4,1X,F!0.5) 00008560

IF (R.Q.PL) GO 1O 10 00008571
IF (R.FQ.F) GO TO 30 10000958
IF (8.Nr.E.AND.h.NE.NN) GO TO 40 90009590

F=.TPUE*. 30003600
RETURN 300009610

30 WRITE (6,1) 00009620
1 FORMAT(' ORIG DEST DLMAND/'+ ..... /' XXIX XXX', 00008630
1 * XXXX.XXXXX') 00003640

GO TO 20 00008650
10 WRITE (6,3) R,NM1,NM2,T 9000660

CALL CCrNV(N,1,NN2,C,D,NAME,N) 00008670
FL=.FAISE. 00008680

RETURN 00008690

40 WRITE (6,4) 00008700
4 FCEMAT(" INVALID CONTROL CHARACTEP. REENTE :') 0000 710

GO TO 50 .0008720
END 00008730

SUBROUTINE CONV(IN1,IN2,0UT1,OUT2,NAME,N) 30009030

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 00099040
C SUBROUTINE CCNV CONVERTS NODE NAMES TC INTERNAL NCDE NUMBERS AND C 00009050

C RETURNS 0'S IF THEY DC NOT EXIST. C 00009060

C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C CC 90009070

REAL IN1,IN2,NAME(1) 00009080

INTFGEB*2 OUT1,OUT2,N,I 00009090

LCCTICAI*1 FI,F2 00009100

Fl=.FALSE. 0)009110
F2=.FAISL. 00009120

OUT=0O 30009130

OUT2=P 00009140

IF (N.EQO.) RLTURN 03009150
DO 10 I=1,N 00009160
IF (IN1.NE.NAME(T)) GO TO 21 31009170
OUT=I 00009180
IF (F2) RETUFN 3009190
Fl=.TRUE, 09009200

20 IF (IN2.NE.NAME(I)) GC TO 10 00009210
OUT2=I 00009220

IF (Fl) RETURN 00009230

F2=.TRU . 00009240

10 CCNTINUE 9009250
BETURN 3.)009266
END ':01'09270



FUNCTION Z(NARCDNT.ORIGttrESTALPIATH.TA ,SE,DATRD- -F,X,
I LJ1AXVOLFRCr,)

Ccc C C CCcCCCC C c cC c cC C C CC c C Cc CC c c
C FUNCTIC4 Z EVAIUATES THE CBJEC'IIVE FUNCTION AT A GIVEN PCINT C

REAL S(1),E(1) , D(1),ATR(1),AIPHA,THETAZ1,Z2,73

INTEGEBi*2 I,J,NARC,NT,GRIG(l),DLSI(1 ),CDPR,RDFROM(1)

22=0,

ODFR= 1
32 IF(ODPI .GTI.Nl) CO TO 38

R=OFIG(ODPR)
Z1=Zl+ (ALPHA/2. )*S(B)*S(R) +ALPHA* S( R) (ALPHA*'S(R)+E(R))*
1 AtC(ALPHAP'S(R)*i(B))
DO 35 J=OVPR*NT
IF(ORIC(J).NE.R) GO TO 37
Z2=Z2,1D(J) *ALOG(TD(J ) )TD(J) *ATR (DEST(MJ)TD(J)

35 CONTINUE
37 ODFH=J

GO TO 32
38 Z3=F(X,NARC,COEFLMAXVOL,FRON)

Z=Z1+(1./THETA)*Z2+Z3
RETURN
END



fUNCTION C(IX,COEF,L,NMAVOL)
CCCCCCCCCCCCCCCCCCcCCCCCCCCcCCCccC
C FUNCTIGN C CALCULATFS THE ARC COSTS TC BE USED BY THE SHORTEST PAT" C

C ALGORITHM . C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCC

REAL X(1),CCEF(5, ),(1),MAXVCL(1)
INTEZGEE*2 I
C=COEF(1,I)*L(I)+CO£F(2,I)*(X(I)/HAXVCI(1))**CCEF(3,1)+
1 CCEF(4,I)*L(I)+COEF(5,I)
RETURN
END

FUNCTICN F(X,NARC,COEF,L,MAXVOL,FROM)
CCCCCCCCC CCCC CCCC CCCCCCCCCCCCCCCCC CC
C FUNCTIOI4 F CAICUIIES THE INTEGPAL OF THE CCST FUNCTION FOR A C
C GIVEN LINK C
CCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCC

REAL X(1),COEF(5,1),L(1),MAXVCL(1)
INTEGIF*2 I,NARC,FROM(1)

DO 13 I=1,NARC
IF(FRCF(I).FC.O) GC TC 10
F=F+CCEF(1,I)*L(I)*X(I)+(CCEF(2,I)*AXVOL(I)/(COEF(3,I)+1))*

1 (X(I)iMAXVOL(I))**(CCEF( 3,I)+1.0)+COI(4,I)*L(I)*
2 X(I)+COEF(5,I)*X(I)

10 CONTINUE
RETURN
END



SUBROUTINE ACTION(IACTACl,N1,N2,ISN)
CCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCC
C SUBROUTINE ACTION READS THE NEAT ACTION TO BE TAKEN AND RETURNS A
C CODE WHICH IDENTIFIES THE ACTICN.
CCCCCCCCCCCCCCCC C CCCCCCCCCCCCCCC

REAL ACT(1),A.G(10)
INTEGEF*2 IACT,ISN

10 READ (1,2) ABRG
2 FORMAT(IOA4)

41 DO 20 1=N1,N2
IF (AH(1).EC.ACT(I)) GO TC 30

20 CCNTINUE
WRITE (6,1) AFG

1 FORMAT(' ',10A4/ THIS IS NOT A VALID RESPONSE. REENTER:')
GO TO 10

30 ISN=ISN+1
WRIrE(E,3) ISN,AbG

3 FORMAT(1OX,I4,3X,1OA4)
IACT=I-NI+1
RETURN
END

00007380
C C 00007393

C 00007400
C 01007410

C C 10007420
09007430
03007440
0o007450
3n007460
'0007470
00007480
l097490
nO007o00
00007510
90007520
03007530
00007540
00007550
00007560
00007570
0007580



olBERCUIINI ITERCUT(ITERFITE,TD,TEL,PTTLL,SPC INAPE,NTCHIC, r.Fv,
1 TT1)

C
C THIS PROGRAM WRITES C-D MAIRICS FOR A GIVLN SFT CF ITEPATIONS.
C

REAL TL(1),TI(1:,PTDI(1),PCI(1),NAPF(1),TTI,Rt
INTEGLE FILL
INTEGER*2 AT,ORIG(1),DLST(1),ITE3,ITER3,IT.P2(25),I
DATA IIER2/5,10,. 0,30,40,50,60,70,80,9C,100,110,120,130,140,15",

1 160, 170,18 n, 190,20.,210,22Q,23C,249/
ITER3=ITER-1
DO 10 1=1,25
IF(ITEP2(I).NL.ITER3) GO TC 11
WRITE(6,2) ITER3

20 FORMAT(' rO YOU WANT TO SEi O-D nATRICES OF',T6,'TH ITFEATIOF?'/
1 * TYFPE'YES''CR*'NC':')
READ(1,31) RL

30 FORMAT(A3)
WRITE(6,40) EL

40 FOIRAT(' ',A3)
IF(RL.*NE.YES') FETURN
URITE(FILE,50) ITER3

50 FOrMAT('1ORIGIN-PESTI1NATION TRIP DISTBIBUTION MATRIX AFTER THE',

1 I6,*T ITEIATION:'/71('=')/* IT INCLUDES TRIFS PREDICTED,,
2 * TRIIS CALCULATED BY LOGIT AND "DIFFERENCE BETWEEN BOTH.*//)

CALL CrMATRIX(TIDI,PTDL,NAMF,NT,CRIG,rEST,FILE,TT1)
WRITE(FILE,6n) ITER3

60 FORMAT(IOCRIGIN-DESTINATION PERCEIVED CCST MATRIX AFTER THF',
1 I6,'T' ITEtATIO :'/65('='))
CALL CMATRIX(SPCI,NAME,NT,CRIG,DEST,FIIE)
WRITE(6,7) ITEP3

70 FCRMAT(' MATFICES OF',16,'TH ITERATION ARE STORED IN YOURB,
1 ' OUTIUT FILE')
RETURN

10 CONTINUE
END



-jitOUIINE DNPhTRIX( ID#NhiE,NT ,ORIG ,DEST JFILE,7' 1)

C IT CREA'JES All C-D) iAIRIX OF JEGYPT'E 24 ZCNE
C

REAL NM(24) vNAI El NAKE2,TD(1) ,NAME( 1) ,
1 O0(30,30 ),TTG( 30 ),TA(30) ,TTI
INTi.GEB FILF

DATA NP/ ALEX'. If.1R p,% TYF -, 'KFRS , MIJLK frTANTO SAKN.
1 keNHAPCA!RvZGZG',ABKk*, M.NS','SN1RB ,'DN1T PRTS',
2 'ISL,S"WES.,FYU',iBSWF', MNIA,ASYT.,SHAG ,QOENAi.
3 'ASWN*/
N=24
Do 40 JlNfT
NAMLI =NAhE(ORIG(J))
NAN E2=NAMLECDEST (3))

ID=7
DO SO 11I,
IF(%NH(I).NE.l4AMEI) GC TO 2t'

GO TO !nl
20 IF(NM(I).NE.NAIE2) GO TO 30

ID1I
30 CCNTINIIE

OD(IO,JD)=TD(J)
40 CONTINUE

DO 6!) I=1,N
IIG(I)=).
TTA(I )=O.

60 CONTINUE
DO 80 3=1,14
DC 70 I=1,N
T1A(J)TTA(J)+OC(I,J)'

70 CONTINUE
83 CCNTINL'E

DO Ion I=1,N
DO 90 3=1,1
TT.( I)=TTG(1 ).OD (1,3)

90 CCNTIN]E
10CCFTINUE
TT1=O *

DO 110 I=l,N
TTi=TTI+TTG( I)

110 CONTINUE
C
C WRITE 111IE 0-C MATRIX CREATED ABOVE
C

WRITE(FILE,12C) (NIICI),I=1 113)

120 FO IPAT(LX,4X,'TC ,2X,13(A4,4X)/ IOl,14 )
DO 14U I=1,1
WRITE(FILE,l 3t) NM1(I) ,(OD( I,J),J=1,13)

130 FCRr-A'I(I'Y,A4 ,13Ffi*0)
140 CC K TI1N UE

150 FCR' AT(IX,118( - )/1X,'ATTP ',13y 8./I1X,I&( -*))
NI=N.1-14

160 FC14MAT(1IC-L MATRIX (CONTINUEE)//
1 5X,<N1>(4X,A4),' GIENkdATN/1Xe2(*- ))
Do 11u 1=1,N



180 fCRMAT(1XsA4o<N1)F8.0,V1O.c)
170 CONTINUE~

WRITE(FILE,190) (TTA(J) ,3=1',N),TT1
190 FOFIIAT(1X,112( '- )/1X,*ATT!I,<N1>F8.O,F1O.0/1XoI2('- ))

RETURN
END
SUEi1OU1IINE 0DMATPIX(TE,TDL,ITDL.,NAMFE,NT,0PIC4,rEST,FILETTI)

C
C IT CREATES AN O-D HATFIX OF EGYPT'S 24 ZONES
C

1 POD(3C,30),J.OD(3C,30),0D(30,30) ,ITG(3C),TTA(3C),TT1,
2 ITAL (30) PITA (31 ),FT CL(1I) TD1 ( I
INTEGEF FILE
INTLGER*2 NT,0R!G(1),DEST(1),I,J, 1OIr,N,N1
DATA NY/ ALEX*, 'DI4118 , -ETYP , 'KFRS', -MHLK -, -TANT- , -SHKH*
1 HAs,CIRZGZC,ABKT', NNS',"-hRB,D17tP FRTS',

2 *ISML,*SWESPFYUM,'BSWF, MNIA*,AEYTO,SIIAG*,OENAM1
3 QASWN/1
N=2
DO 4P' 31,NI

NiAME2=NAME(DIST(3)
I0)1

DO 30 1=1,N
IF(NM(I).NF.NAMFI) GO TO 20

GO TO 3r
20 IF(NH(I).N.iAtE2) GO TO 30

30 CONTINUE
OD( 1,ID)=TD(J)
LOD(IO,ID)=TEL(J)
POL(Io,IJD)=FIDL(3)

40 %Cr; TI N UE
LO 60 ]=1,N
TIC( Ii1
TTi( I )=9.
TIAL(1)=U.

60 CONTINUE
DO 80 J=1,N
DO 71) 1=1,N
TTA(J)=TTA(J)+OD(I,J)
TT,L(J)=TTAL(J)41CD(I 93)

70 CC NT1 1:U i
80 CCNTINUE

DO Ing0 I=1,N
DO i) J=1 ,N
TT6(I )=TTC(1 )+CD(I,J)

90 CUITINUE
100 CONTINUE

DO 110 I=1,N

110 CONT1NU.

IF(TMAI).i.Q.0. ') GO TO 20n
PT*IA,(7)100.0(TTA()-TTAL(I))/TTAL,(I)

n n rn(?til'T N 11V



C
C WRITE 'THE O-D HATPIX CL~EATED ABOVE
C

120 FCRMA~T(1 X,4X , TC *2X, 13 (A4 4X)/ * FRU 10 4(-)
DO 140 I=1,N
WRITE (FILE, 131) NMI( GOD (T j ) 3=1 13)

130 FChiHAT(/LX,Aft,13E8*C)
WPITL(EILL,135) (LOM(,J) ,J=1,13)
WRITE(FILE,136) (FCr( I,J),J=1,13)

135 FCEFMAT(5X,13Fe.0)
136 FO14,AT(5X,13(1X,F6.,V))
140 CONTINUE

WRIT~E(FILL, 15n) (TTA(i),J= 1,13) ,(ITAL(J),J=1,13).
1 (iTTA(J),J1,13)

150 FCbt1ATC1X, 8( -i)/1X,*ATT.,13F.0/5X.13F8.0/

N1=N4 1-14

160 FORMfAT(*1C-D MATRIX (C0NTIN'!EU)o//

I 5X,<NI)(4X,A4), ( EAN/X12 ~)
D0 179 I=1,N
WBITr.( FILE, 180) NM(I) ,(OD(I,J ),J=14,N ),TTG(I)

180 FGRflAT (/IX,A4,<NI)F8. 0,F10 .6)
WBITE(FIIE,185) (ICECI,J) ,J14,N)
WRITE(EILE, 186) (rCEI,J),J=14,N1)

185 FCL4,AT(5X,<1l1>F8*0)
186 FCBNAT(bY,<IJ1>(1X,F6. 1,'%))
110 CCNTINUE

WHITE(EILE,190) ('TA(J),3=14,N),TI1, ('TAL(J),3=14,N),
I (ITTA(J,J=14,N)

190 FOB,1AT(1X,112( '- )/1X, ATTF.,<N1>FH.D,F1O .0
1 5X,<N1>F8.0/5X,<N1(Y,F6.,%')/1X,102(''))

END
SUEHrUIINE CHATBI X( SPC1 WNAME. v T,CBIG,rE FT,FIIE)

C.IT CREAUiS AN 0-D MIRTIX OF EGYPT'S 24 ZONES

RkLAL N!P(24) ,UAN!1 ,NAME2,NAMiL(1) ,SFCI (1),CCD(3 C,30)
IN'TEf FILE

DATA NM/*ALLX',*D~Ib,ETI,OFS',IILK',OTANTG,SIKV,

3 'ASWN*/

Do 40) J1I,N

NAME1=NAKIE( DEST(JQ

U0 31 1=1 ,N
IF(NM(1).NE.NAMIE1) CC TO 2n,
IC=T
GO TO 3n~

20 IF(IN(I).NE.IiAME2) CC TO 3r
ID=I

30 CONTINUE
CoD(I1iID)=sPCl (J)

'go CON'TI NIlf:



C
C WRITE IHE O- MHATRIX CREATED ABOVE
C

WRITE(FILE,12U) (NM(I),I=1,13)
120 FORMAT(IX,4X," 1' ,2X,13(A4,4X)/' FEC1 ,104(' '))

DC 140 I=1,N
WRIT:('ILE,13C) NM(I),(COD(I,J),J=1,13)

130 FOEMAT(1X,A4,13F8.3)
140 CONTINUE

N1=N+1-14
WRITE(FILE,16J) (NHM(I),I=14,N)

160 FCRMAT('1C-D MATRIX (CCNTINUEr)'//
1 5s,<N1>(4XR4)/1X,102( -'))

DO 170 I=I,N
WEITE(FILE,180) NM(I),(COD(I,J),J=14, N )

180 FCHMAT(IX,A4,<N1>F8.3)
170 CCNTINUE

RETURNDN
END



APPENDIX B

THE MULTIMODAL COMPOSED NETWORK

OF EXPRESS, LOCAL, BUS AND TAXI; AND

INPUTS TO LINK USER COST FUNCTIONS
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B-1

* COEFFICIENT OF LINK COST FUNCTIONS:

C1 = value of time x average travel time per km.

C2 and C3 are constants.

C4 = Per km tariff.

value of time x loading delay + entry charge

5 value of time x unloading delay

* IDENTIFICATION OF MODAL NODES:

Each node has a 4-character name, the last two indicates the mode as follows;

LT = Local train

ET = Express train

EB = East Delta Bus Co.

WB = West Delta Bus Co.

MB = Middle Delta Bus Co.

UB = Upper Egypt Bus Co.

TX = Taxi
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IROBLEM DEFINIICN:

LINK DATA: COST=C1*LENGTH+(C2*(FLCW/CAPACITY)**C3)+C4*LENGTH+C5

LINK

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3 r
31
32
33
34
35
36
37
38
39
4 1
41
42
43
44
45
46
47
48
49
50

FRCM

AXLT
ONLT
AXLT
DRLT
DRLT
ONLT
QNIT
KSLT
KSLT
S N LT
SNLT
DTIT
SNLT

NKLT
MRLT
MKLT
MHLT
ONLT
MHLT
DRIT
EB L I
EBIT
KZLT
KZLT
TTLT
TTLT
MHIT
MIILT
ZTLT
MRLT
AKLT
AKLT
ZGLT
ZTLT
ZGLT
ILLT
ZGLT
BHLT
ZGLT
BH LT
ZT IT
TTIT
ZTLT
TT LT
BHLT
TTLI
SKL
KZLT
Mr i,1I

TC

QNLT
AXIT
DEIT
AXIT
ONIT
DRIT
KSIT
QOIT
SNIT
KSIT
DTIT
SNIT
KRIT
SNIT

NHIT
MKIT
MHIT
QNLT
EBIT
DEIT
KZIT
.21Tt;VIT
TTLT
KZIT

TTIT
7.TIT
M }IT
AKIT

ZCIT
AKIT
ZGIT
ZTIT
ZGIT
ILIT
ZGIT
b LIT
ZTIT
BliIT
ZTIT
TTI IT
8! IT
'IT L r
SKIT
TT IT
MFIT
KZ1T

51 I4BL 11IT

IENCTH

121.68
121.68

60.69
60.69
42.6 1
42.60
17.96
17.96
63.05
63.05
40.77
40.77
23.82

25.36
25.36
13.23
13.23
30.58
30.58
25.21
25.20
11.84
17.84
17.76
17.76
14.42
14.42
30.49
30,49
47.54
47.54
23.OC
23.00
29.92
29.92
78.32
78.32
35.00
35.30

33.16
33.76
26.29
26.29
41.41
41.40
28.13
28.13
49.07
49.07

119.5 1

CI C2 C3 C4
------....--- --------- --------- 

0.00431 0.10000 20,00000 0.00190

0.00431 0.10000 20.00000 0.00190
0.30215 0.10303 20.00000 0.00190

0.0021 5  C.10030 20.C0000 0.06190
0.0P538 ..10000 20.00000 0.00190
0.00538 0.1000n 20.0000 0.00190
0.30538 0.10000 20.00000 0.30190

0.053b 0.10300 20.00000 0.0019C
0.00538 0.10000 20.00000 0.00190
0.01538 u.10030 20.00000 0.00190
0.00355 0.10C00 20.00300 0.00190
0.00355 u.10000 20.00000 0.00190
".00355 0.1000U 20.00000 0.00190
C.00355 0.10090 20.0000 0.00190
0.00215 0.10001 20.00000 0.00190
0,00215 0.10000 2C,0000 0.00190
0. 215 0.10000 20,00000 0.00190
0.00215 0.10000 20.00000 0.00190
3.00538 ..10M00 20.00000 0.00190
0.00538 0.10C00 20.0000 0.00190
0.00215 0.10000 20.00000 0.00190

0.00215 0.10000 20.00000 010O
0.0u215 C.10000 20.00000 0.00190

0.00215 0.10LOO 23.00000 0.00190
0.00215 0.100O0 20.00000 0.00190
0.00215 0.10000 20.00000 0.00190
0.a0215 0.10300 20.00000 0.001 0
0.0u215 0.10CO0 20.00000 0.00190
0.00323 0.10000 20.00000 0.00190
0.0C323 V.1003 20.00000 0.00190
0.00538 0.10200 23.00000 0.00190
0.00538 3.13030 23.00000 0.00190

0.00538 u.10C, 20.00000 0.00190
C.C0538 0.10000 2.00000 0.00190

0.00355 0.10300 21.00000 0.00193
0.00355 0.10C00 20,00000 0.00190
0.00215 0.100u 20.00000 0.00190
0.00215 0.10 00 20.00000 0.00190
0,00215 0.10JJ 20,P0000 0.00190

.j3pl15 0.10000 22.0000 0.00190
0.i0538 JlutJ0 2.00000 0.00190
C,.0538 -. 1000 2r.00000 0.00190

0.;0355 w.lu00 2,00000 0.00190

u.J355 0.10:30 2 .00000 0.00190
3 J0215 (.1 0U0 2J. rO0 0.0010
0.00215 6.10000 220.0000 0.00190
0.00355 3.10J00 2S.00000 0.00190

C.C355 6.1001t 20.0000 0.00190
0.00538 6.10000 23.30000 0.00190

0.00538 0.10000 20,00000 0.00190

0. P6355 .10 L0 1 20.00000 0.00190

C5

0,3M226
0.3'226

0,15389
0,1389
0.0P744
0.O0744
0.04575
0.04575
0.12591
0.12t91
0.11892
0.11892
0.11291
0 .1 291
0.00793
0.00793
0.02099
0.02099
0.0(645
0.06645
0.05596
0.05596
0.0 847
0.0 847
0.00997

0.02099
0.0(645
0.06645
0.13990

0.13990
C.04897
0.04897
0.0 '744
0.08744
0.156
0. 1 5d6
0.0c094
0.30094
0.05246
0.35246
3.05946
C .0'946

3.0-394
S.0c 394

0.06296
U0.0t)96
0.09793
0.00793
0.3 " '2 7

CAPACITY

8208.00
8208.00
8208.00
8208.00

27360.00
27360.00
27360.00
27360.00

21888.00
21888.00
16416.03
16416.00
19152.00
19152.00
35568.00
35568.00
41040.00
41q00.00
32832.00
32832.00
13680.00
13680.00
13680.00
13680.00
13680.00

13680.00
68400.00
68400.00
2736.00
2736.00
32832.00
32832.00
383C4.00
38394.00
27360.00
27360.00
19152.00
19152.30
24624.00
24624.00
24624.00
24624.0
27360.00
27360.33
136 0 00
13680.00
38304.00
38304.00
218b .00
21 H6.00
136fO 80.07



52 IBLT EBIT 119.57 0.03355 0.10C00 20.00000 0.00190 0.32527 13680.00

53 SKLT KFIT 13.56 0.00355 3.10600 20.00000 0.00190 0.05246 38304.03

54 MFLT SKIT 13.56 0.90355 0.10300 20.0000 0.00190 0.05246 38304.03

55 FI.T BHIT 26.85 0.00538 0.10000 20.C000 0.00190 0.05946 27360.00

56 BIILT 4FIT 26.85 C.30538 3.1000 20.000 .00190 0.0'46 27360.00

57 BHLT OQIT 33.87 C.00215 0.10uO0 20.00000 0.00190 0.07345 16416.00

58 OBLT BIT 30.37 0. 0215 '..1OCJ 20.00000 0.00190 0.07345 16416.00

59 MFIT 01T 51.38 3.00355 0.13000 20.00000 0.00190 0.14690 30096.00

60 QBLT MFLT 51.38 C.0355 0.10000 23.C00000 0.00190 0.14690 30096.00

61 OBLT CRIT 14.14 C.J3215 G.10009 2G0.0000 0.00190 0.07847 98496.00

') 62 CELT QEIT 14.14 0.00215 C.10300 20.00000 0.00190 0.0'"47 98496.00
63 IBLT CHT 3.26 0.00215 0.10300 20.00000 0.00190 0.0?448 30096.00

64 CbEL IBIT 3.28 0.0215 0.10000 20.0000 0.00190 0.02448 30096.00

65 IBIT GZIT 9.67 0.30215 n.10000 20.00000 0.00190 0.03847 21888.00

66 GZLT IBIT 9.67 0.30215 3.10c09 20.00000 0.00190 0.03847 218b8.30
67 GZLT WTIT 79.03 0.00215 0.10030 20,00000 0.00190 0.1936 10944.00

68 WTLT GZIT 79.035 .00215 0.10000 20.00000 0.00190 0.1c;,36 10944.00

69 WTLT BSIT 31.95 0.0u215 0.1OCU0 2C.00000 0.00193 u.07345 16416.00
70 BSIT WTIT 31.95 0.03215 0.1000 2.00000 0.00190 0.07345 16416.00

71 WIT FMIT 37.74 0.r. 355 0.10000 20.0003 0.00190 3.0 044 5472.00

72 FMLT WITLT 37.74 f.,90355 0.10001 20.00000 0.00193 0.0Ce44 5472.00
73 BSLT KNIT 122.73 0.30215 0.10000 20.00000 0.00193 0.27980 10944.00

_3 74 MNLT BSIT 122.73 0. 021b 0.10l00 20.00000 0.00190 0.27980 10944.00

75 MNLT ATIT 128.37 0.03215 0.10030 20.00000 0.00190 0.2+581 13680.00
76 ATLT MNLT 128.37 C.0215 0.10030 20.00000 0.00190 0.26581 13680.00

77 ATLT SGIT 91.95 0."215 0.10303 20.00000 0.00190 3.3'079 19152.00

78 SGLT ATIT 91.95 0.00215 0.100GO 20.00000 0.00190 0.3"079 19152.00

79 SGLT QEIT 141.59 0.03215 0.10000 2o0.0000 0.00190 0.46167 136E0.00

0 80 QELT SGIT 141.59 C0.,0215 0.lOuOO 20.00000 0.00190 0.46167 13680.00
81 QEL ANIT 270.22 0.00215 0.10000 20.00000 0.00190 0.6^955 82C8.00
62 ANLT Ok.T 270.22 0.0121.5 0.10000 20.00000 0.0019 0.62955 8208.00

S3 QBLT ZGIT 26.94 0.V 53& 0.10100 20.00000 0.00190 0.15039 21888.00

84 ZGIT QBIT 26.94 c.u053e 0.10c00 20.00000 0.00190 0.15039 21888.00

87 ALEX AXIT c0.0 C.13000 0.0C0o 1.00CG000 0.00000 0.26483 1.00

88 AXLI ALEX 0.00 0.00000 0.3c000 1.00000 0.00000 0.09793 1.00

89 DMHR DRIT 0.03 0.00000 O.JO0O 1.00000 0.00003 0.2(483 1.00

90 DRIT D. 0. o0.00000onoo 0.00000 1.00000 000000 .070000 0 93 1.00

0 91 EIYR ELIT 0.00 0.30000 0.33000 1.00000 0.00000on 0.33478 1.00

92 EULT iTYB c.0c r.3L0000 C.jo0o0  1.00000 o.no000 0.16788 1.00
93 KFES KSIT 0.01 0.00000 0.000 n  1.00000 0.00000 0.27882 1.00

94 KSLT KF1S 0.00 0.060000 0.uOuO 1.00000 0.00000 0.11192 1.03

95 MHLK MKIT 0.00 0.000C 0.0000i 1.00000 0.00000 0.16690 1.G00

96 MKL MHILK 0.00 0.C%,0~ 0.0000 1.00000 0.00000 0.01400 1.00

S97 TANT TTIT G. , 0.00000 0.C0010 1.00000 0.00000 0.1'48 1.00

98 TTLT TAhT 0.u00 C.00C 0 .00900 1.o00o0 0.00000 0.02798 1.00
99 SHKM SKIT 0.0 .00000 3.00130 1.00000 0.00000 0.00000 G.22= 6 1.30

100 SKIT SHK1 0.00 .00n30 0.u0"U 1. 00300 0 00030 , 0.0596 1.00

101 RNHA BHIT O.J C.00000 O.GCuo 1.00000 0.00030 0.1c468 1.00

102 BHLLI BNtUA 0.00 L.,000 0.00000 1.00000 0.000003 0.0?798 1.00

103 CAIR CEIT 0.90 0.000000 0.O0c03 1.000 0.C000O .2 P67 1.30

104 CRLT CAIR 0.03 0.-00 0.60030 1.00003 0.00000 0.04197 1.00

105 ZGZG ZCIT 0.0 0.;00000 0.0,O0 1.00000 0.00000 0.22286 1.00

106 ZGIT Z7GG .3 0.00001 O.0000 1.00000 0.00000 C,.0 '96 1.00

107 AEKE AKIT 0.33 0 c.0000 0.oG 0 1.0000 0.n0000C 0.2 * 7 1.00
100 AKLT AFYR 0.0 :0 .03000 3.0C0 v) 1.000O0 0.00000 0.04197 1.01

109 V NZ MhIFIT 0.3 n  , 000 0.uJ :a 1.00000 0.00 10C0 3.2(43 1.09

113 hT7 MhF1 0.00J r0.000 0 ;.lc 0000 1.00000 0 0.000, 0 0.0C(73 1.63
111 SIIkF SNIT 0.30 c.O00 0.G0f,"2 I .CC 00 0.00000 0.2?2b6 1.00

112 SNLT SIIFP 0.00 0.0000?C .OCC 1.00000 0.00000 0.01596 1.00

113 DMIT DTITlT .00 C0.00000 0n.u003 1.000000 0.0000 0.1,089 1.00
114 1)T T i)MIT 0.rl0 0 ol.0Lfl l UI.00JU 1 .00000 0.00000 0.01400 1.00



115
116
117
118
119
129
121
122
123
124
125
126
127
128
129
130
131
132
133
13.4
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
153
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
1 )C

PRIS
PSLI
ISML
ILLT
FYU1A
FMHLT
BSWF
BSIT
HNIA
KNIT
ASYT
ATLI
SIHAG
SGLT
QENk
QELT
ASWN
AN LT
AXET
DRLiT
DRET
QbET
DRET
EBFT
rBLT
KZLT
KZET
TTET
TTET

MHET

ONLT
QN ET
KSET
KSET
SNET
SNtT
DTET
SNET
MRET
1KET
MRET
nHET
MKET
MR FT

AKLT
PSET
I LET
ZCET
AKZ
ZGET
ILET

TTET

SKE

PSIT
PRIS
ILIT
ISPL
FMIT
FYUM
BSIT
BS F
MNIT
NIA

ATIT
ASYT
SGIT
SH AG
CEIT
(ENA
ANIT
ASUN
DPET
AXET
UNET
DRET
EBET
DPET
KZET
£BiT
TTrT
KZFT
MHET
TT ET
QNIT

KSET
ONET
SNkT
KSET
DTET
SNET
MBET
SNFT
MHET
MKkTMKET

MHET
AKET

ILT
PSET
AKETZGkT

ILET
ZGET

ZG T
bh r

SKET

(:htT
S K kT

0,03

0.00
0.00

0.90
0,00
0.30

0.00
0.00
0.00
0.03
0.30
0.0 1
0.00
O.O0

60.69
6C.69*
42 .60
42.60
25.20
25.20
17.84
17.84
17.76
17.76
14.42
14.42
30.58
30.58
42.60
42.6)
63.05
63,05
40.77
40.77
23.82
23.82
25.36
25.36
13.23
13.23
47.54
47.54
77.94
77.94
23.00C
23.0:
76.32
78.32
35. 00

35 .00
41.43

28.13
2J.13

13.56
%1 . P

0.0090 0

0. 0000
0. 30000
0.5C00

j. 0O0,0300O00
3.000

0,.00000

0.9000
0.00000
0.00300

0.f0000

U. 0000

. 0.000
C.00200
0.000002

0.00200

0.00200
0.00200
0.0o200

0.00200
0.0200
O.020 C

0.00200
O. 0S5202
0. C00 502
0.03502
00 05020. 0502

0.00334
C.r0334
0.00334
0.n00334

0,00200
0. 0 0200
0. 0200

0.00502
0,00502

.n00200
0.09200
T .0502
0.0502
0.00200
0. 200

0.' 20
.,20 

S. n 0 
c.10000
0.0200
0.':0 i334
0. 040r. 134

0. 033
. 10 034

r . 615 0

0

0
M)44

0.0000
0.00100
0. 0000

9.OOrOOu
C.00030
0.00000

0.000000. 0 0i00

0.00000

0.0 0C0 0
0.000 30.000000.0000
0.00000.0003O0.10000

0.1000

0.10000
0.10000

0.100 u0. 1OCOn

0.100000.1 000,
0.10009

0.10 000.1 0000

0.100000.1000C0.100000.10000
0.10000
0.1 000.10003
0.10 3ao
u.10 0 0

O.1Or00
0.100
3.110 CO
0.1 OitJ

6.1000 9

SO.1006.100

0.10009
a.100u j
u.1 (GO
0.1033
0.10200o

.l 0 a n
n.lO0,

0.10030

J.I100

1.0000
1.90000
1.00000
1.00000
1.00000
1.00003
1.00000
1,00000
1.00000
1.0000
1.60000
1.00000
1.00000
1.00000

1.00000
1.00000
1.00000

1.00000
20.000
20.00000
20.00000
21.00000
20.0000
20.0000

20.00000
20.00000

20.00000
20.0000
20. 00000
20.00000

20.00000
20.00000
20.00000
20.00000

2n,*0000020.0000020.0000020.0000023C.0000

23.00000
2'.C0000
20.00300

20.00002.0o0000

21 .P000
20.00000
20.000
?21 0000

20.0000020.00000
20, 00000
20.no00000

20.00000
;1. o0noo

0.00000
0.00000
0.00000
0. 00000
0.00000

0.00C00
0.00000

0000000
0.00030
0.00003
0.00000
0.00000

0,00000
0 00000 0
0.000000.00210

0.00210
0.00210
0.00210

0.00210
0.00210
0.00210
0.00210
0.00210
0.00210
0.00210
0.00210
0.00210
0.00210
0.00210
0.00210
0.00210
0.00210
0.00210
0.00210
0.00210
0.00210
0.00210
0.00210
0.002100.00210
0.00213
0.00219

0.00210
0.00210

0.00210

0.00210
0.00210
0.00219

0.30210
n.3021
0.3021C

0.0021 0
0.00210
0.00210

0.00210
0.00210

0.10488
C .02798
0.1 089
C.C1400
0.1488
0.02798
0.1 488
0.02798
C .22286
G.0'596
C.2!084
0 .0394
0.2 084
0.0&394
0.36276
0.1'586
0.27E62
0.11192
0.0(995

0.04547
0.04547
0.02798
0.02798
0.C2448
0.02448
0.02448
0.02448
0.01399
0.01399
0.01148
0.03148
0.02448
0.02448
0.0(995

C 04697
0.04970.04197

0.04897
0.0(995
0.(J995
6.01399
0,01399
0.0AF95
0.0 495

0.04897

0.04E97
0.04897
0.0995
0.0 S'95
0.04697
0.4897
0. 0(995
0.0tr95
0.04897
0.04897

0.02448
0.02448
0.0 296

1.00
1.00
1.00
1.00
1.09
1.00
1 .00
1.00
1.00
1.00
1.03
1.00
1.00
1.00
1.00
1.00
1.00
1.00

31920.00
31920.00

6080.00
6080.00
24320.00
24320.00
24320.00
24320.00
24320.00
24320.00
12160.00
12160.00
3040.00
3040.00
9120.00
9120.00
45(0.00
4560.00
9120.00
9120.00
9120.00
9120.00
9120.00
9120.00
9120.03
9120.00
4560.00
4660.00
4560.00
4560.03
4560.00
4560.30

7630.03
7600.90
16720.03
167120.0
27360.00
273h0.00
1520.00

1520.00
1520.03,
1520.00



476
177
178
179
183
181
182
183
184
185
186
117
188
189
193
191
192
193
194
195
196
197
198
199
20O
201
202
203
204
205
206
207
208
209
211
212
213
214
215
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
23 6
237
238

OBET
BHET
QBET

CRET
CRET
SSE'I
CHLT
IBET
IBET
GZET
GZET
BSLT
BSET
MNET
EN i T
ATET
ATEI
SGET
SCET
OEET
QEET
ANLT
ALEX
AXET

DR ET
ETY V
EBE'T
KFRS
KSET
MHLK
MKET
TANT
TT£T
SHIKM
SKiT
BNHh

ZGZG
ZGET
ABKB
AKET
MNSH

SNET
DMIT
DTET
PRTS
PS ET
ISPL
IL ET
SwLS
SSET
FYM .

BSw F
H SiT

MFET
OBET
BHET
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.2 SLTX
423 KTX
424 SLTX
425 SLTX
426 AKTX
427 SLTX
428 ZGTX
429 b.ETX
430 TITX
431 TTTX
432 ZG TX
433 TTTX
434 BtITX

) 435 TTTX
436 SKTX
437 SKTX
438 BH'IX
439 SKTX
440 DHTX
441 LBTX
442 DHTX
443 DHTX
444 GZTIX
445 DHTX
446 CRTX
447 GZT x
448 AXTX
449 CRTXo 450 BHTX
451 BHTX
452 ZGTX

454 CRIX
455 ZGTX
456 AKTX
457 DIIX
458 PSTX
459 PSTX
463 ILTX
461 ILTY
462 AKTX
463 ILTX
464 ZGTX
465 ILTX
466 CRTX
467 ILTX
468 SSTX
469 SSTX
470 CRTX
471 CRTY
472 GZTX
473 GZ'IX
474 FMTX
475 GZTX
476 BST'I
477 FMTX
478 BSTX
479 BSTX
480 HNIIX
481 MNTX
482 TTI'X

MRIX
SLIX
MKIX
AKIX
SLIX
ZGTX
SLIX
TTIX
EEIX
ZGIX
TTIX

TT'IX
SKIX
TT'IX

SKIX
D II X
SKIX
DH IX
EBIX
GZTIX
DHIX
CRIX
DHIX
AXIX
GZIX
BHIX
CR IX
ZGIX

CGIX

AKIX
ZGCIX
FS'IX
DTIX
ILIX
PSIX
AKIX

ILIX
SSIX
ILIX
CR'IX
SSIX
GZTIX

FMIX
GZIX
SS IX
CZ'JX
ESIX

M 'I X
MN'1 X

20.20
32.00
32.00
30.00
33.03
30.70
30.70

39.00
39.00
55.00
55.0)
43.03
43.00
26.00
26.00
26.00
26.03
39.50
39.50'
100.70
100.70
29.0C
29.00
26.00
26.00

173.50
171.50C
47.20
47.20
35.00
35.00
77.20
77.20
25.50'
25.b~
63.00
63,.00C
76.00
76.01
70.5 3

81.00
81.00

123.50
123.50
89.00
8 9 .' C

133.53
133.53
1P.30

91.52
97.51

118.5J
11t.5 i

4 3.0 r

130.00
130.00
135.50
135 .1 0

0.00224
0.10185
C.0 0185
0.00224
0.00224
0.00176
C030176
0, 0168
0.001668

0.002 240.00224

0.00168
0.00224
0.0i0224
0.00195
0.00195
0.00224
0.00224
0.00176
0. 30176
C.C0224
0.00224
0.00224
0.30224
3.00185
C 0.0185
0 00168
0.00168
0.30224
0 C0224
0.30224
1. (0224
0.03224
C. 3224
C. 0224
0.:0224
0.00176
6.00176
0.30224
0.00224
0.03168
C. 3166
0.00176
0.00176
S. 0224
0.00224
0.00176
3 .* 17f6
0. 0419
0.0'419

0 .11760. -0176

C.00176C. C17h6C 0 00176

.C 0176

0.30176
C.CC17(,

0.10000
0.10r o
OdOCOu
3.10003
0.100 a
0.10000

1. 0000
0.10600
C.1000 0
0.10031'
0.10000
0.10000
0 .10000
,.10000
0.10000
0.10030
0.10000
0.10000

0.1 ,130
0.10000
0.10000

0.1u004
0.10000
0.10c000
1 .1 0u03
0.10300
0.10300
0.10C0
0.1O 000
0.10 30
O.1 OG00

0 . 10000
0.1 0 C I
C.1003

0.1 0' 0

0.1 00 o

0 10160
0.13000
0.1000)
J.10 3000

3.1033

C.1 0 0
0.1 0 V, u

0.10330

0.1 OCO

F .1 0 ", o1
I.1 I U

20.00000
23.00000
20.C0000
21.00000

?0.0000020.0000
20.00000
20.00000

20.0000020.nOOCO
20.00000
2u. (0000
26.00000
20.00000
2C.00000
20.00000

20.00000

20. C000

20.00000
20.00000
23.0COOD
20.00000
20.00000
29.00000
20.00000
2C.00000
20.00000
20.00000
20.00000
20.00000
20.00000
20,00000
20.00000
20.00000
20.00000
20.00000
20.000000
20.00000
2u. 00000
20.00000
23.00000
20.00000
20.00000
2,.00000
20.00000

23.00000
20.000009 .0 000

20.0000

2n.00000

20. 9000

2 .C0000020.0000020.0000020.C00000
2P.COOO
?2. 00000

21.(0000

0 .0675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.006715
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.00675
0.006,75
0.00675
0.00671.
0.1067h
0.006, 7
0.00f75k
.00 no i

0.00000
0.0('000

0.00000

0.000000.00000

0.0 C00
0.0100co
0.O0CO
0.01000
C.01C00
0.04290
C.04290
0.0 000
0.0300
0.0;1900

0.0'0000.3 "00

0.0C000
0.0 r00
0.0C200

O.OF200
0.07000
0.07000
0.37500
0.37500
0.21300
C.21300
0.0r 000
0.0 000
0.07000
0.07000
0.0 "000
0.0" c00oo
0.0 000
0.0,0000

O.O0r0000.0r000

0.0000
0.0 000

0.20000

0.26800
0.0'100
0.0 ,006

o.OrlOO
0 0 C 100

C 0 000
0.0 000
G.1 150
0.1 150
C.21750
0.21750
0.0 V 03
0.0 f03

0.0'000
0.0 000

0.1'00 o

4892.00
5000.00
500000
4892.00
4692.00
7688.00
7688.00

31683.00
31683.00
4692.00
4892.00
31683.00
31683.00

4892.00
4892.00

18010.03
18C000.00
4892.00
4892.00
5172.00
5172.00
4892.00
4892.00
4892.00
4892.00
5000.00
5000.00
31683.00
31683.00
4892.00
4892.00
4892.00
4892.00
4692.00
4892.00
4892.00
48 2 .00
7688.00
76o.n0
482.Pn
4892.00

31683.00
31683.01
7668 .00
7688.00
4592.C3
4692.00
7688.33
7686.10

13978.31
13" 7 .00

768o.00
7698.00
768.00n
76P8.00
76F8.00
7688.1 ')
6430*00
6430.00
5177 .00
51 ?. 00



,83
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
509
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
51d
519
523
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

ATTX
SGTX
SGTX
ONTX
QNTX
ANTX
BHTX
ARTX
ALEX
AXTX
DMHR
DRTX
ETY2
EBTX
KFRS
KSTX
MHLK
NKTX
TANT
TTTX
SH KM
SKTX
B13 I
HHTX

CAIN
CTX
ZGZG
ZGTX
ABKEF
AKTX
MNSY
MBTX
SHh?
SNTX
DMIT
DTTX
PRTS
PSTX
IS1L
ILTX

SSTX
FYUr
FMTX
BSWF
BSTX
HNIA
NNTX
ASYT
ATTX
SHA G
SCTX
Q ENA
QNTX
A SWF
ANTY

SGTX
AT IX
QliNTX
SGIX
AN IX
QNIX

BHIX
AXIX
ALEX
b'IX

EbIX
ETIB
KS'IX
KFES

MHIIK
TIIX
TANT
SKIX
SHKM
BH'IX
BNHA
CR'IX
CAIR
ZG'IX
ZG2

ABKH
MRTX
MNER
SNIX
St!EB
DTIX
DH IT
PSIX

ISLI

SSiX
SWES
FM1X
k YU'M
BSIX
ES6F

ATIX
ASYT
SG'IX

ANIX

ASkN

95.00
95.00
141.50
141.50
271.33
271.003

75.22
75.20

0.01

0.00

0.000.03

C.00
0.00

0.0
0.00
O.00

0.000.03

0.000.030.00
0.00
0.00O.00

0.00

0.00

0.00
0.00
0.00
0.00
0.30
0.00
0.00

0.00
0.30
0.00
0.00

0.00
0.0)

0.000.00

0.30

0.030.00
0.00c a 0
0 *;j
0 u 1

c 1 0

0 0176
0.00176
0.00176
C 00176
0.00185
0°00185
0.00176
0.30176
0.00000
G * 300000.30000

0.00000
0.0000
0. 00000
0.00000
C0000
0. 0000

c.00300
C.00000
c.a00000
0.00000
0.30000
0.0000

0.00000
0.JUOOC0.00000
0.00300

0.o000o0.00000 u 00000
0 00000
0.00000
0.00000

0.00000.0 0000 .00 0
0 00000

0. 00300
0. 0000
0. v a0 0

.n00000
0. 00000

0.3000

0.00100

0.10000

0. 0000

3. 000
0. 000C00

0.1000
0 . 16000 0
0.1000
0.10033
0.10000
0.10000
0.10400

0.03(03

0. 0000 00.00000
0.00000
0.00000

0.00000

0.0300400.O000

0.0000
0.30000
O.030J0

0.00000
0.OOOO00 li00000
3.000000. 0 0000

0.0 0 00
0.00000
3.002000.00 0300. 000 0

O.OOC O(.001.00
0.00000
0.00030
0. 0 0 03
0.OC00
0 1 00 00 0
0.O3000

0.0 0000
0 . 00000.OOLOO

0.0000
0.00.00000.00,0300. 0 0LC
0.00000

0.0000
0. 00 03

0.000

0.300Of0

20.00000
23.00000
20.00000
2n.00000
20.0O0000
20.0000
21.00000
20.00000
1.*0000
1.00000
1.00000
1.00000
1.00000
1.00000

1.00000
1.00000
1,00000
1.0000
1.0000

1.000001.00000
1.000001.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.C0000
1.000001 I 0000

1.00000
1 .00000
1.00000
1.00000
1.00000
1.00000
1.00000
1.00000

1.00000

1.03000

1.00000
1.00000
1. 00000
I . 00000
1.00 00

1. 0000

1,000601.30000
1 *Cr 0 0
I aOOCO

61.0675
0.00675
0.00675
0.00675
r.00675
0.00675
C.00675
0.00675
0.00000
0.00000
0.00000
0.0000
0.00000
0.00000
0.000000
0.00000
0.00000
0.00000
0.00 000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
3.00000
0.00000
0.00000
0.00000
0.000000
0.00003
0.00000
0.00030
C.00000
0.0000Q
0.00003
0*00000
0.00000
0.00q00n
0.00000
0.000000
0.00003
0.00003
0.00000
0. 0000
0.00000
0.00000
C.0003
3.00000
0.300001
0.00n00
0.N 0 nOC

0.0r000
0.0 "000
0.0 r0 00

0.0'000
0 .0'L00
C.Or030
0. 0 00
0.01000
0.24793
0.00793
0.24793
0.09793
0.31788
0.1F788
0.2(192
0.11192
0.16399
0.01399
0.17798
C.02798
0.2P596
0.0r596
0.17798
0.0.2798
0. 1 97
0.04197
0 .2596
0.05596
0.1 C 197
0.04197
0.24793
0.0973
0,2 596
0.0596
0.1633
0*01399
0.17798
0.0?798
0.1f399
0.01399
0.17798
0.02798
C.17798
C0.0798
0.2"596
0.0596
0.27f91
0.12591
0.23394
0.0' 3594
0.27394
0.C 394
0 .34 ~86
S. 1-986

UJ.2( 1 2
C 11142

6430.00
6430.00
7688.00
7688.00
5u00 .00
5000.00
5172.00
5172.00

1.00
1 .00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.001.00

1.031.00
1.00
1.00

1 .0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.03
1.00

1.00



APPENDIX

DATA FOR CALIBRATING

DEMAND FUNCTIONS
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BASE YEAR :AIL PA:SEN'GEt 1F 0-D MATRI:"

SEMI-GOVEFNHORATE ZONIES

CAI GIZ QAL SKS SKII lIKE DKW DAM PT

ZONE 1 2 3 4 5 6 7 8I

II
IIII
I
I
I
-I

1
2
3
4
5

e.7

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

I I

EHS BHN ALX HDS SIN FY EES MYA ASY NEW St.H QEN ASW RED ZO iiL

16 17 18 19 20 21 22 23 24 25 26 27 F" F FD0 '

114 122 783 9 0 133 246 103 130 0 50 55 29 0

6 6 39 0 0 11 31 8 8 0 3 3 2 0 5

8 11 40 1 0 6 9 5 7 0 3 3 2 0 34 "

12 17 64 1 0 7 10 7 10 0 4 5 3 0 ":1

3 4 16 0 0 2 2 2 3 0 1 1 1 0 495

12 17 58 1 0 4 5 5 7 0 3 3 2 0 1583

'7 15 51 1 0 3 4 4 6 0 2 3 2 0 1157

5 10 42 1 0 3 4 4 6 0 3 3 2 0 737

8 0 2 0 0 0 0 0 1 0 0 0 0 2

6 11 43 1 0 5 7 6 10 0 4 5 3 0 792

1 1 7 0 0 1 2 1 2 0 1 1 1 105

32 34 114 1 0 . 9 13 9 13 0 5 6 3 0 0

138 104 248 2 0 11 16 13 18 0 7 9 5 0 . 4

11 14 43 1 0 2 3 3 .4 0 2 2 1 0 114.

25 218 191 1 0 4 5 5 8 0 3 4 2 ~ 1626

124. 74 82 1 0 2 3 3 4 0 2 2 1 6 6

74 124 678 2 1 3 5 4 7 0 3 4 2 0 14?:

82 678 8 29 1 18 23 24 40 0 17 21 12 0 26'

1 2 29 0.. 0 0 1 1 1 0 1 1 0 57

0 1 1 0 0 0 0 0 0 0 0 4

2 3 18 0 0 444 67 12 12 0 4 5 2 0 77

3 5 23 1 0 67 16 42 19 0 6 6 3 0

3 4 24 1 0 12 42 987 2.33 0 25 17 0 156

4 7 40 1 0 12 19 233 992 0 321 77 22 0 191I

0 0 0 8 0 0 0 0 0 0 0 0 0 0

2 3 17 1 0 4 6 25 321 0 2078 209 17 0 277

2 4 21 1 0 5 6 17 77 8 209 114 9?7 0 6"

1 2 12 1 0 2 3 7 22 0 17 97 341 0 564
o o o o o o o o o o o

257

tTTR
I

I

I

4

I

t

-q . 7 -- : t :-1 1.,- ? I -- t ' - , . .n I c .. 7 1 . :
. 1 1 " :

136

2402
662
95

186
104
87

7
212

50
1011

813
120
158
114
122
7S3

9
0

133
246
108
130

0
5 0

29
0

136 2402 662 95 186 104 88

36.. 144 25 4 8 5 4

144 1-07-. 172 11 25 9 7

25 172 89- 109 85 25 16

4 11 109 ?.-, 67 18 8

8 25 85 67 17?- 242 50

5 ? 25 18 242 2 .9- 117

4 7 16 8 50 117 2455

8 0 1 0 1 0 0

10 20 175 14 22 13 11

2 2 3 1 2 1. 1

36 285 92 14 48 25 17

34 147 177 27 246 33 42

5 13 23 11 278 108 19

8 14 25 7 42 71 27

6 8 12 3 12 7 5

6 11 17 4 17 15 10

39 40 64 16 58 51 42

0 1 1 0 1 1 1

0 0 0 8 0 08

11 6- 7 2 4 3 3

31 9 10 2 5 4 4

8 5 7 2 5 4 4

8 7 10 3 7 6
0 0 0 0 0 0
3 3 4 1 3 2

3 3 5 1 3 3
2 2 3 1 2 2
0 0 0 0 0 0

-C --. '-.7 W 71

5
1

3

S ISM SiU M IF CHS GHH -
9 10 11 12 13 14

7 212 50 1011 313 10 

0 10 2 36 34 5

0 20 2 285 147 13 1L

1 175 3 92 177 23 2

8 14 1 14 27 11

1 22 2 48 246 278 42

0 13 1 25 83 i08 71

0 11 1 17 42 19 2

9 6 0 1 1 0 1

6 82 13 29 52 10 14

0 13 8 3 4 1

1 29 3 1431 1628 4:3

1 52 4 162 .40 379

0 10 1 48 379 0 -

1 14 2 42 220 40 4
0 6 1 32 138 11

0 11 1 34 104 14 2
2 4e 7 114 248 43 .. "

0 1 0 1 2 1 1

0 0 0 8 0 a

0 5 1 9 11 2

0 7 2 13 16 3

0 6 1 9 13 :3
1 10 2 13 18 4 "

O 0 0 0 0
0 4 1 5 2
0 5 1 6 9 2

0 3 3 5 1

2 5 7 9 0 5 0 0 5 6 6 i il-iS.
i .,4.5 15 .0 13 c78e 57 3452 L271



BASE 'YEAR PUBLIC BUS FASSEl.ERS 1979 (I10)

SEM I-GC,''ERHtIFATiFE ZOHiE.

CAI GIZ QAL SKS SK.t DKE DK;i DAM
1 2 :3 4 5 6 7 8

FTS IS SUZ MIF GHS GrHII f-F
9 10 11 12 13 14 :5

-e
62
10
24
29
5

50
3
4
2
2
1

118
74-

9
19
48

7
11
0

01

0
0

0

o

ATTRP 604 3463 5957 137:3 -. 1919 597 160.3 70 307 275 1249 4;2 05 :

BHS BHN FALX WD $S SIN FA'Y EES MYA ASY NEW SOH C4Ettl AS14 ED Z:':-,RAL
16 17 18 19 20 21 22 23 24 25 26 27 28 29 P: I

40 21
8 4
5 3
3 2
1 1
9 8
1 1
2 2
1 2

e 1 1
1 1

10 3
48 7

1 1.
29 91
98 41
52 144
25 193

1 2
0 0
2 1
1 1

0 0
6 0
8 6
0 8

0 0
na. r

223
39

9
9
5

24
3
9
8
4
5

10
12
2

35
23

161

44
.1
9
8
3
2

1

1*
a

a

7 294 205 3
1 69 47
0 13 10
1 5 4
0 3 2
1 6 5
0 1 0
1 2 2
2 4 3
1 3 3
5 6 5
0 4 3
0 2 2
0 0 0
S 2 2
0 1 1
6 1 1
1 9 8
0 2 2

1 1

1 822 241r 10

0 18 72 119
0 5 8 11
0 1 2
0 1 1
0 1 2
a 1 1

m n .c .

9 13 3 4 5 4
8 3 1 1 1 1
2 1 0 0 0 C
1 1 0 0 0 0
1 0 0 8 8 8
2 1 0 0 1 8
0 0 0 0 0 0
1 ' 0 0 0 '3

2 1 0 0 1 0
1 0 8 0 0
2 1 0 8- 1
I " 0 0 0 0

1 0 0 0 0 00 0 0 0 0 0

1 1 0 0 '
0 I 0 0 0 0
4 4 1 1 1 1
i 7 1 2 2 1
4 :38 2 5 3 2
2 i2 109 10 3
3 10 6 2 2 1
3 89 1 297 76 2
3 10 1 1.02 1910 95
2 3 1 3 119 240
n n a A 2 1I

1
I
0
8

0

000
0
0

1

258

S2
3
4

S 5
6
7
8
9
14
11
12
13
14
15
16

* 17
18
19
28
21
22
23
24
25

26
27
28
"29

ZONE

4

7

1
3
2

51
5

2

1

012
1
1

0

'30i0
0
0
0
0
0

-------

737
209

372

350

427
• 30 ?

50?353

214

1440

32

4 ,

310
10

0.. 161 2311 401 54 153 15 30 68 65 144 293
191 31-.058 57 9 25 3 5 12 11 24 61
032 2821 64- 103 7 64 3 4 5 5 7 141
286 42 87 r 1:30 169 8 7 3 18 5 19

7:3 12 to 192 2 39 7 8 8 24 6 4
162 27 79 154 56 411 118 30 13 8 27
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A-4

Table (A-2 ) : Urban and Rural Population by Traffic Zone (in 1,000)

Zone
1976 1979 1983

-I

IUrban !Rural

Cairo
Giza
Qalyubia
Sharkia - N
Sharkia E
Dakahlia E
Dakahlia W
Damietta
Port Said
Ismaillia
Suez
Minufia
Gharbia S
Gharbia N
Kafer El - Shiekh
Beheira " S
Beheira .* W
Alexandria
Western desert
Sinia
Fayoum
Beni Suef
Minya
Asyut
New Valley
Sohag
Qena
Aswan
Red Sea

Total

5084
1379
685
408
122
536
119
143
263
174
194
337
438
328
291
83

570
2319

51
10

276
276
431
470
34

405
392
230
48

1039
989
1323
768
1515
563
414

178

1374
1097
431

1112
768

1096

62

864
833

1525
1225

50
1520
1314
390

8

-7- 5

16096 20555 i3

Total

5084
2418
1674
1731
890

2051
682
557
263
352
194

1711
1535
759

1403
851

1666
2319
113
10

1140
1109
2056
1695

84
1925
1706
620
56

6654

Urban

5687
1583
753
489
140
630
122
164
327
.228
263
387
503
377
334
116
655

2685
59

!Rural Total Urban iRural

- 5687 6267 -
1070 2653 1790 1143
1018 1.771 i 836 1090
1363 1852 203 1457
791 931 114 845
1560 2190 727 1667
580 702 123 621
426 590 186 455

327 418 -

183 411 313 197
388 651 376 -

1415 1802 437 1512
1130 1633 568 1207
444 821 426 474
1145 1479 378 1224
791 907 146 846

1129 1783 702 1207
- 2695 3112 -
64 123 67 68

317 890
317 858
495 1674
540 1262
39 51

465 1565
450 1353
264 402
55 8

18454 !21560

1207
1175
2169
1802
90

2030
1803
666
63

40013

359
359
560
610
44

526
510
299
63

950
919

1790
1347

54
1672
1446
430

9

Total

6267
2933
1926
1660
959

2394
744
641
418
510
376

1949
1775
900

1602
992

1909
3112
135

1309
1278
2350
1957"
98

2198
1956
729
72

20889 22630 43519

* Source : NTS, phase II, 1981

** Obtained by adjustment and interpolation of the NTS, phase II governorate

Figures.
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A-3

able (A- )

Zone P.C.

1659
612

1095
260
134
510
161
140
205
579
141
667
842
424
202
337
375
716
25
11

116
62
38
41
2
50
64
15
20

1979 Base Year Passenger Trips Per

Taxi

5612
2629
3665
1218
448

1795
611
568
738
1113
365

2377
1192
594
874
788
2136
2525
101
77

470
320
296
467
4

383
279
88
90

Bus

5161
2655
7264
845
458

1288
314
341
283
291
232
672
438
86

348
210
365
675
78
24

1149
1266
246
282
32

180
228
140
9

Total 9503 31823 25560 36267 103153

* Source : NTS, phase II, 1981.

** Intrazonal trips are excluded.

263

Day (x1O)

Rail

7823
542

3345
1730
421
1418
918
492
25

708
105

3520
4424
1142
1137
553

1368
2694

57
4

326
532
549
969
0

698
544
223
0

Total

20255
6438
15369
4053
1461
5011
2004
1541
1251
2691
843

7236
6896
2246
2561
1888
4244
6610
261

116
2061
2180
1129.
1759

38
1311
1115
466

119



APPENDIX D

INITIAL AND FINAL SOLUTIONS

WITH NO ACCOUNT FOR THE EXISTENCE

OF FLEET CAPACITY CONSTRAINTS

(NET3)

264



INITIAL SOLUTION

(NET3)

[Express train, Local train, Normal Bus and Taxi]

No account for fleet capacity constraints

in the SPND algorithm

265



LINK FRORM

1 AXLT'
2 O LT
3 AXLT.
it DRLT
5 DRiL
6 .hLT
7 QHLT
8 KSLT
9 KSLT

10 SNLT
11 SNLT
12 DTLT
13 SNLT
14 NhiLT
15 MKLT
16 MHR.LT
17 MKLT
18 MH'ILT
19 QNLT
20 MHILT
21 DE LT
22 EPLT
23 EBHLt
24 KZLT
25 KZLT
26 r'LT
27 TILT
28 MHI LT
29 MHiLT
30 ZTLT
31 N LT
32 AKLT
33 .AKLT
34 7.t;LT
35 ZTLT
36 ZGLT
37 TLLT
38 Z GLT
39 BH I.T
40 ZILT
41 BiLT
42 ZTL .'
43 TTLT
44 ZTLT
45 TTLT
46 BiHLT
47 TTLT
48 SKLT
49 K I.T
5' "; 'FLT
51 E i l.1
52 IBLT
53 SKI.T'
!4 I FL'I'
55 1FIT
56 ill I.T

U .

TO

rO. LT
AXLT
DPLT
AX IT
ONLT
DRIT
KSIT
ONLT

KSLT

StilTDTITS!II.TVELT
S : IT
F.P LT
SMKLT

M KLT
IILT

QNLT
CELT
KZLT

E PLT
TTLT
KZI.T

H LT
TTLT

MHLTZTLTMH LT

ZCLT

A K II'
ZGLT
7.TLT
Z;IT

1, LT

BiHLT

b H IT

1' F L
SIiLT'P ITTTLT
I i"LT
F: IILT

sK t L T

LL'GTH

121 6 cs

121.6d
60.69
6 U 6 119
42 60
42.60
1 1.9
17. 6
63.05
63.J5
40.77

40.17
23.8-2

25. 3$6
25.36
13.23
13.23

30.5P

25.20
25.20

17.84

17.76(
17.76
14.42
14.42
30.49
30.4 1

47,b4
23.J0
23. '

2 9 . 9 ?

35.0 r
S35.09

33. 1
33. 1

26.2,1
2 .2

41.4.

2o.17
2 .13

2 o. 7

119.57

26. '

CAIACITY

273Jbi.oc?'e 2 ,,e .0 f

21360.00

273$0.00

21, 6.00

164 16.0 r

16416.0t
19152.00
19152.00o

3556t'.00
41.40.00
410 4403
32 .52.*00
32 ki k2.00
136 i 0.00
136 0.00
136( '.00
1368J0.0C
136 0. 0
136 f o U O
68400.0(
6 ' 4 0 0 ( C

2736.00
?776 . 0

32, 3"2.00
32 32 *00
63 04 0 (
35.3 ,i!. O 'C
273(0 * 00
273-0.00
27 31(. 10 ia
19152 00
I U152 00
29(,?24. o

24t,24 . 0 C
24624. C
24624.0 L
273hL' .00
27.60 .'UC

1 36 :F .0 C

3j 304 .00

21 - '.Cc

21: rc ..
13r't C.C

134.3 1* 0 k5 .3 j4.0.

i LLvW 1:IIAL CCST

o.: 0 e , 3, 925.
C.J 3 . .:5"

0.,?0 0.35:13f
0.00 0.3136
C.uOJ .16967
0.J0 3.16967
C.UCv n.56095
0.0o? 0.56095

0.f30 0.l3JO20 .0,1 0.3392

O. o3 39.25677

C.00 •0.25677
J.De3 0.19683
0.000 0.19683
0.u 0 0. 0 7259
,. u , 0.07259
0.300 0.27745

. 0~.0r 0.27745
0.)nO 0.15424
0.000 0.15424
n.d0 0r.1fl05
0.C0~ 0.10805
10.00 0.19773
0.0no 0.10773
0.000 .9.07723
0. C 0, 3.07723

0. , j 0.21585
n•O. 3 F.•1585
V. ". 10.46793

0. 6 9 0.46793
C.j 0.20767

.0 , 2020767
,.1 u 0.24302

0.0 9 0.24302

0 .01u 0.53131
0.~" .50131

. 000 .22744

0.2.2040n. 0 r .H,40.r00 0,1 4 0617

0,.0 , n,. 94! 0
P, 's .2]4 24

U.') - . 9 4 1
0 .1! L1 C .24,11 1

0. ".2947 00. , 0 q470
,.:1J 7.122' 7

--11 1 0.914473

0 1IAL :3'L S[LIT kAND TrAFFIC ,i'!"F,:



IHL QBLT A0v7 164101. * 6&* i'(

'"T QBLT BLT 53.,47 14416.0 0 . o34
59 MFLT QO'LT 51.33 500 ,U 0. ", ,41408

60 OBLT tFLT 51.3" 3,u i.c a..arO, C.4- 1*6

61 Q'bLT CELT 14.14 964 .G. . .*0 .09 62

S62 WCLT ObLU 14.14 9i.3 .JJ 0 .f9*3162
63 I$LT C1htTT 3.2E 330 96. 0 C o, 00 J327
64 ZRLT I!-LT 3. b 30 )b O.0 0 .0 C 0. 3727

'. 65 IRLT GZLY 9*67 21 .' ° O.O , O a 03
,

66 ZT .LT •PI! 9.l 2 lt8.J t. r. u.) ..7ti

67 1ZL kTL, 7 T.V' 13944.J0 D0.o 0%P675

S6a JTLT GZLT 71,05 10944.0o 0 .001 0 5975.

69 WTLT BSLT 31.95 16416,00 c.o . 06

7') BSLT W TLT 31. 6 16416 .0; 000t1906

71 ATI.T FalT 37.74 5472.00 .000 ,.27664

72 PBLT UTLT 37.74 5472.00 U.5$7 0.27669

73 bSLT SLLT 122.7A 149 44.et Oj.0 ?l7i8450

S7' MNLT bSLT 122.73 1u944.00 C.tG6 -.7545

75 MNLT ATLT 12~.37 13660,0 0.000 .76645

76 ATLT HMLT, 126.37 13..4 8004a.. 0.765

77 ATLT SCIT 91.95 191 '2.0 0o.co 0.65-40

76 SGLT ATIT 91.45 19152.011 0.uC3 nA,,

79 SCLT (QELT 141.59 13680.0 0.91L' 1.91367

"O IELT SCIT. 141.59 136wu.00 0.01?u .0t3e7

1 LT ANL. 270.22 2u2 .l 0.00 1.60341

62 ANLT QLLT .27~.22 e2C ..0C 0.O D: 1,69S41

F3 0iHsT ZC.T 26.94 21C'.,CaJ 0.0)1 r.62
84 Z.LT OE,-T 26.94 21t t..00 '. o. 0a.:'62

87 ALEX AXLT 0. r 1.00 0.0" C.2664h5

8 AXLT ALEY V .c, 1.00 j.3( '09795

b9 DOMHR DRLT 0.00 1.0 0.00co 0.264O3

90 DRLT DYER 0.0u 1.00 0.0% 0.9f793

91 ETY4 Pri T ..0(: 1.00 0 . A. 7:

92 E LT LTYP 0.00 l.U .3.3 0 0.1678(

93 KFE3 KSIT 0.00Q 1. u ,p 0.27,e2

94 KSLT Fi F. 0.d 1.00 'V 0.11?

95 MhLK MFLT O.U; 1.0 C J130 P.f66it

96 HKLT P.dLK 0.00 1,0 0.000 0,01400

97 TANT TTIT 0.tC 1.0U :'.:

9d ITLT TA':T 9,.0 1.D "..., GN .7 h
93 SK N KT SK. . b ,, .1. 1.0 ,72 96

1 dO S KLT SEY. 0.-0 , 1.0L .* el 0,9tn,1V

101 tHNE. 0817 .0 1.00 L0', 7¢.,t .I py

102. PLT P' 1 ') 0 lb * 35279'

104 CHLT CL1i c.0 1.0f

105 ZGV, ZGLY Z6.1 1.0, e, PP? 6
10G6 ZGLT 2(,".- ,.? I. 0 cel U T11 ' 6
107 ABEl; AI(.T 0.0 1.0 .L. .2 'b7

I1 Alft.T k' , .' .P0 V .3 '.. 7

109 MNSv" E L' +.:' i.'t ' " "K . , '

1 E A.LT 14'; t. 0 1. ,. ,., o. l.r

111 SHiah S1.T 3.:, 1.0p ;t.t. ,.2?:. c

, 1lI b .'" (T' T *. : ,.(" I.. '. "' "*

114 VTLT blIa' 5.0' 1.0I 1. v %,'i

ilb PT k l? . 1.00 UL .J.t

114 F:.LT Pl" .1 *' .i .!! " i ''

1I 1 .1 hL A . LT .; I. 1. . ..

119 FYI M F,'I," . " I 1 0. io t '4 l t, v
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121
122
123
124
125
126
127
12ic
129
130
131
132
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134
135
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137
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139
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141
142
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145
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146
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FINAL SOLUTION

(NET3)

[Express train, Local train, Normal bus and Taxi]

This is the solution after 250 iterations

assuming no account for fleet capacity

constraints in the SPND algorithm
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121 BS4'F bL T t.l1 41.70 1 .7.? .194h -C. C

122 8S1.1 si.; , rI.'C AI. -j6 .1. , ?o' -I.'''

123 M 1I MiLT C.'G 25. 4 2.5 1 C.222 6 -0.3

124 tNLT MNIA . 47 .6b 4 73 .5,F4 0.59 .- -0.

125 .ASYT i~LT .1 .: .S ' 4 ,.

126 ATLr ASYT 0.DO 1 .12 1.11 .6'4 -C.c

127 SH .C SGILT .3.1 . u'' .?5( i;4 v .*
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176 QbF.T 1F F.+ 51.I , 6 J * 1,711 P,.47 P41 -0.
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EQUILIBRIUM RESULTS OF

NET3 AND NET4
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EAUILIBRIUM RESULTS

NET3

[ITERATION NO. 200]

* Express Train, Local Train, Norrial Bus and Taxi
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.OTPUT CF Thi M0)DEl: NET3

ITERATION NUV.BEE 200

THE OBJECTIVE VALUE IS
FRHEVIOUS VALLE IS WITHIN

-5641919.000
0o00 O OF THE CURPEV' ONF

THE %DIFFE ihCE IN FLOW BETWEEN LAST TWC ITERATIONS:
FCR 24 OUT OF 24 ORIGINE,
AND 551 OUT OF b52 O-D PAIRS,
AND 528 OUT OF 534 LItNKS.
IS WITHIN 5.GO PERCENT

NUMBER OF INhER ITERATIONS= 1
OPTIMUM STEP SIZL= 0.00038

TCTAL TRAVEL COST =
TCTAL TRAVEL DISTANCE

RCOTE MEAN SQUAPE ERRORS CF:
EQUILIBRIUM= 11.438
TRIP GENERATION= 0.289
TRIP DISTRIBUTICN= 7,8C2
MODAL LINK FIOWS= 9.949

528731.125
522"6160.00

LCGIT CONVERCENCE TEST:

IT CALCULATES TH. DIFFERENCE BEIWLjN PPEDICTED C-r DEMAND AND THAT CALCULATED BY A LOGIT MCDFL.

PREDICTIONS
PREDICTIONS
PREDICTIONS
PEEDICTICNS

)> PREDICTIONS
PREDICTIONS
PREDICTIONS
PBEDICTIONS

81
179
26b
3C'J
325
361
368
4 C9

OUT iUF
CUT CF
CUT CF
CUT CF
OUT iF
CUT CF
OUT CF
CUT CF

552 O-D
552 O-D
552 G-D
552 0-D
552 0-D
552 u-D
552 0-D
552 C-D

PAIRS ARE WITHIN
PAIPS ARE WITHIN
PAIUS ARE WITHIN
PAIRS APE WITHIN
P IiS ARE WITHIN

PAIRS ARE WITHIN
PAIPS AFE WITHIN

5%

20%
30%
40.4
60%
8 00:

OF THE
OF TPE
OF THE
CF THE
OF THE
OF THE
OF TrHE
OF TIHE

LOGIT MODEL
ICGIT MODEL
ICGIT MODEL
ICGIT MODEL
LOGIT MOrEL
LOGIT HMOEL
ICGIT MODEL
LCGIT MOCEL

THERE ABE ?Pf4 O-C PAIRS WHICH HAVI

AMCNG THE RE.AINING 143 0- PAIhS,

LESS TEAN ir0 'TIPS

95 I!IVL fRLDICTIONS L: SS TIIA' 130 TRIIS

RCOT MEAN SOUrkE EERCE PETIW'.rN MrUP.1 PFRIPCTTCNS AN ILOGIT:
TCTAL RM"'E= 527.295
WEIGHTD AV fAGE= 1 181.8008



uRIGIN-DESTINATION TRIP DISTRIBUTTON MATPIX AFTEP TIF 20TH IT .EATOGN:

IT INCLUDES IHIIS IREDTCTED, THIIS C;LCI'LATFD BY LOGIT ANC "DIFFEEHNCE BETWELN BOTH.

TO ALEX DMih ElYTl KF-i MHLK TANI
FBCM------------------------

SIIKM BNHA CAIR ZGZG AEKE MNSR SHRB
------------------~- ~---- -- -- - -- - -- - -- - -- - -- -

ALEX . 2443.
0. 2645.

0.% -3.%

DMH8 1492.
1675.
-11.%

ETY 573.
563.
2.7.

KERS 536.
526.

2.%

MHLK 567,
366.
55.%

TANT 1669.
1749.
-3.%

ShKMi 910.
932.
-2.%

BNHA 189J.
2 b 61.

-b.%

CAIR 3710.
2863.

ZGZG 41.
361.

14.

AEKB 122.
126.
-3.%

MNSR 757.

SHRB 295.
331.

-11."

944.
811.
16 . 7

9. 442.
G. 420.

0.7. 17.

423.
470.

-1 o .0

496.
533.
-7.%

374.
305.
23 .7

1509.
1460.

3.7.

744.
784.
-5 ..

290.
1720.
69. %

2644.
2388.

11..%

3"4.

-1.%

142.
166,
34.

549.
572.
-4 .%

336.
276.
2*).' :

895.
915.

441
479.

-1 .,

0. 186.
0. 148.
.' ?L.7

299.
143.

109. "

247.
144.
71.%

1444.
677.

113.1

394.
371.
6..;

939.
19b.
b16.%

1666.
1111.

286.
145.

t4.

2 6.

0.
0.

34.

521.
378.
38.7.

1114.
1111.

-1..0

b[ 2.
35.
7*4/

128i7.
1194.

1773.

764.
776.

564.
423.
33.-.

238.
221.

86.%
866.
621.
43.7

4159.
4473.
-7.%

237b.
2330.

2.0;

1082.
1216.
-11•~

2050.
2218.
-8.7%

0. 1615.
0. 19P6.
0.1 -19.0.

1867.
1476,
27.%

866.

18")3.
1893.

2."

2286.
2594.
-12.%

334. 355.
2C). 3Ph.
25." - .

181.
127.

42.%

h I.71*1

11b. 5 h.-
128. .411.
-8.' 22.0'

I 7.
183.
2.%

1t047.
1454.

-1*1

402.
4 . 3.

2..;

2335.
2476.

1277.
1390.
-8.00

814.
725.
12.7.

1160.
1240.

958.
1110.
-14.%

0. 4618.
0. 4964.

0.,% -7.7%

4691.
4776.
-? .

9?30.
1C214.
-10.%

12659.
14303.
-11 .

1687.
1865.
-1 9."

574.
646.

-11 .0

3143.
3,126.

1 '4.
1531.
-12. '

4434.
4647.

-5.;

2304.
2448.

-6.%

1215.
1277.

-b .%

2012.
2212.

1749.
1980.
-12.7

76b9.
8856.
-13.7

0. 8213.
0. 8822.

0.5 -7.%

9321.
9711.

15792.
14675.

1384.
1387.

439.

471.
-7 . .

1845.
2044.
-I0.";

S44. .
-q F .-

5484.
5347.

3.%

2629.
3002.
-12.%.

1371.
1566.
-12.%.

2118.
2333.
-94%

1995.
2179.

-8.%7

9074.
9536.

-5.%

10042.
10114.

-lI .

9. 32080.
0. 32828.

0.% -2.%

3e549.
41765.

1717.

3924.

16 2.
1709.

-5.

967.
1072.
-130.

563.
602.
-7.%

281.
314.

-11.%,

660.
618.
7.%

511.
537.
-5.7%

2220.
2232.
-1..;

1486.
1537.

-3.%.

5664.
6268.
-10. •5

0. 10627.
g. 11910.

o..; -11.;

7053.
7712.
-9.%

2418.
2671.
-9.%

3834.
4234.
-9.1 .

1762.
1925.
-81.*

O.

0.
U."

691.
780.

1422.
1575.

734.
718.

2.7%

0. 482.
0. 457.

n.% 10.

0. 1117.
0. 1193.

0.". -6.".

nMIT . 1 in. 115. : .. 1 4. 4?. 5144. 1026. 1240. 40?.

165.
180.
-9.7%

165.
101.
63.%

46.
53.

-12. ,

145.
142.

2.,

250.
124.

102. "

353.
354.

257.
254.

1204.
1061.

3460.
2004.
73.%7

452.
379.
19.%

1155.
1168.
-1.%

550.
605.
-9.%

369.
314.
18.%

859.
895.
-4.%

802.
858.
-6.%

1882.
2116.
-11.,"

1309.
1202.

9.7.

2912.
2706.

8.%

3427.
3601.
-5.4

993.
"?7.

20.7.

461.
511.

-10%

367.
265.
39.%

223.
137.
62.7

484.
485.

3.%

437.
352.
24.%

844.
926.
-9.,

543.
494.
10.%

1453.

1138.
28.%

1679.
1516.
11.%

520.
448.

241.
191.
26.X

554.
400.
38.1

429.
193.

123.19

1235.
1313.

-6.%

U.
0.

0.%

120. 839. 599.



233. 194. 90,
-5.% -13." 26..

291. 340. 1079, 574. 1121. 1188. 440. 136. 926. 694
2. , 40.". -13.7 -10. 4. -9. -9% -12.% -9.% -14.

FRTS 55.
65.

-16.7%

ISHL 164.
158.

3.%

SWES 34.
34.
.. X

FYUM 133.
10 .
33.%

BSWF 230.
126.
3.%

11 NIA 62.
54.

17.%

ASYT 146.
62.

135.*%

SihAG 97.
32.

203.o

51.
55.

-6•%

154.
132.
17.%

34.
29.

114.
90.

27. *

147.
1,05.
41 .%

72.
45.

61 .X

136.
52.

162 .,.

94.
27.

251.%

81.
25.

221.%

197.
61.

221 .X

27.
13.

107.%

178.
43.

318. .

48.
49.

-1 ,

44.
21.

113. 0%

27.
24.

18.
12.

41..

96.
52.

b5.%

110.
83.

Sb.
16.

249. 

87.
61.

43.%

177.
57.

213..%

92.
24.

261.'%

36.
28.

29..

19.
15.

27.X

79.
67.

128.
139.
-8. !

43.
27.

5A. %

99.
89.

11.7%

179.

77,%

88.
43.

105.%

185.
50.

270.%

66.
26.

154.7

287.
303.
-5.%

729.
733.
-1.%

165b
158.

420.
493.

-157.

525.
581 •

-10. :

257.
248.
4.7.

283.
288.
-2.X

158.
149.
6.%,

280.
220.
28.%

516.
531.
-3 .911

129.
142.
-9 .,9

498.
535.
-7.%

476.
537.

271.
215.
26.7

349.
250.
40.%.

218.
129.
69.%

777.
931.

-16,

1966.
2252.
-13.X

457.
487.

1311.
1419.

-8.%

1616.
1785.
-9.7.

746.
762.
-2.7

810.
885.
-9..

477.
457.
4.A.

880.
969.
-9,%

2740.
2907.
-6.'%

2164.
2696.
-19%

5968.
6586.

-9.7%

7647.
8349,

-8.%

3043.
3565.
-15.0

3581.
4139.
-13.A.

2102.
2139.
-2.%

290.
356.

-19.%

848.
867.
-2.X

193.
126.
53.,%

462.
410.
13.,

470.
438.

7.'

186.
165.
13.%

230.
189.
22.%.

138.
98,

42.X

137.
60.

127.%

191.
173.

62.
27.

128.X

113.
69.

63.%.

114.
74.

55.

64.
28.

132.X

43.
32.

36.0

42.
17.

155.X

175.
164.
7.%

337.
290.
16e%

86.
49.

77.%

177.
124.
434%

185.
152,
22,%.

167.
65.

1587%

165.
135.
22.%

137.
127.

8.

30.
21.

48.%

157.
50.

217.o

1000
66.

50..

33.
28,

15.X

82. 86.
75. 33.
9.% 162.%

58.
39.

50.%

19..
17.

10.A

QENA

ASUN

23.
20.

15. %

7.
6.

16.1.
------------

ATTR 14125.
13127.

8.%

Coko

55.
16.

236..%

5.
5.

13898.
12315.

13.".

9.
6.

14,%

6.

2.
152.7

7953.
5414.

47.".

b9.
9.

674 ,

6.
3.

1J5.9

9o2U.
6697.
13. 

22.
16.

37.X

5.
5.

2.%

12776.
11839.

8. r

116.
91.

26.%

51.
29.

77.7.

48555.
53138.

-9.,

133.
79.

68. "

33.
25.

32.3

44208.
44319.

0. .

281.
281.

98.
89.

10.%

88104.
94705.

-7.%

1161.
1313.
-12.'

417.
418.

0.7.

110823.
117717.

-6.%

112.
60.

87..

47.
19.

146.7'

29235.
31331.

-7.%

12.
10.

18.

7.
3.

115.7.

8385.
5873.

43.%

83.
24.

248.X

11.
8.

51A7

18178.
17957.

1.%

33.
10.

220.9

37.
3.

1005A

9765.
8742.
12.,



O-D MATRIX (CONTINUED)

DM IT

ALEX 351.
161.
94.5 '

DMHR 1n9.
94

16.%

E7YB 65.
49.

33.%

KFRS 157.
162.
-3.%

MHLK 130.
124.

4.1

TANT 430.
327.
31. s

SHKM 170.
174.
-2.%

BNHA 382.
398.
-4.%

CAIR 586.
535.
9.7,

ZGZG 153.
137.
43. '

AB Kb 79.
Ab.

17.%

MNSR 3d7.
442.,

-12. *

S HRB 33 7.
b .

-5•%

DMIT

PRTS ISHL SWES FYUM BSWF MNIA ASYT SHAG QENA ASVN CENERATN
.-------------------------------------------------------------------------------------

42. 164.
36. 178.

18.1 -0.%

120.
19.

545.%

10.
1.
8.1

65.
23.

176.%

t1.
19.

337.%

63.
65.

-3 .,,

78.
46.

60.4

462.
226.

1059.%

116.
92.

26.%

74.
48.

55 . '

72.
77.

-7.&4

6b.
80.

-15.%

591.
322.
83.4

247.
240.

3.%

1037.
1121.

- a.

43(C* 2049.
314. 1 li.
37.% 13.4

110.
76.

45 .%

46.
31.

460%

91.
63.

46'

t81.
55.

4 7.

i. 11b.
O. iom.

71.74 11.%

329.
353.
-0%

1~3.
145.
26.X

249.
223.
12. 

113.

5.I

240.
20.

1 '7 3.

83.
12.

621.%

12.
6.

9.%

19.
9.

111.1

11.
8.

3 u

198.
37.

443.,%

52.
39.

34q %

191.

1129.
1 6.z1

66.
30.

124.7%

23.
12.

87. ,

39.

20.
9.

11Ii.%

2b3. 45.
123. 12.

16.1 21A.%

179.
92.

95.'

156.
52.

202.%

90.
27.

233.%

85.
37.

132.1

126.
34.

270.%

133.
150.

-11.%

274.
159.
73.

935.
515.
8 1 .*

740.
4377.
-15.%

115.
121.
-5.°,

1 7.
42.

154.9

320.
120.

166. 0

250.
66.

279 %

34.
34.

-1. %

82.
42.

93.1,

71.
46.

55.%

506.
218.

132.1

236.
206.
15.%

15.
758.

8. "

4706.
4733.

-1.%

190.
151.
26 . ,

64.
52.

22.'

66. 258.
66. 85.

-1. % 22.%

74.
30.

144 , %.

26.
19.

3') .

71.
41.

7

);8.

29.
204? . '

38.
21.

60.04

23.
11.

110.%/

18.
6.

21* .7

120.

6.
1491.%

21.
8.

158 . '

62.
39.

60. o

48.
37.

32.7

171.
135.
27 .*

1275.
843.
51 .%

12.

24.
34 o 74

28.
12.

136 -. %

9.
6.

40.01

21.
3.

560.o

18.
4.

341 .%

13.
4.

202•%

320.
21.

1401.%

157.
20.

677.%

112.
74.

51.

1253.
464.

170.1

165.
13.

11 65.%

14. 36.
8. 5.

76.1 684.%

2e.
15.

84.

17.
7.

132.%

43.
5.

728.1.

62.
8.

645. :

15.
4.

277.%

10.

3.
24'11 *7

10.
4.

154.%

5.
2.

116.%

27.
1.

2377.%

4.

1.
167.*%

2.
2.

50.%

9.
7.

19.%

312.
7.

4399.o%

34.
26.

33.*%

545.
159.

242.%

28.

4.
533.1

5.
2.

193.0%

143.
3.

4879.%

14.
1.

917.%

46. 7.
1. 1.

4481.% 58i,4

) o

co

C

104.
1.

10332.%

10.
1.

853.%

7.
1.

630.%

2.
1.

96.%

56.
1.

5531.%

35.
2.

1867.%

6.
2..

247.%

26.
6.

318.%

622.
38.

1529.O

3.

1.
173.%

3.
1.

182.%

7.
1.

638.74

2.
1.

85.1

4.
1.

289.1

2.
1.

141.0

10.
1.

920.:

2.
1.

113.9%

38.
1.

3714.1

5.
1.

365.%

38.
1.

3681.19

11.
1.

10)7.%

132.
2.

524 0.1

10.
1.

901 ."

1.
1.

28.1

28.
1.

2654.%

38.
1.

3665.%

10.
1.

90 0 ,Y

25688.

14093.

7187.

12331.

10644.

36644.

31719.

74949.

114739.

19992.

7939.

20708.

10519.

7605.
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K. OR SG1N-DESTINATION PERCEIVED COST MATRI) AFTER TH . TH IT ATION:

TU ALEX DIH, LkYE lKRS MPLK TANT SIIw INHA
FRCM ------------------------------------------------------------------------

10) 1

) QK

KO

n,toi

I .

ALX .)00
DMHR 0.644
iTYIB 0.844
KFRS 1.33f)
MHLK 1.145
TANT 0.960
SHKN 1.269
BNHA 1.305
CAIR 1.811
ZCZG 1.512
APKB 1.711
MNSR 1.433
SHRB 1.583
DMIT 1.826
P TS 2 .?65
ISHL 1.882
SWES 2.612
FYUIM 2.198
BSP 2.519
VNIA 3.243
ASYT 3.879
SHAG 4.403
QENA 5.208
ASWN 6.414

3.656 1.056 .2016
0.303 0.509 (.65-4
0.497 0.000 1.109
L.u54 1.140 !0..Ou
0.798 0.710 0.502
0.613 0.538 .40
0.917 3.d28 0.902
0.958 0.882 1.346
1.464 1.38o 1.551
1.159 1*065 1."88
1.356 1.268 1.)63
1.086 1.009 0.769
1.236 1.161 0.814
1.479 1.403 1.,57
1.918 1.843 1.633
1.535 1.46' 1.688
2.265 2.189 2.493
2.398 2.310 2.507
2.172 2.096 2.424
2.b93 2.17 3.145
3.532 3.456 3.164
4.056 3.980 4.369
4.861 4.7b5 5.113
6.J68 5.992 6.323

1.227 1.057
9.847 0.707
u.755 0.615
'.510 0.657
..JOC 0.305
0.063 0.000
C.607 C.467
0.665 0.525
1.166 1.n26
0.757 0.704
0.751 0.907
6.437 0.648
0.621 0.848
C.A64 1.091
1.540 1.530
1.256 10148
2.347 1.71
2.160 2.020
1.954 1.784
2.675 2.505
~.314 3.144
3.836 3.668
4.643 4.473
5.850 5.680

1.351 1.432 1
0.952 1.074 1
0.F60 0.982 1
0.945 1.059 1
0.593 0.707 1
0.452 0.567 1
0.000 0.460 0
0.460 0.000 0
0.911 0.715 0
0.803 0.433 0
1.018 0.632 0
0.892 1.015 1
1.113 1.176 1
1.412 1.466 1
1.646 1.186 1
1.263 0.803 1
1.852 1.533 0
1.867 1.718 1
1.738 1.440 0
2.502 2.161 1
3.141 2.800 2
3.665 3.324 2
4.470 4.129 3
5.677 5.335 4

O-D 8ATRIX (CONTIIUED)

DIIT PFIS

ALEX 1.851
DM11R 1.5n4
EIYB 1.417
KERS 1.,57
MHLK C.80 O
TANT 1.019
SHKM 1.328
BhiHA 1.342
CAIR 1.871
ZGZG 1.266
ABKB 1.369
HNSR 0.671
SHhB .480
DMIT f.r0JO
F TS . 158
ISHL 1.263
SS S 2.25
FYU 2.965
BSWF 2.57e
MNIA 3.299
ASYT 3.938
SFAG 4.462
QO'hA 5.267
ASWN 6.474

ISHL EWES FYUH BPSWF NNIA ASYT SHAG OENA ASON
--------------------------------------------

2.385 2.902 2.738
2.036 1.655 2.338
1,951 1.t68 2.246
1.83 1.688 2.422
1.530 1;242 2.042
1.553 1.170) 1.016
1.638 1.256 1.768
1.178 0.195 1.496
1.685 1.203 0 .54
C,.54 0.614 1.561
1.343 0.103 1.653
1.429 1.266 2.161
1.178 1.41b 2.~14
0.758 10339 2.205
k.O P .58 1.12
0.5c5 O.uOu, 0.192
1.497 v,91 , on
2.679 2.19u 2.^8
2.39? 2.m10 1.761
3.11. 2.131 2.4d2
3.752 3.370 3.121
4.217 3.94 3.61'5
5.081 4,b9y 4.450
(.28b 5. I 0 '.(057

2.791
2.391
2.299
2.537
2.157
2. ?131
1.Rb2
1.663
1.968
1. , 76
1. * 870
2.42u
2. , Id
2.94U
2.673
2.147

C. J00
'.571
1.261
2.185
2.709
3.,,14
4.721

2.616 3.330 3.968 4.490 5.297 6.504
2.232 2.983 3,621 4.143 4.950 6.157
2.141 2.895 3.534 4.055 4.663 6.07C
2,442 3.155 3.794 4.315 5.123. 6.329
1.970 2,683 3.322 3.843 4.651 5.857
1.784 P2.96 3.137 3.658 4.466 5.672
1.711 2.425 , 3.064 3.585 4.393 5.599
1.410 2.123 2.762 3.283 4.991 5.29S
i.919 1,633 2.272 2.793 3.601 4.807
1.531 2.331 2.969 3.990 4.298 5.505
1.734 2.529 3.168 3.689 4.497 5.704
2.257 2.970 3.609 4.130 4.938 6.145
2.407 3.121 3.759 4.281 5.088 6.295
2.650 3.363 4o.P2 4.523 5.331 6.536
2.370 3.Of4 3.722 4.244 5.351 6.?58
1.987 2.701 3.340 3.861 4.669 50875
1.723 2.433 3.C72 3.593 4.401 5.607
0.546 1.2?4 2.152 2.673 3.481 4.687
.000 0.95) 1.1(06 2.127 2.935 4.141

0.966 0.000 1.C04 1.525 2.333 3.540
1.613 1.004 O.Po0 0.803 1.611 2.817
2.13F 1.529 0.06 0.000 1.114 2.321
2.945 2.333 1 .11 1.111 0.0110 1.656
4.14q 3.i c40 2. 17 . 1 1.,,6 (. O

CIR ZGZG A8KB MNSR SHBB
------------------------------------

.884 1.589 1.791 1.458 1.609

.484 1.189 1.391 1.111 1.262

.392 1.097 1.299 1.023 1.174

.568 1.088 1.383 0.769 0.778

.188 0.757 0.751 0.372 0.565

.062 0.664 0.907 0.626 0.777

.914 0.803 1.018 0.892 1.085

.695 0.432 0.631 0.916 1.093

.000 0.731 0.934 1.451 1.628
.707 0.000 0.365 0.754 0.931
.910 0.365 0.000 0.676 0.826
.452 0.747 0.676 0.000 9.460
.641 0.934 0.826 0.460 0.000
.972 1.270 1.069 0.703 0.496
.704 1.007 1.205 1.449 1.178
.179 0.620 0.708 1.273 1.423
.941 1.612 1.653 2.168 2.345
.245 1.725 1.928 2.445 2.656
.961 1.555 1.758 2.185 2.335
.682 2.361 2.563 2.906 3.956
.321 3.006 3.205 3.545 3.695
.845 3.531 3.729 4.69 4.219
.650 4.335 4.534 4.874 5.024
.857 5.542 5.741 6.080 6.231



CDL SPLIT AND ThlP ASSIGNKiEMT
WWWW asasasI-Lelsse = s s

LINK

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

29

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55

0

0,

FRO 14

AILT

OULT

DB LT

QbLT

KSLT
KSLT
SN IT
SN LT
DTLT

SKLT
NRLT

XKLT

RHLTKULT
QNLT
hHLT

EBLT

KZLT
KZLT
TT IT
TILT

XHLT

VRLT

AKLT
AKLT
ZGLT
ZTLT
ZGLT
ILLT
ZGLI
BHIT
ZGLT
BHLi
ZTLT
TTLT
ZITLT
TT IT
8HL'N
TTLT
SKLT
KZLT
MFLT
EnLT
I LT
SK LT
HFLT
3FLT

TC

OMIT
&NIT
AXIT

AtlTKSIT

SI LTKSIT
KIT
TIT

ShITShPlT

K IT

5111TK4 IT

KIT
QN LT

DRIT
K2IT
ZbLT
TTLT

KZIT
KNIT
TTIT
ZTIT

KNITAKIT
S RIT

ZGIT
AKIT
ZGIT
ZTLT
ZGIT
ILiT
ZCIT

ZTIT

ZTIT
TTIT611T

SKT115 .IT

TTIT
!TFIT

IPIT

SKIT
p ~

LENGTH

121.68
121.6a
60.69
63.69
42.60
42.60
17.96
17.96
63 .05

40.77
40.77
23.82
23.62
25.36
25.36
13.23
13.23
30.58
33.58
25.20
25.20
17.b4
17.84
17.76
17.76
14.42
14.42
30.49
3P .49
47.64
47.54
23.00
23.00
29.92
29.92
78.32
78.32
35.00
35, 0
33.76
33.76
26.29
26.29
'.1.41
41.43
28.13
26 13
'#4.H749.b7

11,5 .119.57
13. 1

13.56

"'+..1,%

FLCh/CAP

0.00
3.00
1.65
0.24
0.30
0.00
0.00
0.00

0.00
0.02
0.10
0.15
0.03
3.12
0.21
1.32
0.23
0.00
0.00
0.85
0.34
0.91
0.25
0.91
0.25
0.13
r.19
3.05
0.28
C'. 05
3.05
0.12

1.14
'e.10
0.15
u.11
0.00UO
u.01

1.07
J.20

0.20
0. JO

3.Itt

0.10
J.35
Z' 10
" .. s

FLCW

0.000

5325.168
1936.219

0.000
0.000CO

89.670
3.000
0.000

372.983
1591 322
2966.212
485.935

4288.9 9
7567.515

1357.575
9614.566

0.000
t'.67i

11608.127
4641.005

12467. 226
3480.619
12467.226
3480.619
8936.509
12925.704

131.8L7
767.726
b2b. 092
1729.160
4716.255
583,.139
3855.2"u
2869.42
2b41.995
2057.11J

U. 400
363.57
575.1 4
1681.934
5435.269
26b1 .219

13778.633
13216.712

753L . 124
7735.948

, u t

24 72.171
?5, .9 ~'

31 1b. 107
13590 .259

. ) .

COST %CHANGE OF FLOW
--* *----- -----------

1.08765 0.00
1.08765 0.00
0,39994 0.15
0.39993 -0.04
0.39778 0.00

0.39778 0.00
0.17659 -0.04
0.17659 0.00
0.58523 0.00
0.58523 0.00
C0.4128 -0.04
0.34128 -0.04
0.26283 -0.04
0.26283 -0.04
0.20074 -0.04
0.20074 -0.04
0.07462 -0.04

0.07462 -0.04
0.28923 0.00
C.28923 -0.34

0.16187 0.10
0.15812 -0.04
0.12641 0.04

0.11079 -0.04
0.12609 0.04
0.11147 -0.04
0.07945 -0.04
0.07945 -0.04

0.222F9 -0.04

(.22289 -0.04
0.48623 -0.04
0.48623 -0.04
0.216b3 -0.04

0.21653 -0.04
0.25063 0.22

0.25063 0.24
0.51337 -0.34

0.51337 -0.04

0.23263 0.0

C.23283 -0.04
0.29840 -0.04

0.29040 -0.04
C.20205 0.15
0.26285 0.26

0.3673 -0.04
o.30196 0.21

0.21638 -0.34
0.21638 -0.04

0.46123 0.0/
n.46123 P.IC

f!e 7742 0.31
C.97742 -0.04

0.12642 -0.04
0.12642 -0.04
C.0 'CLh 0.31
C .:)h,)! (6 (1+ l of

Vs . if I'; T V I T



57
58
59
60

* 61
62
63
64
65
66

F) 67
68
69
S70
71
72
73
74
75

S . 176
77
78
79
80
81
82
83
84
87
88
89

,') 90
91
92
93
94
95
96
97
98

-9 99
100
101

.) 102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

11 

BHLT
QBLT
NFLT
OBIT
QELT
CRIT
IBLT
CRLT
IBIT
GZLT

GZLT
WTLT
will
BSLT

FMLT
BSLT
HNLT
MNLT

ATLI.T
ATLT
SGLT
SGLT
O.ILT
QELT
ANLT
OBIT
ZGLT
ALEX
AXLT
DMHR
DRLI
ETYb
EELT

KSLT
H1HIK
EKLT

TAN
TTLT
SHKi:.
SKLT
BNHA
Bh I
CAE .
CRLT
ZGZG
ZGLT
ABK8

LINSI
MIRLT

SN LT

DTLT
1RTS
lS I.T
ISHL
ILLT
V.'if M

OBIT

CBIT

CHITCHiT
C IT
CHIT
IEIT
GZIT
IBLT
WTIT
GZIT
BSIT

SMIIT

ESIT
Al IT
MKIT
SG1T
ATLT
OLIT
SGIT
ANIT
OEIT
ZGIT
(BIT
AXIT
ALEX
DRIT

EbIT
ET IB

KSIT

fEIT
rHIK
TILT
TANT
SKIT

BHIT

CAIR
ZGIT

ZG2G
AKLT
APKB
KRIT
P NSR
StoIT

DMIT
)SIT
PHIS
ILLT
ISML

30 .87
30.87
51.38
51.38
14.14
14.14
3,28
3.28
9.67
9.67
79.C3
79.33
31.95
31.95
37.74
37.74

122.73
122.73
128.37
126,37
91.95
91,95

141.59
141 .59
270.22
270.22

26.94
26.94

0.0;O
0.30

0.00
0.00

0.00
0.00

0.0O0.00

0.00

0.03

0.00
0.03

0.00
0.30

.6000.00

0.700.00

S. ar111fl lUQ1~I U

(1 * '?f

1.02
1.03
U.13
0.45
'.35
0.52
0.31
3.24
0.25
0.35
0.50
0.10
0.00
0.14
,.99,099

0.00
0.04
3.00
0.00
0.00

0.00

0.000.000.00

0.00
0.93
0.62

5325.17
1936.22
6282.95
2704.79
3331.27
1401.52

3.00
89.67

549 r.6
5325.65

10579.14
20462.79
6036.76

18454,09
15672.44
17843.99
5173j.61
37198 .67

6 77.23
15956.50

3 78.17
410 f.98

5532.14
1374.9

112.95
1!91.32
372.98

2 00

2'1. 99
2057.11

16626. 045
1696b.27-J
3775,107
13590.259
34279.663
593 .734

'4 13.222
7294.086b
543).927
7648,797
5439.927
764o.797

45.9L2
2216.773
5394.025
5432 026

2.542
481.699

3. oo
0.000

0.0001C,000

0.000
0.000

20375.195
13678.713
5325.168
1936,219
6282.954
2704.786
3331.269
1401.517

0.0O0000,010
89.670

5490U.57
5325.655
1,579 .14i
2 .4627b95
e636.759

lo454.094
16672.437
S178 4 .994
51730.609
37198.871
o 71.2- 9
159'6.4395
3078.166
41 .976
6229.396
5532.1 6
1374.86:
112.965

3712.98S
I. uCa

'b41.995

.4 1 I'0 1 ., 0

0.36239
0.39174
0.42713
0.42713
0.09579
0. "9579
0.03778
S0377A

0.07767
0.07767
0.51975
o0.1962
0.20298
0.20298
0.36133
0,37264
0,77735
0.77735
0.78622
0.78622
0.67356
0,67356

1.03568
1.72502
1.72502
0.37052
0.34666
0.26463
0.09793
0.26463
0.09793
0.33478
0.16788
0.27882
0.11192
0.16690
0 .01400
0.19468
0.2798
0.222866
0.05596
0.19468
0.2798
0.20E67
0.04197
0.22266
0.05596
0.20887
0.04147
0.26463
0. r9793
0.*22286
0.05596
0.1el 9
0.01430
0.19468
0.02798

0.01400

4* 19 8

-0.04
-C.01
-0.04
-0.04
-0.64
-0.03
0.10

-0.04
-0.04
0.02

-0.04
0.02

-0.04
-0.04
-0.04
0.05

-0.34
-0.04

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

-0.04-0.04

0.15-0.04

0.05-0.04

-0,34
0.05

-0.04

0.00
-0.04
-0.04
-0.04
-0.04

0.16
-0.04
-0.04

0.14
-0.04
-0.04
-0.01
0.05
0.02

-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.34

-0.04
0.00
0.00

-0.04

-0.04
0O,i', ~_ __ __



120 FKLT FYUN .00 5394.02 5394.025 ..C27W -0.04

121 BSF BSLT 0.30 1735.07 1735.073 0.19488 -0.04

122 BSLT BSWF 0.00 43.36 43.36) 0.02799 -0.04

123 INIA HNIT n.oJ 481.7C 481.639 0.22286 -0.04

124 UNILT KNIA 0.30 2.54 2.542 0.05596 -0.04

125 ASYT ATIT C.CC 0.00 i.ofn 0.25084 0.00

126 ATLT ASIT 0.00 , .fi0 n.OCO C.08394 0.00

2 127 SHAG SGLT 3,)0 0.0 3.0t0. 0.25064 0.00

128 SGLT SHAG 0.00 '.30 i.J'0 0.08394 0.00

129 QENA QEIT 0.o, 0.o0 9,00 0.36276 0.00

) 130 QLLT Qi;n 0.0O C.00 o.01O 0.19586 0.00

131 ASWX ANIIT 0.00 0.03 0.000 0.27882 0.00

132 ANLT ASIU 0.00 0.0O 0.00 0.11192 0.00

, 133 AXiT DRiT 60.69 0.53 16999.018 0.31897 -0.04

134 DBRET AXT 60.69 0.29 9220.0P7 0.31897 -0.04

135 DRET ONIT 42.60 :.30 30.104 0.34673 -0.04

n, 136 QNET DRIT 42.63 0.00 0.000 0.34873 0.00

137 DRET EBET 25.20 0.90 21868.785 0.14355 -0.04

138 EBET DRiT 25.20 0.71 17239.506 0.13148 -0.04

139 EBET X(ZiT 17.84 4.97 23541.387 0.14985 -0.04

14) KZfT LtBT 17.64 0.89 21636.903 0.10733 -0.04

141 KZE' T"IT 17.76 ,.97 23541.387 0.149&2 -0.04

142 TTET KZET 17.76 0.89 .21636.900 0.10701 -0.04

143 TTET HiT 14.42 t.72 8705.812 0,07328 -0.04

144 MIIET ITET 14.42 0.74 8967.715 0.07338 0.01

145 MHET QUiT 33.58 0.30 0.603 0.24917 0.00

146 QNET RHIT 30.58 0.31 33.104 0.24917 -0.04

147 ONET KS"T 42.60 0.00 1.00 0.2774 0.00

148 KSiT OQNT 42.60 .dO 0.000 0.32774 0.00

149 KSET SNET 63.05 0.06 26t.397 0.51879 -0.04

r 150 SNET KSET 63.5 0.06 295.951 0.51879 -0.04

1 :- 151 SKEET DTT 4r'.77 0.20 185'.152 0.27071 -0.04

152 DTET SUET 40.77 ,.42 3875.802 0.27071 0.04

153 SNET NB2iT 23.82 1.,4 5802.857 0.17653 0.04

154 KRET SNET 23.2 0.50 4527.689 0.17852 -0.04

.155 NKET iEET 25.36 L.79 71b1.620 0.17480 -0.04

156 HIET E KET 25.36 .96 a745.255 0.21721 0.01

157 MHtT rKiT 13.23 0.96 87 5.915 0.11057 -0.04

158 KKErT thrT 13.23 0.98 0967.715 0.13968 0.01

159 IRET AIFT 47.54 0.33 15l,.167 0.40838 -0.04

160 AKET HEaT 47.54 0.20 912.93t 0.40R38 -0. J4

161 PStT ILkT 77.94 ".65 292.b r6 0.*6879 0.02
162 11,LT PSiT 77.94 ,.30 1354.724 0.bb77 -0.08

163 ZCET AKET 23.00 .24 1088.325 0.21270 -0.04

164 AKET ZCIT 23. 3 G037 1696.525 0.21270 -0,04

165 ZGET ILLT 78.32 ;.50 3833.198 0.39131 -0.04

166 ILEi ZGET 7e.32 .88 6654.2' 0.,9832 C.04

167 ZGET BELT 35.0 0.719 1316.~ 6b 0.19342 -0.01

168 BHiT ZGET 35..0 0.64 1733.174 0.19260 -0.04

169 TIET UHET 41.40 1.02 27772.994 0.37476 -0.04

170 hiliE TIET 41.40 1.00 274i9.39 0.34425 -0.04

171 TTET SKET 28.13 1.08 1639.323 0.65529 -0.04

172 SKLI TTLT 28.13 1.00 1514.25 0.29466 -0.04

173 SKiT nFIT 13.56 1.00 lbl .,i 0.19,265 -0.4

174 MFET SKFT 13.r,6 1.11527.618 Q.20,74 -0.34

175 KFT *6ET 51.38 1. 15515.8 0.437r2 -0.04

176 QHLT MFkT 51.38 1.1C 1527.61h 0.4522 -0.04

177 Bi~' HiT 30.bt 1.02 4'i071.246 0.34214 -0.04

178 Q8ET 11BiT 30.87 1.02 49954.473 0.33425 -0.04

179 Ob.T CI'T 14.14 .'99 4 1*. 3. 0. 1I. -0.04

189 CiJT t T 14.14 C..'9, '40 .1 f (.1, s -0.04



181
182
183
184
145
186
187
168
189
193
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
211
212
213
214
215
217
218
219
229
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

CRET
SSET
CRET
IBET
GZ iT

GZET
BScT
BSE
HNET

ATET
ATET
SGET

SG ET

OEET
ANET
ALEX
AXET

DHET
LTYE
EBEI
KFRS
KS ET

HIILK
HKET
TANT
TTZT
SHKM
SKET
BNIA
BHET
CAIt
CRET
ZZG
ZGET
ARKB
AKET
H NSP
HRET

SN .T

DTET

PSET
ISHL

SWES
SSET
FYUM
FMET

HSET

HN LT
ASYT
ATE f
Slilh

SSET
CEIT
IBET
CRfIT
GZET
IBET
bSLT

NNET
BSET
ATiT
MNET
SGIT
ATET
UEET

SGET
ANET

AXET
ALEX
DRET

KSET

KFFS
Y;KFT

TTET
TANT
SKET

bHiT
BEliA

CAIH
ZGET
ZGZG
AKET
AP KB

SNFT

DTET
DIT
PSrT
PE IS
TI .iT
ISrL
SS ET
swkS

FYUM

K!'tT

MNET
MNIA

AS YTA 1rT
A S y I

144.56
144.56

3.28
3.28
9.67
9.67

110.98
110.98
122.73
122.73
128.37
128.37
91 .95
91.95

141.59
141.59
2730.22
27 3.22

0.00
),.00

00.00
0.00
0.00

0.00

0.00

0.00

0.00

SO.u
0.00

0 1. i0.000.u0
0.00

0 .00

0.00

C . ,a
0. na0.0

O.O
3.10
0.00

0 .:'0.j0a"ouOO.C3

0 .0
L;.0
O.00

0.11
0.34

. 46
0.89

5.46

0.93
0.34
0.88
'.28
0.75
0.30
0.69
C.25
0.63
0.19
0.60

16999.02
9220.01
5772.13
8871.76
3132.62
5877.42

265.40
295.95
2071.64
3425.27
17326.24
19 013.93

316b.94
41415.67
44,184.42
45783.18
60847.69

5680.98
6e81.37
177 P.28
175,. 30
5bP95.9ts
4199.49
2617.31
3333.24
3875.80
1854.15
2962.51
1354.72
3%4 4.25
2167.95
2 f39 .2

673.58
3. 10
0.00

11646,.55
1 03G 7.2 2
t 153.55
4 r, 3 1, ki 9

106 1.62
687 '. 15
lf6;.19

673.578
2039.023
14691.392
2b285.5r6
14691.392
2s2b5.506
14691.392
2e285.5 6
7719.718
2034.752
644b. I .4
17043.479
5531.691

126353.2,2
3450.862
e592.995
1161.977
3664.024

16999.0 Id
9223.037
5772.132
A871.763
-3132.624
5877.423
265. 397
295.951

?2073.637
3425.272
17326.242
19013.926
3030.053
3160.939

41415.668
44 84 .422
45703.180
o6047.691
58 t0.975
6bil .367
1773.276
175b;.304
5095.970)
4199.490
26,17.311
3333.239
3875.802
!854. 152
2962.5r6
1354.724
1984 .255
2767.95u
2030.023
613.578

.000
1 164 ,.*352

103 17. 2
', 7 b. .550
4336. 892
I r3 ), 1 b 15
'd 70 .7t)1
16 1,2.1 t6

o0.8 142%
0.81420
0.C3794
C.04665
0.96416
0.07307
0.56378
0.5b742
0.65748
0.6651
0.66062
0.68692
0.51020
0.51027
0,73486
0.73487
1.26266
1.26267
0.26753
0.09793
P.23955
0.06995
0.29561
0.12591
0.25354
0.08394
0.16460
0.01400
0.19758
0.02798
0.21157
0.04197
0.19758
0.02798
0.21157
0.04197
0.21157
0.04197
0.19759
C. U2798
C.23955
0.06955
0.21157
0.04197
0.18359
0.014C00
0.19758
0.02798

0.01400
0.1975b
0.02798
0.18359
0.01403
0*21157
0.04197
0.26753
0.09793
o.22556
0 2 2?-)5 6O. U0b9h

-0.04
-0.04
-0.04
-0.01
-0.04
-0.01
-0.04
-0.31
-0.04

-0.04
-0.01
-0.04
-0.01
-0.04
0.01

-0.04
0.00

-0.04
-0.04
-0.04
-0.34
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.02
-0.04
-0.04
-0.04
-0.33
-0.04
-0.03
-0.04
-0.01
-0.04
-0.04
-0.04
-0.04

0.13
0.06
0.04

-0,34
0.02

-0.04
0.05

-0. 0'
-0.0 4
-0.04
0.00
0.07

-0.14
-0.04

O. rl
-0.04

0.01i
0. 0l



!

r

i

t

*1

r,3n>

245
246
247
248
249
253
251
252
253
254
255
256
257
25d
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
283
201l
262
283
2t84
285
286
2d7
2t8
269
290
291
292
293
294
295
296
291
298
299
309C
3a1
302
303
.3(34

SGET
QENA
OEET
ASWK
ANET
DTEb
PSEP
DTEF
SNEb
SNEB
MREB
IIEB

SLE D
SLEF
ZGEB
SLE.8
AKEE
HRER
BIIEE

BHEB
BHEts
ZGE
ZGEB
AKEB
AKEB
ILEE
ILEB
PSEB
ILE P
ZGEb
IIEP
SSLeE
SSEB
CREB
CRHE
ZGEB

BHEB
SHKn
SKEb,
bNHA

CAI

ZG Z,
ZGEB
ABKE
AKEB
INSh
HELB
SHIE
SNEP
DMIT
DT r.14

PS L F
ISHL
ILE P

.4' o

SNAG

OENA
APIT.
ASN
PSEP
DTlB
SPR
DTi B

SNEB
SUB

ZGLB
SUB
AKEB
SLEB
BHEB
FRhB

SKEB
2GEB

AKIEB
ZGEB
ILkB
AKEB
PSEB
ILEB
ZGEB
ILiB
SSEB
ILiB
CIEB
SSE!

CREB

ChEB
SKiB
~HIKM
RBHERB

CAB
Z2GB

AK B
ABR

sKha

~SHFB

DTEB
D IT
PSI D

ILiB
ISPL
SSkH
ssim

0.00
0.00
0.00
0,00
0.00

63.J0

63.00
42.30
42.00
24.1.
24.10
20.20
20.20
30.70
30.70
30.)30
30.00
75,20
75.20
26.03
26.00
35.00O
35.O
25.50
25.50
70.50
70.50
76.30
76.00
81.00
81.00
89.00
89.U0O

133 .50'
133.50
77.20
77.20
47.20
47.20

0.00
0. G00
0 0
0.00
0 G 0

0100

0.03

0.003
0.30

9.uO

0.30
3.00

0. fi

O.C3

0.Oufl.0 U

5701.88
6753.94
4114.78
3664.02
1161.9b

1.12
1.09
1.06
P.98
0.97
;.93
1.07
1.11
1.12
1.14
1.01
1.07
1.08
1.08
1.06
1.08
1.07
1.10
0.63
0.70
1.07
1.10
?.79
1.12
0.87
1.55
1.14
1. 11
1.01

1*06

91.91
93.t3

2L3U.92
4699.52
5314.19
266o .01
2534.77
3383.23
2391.u9
2159.Ab
222 .50
2376.47
2, 65.17
2' 94.54
1723.44
1573.5 1

72b.53
r 4(1 .,38

2148.32
1'23. .2
1i61 .b,
11 .A 1

5701.882
6753.937
4114.776
3664.024
1161.977

7l .0 6
757.016

166u.310
1534.399
2771.945
267.401 l
1399.944
1451.615
872,374
892.371
527.570
559.295
187.482
187.237
91.914
95.826

1764.6314
1810.0164
1948.1492
2159.148

371.275
382.187
483.317
664 .4P5

1918.611
1220.813

5914.655
577.89d

1074.25n
17C2.271
1697.403
2728.611

1049.047
91.914
43,.62e

20 3 3.26
4699.522
.53 1 .195

,e666 . a5
2534.768
3383.233
2391. 6 q14
2159.863
2228.496
2376.469
.065. 169
2994 . 5
1723.437
1573.5th

726. 5 ;
b49.3F 1

L.46 .329
1523. 822
15,i.. tbbe
1t1l 1. 3114

0. 06 71"
0.30950
0.13990
0.25354
0.08394
1.29072
0.a21479
0.51P12
0.25929
0.16037
0.13485
0.50598
0.94634
1.02e05
1.53748
0,26373
0.53464
0.78035
0.760E9
0.41636
0.56948
0.53395
0.78191
0.11653
0,11b60
0.68718
0.97368
0.3C4007
1.37409
0.39906
0.393149
1.76152
1.17160
0.76253
0.80769
0.76430
0.76690
0.75697
0.50951
0.17663
f.06995
0.150185
0.04197
0.150185
0.04197
0.19262
0.0394
0.16464
0.05596
0.24878
0.13950
0.19282
0.0 8394

.1366
3.')27 iii
0.13086
P, 12 1.
'.13666

4.13 86
0.r?2791 il

0.014
0.00

-0.04
0.00

-0.014
-0.04
-0.04

-0.04

-P.04-0.011
-0.04
-0.014-0.04
-0.04
-0.04
-0.04

-0.04
"0.04
-0.04
-0.04
-0.04

-0.04-0.04

0.11
0.011

-0.04
-0.04

-0.04
-0.04
-0.04
-0.04
-0.04
-0.01

-0.04

-0*014-O.04
-0.014
-0.04
-0.04
-0.011
-0.04
-0.04

0.03
-0.04

0.06
0.1

-0.04
-0.04
-C.04
-0.04
-0. 14

-0.04

-0.94
-0.04

-0. 4
0 a01

*
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305 AXHB DbER 56.50 1.09 237.018 .8 31 -(1.34

306 DRME AXPB 56.50 1.02 220.353 C.381d9 6.38

307 DRHB EBER 25.70 1.09 237.018 0.69593 -0.04

308 EBBO D MB 25.70 0.90 195.899i 0.12461 7.19

309 EBME TTPB 39.00 o1.ll 24 .285 C.93774 -0.04

310 TTMB EBMB 39.40 1.06 229.942 0.48834 6.12

311 TTHE KSIB 39.CO 1.09 2329.560 0.77784 -0.04

312 KSttb TTYB 39.00 1.03 2189.811 0.35230 0.19

313 KSYH SN B 63.30 1.01 526.415 0.41692 -0.04

314 SNRE KSPB 63.30 1.05 546.255 0.53727 -0.04

315 NKHW MHEBB 19.50 0.95 1564.843 0.12293 -0.04

316 MHRM MKrB 19.50 1.08 1781.826 0.54316 -0.04

317 TTb MKEB 26.50 1.06 3211.335 0.40892 -0.04

318 MKMR TTEB 26.50 0.97 2947.596 0.16e26 0.11
319 TTE ZCMB 55.00 1\.03 673.641 0.44346 -0.04

320 ZGME TTNB 55.00 1.05 683.530 0.50848 -0.04

321 6HMR8 HRMB 75.20 1.11 3V6.0C1 1.13017 -0.04

322 RMB BHPB 75.20 1.08 375.354 0.78971 2.13

323 TIMH HVB 43.00 1.03 3536.606 0.38782 0.10

324 811nM TTrB 43.10 1.05 3616.453 0.4f924 . -0.04

325 TTKB SKIB 26.00 1.01 4103.679 0.24557 -0.04

326 SKIE TTMB 26.00 1.04 4190.964 0.31844 -0.04

327 SKMP BI1MB 26.00 1.04 1630.b40 0.34345 -0.04

328 B11MB SKMB 26.u0 1.07 167u.7
4 2 0.48603 -0.04

329 SKKB CRPB 65.50 1.*9 2942.062 0.99625 -0.04

) 330 CRBP SKPB 65.50 1.10 2972.18 1.12685 -0.04

331 ChFB BP8B 47.20 ?.90 5262.195 0.52261 -0.04

332 BHlIB CBRB 47.20 0.12 719.928 0.50951 1.78

Q 333 KSMb MKHB 26.00 1.12 2135.457 1.02145 -0.04

334 MHKA KSPB 26.00 1.00 191.035 0.P2531 -0.04

S35 ALEX AXKB 0.00 237.02 237.018 0,20681 -0.04

S ) 336 AXMP ALkX 1.00 220.35 220.353 0.09793 6.36

337 DMH11 DRHB 0. 0 157.28 157.279 0.26277 -0.04

338 DhMb DM R 0.J0 132.a2 132.815 0.15389 -0.04

339 ETYP EIMB 0.00 3,27 3.267 0.36P70 -0.04

340 ibKB ETIR 0.00 34.65 34.0t2 0.25182 -0.04

341 KFPS KSMR 0.00 4742..2 4742.423 0.27676 0.07

342 KSH KIFES 0.00 4663.53 4663.526 0.1676b -0.04

343 011 MKI HB .l0.00 369.n1l 3693.306 0.108*8 0.C0

344 n1KHP nHIK 0.00 4390.15 4390.147 0.01399 -0.04

. 345 TANT Tl t b C(.0 8!22. 8 Eb52.94 0.13686 0.13

346 TTMP TAIT C.11 6b31(.54 4310.541 C,.0796 0.01

347 SHIIK SKPB 0.00 7803,90 7fJ..897 0.17Pi3 -0.04

348 SKMb SI;KH 0.00 77U8.31 77b~.312 0.06995 -0.04

349 PlNA BH.B 0,Pu 5093.22 5093.215 0.15085 -0.04

35 ' BhP B 11A 0.0O 9504.79 5:4.7H86 0.04197 -0.04

351 CAId CEPB 0.030 8234.38 9234.3E4 0.15085 -0.04

352 C0 ri CAIR 0. 00 3661.99 3661.992 P.04197 0.32
353 ZGZG ZGPB 6.00 663.53 683.530 0.19282 -0.04

354 ZCGM ZG2G .u30 673,64 673.641 0.0f8c4 -0G04

355 KhSR IPY. 0.00 2031.07 2031.l7 V.24378 0.36
356 B!M KNER .1.90 1P24173 1824.731 0.13990 -0.04

357 SHEH SKFR ",0O 546.25 546.255 0.192b2 -0C04

358 SNMi ShI:B 0.03 52'1,#2 52t.415 0.0o 594 -0.34

"59 AXW LF' h 56,)-0 .99 '?57".,671 ,0.2634 -0.4

36u DRWU AXkB 56.56 .,5 24b2.365 0.263Z5 1.74

361 LbHWt: K.trB 57.43 1.05 364. oiG5 fi.50'o8 -0.04

362 KSF. DI)kB 51.4u 1.9 31b.465 0.7901:1 -0.34

363 D WH 61P1,I 25,7.1 ,..4 751,.62 C.I111t -0.04

364 EBWh DPIB 25.70 0.44 992.234 0.11140 4.99

6 I F.lt~h W 1 IPA6 1G 1,09 1 IM o 4 131? lA -0,04



366
367
368
369
370
371
372
373
374
3'75
376
377
376
379

381
362
383
384
365
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
41)
411
412
413
414
415
416
417
418
419
423
421
422
423
424
425
426

CRWB
ALEX
AXWB
DKHR
DR. b
ETYH
EBWB
KFRS
KSWBH
CAIN
CRWB

SSUb
CRUH
GZU B
GZUP

GZUIA'
BSUB
FNUEi
BSUb
BSUb

SWES
SSUP
CAIR
CRUB
FYUM
FHUb
B S LI F
ESU
HNIP
HNUB
AXTY
DBTX
DRTX
EBTX
DRTX
KSIX
KSTX
TTTX
KSTY
IKTX
TTTX
HKTX
KSTX
SNTk
SNTX
DTTX
KKTY
SNTX
MRTX
SITX
MKTX
MRTX
HRTiX
SLTX
MKTX
SITX
SLTX
AKTX

EBhB
AXWB
ALEX
DR I B
DMI!R
EB hB
T YB

KFFS
CRi.
CAIR
SSUB
CRUB
GZUB
CRUB
FMUB
GZIB
RSUB
GZUB
BSLB
FHUB
HNUB
BSUB
SSUB
SWES

CAIR
FMUB
1'Y L
BSUB
BSW
MNUB
INIA
DIX
AX'IX
EHTX
DRIX
KS'IX

TT'IX
KSIX
NKIX

:TT'IX
SNIX
KS'IX
OTIX
SNIX
SKIX

SN'IX

MK'IX

SLIXnKRIX

RKIX
AKTIX
SLIX

126.70

0,00
0.00
0600
0.00

0.00

0.80

0.00

133.50
133.50
10.00
10 .00
97 .50
97,50

118 ,50
118.50
43.00
43 .0

130.00ro
130.00

0.00

0,00

06.00
0.00

56.50
56.50
25.70
25.70
57.40
57.40
39.u0

26.00
26.30
26.50
26 .50
63.30
63.30
42,00
42.30
48,30
48.00
24.10
24.10
19.50
19.50
20,20
20.20
32.00
32.00
30 00
3 0 .00

1.17
2579.67
2402.37
1454.,12
180070

585.16
378.99
37 .47
363.80
4 61,08
378.63

J.99
1.09
0.57
0.63
1.01
1.11
0.00
0.00
1.01
1.02
0.52
0.90.

2d4,72
257.99
95601

1055,82
2266.57
2207,46
1339.47
17.33.34
975.29
567,45

0.02
0.01
:.00
3 00
j.19
0.13
t.96
0.47
0,32
0.21
0.01
Ou3
0.00
3.02
r,.07
0.11
0.00

0.83
0.90
3.20
C.37
r.53

0.30
0.22

0.09v,,09
11.69

4 r7.077
2519.671
2482.365
1454.122
1860.7,10
585.157
378,969
378.465
363.805
4A7.077
378.634
257.996
284.718
7%5.651
818.727
745.651
818.727

3.000
0.000

1447.839
1461.807
567.447
975.292
284.718
257.990
956.013

10o5.Olu
2266.566
2207.459
1339.468
1733.345
975.292
567.447
547.064
266.447

0.000
973.864
653.652
4711.191
23u5.523
1579.712
1029.744
197.383
990,371

3.000
78.295

359.2 02
551.982

0.0 O
0.O00

4079.740
4413,797
954.420
18C06. 15
2609,933
4283.335
14844, b63
1124.143

432.819
452.698

2.990V
0.20681
0.09793
0.26277
0.15389
0.36070
0,25182
0.27676
0.16788
C,15085
0.04197
0,67493
1.16514
0.07585
0.37586
0,69964
1.356C8
0.83871
0.83871
0.31135
0.33665
0.58002
0.59145
0.13686
0.02798
0.15085
0.04197
0,15085
0.04197
0,19282
0.08394
0.29075
0,18167
0,47602
0.47602
0,21653
0.21653
0.49391
0,49391
0,39760
P.35('51
0.23368
0,23368*
0,22327
0.22327
0.56891
0,56891
0.37748
0.37748
0.43140
3,43140
0.21925
0.22938
0,17526
0,17526
0.18155
0.18856
0,27535
0.27535
0,26963
0.,69Q(3

11.13
-0.04
1.79

-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
11.13
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
0.00
0.00

-0.04
0.35

-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
0.22
0.38

-0.04
-0.04
-0.04
-0.04
-0.04
0.00
0 ..".0

-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
0.00

-0.04
-0.04
-0.04
0.00
0.00

-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04



421 SITX ZGUTX
420 ZGTX SLIX
429 ERTX TTIX
430 TITX EBIX
431 TTTX ZGIX
432 ZGTX TTTX
433 TITX RHIX
434 BHTX TTIX
435 TITX SKIX
436 SKIX TIX
437 SKTX bHTl
438 BHTX SKIX
439 SKTX DHIX
440 DHTX SKIX
441 iETX DV!IX
442 DHTY EBTX
443 DHTX GZIX
444 GZTX DHIX
445 DHTX CNIX
446 CRTX DHIX
447 GZTX AXIX
448 AXTX GZIX
449 CbTX BPIX
450 Bh91 CEIX
451 BHTX ZG'X
452 ZGTX BHIX
453 ZGTX CRIX
454 CFTX ZGIX
455 ZGTX AKIX
456 AKTX ZGIX
457 DTTX PSTX
458 PSI1 DTIX
459 PSTX ILIX
469 ILTX 1FSIX
461 ILTX AKIX
462 kKTX ILIX
463 ILTX ZGIX
464 ZGTX ILIX
465 ILTX CUIX
466 CRTX ILIX
467 ILIX SSIX
468 STX TLIX
469 SSTX CRIX
470 CRTX SSIX
471 CRTX GZIX
472 GZTX ClIX
473 GZTX FMIX
474 FMTX GZ IX
475 GZTX BSIX
476 BSTX GZIX
477 FnTX BSIX
478 BSTX FHIX
479 BSTX HNIX
480 nNTX BS'IX
481 KNTX AT'IX
482 ATTX MNIX
48 ATIX SCIX
484 SGTX ATIX1
485 SGTX OrIX
466 QNTX S.IX
481 ONTX ANIX

30.70
30.70
39,00
39.00
55.00
55.00
43. 0
43.00
26.00
26.00
26.00
26.00
39.50
39.50

100.70
100.70
29.00
29.00
26.00
26.00

173.50
173.50
47.20
47.20
35.00
35.00
77.20
71.20
25.50
25.50
63.00
63.00
76.00
76.00
7n.50
7(1.50
81.00
81.00

123.50
123.50
89.00
89.00

133.50
133.50

10.00
10.00
97.50
97.50

118.50
118.50
43,00
43.00

13.0 0
130 .0co
135.50
135.50
95.00
95.u0

141 .53
141 .ri
271 .00

0.48
0.64
0.00
0.01
0.00
0.00
0.01

0.56
0.28
0.48
a.57
0.92
0.85
%000.00

0.01
0.10
0.91
0.75
0.00
0.00
0.00
0.00E.31

0.26
0.00
0.24
0.02
0.08

0.03
0.00
0.00
0.00
0.01
0.00
0.0O
0.00
0.00
0.30
0.,3
0.00
0.00
£0.00
0.22
0.01
0.47
0.00
0.00
0.07
0,06

0.00
0.00
0.00
0.10

0.00

0.00
0.0
0I0

3661.677
1954. 80

135.0 62
261.231

9.000
0.000

1451.489
290.122

2736.628
1377.010
8573.492

10304.994
4511.588
4173.863

0.000
69.276

512.527
4442.312
3661.355

0.000
0.00
8.662
0,000

1521.912
1284.950

0.000
1159.202

99.951
391.661
139.832
141.598

3.600
0.1000

21.086
34.645

0.000
0.000
0.000G.000

4.985
165.630

0.00
0.005
0.000

3083.837
69.276

3596.364
0.000
0.a30

531.317
485. 039

0.000
0.0 0
0.00
0.0€0
0. 0 00

00 

O.000

0.261222% -0.04
0,26124 -0.04
0.32058 -0.04
0,32858 -0.04
0.49431 0.00
0.49431 0.00
0.40518 -0.04
0,40518 -0.04
0.23368 -0.04
0.23368 -0.04
0.22621 0.11
0.22621 -0.04
0.37482 -0.04
0.35919 -0.04
0.85685 0.00
0.85685 0.00
0.34264 -0.04
0.34264 -0.04
0.31821 -0.04
0.30398 -0.04
1.86791 0.00
1.86791 0.00
0.61067 -0.04
0.61067 0.00
0.31456 -0.04
0.31456 -0.04
0.76384 0.00
0.763u4 -0.04
0.22918 -0.04
0.22918 -0.04
0.56622 -0.04
0.56622 -0.04
0.64668 0.00
0.64668 0.00
0.63362 -0.04
0.63362 -0.04
0.68244 0.00
0.68244 0.00
1.31885 0.00
1.31885 0.00
0.79989 -0.04
0.79969 -0.04
1.18694 0.00
1.18694 0.00
0.10938 0.00
0.10938 -0.04
0.93112 -0.04
0.93112 -0.C4
1.22561 0.00
1.22581 0.00
0.36588 -0.04
0.36588 -0.04
1.10616 0.00
1.10616 0.00
1,15296 0.00
1.15296 0.00
0.80835 0.00
0.80835 0.00
1.20401 0,00
1.20401 0.00
2.33166 0.00

I,'



488 ANTX ONIX 2
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
511
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
E35
536
537
538

BHTX
HETX
ALEX
AXTX
DMHB
DRBIX

EBTX
KFBS
KSTX
MHLK
MKTX
TANT
TTTX
SHKH
SKIX
FN It A
BHTY
CAIR
CRTIX
ZGZG
ZGTX
ABKh
AKTX

MRTX
SHE
SNIX

DHIT
DTTX
PRTS
PSTX
ISHL
ILTX
SWFS
SST X

FHTX
BSWF
BSTXNIA

MNTX
ASIT
ATTX
SHAG
SGTX
QkNA
JNTX
ASWN
ANTX

BWIX
BHIX
AXTX
ALEX
DRB'IX
DMPR
EBIX
ETYB
KSTX

TTIX

TANT
SKIX
SHKM
BHTX
B HA
CBIX
CAIR

ZG27G
AK'IX
ABKB
KRIX

SNIX
SHEB
DTIX
DMIT
PSIX
PRIS
ILIX
ISPL
SSIX
SUES

FYUM
BSIX
BSWF

INIA
ATIX
ASYT
SGIX
SHIG
ONIX.
va.NA
ANIX
ASWN

FLOW IS CVER CAFACITY ON

CPU
CFU
CFU
CFU

TIME
TIMNt
TI M t
TIME

FOh

PO IFOH
F014

70 CUT CF 534 VCDAL LINKS IN THE NETWOPK.

DIFECTION FINDING=
ONE DIME:;'IUNAL SLACII=
CONV4RGNCi TEST=
OU IUT CALCULATIONS =

71.00
75.20
75.20
0.00
90.00
0.00

0.00
0.00
0.30
0.00
0.p0

0.30

". O
0.00

0.00

0.00
0.00
0.00

0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.0
0.00
0.00
0.00
0.00
0.00

0.00
Q.O
0.00
0.010
0.00

0100

.00

0.00

0.00
0.64
1.03

547.06
266.05
426.80
387.61
135.06
261.23

6944.56
4387.43

713.74
962.94
792.35

1343.85
11959.33
14712.76
12595.68
13830.18
4751.45
7448.38
468 .d,
5083.64

623.27
498.12

5323.74
4443.53
3940.11
3720.54
474.65
283.64
141.60
139.83
11.59
185.80
165.63

4.98
4127.68

554,31
485.04
531.32

0.00

3.00

0.00

0.0
0.00
0.,00

0.;0

0.000
3285.513
5318.449
547.064
266.047
426.60)
387.635
135.062
261.231

6944.558
4387.426

713.744
962.036
792.353

1343.854
11959.334
14712.758
12595.679
1383J.182
4751.452
7448.380
468o.668
5083.638
823.273
498.124

5329.738
4443.525
394'.109
3720.538
474.652
283.638
141.598
139.832

11.593
185.796
165.630

4.985
4127.682
554.315
485. 039
531.317

0.000
0.000

000000.003

0.0000.003
0.003
0.000

2.33186
0.63988
0.81467
0.24793
0.09793
0.24793
0.09793
0.31768
0.16788
0.26192
0.11192
0.16393
0.013S9
0.17798
0.02798
0.20596
0.05596
0.17798
0.02798
0.19197
0.04197
0.20596
0.05596
0.19197
0.04197
0.24793
0.09793
0.20596
0.05596
0.16399
0.01399
0.17798
0.02798
0.16399
0.01399
0.17798
0.02798
0.17798
0.02798
0.20596
0.05596
0.27591
0.12591
0.23394
0.08394
0.23394
0.08394
0.34586
0.19586
0.26192
0.11192

0.00
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04

0.06
-0.04
-0.04

0.05
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04

0.00
0.00
0.00
0.00
0,00
0.00
0.00
0.00
0.00
0.00

2.59
0.39
0.21
2.99

SECCNDS
SLkCNDS
SECCNDS
SECONDS



EQUILIBRIUM RESULTS

OF

NET4

[ITERATION NO. 175]

* Express Train (doubled capacity), Local Train, ',ormal Bus

and Taxi
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CUTPUT OF THE ODEL: N ET4.

ITERATION NUBLEh 175

THlE OEJECTIVi VALUE IS
PREVIOUS VALUE IS WITHIN

THE %DIFFLRENCi IN FLOW BE
FCR 24 OUT CF 24
AND 541 OCT CF 552
AND 519 OUT CF 534
IS WITHIN 5.00 PERCENT

-5651284.000
o0oox0 OF THE CURRENT ONE

TWEEN LAST TWO ITERATIONS:
ORIGINS,
C-D PAIRS,
LINKS.

NUMBER OF INNEP ITERATIONS= 1
CPTIMUn STEP SIZE= 0.00320

TCTAL TRAVEL COST =
TLTAL TRAVEL DISTANCE =

5n7770.938
56245904.00

RGOTE MEAN SCUARE EHRCUS CF:

ECUILIBRIIM= 11.432
TRIP GENERATION

=  2.365
TRIP DISTRIBUTION= 76.338
MCDAL LINK FIOWS= 121.782

LOGIT CONVERGENCE TEST:

IT CALCULATES THE %DIFFERENCE BETWEEN PREDICTED O-D DEMAND AND THAT CALCULATED BY A LOGIT NCDEL.

PREDICTIONS
PREDICTIONS
PREDICTIONS
PREDICTIONS
P EDICTIONS
PREDICTIONS
PbEDICTICNS
PFEDICTICNS

75
178
293
333
354
380
396
4 nV

CUT

CUT
OUT

CUT
CUT

552
552
552
552
552
552
552
552

O-D
O-D
O-D
O-D
O-D
O-D
O-D
o-D

PAIRS
PAIRS
PAIRS
PAI'S
PAIRS
PAIRS
PAIRES
PAIRS

ARE
APE
ARE
APE
ARE

APE
ARE
ARE

WITIIIN
WITHIN
WITHIN
WITHIIN
WITHIN
WITHIN
WITHIN
WITHIN

5%
10%
20%
30%

40%
60%
80%

100%

THE
THE
THE
T HE
THE
THE
THE
THE

LOGIT
LOGIT
LOGIT
LOGIT
LCGIT
LOGIT
LCGIT
ICGIT

MOCEL
MODEL
MODEL
MODEL
wOCEL
NOCEL
MODEL
MODEL

THERE ARe 213 0-D FAIRS WHICH HAVE LESS THAN 100 TRIPS

AMONG THE REMAInING 144 O-D PAIPS, 86 HAVE PREDICTIONS LESS THAN 100 TRIPS

RCOT MEAN SCIJARE ERBOR I'ETWFEN tuEL PPEDIClICNF AND LOGIT:
TOTAL RMSL= 6619.561
WEIGHITLD AVFFAGE= 1311.527

o
W.)



TRIP GENinAT7N:

mC. ORIGIN TRIP GENEPATION ACCISSIbILITY XCHANGE OF DEMAND
-------------- ------ --------------- ------------- -----------------

1 ALEX 25713.814 8.799,07 0.009
2 DMHR 14119.837 9.V2918 0.017

3 r.TYb 7214.,53 9.C0725 0.033
4 KFPS 12357.6!4 9.11317 0.019

5 M4ILK 10671.104 9.34052 0.023
6 TANT 36671.656 9.,51328 q.07
7 SHKM 31746,393 9.33197 0.008
8 BNHA 74975.922 9.29962 0.003
9 CAIP 114765.336 8.u9671 0.002

10 ZGZG 2 1019.393 9.29694 0.012
11 ABKB 7966.363 9.21682 0.031

12 MNSR 23734.492 9.15251 0.012
13 SHhB 10545.844 9.079?2 0.023
14 DMIT 763Z.H15 6.92j07 0.031
15 PPTS 3830.179 8.69589 0.060
16 ISHL 8853.379 8.96188 0.027
17 FYUN' 11851 .8o 8.74494 0.019

18 BSWF 14127.862 C.75930 0.016
19 MNIA 7234.378 8.10691 0.030
20 ASYT 11:389.814 7.549r6 0.019

21 SHAG 7683.392 7.21196 0.025

22 QiNA 6773.304 6.58652 0.026
23 ASWN 368,. 64 1 5.65324' 0.041
24 SWES 4096.317 8.b7158 0.057

C)
.1:



ORIGIN-DLSTINATION TRIP DISTRIBUtION MATRIX AT EQUILMIUMN

lT INCLUDES ~RIPS PREDICTED, CALCULATED BY LCGIT AND %DIFFERENCE BETWEEN BOTH.
IT ALSO INCLUDES TCTAL ENTSSIONS AND ATTRACTIONS AT EACH ZONE, AS VEIL AS TOTAL TRIPS IN THE SYSTEM (PER DAY).

TO ALEX DNSH E'IT KFRS
FRON --------------------------------

NPLK TANT SHKN RNHA CAIR ZGZG ABKB HNSR SHRB---------------- m ------------------ --------- -----------------

ALEX
0.
O,

DH1R 1408.
1400.

1*%

ETYB 436.
473.
-8.x

KFRS, 5n7,.
492.
3.2

K1 H1LK 291.
346.,

-16*2

TANT 1759.
1558.
12.%

SHKM 977.:
1 '22.

-4.%

S BNHA 1871.
2140.

CAIR <,64.
4425

ZGZG 378.
439,

ABKB 134..
142,
-6.X

NNSR 612.
670.

SHIB1 485.

'" 52.1

1904.
2041.

-? .2

781.
637.
23.%

C. 348.
0. 339.

0.x 3.7%

461.
379.
22.*

566.
498.
14.%

334.
289.
16.%

1214.
1300.
-7.%

737.
8530

-14.%

2067.
11G2.
21.

3058.
2952.

4.X

298,
341.

-13.0

277.
119.

134.%

534.
559.
-4.%

256.
266.
-4.%

634.
624.
2.%

519.
379.
37.*

0. 147.
0. 119.

0.X 23.,

150.
141.
7.2

124.
134.
-7.1

563.
633.
-7.0%

347.
396.

-12.*

1275.
79i.
61.2

1626.
1370.
1902

3100
18.
96.1%

46.
55.

-17.%

274.
2 9.
6. a

12P.
123.

4.%

632.
711.
-11.

352.
378.
-7.2

176.
196.

-10.

O. 480.
0. 600.

0. -20.%

294.
348.

-15.%

682.
960.
-8.%

625.
611.
2.*

1241.
S1C33.
20.%

1624.

2.%

2 2.
265.

178.
125.
41.%

733.
6,51.

362.
4 16.

-3l1.

3764.
4107.

2066.
2183.

-5.%

987.
1133.
-130%

1886.
2127.
-11.

0. 1396.
0. 1672.

doX -17,5

1289.
1276.
1.%

1343.
833.
61.%

1527.
1679.
-9.%

3936.
2915.
350.

447.
382.
17,X

368.
181.
103.X

1716.

83.2

410.
443.
-7.

2176.
2014.

8.5

1206.
1159.

4.%

621.
613.

1 .X

998.
1237.
-19*.

1010.
998.

1.

0. 41780
0. 4198.

0,X 0.5

4515.
4599.
-2.2

9255,
9255.

8.

15710.
16073.

-2,X

1915.
1845.

575.
6400

-10.2

2783.
3049.

1343.
1434.
-6.%

4282.
49290
-13o%

2398.
2619.

-8.x

1264.
1360.
-7.%

1937.
2111.
-8.2

1656.
2019.
-18,5

7821.
84910

-8.1

0. 7434.
0. 8479.
0.x -12*.

7727.
8407.
-8.2

12686.
120030

6.2

1553.
1372.
13.2

402.
466.

-14.%

1662.
1820.
-90%

8104.
781.
3.2%

6398.
7125.
-10.2

3402.
3786.
-10.%

1759.
1966.
-11

2311.
2730.
-15.X

2392.
2883.
-17.X

11396.
12153.

-6.X

8907*
10495.
-1502

0. 33967.
0. 36674.

0.% -7.%

408690
44236.

-8.%

4515.
5082.
-11.

1645.
1769.
-7X%

3323.
3720.
-11.

1532.
1721.
-11II.

10902
1054.
-5.x

546.
560.
-3.5

272.
291.
-6.

542,
578.
-6.X

501.
483.
4.%

2253.
1882.-
20.5

19170
1477.
30.2

5149.
5426,
-5.5

0. 9857.
0. 10145.
0.% -3.0

6688.
7630.
-12.%

2211.
2640,
-16.%

4609.
5256.
-12X%

2209.
2487.
-21.2

209.
178.
17.X

138.
95.

46.X

982.
1070.

-8,X

524.,
569.
-8.%

49. 267.
49. 295.
0.x -9.X

220.
133.
66.X

95.
111.

-14.2

361.
306.
18.2

1524.
244.

525.2

1011.
1002.

1.5

1718.0
1707.

1.0

0. 380.
0. 375.

0.% 29.

640.
749.

-15.%

1241.
1432.

-11.%

751.
643.

1102,
837,
32p2

720.
723.
0,%

1650.
1825.
-10.2

1102.
1198.

-8.%

2370.
2391.
-1*.

4017,
4146.

-3.X

721.
827.

-13.%

0. 687.
0. 432,

0.% 59.

340.
356.
-4.

151.
169.

-11,1.

0. 929.
0. 10817.
0o. -14.%

1043.
1156.
-10o%

1117.
469.

1398.

276.
249o

119.
129.
-8.2

468.
479.
-2.%

292.
317.
-8.%

746.
799,
-7.%

497.
525.
-5.2

1066.
1047.

2.%

1708.
1815.
-6.2

481.
349.
38.%

188.
204.
-8.5

a.
0.

3.2

_ I____



.IT 28.
218.
-5.%

P TS 31 1.
65.

377.%

ISHL 344.
170.

103.1%

FYUM 120.
124.
-4.%

BSUF 175.
175.

10 %

MNIA 74.
77.

-4.%

ASYT 132.
91.

46.4

SHAG

OENA

97.
48.

131.%

73.
30.

14%1

211.
182.
16.%

47.
54.

-13.4

133.
142.
-6. %

49.
44.

158.
99.

60.1%

144,

70.
64.
9.%

278.
76.

269.X

51.
40.

26o%

60.
25.

136.1

ASHN 19. 20.
10. 8.

87.%' 145.1

AITR 14511. 12930.
14357. 12181.

1.% 6.

84. 242.
85. 249.
S.4 -2.%

25.
25.

77.
66.

17.%

26.
21.

25.b

El.
47.

31.%

66.
68.

-2.%

37.
30.

26.1%

107.
35.

207.%

89.
19.

374.%

32.
12.

171.0

9.
4.

122.%

67.
48.

39.1%

77.
365.1

21.
23.

-12.1

288.

-5.1

77.
59.

120.
132.
-9.%

77.
42.

b6.%

64. 100.
60, 110.
7.% -9.%X

99.
77.

29,o

198.
34.

487.

43,
49.%
9.1

32.
21.

14.
13.
3,

5,
4.

24,..

196.
136.
44,*

99.
60,

65.1

874.
983.

-11.%

261.
293.

-11.1

697.
763.
-94%

269.
240.
12.1

655.
604.
8.

937.
787.
19.

318.
346,
-8,%

75. 335.
70. 407.
6.% -18.%

59.
38.

58.%

22.
24.

-8.

16.
8.

103.%

213.
217.
-2.X

133.
137.
-3.1

201.
45.

351.1

43.
490.

-10.%

159.
191.

-17.%

479.
497.
-4.%

229.
156.
46.*

465.
501.
-7.%

691.
513.
35.%

200.
225.

-11.1%

632.
265.

138.%

179.
142.
26.X

1121.
1179.

-5.

694.
811.

-14.%

1959.
2109.

-7.%

571.
663.

-14.%

1641.
1663.

-1.%

2109.
2176.

-3.%

823.
956.

-14.%

1041.
1125.

-7.%

565.
601.
-6 %X

85. 475.
89. 377.

-5.% 26.

60.
29.

106.%

6586. 6634. 13R04* 51090q 38645.
5415. 77,6. 11514. 52939. 38167.
22. 11.% 2a.% -3.1% 1.%

158.
123.

89832.
98319.

-9.%

1531.
1705.
-10.%

985.
1172.
-16.

2759.
3049.
-10.0

2342.
2356.
-13.0

5850.
6427.

-9.%

7040.
7740.

-9.%

2911.
3399.
-14%,

3261.
4002.
-19.%

1911.
2136.
-11.

1215.
1342.

-9.X

379,
438.

-13,1

116133.
129590.

-10.%

429.
383.
12.

305.
310.
-2.%

754.
809.
-7.%

227.
142.
60.X

375.
381.
-2.%

572.
465.
23.1%

189.
204.
-8.%

291.
241.
21.%

174.
128.
36.%

75.
81.

-7.%

37.
26.

40.1

28098.
27862.

1.%

263.
116.

126.X

82.
52.

57,1

148.
162.
-8o4

38.

28.
37.%

90.
64.

40.1

132.
79.

68.1

49.
35.

41.1

93.
41.

129.%

26.
22.

20.X

27.
14.

98.4

11,
40

154.

7157.
5341.

34.

773.
839.
-8.%

171.
210.

-18.%

273.
298.
-8.1%

81.
62.

30.%

180.
152.
18.0

208.
205.

1.1%

78.
90.

-13.

126.
106.
18.

134.
57.

136.*%

114.
36.

222.X

47.
12.

302.%

17370.
17535.

-1.X

523.
636.

-14.%

125,
151.

-18.X

137.
150.
-9.1

42.
27.

54.0

55.
60.

-8.1

80.

90.

57.
39.

44.%

61.
46.

31.X

25.
25.
1.%

16.
16.
1.X

13.
5.

153.X

9020.
8684.

4.%
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IRTS 119.
124.
-4.1

ISHL 134.
98.

37.%

SWES 34.
16.

111•%

FYUM 25.
19.

28.%

BSWF

HNIA

ASYT

SAG

OENA

42.
32.

33.%

18.
14.

30 %

3.
16.

11.

9.
27.

7.
5.

28.X

ASWN 2.
2.

-13.%

AITR 4362.
3305.

32.X

0. 225.
0. 100.

0.% 25.1

112. 0.
95. 0.

17.%X 0.

25. 113.
159 103.

64.7 IC 

13. 120.
10. 56.

36.1 107.

21.
17.

26.X

43.
7.

442.4,

30.
9.

243.X

41.
5.

789.A

19,
3.

b53,%

5.
1.

393.%

2470.
1215.
113.

98.
83.

18.1

279.
37.

662.%

68.
43.

58.%

49.
23.

111.%

39.
14.

170.1

23.
5.

378.%

711.
5169.

3P .X

35. 16.
30. 14.
1. 12. %

84.
93.

-9.%

0.
0.

'1.

58.
31,

86.4

46.
45.

42.
27.

54.1%

0.
0.

34X

30. 796.
32. 846.

-5.7 -6.X

13.
14.

-7.X

84.
17.

404.1

14.
9.

63.%

54.
6.

813.9

354.
336.
6.6

380.
298.
27.%

153.
159.
-4.%

91.

-9.1

33.
29.

13."

75.
76.

-1.1

74.
59.

26%,

1111.
1180.

-6,%

7.
5.

32.1

53.
14.

289.X

27.
10.

163.X

207.
148.
40.%

0. 266.
0. 260.

0.X 2.%

728.
629.
16.%

630.
740.

-15.1

395.
23. %

351.
248.
42.A

3. 30. 70.
2. 33. 81.

87.% -8. -13x

2633. 7555. 12074.
1(66. 61C3. 9734.

56*% 24.X 2491

4.
3.

38.X

41.
7.

450.1

7,
6.

25.1

330.
79.

319.o

173.
140.
23.%

0, 441.
0. 447.

0.% -1.%

871.
957.
-9.1

481.

511.
-6.%

316.
321.
-1.1

24.
1.

2301.X

47.
3.

1742.%

20.
2.

915.X

83.
27.

207.

90.
48.

86.X

152.
153.
-1%.

0. 1225.
0. 1406.

0.0 -13.7

1970.
2187.
-10.%

1220.
1374.
-11.A

186. 418.
105. 448.
77, -7,A

4245. 6753.
3452. 5309.
23.% 27.X

0.
0.

0.1%

1969,
2195.
-10.%

616.
716.

-14.1%

6005.
4763.
26.X

28.
1.

2727.'1

11.
1.

1007.X

4.
1.

285.A

11.
6.

71.e%

98.
12.

748.1%

57.
37.

55.A

529.
337.
57.%

856.
837,
2.X

29.
1.

2811.%

13.
1.

1203.1

30.
1.

2899.1

81.
1.

7959•.

61.
1.

6006X

51.
2.

2045.A

63.
22.

189.4

65.
54.

21.X

0. 366.
0. 312.

0.1 17.1

1354. 0.
1572. 0.
-14.% 0.1

4927. 1708.
2859. 411.
72. 316.1

383'1

8853.

4096.

11852.

14128.

7234.

10390.

7683.

6773.

3681.

473654.



4GIN-DESTINATION TRIP DISTHIBUTION MAIRIX AT FOUILIERI., (PREDICTEP)
TO ALEX DMHi EIly KFRS MHLK TANT SHIKN BNHA

FROM-
ALEX
DIiHR
ETYB
KFRS
M HLK
TAN '
S HKM
BNHA
CAIR
ZGZG
APKB
MNSR
SE(B
DMIT
P ETS
ISML
SkhES
FYUM
BSWF
MNIA
ASYT
SFAG
GENA
ASUN

ATT N
A isR

CAIR ZGZG ABKB NNSR SIIRB

0. 1904. 781. 634. 632. 3764. 2176. 4282. 6398. 1002. 209.

1408. 0. 348. 519. 352. 2066. 1206. 2398. 3402. 546. 138.

436. 461. 0. 147. 176. 987. 621* 1264. 1759. 272. 49.

531. 566. 150. 0. 480. 1886. 998. 1937. 2311. 542. 220.

291. 334. 124. 294. 0. 1396. 1010. 1656. 2392. 501. 95.

1739. 1214. 563. 882. 1289. 0. 4178. 7821. 11396. 2253. 361.

977. 737. 347. 625. 1343. 4515. 0. 7434. 8907. 1917. 1524.

lo71. 217. 1275. 1241. 1527. 9255. 7727. 0. 33967. 5149. 1911.

4.64. 3058. 1626. 1624. 3936. 15710. 12686. 40869. 0. 9857. 1718.

378. 298. 310. 252. 447. 1415. 1553. 4515. 6688. 0. 380.

134. 277. 46. 178. 368. 575. 402. 1645. 2211. 640. O.

612. 534. 274. 733. 1716. 2783. 1662. 3323. 4609. 1241. 340.

485. 256. 128. 362. 410. 1343. 804. 1532. 2209. 751. 151.

208. 211. t4. 242. 288. 874. 443. 1121. 1531. 429. 263.

311. 47. 25. 67. 77. 261. 159. 694. 985. 305. 82.

344. 133. 77. 558. 120. 697. 479. 1959. 2759. 754. 148.

48. 49. 26. 21. 77. 269. 229. 571. 2042. 227. 38.

120. 158, 61. 64. 100. 655. 465. 1641. 5850. 375. 90.

175. 144. 66. 99. 196. 937. 691. 2109. 7040. 572. 132.

74. 70. 37. 198. 99. 318. 200. 823. 2911. 189. 49.

132. 278. 117. 43. 75. 335. 632. 1041.. 3261. 291. 93.

97. 51. 89. 32. 59. 213. 179. 565. 1911. 174. 26.

73. 60. 32. 14. 22. 133. 85. 475. 1215. 75. 27.

19. 20. 9. 5. 16. 201. 60. 158. 379. 37. 11.

14501. 1290. 6586. 834. 1384.----------------------------- 519----------------------- 38645 89832. 116133 28098 757----------------

14501. 129A0. 6586. 81340 13804o 5icqO. 38645. 89832. 116133. 28098. 7157,

982.
524.
267.

1102.
720.

1650.
1192.
2370.
4017.

721.
687.

0.
1043.

773.
171.
273.

81.
180.
208.

78.
126.
134.
114.

47.

17370.

1117.
276.
119.
468.

292.
746.

497.
1066.
1108.

481.
188.
929.

0.

523.
125.
137.
42.
55.
80.
57.
61.
25.
16.
13.

9020,

NDIT PRTS ISHL SWES FYUM PSWF HNIA ASYT SHAG OENA ASWN GENERATN

291.
222.

56.
636.

98.
338.
317.
349.
599.
140.
46.

428.
367.

S.0

119.
134.

34.
25.
42.
18.
33.
11.
7.
2.

50.
27.

18 .
30.

168.
414.

85.
344.
393.
130.

34,
90.

103.
114.

0.
112.
25.
13.
21.
40.
3).
41.
19.

5.

ATIR 4362. 2470.

169.
116.
113.
132.

60.
312.
228.
918.

3079.
318.
149.
25C.
I1,3.
163.
225.

0.
113.
120.

98.
279.
63.
49.
19.
23.

7121.

26.
34.
10.
30.
60.
60.
48.

1 949.

35.
42.
23.
62.
35.
84.

0.
58.
30.
13.
84.
14.
54.

3.

652.
63.
26.
40.
40.

596.
176.
732.

2656.
286.
103.
88.
89.

129,
16.
46.
42.

U.
796.
354.
380.
153.

91.
30.

165.
175.

59.
110.
764.
334.
370.
1315.
3771.

790.
54.

402.
153.

52.
33.
75.
74.

1111.
0.

72P8.
630.

351.
70.

12074.

171.
15.
66.
54.
19.
56.
56.

409.
642.
116.

47.
159.

12.
10.

7.
53.
27.

207.
266.

0.
871.
481.
316.
186.

4245.

40.
74.
61.
11.

124.
202.
175.
334.
810.

89.
43.
89.
83.
13.
4.

41.
7.

330.
173.
441.

0.
1970.
1220.

418.

6753.

138.
113.

12.
33.

7.
53.

247.
478,
189.
102.

12.
267.
120.

7.
24.
47.
20.
P3.
90.

152.
1225.

0.
1969.
616.

6005.

109,
77.
31.
99.

142.
182.

38.
400.
614.

24.
7.

156.
12.
89.
28.
11.
4.

11.
98.
57.

529.
856.

0.
1354.

4927.

21.
20.
41.
15.
83.
29.
81.

485.
91.
28.
36.
8.
6.
4.

29.
13.
30.
81.
61.
51.
63.
65.

366.
0.

1708.

25714.
14120.

7214.
12358.
10671.
36672.
31746.
74976.

114765.
20019.
7966.

20735.
1 G0546.

7631.
3830.
8853.
4096.

11852.
14128.

7234.
10391.

7683.
6773.
3681.

473654.

ALEX
DMHR
ETYB

MBLK
TANT
SHKM
BNHA
CAIR
ZGZG
ABKB
MNSR
SHRB
DMIT
P RTS
ISML
SWES
FYUM
BSWF
MNIA
ASYT
SHAG(
(ENA
ASWN

23(3. 7555.

-------------------------------



UnIGIN-DESTIKATION PEECEIVED CCST MATRIX AT FrUILIP1IUM

TO ALEX DMH ZTY B vPRS MHLK IANT SI1KM BNHA CAIR ZGZG ABKB HNSR SHRB

FRUOM---------------------
ALEX
DMHR
ETYB
KFR
.IHLK
TANT
S KHM
8 3NHA
CAIR
ZGZG
APKB
HNSR
SIRB
DMIT
FIS
iSKL
SWES
FYUM
BSWF
MNIA
ASYT
ShAG
QENA

j ASWN

0.009 0.656 0.844 1.289
0.607 O.000 0.497 G.854
0.817 .497 0.000n 1.109
1.339 0.654 1,109 0.00
1.112 0.765 0.691 0C.487
0,941 0.594 0.519 C.o40
1.181 0.834 0.759 0.962
1.215 0.868 0.793 1.346
1.392 1.194 1.118 1.446
1.422 1.075 1. 00 1.388
1.621 1.274 1.198 1.:83
1.371 1.024 0.948 0.769
1.521 1.174 1.099 0.740
1.764 1.417 1.342 1.157
2.168 1.821 1.746 1.743
1.785 1.438 1.363 1.688
2.341 1.994 1.918 2.266
2.653 2.334 2.246 2.512
2.206 1.859 1.784 2.131
2.920 2.573 2,497 2.845
3.55 8 3.212 3.136 3.484
4.083 3.73b 3.660 4..08
4.887 4.541 4.465 4.813
6.094 5.747 5.672 6.019

1.113
n,766
'.690
0.487
0.oO0
0 363
0.607
1.635
0.959
0.757
0.751
0.437
0.593
0.836
1.522
1.241
1.796
2.C24
1.662
2.375
3.014
3.538
4,343
5.550

0.942 1.316 1.221
0.595 0.917 0.874
0.519 0.828 0.799
0.640 0.902 1.046
0.349 0.593 0.624
0.000 0.467 0.498
0.466 0.000 0.460
0.495 0.460 0.000
0.819 0.914 0.5417
0.704 0,803 0.432
0.905 1.018 0.631
0,648 0.892 0.916
0.806 1.111 1.085
1.049 1.412 1.328
1,453 1.638 1.178
1.070 1.256 0.795
1.625 1.811 1.351
1.e84 1.911 1.613
1.491 1,677 1.216
2.204 2.390 1.930
2.843 3.029 2.569
3,367 3.553 3.093
4,172 4,358 3.898
5.379 5.564 5.104

1.521 1.428 1,626 1.344 1.495
1.174 1.081 1.279 0.997 1.148
1.099 1.005 1.204 0,922 1.072
1.420 1.088 1.083 0.769 0.742
0.935 0.757 0.751 0.415 0.565
0.805 0.681 0.907 0.628 0,778
0.863 0.803 1.018 0.868 1.019
0.526 0.432 0.573 0.902 1.53
0.000 0.707 0.10 1.227 1.378
0.707 0.000 0.366 0.747 0.921
0.910 0.384 0.000 0.676 0.777
1.231 0.747 0.676 0.000 9.444
1.385 0.921 0.826 0.458 9.000
1.628 1.257 1.069 0.664 0.982
1.478 1.000 1.198 1.185 1.303
1,096 0.615 0.703 1.204 1.260
1.054 1.557 1.653 2.028 2.178
1.260 1.773 1.975 2.309 2.530
0.919 1.423 1.622 1.893 2.944
1.633 2.137 2.335 2.607 2.757
2.272 2.775 2.974 3.245 3.396
2.796 3.299 3.498 3.769 3.920
3.601 4.104 4.303 4.574 4.725
4.807 5.311 5.510 5.781 5.932

O-D MATRIX (CONIINUED)

DMIT PRIS IEML SWES FYJU PSWF MNIA ASYT SHAG QENA ASWN
---------------------------------------------------------------------------------------------- --------
ALEX 1.737

I DHR 1.390
ETYB 1.315
K kRS 1.057
MILK 0.808
TAN T  1.021
S IKtI 1.261
8NHA 1.296
CAIR 1.621
ZGZ; 1.124
ABKB 0.979
HNSR 0.646
SHRB 3.479
DMIT 0.1OC
PRTS 0.686
ISML 1.'I98
SWES 2.090
F UM 2.d29
BISWF 2.2b f
MNIA 3.500
ASYT 3.639
SHAG 4.163
OiNA 4.9(6
ASWN ,.174

2.174 1.791 2.321 2.574 2.187 2.901 3..59 4.060 4.868 6.075
1.E27 1.444 1.974 2.175 1.840 2.554 3.192 3.713 4.521 5.728
1.751 1.369 1.899 2.086 1.765 2.478 3.117 3.638 4.446 5.652
1.893 1.65f 2.765 2.338 2.111 2.825 3.463 3.985 4.792 5.999
1.528 1.242 1.1IT 1.851 1.642 2.355 2.994 3.515 4.323 5.530
1.457 1.375 1.605 1.725 1.471 2.184 2. 23 3.344 4.152 5.359
1.638 1.256 1.664 1.833 1.529 2.243 2.881 3.403 4.210 5.417
1.178 3.795 1.231 1.450 1.192 1.905 2.544 3.065 3.873 5.079
1.503 1.121 r.P16 1.17n 0.O19 1.633 2.272 2.793 3.601 4.807
1.0%i 0.614 1.'(23 1.626 1.398 2.112 2.750 3.272 4.079 5.286
0.985 0.574 0.983 1.829 1.597 2.310 2.949 3.470 4.278 5.485
1.494 1.250 1.659 2.150 1.901 2.614 3.253 3.774 4.582 5.788
1,178 1.40- 1.F09 2.371 2.051 2.765 3.403 3.925 4.732 5.939
0.758 1..39 1.82d 2.670 2.294 3.007 3.646 4.167 4.975 6.182
3.300 0.58 1.169 2.626 2.144 2.858 3.496 4.018 4.825 6.032
C.576 0.001 0.574 2.097 1.762 2.475 3.114 3.635 4.443 5.649
1.56P 3.992 L.CO0 2.223 1.720 2.433 3.072 3.593 4.401 5.607
2.764 2.244 1,.952 3.nC .6.o00 1.548 2.205 2.727 3.534 4.741
2.169 1.786 1.72" C.600 0.0 f 0.955 1.606 2.127 2.935 4.141
2.883 2.5330 2.433 1.381 0.967 0.000 1.004 1.525 2.333 3.540
3.521 3.131- 3.l72 2.205 1.606 1.004 0.000 0.803 1.611 2.917
4.045 3.663 3.C96 2.730 2.130 1.528 0.806 0.000 1.114 2.321
4.O0 4.468 4.401 3.,34 2.35 2.333 1.611 1.111 0. 00o 1.656
6.Ur7 65. 14 F , .07 4,741 4.141 3.540 2,H17 2,318 1.66 0.00nn



AODAL SPLIT AND ThlP ASSIGNMENT:

LINK FROM

I AXLT
2 QNLT
3 AXLT
4 DRLT
5 DRLT
6 QNLT
7 QNLT
8 KSLT
9 KSLT

10 SNLT
11 SNLT
12 DTLT
13 SNLT
14 MkLT
15 MKLT
16 MRLT
17 MKLT
18 MtILT
19 ONL1i
20 MHLT
21 DRLT
22 EBLT
23 EBLT
24 KZLT
25 KZL'
26 TTIT
27 TTLT
28 MHLT
29 MHLT
30 ZTLT
31 MRLT
32 AKLT
33 AKLT
34 ZGLT
35 ZILT
'36 ZGLT
37 ILLT
38 ZGLT
39 BHLT
40 ZGLT
41 BIILT
42 ZTIT
43 TTLT
44 ZTLT
45 TTLT
46 bH LT
47 TTLT
48 SKLT
49 KZLT
50 NFIT
51 ZELT
52 TELT
53 SKLT
54 MFLT
55 MFLT
56 IIILT

TC

( NIT
AXIT
DFIT
AXIT
QNIT
)EIT

KSLT
QNIT
SNIT
KSIT
DTIT
SNIT
NM LT
SNLT
IMRIT
MKLT

MHIT

ONIT
EBIT

DRIT
KZIT
.BIT

KZIT

TTIT
ZTIT
MHLT
AKIT
MR IT
ZrOIT
AKIT
ZGLT
ZTLT
Z G IT
ILIT
ZGIT

ZTLT

ZTIT
T'IIT

TTIT

TTIT
MFIT
KZIT
IPIT
E BLT

SKIT
h H IT
SF IT

LENGTH

121.68
121.68
60.69
60P.69
42.60
42.60
17 .96
17.96
63.05
63005
40.77
40 77
23,82
23.82
25.36
25.36
13.23
13.23
30.58
30.58
25.20
25.20
17.84
17.84
17.76
17.76
14.42
14.42
33.49
33.49
47.54
47.54
23.0
23.00
29.92
29.92
78.32
78.32
35.00
35 .00
33.76
33.76
26.29
26.29
41.40
41.41
28.13
28.13
49q .7
49 ,87

119.57
119.57
13.56
13 .56
26 .1 8
26.85

FLOW/CAP

0.160.00

3.00O
0.00

0.04
0.00
0.00
0.02
"0.04
0.04
0.36
0.10
0.16
n.29
0.24
0.03
0.00
0.16
0.34
0.19
0.017
0.19
0.07
0.14
0.18

3.003
0.03

0.02
).00
0.01

0.00
:.00

,.95
1.02
'.03

0.12

o.JO

0.000. "03.00

(0.JO

0

FLeW

0.000

0.0 O
1312.413

3.000
30 0 '0

.0003

3.000

1000441. O0 0

361.537
575.393
674.650
1118.560
3677.766
5519.333
11725.140
9684 .718
1030.448

2155.686
527.622
2651.594
898,573
2651.594
898.573
9646.582
12568.558

157.033
38.140

.0 00O
0.0 60

1331.796
792.769
1519.863
526.513
83.8'44

256.4q7

3.000

0.003
O. i 00

1362.8499
488.372

12722.517
12618.775
47~i.738
28 .46?

J.0~0
0. 00?

J.0"3
1.0 0

175.8 92

0. 003
1261 ,77

COST XCIIANGF OF FLOV

1.08765 0.00
1.08765 0.00
0.39993 -0.32
0.39997 0.00
0.39770 0.00
0.39778 0.00
0.17659 0.00
0.17659 -0.32
0.58523 0.00
0.58523 0.00
0.34128 -0.32
0.34128 -0.32
0.26283 -0.32
0.26283 -0.32
0.20074 -0.32
0.20974 -0.32
0.07462 -0.01
0.07462 -0.32
0.28923 -0.32
0.28923 0.00
0.15812 -0.32
0.15812 -0.32
0.11079 -0.32
0.11081 -0.32
0.11047 -0.32
0.11947 -0.32
0.07945 -0.32
0.07945 -0.03
9.22289 -0.32
0.22289 -0.32
0.4d623 0.00
0.48623 0.00
0.21653 -0.32
1.21653 -0.32
0.25063 -0.32
0.25063 -0.32
0.51337 -0.32
0.51337 -0.32
0.23283 0.00
0.23283 0.00
0.29840 0.00
0.29840 0.00
0.20285 -0.32
0.20287 -0.32
0.27520 -0.32
0.27167 -0.32
0.21638 -0.32
0.21638 -0.32
0.46123 0.00
f.46123 0.30
r.97742 0.00
0.97742 0.00
0.12642 -0.02
0.12642 -0.32
0.25506 0.00
0.25506 0.00



57 BHLT QBIT 30.87 0,52 8499.654 0,19860 -0.32
58 QBLT BHLT 30.d7 0.91 14967.227 0.21435 -0.32
59 MFLT CBIT 51.38 0.01 175.892 0.42713 -0.32

60 OBLT TFIT 51.38 0.14 4072.189 0.42713 -0.32

61 OBLT CRIT 14.14 J.17 16475.317 0.09579 -0,32
62 CELT QBLT 14.14 0.30 2952 4 .193 0.09579 -0.32

63 IBLT CRIT 3.28 P,19 5643,173 0.03778 -0.32

64 CELT IBIT 3.28 0.16 49j~.228 0.03778 -0.32

65 IBLT GZLT 9.67 0.22 4909.228 0.07767 -0.32

66 GZLT I1IT 9.67 0.26 9643.173 0.07767 -0.32

67 GZLT WTIT 79.J3 0,45 4909.228 0.,51975 -0.32

68 WILT GZIT 79.C3 0,52 5643.173 0.51975 -0.32

69 WTLT bSIT 31.95 '.00 1.533 0.20298 -0.32

70 BSLT WTIT 31.95 3.CO 44.255 0,20299 -0.32

71 WTLT F1LT 37.74 0,90 4995.695 0.29753 -0,32

72 FMLT WTIT 37.74 1.02 9598.919 0.44446 -0.32
73 BSLT MNIT 122.73 0.CO0 3.000 0.77735 0.00
74 MNLI BSLT 122,73 0.3 0,O000 0,77735 0,00

75 MNIT ATIT 128.37 9.00 0.0%J 0.78622 0.00

76 ATLI MNIT 128,37 0.00 0.J00 0.78622 0.00
77 ATLT SGIT 91.95 0.00 0.0O0 0,67356 0.00

78 SGLT ATIT 91.95 0.00 ).30n 0.67356 0.0O

79 SGLT O IT 141,59 0.0 0,0JO 1.03568 0.0o

b0 ELT SGLT 141,59 0.30 (.000 1,03568 0.00
81 OELT ANIT 270.22 J ,0 0.000 1,72502 0.00

() 82 ANLT QE0T 270.22 0.00 0.000 1,72502 0.00

83 OBLT ZG1T 26.94 0.48 19484.773 P.34665 -0.32

84 ZGLT OPIT 26.94 0.36 7799.759 0.34667 -0.32

r' 87 ALEX AXIT 0.00 1312.41 1312.413 0.26483 -0.32

88 AXLT ALEX 09,0 (.00 0.000 0.09793 0.00
89 DhiR DRIT 0.00 843.27. 843.272 0.26483 -0,32

90 DRLT DMPR 0.00 527.62 527.622 0.09793 -0.32

91 LTYB EBIT 0o,0 495.91 495.908 0.33478 -0.32

92 EBLT ETYB 0.00 370.95 370.951 0.16788 -0.32

93 KFRS KSIT 1,.00 1C00.45 1003.449 0.27882 -0.32

94 KSLT KEES 0.00 i.00 0O.00 0.11192 0,00
95 MHLK MIIT 0.00 6206.80 6206.804 0.16690 0.27

. 96 MKLT MIHL1K 0.00 6f06.95 6006.954 0.01400 -0.32
97 TANT 'TIT 0.39 5883.48 58u3.477 0.19488 -0.32

98 TILT TA1.T 0.00 7673.97 7673.973 0.02798 0.16

99 SHKia SKIT 0 10 29 7r.35 2978.354 0,22286 -0.32
100 SKLT SHKM 0.30 8780.93 8780.927 0.05596 -0,32
101 BNHtA BHT 1.00 31' .02 3619.023 0.,19468 -0.32
102 BHTI. BNIHA 0.03 10181.34 In161.340 0,02798 -0.32
103 CAI CRHIT f.00 28343.81 2d343,814 0.20887 -0,32
104 CLT CAIR *.30 1602 .ti8 1602P.77 0.04107 -0.32
105 ZGZG ZGIT 0.30 6910.63 91;.633 C.22286 -0.32
106 ZGLI ZG2G 0.00 10955.39 1n955.391 0.05596 -0.32
107 ABKB AKIT 0.L3 1331.80 1331.796 0,20987 -0.3?

108 AKLT AKI( 9. ;1 7 7 797 792.765 0,r4197 -0.32

109 MNSR MRIT 0.30 4H43.69 4843.686 0.26483 -0.32

110 MhLT MNS.R 9,0 2559.20 2559.2V5 0.09793 -0.32
111 SHR E'NIT 9100 99.26 99.27 0.2286 -0.32

112 SNLI SHFB r'.IO 751."2 757.023 0.05596 -0.32

113 DMII DTIT n.00 75.39 575.393 0.1ie'9 -0.3?
114 DTLT DMIT *' )3 361.54 361,5A7 0.01400 -0.32

115 PEIS ISIT U.c0 I.30 0).0 0.19468 0.09

116 PSLT P1;'IS .n .no0 .O0nu 0.0279A 0.00
117 IS~L ILIT :.)0 b3.84 .3.44 0.f80 9 -0.32
118 LL' T ISL 0.0 25? ,.50 2t(,.4 7 0.01400 -0.32

119 FYIIl F 1' iL0 . 9 .02 5I ,.919 0,194j H -0.32



12 0
121
122
123
124
125
126
127
128
129
133
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
163
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
183

FMLT
BSWF
BSLT
MNIA
FNLT
ASYT
ATLT
SH AG
SGLT
QENA
QELT
ASW .
ANLT
AXET
DR E'T
DRET
QNET

EbETEBET
ERET
K Z ET
KZET
TTtLT
TTET
, HET
M n ET
ON Eil

ONET
KS .T
KSET

SNET
DTET
SNET

MEET

MHET
MKET

AKET
PSE'
ILET
ZGET
AKET
ZGET
ILET
ZGLT
BHET
TTkT
BHET
TTFT
SKET
SKELT
MFhT
MFLY

OBET

B ET

Ch1i1,

FYUM
BS IT
BSWF
Mi IT
MNIA
ATLT
ASYT
SGIT
SI| G
QEIT
',ENA
ANIT
AS N
DEFT
AXET
ONIT

EBET
DEFT
FZET

TIET
KZiT
MHET
TTET
ONET
M il ET
KSET
UNET
SNET
KSET
DTET
SNET

SNET
MRET
ti K ET
MKET
!4HET

IIFT
ISET
AKET
ZGkTT
ILET
ZCIT

ZGET

TTkT
SKET

MHFT
SVLT
o bE
M F ET
C BIET

lii T
0FE 11

0.00

0.30

C .00

0,00

0.000,00

0.00

60,69
60.69
42.60C
42.60
25.20
25.20
11.84
17 .b4
17.76
17.76
14.42
14.42
30.98
3n.58
42.60
42.60
63,05
63.05
40.77
40.,77
23.82
23.82
25.36
25.36
13.23
13.23
47.54
47.54
77.94
77.94
23.00
23,00
7is.32
7. 32
35.0 O
35.3
41.40
41, 49
28.13
28.13
13.56
13.56

51 .39

31 ,7

14.14
14 14

4905.69
44.26

3.53
0. v 0
0.00
0.(:0
".00

0.00
0.00

L,. , 0
0.33
0.19
3.00

0.67
0.45
c.76
0.53
P.76
0.53
0.72
3.73
0.,00
0.00
?,00
0.00

0.03
:.14

0.30
0l59
0.39
0.80
0.91
0.96
1.97
0.11
0.59
0.33
o.18
3.17
0,27
C.45
0.65
0.58
".50
L.95

1.05
1. f' 8
O.93

.96

0.90A.94

".91

4905.695
44.255
3.533

u. OCO
9.303

90.00

O.ono

, 000
21384.b42
120J0.4P8

0.003

3250.0336
21677.305

72 P7.91
26090.994
37207.910
26000.994
17492.939
17742.340

0. ' 1 J
0.000
0.000
0.0 013

699.019
264.3 09

2569.772
5456.935

13680.053
7119.258
14677.997
i657 .426
17492.939
17742.340

976.265
821.535

3u 4. 055
1596.204
1531.280
2424 .671
6912.C02
986b.223

1346e .914
16570.441
52223.445
51901.066

328 .492
2833.647
29C4,773
3L64 .385
2904.775
3064.,Sh5

?Q90)t. 172
t?642.826
82902 9 14
o5707.106

0.02748
0.19468
0,02798
0.22266
0,05596
0,25084
0.08394
0.25084
0.08394
0.36276
0.195d6
0.278t2
0.11192
0.31897
0,31897
C.34873
0.34873
0.13141
0.13138
0.09815
0.09768
0,99782
0,09735
0,07330
0.07334
0.24917
0.24917
0,32774
0,32774
0.51879
0.51879
0.27071
0,27"71
0,17852
0.17852
0.17550
0.18881
0.11160
0,12578
0.40838
0.40838
0.36a77
0.36877
0.21270
0.21270
0.39131
0.39133
0,19258
0.19258
0.27912
0.27455
0.68331
0.22648
0.13848
0.21555
P. 3 I265
0.45973
0.19755
0.21358
P.0 699
0.09748

-0.32
-0.32
-0.32
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0,00

-0.32
-0.32
0.00
0.00

-0.17
-0.32
-0.12
-0.32
-0.12
-0.32
-0.32
-0.32
0.00
0.00
0.00
0,00

-0.32
9.83

-0.32
0.17

-0,32
-0.32
-0.32
-0.32
-0,32
-0.32
-0.32
-0.32

0.16
-0.32
-0,32
-0.32
-0.32

0.14
-0.09

0.12
-0.18
-0.27
-0.32
-0.32
-0.32
-0.32
-0.3?
-0.32
-C.30
-0.29
-0.30
-0.29



181 CIET SSET 144.56 .0bb 942.538 0.R1420 -0,32
182 SSE CBET 144.56 0.17 2117.728 0,1420 0.41
163 CRET IBET 3,28 v.28 17727.3,: 0.03794 -0.32
184 IBET CRET 3.268 .50 3207C.842 0.03794 -0.13

185 IBET GZET 9.67 0.28 17727.3u3 0.n6416 -0.32
186 ZZET IBiT 9.67 C.50 3207 .842 0.06416 -0.13
187 GZET PSET 11f.98 '.29 17727.!03 0.56378 -0.32

188 BSET GZLT 110.98 .53 5?G70.842 0.56378 -0.13
189 BSET MNET 122.73 0.22 9958.32b 0.65748 0.16

190 MNEYT BST 122.73 0.47 21472.512 0.65748 -0.04
191 MNET ATET 128.37 r.19 o74C.435 0.66062 0.22
192 ATET MNET 128.37 c.39 17874.295 0.68062 0.03
193 ATET SGET 91.95 0.20 7413.853 0.51020 -0.32
194 SGET ATET 91.95 0.35 12910.748 0.51020 0.07

195 SGET GEET 141.59 0.18 4915.188 0.73486 -0.32

196 OEET SGIT 141.59 C.32 8733.874 0.73486 -0.05
197 QEET ANET 270.22 0.14 170e.376 1.26266 -0.32
198 ANLT OQLT 270.22 0.30 3680.647 1.26266 0.04
199 AL.X AXkT 0.30 21384.84 21304.842 0.26753 -0.32
200 AXET ALEX 0.03 1200.49 123C0.488 0.09793 -0.32

201 DnHI DPET 0.00 11154.92 11154.915 0.23955 0.11
202 DRET DMhR 0.00 9716.24 9716.236 0.06995 -0.32
203 ETYn EBET 0.00 6261.98 6261.980 0,29551 0.09
204 EBET EAYR 0.00 5878.11 5878.1C5 0.12591 -0.32

2095 KFRS KSET 0.(0 699.02 699.019 0,25354 -0,32

206 KSET KFFS 0.' 264.31 264.3n9 0.08394 9.83
207 MHLK MKFT .00 2720.39 272C.386 0.16960 -0.32

200 MKET MHK 0.00 4371.42 4371.420 0.01400 -0.,32

209 TANT TTET 0.00 23103.89 23103.893 0.19758 -0.32

211 TTET TAli 9.00 33782.96 33782.961 0.02798 -0.25
212 SHKM SKiT 0.00 5738.42 5738.418 0.21157 -0.32
213 SKEl SHKN 0.00 6352.88 6352.876 0.04197 -0.32

214 BNIHA BHET 0.00 57997.25 57997.246 0.19758 -0.32
215 Bl14T BNHA 0.00 64762.83 64762.828 0.02798 -0.27

217 CAIR CRET 0.A0 75P82.77 75582.773 0.21157 -0.32
218 CRET CAIR 0.0O 87397.17 h7397,172 0.04197 -0.25
219 ZGZG ZGET 0.00 7533.66 753,659 0.21157 -0,32
22) ZG T ZGZ 0.00 8484.80 8484.797 0.04197 0.54
221 ABKb AKLT c.00 2751.13 2751.133 0.19758 -0.32
222 hKET APBB 0.0J 212.50 2012.5"0 0.02798 -0.32
223 HNSl MRET 0. 0 7261.66 7261.657 0.23955 -0.32
224 Y,RET rNER n.4O 8767.26 8767.265 0.06995 -0.32

225 SHRP SNrT 0.00 5829.94 5b29.)37 0.21157 -0.32

226 SNLT SHbB (.03 5591.01 5591.015 0.04197 -0.32

227 DMIT DTFT 0.0O 5456.93 5456.935 0.16359 0.17
228 DT DMnT .30 2.69.77 2569.772 0.014 0 -0.32
229 PIETE SET 0.00 3334.05 3034,055 0.19758 0.16
230 PSi.T P IS 0.0 1596.20 1596.204 0.02798 -0.32
231 ISML ILET n.0l 6952.87 6952.873 0.18359 0,12

232 ILET ISFL n.03 5434.51 5434.507 0.01400 -0.32
233 SWES SSiT O.JC 2117.73 2117.728 0.19758 0.41

234 SSET SWtS C CO 942.54 942.538 0.02798 -0.32

235 FYUM FMET 3.D0 :,.00 1.000 0.1d359 0.00
236 F MT FYUM C,io :.30 0.01J 0,01400 0.00
237 BSWF BST 9.0C 13719.21 13719.214 P0.1157 0.03
238 BSET 0BS.F 0.(13 1908i9.7 1 8c9 .866 0.04 197 -0.32

239 MNiAk FN'T L.00 6152.52 t,152.5P5 0.26753 0.09
240 MNLT INIA n.10 3772.20 3772.233 0.09793 0.3H
241 ASYT AT.T 4.0J 1038 .11 1e38 J 14 0,22556 0.02

242 ATE1 A!"YT 0.0 6152.85 6752.851 0.05 ,96 0.73

24 A IAC SCfT 0,00 7683..59 76 3.3q2 0.23955 0.02



244 SGil SHAG 0.00 6C05.18 6005.181 0.067C1 -0.32

245 QEN QEOT 0.03 6773,30 6773.304 0.30950 0.03

246 QEE'T 0LA r.O0 4926.!9 4926.8k9 0.13990 -0.05

247 ASWN ANET r.00 3680.65 368J.647 0.25354 0.04

248 ANET AS N 11.,O 170k.38 1709.376 0.08394 -0.32

249 DTEP PSEP 63.'0 1.16 804.567 2.10362 -0.32
250 PSEb DTBZ 63.00 1.04 726.149 0.52139 -0.32

251 DIEE SNEP 42.'0 9.98 1536.484 0.26114 -0.32

252 SNHE DTEB 42..0 1.98 1532.597 0.25772 4.18
253 ShEP MED 24.10 :.91 261A.728 0.12563 -0.32

254 MIiLb SNtB 24.10 1.81 2317.886 0.11153 2.65

255 MHi' SLUB 20.20 1.07 1400.758 0.51082 -0.32

256 SLEB MREB 20.20 1.01 1317.517 0.21521 -0.32

257 SLEP ZGFB 33.70 1.17 836.514 0.52185 -0.32

258 ZGEP SLiB 30.70 1.03 8 6.828 0.32382 -0.32
259 SLE AKFB 30. 0 1.08 564.244 0.61125 -0.32

260 AKEB SLEP 30.00 0.98 510.690 0.?0161 -0.32

261 HREP BilFB 75.29 1.08 187.363 0.77477 -0.32

262 RHEB MPEB 75.20 1.12 194.677 1.28027 -0.32

263 SKLP BII B 26.10 1.12 97.669 1.16948 -0.32

264 BIHE SKEB 26.00 1.04 90.330 0.32826 -0.32

265 BHER ZGEE 3'5.(0 0.99 1642.947 0.24952 -0.32

266 ZGEb BHiB 35.00 1.08 .1781.892 0.64592 -0.32

267 ZGE AYEB 25.50 0.75 2299.895 0.11680 -0.32

268 AKP 2GZB 25.50 0.92 2838.501 0.13531 0.67

269 AKEP ILEB 70.50 0.97 338.858 0.38086 -0.3?

271 ILEE AKEP 7n.50 1.06 367.638 0.62193 -0.32

271 ILE FSEB 76.00 0.98 599.291 0.41160 -0.32

272 FSEE ILB 76.30 1.02 622.762 0.49544 -0.32

273 ILFB ZGEB 81.00 0.75 1672.196 0.39385 -0.32

274 ZZGE ILEB 81.00 C.51 1124.960 0.39349 -0.32

275 ILEB SSFB 89.00 3.83 432.848 0.40904 -0.32

276 SSEP ILIB 89.00 1.11 583.121 1.23263 -0.32

277 SSEB CEEB 133.50 1.07 1115.849 1.00917 -0.32

278 CREB SSER 133.50 0.97 1067.663 0.67987 -0.32

279 CREP ZGLB 71.20 1.n9 1757.456 1.06331 -0.32

280 ZGE CREB 77.29 1.01 1616.421 0.58281 -0.32
281 CREB BHJR 47.20 '.04 93.024 n,50951 -0.32

282 BHEH CREP 47.20 J.;0 0.000 0.50951 0.no

283 SHKM SKiB 0.00 97.87 97.869 0.17H83 -0.32

2b4 SKEL SHKM 3."j 90.33 90.330 0.06995 -0.32

285 BNHIA BHLB 0.10 1807.94 1807.938 0.15085 -0.32

2b6 BHEP BNIiA 0.00 2046.13 2046.131 0.04197 -0.32

287 CATP CRiB 0.00 2767.77 2767.765 0.15085 -0.32

288 CREB CAIR 0 .'o 2641.b9 2641.891 0.04197 -0.32

289 ZGZG ZCB v.!u 2567.94 2567.938 0.19282 -0.32

299 ZGEF ZG7 (.G 3679.56 3679.557 0l,394 0.44

291 ABKb AKEB 9.J 30 9.79 3089.786 P,16484 0.58
292 AK£Bb ABElI 0.00 2633.52 2633.515 0.15596 -0.32
293 MNfSF HMH tB 9.CO 2167.34 2167.344 0.24878 2.86

294 MPEP MNER 0.'0 2367.26 2397.269 0.13990 -0.32
295 SPHR SNEB 0.00 2"63.98 2063.984 0.19282 -C.32
296 SNEE SHFI n0.0 1772.03 1772.028 0O.0394 -0.32
297 DMTT DTEB p.O 162 .96 162i!.0"6 0.13686 -0.32

298 DIt bIT .00 0 15b4'5.75 1545.752 C.02798 4.14

29) PETS PSFB n.0 166.30 756.314 0.13686 -0.32

300 PSEL IhS 0."0 $11.25 811.251 0.02798 -0.32
301 ISML IL8 0.00 1 23.36 1823.057 0.13686 -0.32

302 ILL.H ISL 30.00 1411.19 1411,7k6 0.02799 -0.32

303 S' S ESIS I .0 1695,47 16W .970 0.13686 -0.32

.04 12P! SWE R r,00 144u.51 144U.911 0.0 796 -0,32
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366 CRWE EP~B 126.70 1.00 347.124 0.78468 -0.32
367 ALEX AXUB 0.03 2521,10 2521.097 C.20681 3.04
368 AXWM ALEX 0.00 2042,92 2042.919 0.09793 -0,32
369 DMHP DRkB 0, 0 1408,92 1408.923 0.26277 -0,32
373 DRWh DMER .,00 2046.25 2046,247 0,15389 3.82
371 ETYP EPkB 0.00 355.75 355.755 0.36070 -0,32
372 ELBW ETYB 0,0o 22 r.63 220.631 0.25182 -0.32
373 KFRj KShB 0.00 405.51 405.5J.1 t.7676 -0.32
374 KSWB KFFS 0.00 370,76 370.761 .16788 -0,32
375 CAIR CRUB 0. 0 347,12 347.124 0.15085 -0.32
376 CHWk CAIR 0.10 357.85 357.847 0.04197 -0.32
377 CRUB SSU 133.50 0.96 249.870 C.63746 -0.32
378 SSUB CRCB 133,50 1.08 282,620 1.08683 -0.32
379 CRUB GZUB 10.0 ).65 841.341 0.075d7 -0.32
380 GZU13 CEUB 10.00 .61 799.258 0.07586 -0.32
381 GZUD FPUB 97.50 1.14 841.341 1.91831 -0.32
382 FMUE GZUB 97.53 1.08 799,258 1.05958 -0.32
383 GZUP bSUB 118.51 0.00 0.000 0.83871 0.00
384 BSUE GZUB 116,50 3.30 0.090 0.63871 0.00
385 FMUE BSUB 43.00 1,08 1545.963 0.63541 -0.32
386 BSU. FMUB 43.)0 1.03 1479.813 0.37682 -0,32
381 BSUE hbUB 130e,0 0.44 472,876 0.58902 -0.32
388 HNUP bSUB 130,20 1.00 -1081.856 0.67097 -0.32
369 SWES SSUB 0.00 282.62 282.629 0.13686 -0.32
390 SSUH SW S 0.00 249.87 249,870 0,02798 -0.32
391 CAIR CRUB 0.00 11.02 1010.015 0.15085 -0.32
392 CRUB CAIR 0,00 100Q.68 10Gu.683 0.04197 -0,32
393 FYUM FMUB 0,00 2345,22 2345.222 0,15r85 -0.32
394 nMUB FYUN 0,0 2321.15 2321.153 0.04197 -0.32
395 BSWF BSUB 0.00 1391,91 1391.913 0.19282 -0.32
396 BSUB BSWF 0.00 2067.04 2061.044 0.08394 -0.32

*. 397 MNIA MH;UB 0.00 1081,86 1081.856 0.29075 -0.32
398 V NUI BN4 0.00 472.88 472.876 0.18187 -0,32
399 AXTX DRIX 56.50 J.01 274.867 0.47602 -0.32
400 DHTX AXMX 56.50 0.01 239.965 0.47602 -0.32
401 DRTX ERIX 25.73 r.00 3.000 0.21653 0.00
402 LBTX DRIX 25.79 0.00 .03a'J 0.21653 0.00
403 DtTX KSIX 57.41 0.16 794.135 0.49391 -0.32
404 KSTY DI) 57,40 J.14 701.337 0,49391 -0,32
405 KSTX TTTX 39.i,0 f.67 3290,147 0.35055 -0.32
406 TTTX KS'X 39.00 0.26 1368.559 0.35,51 7.30
407 KSTX HKIX 26.00 0,36 1772.833 0,23368 -0.32
408 HKTX KSIX 26.03 0.24 1188.135 0,23368 -0.32
409 TTTX MK1X 26.,50 %,00 145,133 .0.22327 -0.32
413 KKTX TIIX 26.50 0,u2 661.444 0.22327 -0.32
411 KSTX SNIX 63.30 0.00 0.000 0.56891 0.00
412 SNTX KSIX 63.30 9,00 0.000 0,56691 0,00
413 SNTX DTIX 42.00 '. 1 52.621 0.37748 -0.32
414 DTTX SNIX 42.~3 ,.02 115,379 0.37748 -0.32
415 ?KTX SNIX 48.:0 ,.90 0.000 0.43144 0.00
416 SNTX MKIX 48.00 t.00 .3.000 0,43140 0,00
417 MRIX SNIX 24.10 1.11 530.365 0.21660 -0.32
418 SNTX %IrX 24.10 0.46 2246.366 0.21A60 1,29
419 HKTX HTX 19.50 !.2 107'.59 0,17526 -0.32
420 tMRTA MKIX 19.50 Q'.56 284.51.3 0.17526 -0.32
421 PrTX SL1.X 21.20 ".32 1563.328 0.18155 -0.32
422 SLTX ihlX 2",20 P.18 876.275 0*18155 -0.32
423 HKTX SLIX 32.oC 0.25 1265.570 0.27535 -0.32
424 SLT MKX 32.i0 n.?3 1131.79 0.P27535 -0.32
425 SLTA AK[X 31.00 P.07 33.8 r0 0.26963 -0.32

46 A(TY ESTIX 30 19 PIP * 9 74 0 -?f0, 9(63 -0, 1



427 SITX ZCTX
426 ZGTX SLIX
429 EBTX 'T'IX
430 TTTX EBIX
431 TTTX ZCIX
432 ZGTX TTIX
433 TTTY 8HIX
434 BHTX TTX
435 TTTX SKIX
436 SKTX TT'IX
437 SKIX BkiIX
438 bHTX SK'IX
439 SKTX DHIX
440 DHTX SKIX
441 EBT DHIX
442 DHT'X EBIX
443 DHTX GZIX
444 GZIX DIIIX
445 DHTX CBIX
446 CRTX DIIIX
447 GZTX AX'IX
448 AXTX GZIX
449 CRTX BHIX
450 EIITX CbPX
451 BHTX ZGIX
452 ZGTX BPTX
453 ZGTX CEIX
454 CRTX ZCIX
455 ZGTX AKIX
456 AKTX ZG'IX
457 DTTX PSIX
456 PSTX DTIX
459 PSTX IL'X
460 IITX PS'IX
461 I1TX AKIX
462 AKIX IL-X
463 ILTx ZGIX
464 ZGTX ILIX
465 ILTX CRBY
466 CRTX ILTX
467 ILTX SSIX
468 SSTX ILTX
469 SSTX CiWlX
470 CRIX SSIX
471 CPTX GZIX
472 GZTX CR1X
473 GZTX FI'X
474 FMTX GZX
475 GZTX bSqX
476 BSTX GZX
477 FMTX DSIX
478 BSIX FNIX
479 BSTX !MNIX
48n ftNTX SSIv
481 NTX ATIX
482 ATTX HN'IX
483 ATTX SGIX
464 SGT. AT'IX
485 SGTA ONIX
486 QhTX SGIX

30.70
30.7039,79

39.C0

55,00
55.. 0
43.00
43.00
26,00
26.00
26.CO
26.00
39.50
39.50
100.70
100.70
29.00
29.00
26.00
26.00

173.50
173.50
47.20
47.20
35.00
35.00
77.20
77.20
25.50
25,59
63.00
63.00
76.00
76.00
70.50
711.50
81.03
81.00

123.50
123.50

899.00
133.50

133.50
10.90
13 .30
97.50
97,53

118.50
11b .53
43.00
43.00

13C, JO

135.50
135.50

95,00
141.50
141 .0

487 ONTX ANIX 1271.f0

0.32
.19

0.00
5.00

0.01
P.23
0.11
0.56
L.49

0.70
0.96
0.30
0.00
0.00
C.05
3.70
0.91
0.00
0.30
0.00
J.00
0.69
0.25
0.00

0.30
0.06

0.01
3.00

9.00
01.10
0.00

0.]0
0.00
0.(0
f.uO
0 .00
0.00
'..00

0.00
0.23

e.00

.04
0.00
3.00

0.00
O.0 0
0.'10

,00

2495.048
1439.093

91.563
02.936
0 1 00

524.894
280.116

1133.262
517.299

10122,337
6873.591
3404 .969
4715.448

0.030
0.000

262.869
3404.969
4452.576

0.009
0.000

. 0.000

3380.465
1242.362

0.000
0.000

1479.974
301.901
86.153
64.948

C.000
0.00
0.2CC

18. 2q9
0.000

A. 000.000

(.000O.000

3175.429
0.000

3436 .298
0.000n. 0 C..0

469.548
328 .325

r. o"

3.00j
n. O O

0.2612?20 -0.32
1.*26122 -0.32
p.32858 -0.32
0.32858 -0.32
0.49431 0.00
0.49431 0.00
C.40518 -0.32
0.4518 -0.32
0.23368 -0.32
0.23368 19.84
0.22621 -0.32
0.22621 -0.32
0.35508 -0.32
0.40295 -0.32
0.85685 0.00
0.05685 0.00
0.34264 0.00
0.34264 -0.32
9.30375 -0.32
0.31890 -0,32
1.86791 0.00
1.86791 0.00
0.61067 0.00
0.61067 0.00
0.31463 -0.3?
0.31456 -0.32
0.76384 0.0)
0.76304 0.00
0.22918 -0.32
Q.22918 -0.32
0.56622 -0.32
0.56622 -0.32
0,64668 0.00
0.64668 0.00
0.63362 0.00
0.63362 -0.32
0.68244 0.00
0.68244 0.00
1.31885 0.00
1.31885 0.00
0.,79989 0.0')
0.799b9 0.00
1.18694 0,00
1.18694 0.00
0.10938 0.00
0.10938 -0.32
0.93112 0.00
0.93112 -0.32
1.22581 0.00
1.22581 0.00
0.36588 8.27
1.36588 -0.32
1.10616 0.00
1.10616 0.09
1.15296 0.00
1.15296 0.00
0.80835 0.00
0.P0Of5 0.00
1.20401 0.00
1.20401 0.00
?.33186 o.00
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489
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

ANTX
BHTX
MRTX
ALEX
AXTX
DMHE
DRTX
LTYH
LBTX
KFRS
KSTX
!,HLK
MKTX
TANT
T'TX
S1IKM
SKTX
BNHA
BHTX
CAIR
CRTX
ZGZG
ZGTXA
ABKbh
AKTX
iNSE

MERTY

SNIX
DMIT
DTTX
PRTS
PSTX
ISML
ILTX
SWES
SSTX
FY11 N
FMTX
BSWF
BSTX
)KIA
HNTX
ASYT
AT1TX
SHAG
SGTX
OENA
QNTX
ASWh
ANTX

ONTx
MBTX
BPlTX
AXIX
ALEX
DRIX
DMHR
EBIX
ETYt6
KSIX
KFFS
MK IX

TTIX
TAKT
SKIX
SHKM
BH TX
BNhA
CBIX
CAIR
ZGSIX
ZG EB

ARKB
HRIX
MNER
SNIX
S b FB
DTIX
DMIT
ESIX
PRIS
ILIX
ISPL
SSiX
SWES
YM'IX
FYUM
BSIX

MNIX

ATIX
ASYT
SGIX
SHAG
ONTX

ANIX
AShN

271 s30
75020
75.21

0.00

0 O

0,00
0.000.00

0. 00
0.00c .00 .00

0.009,00

0 G0

0.,00.300.00
0.00
0.000.00

0.00.000.00

0.00
0,00

0.00
0.00
0. 00

0.00
0.00

0.003

0.0 0

0.90

0,00

0i l

0.00
0.08
0,45

274.89
239.99
519.25
461.35
91,56
82.94

5764.,31
3350.83
719.63

2427.19
f24.71
2210.50

14044 .61
14722,30
835?.37
99565,30
4452.58
6580 .40
2379.55
4395.54
870.88

1795.52
4493.71
1860.51
2130.99
477.74
138.58
52.62
64.95
88.15

18.30
0.00

3907,84
328,32
328.32
469.55

9 .00
0.00
.UO

0.00
.00

0.000.30
0.00
0.00
S1 00

0.000
439.029

2328 .2;3
274.887
239.985
519.24b
461.351
91.563
82.936

5764.314
3353.829
719 .631

2427.185
624.714

2210.498
14044.609
14722.305
8350.372
9595.00 0
4452.576
658 .399
2379.555
4395.540
870.875
1795.525
4493.739
1860.516
2130.986
477.744
1 3.5b64

52 621
64,948
88,153
0.000
18.299

.000
0.00

3907,845
328.325
328.325
469.548

0.000

0 .000
0.0-00

0.000

0.000

FLOW IS OVER CAPACITY ON sb OUT C

CPU TIME FOR DIPECTION FINDT;e,=
CEU TIPE Fc~H Olnf DIME3SICNAL EAiCH=
CfU TIME FR CONV1RENCE TfET=
CPU TIME FUR OUTPUT CALCULATIONS=

2.33186
0.63987
0.63967
0.24793
C0n9793
C.24793
1009793
0.31788
0.16788
0.26192
0,11192
0.16399
0.01399
0,17790
0,02798
0.20596
0105596
0,17798
0.02798
0.19197
0.04197
0.20596
0.05596
0.19197
0,04197
0,24793
0,09793
0,20596
0.05596
0.16399
0.01399
0.17798
0.02798
0.16399
0.01399
0.17798
0.02798
0.17798
0.02798
0.20596
0.05596
0.27591
q,12591
0,23394
0.08394
C.23394
0.08394
0.04586
0.19586
0.26192
P.11192

0.00
-0.32
1.23

-0,32
-0,32
-0,32
-0.32
-0.32
-0,32
-0.32

2.79
-0 .. 2
-0,32
-0.32
-0.32
0.42

-0.32
-0,32
0.06

-0.32
-0.32
-0032
-0.32
-0.32
-0.32
-0.32
-0.32
1 38

-0.32
-0.32
-0.32
-0.32
-0,32
0.00

-0. 12
0.00
0.00
0.71

-0.32
-0.32
8.27
0.00
0.00
0.00
0.00
0.00
0.00)
0.00
0.00
0.03
0.00

F 534 MCDAL LINKS IN THi. NETWOL'K.

2.59 SECCNDS
0.34 SECCNDS
0.16 SECCNDS
8.c5 SECONDS

fr


