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ABSTRACT

A Tertiary to Quaternary volcanic province, which includes both calc-alkaline and
alkaline volcanics, covers wide areas just to the north of the Bitlis Suture Zone in East-
ern Turkey. Investigations have been undertaken to provide constraints on the nature of
the spatially and temporally coexisting calc-alkaline and alkaline volcanics and the
magmato-tectonic evolution of this region. Two types of approaches have been utilized:
1-To study isotopic systematics (Sr, Nd and Pb), major and trace element abundances of
carefully collected, representative volcanic rock samples. 2-To analyse tectonic defor-
mations caused by the Miocene continental collision and still continuing convergence
between the Arabian and "Turkish" plates, based on LANDSAT, SIR-A image analyses, field
studies and existing geological data. Four major volcanoes of this volcanic province have
been chosen to carry out geochemical investigations. Ararat and Suphan are calc-alkaline,
Tendurek and Nemrut are alkaline volcanoes.

The calc-alkaline rocks of Ararat and Suphan include high-alumina basalts, andesites
dacites and rhyolites. The results of this study show that the four volcanostratigraphic
Ararat suites, distinguished by field studies, also form four coherent geochemical groups.
Isotopic compositions of the Ararat suites are within the observed range for island-arc
basalts. However a careful examination of their isotope systematics reveals a very limited
involvement of a lower crustal component in their petrogenesis. In contrast to Ararat,
Suphan lavas exhibit significant crustal contamination signatures. The obtained geochemical
data indicate that various two-component magma mixing processes involving six
end-members, that are derived from two distinct mantle-derived magmas by the interplay
of fractional crystallization, limited crustal contamination and cumulate assimilation can
account for the major, trace element and Sr, Nd, Pb isotopic composition of the Ararat
lavas.

Alkaline products of Tendurek, Nemrut volcanoes and fissure lavas of the Lake Van
region consist of rocks ranging in composition from alkali basalts, through hawaiites,
benmoreites, mugearites and sodic trachytes to peralkaline commendites and pantellerites.



Alkali volcanism is basically sodic and Al-rich in character and the most primitive lavas
are transitional to tholeiites. All of the alkaline suites studied have been variously
affected by lower and/or upper crustal contamination. Derivation of the alkaline lavas by
partial melting of a recently metasomatized, heterogeneous, hydrous phase-bearing
(amphibole), depleted peridotite mantle source followed by variable degrees of crustal
contamination and fractional crystallization is consistent with their overall geochemical
characteristics.

Based on the geochemical compositions of the most primitive basalts as best exempli-
fied by the Ararat high-alumina basalt suite, two distinct mantle sources can be inferred
for the Eastern Turkish volcanics. The first one represents a mantle that has had a
time-integrated depletion in Rb/Sr and Nd/Sm and similar to that of transitional-MORB
and continental arc basalts. The second mantle source is characterized by relatively less
depletion but quite radiogenic Pb 207/204 isotope composition. Models involving both an
ancient subducted oceanic crust source or a segment of depleted subcontinental mantle
that has been contaminated and metasomatized by a component carrying sediment signa-
tures, during a previous subduction event, are isotopically plausible. However, considering
all the geological and geochemical facts, the latter appears to be the most satisfactory
petrogenetic model.

It is not possible to establish a direct link between the subduction of the
Bitlis-Zagros ocean crust and the volcanism in Eastern Turkey. However, the assumption
of a detached, sinking slab following Miocene continental collision along the Bitlis-Zagros
Suture Zone, can be viewed as a plausible trigger for the generation of the calc-alkaline
magmas and their emplacement within the continental crust. The calc-alkaline volcanism
may be maintained to present by the continued sinking and dehydration of this detached
slab, as well as by the continued tectonic deformations caused by continental collision.
This creates mantle upwelling which not only initiates the alkali volcanism, but also keeps
the calc-alkaline volcanism alive.

The consideration of the detailed geology, tectonic structures and their trends along
with regional seismicity permits the identification of a number of deformational domains
in eastern Turkey bounded by major shear zones, in which coherent deformational styles
are displayed. The Van and the surrounding deformational domains formed and evolved
under the influence of a continental collision, following the Late Miocene elimination of
the Bitlis-Zagros ocean along the Bitlis-Zagros suture zone between the Anatolian-Iranian
and Arabian blocks. Mainly three different, but nevertheless related deformational styles
take up the still continuing continental convergence that is the result of the northward
motion of the Arabian plate. These are: 1- Folding and thrusting within the Arabian plat-
form and along the Caucasuses, 2- Displacements along NW-SE and NE-SW trending sets
of oblique-slip faults, causing lateral escape, and 3- Tilting and bending of crustal blocks
and thrusting of those blocks over a decollement surface within the continental crust.
The contemporaneous development of extensional and compressional tectonic regimes
along with calc-alkaline and alkaline volcanism can best be explained by limited thinning
as opposed to thickening of the continental crust, as a result of wide scale compression
in eastern Turkey. This is accomplished by the tilting and bending of slab like crustal
blocks and thrusting of these blocks over a decollement surface within the continental
crust, providing that there is an available "escape space" in the direction of the tilting
and thrusting. It is suggested that the combined Black and Caspian Sea back-arc
basins(marginal sea?) through the Caucasuses provided the required "escape space" in
this region. However, the consumption of oceanic crust along the Caucasuses by the
overthrusting continental margins, from both north and south, prevented the further
development of an extensional regime in this region. The slab-like crustal blocks of the
Van deformational domain, trapped between the converging Arabian and Scythian blocks
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escape eastwards away from the maximum compression region along the NW-SE trending
set of oblique-slip faults instead of thickening the crust by overthrusting onto each oth-
er. This model may offer plausible alternative explanations for the origin of an exten-
sional regime, either immediately following or contemporaneously developing with a
compressional regime in an adjacent region.

Thesis supervisor: Stanley R. Hart,
Professor of Geology and Geochemistry
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CHAPTER 1

GEOCHEMISTRY OF THE CALC-ALKALINE VOLCANICS



1.1 Introduction

A Tertiary to Quaternary volcanic belt which covers wide areas between the

Caucauses (U.S.S.R) and Lake Van (Eastern Turkey) extends about 900 km. towards the

Bijar region of northwest Iran (Figure-1.1). This volcanic belt is situated to the north of

the Bitlis-Zagros suture zone. As a result of the overall convergence between the

Arabian and Eurasian plates, the existing southern branch of Neo-Tethys was consumed

by northward subduction; continental collision took place in the Miocene forming the

Bitlis-Zagros suture zone (Rigo de Righi & Cortesini, 1966; Dewey et al., 1973; Hall,

1976; Stocklin, 1974). However, continental convergence is still taking place as mani-

fested by active deformation and diffuse seismic activity in this region (Nowroozi, 1971;

McKenzie, 1972; Rotstein & Kafka, 1982; Jackson & McKenzie, 1984). This volcanic

province has certain peculiarities by which it can be distinguished from typical continental

volcanic arcs. First of all, calc-alkaline and alkaline volcanics spatially and temporally

coexist. Some of the volcanic centers that produced alkali volcanics are located just to

the north of the presumed trench zone, which is represented by the Bitlis-Zagros Suture.

Moreover, this volcanic belt attains it's maximum width in Eastern Turkey, where volcanic

rocks extend northward, for about 350 km., from Lake Van area (Turkey) to the

Caucasuses (U.S.S.R.). The existing volcanoes do not line up to form an elongate volcanic

zone, subparallel to the presumed continental margin in Eastern Turkey, as they do in

most continental arcs. Finally, major volcanoes were formed in Pliocene to Quaternary

times, long after the Miocene continental collision.

Although the volcanics of this province have not been systematically dated (except

the ones in the immediate vicinity of Lake Van and northwestern Iran), calc-alkaline

volcanism appears to be represented by two main phases of activity. K/Ar dating by

Innocenti et al.,(1976) indicates that the first phase of calc-alkaline, high-potassic activity

-9-



Figure- 1.1

Distribution of Tertiary to Quaternary volcanic rocks in eastern Turkey and

surrounding regions. Letters denote: a- Calc-alkaline, Ka- High-K

calc-alkaline, b- Alkaline series. Shading patterns represent approximate age

intervals by K-Ar dating. Shading patterns: 1- Upper Oligocene-Lower

Miocene, 2- Lower-Middle Miocene, 3- Middle-Upper Miocene, 4- Upper

Miocene-Pliocene, 5- Pliocene-Quaternary, 6- Quaternary, 7- Dominant

pyroclastic products and ignimbrites. Bitlis-Zagros Suture Zone is located to

the south of the volcanic province. Note that the volcanic belt attains it's

maximum width between Lake Van and Tbilisi. The Lake Van area, indicated

by a frame, is shown in detail in Figure-1.2. Map modified after Innocenti et

al., 1982.
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produced large lava domes and flows and ceased, about 6my. ago, with repeated

ignimbrite eruptions. Large stratovolcanoes of Pliocene to Quaternary age (such as

Suphan, Sabalan, Ararat?) formed during the second phase of calc-alkaline activity.

The alkaline volcanism started about 6my. ago as fissure basalt eruptions and contin-

ued with the development of major cones such as Nemrut and Tendurek volcanoes.

1.2 Ararat Volcano

The Ararat volcano is situated in eastern Turkey, near the Turkey-Iran-U.S.S.R. triple

border. It is one of the eight major volcanoes of the Tertiary to Quaternary volcanic

province which covers extensive areas in this region (Figure-1.2). Apart from being

famous for the biblical Noah's Ark story, it is a spectacular stratovolcano of 5165m.

elevation. A permanent glacial cap is present above 4000m. elevation, at the summit of

volcano. The lavas of Ararat occupy more than 1000 square km. A second major cone,

Little Ararat (3903m. high) is located in the southeast, 12 km. from the Ararat peak.

The oldest exposed rocks in the vicinity of Ararat volcano are Devonian (Altinli,

1964-a), exposed as a small outcrop to the south of Little Ararat along the Iranian bor-

der. These rocks are composed of reddish schistose-sandstone and a limestone series

underlying the base of the Permian limestone at this locality. The Brachiopod fossils that

are found in the oldest limestone unit indicate Devonian age.

No rocks of Triassic to Lower Cretaceous age are found in this region. The Upper

Cretaceous is represented by the widespread ophiolitic melange lithologies. (See the last

chapter).

-12-



Figure- 1.2

Simplified geological map of the Lake Van area, showing the distribution of

calc-alkaline and alkaline volcanics and major volcanoes. Key to the patterns:

1- Alkaline volcanic rocks, 2- Calc-alkaline volcanic rocks, 3- Neogene and

Quaternary sedimentary deposits, 4- Pre-Neogene basement. Map after

Innocenti et. al., 1976.
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The Ararat volcano is composed of high alumina basalts, basaltic andesites, andesites,

dacites, rhyolites and minor amounts of pyroclastics. However, andesites and dacites are

by far the most abundant lithology. Some scattered domes of gray colored andesites and

dacites form the oldest exposed units. Due to the chemical similarities of these units to

the Little Ararat products, they will be referred as the "Little Ararat Series" in the text.

The oldest lava flows of the Ararat volcanic cone are reddish and pinkish colored

andesites and dacites. These are well exposed to the north of Ararat along the

Hell(Cehennem) valley. These lava flows will be referred to as the "Old Ararat Series".

The high alumina basalts and basaltic andesites are found to the south of the volcano in

the vicinity of the Ice Cave. They occupy an intermediate position in the Ararat

volcanostratigraphy and are referred to as the "High Alumina Basalt Series". The youngest

flows are black colored andesites and dacites and are referred to as the "Ararat Series".

They erupted not only from the central vent, but also from post-glacial fissures, forming

parasitic cones on the flanks of the volcano.

No geochronologic age data exists for the Ararat lavas. Sanver (1968) obtained a

0.4 my age for the youngest lavas of Ararat based on paleomagnetic studies.

1.3 Petrography

The samples of Ararat lava flows are highly porphyritic. There is an increase in

phenocryst content, going from basalts to dacites. The most common phenocryst phases

are plagioclase (An 50-60) and augite. Orthopyroxene is also common but it is not as

abundant as clinopyroxene. The basalts and basaltic andesites contain minor amounts of

olivine. Quartz is also common in the dacites and rhyolites. Apatite, ilmenite and

magnetite are also present as accessory phases. Groundmass consists predominantly of
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plagioclase, augite and oxide (titanomagnetite and ilmenite) microphenocrysts. Interstitial

glass is generally present. Some samples (mostly silicic) have a holohyaline groundmass.

The plagioclase phenocrysts can reach up to 3-4 mm. length. Both normal and

oscillatory zoning is present. As noted by Lambert et al (1974), some samples seem to

have two generations of plagioclase. The first group is invariably more calcic and has

relatively weak zoning compared to the other group. The presence of resorption of

phenocrysts and the two types of plagioclases that are in disequilibrium indicate an

important role for magma mixing processes in the generation of the Ararat lavas.

Isolated spherical aggregates of cpx+opx+plag+oxide exhibiting glomeroporphyritic tex-

tures are also present in some andesite samples.

1.4 Analytical Techniques

Utmost care was taken to obtain the freshest available samples in the field by sampl-

ing the crack/vein free cores of lava blocks. The sawn surfaces of sample slabs have

been removed by abrasion with silicon carbide. The slabs were wrapped with plastic and

aluminum foil and crushed down to 0.5 cm. chip size by hammer. Individually inspected

rock chips that were free of alteration were cleaned ultrasonically in acetone and dis-

tilled water. After they were dried overnight in an oven at 110 C, they were ground in

a WC shatter box and the rock powders were honiogenized throughly. Major and trace

elements were analyzed at Woods Hole Oceanographic Institution using the automated

Phillips X-Ray Fluorescence spectrometer. Major elements were determined on fused glass

discs and trace elements on pressed powder pellets using the techniques described in

Schroeder et al. (1980). Based on numerous replicate analyses of U.S.G.S. rock standards,

-16-



the analytical uncertainties are in the 0.5-3% (with the exception of Na) and 1-5% range

for major and trace elements respectively.

REE were determined by instrumental neutron activation analysis (INAA) (Frey et al.,

1974). Nuclear irradiations were done at the Massachusetts Institute of Technology

Research Reactor.

All isotope analyses were done on the 9-inch 60 mass spectrometer (NIMA-B) at the

Massachusetts Institute of Technology. Chemical and mass spectrometric techniques for

determination of Rb and Sr concentrations and Sr isotopic ratios are as described in

Hart and Brooks (1977); for Sm and Nd concentrations and Nd isotopic ratios as

adopted from Richard et al (1976) and summarized in Zindler et al (1979); for Pb

isotopic compositions as adapted from Manhes et al (1978) and summarized in Pegram

(1984). Procedural blanks are in the range of 20-35pg, 20-45pg and 0.8-1.2ng for Sr,

Nd and Pb, respectively and, are all insignificant. Sr isotopic ratios are normalized to

0.70800 for E & A SrCO3 using 86Sr/88Sr = 0.1194. All Nd isotopic ratios are normal-

ized to 0.51264 for BCR-1 using 144Nd/146Nd = 0.7219. Pb isotopic ratios are

normalized for mass discrimination using the NBS SRM 981 common lead standard.

Reproducibility is better than 0.05% per atomic mass unit. Quoted errors for Sr and Nd

isotopic ratios are in-run statistics, and are representative of true precision as demon-

strated by replicate analyses of various samples.

-17-



1.5 Results

1.5.1 Major and Trace Element Variation

The representative major and trace element analyses for the Ararat lavas are pre-

sented in Table 1.1. The major element compositions have been normalized to 100% vola-

tile-free, with all Fe expressed as FeO (designated FeO T). The Ararat samples cover a

wide composition range from basalt to rhyolite. Major element compositions range from

51-77% for SiO2, 14-19% for A1203, 1-9% for FeO, 0.2-6.5% for MgO, 0.8-8.5% for

CaO, 3.8-5% for Na20, 0.4-3.2% for K20, 0.1-1.8% for TiO2, and 0.03-0.37% for P205.

However, the variations of the major element compositions are not continuous within

these ranges. In Figure-1.3, K20 is plotted versus SiO2. In the classification scheme of

Peccerillo and Taylor (1976), the Ararat lava flows range from basalt to rhyolite, but

andesites and dacites are by far the most abundant. As far as the K contents are con-

cerned, all the analysed samples plot within the Medium-K field. The Ararat samples not

only define linear trends but also form different groups in the major element variation

diagrams (Figures-1.4,5) supporting the grouping based on the field observations. The

Ararat lavas show an enrichment in incompatible elements (elements such as K, Ti, P, that

are. largely excluded from major fractionating phases such as cpx, opx, plag) from older

to younger series. The Little Ararat lavas are depleted in incompatible elements in com-

parison with the other series, for a given SiO2 content. Being consistent with this, they

have higher MgO and CaO contents. However they exhibit less Fe enrichment in compar-

ison with the other series. Instead of having a moderate Fe enrichment trend which is

typical for calcalkaline rocks, they define a linear trend on the AFM diagram (Figure-1.6)

ending up with lower iron contents compared to the other series.
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HIGH ALUMINA BASALTS LITTLE ARARAT SERIES

A-30-1 A-30-5 A-30-10 A-30-12

S102
Al 203
FeO(T)
MgO
CaO
Na20
K20
T102
MnO
P205
TOTAL

Mg#

52.11
18.33
9.06
5.20
7.97
4.95
0.58
1.79
0.14
0.28

100.41

51.20
17.79
9.07
6.22
8.32
4.32
0.75
1.74
0.15
0.35

99.91

51.35
17.59
9.08
6.54
8.47
4.30
0.82
1.73
0.15
0.38

100.41

A-13 A-36-A'

52.72
18.65
8.81
4.87
7.84
4.40
0.57
1.78
0.15
0.29

100.08

52.32
18.59
8.70
4.85
7.84
4.65
0.55
1.77
0.15
0.30

99.72

50.6 55.0 56.2 49.6 49.8

51.84
18.30
8.89
5.06
7.99
4.60
0.37
1.78
0.14
0.28
99.25

50.4

424
9

93
184

4.09
6

29
46
23

22.8
171
32
69

341
33

7
10.33

103
45.0

30.67
6.34
4.00
1.08

536
11

147
190

10
30
78
91

160
42
64

566
42
12

13.36
109

19.00
6.33
2.44
1.19

566
13

160
188

4.00
11
28
94

123
23.5

165
49
70

619
43
12

12.31
109

47.0
17.09
6.71
2.00
1.14

434
8

154
182

4.16
7

30
42
19

21.7
153
28
64

591
31
11

19.25
102

43.8
26.00
6.07
4.33
1.19

431
10

161
181

6
29
43
18

23.6
156
11
35

457
28
11

16.10
102

30.17
6.24
4.21
1.16

A-43

55.36
16.67
7.20
6.04
7.95
3.83
1.10
1.18
0.12
0.27

99.72

59.9

382
26

335
150

11
24
76
168

155
49
59

351
27
24

12.89
127

13.64
6.25
1.90
0.97

A-48 A-51

57.15
16.47
6.48
4.95
7.30
4.11
1.29
1.04
0.11
0.30

100.20

57.7

415
36

488
157

3.61
12
24
77

132
19.9

136
51
60

297
22
26

13.56
151

43.5
13.08
6.54
2.04
1.15

62.07
16.01
4.92
3.41
6.06
4.19
1.45
0.75
0.09
0.22

99.18

55.3

384
39

525
152

3.54
13
17
56
87

14.7
92
36
52

309
23
31

13.46
203

42.9
11.69
8.94
2.71
1.65

A-47 A-46 A-12 A-54

62.67
16.73
4.36
2.77
5.64
4.59
1.10
0.76
0.07
0.18

98.87

53.1

360
31

437
133

9
16
26
20

77
30
36

295
21
25

14.10
175

14.78
8.31
5.12
1.73

63.86
16.76
4.45
2.55
5.82
4.40
1.11
0.75
0.08
0.17
99.95

68.32
15.91
2.69
1.47
4.59
4.48
1.6.1
0.37
0.05
0.11

99.60

76.90
13.86
1. 11
0.16
0.81
4.51
3.20
0.11
0.06
0.03

100.75

50.5 49.3 20.4

372
34

508
134

9
17
26
24

82
32
35

271
18
25

14.94
179

14.89
7.88
5.15
1.63

347
50

620
125

2.50
9

12
21
25

5.7
51
10
29

267
22
39

12.40
338

49.4
13.89
10.42
5.95
2.45

100
87

934
109

12
28
4

7

35

305

28
266

10.74
991

9.08
3.89

27.25
15.57

TABLE 1-1 (cont'd)

TABLE 1-1

459
10

105
193

7
29
46
28

164
36
69

481
46
10

10.50
108

27.57
6.66
4.20
1.18

K/Rb
K/Ba
K/Sr
Ba/Rb
Zr/Ti02
Zr/Hf
Zr/Nb
Zr/Y
Zr/Ni
Zr/V



TABLE 1-1 (cont'd)

ARARAT SERIES

A-1 A-4 A-5 A-6 A-8-8 A-9 A-10 A-17 A-19 A-32 A-42-H A-42-I A-42-d A-42-K

64.17
16.39
4.90
1.64
4.54
4.62
2.12
0.94
0.09
0.24

99.65

63.18
16.45
5.24
1.87
4.86
4.47
2.05
1.00
0.09
0.29

99.50

59.65
16.85
6.30
2.72
6.03
4.48
1.79
1.17
0.11
0.37

99.47

64.87
16.25
4.64
1.43
4.47
4.65
2.16
0.88
0.08
0.25

99.68

63.83
16.41
4.89
1.60
4.53
4.74
2.06
0.95
0.09
0.28
99.38

59.16
16.53
6.04
4.13
6.57
4.37
1.89
1.01
0.11
0.38

100.19

62.67
16.77
5.19
2.14
5.21
4.57
2.14
0.96
0.10
0.27

100.02

62.07
16.87
4.98
2.20
5.29
4.52
2.34
0.96
0.09
0.25

99.57

63.20
16.47
5.06
2.18
4.99
4.07
2.46
0.93
0.10
0.27

99.73

58.71
17.44
7.02
2.71
6.08
4.42
1.62
1.30
0.12
0.36

100.08

61.79
17.35
5.16
2.39
5.31
4.50
2.12
0.92
0.09
0.24

99.87

62.46
17.07
5.25
2.18
5.17
4.32
2.10
0.96
0.09
0.27

99.87

61.48
17:05
5.30
2.28
5.34
5.09
'2.15
0.96
0.09
0.28

100.02

62.64
16.87
5.19
2.20
5.23
4.41
2.11
0.94
0.09
0.31
99.99

37.4 38.9 43.5 35.5 36.8 34.9 42.4 44.1 43.4 40.8 45.2 42.5 43.4 43.0

S102
Al 203
FeO(T)
MgO
CaO
Na20
K20
Ti02
MnO
P205
TOTAL

Mg#

Sr
Rb
Ba
Zr
Hf
Nb
Y
Ni
Cr
Sc
V
Cu
Zn

K/Rb
K/Ba
K/Sr
Ba/Rb
Zr/T 102
Zr/Hf
Zr/Nb
Zr/Y
Zr/NI
Zr/V

377
59

568
240

5.50
10
29
10
4

11.2
73
10
44

288
30
45

9.63
240

43.6
24.00
8.28

24.00
3.29

460
44

457
217

4.94
12
26
17
19

14.4
98
29
58

338
33
32

10.39
186

43.9
18.08
8.35

12.76
2.21

330
65

606
250

10
29
9

63
8

42

276
30
54

9.32
284

25.00
8.62

27.78
3.97

352
62

590
244

11
30
10

64
10
44

276
29
49

9.52
257

22. 18
8.13

24.40
3.81

525
47

550
191

4.73
14
24
71
94

17.9
118
39
57

334
29
30

11.70
189

40.4
13.64
7.96

2.69
1.62

399
58

569
218

13
26
15
5

89
16
52

306
31
45

9.81
227

16.77
8.38

14.53
2.45

393
56

585
223

15
27
14
8

77
22
50

347
33
49

10.45
232

14.87
8.26

15.93
2.90

366
58

590
219

13
26
14
5

80
14
48

352
35
56

10.17
236

16.85
8.42

15.64
2.74

409
35

447
188

4.54
14
27
21
14

14.7
133
30
73

384
30
33

12.77
145

41.4
13.43
6.96
8.95
1.41

420
.54

569
219

13
26
15
12

88
26
54

326
31
42

10.54
238

16.85
8.42

14.60
2.49

418
57

636
213

13
26
15
5

89
24
51

306
27
42

11.16
222

16.39
8.19

14.20
2.39

420
56

594
214

5.42
14
26
14
5

12.6
91
15
53

319
30
42

10.61
223

39.5
15.29
8.23

15.29
2.35

417
55

594
213

13
26
14
4

94
14
53

318
29
42

10.80
227

16.39
8.19

15.21
2.27

TABLE 1-1 (cont'd)

344
62

583
245

10
31
11
2

66
13
45

284
30
51

9.40
261

24.50
7.90

22.27
3.71



TABLE 1-1 (cont'd)
--------------------------------------------------------------------------------------------------------------------

OLD ARARAT SERIES

A-14 A-23A A-23C A-24 A-25 A-26 A-28B A-33 A-34B A-42A A-42B A-42C A-42D A-42E A-42F A-42G A-45

63.65
17.23
5.20
1.53
4.77
4.44
1.81
0.86
0.11
0.35

99.95

63.18
17.22
5.22
1.59
4.88
4.57
1.88
0.87
0.10
0.33

99.84

65.87

16.79
4.27
1.12
4.11
4.48
2.18
0.63
0.10
0.35
99.90

64.86
17.18
4.48
1. 24
4.19
4.75
1.97
0.71
0.10
0.32

99.80

65.34
17.00
4.45
1. 22
4.26
4.46
2.15
0.66
0.10
0.37

100.01

69.39
15.51
3.37
1.08
3.41
4.32
2.34
0.64
0.07
0.17

100.30

68.63
15.55
3.42
1. 13
3.49
4.64
2.30
0.63
0.08
0.18

100.05

61.25
17.65
5.31
2.21
5.74
4.78
1.80
0.95
0.09
0.21

99.99

69.01
15.65
3.38
1.08
3.33
4.70
2.33
0.62
0.07
0.17

100. 34

66.80
16.22
3.40
1.64
4.38
4.19
2.18
0.58
0.07
0.12

99.58

34.5 31.9 33.8 34.4 35.2 31.9 33.0 33.2 36.4 37.1 42.6 36.3 46.2 41.7 41.2 44.5

385 382 381 420 363 418 262 262
44 42 42 52 46 50 61 60

546 526 546 668 573 667 659 644
188 186 186 210 199 206 194 195

- - - - - - - 4.45

14 15 15 18 14 17 13 13

24 22 23 22 22 22 23 24

5 5 6 4 4 4 10 8
- - - - - - 2 1

64.76
16.17
4.38
1. 98
4.64
4.64
2.07
0.78
0.08
0.20

99.70

44.6

319
56

573
194

11
24
13

5

68
7

37

307
30
54

10.23
249

17.64
8.08

14.92
2.85

345 358
28 29
39 39

.41 12.52
229 216

.43 12.40

.83 8.45

.60 37.20

.13 2.74

372
29
41

13.00
214

12.40
8.09

31.00
3.05

348
27
43

12.85
333

11.67
9.55

52.50
5.00

356
29
45

12.46
280

357
27
43

13.34
312

318
29
74

10.80
303

14.21 12.12 14.92
9.05 9.36 8.43

49.85 51.50 19.40
4.23 4.48 6.06

318
30
73

10.73
310

15.00
8.13

24.38
5.42

378 268 260
46 61 57

515 679 603
182 191 185

13 14 11
22 22 23
15 8 12

4 - -

12.2 - -

95 39 57
39 11 16
51 35 39

325
29
40

11.20
192

40.9
14.00
8.27

12.13
1.92

317
28
72

11.13
308

13.64
8.68

23.88
4.90

317
30
70

10.58
319

16.82
8.04

15.42
3.25

63.70
16.96
5.04
1. 49
4.73
4.55
1.83
0.82
0.10
0.34
99.56

63.85
17.15
5.68
1. 49
4.69
4.46
1.83
0.83
0.10
0.32

100.40

63.94
17.15
5.00
1. 43
4.64
4.80
1.83
0.82
0.10
0.34

100.05

S102
Al 203
FeO(T)
Mg0
Cao
Na20
K20
T102
MnO
P205
TOTAL

Mg#

K/Rb
K/Ba
K/Sr
Ba/Rb
Zr/T 102
Zr/Hf
Zr/Nb
Zr/Y
Zr/Nt
Zr/V

3
3
5
8
9

383
42

533
189

38
4

53
18

4.3
1
2

i4 60 68 61 42 47 46
15 15 16 18 12 10 10
i9 57 59 61 60 58 57

68.07
15.55
3.42
1. 37
3.76
4.26
2.30
0.58
0.07
0.15
99.53

68.55
15.56
3.33
1.31
3.72
4.37
2.35
0.56
0.07
0.14
99.96

65.54
16.18
4.25
1.91
4.69
4.57
1.94
0.71
0.08
0.22

100.09

5 13
2 23
6 5

7.3
59
13
58

273 338
67 52

692 583
187 187

353
28
40

12.44
229

42.8
12.53
8.55

31.33
3.19

362
29
40

12.69
228

14.54
8.22

37.80
2.95

12

13
7

37
3

275
65

634
186

11
22
10
5

50
7

33

294
30
69

9.75
321

16.91
8.45

18.60
3.72

4.58
10
22
11

46
11
31

291
28
71

10.33
334

18.70
8.50

17.00
4.07

11.
21
18
17

10.4
65
10
40

310
28
48

11.21
264

40.8
17.00
8.90
10.39
2.88



Figure- 1.3

Plot of K20 versus SiO2 for the Ararat lavas. All the Ararat lavas have

medium-K contents and andesitic-dacitic compositions dominate over basaltic

and rhyolitic compositions. Note the systematic increase in K20, for a given

SiO2 content from the Little Ararat, through the Old Ararat to the Ararat

series. Classification boundaries are from Peccerillo and Taylor (1976).
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Figure-1.4 and 1.5

Diagrams showing the variation of MgO, FeO(T), CaO, and TiO2 with SiO2

contents. All the series define distinct fields and linear trends on these major

element variation diagrams. Note again the systematic differences in the

major element contents for a given SiO2 content among the different suites.
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Figure- 1.6

AFM diagram of the Ararat lavas. All the Ararat samples define a

calc-alkaline trend. Different Ararat series not only form roughly linear trends

but also form distinct fields as a result of systematic differences in their

major element compositions.
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In the text, "High Alumina Basalt" term will be used to designate all rocks with ( 53%

SiO2. High-Alumina basalts typically have high A1203 ( > 17%), moderate K20 (0.4-1.3%)

and generally low TiO2 ( - 1.5%) contents (Escobar et al., 1977). The Ararat High alumina

basalt major element compositions range from 51.2-52.3% for SiO2, 17.6 to 18.7% for

A1203, 0.37-0.82% for K20 and 1.7 to 1.8% for TiO2. Their TiO2 contents are slightly

high relative to the criteria defined in Escobar et al. (1977).

Molecular norms (Barth-Niggli Katanorm) have been calculated for all compositions

after assigning %Fe203 = %TiO2 + 1.5, following Irvine and Baragar (1971). All the high

alumina basalts are olivine and hyperstene normative. All the andesites, dacites and

rhyolites are quartz and hyperstene normative.

The major element data indicate that the Ararat lavas represent a typical orogenic

calcalkaline series according to the criteria established by Irvine and Baragar (1971),

Jakes and White (1972), Miyashiro (1974) and Gill (1981).

Concentrations of trace elements and some trace element ratios are listed in Table

1-1. The Ararat lavas exhibit large variations in both absolute concentrations of incom-

patible trace elements and also in their ratios. Similar to the variation of K20 with SiO2,

Rb and Ba contents positively correlate with SiO2 for all the series except the HA

Basalts(Figure- 1.7). High Alumina basalt K20, Rb and to a lesser extend Ba contents

correlate negatively with SiO2. They form separate linear trends for each series in these

element versus element plots.

Figure-1.8 shows K/Rb plotted against K20. The HA Basalts exhibit a very large range

in K/Rb ratios (340 to 620) and form a well defined linear trend with a positive slope.

The rest of the Ararat samples have a relatively limited range in K/Rb ratios (300-400)
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Figure- 1.7

Plots showing the variation of Rb and Ba abundances with SiO2 for the

Ararat lavas. The distinct fields formed by each of the Ararat series and

their linear trends are also apparent on these diagrams. Two samples from

the Little Ararat series have higher Rb and Ba contents with respect to the

trend defined by the other Little Ararat samples, possibly indicating crustal

contamination.
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Figure- 1.8

Plot of K/Rb versus K20 for the Ararat lavas. Shaw's Main Trend (Shaw,

1968) is also shown. Although different Ararat series form different fields on

this plot, there is an overlap between the fields of the Ararat and the Old

Ararat series. HA basalts form an impressive linear trend with a positive

slope. The K/Rb ratios of the HA basalts increase systematically from older

to younger flows. The age progression is indicated by an arrow. The other

series also exhibit a similar though more scattered variation, in comparison

with the HA basalts, possibly due to fractionation effects.
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and define two distinct fields due to the differences in K20 contents. As indicated by

the arrows in Figure-1.8, the younger samples appear to have higher K/Rb ratios. In gen-

eral, K/Rb ratios are correlated negatively with K20 contents for calc-alkaline rocks and

this has been attributed to differentiation (Shaw, 1968). Although the K/Rb range

observed for the Ararat lavas are within the range reported for orogenic calc-alkaline

rocks (Jakes & White, 1970; Gill, 1981), they differ in two aspects. First, the K/Rb

ratios become progressively higher for the younger lava flows, which is opposite in

sense to a fractionation progession. Secondly, the HA basalts define a convincing posi-

tive trend with a very high slope. Similar atypical positive correlation between K/Rb

ratios and K content has also been reported for submarine basalts from the Puerto Rico

trench (Hart & Nalwalk, 1969). They suggested that sea water alteration might produce

the observed positive trend. However this is not directly applicable to the Ararat case,

because the subaerial lava flows of Ararat have never seen sea water (perhaps with the

exception during Noah's journey!). In addition, the HA basalt sample with the lowest

K/Rb ratio (A-30-1) is also the least radiogenic in Sr87/86 ratio. Contamination by a

crustal material of low K/Rb can potentially decrease the K/Rb ratio of the original

magma but with an increase in K20 content which in turn produces a negative corre-

lation between K/Rb and K20, and higher Sr87/86 ratios; this is not consistent with the

Ararat HA basalt. In summary, the atypical positive correlation between K/Rb and K20

contents and increase in K/Rb ratio with age progression suggests two component magma

mixing (one end member with low K/Rb and low K20, the other with high K/Rb and high

K20) for the Ararat HA basalts. As far as the K/Ba and K/Sr ratios are concerned, the

ranges observed for the Ararat lavas (21-46 and 6-70 respectively) are within the range

of the calc-alkaline rocks (Gill, 1981; Morris & Hart, 1983).

Zr is plotted versus Si02 in Figure-1.9a. The four series form different groupings,

again showing linear trends. The interesting aspect of this plot is the presence of a very
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Figure- 1.9.a,b

Diagrams illustrating the variation of Zr with SiO2 and V abundances for the

Ararat lavas. Plots involving Zr abundances are found to be very useful in

distinguishing the various Ararat series. Note the large range observed for the

Zr abundances ( 130-250 ppm.) for a given SiO2 content (64%). (see the

text for further explanation).
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wide range in Zr content among the different series, for given SiO2. For example, Zr

ranges from about 130 ppm. to 250 ppm. for samples containing about 64% SiO2. In light

of this variation, the possibility that the different series are related to each other by

fractional crystallization is inconceivable. Since Zr is an incompatible element for a rea-

sonable fractionating phase assemblage (e.g. olivine-cpx-opx-plag-magnetite), the negative

covariation of Zr with Si02 for the HA Basalt and Little Ararat series would require

either magma mixing or zircon fractionation, or a combination of the two. Despite the

apparent zircon fractionation for A-54(rhyolite which contains zircon), mixing seems to be

more likely as the dominant process because, in general, the onset of a new crystallizing

phase causes a significant slope change in element versus element plots which involves

one of the compatible elements for the newly fractionating phase. Also, simple

fractionation does not produce any change in the isotope ratios. As will be discussed

later, the Zr abundances are correlated with isotope ratios. Moreover, the

volcanostratigraphy of the Ararat lavas also argues against simple fractional

crystallization. The HA Basalt samples whose numbers start with A-30 were collected

from successive lava flows, A-30-1 from the bottom of the volcanostratigraphic section

(oldest) and A-30-12 from the top of the lava pile (youngest). The fact that the concen-

trations of Zr, Nb, Ni, Cr, Ba, Rb, Sr, K show a gradual increase from bottom to top

(from oldest to youngest lava flows) rules out fractional crystallization as a viable proc-

ess and suggests magma mixing as the cause of the observed variations.

Starting with the pioneering work of Gast (1968) and following the studies involving

systematic treatment of trace element data (Allegre et al., 1977; Allegre and Minster,

1978; Langmuir et al., 1978; DePaolo, 1981), it has been well established that trace ele-

ment data, especially the ratios of incompatible elements and incompatible versus compat-

ible element variations can be effectively utilized to infer the source characteristics and
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Figure- 1.1 O.a,b

Plots of TiO2 versus Zr and Zr/TiO2 versus Zr for the Ararat lavas. As

expected from two-component magma mixing, the Ararat lavas form linear

trends on the element versus element diagrams and either linear or hyperbolic

mixing trends (depending on the value of r, Langmuir et al., 1979) on the dia-

grams involving element ratios versus elements. All these mixing trends con-

verge towards a common point.
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to identify magmatic processes such as partial melting, fractional crystallization, fractional

crystallization accompanied by assimilation, magma mixing, source mixing etc.

Incompatible versus compatible element variations have proved to be very useful in

defining the different Ararat series (e.g. V vs Zr, Ti vs Zr, Ni vs Zr). The V vs Zr and

Ti vs Zr variations are illustrated in Figures-1.9b and 1.10a. In these figures, the differ-

ent Ararat series not only form well-separated fields with different trends, but also

appear to converge towards higher V, Ti and intermediate Zr values. Based on the

volcanostratigraphic relationship of the lavas, the samples become progressively younger,

along the trends defined for each suite, toward the higher V and Ti values. This vari-

ation is also just the opposite of that expected from simple differentiation. The viability

of magma mixing can be further tested utilizing element ratio versus element and their

companion plots (element ratio vs reciprocal of the denominator; Langmuir et al, 1978). If

two-component mixing is the case, element ratio vs element plots, in general (if r not

equal to 1), will produce hyperbolic trajectories and their companion plots will produce

linear trends connecting the two end-members. Fractionation will produce curved trends

on the companion plots. In Figure-1.11 two companion plots are shown; Zr/Ni vs 100/Ni

and Zr/V vs 100/V. All of the Ararat series are clearly separated from each other and

converge towards a common point. The well-defined linear trends for each of the Ararat

series indicate that mixing is the dominant process.

In general, high field strength (charge/ionic radius) elements (Ti, Zr, Hf, Nb, Ta) are

depleted in orogenic calc-alkaline rocks in comparison with MORB or OIB. This depleted

character has been used to distinquish arc-derived rocks from others (Pearce and Cann,

1973; Wood et al, 1979). In order to compare the geochemical characteristics of MORB

and Ararat lavas, the MORB normalized elemental abundances of the two Ararat HA

basalt samples are plotted in Figure-1.12. The order of the elements are arranged, fol-
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Figure-1.1 .a,b

Plots of Zr/Ni versus 100/Ni and Zr/V versus 100/V for the Ararat lavas.

Distinct linear trends are formed by each series on these companion plots,

converging towards the lower left corner of the diagrams (high Ni, V and

low Zr/Ni, Zr/V values), confirming different two-component magma mixing

processes for each of the series.
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lowing Pearce(1983), on the basis of their ionic potential and of their bulk distribution

coefficients between garnet lherzolite and melt. Also included in this figure are the nor-

malized patterns of: one Hawaiian tholeiite, one New Hebrides calc-alkaline basalt (IAB),

one Australian anorogenic basalt and average calc-alkaline basalt from Western U.S.

Inspection of Figure-1.12 clearly shows the depleted nature of the IAB in high field

strength elements with respect to MORB and OB. The comparison of the patterns

reveals that the one HA basalt from Ararat (A-30-1) closely mimics the pattern of the

Hawaiian tholeiite, but with. two exceptions. Nb is depleted and Th is enriched in

A-30-1 with respect to the Hawaiian tholeiite pattern. Interestingly, the depletion in Nb in

sample A-30-1 is not accompanied (even when allowance made for analytical uncertainty)

by depletions in Hf, Zr and especially in Ti abundances. It is possible to attribute part of

the depletion in Nb to oxide fractionation (e.g. titanomagnetite, rutile), since D-Nb

Titanomagnetite/Melt ~ 13 (Ewart,1982) and D-Nb Rutile/Melt-16 (McCallum & Charette,

1978). However, fractionation of these phases will also create depletion of Ti. Unless

there is a phase which is capable of fractionating Nb and Ti (without affecting Ti), then

the observed Nb depletion of A-30-1 may reflect the depleted nature of the source in

Nb or the presence of a residual phase which can retain Nb (but not Ti) during partial

melting. Alternatively, an already depleted source region enriched with either a partial

melt or a metasomatic fluid which carries along with it the depleted Nb signature (e.g.

Nb retaining phase in the ultimate source of the enriching fluid; in the lower mantle or in

a subducted slab), can produce the MORB normalized pattern of A-30-1 upon partial

melting. Unfortunately, existing knowledge of the partitioning behavior of Nb is too

meagre to further elaborate and explain this apparent decoupling of Ti and Nb. The

comparison of the normalized patterns for basalts representing different tectonic settings

also suggests that the degree of HFSE depletions decrease, with the exception of Nb

depletion, from oceanic arc basalts to continental arc basalts. No depletion in Nb is

observed for anorogenic basalts outside of the analytical precision limits. The patterns
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Figure- 1.12

MORB normalized trace element patterns for the two Ararat HA basalts. Also

included for comparison are basalt patterns representing different tectonic

environments. The MORB normalization values, and the order of the elements

are adopted from Pearce, (1983). Data sources for the basalts include Pearce

(1983) and Ewart (1982).

Figure- 1.13

MORB-normalized patterns of three andesites. Two of them (A-5, A-9) are

from the Ararat series and the third (A-48) is from the Little Ararat series.
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of the Ararat HA basalts are broadly similar to the Western U.S.A. (continental arc basalt)

pattern.

Two andesites from the Ararat series (A-9 and A-5) and one andesite from the Little

Ararat series (A-48) are normalized with respect to MORB and plotted in Figure-1.13.

The overall patterns of these samples closely resemble each other. However, their pat-

terns differ significantly from the patterns of the HA Basalts, in that they are more

enriched in K, Rb, Ba, Th and Ce. They also exhibit Ti depletion, as expected for

Ti-bearing oxide phase fractionation, as well as Nb depletion. Their MORB normalized Sr

values are comparable with those of the HA basalts. A-9 and A-48 seem to have small

negative Zr anomalies, but no Hf anomaly.

1.5.2 Rare Earth Elements

Chondrite normalized REE abundances for the Ararat samples are plotted in

Figure-1.14 and the REE data are listed along with chondrite abundances in Table 1-2.

All of the Ararat samples are LREE enriched ((La/Yb)e.f. (enrichment factor relative to

chondrites) = 2.6-8.6 (La/Sm)e.f. = 1.4-4.3). The LREE abundances of Ararat lavas vary by

a factor of 3 (34-103xchondrites) while the HREE abundances are relatively constant

(10+3xchondrites), excluding sample A-12, which is a dacite from the Little Ararat series.

A-12 has significantly lower REE abundances and the most fractionated REE pattern

((La/Yb)e.f.=11), with a negative Eu anomaly. The HA basalts and Little Ararat series (ex-

cept A-12) have small positive Eu anomalies, while the Old Ararat and Ararat series

lavas have small negative Eu anomalies. These positive and negative Eu anomalies can be

generated by accumulation and fractionation of plagioclase respectively. Alternatively, they

can be inherited from the source, but this is not likely for calc-alkaline rocks in general,

based on the data obtained from experimental petrological studies. All of the Ararat
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LITTLE ARARAT SERIES HIGH ALUMINA BASALTS

A-48 A-51

20.4
' 40
17.2

3.48

1.28
0.45

2.2
0.36

0.51
5.86
9.27

21.1
38

15.5
(14.49)(2)
3.02

(3.02)(2)
1.02
0.48

1.6
0.26

0.56
6.99
13.19

A-13 A-30-1 A-30-12

11.3
29

17.5

4.34

1.70
0.84

2.6
0.41

0.39
2.60
4.35

11.9
31

18.5
(17.65)
4.66

(4.51)
1.75
0.86

2.7
0.40

0.38
2.64
4.41

17.6
41

21.5
(21.56)
4.87

(4.92)
1.77
0.90

2.5
0.36

0.43
3.58
7.04

CHONDRITIC
A-36-A ABUND.(1)

13.1
32

18.3

4.36

1.76
0.86

2.9
0.45

0.41
3.00
4.52

0.33
0.88
0.60

0.181

0.069
0.047
0.20
0.034

OLD ARARAT SERIES

A-23-A A-42-C A-45

25.6
50

20.7
4.15
1.27
0.69

2.0
0.30

0.51
6.17
12.80

24.1
46

18.3
4.16
1.29
0.71

2.1
0.33

0.52
5.79
11.48

25.6
47

18.7
3.55
1.10
0.60

2.0
0.33

0.54
7.21

12.80

ARARAT SERIES

A-4

24.2
48

21.8
4.57
1.37
0.82

2.6
0.38

0.50
5.30
9.31

A-5

27.7
55

24.1
4.97
1.52
0.81

2.4
0.38

0.50
5.57
11.54

A-9

34.1
58

23.8
4.30
1.35
0.87

2.4
0.37

0.59
7.93

14.21

A-32 A-42-J

25.8
50

22.4
4.53
1.60
0.86

2.6
0.41

0.52
5.70
9.92

31.3
59

23.7
4.35
1.41
0.76

2.4
0.39

0.53
7.20

13.04

(1) Chondritic abundances are from Frey et al., (1968).

(2) Concentrations in parentheses are determined by isotope dilution.

TABLE 1-2

A-12

14.6
24

9.2

1.98

0.52
0.36

0.8
0.11

0.61
7.37

18.25

La
Ce
Nd

Sm

Eu
Tb
Yb
Lu

La/Ce
La/Sm
La/Yb

La
Ce
Nd
Sm
Eu
Tb
Yb
Lu

La/Ce
La/Sm
La/Yb



Figure- 1.14

Diagrams showing the ranges for the chondrite normalized REE patterns of

the Ararat series. Chondrite normalization values are listed in Table- 1.2.
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andesites, and dacites seem to also have small negative Ce anomalies (Ce/Ce*=0.92-0.99).

However the Ce anamolies are within the analytical uncertainty limits. The

chondrite-normalized REE patterns of the Ararat samples (Figure-1.14) distinguish the

same four groupings, as the grouping based on major and trace element data. The HA

basalts exhibit the least LREE enrichment ((La/Yb)e.f.=2.6-3.0) among the Ararat series.

Chondrite normalized REE patterns of two HA Basalt samples (A-30-1 and A-30-12),

which represent the oldest and youngest lava flows of this series, respectively, are plot-

ted in Figure-1.15. A-30-12 is more enriched in LREE, while more depleted in HREE,

relative to A-30-1. It is possible to explain the REE abundances of A-30-1 and

A-30-12 by different degrees of partial melting of a single mantle source. A-30-12

could be generated by a smaller degree partial melt, being LREE enriched and HREE

depleted relative to A-30-1. However, the isotope data preclude such an explanation.

Based on major, trace element and Sr-Nd-Pb isotope data, the HA basalts represent two

component magma mixing. One end-member (similar to A-30-1) is a MORB-like magma,

and the second end-member is an alkali basalt magma. The chondrite-normalized pattern

of A-30-12 can be explained by addition of an alkali basalt component to A-30-1.

Because this second end-member is more enriched in LREE and depleted in HREE relative

to A-30-1, the REE pattern of A-30-1 is rotated around the chondrite normalized Tb

abundance to generate the REE pattern of A-30-12 as a result of magma mixing

(Figure-1.15). The lavas of the Little Ararat Series have lower total REE contents in

comparison to the Old Ararat and Ararat series. Their La/Yb ratios are negatively corre-

lated with Mg#, La and Zr abundances (Figure-1.16). The REE patterns of the Old Ararat

series occupy an intermediate position between the Little Ararat and Ararat series. The

lavas of the Ararat series have the highest total REE contents. La/Yb ratios are positive-

ly correlated with Mg# and La abundances for the Old Ararat and Ararat series. Zr

abundances of the Ararat series lavas are correlated negatively with both La and La/Yb

ratios (Figure-1.17).
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Figure- 1.15

Diagram illustrating the effect of magma mixing on the chondrite normalized

REE patterns of the Ararat HA basalts. Apparently, the pattern of A-30-1 is

rotated around a point in the middle to heavy REE region, resulting in

enrichments in LREE and depletions in HREE, due to magma mixing.

-52-



A-30-12

A-30-1

201-

I I I I
I I ,

La Ce Nd Sm Eu Tb Yb Lu

-53-

-l

C

E
U/)

101-

40-

30-



Figure- 1.1 6.a,b

Diagrams illustrating the relationship between the degree of LREE enrichment

(La/Yb ratio) and Mg# and La abundances. The distinct fields and trends not

only distinguish the Ararat suites, but also exhibit the magma mixing relations.
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Figure- 1.17.a,b

Plots of La versus Zr and La/Yb versus Zr for the Ararat lavas. Note the

negative correlation between the La and Zr abundances for the Ararat series

lavas. Also negative correlations exist between La/Yb and Zr abundances for

the Little Ararat and the Ararat series.
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1.5.3 Isotope Geochemistry

Sr, Nd and Pb isotopic compositions, along with Rb, Sr, Sm and Nd abundances for

the Ararat lavas are listed in Table-1.3. Sr 87/86 ratios range from 0.70339 to

0.70442, and Nd 143/144 ratios range from 0.51297 to 0.51280. The observed Pb

isotopic composition ranges are 18.80-19.02 for Pb 206/204, 15.56-15.67 for Pb

207/204, and 38.76 to 39.14 for Pb 208/204.

1.5.3.1 Sr and Nd Isotope Variation

Isotopic compositions of the Ararat lavas are broadly correlated with major and trace

element abundances. However, consideration of possible disturbances due to fractionation

on the covariation of isotopic compositions with major and trace element abundances,

makes such correlations even more convincing. In Figure-1.18 Sr 87/86 ratios are plotted

against Si02 and MgO contents. The Sr 87/86 compositions of Ararat samples are corre-

lated negatively with Si02 and positively with MgO contents. The four different series of

Ararat lavas form distinct trends and fields on these plots. Sr isotope ratios are also

correlated negatively with Rb/Sr ratios for Little Ararat, Ararat and Old Ararat series

(Figure-1.19a). The HA Basalts exhibit a wide range in Sr 87/86 ratio (0.70339-0.70376)

at almost constant Rb/Sr ratios. The data presented so far suggest the predominance of

magma mixing in the petrogenesis of the Ararat lavas. One test for mixing processes is

to plot isotopic ratios versus the reciprocal of the relevant element's abundance. If the

concentrations of individual samples are not significantly affected by crystal fractionation

or contamination, such plots will produce linear trends for simple two-component mixing

processes. In Figure-1.19b Sr 87/86 ratios are plotted against 100/Sr for the Ararat

samples. All the Ararat series form distinct linear trends with negative slopes, indicating
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TABLE 1-3

SAMPLE # Sr 87/86
(1)
(6)

Pb 207/204
(3)

Nd 143/144
(2)
(6)

0.51297 +2
0.51296 T2
0.51294 T2
0.51291 T2
0.51288 T2
0.51295 T2

Pb 208/204
(3)

Rb Sr
(4) (4)

HIGH ALUMINA BASALTS

38.941 8
38.910 9
38.957 10
39.001 11
39.042 13
38.890 10

LITTLE ARARAT SERIES

38.756 50
38.997 26
38.837 34
38.870 31
39.069 36
39.139 39
38.912 87

15.616
15.614
15.625
15.635
15.648
15.601

15.563
15.639
15.601
15.611
15.660
15.673
15.603

15.605

15.617

15.620
15.633

15.625

A-13
A-30-1
A-30-5
A-30- 10
A-30-12
A-36-A

Sm. Nd
(5) (5)

4.34
4.51
4.49
4.77
4.92
4.36

1.98

2.50

3.48
3.02
3.22

0.70339
0.70339
0.70351
0.70366
0.70376
0.70339

0.70423
0.70433
0.70403
0.70401
0.70439
0.70423
0.70385

0.70382
0.70386
0.70418
0.70387
0.70391
0.70418
0.70405
0.70398
0.70433
0.70404
0.70401
0.70412
0.70409

17.49
17.65
17.71
20.29
21.56
18.29

9.18

11.19

17.15
14.49
14.38

434
424
459
536
566
431

347
382
372
360
415
384
100

344
377
460
330
352
525
399
393
409
420
418
420
417

Rb/Sr Sm/Nd Sr/Nd

0.018
0.021
0.022
0.021
0.023
0.023

0.144
0.068
0.091
0.086
0.087
0.102
0.870

0.180
0.157
0.096
0.197
0.176
0.090
0.145
0.143
0.086
0.129
0.136
0.133
0.132

0.248
0.256
0.254
0.235
0.228
0.238

0.216

0.223

0.203
0.208
0.224

2,4.81
24.02
25.92
26.42
26.25
23.56

37.80

33.24

24.20
26.50
6.95

18.933
18.924
18.940
18.965
18.982
18.916

18.832
18.941
18.802
18.810
18.962
18.958
18.921

18.890

18.960

18.956
18.981

18.963

(1) Sr 87/86 ratios normalized to 0.70800 for E & A SrC03 using Sr 86/88 = 0.1194
Nd 143/144 ratios normalized to 0.51264 for BCR-1 using Nd 146/144 = 0.7219
Pb isotope ratios are normalized for mass discrimination using that obtained for NBS SRM 981.

Reproducibility is better than 0.05% AMU-1.
Concentrations in ppm by XRF.
Concentrations in ppm by isotope dilution, with precision for Nd, and Sm -0.3%.
Quoted errors for Sr and Nd isotopic ratios are in-run statistics, and are representative of true precision

as demonstrated by replicate analysis of various samples.

4.57
4.97
4.58

4.30

4.53

4.35

A-12
A-43
A-46
A-47
A-48
A-51
A-54

A-1
A-4
A-5
A-6
A-8-B
A-9
A- 10
A-17
A-32
A-42-H
A-42-I
A-42-d
A-42-K

ARARAT

38.884

38.979

38.988
39.022

39.001

0.51292
0.51284
0.51289
0.51290
0.51280
0.51286
0.51291

0.51291 '2
0.51288 T2
0.51292 T2

0.51286 T2

0.51291 -2
0.51284 T2

0.51288 72

21.82
24.06
20.65

23.80

22.35

23.74

Pb 206/204
(3)

0.209 17.28
0.207 19.12
0.222 15.98

0.181 22.06

0.203 18.30

0.183 17.69

(cont'd.)

(2)
(3)

(4)
(5)
(6)



TABLE 1-3 (Cont'd)

SAMPLE # Sr 87/86 Nd 143/144
(1) (2)
(6) (6)

Pb 206/204 Pb 207/204 Pb 208/204 Rb
(3) (3) (3) (4)

Sr Sm
(4) (5)

Nd
(5)

19.018

18.916

18.912

15.618

15.620

15.610

OLD ARARAT SERIES

- 56 319
- 43 383
- 42 383
- 44 385
- 42 382
- 42 381

39.032 52 420
- 46 363
- 50 418
- 61 262
- 60 262

38.961 46 378
- 61 268

38.920 57 260
- 65 275
- 67 273
- 52 338

- - 0.176
4.15 20.71 0.112

- - 0.110
- - 0.114

- 0.110
- - 0.110
- - 0.124
- - 0.127
- - 0.120
- - 0.233
- - 0.229

4.16 18.29 0.122
- - 0.228
- - 0.219
- - 0.236
- - 0.245

3.55 18.74 0.154

(1) Sr 87/86 ratios normalized to 0.70800 for E & A SrCO3 using Sr 86/88 = 0.1194
(2) Nd 143/144 ratios normalized to 0.51264 for BCR-1 using Nd 146/144 = 0.7219
(3) Pb isotope ratios are normalized for mass discrimination using that obtained for NBS SRM 981.

Reproducibility is better than 0.05% AMU-1.
(4) Concentrations in ppm by XRF.
(5) Concentrations in ppm by isotope dilution, with precision for Nd, and Sm -0.3%.
(6) Quoted errors for Sr and Nd isotopic ratios are in-run statistics, and are representative of

as demonstrated by replicate analysis of various samples.
true precision

A-14
A-23-A
A-23-C
A-24
A-25
A-26
A-28-B
A-33
A-34-B
A-42-A
A-42-B
A-42-C
A-42-D
A-42-E
A-42-F
A-42-G
A-45

0.70416 T4
0.70441 T4
0.70441 +3
0.70442 +4
0.70431 T4
0.70430 74
0.70428 T4
0.70439 74
0.70432 T4
0.70412 14
0.70434 T4
0.70440 14
0.70409 T4
0.70408 T4
0.70411 T4
0.70423 T4
0.70409 14

Rb/Sr Sm/Nd Sr/Nd

0.51283 T2

0. 51284 1:3

0.51286 T3

0.51283 12

0.51288 T2

0.51285 72

0.200

0.227

0. 189

18.49

20.67

18.04



Figure- 1.1 8.a,b

Plots showing the variation of Sr 87/86 ratios with SiO2 and MgO contents.

Despite the fractional crystallization effects (shown by the arrows), all of the

series have distinct trends and fields. Note that the negative correlations

between Sr 87/86 and SiO2, and positive correlations between Sr 87/86 and

MgO are just the opposite in sense to that expected for crustal contam-

ination.
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Figure- 1.19.a,b

Diagrams illustrating the variation of Sr 87/86 ratios with Rb/Sr and the

reciprocal Sr concentration for the Ararat lavas. The linear correlations

observed for each of the Ararat series on these plots demonstrate the viabil-

ity of magma mixing for the Ararat lavas.
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different two component magma mixing processes for each of the Ararat series. Details

of magma mixing will be discussed in the next section.

The Sr and Nd isotope compositions of the Ararat lavas are presented in a Sr

87/86-Nd 143/144 correlation diagram in Figure 1.20. Also shown are the fields for

MORB and some island-arc suites. In order to avoid overcrowding, only the Azores field

of OB is shown. The general OB field, overlapping with the lower end of the MORB

field, extends as a broad field more or less along the oceanic regression line. The

Ararat data form two narrow elongate fields along the oceanic regression line. The HA

Basalts plot virtually on the oceanic regression line, starting from the lower end of the

MORB field and extending towards lower Nd 143/144 and higher Sr 87/86 values. The

rest of the Ararat series lavas, composed mainly of andesites and dacites, define a

elongate field subparallel to the oceanic regression line but shifted towards the more

radiogenic Sr 87/86 side. All of the Ararat samples plot within the OIB field and also

overlap with the field of the Central Japan, Azores and Dominica volcanics. The data

point for one alkali basalt sample (S-60) from NE of the Suphan volcano is also plotted

in Figure-1.20. Assuming that the Nd 143/144 - Sr 87/86 correlation represents

two-component mixing for each of the Ararat series, then the isotopic composition of

S-60 is a plausible common lower end-member. Nd isotopic compositions of the Ararat

lavas are also correlated with major and trace element abundances (e.g. positive corre-

lation with SiO2, negative correlation with MgO contents; figures are not given here). Nd

143/144 ratios are also correlated negatively with Nd abundances and positively with

Sm/Nd ratios (Figure-1.21). In these diagrams, differentiation could potentially cause signif-

icant scatter. The best correlation is displayed by the HA Basalts, since they are the

least differentiated lavas among the Ararat suites. The linear mixing trends defined by the

Ararat suites converge to a common point which is characterized by Nd143/144 0.51273,

Nd 30ppm and Sm/Nd 0.2. In fact, the most primitive alkali basalt (S-60, plotted in
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Figure- 1.20

Sr-Nd isotope correlation diagram for the Ararat lavas. Fields for MORB,

Island arc and one oceanic island (Azores) are shown for comparison. Bulk

Earth values and the "Oceanic Regression Line" are from Allegre et al., (1984).

All Nd data normalized to Nd146/144=0.51264 for BCR-1. Data sources:

Hawkesworth et al., (1977, 1979); Hawkesworth and Powell (1980); Cohen and

O'Nions (1982); DePaolo and Johnson (1979); McCulloch and Perfit (1981);

Morris and Hart (1983); White and Hofmann (1982); Cohen et al., (1980);

O'Nions et al., (1977); Ito et al., (1981); White (1979); Nohda and Wasserburg

(1981); Stern (1981); Allegre et al., (1979).
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Figure- 1.21 a

Variation between Nd 143/144 ratio and reciprocal Nd abundance for the

Ararat lavas. The lines are drawn to approximate the linear trends exhibited

by the Ararat suites, despite of the disturbances due to fractional

crystallization. These trends are interpreted as two-component mixing trends.

Note that they all converge towards a common point which has a Nd

143/144 ratio of 0.51273 and Nd abundance of 30-35ppm. The isotopic

composition of this "end-member" is almost identical to sample S-60 (also

shown in the figure) which is the most "primitive" alkali basalt fissure lava

flow, sampled from an area to the northwest of the Suphan volcano.

Figure- 1.2 1b

Variation between Nd 143/144 ratio and Sm/Nd ratio for the Ararat lavas.

Note the trends with positive correlations, disturbed by fractional

crystallization, for the Ararat suites. The trends all converge towards a com-

mon field.
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Figure-1.21) is identical to this end-member in terms of Nd and Sr isotopic composition

but differs from it in Sm/Nd ratio and Nd abundance. This suggets that the common

end-member for mixing trends of the Ararat suites may represent a smaller degree partial

melt derived from the same mantle source as the alkali basalt. Similarly, the trends

formed by the Ararat suites converge towards a common field on the Sr 87/86 versus

Rb/Sr and 100/Sr diagrams (Figures-1.19a,b). Sr isotopic composition of this conver-

gence point is almost identical to the Sr 87/86 ratio of S-60 ( 0.70470 vs 0.70462).

1.5.3.2 Pb Isotope Variation

The Pb isotope compositions of the Ararat lavas are plotted on Pb isotope corre-

lation diagrams in Figure-1.22. Also included are various island arc, ocean island basalt

and Tethian ophiolite fields. The Ararat lavas form a steep, narrow array on the 207/204

Pb versus 206/204 Pb diagram. Most of the Ararat samples do not plot within the man-

tle array as defined by MORB and some OIB (e.g. Hawaii, Iceland and NE Pacific

seamounts). However the lower 207/204 Pb end of the Ararat array is within the mantle

array and also overlaps with the fields of Tethian ophiolites (Troodos, Baer-Bassit and

Semail). The radiogenic 207/204 end of the ophiolite fields are mostly characterized by

the rocks of upper ophiolite sequence (e.g. basalts, diabeses and upper level gabbros).

Most of the Ararat samples plot within the field defined by Reunion (an Indian ocean

island) volcanics, though some extend to more radiogenic values which are typical of

rocks from the Indian Ocean Islands (e.g. Crozet, Amsterdam) and also of oceanic

sediments.

Although the trends that are defined by the HA Basalt and Ararat series lavas are

quite narrow and well-defined on the 207-206-204 Pb diagram, the Little Ararat series

form a wide field. In other words, for a given 207/204 Pb ratio, the Little Ararat Series
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Figure- 1.22

Pb-Pb isotope correlation diagrams for the Ararat lavas. Included for com-

parison are the fields for a variety of island arcs, OIB and Tethian ophiolites.

The mantle array is drawn using the data from the North Atlantic, and Pacific

Ocean MORB and some OIB (e.g. Hawaii, Iceland, and NE Pacific Seamounts).

Data sources: Dupre and Allegre (1980,1983); Dupre et al., (1982); Oversby

(1972); Sun (1980); Tatsumoto (1969, 1978); Meijer (1976); Cohen & O'Nions

(1982); Oversby and Ewart (1972); Hamelin et al., (1984); Chen & Pallister

(1981); Barreiro (1983); Davidson (1983); Cohen et al., (1980).
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Figure- 1.23

Nd-Pb and Sr-Pb correlation diagrams showing the coherent correlations

involving all three isotope systems. Nd 143/144 ratios are correlated nega-

tively with Pb 206/204 ratios, whereas a positive correlation exists between

Sr 87/86 and Pb 206/204 ratios for the Ararat lavas.
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lavas have a wider range in 206/204 ratios in comparison with the other series. This

suggests involvement of a Pb-bearing component with low U/Pb and possibly low Th/U

(see 208-206-204 Pb diagram) values in the petrogenesis of the Little Ararat series (see

the discussion on crustal contamination).

Nd, Sr and Pb isotope ratios of Ararat lavas are coherently correlated. These corre-

lations are illustrated for 143/144 Nd-206/204 Pb and 87/86 Sr-206/204 Pb in

Figure-1.23. 206/204 Pb ratios are correlated negatively and positively with 143/144 Nd

and 87/86 Sr, respectively. These correlations are similar in slope, but not in absolute

position to those reported for Atlantic and Pacific MORB (Allegre et al. 1980; Cohen et

al. 1980; Dupre & Allegre, 1980).

1.6 Discussion

1.6.1 Crustal Contamination

Since the Ararat lavas were erupted in a continental setting and exhibit isotopic vari-

ations even among the successive lava flows, the possibility of crustal contamination has

to be evaluated before starting any discussion of possible mantle source characteristics.

The continental crust has been recognized as a potential contaminant for modifying

the chemistry of magmas since the early days of igneous petrology (Bowen, 1928).

Because of the large differences in isotopic characteristics of mantle derived magmas

and continental crust, the increasing application of isotope studies in igneous petrology

has provided abundant evidence for crustal contamination of mantle derived magmas from

a variety of regions, rock types and ages (e.g. Pankhurst, 1969; Carter et al, 1978;

Moorbath & Thompson, 1979; Taylor, 1980; Tilton & Barreiro, 1980; Zindler et al, 1981;
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James, 1982; Myers et al, 1984). Moreover, contours obtained from the Pb and Sr

isotope systematics of Mesozoic and younger igneous rocks, reflecting crustal contam-

ination, have been successfully used to delineate the age and/or geochemical nature of

the underlying basement of the Western United States and Canada (Kistler & Peterman,

1973; Zartman, 1974; Armstrong et al, 1977). More recently, experimental work done on

basalt/continental crust interactions has shed same light on the details of processes

operating during crustal contamination (Watson, 1982; Watson & Jurewicz, 1984). Crustal

contamination of magmas may be divided into six categories:

1. Mixing of mantle derived magmas with crustal melts.

2. Selective contamination of magmas en route to the surface.

3. Wall rock assimilation accompanied by crystal fractionation.

4. Isotope exchange between the magmas and their host rocks, without assimilation.

5. Solid state mixing prior to partial melting.

6. Any combination or permutation of the above.

Even though the effects of crustal contamination may be somewhat different depend-

ing on the type of crustal material, the actual contamination site and the mechanism of

contamination and also on the physical and chemical characteristics of the magma, some

broad generalizations can be made about the typical geochemical indicators of crustal

contamination assuming an "average" crustal material.

Crustal contamination, in general, modifies magmas in -the direction of radiogenic Sr,

unradiogenic Nd, and Hf isotope ratios, and high a18-O values. The Pb isotopes may be

unradiogenic or radiogenic depending on the U/Pb, Th/Pb ratios and the age of the crust.

The ab,..dances of alkali elements increase (possibly with the exception of Na; Watson &

Jurewicz, 1984) as do ratios such as Rb/Sr, Rb/K and Cs/K ratios. The Sr isotope ratios
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may also correlate positively with Rb/Sr, and to a lesser extend with SiO2 and Sr con-

tent.

Interestingly, the within-suite variations of the different Ararat series, when consid-

ered in light of the above generalizations, exhibit just the opposite trends and corre-

lations to those expected from crustal contamination. These can be summarized as

follows:

1. Positive K/Rb-K20 correlation for the HA Basalts. (Figure-1.8)

2. Negative Sr 87/86 vs Si02 and positive Sr 87/86 vs MgO correlation for all the

Ararat suites (Figure-1.18)

3. Negative correlation between Sr 87/86 and Rb/Sr ratios for all the Ararat suites

except the HA basalts. Practically constant Rb/Sr ratios of the HA basalt lavas,

despite progressive increase in Sr 87/86 ratios from 0.70339 to 0.70376

(Figure- 1.19a).

4. Negative correlation between Sr 87/86 and 100/Sr ratios for all Ararat suites

(Figure- 1.19b)

However, the observed wide range in 206/204 Pb ratios for the Little Ararat series

(Figure- 1.22,23) could have been caused by crustal contamination. Samples A-46, A-47

and A-51 (see Table-1.3) deserve special attention, because they do not plot within the

well-defined, narrow Ararat array in Figures-1.22,23 and they are shifted towards the

unradiogenic 206/204 Pb side of the array. A typical example of this kind of a shift has

been convincingly demonstrated as a diagnostic signature of crustal contamination for the

Arequipa and Barroso volcanics of southern Peru (Tilton & Barreiro, 1980). The

unradiogenic 206/204 Pb signature in 206-207-204 Pb diagram indicates an old crustal

component with a low U/Pb ratio and high Pb content. If this unradiogenic signature is

accompanied by an unradiogenic 208/204 Pb signature in the 206-208-204 Pb diagram,
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then an additional constraint, that of low Th/Pb ratio, can be imposed on the chemistry

of the contaminant. Among the geologically viable contaminants, lower crustal rocks will

generally have low U/Pb and high Th/U whereas K-feldspars from the upper crust will

generally have low U/Pb and Th/Pb. The identification of the type of crustal contam-

inant is not very easy due to the difficulties involved in a choice for a reference point

for 208/204 Pb ratios. However the relative positions of A-46 and A-47, with respect

to the Ararat array in the 208-206-204 Pb diagram, appear to indicate that the contam-

inant does not have an unusually high Th/U ratio.

Although crustal contamination of the Ararat lavas cannot be ruled out, and indeed

occurs to a certain extend (as will be clarified in the magma mixing section), it is highly

unlikely to be the principal cause of the observed isotopic variations, which are consid-

ered to reflect mixing of magmas.

1.6.2 Fractional Crystallization

Because of the phenochryst rich nature of calc-alkaline rocks, in general, fractional

crystallization certainly plays a role in their petrogenesis. After an extensive review Gill

(1981) concluded that the POAM fractionation (plag.+opx/olivine+augite+magnetite) is the

most common process in the petrogenesis of orogenic andesites.

Lambert et al., (1974), based on their major and trace element study of the Ararat

lavas, have concluded that garnet and extensive amphibole fractionation (up to 40%)

could generate the Ararat lavas. They also distinguished two different series with respect

to the major and trace element characteristics of the Ararat lavas (High-Y and Low-Y

series). However, their classification does not correspond one to one with the different

series described in this paper (e.g. In the Low-Y series, HA-basalts, Little Ararat rocks
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and some Old Ararat lavas have been grouped altogether). Lambert et al.,(1974) account

for the differences in trace element characteristics between the Low-Y and High-Y

series by suggesting that, following an early stage of garnet fractionation, amphibole

fractionation under hydrous conditions in a magma chamber generates the Low-Y series

and, after the loss of volatiles, the remaining magma follows a liquid line of descent

outside of the hornblende stability field, forming the High-Y series.

However, this model has several serious problems. First of all, no horblende and/or

garnet is found in the Ararat lavas. In fact, Lambert et al. (1974) postulated the garnet

and amphibole fractionation based on the presence of glomeroporphyritic aggregates

(crystal clots) composed of plag+opx+oxide, and "an isolated crystal of resorbed brown

hornblende" that they found in only one dacite sample. Although the overall major ele-

ment compositions of some crystal clots may be analogous to the composition of garnet

or amphibole, they are generally interpreted as cognate-primary igneous phase

assemblages and not the products of mineral reactions with melt (Garcia & Jacobson,

1979; Luhr & Carmichael, 1980). Some amphiboles in andesitic and dacitic rocks do dis-

play a breakdown reaction of amphibole = plag+cpx+opx+mag, but these aggregates, unlike

those of the clots, typically have a relict amphibole crystal outline and a fine-grained

texture (Kuno, 1950; Luhr & Carmichael, 1980).

At first glance, amphibole fractionation has certain appealing aspects in the

petrogenesis of calc-alkaline rocks, in terms of suppressing Fe-enrichment (tholeiite trend)

and lowering presumed higher K/Rb ratios of parental basaltic magmas in the direction of

more siliceous compositions (Yoder & Tilley, 1962; Shaw, 1968; Cawthorn & O'Hara,

1976; Boettcher, 1977). These effects derive from the high Fe/Mg ratios of amphibole

and a distribution coefficient for K in amphibole which is about six times higher than

that for Rb (0.33 and 0.05 respectively, Philpotts & Schnetzler, 1970).
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Assuming about a four to sixfold difference in the distribution coefficients of K and

Rb, 40% amphibole crystallization would cause a 15-20% decrease in K/Rb ratio and 50%

increase in K content. Consideration of possible changes in the partitioning behaviour of

these elements in the course of fractional crystallization, and the assumption of some

crustal contamination, may lead to a more efficient decrease in K/Rb ratio. The

observed twofold difference in K/Rb ratios of the HA basalts, and the positive linear

trend of K/Rb versus K at practically constant SiO2 content simply cannot be generated

by amphibole fractionation alone. A smooth decline in K/Rb ratio accompanied by an

increase in K20 would be expected of amphibole fractionation, whereas the Ararat lavas

define completely distinct fields and trends with no indication of amphibole fractionation.

They also exhibit an overall increase in K/Rb ratios with time, as indicated by consec-

utive lava flows (e.g. A-30-1 to A-20-12). Moreover, extensive amphibole and/or garnet

fractionation would have profound effects on the REE patterns of the Ararat lavas,

because partition coefficient patterns of amphiboles for andesitic and more silicic com-

positions exhibit convex upward patterns, having negative Eu anomalies and values

greater than unity for the middle to HREE (Nagasawa & Schnetzler, 1971; Arth, 1976;

Nicholls & Harris, 1980). Garnets are capable of strongly fractionating the light and heavy

REE (by exclusively incorporating HREE and excluding LREE from their structure) (Irving &

Frey, 1978; Shimizu & Kushiro, 1975; Nicholls & Harris, 1980; Apted & Boettcher, 1981).

Thus, liquids derived by large amounts of amphibole fractionation will have concave

upward REE patterns with positive Eu anomalies relative to the parental magma. The REE

distributions of the Ararat lavas show no hint of such a pattern (Figure-1.14). In fact,

on this basis Escobar et al.(1977) noted that "no andesitic rocks have trace element fea-

tures that could be explained by extensive amphibole loss from geographically associated

island arc tholeiites or high alumina basalts". On the other hand, garnet fractionation

would significantly deplete HREE and enrich LREE of the parental magma and produce liq-

uids with fractionated REE patterns and high La/Yb ratios. With the exception of A-12
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(Figure- 1.14), the REE patterns of the Ararat lavas do not display such characteristics

either. Although A-12 has a high La/Yb ratio (=18.25, Table 1-2), it shows an overall

depletion in REE with a negative Eu anomaly. Assuming the HA basalts as a parental

magma, a crossover of REE patterns would be expected between HA basalts and A-12

as a result of garnet and/or amphibole fractionation. It may be plausible to generate the

REE pattern of A- 12 by a number of combinations of POAM

(plag+olivine/opx+augite+magnetite)+-garnet+zircon+apatite fractionation. However this sol-

ution is not unique, and more importantly, is not consistent with the isotope

characteristics of the Little Ararat lavas.

1.6.3 Magma Mixing

The increasing application of integrated geochemical studies (petrographic analysis,

major, trace element and isotope studies) on the same set of samples have shifted the

long standing magma mixing controversy towards the acceptance of the viability of

magma mixing in igneous petrology (see the reviews of Anderson, 1976; McBirney, 1980).

Calc-alkaline rocks, in general, contain abundant petrographic evidence indicative of

magma mixing, such as disequilibrium among phenocrysts (e.g. assemblages of calcic and

sodic plagioclase, iron rich hyperstene and iron poor augite, magnesian olivine and quartz,

resorption of phenocrysts, compositional zoning of minerals in opposite trends etc.), and

the presence of glass inclusions with widely varying compositions (Kuno, 1950;

Eichelberger, 1975; Anderson, 1976; Sparks et al., 1977; Sakuyama, 1979; Grove et al.,

1982). Also, the failure to obtain consistent observed and calculated trace element

abundances and ratios by simple fractional crystallization and partial melting models (es-

pecially when the observed abundances are higher for both incompatible and compatible

element abundances) may be partly due to magma mixing processes. Based on this fact,

O'Hara (1977) has proposed a model involving fractionation of a magma in a
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repeatedly-filled magma chamber, in an attempt to account for large differences in trace

element abundances. Magma mixing is not only suggested for calc-alkaline rocks, but

also for MORB (Rhodes et al., 1979), Hawaiian basalts (Wright & Fiske, 1971; Chen &

Frey, 1983) and large stratiform intrusions, such as the Muscox intrusion, where the for-

mation of monomineralic chromitite bands has been succesfully explained by magma mixing

(Irvine, 1977). Although the most likely place for magma mixing to occur is in a magma

chamber; it can also take place during the ascent of mantle plumes or diapirs by mixing

of incipient melts derived from wall rocks with the partial melt derived from the rising

mantle diapir or plume, as suggested by Chen & Frey (1983).

Depending on the actual process magma mixing may or may not be diagnosed by using

isotopic tracers. If magma mixing takes place in a magma chamber in which an uncon-

taminated, differentiated magma mixes with a more primitive magma derived from the

same mantle source, no isotopic evidence indicative of magma mixing will be obtained.

However, if differentiation is accompanied by crustal contamination and magma mixing

takes place between contaminated, differentiated magma and more primitive magma,

derived from the same mantle source, then isotopic data along with petrographic and

trace element evidence for magma mixing can be used for modelling contamination and

magma mixing processes. Note that in this case additional evidence, other than isotopic

data, is required to indicate magma mixing. If eruption takes place after differentiation of

the mixed magma, major element evidence for magma mixing (e.g. linear trends in the

Harker variation diagrams) may be obscured by the fractional crystallization process.

However, if it can be assumed that each new input of magma to the magma chamber

causes eruption, then additional evidence for magma mixing may not be necessary and

magma mixing can be viewed as a very common process. A third possibility, for which

isotopes can provide evidence, is the mixing of magmas derived from isotopically distinct

mantle sources. Of course, any combination or permutation of the above is also possible.
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In the last two decades, geochemical literature has witnessed a significant develop-

ment in the quantitative theoretical modelling of the above processes with increasing

sophistication (Faure, 1977, Ch. 7 and it's references; Vollmer, 1976; O'Hara, 1977;

Langmuir et al., 1978; Allegre & Minster, 1978; Briqueu and Lancelot, 1979; Taylor, 1980;

DePaolo, 1981; O'Hara & Mathews, 1981). As emphasized by Langmuir et al. (1978), in

the ideal case of two-component magma mixing all of the elemental and isotopic data

for a suite of samples must be consistent with mixing, and the relative positions of

samples on all plots must be the same. However, it should not be forgotten that in

nature hardly anything is ideal and more than one process may operate simultaneously,

such as some of the examples given above, for which even the end-member compos-

itions may change. So the complications of nature may destroy some of the relationships

expected for the ideal case. Keeping in mind all of the above points, we can go back to

the Ararat data and evaluate magma mixing in detail.

The Ararat samples contain abundant petrographic evidence indicative of magma

mixing, such as the presence of at least two types of plagioclase with different

anorthite contents, signs of resorption among phenocryst phases, the presence of calcic

plagioclase in rhyolites, and possible compositional differences in the glass inclusions.

This latter possibility has not yet been proven by microprobe analysis, but the first three

points have been confirmed by preliminary electron microprobe analysis (Lambert et al.,

1974). Despite the detailed the description of these disequilibrium features among

phenocrysts, Lambert et al., (1974) have not recognized magma mixing in the petrogenesis

of the Ararat lavas.

The geochemical evidence that implies or, is consistent with magma mixing for the

Ararat lavas can be summarized as following:
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1. The linear trends defined by each Ararat series in the major element variation dia-

grams (Figure-1.4, 1.5) and in the AFM diagram (Figure-1.6).

2. The broad linear trends obtained in the Ba and Rb vs SiO2 diagrams, despite of dis-

turbances due to fractional crystallization (Figure-1.7; note the elevated Ba and Rb

contents of A-46 and A-48 with respect to the Little Ararat trend possibly due to

crustal contamination).

3. The positive correlation between K/Rb ratio and K20 for the HA Basalts, with a pro-

gressive increase in K/Rb ratio with age progression (Figure-1.8).

4. The impressive linear trends obtained in the Zr/Ni vs 100/Ni and Zr/V vs 100/V com-

panion plots and their convergence towards a common point (Figure-1.11).

5. The rotation of the chondrite normalized REE pattern of A-30-1, pivoting around the

normalized Tb abundance with age progression (Figure-1.15).

6. The covariation of La/Yb ratio with Mg#, La, and Zr abundances indicating different

magma mixing relations for each of the Ararat series (Figure-1.16, 1.17).

7. Correlated variation of all the isotopes (Sr, Nd, Pb) with each other, as well as with

the major and trace elements (Figure-1.18 to 1.23).

After recognition of the above facts, which indicate that magma mixing processes are

responsible for the generation of the different volcanic suites, it is possible to investi-

gate the details of magma mixing processes and estimate the end-member compositions.

After numerous combinations and permutations among the isotopic ratios, trace ele-

ment ratios and abundances different diagrams were constructed. It is found that six

compositionally distinct end-members are responsible for the generation of four distinct

trends that represent volcanologically and geochemically coherent four Ararat suites. The

compositions of the five end-members have been estimated utilizing various diagrams by

taking advantage of hyperbolic magma mixing trends, their asymptotic values and inter-

-84-



cepts between two curves. The estimated compositions are listed in Table- 1.4. The

composition of end-member #6 has not been estimated due to the scattered nature of

the Old Ararat Series data. However, it represents a more fractionated and contaminated

version of the end-member #3.

One of the best plots to use to test for mixing, are companion plots (i.e. both axes

have the same denominator), because on companion plots mixing forms linear trends.

Although end-member compositions are constrained to lie along the linear trends on

companion plots, it may not be possible to obtain end-member compositions using only

one linear trend. However, if more than one linear trend converge towards a common

point indicating a common end-member, then it is possible to obtain the composition of

that particular end-member. For example using Figure-1.21a, it is possible to obtain the

Nd abundance and Nd 143/144 ratio of one end-member by taking advantage of the

convergence of more than one linear trends. This, in turn provides an opportunity for

the estimation of the Sr 87/86 and Pb isotope ratios of this end-member using isotope

ratio versus isotope ratio plots, since they are correlated.

In addition to the linear trends and their intercepts on companion plots, hyperbolic

mixing curves obtained from plots involving ratio versus ratio and ratio versus element

variations may provide additional constraints on the end-member compositions. The curva-

ture of the mixing hyperbola is determined by the r coefficient which, in turn, is deter-

mined by the composition of the end-members (Langmuir et al., 1978). The asymptotic

nature of a mixing curve can be used to determine either a minimum or maximum value

for one of the ratios in each end-member. End-member compositions are better con-

strained when the r value is either too small or too large relative to 1.
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Sr 87/86

Nd 143/144

Pb 206/204

Pb 207/204

Pb 208/204

Rb/Sr

Sm/Nd

Sr/Nd

La/Yb

Zr/Nb

K/Rb

K

Rb

Sr

La

Nd

Sm

Yb

Zr

Nb

Table 1-4

(1)

0.70470

0.51272

19.00

15.68

39.10

0.025

0.19

26

8-9

13

770

15-16K

15-20

750-800

21

30

5.7

2.3

165

13

(2)

0.7038

0.5129

18.8
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38.E

0.1

0.2

39-4

2E

11-12

45-E

300-3E

13-

1.9-2.

0.

8

ESTIMATED END MEMBER COMPOSITIONS

(3)

5 0.70375

4 0.51294

1 18.87

5 15.59

5 38.80

2 0.20-0.23 0

3 0.22 0

0 15-16

0 8-9

4 27

0 260

K 17-18K

5 65-70

0 325

14 22

9 19-20

0 4.2

7 2.75

0 265

-9 9-10

(4)

0.70455

0.51281

18.99

15.63

39.05

.05-0.07

.19-0.20

25

15-16

11

500

15K

25-35

700

36

28

5.5

2.25

175

16

(5)

0.70330

0.51300

18.90

15.59

38.80

0.02

0.26

23-24

4

32

320

2-3K

7-9

400

10-11

17

4.3-4.4

2.75

170
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La/Yb ratios are plotted against Mg# in Figure- 1.24. The trends of four Ararat

series are clearly separated from each other. The approximate fields of the end-members

are also shown. Hereafter the end-members will be referred according to the numbers

assigned them in this figure. The Old Ararat and Ararat series trends converge towards

a common end-member, similarly the Little Ararat and HA basalt series trends also con-

verge towards another common end-member. The La/Yb ratios of these convergent

points are approximately 8-9 for the end-member #1 and 15-16 for the end-member #4.

The La/Yb ratios of the other end-members are not as well-constrained as the #1 and

#4, but can be roughly inferred assuming that the compositions of the samples that plot

in the extreme end of the different trends, closely approximate the compositions of the

corresponding end-members. Thus, La/Yb ratios of 20 for #2, 8-9 for #3, 4 for #5 and

12 for #6 were obtained. The validity of the inferred La/Yb ratios of the end-members

can be further tested by plotting La/Yb ratios against some other variables.

In Figure-1.25 La/Yb ratios are plotted against Zr/Nb ratios. The end-member fields

are also shown on this plot. The independently obtained La/Yb ratios for the

end-members from this diagram are identical to the ones that were obtained from the

La/Yb versus Mg# plot. This consistency not only confirms the validity of the inferred

La/Yb ratios for the end-members, but also makes it possible to estimate the corre-

sponding Zr/Nb ratios of the end-members (see Table-1.4). It is also possible to estimate

the abundances of La and Yb of the end-members by using the estimated La/Yb ratios

and by plotting La/Yb ratios of Ararat samples against La abundances (Figure-1.16b).

The estimated La/Yb ratios of the end-members can be further tested by using Nd

143/144 versus La/Yb plot (Figure-1.26). This plot has two additional advantages over

the two previous plots (La/Yb vs Mg# and vs Zr/Nb). Nd 143/144 ratios do not change

with simple partial melting and fractional crystallization processes. In addition, Nd
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Figure- 1.24

La/Yb versus Mg# plot for the Ararat samples.
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Figure- 1.25

Plot of La/Yb versus Zr/Nb for the Ararat lavas. This diagram illustrates the

magma mixing relations among the different end-members (indicated by num-

bers) in the generation of Ararat suites.
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Figure- 1.26

Plot of Nd 143/144 versus La/Yb for the Ararat lavas. The approximate

end-member fields that generate the Ararat suites by two component

magma-mixing are also shown. Numbers refer to the different end-members

(see Table 1.4). (for further explanations see the text).

-92-



Q.5130

0.5129

z
0.5128

0.5127

-93-

4 8 12 - 16 20
La/Yb



143/144 ratios of the end-members are also constrained by the Nd 143/144 versus

100/Nd plot (Figure-1.21a). If end-member compositions obtained from the different

trends formed by the Ararat suites on this plot are consistent with the ones obtained

from Nd 143/144 vs 100/Nd, La/Yb vs Mg# and La/Yb vs Zr/Nb, then the estimated

end-member La/Yb, Zr/Nb, Nd 143/144 ratios and Nd, La, Yb abundances can be

assumed to be constrained very well. The investigation of Figure-1.26 reveals that the

obtained end-member compositions on this plot are all consistent with the other diagrams

mentioned above. These consistent and coherent relations which involve a number of

independent geochemical parameters convincingly indicate the reliability of the estimated

end-member compositions and the existence of magma mixing processes which produce

the observed distinct trends involving these end-members.

Similarly the end-member compositions listed in Table-1.4 were obtained by choosing

one geochemical parameter at a time and studying its variation with other geochemical

parameters (trace element abundances and ratios, isotope ratios) and by testing the con-

sistency of the different trends formed by the Ararat suites as well as the inferred

end-member compositions.

The interpretation of two plots require special explanation. The Sr 87/86 ratio vs

100/Sr variation of the Ararat lavas was presented previously in Figure-1.19. The

extrapolation of the well-defined linear trend of the HA basalts towards the estimated

Sr 87/86 ratio of end-member #1 (=0.70470) gives an unreasonably high Sr abundance of

3000 ppm. for this end-member. This unreasonably high Sr content may indicate simul-

taneous operation of a second process along with magma mixing, possibly fractional

crystallization. However, Sr has to behave as an incompatible element during

fractionation, which in turn implies that plagioclase cannot take part in this process.

Experimental studies carried out by Yoder & Tilley (1962) demonstrated a major effect

-94-



of water pressure in depressing the crystallization field of plagioclase relative to the

ferromagnesian minerals. Using the equations of De Paolo (1981) for magma

mixing-fractionation and using the estimated Nd and Sr isotopic compositions of

end-members 1 and 5 and the Sr and Nd abundances for end-member 5, a Sr abundance

(800ppm.) has been estimated for end-member 1. In Figure-1.27, the results of the calcu-

lated and observed Sr isotopic ratios and abundances are illustrated for the Ararat HA

basalts.

Although the fit between the observed and the calculated Sr isotopic ratios and

abundances are quite good (Figure-1.27), this process does not seem to be reasonable.

First, the assumed ratio of the rate of magma mixing to fractional crystallization is very

low. Second, the observed difference in the Zr content from A-30-1 to A-30-12 is

about 4-6 ppm. which is low with respect to the required amount of plagioclase-free

fractional crystallization, unless Zr the abundance is buffered by an unknown fractionating

phase. In fact, this inconsistency probably requires an additional process, along with

magma mixing, and fractionation. Based on the estimated end-member Nd isotopic com-

positions and abundances, a mixture of 25% of end-member #1 and 75% of end-member

#5, should duplicate the Sr isotopic composition and abundance of A-30-12 (0.70376

and 566ppm.) respectively. However, using the same magma mixing percentages that are

obtained from Nd, and the estimated Sr isotopic compositions and abundances for

end-members #1 and #5, values of 0.70386 and 500ppm are obtained. The calculated Sr

isotopic ratio is more radiogenic and the Sr abundance is higher than the observed com-

position for A-30-12. This independent check of magma mixing relations and possible

plagioclase effects using Nd can be considered reliable, because the plagioclase/liquid

distribution coefficient for Nd is quite low. Probably the best way out of this Sr incon-

sistency is to assume that the new batch of magma which enters the magma chamber

resorbs some plagioclase from the existing cumulates in the magma chamber. This proc-
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Figure-1.27

Diagram comparing the observed and calculated Sr isotope compositions and

Sr abundances of the HA basalts. The curve indicated by "Simple mixing"

was obtained by modelling two-component magma mixing using the

end-member compositions of #1 and #5. The tick marks indicate the percent-

age of end-member #1 in the mixture.

The other two curves, which best fit the data, were obtained by model-

ling the simultaneous operation of two-component magma mixing and frac-

tional crystallization (without plagioclase). The tick marks indicate the mass

fraction of the magma that remains in the magma chamber. In this model, the

compositions of end-members #1 and #5 were used along with bulk distrib-

ution coefficients of 0.25 and 0.15 for Sr and a value of 0.8 for r (the

ratio of magma mixing to fractional crystallization). Although this model

accounts well for Sr isotopic composition and Sr abundance, it fails to

explain the Zr abundances.
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ess is not only geologically reasonable, but also capable of explaining the less radiogenic

Sr isotopic composition and higher Sr abundance observed for A-30-12, compared to

that expected. Probably the best way to describe this process is to refer to it as "as-

similation of cumulates". If this process is a ubiquitous one, then the potential dangers of

extrapolating linear trends on isotopic ratio versus reciprocal concentration plots (espe-

cially for Sr) to obtain end-member compositions, should be emphasized. This process

can also account for the lack of convergence on the Sr 87/86 versus 100/Sr diagram

towards the common end-member #1, for the Little Ararat and HA basalt series trends

(Figure- 1.19b).

In Figure-1.28 the covariation of Pb 206/204 ratios with Nd 143/144 and Sr 87/86

ratios are shown. Since these diagrams only involve isotopic ratios, the positions of the

end-members are not affected by simple fractional crystallization. Magma mixing trajecto-

ries are indicated by the dashed lines connecting the various end-members. One point

of significance on these diagrams is the observed shifts of end-members #2 and #3 in

the direction of unradiogenic Pb 206/204 and Nd 143/144 and radiogenic Sr 87/86 val-

ues; possible paths are shown with arrows. These shifts may be indicative of crustal

contamination effects during the derivation of the distinct end-members #2 and #3, from

a common mantle-derived end-member (#5). However, the magma mixing trends of the

Ararat series (between #3 and #4) and the HA basalt series (between #1 and #5) are not

affected by crustal contamination.

It has become clear from the data presented so far that there are two main mantle

derived magmas, represented by the the two end-members (#1 and #5) and that the

remaining four end-members (#2, #3, #4 and #6) are derivatives of them (or derivatives

of their equivalents). These latter end-members (#2, #3, #4 and #6) are apparently the

result of the interplay between differentiation, crustal contamination and possibly assim-
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Figure- 1.28

Diagram providing a close-up look at the -correlated variations among Nd

143/144, Sr 87/86, and Pb 206/204 ratios for the Ararat lavas. Approximate

locations of the end-members, along with possible mixing trends, are also

indicated. Arrows indicate possible trajectories for obtaining end-members #3

and #2 from #5, unless they represent totally independent mantle derived

magmas. (Further explanations are in the text).
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ilation of the existing cumulates within the magma chamber. End-members #2, #3, and

#6 are derived from end-member #5, and end-member #4 is derived from end-member

#1. The above interpretation is not in conflict with the statements made in the crustal

contamination section, because the within-suite variations, that form the magma mixing

trends are not directly related to crustal contamination. However, the actual process that

creates the derivative end-members (#2, #3 and #6) involves crustal contamination, as

well as differentiation.

Based on the end member compositions (Table-1.4), the HA basalts represent mixtures

of end-members #5 and #1 (up to 30%). The Ararat Series can be generated by mixing

#3 and #4 (up to 35%). The compositions of the Little Ararat Series can be obtained by

mixing end-member #2 and #1 (up to 40%).
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1.6.4 Mantle Source Characteristics

Although the demonstration of magma mixing between two isotopically distinct mantle

derived magmas and, as a result, the observed correlated variations among Sr, Nd, and

Pb isotope systems, clearly indicate that isotopic mantle heterogeneities exist beneath

Ararat; the processes (magma versus mantle mixing), the timing (old versus recent), and

the scale (large versus small) involved in the creation of these heterogeneities need to

be further evaluated.

Conceptually, a number of permutations of the above parameters can be responsible

for the creation of mantle heterogeneities (Zindler et al., 1979). In the following dis-

cussion, only the Ararat HA basalts will be considered, but the conclusions reached apply

equally to the other Ararat suites, for the reasons given previously. Consideration of

the large range observed in Pb 206/204 ratios along with the very steep slope on the

Pb-Pb diagrams (Figure-1.22), automatically eliminates the possibility of young differen-

tiation events, involving only the mantle, in the formation of the heterogeneities. Also,

the existence of mixing trends between the two end members (#1 and #5), including all

kinds of combinations of compatible and incompatible elements, eliminates the possibility

of solid state mantle mixing (Langmuir et al., 1979). Finally, the eruption sequence of the

lavas, which become increasingly enriched in isotopic characteristics, makes small scale

heterogeneities (smaller than the melting scale) higly unlikely. For example, consider a man-

tle segment that is variably veined by an enriched end member. When partially melted, the

first melts will be produced preferentially from the segments that have the highest

vein/mantle ratios and carry the isotopic signatures of the enriched end member. Besides,

once the case for magma mixing is established, models involving small scale heterogeneity

(smaller than the melting scale) are eliminated automatically.
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After the elimination of the above possibilities, the only permutation left is the large

scale (~30km., chosen somewhat arbitrarily,. but may be considered a good approximation

for the melting scale), old (~ 200 m.y.), mixing of magmas, which corresponds to the

LOM model of Zindler et al.,(1979). This model depicts a long-term mantle heterogeneity

which exists between two separate mantle boxes. The depleted box is shallower than the

enriched box. The oldest lavas originate from the shallow-depleted segment. The melts

derived from this segment get contaminated at an increasing rate by the melts derived

from the lower-enriched segment.

Being consistent with the parameters describing the heterogeneity (LOM) in the widest

sense, a variant of the above model would be the contamination of the depleted mantle,

not by an enriched mantle, but by sediment components, as suggested by the Ararat

array which diverges significantly from the oceanic mantle trend on the 206-207-204 Pb

diagram (Figure-1.22). Similar high-sloped divergent trends observed in other arc settings,

are interpreted as being caused by contributions from subducted sediments, either in the

form of partial melts or fluids carrying their isotope signatures (Tatsumoto, 1969; Kay et

al.,1978; Sun, 1980; Morris et al., 1982; Barreiro, 1983; Davidson, 1983). However, the

Ararat HA basalt data is not consistent with this model, because, the HA basalts plot

right along the "oceanic regression line" on the Nd-Sr isotope correlation diagram

(Figure-1.20). Mixing trends between sediments and depleted mantle end members that can

create the observed range in the Nd 143/144 ratios would also cause a shift at least at

the lower end of the Ararat HAB array towards more radiogenic Sr 87/86 values.

Besides, positive correlations between compatible elements (such as Ni, Cr) and

radiogenic Sr and Pb ratios are not consistent with a "typical" sediment contamination

signature.
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Once the sediment and crustal contamination possibilities are discounted, then the

question is how can the observed isotopic characteristics of the Ararat lavas be gener-

ated within the mantle, and within the general framework of the LOM model.

End-member #5 (HA basalt end member) is apparently derived from a mantle that has

had a time-integrated depletion in Rb/Sr and Nd/Sm ratios with respect to the bulk

earth, as evidenced by its high Nd 143/144 and low Sr 87/86 relative to bulk earth.

However, the LREE enriched patterns of the isotopically least enriched (least effected by

magma mixing) Ararat HA basalts indicate a recent enrichment event (Figure-1.14). This

end-member plots within the upper bound of the Pb oceanic array (Figure-1.22). It is

within the radiogenic ends of the Tethian ophiolite fields. Considering the somewhat ques-

tionable degree of "purity" of this end-member (composition estimates are only an

appproximation) and the somewhat anomalous isotope characteristics of the Tethian

ophiolites (Hamelin et al., 1984), one may suggest that the mantle source of end-member

#5 is analogous to the mantle sources of transitional MORB such as the Tethyan

ophiolite source or continental arc basalts.

End-member #1 ("alkali basalt" end member) also appears to be derived from a mantle

that has had a time-integrated depletion in Rb/Sr and Nd/Sm relative to bulk earth (but

relatively enriched compared with end member #5). However the Pb isotopic composition

of end-member #1 is quite radiogenic and similar to some of the OIB from the Indian

Ocean (e.g. Crozet, Amsterdam; Figure-1.22).

Recent studies have suggested that magmas derived from ancient subducted oceanic

crust or sediments can explain the rather anomalous isotopic characteristics of some of

the OIB (Hofmann & White, 1980; Chase,1981; Zindler, et al., 1982; White & Hofmann,

1982; Kurz et al., 1982; Cohen & O'Nions, 1982; Dupre & Allegre, 1983). So, consistent
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with the LOM heterogeneity model, magmas derived from an ancient subducted crust can

potentially generate the Ararat end-member #1.

It is also interesting to note that paleomagnetic studies indicate that the "Turkish

Plate" was part of the northern margin of Gondwanaland and in Permo-Triassic times

(Lauer, 1982) was situated to the south of the present Arabian peninsula. If it is

assumed that the thickening of the continental lithosphere by thermal accretion can create

a stacked mantle memory (Brooks, et al., 1976; Allegre, 1982), then this mechanism may

suggest the transportation of "Indian Ocean Signatures" to the site of Ararat. However,

as suggested by Hart (1984), if the "Indian Ocean=DUPAL signatures" are confined only to

the southern hemisphere, including continental volcanics, then another source with

enriched U/Pb and depleted Rb/Sr and Nd/Sm characteristics may be required.

An alternative model, which depicts the presence of a depleted mantle,

sediment-contaminated by a recent subduction process (not associated with the closure

of the Bitlis-Zagros Ocean), is also capable of generating the isotopic composition of

end member #1. Although it's polarity, location, and extent are still controversial, as a

result of intense multi-orogenic deformation, geological evidence suggests that a

Mid-Jurassic suture zone, formed by southward subduction, resulted in the elimination of

the Paleo-Tethys (Khain, 1977; Sengor et al., 1980; Bergougnan & Fourquin, 1980). This

suture zone can be traced as a discontinuous belt from southeastern Bulgaria, across

northern Turkey, towards northeastern Iran. Melts derived from a mantle segment that

was contaminated by sediments during the southward subduction of the Paleo-Tethys

oceanic crust can potentially generate the isotopic characteristics of end member #1.

If the tectono-magmatic model proposed in Chapter 3 is correct, then the mantle

source region for end member #5 should be shallower than that of end member #1. This
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arrangement favors the second model, that is the mantle source of end member #1 is

deeper and represents a mantle segment that was contaminated with sediments during a

previous subduction event (during late Paleozoic-Early Mesozoic).

1.7 Conclusions

The Ararat volcano, which is one of the major calc-alkaline eruptive centers in the

Tertiary to Quaternary volcanic province in eastern Turkey, is composed of mainly

andesites, dacites and subordinate HA basalts, rhyolites.

Consistent with field observations, four eruptive suites have been distinguished on the

basis of the major and trace element composition of the lavas. These are, from older to

younger: Little Ararat, Old Ararat, High-Alumina Basalt, and Ararat series.

The wide ranges observed in the trace element compositions, as well as in Sr, Nd,

and Pb isotopic compositions, are not consistent with the derivation of the different

Ararat suites from a common parental magma through fractional crystallization. Also,

within-suite compositional variations cannot be explained by fractional crystallization.

Various two-component magma mixing processes involving six end-members, that are

derived from two distinct mantle-derived magmas by the interplay of fractional

crystallization, limited crustal contamination and cumulate assimilation, can account for the

major, trace, REE, and Sr, Nd, Pb isotopic composition of the Ararat lavas.

The HA basalt end-member (#5) has been derived from a mantle that has had a

time-integrated depletion in Rb/Sr and Nd/Sm. This depleted mantle source is similar to

that of continental arc basalts.
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The "Alkali basalt" end member (#1) has been derived from a mantle source with rela-

tively less depleted characteristics, but with quite radiogenic Pb 207/204 isotopic compo-

sition. Models involving both an ancient subducted oceanic crust source or a segment of

depleted subcontinental mantle that has been contaminated by sediments (either in melt or

fluid form) during a previous subduction event are considered plausible. However, consid-

ering all the geological and geochemical facts, the latter appears to be the most

satisfactory petrogenetic model.

It is not possible to establish a convincing link between the subduction of the

Bitlis-Zagros ocean crust and the Ararat volcanism. However, the assumption of a

detached sinking slab following Miocene continental collision along the Bitlis-Zagros

suture zone, can be viewed as a plausible trigger for the generation of the calc-alkaline

magmas and their emplacement within the continental crust. The calc-alkaline volcanism

may be maintained to present by the continued sinking and dehydration of this detached

slab as well as by the continued tectonic deformations caused by continental collision

(see the third chapter). This creates mantle upwelling which not only initiates the alkali

volcanism, but also keeps the calc-alkaline volcanism alive.

Finally, I believe that this study demonstrates the power of detailed, comprehensive

geochemical studies in revealing the complexities involved in geological processes, even

among the products of one single volcano. This study suggests that geochemical

characterization of a calc-alkaline volcano and it's mantle source is almost impossible

with a few randomly collected samples.
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CHAPTER 2

GEOCHEMISTRY OF THE ALKALINE VOLCANICS
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2.1 Introduction

Alkaline volcanics are an integral part of the Tertiary to Quaternary volcanic province

of eastern Turkey and northwest Iran. Alkaline products dominate the volcanics both as

fissure lava flows and central volcanoes (Nemrut, Tendurek) in the Lake Van region (Fig-

ure-2.1). They consist of rocks ranging in composition from alkali basalts, through

hawaiites, benmoreiites, mugearites and sodic trachytes to peralkaline commendites and

pantellerites. The less differentiated compositions, hawaiites in particular, dominate the

fissure lava flows and small spatter cones. The cone-forming lavas of Tendurek and

Nemrut are more evolved and are mostly sodic trachytes. The most differentiated, silica

oversaturated peralkaline compositions are dominant among the post-caldera products of

Nemrut volcano.

The oldest age obtained by K/Ar dating of alkaline rocks is about 6my. b.p. in the

Lake Van area (Innocenti et al. 1976, 1980). The most recent volcanic activity occurred

in 1441, producing three small lava flows along a N-S trending radial fault that cuts the

Nemrut caldera (Kanlitas flows, Oswald,1910). The presence of Eocene alkaline volcanics

has been confirmed by K/Ar dating and paleontological studies of the associated

sediments in the Azerbaijan region, northwest Iran (Comin-Chiramonti et al. 1978; Riou,

1979). Strongly undersaturated alkaline lavas (analcimites, phonolites, alkali basalts,

trachytes) are interbedded with high-K calc-alkaline lavas in this region. Basanites

post-date the Upper Miocene, high-K calc-alkaline volcanics, with 1.3-0.5 my. K/Ar ages

in the Bijar region of Iran (Boccaletti et al. 1977). Although the presence of alkaline

and calc-alkaline volcanics spanning an active period from Tertiary to present have been

reported in the Caucasuses region (USSR), their volcanological and geochemical

charecteristics have not been well-documented (Adamia et al. 1977; Koronovskii,

1979a,b).
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Figure-2.1

Simplified geological map of the Lake Van area, showing the distribution of

calc-alkaline and alkaline volcanics and major volcanoes. Key to the patterns:

1- Alkaline volcanic rocks, 2- Calc-alkaline volcanic rocks, 3- Neogene and

Quaternary sedimentary deposits, 4- Pre-Neogene basement. Map after

Innocenti et. al., 1976.
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2.2 Description of major volcanoes and fissure lavas

2.2.1 Tendurek Volcano

Tendurek volcano is situated about 50 km. to the southwest of Ararat volcano (Fig-

ure-2.1). A number of scattered spatter cones which produced mainly basaltic lava flows

and basaltic scoria, represent the earliest phase of Tendurek volcano. Tendurek is a

composite volcano which has two cones that are 4,5 km. apart. They both have small

craters. Fumerolic activity is still present in the western crater. A small lake occupies the

eastern crater. The cones were formed during the main phase of volcanic activity and

produced mainly differentiated, sodic-trachytes. The main phase of activity also produced

some silica oversaturated peralkaline lava flows and minor pyroclastics. Although a num-

ber of radial and circular concentric faults have been observed, that surround the two

Tendurek cones, indicating the initial stages of a huge (ca. 10 km. diameter) caldera

formation. The caldera has not fully developed and collapsed. However, these features

indicate the presence of a large-shallow magma chamber beneath Tendurek.

2.2.2 Nemrut Volcano

Nemrut volcano is situated on the western shore of Lake Van. The main cone is

composed largely of trachyte lava flows. A huge caldera ( ~ 8 km. diameter) dominates

the upper portion of the volcano. The walls of the caldera were formed by ring faults

and are cut by several radial faults. The eastern half of the caldera is filled with highly

differentiated peralkaline lava flows, domes and pumice deposits representing post-caldera

activity. The semicircular Nemrut Lake occupies the western half of the caldera. Nemrut

volcano is surrounded by an extensive ignimbrite cover (400 sq. km.) which also contains

pumice intercalations. Post-caldera peralkaline lava flows are also present on the flanks
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of the volcano. The latest activity of Nemrut is represented by olivine-basalt lava flows

which erupted through N-S trending radial faults on the northern flank of the volcano.

Oswald (1910) reported that the latest eruptions occurred in 1441. A number of inde-

pendent, relatively small, eruptive centers scattered in the immediate vicinity of Nemrut

volcano also produced basaltic lava flows.

2.2.3 Fissure Lavas

Alkaline products are mainly represented by fissure lava flows and small cinder cones

in the area to the north of Lake Van, between Nemrut and Tendurek volcanoes. Fissure

volcanic activity started about 6 my. ago and continued up to Quaternary times. The

calc-alkaline lava flows of Suphan volcano overlie surrounding alkaline fissure lavas.

Fissure lavas contain the least differentiated compositions and were erupted through a

network of NW-SE and NE-SW trending faults (see Chapter-3 for the details of

tectonics and geology). These lavas form small volcanic plateaus which are localized

along fault zones, and roughly conform the fault trends.

2.3 Petrography

Alkali basalts contain small amounts of phenocrysts ( 5%), consisting of calcic

plagioclase and olivine (Fo 75-70). The quoted compositions are from the EMP work of

Innocenti et al., (1980). The groundmass consists of zoned plagioclase, clinopyroxene

(Wo47Fs42En42-Wo45Fs16En39), olivine (Fo70-60), Ti-magnetite and ilmenite. The

phenocryst contents gradually increase going from hawaiites, mugearites to benmoreites.

The most abundant phenochryst phases are invariably plagioclase and clinopyroxene and

to a lesser extent olivine. Some hawaiite samples also contain nepheline in their

groundmass. Apatite is also common.
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The hawaiites that were erupted in the immediate vicinity of the calc-alkaline Suphan

volcano exhibit disequilibrium features among their phenocrysts. These were referred to

as the "Malazgirt Graben association" by Innocenti et al., (1980). Plagioclases show

reverse zoning with andesine cores (An 50-40), a more basic intermediate zone (An

60-65) and more acid outer rims (An 35-50). The hawaiites also contain three types of

pyroxenes: pigeonite, calcic augite and orthopyroxene. The coexistence of andesene

plagioclase, Ca-rich augite and fayalitic olivine in the groundmass is also typical in these

rocks.

2.4 Results

2.4.1 Major and trace element variation

Representative major element analyses for the alkaline rocks are presented in

Table-2.1. The major element compositions have been normalized to 100% volatile-free,

with all Fe expressed as FeO (designated FeOT). Subdivision of the samples (Tendurek,

Nemrut, Malazgirt and Meydan) is based on geographic locality. The first row of the

Tendurek group (A-1 to A-64) belongs to the earliest phase of activity of Tendurek vol-

cano. They represent the basaltic eruptions associated with the small spatter cones.

Representative analyses of the main phase of Tendurek activity are presented in the sec-

ond and third rows (from T-11 to T-60).

Samples N-13-2 to N-34 are from Nemrut volcano. N-31-B belongs to the lava

flows associated with the most recent (1441) eruptions. The rest of the Nemrut samples

are from small individual eruption centers in the vicinity of Nemrut volcano.
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TABLE 2.1

TENDUREK

T-1
46.99
17.52
11.79
4.86
9.26
5.06
1.33
2.25
0.20
0.58

99.84

42.4

T-11
58.00
17.76
6.82
0.49
3.77
7.86
4.41
1.05
0.23
0.19

100.58

T-13
46.04
18.83
11.10
3.23
9.80
7.40
1.76
2.00
0.19
0.67

101.02

T-14
53.26
17.32
9.07
3.15
6.37
6.44
2.10
1.81
0.19
0.58

100.29

T-26
50.41
17.51
10.52
4.20
6.62
5.76
1.43
2.30
0.22
1.13

100.10

T-32
52.54
17.97
9.55

3.38
6.84
5.48
1.78
1.84
0.19
0.89

100.46

T-33
51.92
18.16
9.49
3.40
6.68
5.77
1.92
1.71
0.19
0.91

100.15

T-34
51.66
18.16
9.35
3.40
6.91
5.65
1.94
1.67
0.19
0.88

99.81

T-38
47.80
17.01
11.14
6.42

10.50
3.96
0.55
2.07
0.19
0.34

99.98

T-46
51.95
17.79
8.70
5.55

8.45
4.76
1.14
1.51
0.16
0.36

100.37

T-64
46.79
17.62
11.44
5.06
9.43
5.47
1.28
2.18
0.20
0.58

100.05

T-4
50.57
17.66
10.43
4.37
7.54
5.34
1.51
2.02
0.18
0.71

100.33

42.8

T-12
58.42
18.72
4.80
1.16
2.37
8.12
4.44
1.04
0.17
0.40

99.64

T-10
53.20
17.08
9.95
3.50
6.96
5.28
1.74
1.88
0.20
0.50

100.29

38.5

T-15
58.16
20.04

4.75
0.79
1.84
8.78
5.07
0.68
0.19
0.27

100.57

S102
Al 203
FeO(T)
MgO
CaO
Na20
K20
Ti02
MnO
P205
TOTAL

Mg#

SI02
Al 203
FeO(T)
MgO
CaO
Na20
K20
Ti02
MnO
P205
TOTAL

Mg#

S102
A1203
FeO(T)
MgO
Cao
Na20
K20
T102
MnO
P205
TOTAL

T-40-A
59.24
18.99
4.88
1.11
2.29
7.91
4.30
1.05
0.17
0.42

100.36

T-40-B
58.95
18.89
4.82
1.08
2.30
7.53
4.57
1.03
0.17
0.37

99.71

28.5

T-48
62.04
17.35
5.31
0.49
1.21
7.18
5.58
0.63
0.20
0.08

100.07

T-24
58.33
18.45
5.08
1.35
2.65
8.41
4.00
1.16
0.17
0.49

100.09

T-25
58.40
18.70
5.05
1.19
2.52
8.36
4.36
1.11
0.17
0.48

100.34

T-27
58.09
18.54
5.46
1.53
3.29
7.54
3.88
1.21
0.17
0.55

100.26

T-29
62.39
18.46
4.06
0.65
1.84
7.23
4.27
0.70
0.15
0.23

99.98

T-31-A
59.34
18.51
4.93
1.37
3.05
7.59
3.91
1.15
0.16
0.51

100.52

32.1 29.6 33.3 22.2 33.1

T-49
62.30

17.58
4.65
0.54
1.08
7.49
5.40
0.63
0.19
0.12

99.98

T-50-B
58.80
18.55
5.14
1.35
2.77
7.70
3.98
1.16
0.18
0.51

100.14

T-51
59.26
18.71
5.11
1.29
2.55
6.14
4.36
2.55
0.18
0.43

100.58

T -52
58.88
18.75
4.96
1.18
2.37
8.14
4.38
1.10
0.17
0.46

100.39

T-53
59.59

18.71
5.01
1.27
2.46
7.34
4.37
1.11
0.17
0.44

100.47

T-31-B
58.14
18.32
5.65
1.52
3.46
7.50
3.96
1.22
0.17
0.55

100.49

32.4

T-55
59.75
19.01
4.79
1.06
2.12
8.66
4.57
1.03
0.16
0.41

101.56

T-35
58.14
18.51
5.52
1.55
3.52
7.38
3.88
1.20
0.17
0.52

100.39

33.4

T-58
58.02
19.00
5.74
1.24
2.73
8.08
4.15
1.04
0.21
0.39

100.60

T-36-A
58.10
18.31
5.60
1.62
3.43
7.39
3.68
1.23
0.17
0.56

100.09

T-36-B
58.32
18.64
5.72
1.55
3.56
6.71
3.75
1.26
0.17
0.54

100.22

34.0 32.6

T-59
58.13
19.25
5.48
0.95
2.09
8.20
4.40
0.96
0.19
0.38

100.03

T-60
57.63
18.99
5.70
1.05
2.32
8.22
4.23
1.04
0.2Q
0.41

99.79

14.1 17.2 31.9 31.0 29.8 31.1

34.2 38.2 41.6 38.7 39.0 39.3 50.7 53.2 44.1

T-22
59.04
18.67
4.90
1.16
2.47
7.75
4.42
1.06
0.17
0.38

100.02

11.4 30.1 22.9 29.7

T-39
55.29
16.97
8.50
1.62
5.28
6.48
3.05
1.84
0.22
0.63

99.88

28.3 27.8 23.6 24.7Mg# 25.4 28.8



TABLE 2.1 (Cont'd)

NEMRUT

N-13-2 N-13-4 N-13-10 N-13-11 N-21

63.22
18.25
4.28
0.43
2.79
6.42
3.86
0.55
0.16
0.17

100.13

63.46
18.18
3.77
0.47
1.91
6.56
4.78
0.54
0.11
0.16

99.94

48.92
17.26
11.24
6.06
8.61
3.70
1.48
2.10
0.18
0.41

99.96

64.83
16.67
4.51
0.24
1.72
5.80
5.51
0.46
0.13
0.12

99.99

58.46
16.95
6.85
1.74
4.15
6.05
3.71
1.22
0.18
0.54

99.85

N-28A N-31B N-34A N-36 N-40

73.83
12.15
3.70
<0.2
0.19
5.14
4.69
0.24
0.09
<0.05

100.28

46.96
16.71
12.73
6.46
9.60
3.45
0.61
2.78
0.19
0.34

99.83

58.49
18.44
7.34
1.72
4.04
4.97
3.74
1.20
0.19
0.48

100.61

52.32
16.23
11.80
3.40
6.82
4.24
1.78
2.27
0.24
1.39

100.49

53.51
16.95
9.49
4.22
7.53
4.07
1.51
2.12
0.16
0.42

99.98

N-41 N-42 N-47A N-52 N-53

50.34
17.84
11.60
4.27
7.08
4.27
1.82
2.59
0.18
0.49

100.48

50.73
17.71
11.10
3.89
6.93
4.69
1.98
2.55
0.17
0.50

100.25

61.54
18.18
4.38
0.48
1.34
6.85
5.99
0.55
0.13
0.13

99.57

56.76
16.56
10.07
1.60
4.98
5.11
2.79
1.50
0.32
0.74

100.43

60.76
16.24
8.06
0.93
4.15
5.94
2.87
0.93
0.20
0.42

100.50

15.19 18.18 49.01 8.66 31.17 - 47.50 29.46 33.93 44.22 39.62 38.45 16.34 22.07 17.06

MALAZGIRT

S-41 S-43 S-60 S-63 S-64 S-65 S-66 S-68 S-69E S-69F S-70A S-70B S-75A S-75B

54.46
15.81
10.60
3.01
6.16
4.60
2.24
2.24
0.15
0.58
99.85

48.11
18.39
10.47
6.82

10.14
4.14
0.54
1.68
0.17
0.22

100.68

48.37

18.38
10.29
7.52
9.88
4.00
0.46
1.64
0.18
0.23

100.95

53.58
17.73
10.13
3.35
7.51
4.93
1.55
2.12
0.15
0.41

101.46

55.49
16.56
10.37
2.97
6.17
3.77
2.25
2.08
0.13
0.38

100.17

53.03
17.38
9.94
3.40
7.53
4.92
1.51
2.06
0.14
0.44

100.35

55.33
16.41
10.19
2.97
6.15
4.00
2.29
2.09
0.13
0.39

99.95

52.80
17.64
9.84
3.57
7.54
4.59
1.48
2.10
0.15
0.42

100.13

56.12
18.47
6.98
3.21
6.39
4.95
2.79
1.25
0.13
0.50

100.79

49.50
18.79
9.67
6.39
9.49
4.60
1.12
1.67
0.18
0.45

101.86

50.74
15.91
11.98
5.83
8.05
4.24
1. 15
2.28
0.18
0.45

100.81

50.39
16.20
11.73
5.20
8.20
4.12
1.14
2.26
0.18
0.44

99.86

53.30
17.69
9.78
3.48
7.62
5.05
1.64
2.07
0.17
0.41

101.21

57.30
16.72
8.73
2.67
5.68
4.29
2.60
1.52
0.15
0.49

100.15

MEYDAN

S-72 S-73 S-77

50.53
18.76
9.17
6.18
8.91
4.34
1.61
1.51
0.18
0.48

101.67

51.24
18.76
8.13
5.32
9.62
4.10
1.23
1.26
0.18
0.36

100.20

50.45
19.12
8.94
5.51
8.85
4.81
1.14
1.40
0.17
0.43

100.82,

33.6 53.7 56.6 37.1 33.8 37.9 34.2 39.3 45.0 54.1 46.5 44.1 38.8 35.3 54.6 53.8 52.4

SiO2
A1203
FeD(T)
MgO
CaO
Na20
K20
Ti02
MnO
P205
TOTAL

Mg#

S102
A1203
FeO(T)
Mg0
Cao
Na20
K20
T102
MnO
P205
TOTAL

Mg#



The samples of the Malazgirt group represent the alkali fissure lava flows in the

vicinity of Suphan volcano, and are older than the young calc-alkaline lava flows of

Suphan volcano. The samples that are grouped under Meydan are from an area to the

NNE of Suphan volcano, between Patnos and Meydan.

In Figure-2.2, total alkalies (Na2O+K20) are plotted against SiO2. All of the samples

plot in the alkaline field as defined by the alkaline-subalkaline division of Irvine and

Baragar (1971). Tendurek lavas have the highest total alkali contents and Nemrut lavas

occupy a relatively intermediate field on this plot. However, the Malazgirt and Meydan

lavas plot very close to the alkaline-subalkaline dividing line. The major element vari-

ations are illustrated in Figures-2.3 and 2.4. All of the alkaline samples form broadly

continous trends on these plots with their MgO, FeO, CaO and TiO2 contents correlating

negatively with SiO2. The Nemrut samples have higher FeO(T) and TiO2 contents than the

other alkaline groups. The basaltic compositions show a large range in TiO2 contents,

from about 1.3 to 2.8%. All of the samples have high A1203 contents (see Table-2.1),

independent of the plagioclase phenocryst contents. They also have high Na20/K20

ratios, in general. The majority of the samples follow a typical Fe-enrichment trend on

an AFM plot (Figure-2.5). However, a few samples, the Meydan group in particular, do

not show any Fe-enrichment.

Molecular norms (Barth-Niggli Katanorm) have been calculated for all the samples

after assigning %Fe2O3=%TiO2+1.5, following Irvine and Baragar (1971). All of the

Tendurek and Meydan lava flows are nepheline and olivine normative. The Malazgirt and

Nemrut lavas exhibit a transitional character and contain both hypersthene and nepheline

normative compositions; however the majority of them are hypersthene normative.
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Figure-2.2

Plot of total alkalies (K20+Na2O) versus SiO2 for the alkaline volcanics. The

dividing line for the "alkaline" and "subalkaline" fields is from Irvine & Baragar

(1971). Tendurek lavas apparently have higher total alkali contents compared

with the other alkaline suites. Nemrut lavas occupy an intermediate position.

Malazgirt and Meydan lavas plot very close to the dividing line.
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Figure-2.3 and 2.4

Diagrams showing the variation of MgO, FeO(T), CaO and TiO2 with SiO2 con-

tents.
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Figure-2.5

AFM diagram of the alkaline volcanics. Most of the samples form a broad

curved trend indicative of Fe-enrichment. However the Meydan lavas and a

few Malazgirt lavas show little or no Fe-enrichment.

-123-



-124-



The trace element abundances of some representative samples are listed in Table-2.2.

There is a broad positive correlation between the alkali element abundances and SiO2

contents. However, the incompatible element ratios such as K/Rb, K/Cs and K/Ba do not

correlate well with SiO2 or K20 contents. For example, the K/Rb ratios exhibit a wide

range from 400 to 720 for a limited K20 range (0.45-0.56%).

2.4.2 Rare Earth Elements

The REE abundances of representative samples are listed in Table-2.3 and their

chondrite-normalized REE patterns are shown in Figure-2.6. The LREE abundances vary by

a factor of 5 (31-155xchondrites), while the HREE abundances are relatively constant

( 17-22xchondrites). Although all of the analyzed samples are LREE enriched, they have a

large range in the degree of LREE enrichment. (La/Yb) e.f. (enrichment factor relative to

chondrites) range from 1.99 to 7.61. The (La/Yb) e.f. correlate positively with SiO2 con-

tents and negatively with Mg#. Excluding S-60, there is also a positive correlation

between the Sr87/86 ratios and the chondrite-normalized La/Yb ratios.

2.4.3 Isotope Geochemistry

Sr, Nd and Pb isotope compositions along with Rb, Sr, Sm, and Nd abundances for

the alkaline rocks are listed in Table-2.4. Sr87/86 ratios range from 0.70341 to

0.70579 and Nd143/144 ratios range from 0.51269 to 0.51293. The observed Pb

isotopic composition ranges are 18.827-19.185 for Pb206/204, 15.629-15.713 for

Pb207/204 and 38.881-39.152 for Pb208/204.
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Table 2.2 (+)

11036
14434
11837
16091
4595
9468

10627
33247
30536
25296
35670
33012

12265
5275

14780
12551
15101

18591
4463
3795

14389
12298

9540
13619

Rb

24.4
30.8
18.5
35.0

6.4
21.5
22.9

102.2
93.0
78.0

113.4
100.0

32.2
7.3

38.2
35.0
50.1

59.1
11.1

9.5
46.4
34.9
15.2
41.9

13387 33.9
9483 22.0

Cs K/Rb

TENDUREK

326
428
452
603
147
242
314
617
595
754
594
616

311*
104*
387*
213*
351*

T-1
T-13
T-26
T-34
T-38
T-46
T-64
T-24
T-36-A
T-39
T-40-A
T-50-B

N-13-10
N-32
N-36
N-40
N-41

S-41
S-43
S-60
S-63
S-68
S-70-A
S-75-A

0.58
0.89
0.30
0.80
0.12
0.54
0.56
2.88
2.65
2.63
3.05
2.76

585
834
662
653
420
426
589
245
290
590
205
247

457
421
450
389
698

274
368
333
350
318
346
350

831
743

MEYDAN

452
469
640
460
718
440
464
325
328
324
315
330

381
723
387
359
301

315
402
399
310
352
628
325

395
431

(+) Concentrations in ppm. by isotope dilution, with precision for K, Rb, Sr, Ba <=1% and for Cs <=5%.

(*) Determined by XRF.

K/Sr K/Ba

NEMRUT

1.12
0.26
1.50
1.54
3.04

MALAZGIRT

19
17
18
25
11
22
18

136
105
43

174
134

K/Cs

19028
16218
39457
20114
38292
17533
18977
11544
11523
9618

11695
11961

10951
20288

9853
8150
4967

S-72
S-77



TABLE 2-3

CHONDRITIC
T-34 T-38 T-64 S-60 S-70-A ABUND.(1)

La 51.2 15.3 32.5 10.1 22.9 0.33

Ce 106.8 38.7 71.0 25.7 56.1 0.88

Nd 44.5 21.8 34.0 15.0 28.2 0.60
(44.03)(2) (22.16) (34.77) (15.73)

Sm 8.36 5.56 7.35 4.38 6.88 0.181
(8.45)(2) (5.55) (7.36) (4.24)

Eu 2.54 2.03 2.46 1.61 2.29 0.069

Tb 1.21 1.05 1.26 0.88 1.34 0.047

Yb 4.08 3.41 3.97 3.07 4.35 0.20

Lu 0.60 0.50 0.53 0.46 0.63 0.034

La/Ce 0.48 0.39 0.46 0.39 0.41

La/Sm 6.06 2.76 4.42 1.37 3.33

La/Yb 12.55 4.49 8.19 3.29 5.26

(1) Chondrite abundances are from Frey et al., (1968).
(2) Concentrations in parentheses are determined by Isotope dilution.



TABLE 2-4

SAMPLE # Sr 87/86
(1)
(5)

T-1
T-13
T-26
T-38
T-46
T-64
T-24
T-34
T-36-A
T-39
T-40-A
T-50-8

N- 13-10
N-32
N-36
N-40
N-41

S-41
S-43
S-60
S-63
S-65
S-68
S-70-A
S-75-A

S-72
S-77

0.70533
0.70533
0.70579
0.70433
0.70492
0.70511
0.70538
0.70575
0.70562
0.70564
0.70531
0.70542

0.70515
0.70374
0.70462
0.70341
0.70503

0.70558
0.70467
0.70462
0.70479
0.70489
0.70479
0.70496
0.70476

0.70538 T4
0.70535 T4

Nd 143/144
(2)
(5)

0.51277
0.51278
0.51279
0.51289
0.51283
0.51283
0.51282
0.51275
0.51281
0.51275
0.51278
0.51276

0.51272
0.51293
0.51282
0.51291
0.51279

0.51278
0.51277
0.51273
0.51277
0.51276
0.51276
0.51280
0.51278

0.51269 T3
0.51270 T2

Pb 206/204
(3)

19.022

18.908
18.952
18.945
19.011

18.827
19.040
19.044
18.998
18.996

19.185
19.069
19.067
19.139

19.001
19.009

19.032

18.997

Pb 207/204 Pb 208/204
(3) (3)

TENDUREK
15.666 38.973

15.660 38.944
15.654 38.963
15.650 38.939
15.656 38.940

15.667 38.881
15.712 39.152
15.679 39.023
15.661 38.961
15.662 38.966

NEMRUT
15.713
15.629
15.674
15.677

15.676
15.685

15.662

MEYDAN

15.677

39.288
38.917
39.097
39.127

MALAZGIRT

39.057
39.083

Rb
(4)

24
31
18

6.4
21
23

102
35
93
78

113
100

32
7.3
38
35
50

59
11
10
46

- 35

39.023 15
- 42

Sr
(4)

585
834
662
420
423
589
245
653
290
590
205
247

457
421
450
389
698

Sm Nd
(4) (4)

7.77
7.12
8.79
5.55
5.29
7.36
8.35
8.45
8.72
9.76
8.33
8.42

6.40
5.87

12.30
6.86
6.55

274 10.74
368 4.44
333 4.24
350 8.63

318
346
350

36.94
36.95
44.05
22.16
23.56
34.77
43.02
44.03
44.55
48.44
42.96
43.23

28.30
23.15
54.14
29.93
30.56

45.54
16.62
15.73
36.00

Rb/Sr Sm/Nd Sr/Nd

0.041
0.037
0.027
0.015
0.050
0.039
0.416
0.054
0.321
0.132
0.551
0.405

0.070
0.017
0.084
0.090
0.072

0.215
0.030
0.030
0.131

- - 0.110

6.88 28.20 0.043
8.36 35.05 0.120

0.210
0.193
0.200
0.250
0.225
0.212
0. 194
0. 192
0.196
0.201
0.194
0.195

0.226
0.254
0.227
0.229
0.214

0.236
0.267
0.270
0.240

15.836
22.571
15.028
18.953
17.954
16.940
5.695

14.831
6.510

12.180
4.772
5.714

16.150
18.190
8.310

13.000
22.840

6.017
22. 142
21.170
9.722

(1) Sr 87/86 ratios normalized to 0.70800 for E & A SrCO3 using Sr 86/88 = 0.1194
(2) Nd 143/144 ratios normalized to 0.51264 for BCR-1 using Nd 146/144 = 0.7219
(3) Pb isotope ratios are normalized for mass discrimination using that obtained for NBS SRM 981.

Reproducibility is better than 0.05% AMU-1.
(4) Concentrations in ppm by isotope dilution, with precision for Sr, Nd, and Sm -0.3% and for Rb -1%.
(5) Quoted errors for Sr and Nd isotopic ratios are in-run statistics, and are representative of true precision

as demonstrated by replicate analysis of various samples.

0.244 12.270
0.239 9.986

- 34 831 6.09 32.50 0.041 0.187 25.569
39.111 22 743 5.10 25.71 0.030 0.198 28.899



Figure-2.6

Chondrite-normalized REE patterns of representative lava flows of the alkaline

suites. Chondrite normalization values are listed in Table-2.3. Note the large

range and degree of enrichment observed for the LREE, compared with the

relatively narrow range for the HREE.
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2.4.3.1 Sr and Nd Isotope Variation

The Sr and Nd isotope composition of the alkaline suites are plotted on a Nd-Sr

isotope correlation diagram in Figure-2.7. The fields of Ararat, Azores and Grenada are

also shown for comparison. Only two samples from Nemrut, one of which is the 1441

lava flow, plot close to the Ararat field, while the rest are shifted significantly towards

the more radiogenic Sr side of the diagram. Alkaline suites also have lower Nd143/144

ratios relative to the Ararat field. Tendurek lavas have higher Sr87/86 ratios compared

with the other alkaline suites. The majority of Malazgirt lavas form a cluster and do not

exhibit a negative correlation on the Sr-Nd isotope diagram. The Sr87/86 and

Nd143/144 ratios do not show any recognizable correlations with the major element

compositions. In Figure-2.8, the Sr87/86 ratios are plotted against Rb/Sr ratios. The

basaltic compositions exhibit the largest variation in Sr87/86 ratio (from 0.7038 to

0.7058) for a range in Rb/Sr ratio of 0.02-0.05. However, the observed range in the

Sr87/86 ratios of the more differentiated lavas is relatively small (from 0.7053 to

0.7058) with a Rb/Sr range of 0.02 to 0.55.

The Nd isotopic ratios are plotted against Sm/Nd ratios in Figure-2.9. Different

alkaline suites form broad fields with different trends on this diagram. Tendurek lavas

show a positive correlation between Nd isotope ratios and Sm/Nd ratios. Malazgirt sam-

ples exhibit a negative correlation between those ratios. Nemrut lavas have quite a large

range in Nd143/144 ratios(from 0.51272 to 0.51293), despite a limited range in Sm/Nd

ratios. The variation of isotopic ratios and reciprocal abundances for Sr and Nd display

complex relations, both the among different alkaline suites as well as among within a

given suite of lava flows (Figures-2.10 and 2.11). Most of the Tendurek lavas are more

radiogenic in Sr87/86 compared with the Nemrut and Malazgirt series. Excluding one

sample (S-41), the Malazgirt lavas form a cluster which has an average Sr87/86 ratio
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Figure-2.7

Sr-Nd isotope correlation diagram for the alkaline rocks. Fields for Ararat,

Azores, and Grenada are also shown for comparison. Bulk earth values and

the "Oceanic Regression Line" are from Allegre et al., (1984). All Nd data are

normalized to Nd146/144=0.51264 for BCR-1. Data sources: Hawkesworth et

al., (1979), White and Hofmann (1982).
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Figure-2.8

Diagram illustrating the variation of Sr 87/86 ratios with Rb/Sr ratios for the

alkaline rocks.
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Figure-2.9

Plot of Nd143/144 versus Sm/Nd ratios for the alkaline volcanics. Different

alkaline suites form broad fields with different trends.
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Figure-2.10

Variation between Sr87/86 ratios and reciprocal Sr abundances for the

alkaline rocks.
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Figure-2.1 1

Variation between Nd143/144 ratios and reciprocal Nd abundances for the

alkaline rocks. Note that the broad field defined by the Tendurek lavas

appears to coincide with the positive linear trend formed by the Ararat HA

basalts (Chapter-1). The Malazgirt lavas exhibit a wide range in Nd abundance,

but a narrow range in Nd143/144 ratios.
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and Sr abundance of 0.7048 and 340ppm., respectively (Figure-2.10). The Nemrut lavas,

(with the exception of N-41) show a large range in Sr isotopic composition, (from

0.7034 to 0.7052) but a limited range in Sr abundance. The Meydan samples plot within

the high-Sr side of the Tendurek field. In Figure-2.11, the Tendurek lavas form a broad

field which appears to coincide with the positive linear trend defined by the Ararat HA

basalts (Chapter 1). The Nemrut lavas broadly conform to this trend, though with a shift

towards higher Nd143/144 values. The Malazgirt lavas form a distinct field which is

characterized by a wide range in Nd abundance (from 16 to 46ppm.) but a limited range

in Nd143/144 ratios.

2.4.3.2 Pb Isotope Variation

The Pb isotope ratios of the alkaline suites are plotted in Figure-2.12 on Pb isotope

correlation diagrams, long with various island arc and ocean island basalt fields. The

Alkaline suites form rather broad fields and extend the Ararat Pb-array towards more

radiogenic compositions. The Nemrut lavas have more radiogenic Pb206/204 and

Pb208/204 ratios than any of the other of the volcanics analyzed for Pb isotopes from

eastern Turkey. These lavas form a steep trend on the 207-206-204 Pb diagram, with a

large range in Pb 207/204 ratios (from 15.629 to 15.713). Most of the Tendurek lavas

form a steep narrow trend overlapping with the upper part of the Ararat array, and

extending it towards more radiogenic Pb 207/204 values. However, two samples from

Tendurek have significantly lower Pb 206/204 ratios, indicative of lower crustal contam-

ination. The Malazgirt lavas plot within the Tendurek field on the Pb-Pb isotope diagrams.

Most of the samples from alkaline the suites (with the exception of the Nemrut lavas)

plot within the Ararat field on the 208-206-204 Pb diagram.
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Figure-2.12

Pb-Pb isotope correlation diagram for the alkaline rocks. Included for compar-

ison are the fields for a variety of island arcs and ocean island basalts. Data

sources are the same as in Figure-1.22.
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Figure-2.13

Sr-Pb and Nd-Pb isotope correlation diagrams for the alkaline rocks.

Although the alkaline rocks as a whole form a "cloud", the Tendurek lavas by

themselves appear to form positive and negative trends on the Sr87/86 ver-

sus Pb206/204 and Nd143/144 versus Pb206/204 diagrams, respectively.
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When considered together, the Isotopic compositions of the alkaline lavas form a

"cloud" on the Sr-Pb and Nd-Pb isotope correlation diagrams (Figure-2.13). However,

with the exclusion of potentially contaminated samples, the Tendurek lavas appear to

exhibit positive and negative correlations on the Sr 87/86 versus Pb 206/204 and Nd

143/144 versus Pb 206/204 diagrams, respectively.

2.5 Discussion

2.5.1 Crustal Contamination

The fact that all of the alkaline lavas plot to the right of the oceanic Sr-Nd

regression line (Figure-2.7), suggests involvement of a contamination process in their

petrogenesis.

The Tendurek lavas exhibit a significant range in Sr 87/86 ratios (from 0.70433 to

0.70579). This range exceeds the range that is observed for the majority of the uncon-

taminated mantle derived magmas and indicates either crust or sediment contamination.

However, the lack of a positive correlation between Rb/Sr ratios and Sr 87/86 ratios,

the observed unradiogenic Pb 206/204 signatures, and the positive correlation between

the degree of differentiation and the radiogenic Sr component (for basaltic compositions)

implies crustal rather than sediment contamination as a principal cause for the observed

variations. The nature of the crustal component and the contamination process can be

inferred utilizing diagrams involving isotope ratios (Figures-2.8 to 2.13). The least evolved

lavas representing the earliest phase of activity of Tendurek have consistently higher Sr

abundances (>400ppm.) and lower Rb/Sr ratios (<0.1) in comparison with the more

evolved lavas produced during the second phase of activity . There is a negative corre-

lation between the Sr 87/86 ratios and reciprocal Sr abundances for the relatively
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undifferentiated Tendurek lavas (Figure-2.10). Some of these lavas also have unradiogenic

Pb 206/204 ratios, which correlate negatively and positively with Sr 87/86 and Nd

143/144 ratios, respectively (Figure-2.13). These characteristics are all consistent with

contamination involving lower crust. As pointed out by DePaolo (1981), positive corre-

lations between Sr abundances and Sr 87/86 ratios can be modelled by an

assimilation-fractional crystallization process in which Sr behaves incompatibly in a lower

crustal environment assuming existence of sufficiently high water pressures. Nd and Sr

abundances and isotopic compositions of the "primitive" Tendurek lavas can be modelled

by an assimilation-fractional crystallization (AFC) process assuming a bulk distribution

coefficient of 0.15 for Nd, a range of 0.5 to 0.9 for the ratio of assimilation to frac-

tional crystallization, a lower crustal composition of Nd=30ppm., Nd 143/144=0.51265,

Sr=250ppm., Sr 87/86=0.70750, and an uncontaminated magma composition of Nd=19ppm.,

Nd 143/144=0.51288, Sr=400ppm., Sr 87/86=0.70460. The lower crustal composition given

above is chosen because it satisfies the data. However, the question of the

representativeness of this composition is a difficult one to answer due to lack of any

data about the nature of lower crust in this region. However, the 5 to 7 fold increase

in Rb, Ba and Cs abundances from T-38 to T-34 suggests contamination by a lower

crustal melt rather than assimilation of pieces of lower crustal material. Thus the inferred

abundances of Nd and Sr for the lower crust may not reflect the actual abundances in

the solid.

It is also interesting to note the differences in the chondrite normalized patterns of

T-38 and T-34 (Figure-2.6). While the chondrite-normalized Tb abundances of T-34 and

T-38 are identical, T-34 is not only significantly enriched in LREE but is also slightly

enriched in HREE. Considering the convex upward partition coefficient patterns of calcic

amphiboles and clinopyroxenes (Mysen, 1977; Nicholls & Harris, 1980), either fractional

crystallization of those phases or partial melting of rocks containing the above phases
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can potentially cause enrichments in LREE and HREE. However, consideration of the fol-

lowing points makes it more likely that T-38 composition can be modified by addition of

a small degree partial melt derived from an amphibole-bearing source:

1. 36% decrease in K/Rb ratio from T-34 to T-38

2. About a two-fold decrease in K/Cs ratio

3. 4 to 7 fold increase in K, Rb, Ba and Cs abundances

4. 40% increase in Sr abundance

5. Assumed high water pressures in order to explain the Sr abundance increase.

T-34 also has the most unradiogenic Pb 206/204 ratio among the Tendurek lavas. All

the above facts are consistent with lower crustal contamination of magmas (with T-38

like composition) by small degree partial melts derived from lower crust that is

metamorphosed to amphibolite facies. Among the first activity phase lavas of Tendurek,

T-38, T-46, T-26 and T-34 appear to be consistent with the above scenario. However,

T-1 and T-64 differ from them, in that they do not show any shift toward unradiogenic

Pb 206/204 ratios as expected for lower crustal contamination. They are erupted through

two major fault zones, Agri Fault and Caldiran Fault, respectively (see Chapter-3). This

may not be of any significance as far as the chemistry of these lavas are concerned.

However, it is worth noting that crustal contamination of a basaltic magma by a crustal

melt is a liquid-state interdiffusion process, in which the relative diffusivities of elements

and "exposure" times are very important in determining the contamination signatures for

different elements (Watson, ' 1982). If the presence of a major fault zone reduces the

residence time of a basaltic magma within a lower crustal environment, crustal contam-

ination may be manifested selectively depending on the relative diffusivities of the

elements concerned. If there is a large enough difference between the diffusivities of

Pb relative to Nd, Sr, and the alkalies, then relatively rapid ascent utilizing existing major

fault zones may provide an explanation for the lack of unradiogenic Pb 206/204 signa-
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tures for T-1 and T-64. Alternatively, compositionally heterogeneous lower crust may be

considered as a likely explanation.

Lavas produced during the second activity phase of Tendurek exhibit a large range in

Rb/Sr ratios and Sr abundances (Figures-2.8 and 2.10), but a small range in Sr 87/86

ratios. They also form linear trends of negative slope on the Sr 87/86 versus Rb/Sr and

Sr 87/86 versus 100/Sr diagrams. The large ranges in Rb/Sr ratios and Sr abundances

can be accounted for by fractional crystallization involving plagioclase within a shallow

crustal magma chamber. The observed negative correlations in Figures 2.8 and 2.10 can

be explained in two ways. If fractionation of a single batch of magma is envisaged,

crustal contamination during fractionation by wall-rocks which have less radiogenic Sr

87/86 ratios (0.7058 versus 0.7052), can produce those negative correlations. Alterna-

tively, fractionation of a magma in a magma chamber that is repeatedly filled by magmas

that become progressively less radiogenic can also produce the negative correlations. In

this case, the erupted magmas will be progressively more fractionated, LIL element

enriched but their Sr isotope ratios will be lower.

Malazgirt lavas form distinct fields on the diagrams involving isotope ratios. S-60 is

the most primitive among them with 7.52% MgO content and 56.6 Mg# (Table-2.1). It

also has the lowest K content (3795ppm.) among all of the alkaline rocks. K is an ele-

ment which is most drastically affected by crustal contamination (De Paolo, 1981;

Watson, 1982). Based on its low K content and primitive character, one would expect

that S-60 is the least affected by crustal contamination. However, its Nd 143/144 ratio

is among the lowest obtained from the alkaline suite. S-60 plots closest to the oceanic

regression line on the Nd-Sr correlation diagram compared to the other alkaline samples

(Figure-2.7). Malazgirt lavas do not show the unradiogenic character in Pb 206/204

ratios but they are quite radiogenic in Pb 207/204 ratios (Figure-2.12). In light of the
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above geochemical characteristics, it is difficult to conclusively assess the viability of

crustal contamination for S-60. However the following points argue against crustal con-

tamination:

1. High MgO content and Mg# of S-60.

2. Lowest K content among alkaline suites (3795 ppm.)

3. Lower Sr 87/86 ratio (0.70462) than samples that are contaminated by crust.

4. Lack of unradiogenic Pb 206/204 signatures.

The overall trends formed by the Malazgirt lavas in Figure-2.7 to 2.11 appear to be

consistent with two-component magma mixing between S-60 and a crustally contaminated

basaltic magma (similar to T-46 and T-64).

The most striking characteristic of the basaltic Nemrut lavas is their more radiogenic

Pb isotopic compositions with respect to the other alkaline suites (Figure-2.12 and 2.13).

All of the basaltic lavas post-date the extensive ignimbrite eruptions of Nemrut. As

emphasized in the third chapter, Nemrut volcano is situated in a rift-like environment

(Mus-Van basin). The Mus basin is filled with recent (Tertiary to present) sediments

reaching thicknesses of up to 8000m. Once the lower crust is partially melted, causing

ignimbrite eruptions, and is replaced by upper mantle material, the basaltic magmas that

are produced later would escape lower crustal contamination. However, upper crustal

contamination by recent sediments would create radiogenic Pb signatures. This scenario

seems to be consistent with the overall geochemical characteristics of the basaltic

Nemrut lavas.
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2.5.2 Mantle Source Characteristics

Study of mantle-derived xenolith-bearing alkali basalts is a generally accepted and

widely used approach (in order to avoid complications arising from fractionation or

crustal contamination of lavas) in the characterization of mantle sources. Because of the

general lack of mantle xenoliths in tholeiitic lavas, an alternative is to choose lavas that

closely approximate the equilibrium partial melts of assumed mantle compositions. These

melts would have a Mg# in the range of 68-75 for up to 30% melting of peridotite,

based on the Fe-Mg partitioning between olivine and liquid (0.3; Roeder & Emslie, 1970)

and Mg values of 88-89 for upper mantle peridotites (Frey et al. 1978). Unfortunately,

none of the analyzed samples meet the above criteria and most of them have been mod-

ified by crustal contamination and fractionation. Nevertheless, some broad generalization

can be made based on the chemistries of the least modified lavas. In this respect S-60

is the best candidate among the alkaline lavas, but ironically its overall composition is

tholeiitic rather than alkaline. Although S-60 is nepheline normative, the fact that it plots

very close to the alkaline-subalkaline dividing line on the alkalies versus silica plot (Fig-

ure-2.2) and its chondrite normalized La/Yb ratio of 1.99 (relatively flat REE pattern),

suggest a transitional character for S-60.

Frey et al.(1978) proposed a model in which associated melilitites, basanites, alkali

basalts and tholeiites of Eastern Australia are produced from a common LREE-enriched

pyrolite source (with lower Ti content) by 4-25% partial melting. However, this model is

not applicable to the Eastern Turkey volcanics, because a pyrolite model implicitly or

explicitly (Ringwood, 1975) assumes a "fertile" mantle source with chondritic Rb/Sr and

Sm/Nd ratios. Including the alkali basalts, all the volcanics from Eastern Turkey indicate

derivation from a mantle source(s) that has had time-integrated depletions in Rb/Sr and

Nd/Sm ratios. This is in accord with the conclusions reached by Allegre et al., (1981,
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1982) and Allegre (1982) regarding the depleted nature of subcontinental mantle. As pro-

posed in Chapter-1, the highly radiogenic Pb 207/204 character of the alkali basalts and

the steep trends obtained on 207-206-204 Pb diagrams necessitate a mantle source that

is contaminated by LIL-element enriched fluids carrying sediment signatures. It has also

been suggested that this contamination event is possibly related to the closure of

Paleo-Tethys. It can be envisaged that such a contamination would cause enrichments in

the depleted subcontinental mantle (in spinel-peridotite facies) and also create hydrous

phases such as amphiboles. In fact, there is abundant evidence confirming the presence

of heterogeneously metasomatized, hydrous phase-bearing subcontinental mantle as

inferred by mantle xenolith studies (e.g. Frey & Green, 1974; Frey & Prinz, 1978;

Menzies & Murthy, 1980). These studies propose the derivation of metasomatizing fluid

or low degree melt (Component-B of Frey & Green, 1974) from a garnet peridotite

source. This is not inconsistent with the proposed model here, as long as a sediment

contamination is superimposed on it. Magmas derived from a heterogeneous,

amphibole-bearing spinel-peridotite mantle source by varying degrees of partial melting

can generate the alkaline to tholeiitic lavas. Along with the isotope data, the Na and

Al-rich composition of the alkaline lavas (Table-2.1) is consistent with such a model.

For example, Frey & Green (1974) reported major element composition of glasses that

are formed by incongruent melting of hydrous phases in peridodite nodules during their

rapid ascend to the surface. Examination of the major element compositions of these

glasses (Table-6 of Frey & Green, 1974) reveals that the alkali abundances are corre-

lated with associated hydrous phases (amphibole and/or phlogopite). Glasses derived

mainly from amphibole have very low K20 contents (e.g. 0.05, 0.1%) and K20/Na2O

ratios, whereas the ones that have phlogopite melt components have very high K20 con-

tents (up to 7%) and high K20/Na2O ratios. Independent from the type of hydrous phase,

all glasses are characterized by very high A1203 contents (up to 24.2%).
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Table-2.5 Comparison of basalt compositions from different tectonic environments

EASTERN TURKEY

S-60 A-30-1

48.37
18.38
10.29
7.52
9.88
4.00
0.46
1.64
0.18
0.23

333
9.5

3.57

1.91

51.84
18.30
8.89
5.06
7.99
4.60
0.37
1.78
0.14
0.28

424
9
93

184
4.09

6
1.67

30.7

ANOROGENIC BASALT

1
(a)

51.42
13.87
14.23
2.69
6.44
4.02
2.52
2.30
0.27
1.55

296
58

1658
1195
23.4

112
7.15

10.7

2 3
(a) (a)

50.43
15.44
10.49
7.60
8.96
3.21
0.98
1.42
0.17
0.28

430
18.2
394
143

3.25
14.1
2.83

10.1

50.56
13.83
12.41
5.12
9.62
2.65
0.93
2.57
0.17
0.22

219
15

239
203

4.49
15.9
1.12

12.8

4 5
(a) (b)

50.75
13.51
12.81
4.21
8.45
2.80
1.58
3.95
0.19
0.66

732
44

653
398

7.22
37

5.33

10.8

52.41
13.65
10.89
5.64
8.79
2.28
1.72
2.77
0.15
0.49

316
19

295
134-

.5

26.8

CONT. ARC HAB

6
(c)

52.46
14.13
10.46
6.38
8.01
2.78
0.42
1.65
0.13
0.24

279
10

111
142

7
(d)

52.2
19.1
7.07
5.33
8.57
4.32
0.80
1.69
0.69
0.20

280
10

290

8 9
(d Ti)

51.89
20.36
7.64
4.41
9.41
3.50
0.64
1.01
0.18
0.21

436
22

244

2.55

2.69

50.1
17.7
10.0
6.80
9.89
3.34
0.48
1.52
0.17
0.14

380
18

135

Ref .

Si02
A1203
FeO (T)
MgO
CaO
Na20
K20
T102
MnO
P205

Sr
Rb
Ba
Zr
Hf
Nb
Th

Zr/Nb

Sample Locations: Craters of the Moon National Monument, U.S.A.; 2- New Grande Rift, New Mexico, U.S.A.;
Deccan, India; 4- Parana Basin, Brasil; 5- Average Sable River form. (n = 27), Karoo, S.
Springsure Group, Southern Queensland, Australia; 7- Chiole Island, Chile;
Average (n=8) Andean HA basalt; 9- Mt. St. Helens.

(a) Thompson et al., (1983)
(b) Cox (1983)
(c) Ewart (1982)
(d) Escobar et al., (1977)
(e) Pearce (1976, 1982)

11.8

AVE. MORB

10
(e)

49.56
16.09
10.17
7.69
11.34
2.80
0.24
1.42

0.12

121
2

20
90

2.44
4.6

0.26

20
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In Table-2.5, the compositions of the closest candidates for mantle-derived magmas

from Eastern Turkey (S-60 and A-30-1) are listed with various, mostly tholeiitic, basalts

from different tectonic environments for comparison (because of the transitional-tholeiitic

composition of S-60). The most obvious differences between the major element compos-

itions of S-60 and anorogenic basalts are the high contents of A1203 and Na2O in

S-60. Once the accumulated plagioclase possibility is discounted (because of the practi-

cally aphyric nature of S-60), then this difference must be significant in terms of

magmatic processes and/or mantle source compositions. Similar differences are also

observed between high-alumina basalts and continental tholeiites. When these observations

are combined together, probably the most likely explanation would be hydrous (including

hydrous phase contributions) versus anhydrous melting of depleted upper mantle. Recently,

Grove and Baker (1984) have emphasized the importance of early plagioclase

fractionation (under dry conditions) in the generation of tholeiitic trends. When the

already high-A1203 character of melts that are formed by partial melting of

hydrous-peridotites are retained by the supression of plagioclase fractionation, then it

would be possible to generate high-Al lavas like S-60 or typical high-alumina basalts.

The closest analogs to the eastern Turkish volcanics are the Cenozoic volcanics from

the western U.S.A. (Hedge & Noble, 1971; Lipman et al., 1978 and its references;

Menzies et al, 1983). Interestingly, the western U.S.A. is also the closest analog to east-

ern Turkey in terms of its geological evolution. In the western U.S.A., the cessation of

a subduction-related regime was followed by initiation of extensional tectonics character-

ized by normal faulting. This is similar to eastern Turkey but without continental collision

(see Chapter-3). Recent volcanism (including calc-alkaline and alkaline character) developed

in response to this new tectonic regime. Alkali olivine basalts from the Southern Basin

and Range province (SBRP) and Sierra Nevada province (SNP) span a large range in Sr

and Nd isotopic compositions (0.70285-0.70689 and 0.51304-0.51215, respectively,
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Menzies et al., 1983). SNP lavas are also characterized by unusually high Sr contents

(700-2,500ppm.). Based on the lack of a negative correlation between Sr 87/86 and Nd

143/144 ratios, crustal contamination of the SNP lavas has been discounted (Hedge and

Noble, 1971; Menzies et al., 1983). The latter authors have suggested an

enriched-heterogeneous-hydrous garnet peridotite mantle source for the SNP lavas. How-

ever, the above argument against crustal contamination is not a strong one, as empha-

sized in the previous discussions. Moreover, "enriched mantle" and "crustal contamination"

possibilities are not exclusive of each other. Probably better and more convincing con-

clusions can be reached without a prejudiced approach by considering more complex and

geologically reasonable processes (e.g. contamination by partial melts derived from an

already crustally-contaminated igneous body).

2.6 Conclusions

The alkaline volcanics of eastern Turkey span a wide composition range from alkali

basalts, through hawaiites, benmoreiites, mugearites to silica oversaturated peralkaline

lavas. Alkali volcanism in basically sodic in character and the most primitive lavas are

transitional to tholeiites. All of the alkaline suites studied have been variously affected

by lower and/or upper crustal contamination. The conclusions reached in Chapter 1

regarding the mantle source characteristics of end member #1, inferred from Sr, Nd and

Pb isotopes, are basically valid for the alkaline volcanics. Derivation of the alkaline lavas

by partial melting of a recently metasomatized, heterogeneous, hydrous phase-bearing,

depleted peridotite mantle source followed by variable degrees of crustal contamination

and fractional crystallization is consistent with their overall geochemical characteristics.
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CHAPTER 3

DEFORMATIONAL DOMAIN CONTINENTAL TECTONICS IN THE LAKE VAN REGION,

EASTERN TURKEY: IMPLICATIONS ON THE ORIGIN OF AN EXTENSIONAL

REGIME ASSOCIATED WITH COMPRESSION
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3.1 Introduction:

Our knowledge on continental tectonics has advanced significantly in the last decade,

with the emphasis given to the study of deformational modes displayed by convergent

boundaries and continental collision zones (e.g., McKenzie, 1972; Molnar & Tapponnier,

1975; Tapponnier & Molnar, 1976; Burchfiel, 1980, Royden et al., 1983). One of the

major outcomes of these studies is the recognition of the differences in deformational

styles between oceanic and continental crust. The seismic activity and deformation is

confined to narrow zones within oceanic crust that allow the precise identification of

plate boundaries and their interactions. Continents display much more complex internal

deformational styles, that incorporate spatially and temporally coexisting compressional,

extensional, and transform regimes evidenced by the heterogenous, diffuse seismic activ-

ity within broad zones. This makes the strict application of rigid-plate concepts almost

impossible in intracontinental areas. These complications arise from a number of reasons

that are inherently attributable to the nature of the continental crust. Among those the

most important ones are: 1- Its buoyant character and resistance to subduction, 2- Its

tendency to escape laterally away from continental collision zones along major transform

boundaries. 3- Its ability to retain a tectonic memory by preservation of old zones of

weaknesses that can be reactivated. Superposition of new and reactivated structures,

particularly large fault zones, fragment the continental crust into a mosaic of blocks. By

locking or unlocking of fault zones, blocks within the mosaic can escape laterally. Inter-

action between blocks can also transmit forces over great distances within the

continental crust. 4- The mosaic structure exposed at the surface may not extend

throughout the entire thickness of the continental crust, but may be present above major

subhorizontal zones of decoupling. (Bak et.al, 1975; Grocott, 1977; Eaton, 1980;

Burchfiel, 1980).
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Eastern Turkey, particularly the Lake Van region, represents an area where we can

identify the above characteristics of continental tectonics and, by studying the details of

the crustal mosaic structure, potentially offers an in-depth understanding of the complex

tectonic processes that occur in convergence and continental collision zones.

The present tectonic regime of eastern Anatolia is mainly dominated by the relative

motions of the Arabian and Eurasian plates (Nowroozi, 1971; McKenzie, 1972; Dewey et

al., 1973). As a result of the convergence between the Arabian and Eurasian plates, the

existing southern branch of the Neo-Tethian ocean was consumed by a northward sub-

duction, and continental collision took place in Miocene time along the Bitlis Suture Zone

(Rigo de Righi & Cortesini, 1966; Dewey et al., 1973; Hall, 1976). Convergence is still

active today, as shown by the folding and thrusting of Pliocene to recent sediments on

the Arabian platform ("border folds" of Ketin (1966) in Turkey, Zagros ranges in Iran) and

the diffuse seismic activity throughout the region (Nowroozi, 1971; McKenzie, 1972;

Rotstein & Kafka, 1982).

McKenzie (1972) originally proposed that, as a manifestation of this continental colli-

sion, in order to avoid the thickening of the buoyant continental crust, the Anatolian

plate moves away westward from a triple junction (known as the Karliova Junction, Fig-

ure-3.1) by consuming eastern Mediterranean sea floor along the Hellenic trench.

McKenzie's model has received general acceptance, with some minor modifications, in the

literature dealing with the tectonics of the eastern Mediterranean (e.g., Alptekin, 1973;

Tapponnier, 1977; Dewey & Sengor, 1978; Mercier, 1981).

Detailed study of the tectonics in eastern Turkey (east of the Karliova Junction,

here called the Lake Van region) has been neglected partly due to the extensive Tertiary

to recent volcanics that obscure the structures in this region. Innocenti et al.(1976)
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Figure-3.1

Major tectonic elements of Turkey. Only the deformational domains of eastern

Turkey are shown. ADD: Anatolian, PDD: Pontide, EEDD: Erzincan-Erzurum,

VDD: Van, AFDD: Arabian Foreland, AZDD: Azerbaijan, RDD: Rezayeh deforma-

tional domains. The major faults are: NAF: North Anatolian, EAF: East

Anatolian, PFZ: Pasinler, AFZ: Ararat, HF: Hakkari, MRF: Main Recent, ECF:

Ecemis, TGF: Tuz Golu fault. WAGS: West Anatolian Graben System, BSZ: Bitlis

Suture Zone. LV: Lake Van, BM: Bitlis Massif, PM: Puturge Massif, GS: Gulf

of Saroz, GI: Gulf of Iskenderun, M: Mudurnu region.
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studied the volcanics in the Lake Van region and suggested that the calc-alkaline

volcanism is a result of a relict subduction process following cessation of subduction in

Upper Miocene time, and that the alkaline volcanism marked the onset of the continental

fragmentation due to the divergent motion of the Anatolian and Iranian plates. Sengor &

Kidd (1977) synthesized the accumulated geological data and tried to establish a similari-

ty between the tectonics of the "Turkish - Iranian Plateau" and the "Tibet Plateau". They

suggested that the post-collisional tectonics of the "Turkish Plateau" can be explained by

shortening and thickening of the continental crust, whereby its lower levels are partially

melted to give rise to the calc-alkaline volcanism. They also proposed that local longi-

tudinal cracking of the crust, due to north-south shortening, produced the alkaline

volcanism in eastern Turkey.

The purpose of this paper, based on the results of my field studies, aerial photo-

graph, LANDSAT and SIR-A (Shuttle Imaging Radar) image analysis and also on the exist-

ing geological and geophysical data, is to present a tectonic model suggesting the

development of an extensional tectonic regime within a broad compressional regime and

to propose a generalized model for the initiation of extensional tectonics.

3.2 Geological Setting

The NE-SW trending Bitlis metamorphic massif is about 300 km. long and 40 km.

wide. It is located to the south of Lake Van (Figure-3.1,2), and is part of a belt of

metamorphic rocks that extends from the Nigde-Bolkar and Puturge massifs in the west

to the Zagros mountains of Iran in the east (Sanandaj-Sirjan Zone of Stocklin, 1968).

The Bitlis massif contains rocks of almandine-amphibolite facies in its core and a

greenschist-facies in its cover (Boray, 1973; Yilmaz, 1975). Yilmaz (1972) has determined

by Rb/Sr dating that the core metamorphism and associated granitic intrusions took place

-162-



Figure-3.2

Geological map of the Lake Van area. Simplified after Altinli, 1966-b. Key to

the legend: 1 -Quaternary, 2-Late Cenozoic volcanic rocks, 3-Neogene,

4-Oligo-Miocene, 5-Eocene, 6-Late Cretaceous-Paleocene ophiolitic melange,

7-Ophiolites, 8-Granitoids, 9-Metamorphic basement 10-Autocthonous Arabian

platform sedimentary rocks (to the south of the Bitlis suture zone).
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in the Paleozoic. The cover rocks are composed of Megalodont-bearing Upper Triassic

marbles and schists intercalated with metavolcanics and Fusulinid-bearing marbles

(Perincek, 1980). Perincek (1980) interpreted the presence of Upper Triassic(Norian)

metavolcanics within the Bitlis massif as evidence of continental rifting and the opening

of the south Neo-Tethyan ocean which separated the Anatolian and Arabian plates.

The Bitlis Suture Zone is situated to the south of the Bitlis massif and consists of

arcuate, north dipping, internally-imbricated thrust sheets of ophiolitic melange and flysh

units (Rigo de Righi & Cortesini, 1966; Hall, 1976; Ozkaya, 1982). The Bitlis massif is

thrust southward over an ophiolitic melange complex which,in turn is thrust southward

over sedimentary rocks of the Arabian platform (Altinli, 1966-b; Hall, 1976).

On the Arabian platform, autocthonous sedimentary rocks range from Paleozic to

Upper Tertiary age in southeastern Turkey(Foothills structure belt of Rigo de Righi &

Cortesini,1964 and Border Folds of Ketin,1966). The autochthonous rocks contain

imbricated thrust faults and disharmonic folds, that affect rocks as young as Pliocene to

Recent, that can be followed to the southeast into the Zagros ranges of Iran (Altinli,

1966-a; Stocklin, 1968; Haynes and McQuillan, 1974).

The area north of Lake Van, is largely covered by Late Cenozoic volcanic rocks but

Paleozoic metamorphic rocks crop out as small inliers (e.g.,Akdag, Taslicay, Serpmetas

massifs; Figure-3.2). The metamorphic rocks in these areas resemble those of the Bitlis

massif. This crystalline basement and an Upper Cretaceous-Paleogene ophiolitic

melange-flysh complex that crops out mainly to the west of the Lake Van, is overlain

unconformably by wide-spread Miocene marine carbonate rocks and lacustrine and fluvial

molassic sedimentary rocks.
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In contrast to the Neogene formations, Eocene and Oligocene rocks are not wide-

spread in the Lake Van region. They are present within depressions such as the "Mus

Basin". The limited nature of Early Cenozoic rocks could be partly due to their removal

by erosion following Late Tertiary uplift. However, analysis of their depositional envi-

ronment and lithological character suggest that they were formed within pull-apart basins

and fault troughs along major strike-slip faults. The Eocene rocks in the Lake Van

region also contrast sharply with the wide-spread Eocene rocks to the west of the

Karliova Junction, and on the Arabian platform, in terms of their depositional environment

and lithology.

The Eocene rocks consist of several hundred meters of alternating very poorly sorted

conglomerates and sandstones around Gevas, along the southern shore of the Lake Van.

These conglomerates unconformably overlie either rocks of the Bitlis Massif or ophiolitic

rocks near Gevas and contain angular clasts derived from the underlying lithologies

(Yilmaz et al., 1981). The Gevas conglomerates contain Nummilites both within their clasts

and within their matrix. These rocks have been interpreted by Yilmaz et al (1981) as

debris flows deposited along a fault zone. Altinli (1966a) described the Eocene deposits

in the Lake Van region as containing "confused bedding, lensing, intertonguing and

cataclastic features".

Tertiary sediments are present within narrow, elongate basins unconformably overlying

the metamorphic basement rocks or ophiolitic melange in the Lake Van area. Thickness of

the Tertiary to Quaternary sedimentary formations reaches about 6500m. in the

Erzurum-Pasinler, 4500m. in the Tekman, 7000m. in the Malazgirt, and 8000m. in the Mus

basins (Kurtman and Akkus, 1971; Kurtman et al., 1978; Saroglu and Guner, 1981). These

are composed of mainly alternating conglomerate, sandstone, marl, and reefal limestone

that were deposited in a shallow marine environment from Lutetian to Middle Miocene.
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However, rapid facies changes are typical in these basins. In fact, along the northwestern

shore of the Lake Van, Ahlat-Adilcevaz area, the Tertiary is excusively represented by

red-continental Ahlat conglomerates, reaching about 550m. thickness (Altinli, 1966-a;

Kurtman et al., 1978). In general, Oligocene rocks unconformably overlie Eocene rocks.

The post-Burdigalian sedimentation starts with an unconformity. It is generally lacustrine

and becomes fluviatile upwards into Upper Pliocene and Quaternary time and includes

volcanic intercalations.

The area north of Lake Van is extensively covered by Late Tertiary to recent

volcanics. Calc-alkaline and alkaline rocks coexist spatially and temporally. The absence

of any volcanogenic material in the Aquitanian-Burdigalian sediments underlying the

volcanic cover implies that the volcanic activity in this region started after Late

Burdigalian time (Innocenti et al., 1980). Calc-alkaline volcanism is represented by two

main stages of activity. K/Ar dating by Innocenti et al.(1976) has revealed that the first

phase of calc-alkaline, high-potassic activity came to an end with repeated ignimbrite

eruptions about 6my. ago and was characterized by large lava domes and flows. The

second stage calc-alkaline volcanic activity formed spectacular stratovolcanoes, such as

Suphan and Ararat, whose heights reach 4058m. and 5165m. respectively. Andesitic and

dacitic compositions dominate the calc-alkaline products, with subordinate basalts and

pyroclastics.

The alkaline volcanism started as fissure basalt eruptions about 6my. ago and contin-

ued with the development of major cones such as the Nemrut and Tendurek volcanoes.

Alkaline rocks include alkali basalts, hawaiites, mugearites, benmoreites and trachytes.

Hawaiites are by far the most abundant lithology. Nemrut volcanoe is surrounded by an

extensive ignimbritecover (about 400 sq.km.) which also contains pumice intercalations.

Highly fractionated peralkaline lava flows (mostly commenditic) fill the eastern half of the

-167-



Nemrut caldera, which has a diatemeter of 8km. The youngest activity of Nemrut volcano

is represented by minor olivine-basalt lava flows, which erupted in 1441 (Oswald, 1910).

Tendurek volcano also produced some peralkaline lava flows and minor pyroclastics.

3.3 Tectonic Setting

A thorough understanding of the Late Cenozoic to Recent tectonic evolution of the

Lake Van region requires at least some background knowledge of the major tectonic

structures in eastern Turkey, such as the North and east Anatolian faults. I will present

a brief review of these major features before discussing the tectonics of the Lake Van

region.

In the LANDSAT and SIR-A image analysis, strike-slip faults have been identified by

the determination of characteristic straight and narrow furrows (strike-slip rift) and adja-

cent hills, sharp traces in Quaternary alluvium, major bends and interruptions of streams

and long linear paths of major streams (e.g. Tapponnier & Molnar, 1977). These determi-

nations have been corroborated by field observations, seismicity, alignment of the earth-

quake epicenters, available geological maps and seismic reflection profiles across the

Lake Van.

3.3.1 North Anatolian Fault

The North Anatolian Fault (hereafter referred to as the NAF) is an arcuate

right-lateral strike-slip fault that extends about 1200km. westwards from Karliova Junc-

tion (the intersection of NAF and East Anatolian faults, Figure-3.1) all the way to the

Gulf of Saroz (see Sengor's, 1979 detailed review). The fault zone is marked by high

seismic activity and has been the locus of numerous destructive historic and recent
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earthquakes (Allen, 1969, 1975; Toksoz et al. 1979). The fault-plane solutions of the

major shocks along the fault zone give a well-defined pure right-lateral strike-slip

motion between the Karliova Junction and about 31 E longitude, near Mudurnu. (Canitez

& Ucer, 1967; McKenzie, 1972; Dewey, 1976). To the west of 31 E longitude, the NAF

splays into several branches that display major en-echelon and anastomozing fault geom-

etries and the fault plane solutions include a predominant normal faulting component in

addition to the right-lateral strike-slip component (Canitez & Ucer, 1967a,b; McKenzie,

1972).

The NAF zone, between Karliova Junction and about 31 E longitude (Mudurnu region),

consists of a number of strike-slip faults with different lenghts arranged in an

en-echelon geometry and contains numerous pull-apart basins (i.e. from east to west they

are Erzincan, Susehri, Niksar, Erbea, Ladik, Kargi, Tosya, ligaz-Cerkes, Gerede, Bolu etc.).

The fault traces have been mapped in detail by Ketin & Roesli(1953) and Arpat &

Saroglu(1979) in some parts of the NAF zone.

In spite of the large number of studies on the NAF, a general agreement has not

been reached yet on its date of initiation and cumulative offset. However, an offset of

about 85 km. since Burdigalian time has been documented by Seymen(1975) in the eastern

part around Resadiye-Erzincan. The NAF seems to represent a tectonic feature older

than Burdigalian (possibly Eocene time) so that the 85 km. displacement should be consid-

ered as a minimum displacement along the fault (discussed below).

It is also uncertain whether the eastern and western halves of the arc-shaped NAF

represent two different faults, one left-lateral (in the west) and one right-lateral (in the

east), that have been joined recently. This would require a reversal of movement from
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left-lateral to right-lateral strike-slip along the western part of the fault (see Hancock &

Barka, 1983 and its references).

3.3.2 East Anatolian Fault

The East Anatolian Fault (hereafter referred to as the EAF) takes up some of the

motion between the Anatolian and Arabian plates and is a left-lateral strike-slip fault

(Figure-3.1). It can be traced from the Karliova Junction, after making a slight bend

around Bingol, extends to the SW about 410km. It intersects the left-lateral strike-slip

Dead Sea Fault (Levant Transform) at the north end of the Karasu depression

(Maras-Antakya graben of Arpat & Saroglu, 1975). Based on a LANDSAT interpretation

McKenzie (1976) extended the EAF further to the southwest towards the Gulf of

Iskenderun, giving a total length of about 550km. Fault traces have been mapped in detail

by Arpat & Saroglu(1972, 1975) and Seymen & Aydin(1972). The EAF zone is similar to

the NAF zone and contains several en echelon strike-slip fault segments and pull-apart

basins, among which the Hazar pull-apart basin is the most prominent (Hempton et al.

1983). The fault plane solution for the May.22.1971 Bingol earthquake gives a

left-lateral strike-slip motion that agrees well with the strike and sense of motion of the

associated surface breaks (McKenzie, 1976). The date of origin and the cumulative off-

set along the EAF are not well-constrained. Arpat & Saroglu(1972) documented a 22km.

left lateral displacement of marine Miocene sediments along the EAF, close to the

Karliova Junction. However, based on the geometry of the triangular Karasu pull-apart

basin (EAF-Levant transform Junction), a cumulative offset of 40 km. can be estimated.

Subsidence in the Karasu pull-apart basin has been about 400 m. since Upper Pliocene

time, as indicated by the vertical displacement of lava flows (Arpat & Saroglu, 1975).
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Figure-3.3

Location map showing the areas in which satellite (LANDSAT & ERTSA) and

SIR-A (Shuttle Imaging Radar) images are discussed.
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3.3.3 Main Recent Fault

The Main Recent Fault was discovered by Braud and Ricou (1971) in the Neyriz

region in Iran. Detailed studies of this fault confirmed its right-lateral, strike-slip charac-

ter and its active seismicity (Tchalenko and Braud, 1974). The Main Recent Fault extends

in a NW-SE direction from Neyriz Region in Iran towards the Yuksekova pull-apart basin

in southeastern Turkey (Figures-3.4,8,11).

3.4 Van Deformational Domain

The term "Deformational domain" is introduced here as opposed to "plate" term, to

describe continental areas that display coherent deformational styles. Deformational

domains are bounded by major shear zones that, in general, have been repeatedly acti-

vated throughout the deformational history of the region. These major fault zones repre-

sent the first-order tectonic elements. The origin and evolution of the higher-order

tectonic elements within the deformational domains are constrained by the domain defin-

ing first order faults and stresses that are distributed by them. Although regional

seismicity helps somewhat in delineating deformational domains, it does not provide com-

plete information, due to its diffuse nature in the continental crust. Detailed knowledge

of the geology, tectonic structures and their trends, combined with seismicity, are

required to define deformational domains for a given region. In eastern Turkey, seven

such deformational domains can be distinguished (Figure-3.1). The Van Deformational

domain is one of them.

The Van Deformational Domain (VDD) here is defined as the area, east of the

Karliova Junction, which is bounded by the Pasinler fault zone in the west, Agri Fault in

the north, Bitlis Massif in the south, and Ararat Fault Zone in the east (Figure-3.4). The
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Figure-3.4

Landsat mosaic of eastern Turkey and northwestern Iran. The large lake on

the left is Lake Van, and the one on the right is Lake Rezayeh. See

Figure-3.3 for location (Box labeled with a).
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Figure-3.5

ERTSA image of Lake Van area. Note the NW-SE trending faults that cut

across Lake Van. In the upper right corner the southern lava flows of Ararat

volcano can be seen. The recent lava flows of Tendurek volcano form a

sharp contrast with its surroundings and is quite visible in the upper middle

portion of the image. Suphan volcano is situated just to the north of Lake

Van and indicated with a "S". In the lower right corner a segment of the

NW-SE trending Hakkari fault is quite visible. See Figure-3.3 for location (box

labeled with b).
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major style of deformation in the VDD is oblique faulting. The VDD contains a set of

prominent NW-SE trending oblique faults and a set of less developed NE-SW trending

oblique faults (Figures-3.4 and 3.5). These faults have major strike-slip and subordinate

dip-slip components and they are arranged in an en-echelon geometry forming a set of

conjugate shears. NW-SE trending faults are dextral and NE-SW trending faults are

sinistral faults. This arrangement is consistent with the trends and sense of motions of

the NAF and EAF. Some of these faults have been recently discovered following

destructive earthquakes (Toksoz et al. 1977; Saroglu & Guner,1979; Saroglu person.

comm., 1982). The following descriptions of these faults are preliminary, and extensive

field work and geophysical study of the Lake Van area is required to document further

the date of initiation and the vertical and horizontal displacements along these faults.

3.4.1 Pasinler Fault

The Pasinler fault zone forms the western boundary of the VDD (Figures-3.1,8, 11). It

also forms a NE-SW trending boundary for the Late Cenozoic volcanic province and the

region of high seismic activity in eastern Turkey (see Figure-1.1 of Chapter 1 and

Jackson & McKenzie, 1984; Figures 3 & 12). The NW-SE trending set of right-lateral

oblique-slip faults of the VDD are terminated by the Pasinler fault (Figure-3.8). This fault

zone extends from Erzurum-Pasinler basin towards Caucasuses. A smaller southern seg-

ment, which is about 75 km. long, extends after a left stepping, from Erzurum basin

towards Haskoy, a small town in the vicinity of the North Anatolian fault. A segment of

this fault zone can be seen on the SIR-A image in Figure-3.6. This fault zone is seis-

mically active, as evidenced by more than eight earthquake epicenters lining up along the

fault zone in the Erzurum-Pasinler area. Unfortunately this major fault zone has not been

recognized previously, so that there are no existing geological studies regarding the

amount of displacement and its date of origin. A recent destructive earthquake (Oct. 30.
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Figure-3.6

SIR-A Image of northeastern Turkey. A small segment of the Pasinler fault is

visible in the lower right corner of the image. A recent earthquake occurred

recently (Oct.30.1983; M=7.1) along the southern continuation of this fault,

giving left-lateral strike-slip fault plane solution (Toksoz et al., 1984). The

earthquake also produced a 80cm. left-lateral displacement along the fault.

See Figure-3.3 for location (box labeled with 1).
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1983; M=7.1) occurred in this fault zone, producing 80cm. left-lateral displacement. The

fault plane solution gives a left-lateral strike-slip motion consistent with the field obser-

vations (Toksoz et al.1984).

3.4.2 Ararat Fault

The Ararat fault forms the eastern boundary of the VDD. The NNE-SSW trend of

this fault zone, like the Pasinler fault, is almost perpendicular to the Caucasian trend. The

Ararat fault zone extends from east of Lake Van, towards Caucasuses, passing from

west of the Ararat volcano and Lake Sevan. The fault zone is composed of a number

of right-lateral strike-slip faults, some of which are displaced by younger faults. This

fault zone is marked by a high anisotropy of seismic velocities (Yegorkina et al., 1977).

The epicenters of six earthquakes that occurred in the period 1956-1976 (energy class K

10) are aligned along the northern segment of Ararat fault zone (Polshkov et al.,

1979). The epicenters of the lgdir earthquake (Jan.3.1952, M=6) and the historic

Satmanis earthquake (March.8.1715; Tchalenko, 1977) also coincide with the southern

extension of this fault zone within Turkey.

3.4.3 Hakkari Fault

The Hakkari Fault zone is a major fault zone in the southeastern part of Turkey (Fig-

ure-3.8). It extends in a NE-SW direction from NW of the Yuksekova pull-apart basin in

Turkey towards Iran and, after being right laterally displaced by the Tabriz fault, can be

traced towards the Caspian Sea along the Araxes River. The Hakkari fault zone is a

left-lateral shear zone. The fault traces and left-lateral displacements of streams can be

clearly seen on LANDSAT and SIR-A images (Figures-3.4,5,7). A small event (Feb. 3.

1976; Mb=5.2) at the NE end of this fault zone, to the west of the Caspian Sea, gives
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Figure-3.7

SIR-A image of southeastern Turkey. In the upper left corner the southeast-

ern shore of Lake Van is seen. The NE-SW trending left-lateral strike-slip

Hakkari fault zone is clearly visible in the right side of the image and indi-

cated with a thick arrow. ee Figure-3.3 for location (box labeled with 2).
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a left-lateral strike-slip fault-plane solution (see Figures-13 & 16 of Jackson &

McKenzie, 1984). This fault zone seems to represent an old tear zone that disrupted

the Anatolian-Iranian continental margin during the northward convergence of the Arabian

plate, because the Bitlis Suture zone ophiolitic melange lithologies form a well defined,

narrow zone to the south of the Bitlis metamorphic massif. However, in the southeastern

corner of Turkey, not only does the Bitlis massif terminate, but the ophiolitic melange

covers wide areas to the east of Lake Van. Based on his detailed field studies, Ketin

(1977) describes them as an ophiolitic melange developed in an accretionary prism. The

Sanandaj-Sirjan zone in Iran, which corresponds to the Bitlis metamorphic massif

(Stocklin, 1968), extends after a left-lateral displacement as a continuous belt along the

Zagros ranges, starting southwest of Lake Rezayeh. So the southeastern Anatolian

ophiolitic melange may be interpreted as accretionary prism lithologies, obducted through

the Hakkari left-lateral shear zone. However, this interpretation is quite different from

the "East Anatolian Accretionary Complex" model of Sengor and Yilmaz (1981), in which

they suggest that this accretionary complex represents a "continental hole" filled with

oceanic island arc and melange complexes without any continental crust beneath them.

The Hakkari Fault Zone has also been recognized as a major left-lateral fault by Khain

(1969) and Gamkrelidze (1977). However, they extend this zone all the way from the

Levant transform to the Caspian Sea, referring to it as the "Palmyra-Apsheron" fault.

Apparently the Salmas earthquake of May.6.1930 reactivated a small segment of this fault

zone near Derik; the displacement was left-lateral and the northern block subsided about

Im. (Tchalenko and Berberian, 1974).

The Hakkari-Yuksekova area in southeastern Turkey is an important junction where

three major systems intersect: the right-lateral Ararat fault, the left-lateral Hakkari fault

and the right-lateral Main Recent fault.
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3.4.4 Agri Fault

The Agri fault is located just to the north of Tendurek volcano (Figures-3.4,5), and

right-laterally displaces very young (Pliocene?) lava flows of Tendurek. It forms a junction

with the Ararat fault and Lake Rezayeh fault swarm between The Tendurek and Ararat

volcanoes and, extends northwestwards along the Murat River towards the

Erzurum-Pasinier pull-apart basin (Figure-3.8). The fault traces are clearly visible on the

LANDSAT images (Figures-3.4,5).

3.4.5 Caldiran-Tutak Fault

The Caldiran fault is situated to the south of the Tendurek volcano (Figures-3.4,5,8).

The Tutak fault represents a northwestward continuation of the Caldiran fault. These two

faults are combined and indicated with "TF" in Figure-3.8. The Caldiran fault was dis-

covered after a destructive earthquake that occurred in Nov.24.1976 with a magnitude of

M =7.3 (Arpat et al. 1977; Toksoz et al. 1977). This earthquake produced 250 cm. of

right-lateral displacement. The fault plane is vertical at the surface. However, the fault

plane solutions show a 60 degree dip to the SSW (Toksoz person. comm., 1983). A small

sag pond (Lake Hidirmentes, about 2km. long and 1km. wide) is situated along the fault.

After the Caldiran earthquake, the north shore of Lake Van was uplifted relative to the

south shore by about 16cm. and this southward tilting of the lake has been interpreted

as coseismic by Toksoz et al.(1977).

The Tutak fault has been documented by Saroglu & Guner(1979). This fault is also a

right-lateral strike-slip fault and extends north-westward towards the Pasinler pull-apart.

Even though the Caldiran and Tutak faults have been named separately, they seem to be
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Figure-3.8

Schematized tectonic map of the Lake Van region. The abbreviations for the

major fault names are the same used in Figure-1. The additional ones are:

AF: Agri, TF: Tutak, CF: Caldiran, PF: Patnos, MF: Malazgirt, ADF: Adilcevaz,

TABF: Tabriz fault. The pull-apart basins are shown as: EPPA:

Erzurum-Pasinler, EP: Erzincan, YPA: Yuksekova. The fault plane solutions are

from Shirokova,1962; McKenzie,1972; McKenzie,1975; Toksoz et al.,

1978,1984; Eyidogan, 1983. The locations of the earthquake epicenters are

from Tchalenko,1977 and Toksoz et al.,1984.
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two segments of a single fault, and assigning only one name (such as Tutak fault) may

be more appropriate.

3.4.6 Patnos and Malazgirt Faults

These faults extend in a NW-SE direction and form the northern and southern bound-

aries of the Akdag metamorphic massif (Figure-3.2) along the northern shore of Lake Van

(Figures3-4,5,8). The Malazgirt fault extends to the east of Lake Van, forming the

northern shore of Lake Ercek. This fault is composed of a number of right-lateral

strike-slip en-echelon faults that are displaced in places by NE-SW trending subordinate

left-lateral strike-slip faults which bound Neogene and Quaternary basins. The Murat river

makes almost a 90 degree turn on the Malazgirt fault, and narrow strips of fissure

basalts line up with these fault zones. A destructive earthquake occurred in

28.April.1903 with a magnitude of M=6.3 near the town of Malazgirt causing about 3500

casualties (Tchalenko, 1977). Also, recent microseismic monitoring around the town of

Ercis has revealed the presence of high seismic activity along these faults (Saroglu per-

son. comm., 1982).

3.4.7 Adilcevaz Fault

Adilcevaz fault also extends in a NW-SE direction towards the Pasinler fault and

crosses Lake Van (Figures-3.4,58). This fault is seismically very active and a number of

destructive earthquakes have occurred in the vicinity of this fault (March.31.1648 Van,

April.9.1857 Bulanik, February.6.1891 Adilcevaz, and July.11.1945 Van; see Tchalenko,1977;

Ambraseys & Melville, 1982 for detailed descriptions of historic earthquakes in this

region).

-188-



3.4.8 Lake Van Basin

Lake Van is the largest soda lake on earth and ranks fourth in volume (607 cubic

km., with 3600 sq. km. surface area) among the closed lakes of the world (Degens et al.,

1978). The elevation of the lake surface is 1648m., with the southern basin (south of a

line connecting the towns of Adilcevaz and Van) being deeper than the northern one. The

particular orientation of Lake Van and the NW-SE trending en-echelon faults that cross

the lake provide an excellent opportunity to study the prevailing tectonic regime along

the seismic reflection profiles. As clearly seen in Figure-3.9, and documented by Wong

& Finckh (1978) along other profiles, the faults that cross Lake Van and the ones

bounding the lake basin are oblique-faults with major dip-slip components, indicating the

subsidence in the Lake Van basin. The continuation of these oblique faults in the base-

ment rocks, coupled with the stratigraphic characteristics of the sediments, indicate the

presence of half-grabens, in other words, unidirectional tilting of basement blocks

towards the northeast. All these features suggest the development of an extensional

tectonic regime accompanying continental collision and convergence in this region. Howev-

er, note that the strike of the depressions and half-grabens are parallel to the collision

front, which is represented by the uplifted Bitlis Massif. Thus, the original Mus-Lake Van

basin appears to be formed by a complex mechanism which involves unidirectional tilting

and subsidence of crustal basement blocks, bounded by en-echelon oblique faults, and

possibly the coelescence of small pull-apart basins into larger ones.

Another indirect line of evidence for the presence of an extensional tectonic regime

in this area comes from Nemrut Volcano. Nemrut volcano, with its alkaline character,

extensive ignimbrite eruptions and peralkaline commenditic and pantelleritic lava flows is a

typical rift volcano, similar to the ones in the East African Rift and Pantelleria. As ori-

ginally suggested by Lahn(1948), the lavas that formed the Nemrut volcano apparently
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Figure-3.9

Line drawing of seismic reflection profile across the Lake Van (from Wang &

Finck, 1978). Note the increasing thickness and northward tilting of

sedimentary horizons bounded by faults. These are oblique-slip faults, because

they have both dip-slip and strike-slip displacements.
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Figure-3.10

SIR-A image of the southwestern portion of Lake Van and Mus basin. The

large caldera of Nemrut volcano is located in the middle. The lavas of the

Nemrut volcano apparently divided the original Mus-Lake Van basin into two

separate basins, and caused the impoundment of the lake by damming the

Lake Van basin. Mus basin is situated to the west of Nemrut and trends

roughly in the E-W direction. The Bitlis massif metamorphics (located to the

south of Mus basin and Lake Van) can be distinguished by their special

drainage patterns. A number of oblique and normal fault traces are also visi-

ble to the west and northwest of Nemrut volcano. See Figure-3.3 for

location (box labeled with 3).
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divided the original Mus-Lake Van basin into two separate basins, and caused the

impoundment of the lake by damming the Lake Van basin (Figure-3.10). Mus basin is

also bounded on the west by the Solhan volcanics; these are one of the earliest pro-

ducts of alkaline volcanic activity in this region (Saroglu et al.,1982).

The heat flow is apparently very high in the Lake Van region as there are 38 thermal

springs in the vicinity of Lake Van (Kurtman & Baskan, 1978). Kempe et al. (1978) sug-

gested that the heat flow in the Lake Van basin significantly exceeds the world average.

The southern edges of the Lake Van and Mus basins are bounded by the Bitlis

metamorphic massif. Due to the continental collision and still continuing convergence, the

Bitlis Massif is not only thrust southward over the ophiolitic melange-flysh complex of

the Bitlis Suture zone, but is also thrust northward over Cretaceous and Paleogene

lithologies. Imbricated thrusts and reverse faults are abundant within the Bitlis Massif.

The ones on the northern flank dip southwards, whereas the ones on the southern flank

dip northwards (Altini,1966-b; Yilmaz et al., 1981). The geometrical configuration of the

northern and southern thrusts and reverse faults indicates that the uplift of the massif

has occurred under significant compression. This mechanism necessitates the presence

of a major reverse fault along the northern edge of the Bitlis Massif, complementing the

southern Bitlis Suture Zone thrust. In fact, there is well-documented field evidence sug-

gesting the presence of reverse faulting along the northern margin of the Bitlis Massif,

where Neogene lacustrine limestones of the Mus area are exposed at an altitude 700 m.

lower than similar limestones found on the peaks of the Bitlis Massif (Hall, 1976).
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3.5 Discussion and tectonic model

Although the origin of back-arc basins has attracted a great deal of interest in the

past (e.g Karig, 1971; Toksoz & Bird, 1977; Uyeda & Kanamori, 1979), the significance

of the extensional-compressional tectonics association in continental areas has become

recognized only recently (Eaton, 1980; Dalmayrac and Molnar, 1981; Molnar et al., 1981;

Royden et al., 1982; Suarez et al., 1983). The Basin and Range province of the western

United States, the Altiplano of the Andes, the Aegean area (including northern Greece

and western Turkey), the Carpathian Neogene basins, Tibet, Tyrrhenian Sea, and Jaz

Murian Basin in Iran can be given as examples of areas where extensional tectonics are

associated with compression.

The Basin and Range province of the western United States represents an area that

has experienced about 30 m.y. of crustal extension, immediately following compressional

deformation phases of the Sevier (Late Jurassic to Late Cretaceous) and Laramide (Late

Cretaceous to Late Eocene) orogenies (Burchfiel and Davis 1972, 1975; Stewart, 1978;

Davis, 1980; Eaton, 1980). Faulting follows older geologic patterns that developed espe-

cially during Mesozoic and Earlier Tertiary in the western United States. Eaton (1980),

acknowledging the significant influence of the compressional regime on the mechanics and

locus of the Cenozoic extension in the Basin and Range province, suggested that subhor-

izontal zones of sliding first developed as thrust soles during compression, and later

evolved into extensional decollements However, Wernicke(1982), based on his detailed

field studies in the Mormon Mountains (a thrust terrain formed during Sevier orogeny and

located along the eastern margin of the Basin and Range province) produced evidence

that the low-angle thrust faults have not evolved into extensional decollements. Contrast-

ing with this, the dip-slip reactivation of the preexisting strike-slip faults are partly

responsible for the early Tertiary extension in the Pacific Northwest (Davis, 1980). This
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discrepancy may be reconciled by attributing the lack of reactivation of thrust faults dur-

ing extension to the thin-skinned compressional nature of the Mormon thrust.

The tilted-block structure of the Basin and Range Province terminates rather abrubtly

along the Garlock Fault (Davis & Burchfiel, 1973). The more stable Mojave Desert block

is located to the south of the Garlock Fault. So models that involve stretching of the

lower continental crust to produce extension and tilted-block structure can not satisfac-

torily explain this kind of a sudden change in deformational style.

The coexistence of active thrust faulting and normal faulting have been documented

for the Andean Cordillera (Lavenu,1978; Mercier,1981; Dalmayrac and Molnar,1981; Suarez

et. al.,1983). In particular, in the Cordillera Blanca region of Peru and around Lake

Titicaca (Altiplano region of southern Peru and northern Bolivia), the strike of normal

faulting is approximately parallel to the strike of folding and thrusting, indicating a com-

ponent of extension perpendicular to the mountain ranges. Similarly, the coexistence of

active compressional and extensional deformation has been observed in Tibet (Molnar et

al. 1981). For both of these regions, the presence of extension has been explained by

body forces produced by gravity and buoyancy forces exerted by the crustal roots of

the elevated regions (Molnar et. al., 1981; Dalmayrac and Molnar, 1981; Suarez et. al.,

1983).

The Neogene intra-Carpathian basins represent !n area where extension developed

contemporaneously with the Neogene thrusting in the foreland fold and thrust belt

(Horvath and Royden, 1981; Burchfiel and Royden, 1982; Royden et. al., 1982,1983). The

southward and westward dipping Cretaceous subduction along the Carpathian arc was

terminated by the continental collision between Europe and smaller continental fragments

in the Miocene. The northeast and northwest trending sets of conjugate shears, which
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lead to the development of discrete basins (e.g. Pannonian, Vienna, Graz) , reflect N-S

shortening and E-W extension within the Carpathian loop. A mechanism which involves

downbending of the subducted slab causing a lithospheric flow to fill the space left by

the retreating plate is suggested for the development of an extensional stress field in

this region. The thrusting and apparent compression along the fold and thrust belt have

been described as thin-skinned (because of the diffuculties involved in the subduction of

ligth upper crustal material) resulting in the detachment of the crust from the underlying

lithosphere (Burchfiel and Royden, 1982; Royden et. al., 1982,1983).

The Aegean area (including northern Greece and western Turkey) is one of the very

seismically active regions on earth and is located to the north of the Aegean arc. As a

result of the overall convergence between the Eurasian and African plates, and westward

sideways escape of the so called "Anatolian Plate", the Mediterrenean sea floor subducts

northwards with an angle of 30 and at a rate of 3-4 cm/year (Caputo et. al.,1970;

Papazachos and Comminakis,1971; Le Pichon and Angelier, 1979). The prevailing tectonic

regime in the Aegean is extensional as evidenced by the available fault plane solutions

and the roughly E-W trending normal faults throughout the region which are subparallel

to the Aegean arc (Alptekin,1973; McKenzie,1978). A close association of normal and

thrust faults has been documented in northeastern Greece and Albania (Angelier,1976;

McKenzie,1978). Based on the crustal thicknesses of 30 km. and 50 km., beneath the

Aegean Sea and surrounding regions respectively, McKenzie(1978) has suggested that the

Aegean has been stretched by a factor of two since Miocene. He also rejected the con-

cept that the extension is not the direct result of the local release of gravitational

energy in Aegea. Because there is no great difference in crustal thickness between the

area south of the Aegean arc and the region undergoing extension. Dewey and

Sengor(1978) have attempted to explain the extension in Aegea and surrounding regions

by "locking" the two strands of the North Anatolian Fault where they change orientation

-197-



at the western end of the Marmara Sea. But, as pointed out by McKenzie(1978) "It is

hard to believe that blocks in northwestern Greece and Albania have sufficient strength

to act in the manner they proposed". He instead suggested a mechanism in which the

cold lower parts of the lithosphere detach and sink as blobs through the mantle, due to

the extension in the upper crust. Thus lithosphere, consisting of a thin continental crust,

deforms easily, reflecting the convective motions in the mantle. Kaya (1979,1982) sug-

gests that N-S extension in western Turkey is related to the NE-SW trending oblique-slip

faults (in a manner similar to the development of extension in the Basin and Range Prov-

ince and its relation to the Garlock fault (Davis & Burchfiel, 1973). He also points out

the consistent southward tilted block structure of the region, and emphasises that simple

stretching models cannot easily account for this structure.

The evolution of the present tectonic regime of the Lake Van region can be best

described in the context of the convergence of the African-Arabian and Eurasian plates

with the subduction of oceanic crust until Miocene time, followed by continental collision

and continued convergence since Miocene time.

Although Sengor & Kidd (1978) suggested, active shorthening and crustal thickening,

as did McKenzie (1972), and inferred the presence of numerous thrusts in the Lake Van

region, the documented subsidence of the Lake Van and Mus basins, the dominance of

oblique-slip faulting with major strike-slip compenents, and the lack of major thrusts and

the very high heat flow do not support crustal thickening.

Numerous thrust faults are present within and south of the Bitlis Massif, but none

are known to the north of the Bitlis Massif (Altinli, 1966-b, p.4 and plate 11) and the

deformation is dominated by the prominent NW-SE and NE-SW trending conjugate set of

oblique-slip faults that have major strike-slip components in the VDD. A few minor
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thrusts, that are related to strike-slip movements, are present particularly in the vicinity

of the Karliova Junction.

The inefficient Sn and Rayleigh wave propagation in the uppermost mantle beneath the

Lake Van region and the northern part of the Iranian Plateau suggest that zones of

high-attenuation (low Q) are present (Molnar and Oliver, 1969; Toksoz and Bird, 1977;

Kadinsky-Cade, 1981). Bouger anomaly values range from -125 to -150 mgal. in these

regions (Wilcox et al., 1972; Ozelci, 1973). These negative Bouger anomalies, when com-

bined with the seismic wave attenuation and high heat flow, can be best explained by a

relatively thin crust in the Lake Van region.

Chen et al. (1980) estimated uppermost mantle P wave velocities of 7.73 +- 0.08

km/s beneath Turkey. They also pointed out that this value is comparable to that of the

Basin and Range province (7.8 +- 0.1 km/s) and is significantly lower than that under

Tibet (8.1 +- 0.1 km/s).

The plateau character of the Lake Van region, based on the above discussions, can

be explained by the partial replacement of the lower continental lithosphere by the

upwelling of hot upper mantle, without calling upon crustal thickening.

The depositional environment and stratigraphic characteristics of the Eocene and

Neogene formations in the Lake Van region (particularly the ones in the vicinity of Mus,

Gevas and Adilcevaz) possess almost all the characteristics of sediments deposited along

major shear zones (such as very rapid sedimentation, great sedimentary thickness, and

very limited, narrow basin size, extreme lateral facies variations, abundance of coarse

clastics, etc. (Reading, 1980)). These characteristics suggest that the North Anatolian

Fault, in particular only the eastern part including the eastward extension towards
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Yuksekova (Proto NAF), represents an existing major shear zone (like the San Andreas

dextral shear system in the Western United States, the Alpine dextral shear system in

New Zealand, and the peri-Adriatic-Vardar dextral shear system of the Alps) that pre-

dates the Miocene continental collision. The evolution of the depositional and deforma-

tional history of the small sedimentary basins associated with all these major shear

zones is strikingly similar (Crowell, 1974; Howell et al., 1980; Sporli, 1980; Prebble,

1980; Dickinson, 1983).

The proto-North Anatolian fault and NW-SE trending en-echelon strike-slip faults

apparently have been disturbed and modified by the continental collision and still continu-

ing continental convergence in the Lake Van region. Mainly three different, but neverthe-

less related deformational styles, take up the continental convergence that is the result

of the relative N-NE motion of the Arabian plate. These are: 1-) Folding and thrusting

within the leading edge of the Arabian plate (including the Bitlis Massif) and along the

Caucasuses. 2-) Displacements along NE-SW and NW-SE trending sets of strike slip

faults 3-) Rotation-tilting and lateral escape of crustal blocks and thrusting of these

blocks over a decollement surface within the VDD.

Fault-bounded, vertical slab-like crustal blocks in the Lake Van region have

responded to continental collision by vertical rotation, northeastwards tilting away from

the collision front, and by southeastwards lateral escaping along the NW-SE trending set

of en echelon strike-slip faults (Figures-3.8,11,12).

Because rotation and tilting effectively increase the surface area, by increasing the

distance that is perpendicular to the long axis of the slabs, this process (and possible

thrusting of these slabs over a decollement surface) necessitates a free space in the
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Figure-3.1 1

Van Deformational Domain and its relations with the surrounding deformational

domains. Strippled areas are depressions and Neogene basins. RD: Rioni, KD:

Kura, EP: Erzurum-Pasinler, A: Agri, M: Mus, MA: Malazgirt, T: Tekman, LV:

Lake Van, LR: Lake Rezayeh, LS: Lake Sevan. The chewron patterns denote

fold zones; ATFZ: Adzhar-Trialety, TFZ: Talesh, Cross-hatched areas are the

basaltic crusts of the Black and Caspian Seas. The thick dashed lines con-

necting them show the approximate boundaries of the original Black-Caspian

Sea back-arc basin. ODU: Okriba-Dzurila uplift. The abbreviations for the

names of the deformational domains and the major fault zones are the same

used in Figure-3.1 and Figure-3.3. The additional one is the CDD: Caspian

deformational domain. The faults in the area to the SW of the Caspian Sea

are from Berberian, 1983. TAF: Talesh, SF: Sangevar, LF: Lahijan, KF: Khazar

fault. The areas shown with vertical, thick wavy patterns denote the uplifted

continental margin of the Anatolian-Iranian block. BM: Bitlis Massif, SS:

Sanandaj-Sirjan Zone. The belt marked by oblique heavy lines is the

Bitlis-Zagros Suture Zone. The area shown with vertical thin wavy pattern is

the "Border Fold Zone"(BFZ) of the Arabian foreland deformational domain

(AFDD).

KJ: Karliova Junction. The large arrow shows the N-NE motion of the

Arabian plate. Small arrows along the Caucasuses represent the

southwestward thrusting of the continental crust along the Main Caucasian

Thrust.
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direction of tilting and thrusting, to accomodate the areal increase. In fact, this free

boundary was available in the Caucasus region.

Geophysical studies have revealed that the Black Sea and the southern part of the

Caspian Sea is floored by a basaltic basement (Neprochnov, 1968; Neprochnov et al.,

1974; Balavadze et al., 1975). This 15-20 km. thick basaltic basement is covered with

thick(15-25 km.), undeformed Late Mesozoic-Cenozoic sediments. Although there are a

number of theories on the origin of the basaltic crusts of the Black and Caspian Seas

(see Berberian, 1983), recent studies favor an origin in back-arc (marginal sea) basins as

a result of northward subduction of the northern Neotethys (now represented by the

Erzincan-Akera-Sevan-Quradagh suture (Adamia et al., 1977; Letouzey et al.,1977;

Berberian, 1983)). The Black Sea and Caspian Sea back-arc basins were probably con-

tinuous and connected through the Caucasus. Deep seismic sounding studies along the

Caucasuses have documented the presence of a basaltic layer, although tectonicly dis-

turbed, beneath the folded, faulted Mesozoic-Cenozoic cover (Shempelev, 1978). The first

mountain building period of the Alpine orogenesis in the Caucasuses was Miocene and

preceded the intense tilting, uplifting and rapid subsidence of basins during the Pliocene

and Quaternary (Tsagareli, 1974). Detailed field studies have revealed the presence of

north-vergent thrusts in the Adzhar-Trialety zone of the Lesser Caucasus (Gamkarelidze,

1974). Berberian (1983) describes the southern Caspian Sea basin as "a compressional

depression floored by a trapped, modified oceanic crust" that is being consumed along

its periphery by overthrusting continental crust.

This data indicate that the present Caucasus region represents an area where the

middle segment of the elongate Black Sea-Caspian Sea back-arc basin was completely

eliminated by the overthrusting of continental crust, both from north and south, resulting
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in intense deformation of the Late Mesozoic-Cenozoic sedimentary cover and separation

of the Black Sea and Caspian Sea basins (Figure-3.1 1).

The Caucasus region that connects the Black Sea and the Caspian Sea can be divided

into three segments, perpendicular to the Caucasian trend: the Rioni depression in the

NW, the Okriba- Dzirula uplift and Adhzar-Trialety fold zone in the middle, and the Kura

depression in the SE (Khain, 1975). The Okriba-Dzirula uplift is separated from the Rioni

depression in the west, and the Kura depression in the east, by the northward exten-

sions of the Pasinler and Ararat faults, respectively (Figure-3.11). As pointed out above,

these fault zones form the eastern and western boundaries of the tilted-block structured

Van deformational domain. This relation exemplifies the importance of the Pasinier and

Ararat shear zones in transmitting the compressive stresses from the continental collision

front (the Bitlis Massif) all the way to the Caucasuses. Apparently, the required extra

space due to the unidirectional tilting of competent crustal blocks and northeastward

thrusting of crustal slabs over a decollement surface within the VDD is accomodated by

folding, overthrusting, and uplifting along the Okriba-Dzirula uplift and Adzhar-Trialety

fold zone. However the Rioni and Kura depressions have largely escaped from this

intense compression, due to the presence of the two major shear zones. More

interestingly, the Talesh fold zone, which corresponds to the Adhzar-Trialety fold zone

of Caucasuses (Khain, 1975), is located along the southwestern shore of the Caspian

Sea. The Talesh fold zone is delimited by the Talesh (TAF) and the Sangavar (SF) active

reverse faults (Berberian, 1983). The left-lateral Hakkari fault separates the Kura

depression from the Talesh-Elbruz fold zone. The wedge-shaped Azerbaijan deformational

domain (AZDD) that is defined by the right-lateral Ararat and the left-lateral Hakkari

faults, protects the Kura depression from major shortening, whereas the effects of com-

pression are manifested as folding and thrusting along the Talesh-Elbruz fold zone,

immediately to the southeast of the Hakkari fault. After presenting evidence on the
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availibility of an "escape space" in the Caucasuses, we can further elaborate on the

implications of the tilting of crustal blocks.

Simultaneous tilting and lateral escape modifies the faults from strike-slip to

oblique-slip in character, and has significant implications. Unidirectional tilting of crustal

blocks can cause some limited thinning of the continental crust, above a detachment sur-

face, while crustal thickening is avoided by the lateral escape. As indicated above,

another important implication. of the tilting of crustal blocks by continental collison and

convergence is the possible formation of a detachment zone within the continental crust

due to the transition from brittle to ductile deformation with increasing depth. Because

of this gradual transition within the continental crust, listric faults (faults that have

decreasing dip angles with increasing depth) can be formed by modification of

oblique-slip faults under compression. This process may be described as bending of

crustal blocks. Bending of crustal blocks superimposed on tilting can cause further

thinning of part of the continental crust that is above a decollement surface. This proc-

ess, in a very simplified cartoon representation, is shown in Figure-3.12.

In this figure, one vertical slab-like crustal block, which has an original thickness of

do, is represented as a vertical bar. Simple tilting of this crustal slab reduces the verti-

cal thickness to d, . If the degree of tilting is expressed by e, the angle with the hori-

zontal surface, then the amount of thinning is:

Thinning = do - di = do(1-sine)

If bending of this crustal slab is superimposed on tilting, the amount of thinning becomes

even larger. If the curved slab is chosen as a circular arc, for the sake of simplicity,

the following equations can be written:

A B = rp = do ....................... ... .. ... .. ... .. ..  (1)

Alf = 2rsin( W /2) ....................................... (2)
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Figure-3.12

Schematic cross-section showing the effects of tilting and bending of crustal

blocks. do is the original thickness, d, is the thickness of the tilted crustal

block, d2 thickness of the crustal block after bending superimposed on tilting.

Explanations are in the text.
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d = OB" = AB sin(e-P/2) ................... (3)

A / AB" 2r sin(s'/2) /r o ..................... (4)

Combining equations (1) , (2) and (4)

AB"= d.2sin(S"/2) /P ............................ (5)

Then from equations (3) and (5)

d2= OB" = do2sin(O/2) /osin(B-'P/2)

where d2 is the final thickness.

The amount of thinning can be expressed with respect to the original thickness as:

% Thinning = (do - d2) / do

by replacing the equations:

% Thinning = 1-(2sin(0/2)/)sin(e-(P/2) x1OO

The purpose of the above calculations is to demonstrate the viability of tilting and

bending of crustal blocks in thinning the continental crust by compression. These calcu-

lations can be elaborated by using more realistic listric curvatures providing that we

have a sufficient data base to model the variations in rheologic properties and the tem-

perature profiles of the continental crust with depth.

Based on the above discussions, the following scenario can be proposed for the

Alpine geological evolution of the VDD (Figure-3.13). During Paleogene time the

Bitlis-Zagros oceanic crust was subducted northward, and the subduction related

magmatism weakened the continental crust of the overriding Anatolian-Iranian plate. The

brittle to ductile transition zone within the continental crust was raised to shallower lev-

els in response to the steepened temperature gradient. Some of the preexisting zones of

weakness on the Anatolian-Iranian continental block were reactivated by the

compressional regime related to continued subduction (e.g. NAF, Hakkari Fault). During

Miocene time, continental collision of the Anatolian-Iranian and Arabian blocks formed the
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Figure-3.13

Schematic sequential cross sections showing the Alpine evolution of the Van

Deformational Domain. Key to the abbreviations: BCSBAB: Black-Caspian Sea

back-arc basin, ESASZ: Erzincan-Sevan-Akera suture zone, NAF: North

Anatolian Fault, AP: Arabian Platform, BM: Bitlis Massif, BZS: Bitlis suture

zone, LV: Lake Van. Deformational domains: CDD-Caucasus, VDD-Van,

AFDD-Arabian Foreland.
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Bitlis-Zagros suture and uplifted the continental margin of the Anatolian-Iranian block

(Bitlis Massif and Sanandaj-Sirjan Zone). The Bitlis Massif acted as a butress and

forces were transmitted northward to the Caucasuses. Under the tectonic control of the

left-lateral Pasinler fault zone and the right-lateral Ararat fault zone, not only a

decollement surface formed, but also slab-like crustal blocks were bent and tilted

northeastwards, causing some thinning of the continental crust. This period also wit-

nessed the development of the Neogene basins that cover extensive areas. Thinning of

the continental crust disturbed the mantle beneath the VDD and mantle upwelled by

means of rising mantle diapirs. The forces exerted by the mantle upwelling and

gravitational body forces of the crustal slabs caused more tilting and thinning of the

crust. Because of the buoyant character of the Arabian continental crust, the subducted

slab detached and started to sink, reviving the calc-alkaline volcanism. At the same time,

the partial melting of the rising mantle diapirs produced alkaline magmas. These magmas

either ascending alone or mixing with calc-alkaline magmas, produced alkali and transi-

tional (hybrid) volcanics. The consumption of the available "escape space" along the

Caucasuses prevented the further development of the extensional regime in the VDD.

Continued convergence following the continental collision started to squeeze the crustal

slab like-blocks that were trapped between the continental masses of the Arabian and

Scythian platforms. Those competent crustal blocks, instead of thrusting over each other

to thicken the crust, started to escape eastwards away from the maximum compression

region along the NW-SE trending set of oblique-slip faults. This kind of deformational

style is expected, because sideways motion utilizing existing fault zones requires less

work than crustal thickening. The latter necessitates work that is done against gravity.

Sideways escape also modifies the mosaic structure of the continental crust by locking

some existing faults and distributing the stresses to create new faults. For example, the

Ararat fault segment to the east of Lake Van probably represents such a locked shear
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zone due to the eastward escape of the crustal blocks. The Hakkari fault is also locked

by the intersecting Tabriz fault.

The availibility of an "escape space" adjacent to the extending terranes seems to be

a very important factor in the development of extensional regimes. Although the exten-

sion along the mid-ocean ridges is compensated by the elimination of the oceanic crust

subduction, we can categorize another type of subduction mechanism, that is, the Aegean

Arc type subduction. In this category, subduction is not directly accompanied by a

mid-ocean opening but originates as a result of thrusting of a continental crust over an

existing oceanic crust. Because of their contrasting densities, the existing oceanic crust

can be viewed as an "escape space" for the continental crust. For example, the

Mediterranean seafloor is an escape space for the Aegean continental crust. Similarly

the Caucasus back-arc basin was an "escape space" for the VDD. The California coast

of the United States represents an area where a transition occurred, due to the sub-

duction of the East Pacific Rise about 20 my. ago, from Andean type to Aegean type

subduction. A steepening of the subduction angle of the Farallon-Juan de Fuca plate in

this region has been suggested (Snyder et al., 1976). Interestingly the timing of this event

based on the space-time patterns of the Cenozoic volcanism in the western United

States, is also about 20 my. before present. Burchfiel and Royden (1982) also proposed

a similar steeepening for the subducting slab in the Carpathian Arc, preceeding extension

in the Pannonian basin. The steepening of the subduction angle may be caused by an

increase in the convergence rate due to thrusting of continental crust over oceanic

crust.

In conclusion, thinning of continental crust by tilting and bending of vertical slab like

crustal blocks, pushing them over a decollement surface towards an "escape space" and

pulling them apart to accomodate sideways escape, may provide a reasonable explanation
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for the formation of Neogene basins, contemporaneous development of

extensional-compressional tectonics and calc-alkaline - alkaline volcanics in the Lake Van

area in particular. This model may offer plausible alternative explanations for the origin

of extensional tectonics (Basin and Range type extensional terrains, back-arc spreading,

ocean openings) either immediately following or developing contemporaneously with

compressional tectonic regimes in an adjacent region.
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APPENDIX

Sample Locations:

ARARAT:

Sample Number

A-1
A-4
A-5
A-6
A-8-B
A-9
A-10
A- 12
A-13
A-14
A- 17
A- 19
A-23
A-25
A-26
A-30
A-32
A-33
A-34
A-36
A-42
A-43
A-45
A-46
A-47
A-48
A-51

Latitude(N)
Deg. Min.

39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39
39

54.8
56.7
57.3
55.9
51.8
47.6
35.1
36.3
36.1
36.2
35.0
34.1
32.0
32.1
32.2
30.4
33.4
33.7
34.1
33.4
44.3
43.2
42.1
39.6
40.4
38.6
40.1

Longitude(E)
Deg. Min.

44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44

16.1
14.7
12.2
09.7
05.3
07.4
09.3
12.4
13.2
14.4
14.2
14.6
19.2
20.3
20.4
19.3
20.7
20.3
20.3
19.0
19.6
28.3
23.3
23.9
21.9
21.7
21.0
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Sample Locations:

TENDUREK:

Sample Number Latitude(N)
Deg. Min.

T- 1
T-4
T-10
T-11
T- 12
T-13
T- 14
T-15
T-22
T-24
T-25
T-26
T-27
T-29
T-31
T-32
T-33
T-34
T-35
T-36
T-38
T-39
T-40
T-46
T-48
T-49
T-50
T-51
T-52
T-53
T-55
T-58
T-59
T-60
T-64

Longitude(E)
Deg. Min.

32.4
31.6
28.3
27.7
27.3
29.5
29.6
28.0
27.4
27.6
26.4
25.7
23.7
22.7
22.4
22.3
20.5
20.1
20.1
17.0
12.7
13.9
23.7
14.1
24.6
25.0
23.5
21.4
21.2
21.1
21.5
22.0
22.3
22.0
10.2

59.2
46.8
49.2
49.4
48.6
46.3
49.2
53.9
57.9
00.0
59.3
01.6
00.0
59.0
58.5
01.3
01.1
01.4
00.1
00.0
00.3
54.6
48.1
44.4
59.3
58.9
56.2
53.4
53.1
54.0
52.6
56.0
56.4
56.7
58.5
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Sample Locations:

Sample Number Latitude(N)
Deg. Min.

Longitude(E)
Deg. Min.

NEMRUT:

N-13
N-21
N-28
N-31
N-34
N-36
N-40
N-41
N-42
N-47
N-52
N-53
T-27

38
38
38
38
38
38
38
38
38
38
38
38
39

MALAZGIRT:

S-41
S-43
S-60
S-63
S-64
S-65
S-66
S-68
S-69
S-70
S-75

MEYDAN:

S-72
S-73
S-77

36.2
31.5
37.0
39.2
37.1
39.4
50.0
25.6
26.1
32.9
35.3
37.4
23.7

57.3
00.0
04.1
07.8
06.8
05.7
05.2
06.4
07.3
07.8
05.5

42
42
43
42
42
42
42
42
43
43
42

05.3
09.7
11.6

11.5
18.2
13.6
11.8
07.6
00.7
18.2
06.9
06.5
09.2
01.0
00.1
00.0

55.1
55.0
09.2
51.5
51.1
52.8
49.3
43.8
24.9
18.3
34.6

11.0
05.6
06.9

-232-


