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ABSTRACT

DISCRETE TIME SOLUTION OF PLANE
P-SV WAVES IN A PLANE LAYERED MEDIUM

by

Clint Wellington Frasier

Submitted to the Department of Earth and Planetary Sciences
in partial fulfillment of the requirement for the
degree of Doctor of Philosophy.

For plane waves at normal incidence to a layered, elastic medium
both the forward and inverse discrete time problems have been previously
solved. Here, the forward problem of calculating the waves in amedium
of plane, homogeneous, isotropic layers is extended to P and SV body
waves at non-normal incidence, where the horizontal phase velocity of
each wave is greater than the shear and compressional waves of each
layer.

Vertical travel times for P and SV waves through each layer are
rounded off to unequal integer multiples of a small time increment .
This gives a 4x 4 layer matrix analagous to the 2x 2 layer matrix for
normal incidence obtained by previous authors.

Reflection and transmission responses for layered media are de-
rived as matrix series in integer powers of a Fourier transform variable
z=e®'~ ., These responses are generated recursively by polynomial
division and include all multiply reflected P and SV waves with mode
conversions.

For a layered halfspace, the reflection response matrix for a
source at the free surface equals the positive time part of the autocor-
relation matrix of the transmission response matrix for a deep source.

"This can be used to convert surface records of teleseismic events to
reflection seismograms for mapping the crust. For a known crustal
structure, the reverberations contaminating a teleseismic event can be
removed in time by a simple convolution, rather than by dividing spectra.

Time domain transmission responses for two crustal models under
LASA, and reflection responses for several core-mantle boundary models

N
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are calculated as examples of the method. These responses are use-
ful for studying the first motion and window length of transition layer
responses.

Finally, the method is extended to media containing any arrange-
ment of solid and fluid layers.

Thesis Supervisor: Keiiti Aki
Title: Professor of Geophysics®
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Chapter I

Introduction

1.1 Purpose of Investigation

Seismic body waves passing through tran;itional velceity zones '
of the Earth are often approximated mathematically by plane elastic
waves propagating throuéh a stack of homogeneous, isotropic plane
layers. For such models, the Haskell-Thomson technique is particu-
larly well suited, because it allows one to impose a sinusoidal elastic
wave source at one interface of a layere/d medium and iterate through
the layers to obtain the transmitted waves emerging from the layers.
Reflected waves fqr a layered model are also easily calculated.

Applications of this method to study the filtering effect of the
Earth's crust on teleséismic events have been made by Haskell (1960,
1962), Hannon (1964), Phinney (1964), and Fernandez /1965) for long
period seismic data, and more recently by Leblanc (1967) fcr short
period data. Teng (1967) computed the spectral response of reflectec
and transmitted waves from several models of the core-mantle bound-
ary to be used as a guide ’for examining recorded core phases.

Since seismic boa.x; waves are recorded as particle motians
in time, it is often desirable to synthesize a time domain response
from a spectral response of a transition zone ca lcu
technique. This can be done numerically, but one must always deter-

mine experimentally which frequency sampling increment and window
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length are to be used for the inversion to time.” A basic difficulty
i; that reflection and tr'én,'lsmis sion responses of layered media are
not .naturally }.Jandlimited in frequency. As a re.‘sult, a spurious
oscillating precursor occurs in the synthesized time function which
can obscure the time and polarity of the theore;ci?:al first motion.
Other difficulties are discussed with examples by Leblanc (1967).

In the references 'on crustal studies mentioned above, tele-
seismic source;s in the mantlg are éssumed incident to crustal layers

of lower velocity. Also, the reflection responses computed by Teng

had source waves in the lower mantle incident to a set of layers of

‘lower velocity at the core mantle boundary. Thus, for both of these

cases, no critical angles of incidence are reached at layer interfaces
for a complete range of incident angles for P sourcee. Incident
angles for S sources in each case can exceed 30° without producing
imhomogeneous waves.,

The purpose of this thesis is to present a systematic method
of calculating the responses of a plane layered medium directly in
time for homogeneous plane P and SV waves in order to avoid the
problems of spectral inversion described above.

When a plane wa\"ze’ pulsz is incident to a set of plane layers,

a sequence of multiple reflections inside the layers is generated.

Q

The reflection and transmission responses of the layers thus consist
of wave trains of reverberations which last indefinitely but decay in

time. In this investigatidn, a technique for generating these wave



9.
trains is developed, such that all P and SV waves wifh mode conver-
sions are included in ef;c;h response. High.resﬁlution responses
with no precursors in time are obtained which éan be calculated to
any length time window.

The theoretical development of this methoc} is an extension
to non-normal incidence of a discrete time problem first solved by
Wuenschel (1960) for con'lpressional waves at normal incidence.

The basic strategy is to expreﬁss the vertical travel times of P and SV
waves through each layer as unequal integer multiples of a small time
inqrement AY . The plane P and SV waves are assumed to be arbi-
trary wave forms which satisfy their respective wave equations and
are sampled every AT seconds. Taking the Fourier transform of
these waves yvields series in integer powers of z=e‘wbt . As each
wave passes through a layer, it is delayed by an integer multipie

of AT , e.g., wAY ., This causes the Fourier transform of the
wave to be multiplied by zP.

The result is that layer matrices are obtained in which the fre-
quency (J does not occur explicitly but only in powers of z=e w‘w,.
which is the delay operator for time AT . Taking products of such
layer matrices for a layefed medium, we can calculate reflecti~n and
transmission responses which are infinite series in integer powers of
he time samples of each

2. The coefficients of each serics are t

(]

ponse occuring at integer multiples of AT , In this way, numerical

inversion over a calculated spectral window is avoided.
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1.2 Description of Ch‘apters

This thesis can bé'divided into three sections. The first sec-
tion consists of Chapters II to IV which give thé theoretical develop-
ment of the discrete time solution of plane waves in a plane layered
elastic medium. Chapter II reviews the discre’cé~ time solﬁtions for
waves at normal incidence obtained by Wuenschel (1960) and médifiged
by later authors. For nor'x-normal incidence, P and SV waves are .de-.
fined to be prqportional to thg totai component of instantaneous particle
velocity associated with up and down travelling c&x&ﬁr;swsional and
shear potentials in each layer. The waves are scaled so that the
square of each wave equals the instantaneous energy density flux
carried by the wave across a unit area of horizontal interface. This
choice of waves resulis in a simple 4x 4 layer matrix which is com-
pletely analogous in 2 x 2 partitioned form to the normal incidence
case obtained by previous authors. Tc illustrate the technique, the
reflection and transmission responses of a single layer between half-
spaces are calcuiated and expanded into multiply reflect:ed rays in-
side the layer. N

Chapters III and IV contain applications of the layér matrix to
multilayer problems. In Y'Cilapter IIT, the reflection and transmission
.response matrices for a stack of elaétic layers between two elastic
halfspaces are computed. Fesponses of a layered halfspace to a
deep source below the layering and to 2 source below the free sur-

face are described in Chapter IV. Principles of reciprocity and



11..
conservation of energy are verified for each response of Chapters
IIT and IV. It is shown "filat the reflection resp;onse matrix of a
layered halfspace to a surface source egquals t1;1e positive time por-
tion of the autocorrelation matrix of the transmission response ma-
trix for a deep source. This suggests that teles‘.eismic events recorded
" at the free surface of the crust can be converted to reflection seismo-
grams for mapping the crﬁstal layers.

The second section is éhapter V which illustrates the calcu-
lation of discrete time responses for two transition zones in the Earth.
The first example shows the transmission response of two crustal
models under the Large Aperture Seismic Array (LASA) . The second ex-
ample is a set of reflection responses off various models of the core-
mantle boundary. These theoretical responses are calculated to
demonstrate the high resolution capabilities of the technique for model
studies of transit’on zones.

Chapter VI is the final section of the thesis. In it, the theory
of Chapters 1I to IV is modified so that any arrangement of solid and
fluid layers can be treated. Reflection and transmission responses
for.a medium of interbeddgd solid and fluid layers between halfspaces

are derived.



Chapter 11
12,

Matrix Formulation of Plane P and SV

Waves in a Layered Elastic Medium

2.1 Introduction

The frequency domain solution for plane waves in an elastic
’vmedium of homogeneous, isotropic layers was first solved with a ma-
trix iteration by Thomson (1950). Haskell (1953) applied Thomson's
matrix formulation to obtain the period equations for Rayleigh and
Love waves for a multilayered half space. Thi;s technique has been
applied very successfully to deduce possible crustal structures of the
Earth from the dispersion curves of long period surface waves.

Haskell (1960, 1962) applied his matrix iteration to study the
filtering effect of a layered crust on body waves recorded at the sur-
face. Dofman (1962) and Teng (1967) modified Haskell's formulation
so that sequences of fluid and solid layers could be treated.

In /this chapter, we solve Thomson's problem directly in time for
impulsive plane wave sources located at an interface between layers.
We consider only P and SV body waves which are homogeneous plane
waves, that is, all.waves have a phase velocity ¢ which is greater
than the comp.ressional and shear velocities of any layer in the medium.
A recei‘ver is located at an interface of the layered medium. In our

formulation, we calculate all multiply reflected P and SV waves as they

are transmitted from source to receiver.

. \
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The primary purpose of calculating the impulsive response of
a set of elastic layers is to obtain synthetic seismograms for body
waves without the intermediate step of numerically inverting a Fourier
spectrum calculated by Haskell's method. In short period earthquake
bhases (~1 sec.), crustal layers or; the order of five kilometers
thick or less can cause rapid os-cillations in the amplitude and phase
spectra of the frequency responses calculated by Haskell's method.
In order to calculate a time record, one must first choose a small
frequency sampling increment and tabuiate the spectrum over a finite
frequency window. If this discrete spectrum is numerically inverted,
the time record is contaminated by aliasing. This effect can be elim-
inated by making the spectrum continuous, i.e., connecting adjacent
amplitude andrphase points by straight line segments as done by
Aki (1960) and Harkrider (1964). Inverting this continuous spectrum
yields a bandlimite;d time record which has an oscillating precursor.
Such a precursor is not a problem fof long period surface wave syn-
thesis. However, for short period body waves, it obscures the po-
larity and arrival time of the first motion.

The direct time formulation described in this chapter avoids
the inversion probleins described above. We obtain a reaiizable
impulsive response for a set of layers with the correct first motion
and onset time. Later arrivals, which are mu/ltiply reflected P and
SV waves, are separated in time with a resolution practically unattain-

able by spectral inversion.
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The problem of plane wave compressional pulses at normal in-
cidence to a layered medium was first solved by Wuenschel (1960).
He reduced Haskell's formulation to the normal incidence case and
obtained a matrix iteration relating the Laplace transforms of vertical
motion and normal stress at the-top of a layer to those at the bottom.
By ingeniously constraining all layers to have transit times which are
integer multiples of a small time increment AT Wuenschel showed
that for impulsive sources, the vertical motion and stress at each

-2s5aT
interface could be expressed as a ratio of polynomials in € .
which can be expanded into an infinite series in integer powers of
-26 0T Such a series is inverted by inspection to yield a series
of impulses in time every 247 seconds. In this sense, Wuenschel's
solution is a time domain solution even though Laplace transforms are
used in the formula;tion.

'Later this solution was expressed in terms o;f up and down
travelling waves in each layer by Goupillaud (1961), Sherwood and
Trorey (1965), and Robinson and Treitel (1966). This solution is also
summarized by Claerbout (1968) in connection with an inverse prob-
lem solved by Kunetz (1962), in which the layer impedances are re-
covered from the upgoing waves recorded at the free surface of a layered
»halfspace .

In this chapter, we formulate the non-normal incidence problem

in terms of up and down travelling impulsive P and SV waves in a

layer. This gives a layer iteration which has exactly the same form
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as for normal incidence, except that scalar matrix elements in the
latter case are replaced by 2 x 2 matrices in the former. In order to
handle the unequal P and SV transit times through a layer we apply
Wuenschel's strategy and choose a very small time increment AT ,
so that P and SV transit times can be expressed as integer multiples
of AT

In the following three sections, the basic layer iteration for P
and SV waves is derived and compared to the normal incidence case
when the two wave types uncouple. Section 2.5 discusses the response
of.a single layer sandwiched between two halfspaces to impulsive
plane wave sources. An expansion of this response into multiply re-
flected plane waves is demonstrated. The last section of this chapter
gives expression for the velocity and stress components in terms of

the up and down going P and SV waves in a layer.
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2.2 Formulation of the Problem

We consider a horizontally layered elastic medium, each layer
being homogeneous and isotropic. In each layer, we have four elastic
plane waves to satisfy arbitrary boundary conditions. These waves
are the up and down travelling P and SV waves. We restrict ourselves
to body waves travelling horizontally in the positive x direction with
a phase velocity ¢ which is greater than the compressional and shear
velocities of each layer. Thus, inhomogeneous interiace waves such
as Rayleigh or Stonely waves are not included. All particle motions
are in the x - z plane, z being depth. Horizontally polarized shear
waves (SH) are uncoupled from the P and SV waves and will not be
treated here.

In the n - th layer we define plane wave elastic potentials £
(for compressional .‘waves) and F (for shear waves) as shown in Figure 1.
The upgoing con;pressional and shear potentials are given respectively

by e~
F b - AD) = § (xsimnd - Zcosd — wt)

]

Fu(gu'F -pt) = Fu()( SAnY ~ ZtosY ——(a'!:)

and the downgoing potentials by
S-A({Sd-F - «t) = §-J(xsimé' + 2cosd ~ ki)

Fi8,F - 1) = Fy(xsin¥ + zws¥ - §gt)
; ’ (2-1)

Unit vectors p and $ are the directions of P and SV wave propaga-

tion in the layer, and subscripts u and d indicate up and down going -

7
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waves respectively. Vector T is the position vector T = (x,z).
Fach P and SV potential satisfies its wave equation in two di-

mensions, i.e.

2 2
§ L% - o
\Y4 = 51
o LYF
V F (34. S_Ez - O 2;)

where o and 3 are the compressional and shear velocities of the

layer. These velocities are related by Snell's Law

c = & = L2

Associated with each type of potential is a particle velocity

vector. For a compressional potential ¥ the velocity vector is

S," A
2t (2-3a)
and from a shear potential F we obtain a velocity
_ 3 N ", N
Vg = "—(VX Ld'F) = —-ﬂF\iXS
ot (2-3b)

The double primes in these expressions indicate the second total de-

rivative of each potential with respect to its argumeni. Unit vector

§ points out of the x-z plane towards the reader as shown in Figure 2.1.
In most multilayer problems, one obtains a matrix iteration re-

lating physical quantities in one layer to the same quantities in an ad-

jacent layer. In elastic wave problems examples of such quantities
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are particle displacements, velocities, stresses and potentials.
In this case, we use (2-3a,b)to define the following up and

down going P and SV waves in the layer:

Uﬁ({%u.;. -ot) = \}Iobku:—scq —\7?“: - vlou cos S &'S‘vﬁu
'——S(é‘u.F -—/5{') ot Vlo[scosh’ ’\75“ = +Vf>[3 cosX /BFuéux C}
— . i N
D ("‘od.F-OH;) = V/oo((,oScY Ve, = ~\Vpotcos S “{‘dpd

—VprsYﬁng gd

Al
>
A
|
-
x
I\
3
A
1
V]
«
n'_'"< |
1

(2-4)

Each wave is expressed as a positive constant times the particle
velocity vector for that wave. We define the directions of positive
velocity (and positive wave) to be along the unit vectors given in the
last column of equations (2-4) above. These directions are shown by
large arrows in Figure 2.1. _

Although these waves are vectors we can describe them only
by their magnitude and sign in the following matrix iteration. At this
point, we drop the bars over Up, TS, etc. in 2-4).

In Appendix B, it is shown that UP? and US2 are the energy

density flows for the upgoing compressional and shear waves respec-

tively. Similarly DP2 and DS2 are down going energy density flows.
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Each squared wave has the physical units of power transmitted per
unit érea of horizontal interface in the x-y plane. Such powers are
instantaneous since § and F are arbitrary plane waves rather than
sinusoidal functions.

Let Z, be the depth to bottom of the n-th layer. The waves
defined by (2-4) are valid throughout the layer. We shall evaluate
each wave at the top and bottom of the layer at the horizontal dis-

tance x=o. At the top of the layer, we define the waves

UP, )

H

UR\(‘{;“‘F - 0(_)(:)

US, )

I

US (5% -et)
DP, () = DP(B-F -«4)

DS, (&) = OS (5,7 -3t

T

N X
N G
s
1
-

(2-7)
Similarly, at the bottom of the n-th layer we define the primed waves

at Z = %, tobe

UP',,( +)

UP,,(FI’\.;F - o)
US',,(Jc)

]

US h(gu'F - @t)

DP. () DP, (b7 - «t)

DS'h(f) = DS (§;F-pY)

M X
n i
N C

(2-8)
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The ray directions of the primed and unprimed waves are
shown by arrows in Figure 2.2. These waves are functions of time
only since their positions are fixed. To keep the figure uncluttered,

the velocity vector directions and wave fronts of Figure 2.1 are

omitted.
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2.3 Layer Matrices

In this section, we derive an iteration which relates waves
‘just above the n-th interface to those just below it. Then an itera-
tion is obtained which connects waves at the top and bottom of the
n-th layer. Combining the iterations yields a basic layer iteration
which can be applied to multilayer problems.

Figure 2.2 shows four waves arriving at the n-th interface
and four leaving it at x=0. We can therefore express each wave
leaving the interféce as a linear combination of those waves arriving,
provided we calculate the reflection and transmission coefficients
for the interface. From the definitions of the waves in (2-4), (2-7),
(2-8), the magnitudes of the reflecti;)n and transmission coefficients
give ratios of square roots of power reflected by and transmitted
through the interfE;ce. In addition, the sign of the coefficients must
give the correct' polarity of particle motion so that waves can be sum-
med properly. These reflection and transmission coefficients are de-

-

rived in Appendix A.

We denote reflection and transmission coefficients byr and t
respectively for incident waves below an interface. Forincident waves
above the interface, the coefficien.ts are primed, i.e., r' and t'. The
type of mode conversion is indicated by subscripts p and s. For example,

L would equal DS (ﬂ/UP“gL) if UPR () were the only wave arriving

n4t
at the n-th interface.

From Figure 2.2 we see that the equations for the waves leaving

the n-th interface are



DPh-H = Cpp UP"‘H
DS, = YpsVUR.,
1 ' 1
Uph = Yop DP“
1 [} )
U S n = \"PS DPh

rs? Usmn

res US4
I !

vsp DS,

rs's DSL

22,

i 1 ( |
tep DPY\ ¥ 'tsp DSn
1 } t i
tPS Dph + tss Dsh
-tpp UPh.H -+ —tsPUSnH
tpsUPhu + tSSUSrHI
(2-10)

Since these reflection and transmission coefficients apply to the n-th

interface, they are understood to be subscripted n.

Let us first separate the primed from the unprimed waves. This

will give us an iteration across the n-th interface. Putting only the

unprimed functions on the left of (2-10) yields

i !
1 © 0~
|
| .
O 1 ’rps
S U,
o O ! tpp
| .
'l
o o | tes
L |

nt

-

oP |

0S5

UP

Us

“nit

Define the following submatrices and vectors:

£l © OP
|
[} | )
stsl ) O DS
b - - - - _ -
-1 1 O||UP
|
[
1 !
-Y‘SSI O 1 US
o A
(2-11)
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YP? V\SP
R, =
[ Vps Vs ], _ DP
- ] o = DS
Tep  Tep n
T — b}
I, =
n - U, =
1 O "
T = US
2 - n
o 1.
(2-12)
Substituting these into (2-11) gives the partitioned matrix
equation
- - _ - -—.—' O - - ' -
Iz - Rh dy\.“ ‘ 2 a—h
— ! )
u O T" J1i uhﬂi L-—R“ 12J L u“.
. (2-13)

where primed matrices and vectors are obtained by priming their

i
elements.

The inverse of the left hand mafrix in (2-13) is

~1 -
Iz -R“ IZ Rv:rh

-1

o T, o T
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Therefore, (2-13) becomes

o N L
d.. L R O] d.

N

-1

[ e 10 —E' J .;-Rh IzJ ! <.

|

(2-13a)
We now define A n o’ the interface matrix, to be this matrix product,

i.e.

am-i a-‘

i
>

-1
uh'”

(2-14)
. (n)
where the 2 x 2 partitioned matrices of A n are n‘.j given by
(n) ' -1 (n) -1
An = T" B RnTh Rn Am = RhTh
(V\) ___—‘ ] (J\] -1
Azn = —lth Azz = Th
(2-15)
These submatrices can be reduced to more compact form. In
Appendix A it is shown that directly from their solutions that
1 *
T = T (2-16a)
n n

m/
"
~
Py
3 K
]
P

(2-16b)
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and

(2-16¢)
The asterisk denotes the transpose of a matrix. Using these three
identities we obtain
-1 -1
- R hTh = - Th R g}
(2-16d)
Hence
(n) (h) -1
and
(n) = -1 '_* !
A =T, + T.RIR,
. (2-17a)
)
Matrix A, is further reduced by conserving energy across the n-th

1y

interface. Let the downgoing incident wave just above the interface

-

be an arbitrary source vector '

I —
-& = S
v
I
The transmitted wave is therefore Th § and the reflected wave is

Rh S . Conservation of instantaneous power through a unit area

7

of interface gives

' J

- ¥ —_ by ! -
3’s = 3 (T)7T, + R'R, )¢S
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This is possible only if
\ ' \ \
's ¥
ST+ RIR, =
n n n ) 2 (2—18~a)
Similarly for an arbitrary incident source from below the interface

we obtain
» * —_
Th Tn ¥ R n Rh - -\-Z
(2-18b)
These identities can be verified from their solutions in Appendix A,

Substituting (2-18a) into (2-17a) and using (2-16a) gives

n) i

T, + To (L - TTW)

{1

-1

= T,

Y

Therefore, the interface matrix An can be written in the simple form

]
-1 ]. - Rh
A= T. |
n n
R, I
-R, 2
. (2-19)
This interface matrix is interesting because it is completely analogous
to the simpler.case of compressional waves at normal incidence de-

rived by Goupillaud (1961), Sherwood and Trorey (1966) and others.

They obtained interface relations which in our notation can be written

as
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DP, 1 - V\LP DP:«

-—
B
-~

-t 1 '
- - qUP, il ~Yep 1 UP,

(2-19a)

Hence the 2x2 interface matrix a,; for their case is

]

. ~Yep
t

) 1

a, =
The scalar elements of this matrix correspond to the 2 x2 submatrices
of Ah in (2-19). This similarity is carried over into the derivation
of the layer matrix itera‘tion which follows. \

The next step in the non-normal incidence case is to relate the
waves 'at the bottom of the n-th layer to those at the top. This is not
difficult because oply time delays are involved.

The waves UP,,(U and UP,:H-) represent the same upgoing
plane compressional wave except for a time delay ’L/(:) it t.akes the
wave front to travel through the n-th layer along the 2 axis at x=0.
Similarly USntt) equals US:,(.’C) after a delay of T(:) seconds, the
shear wave transit time, through the layer. For the down travelling

)

1
waves DP,,U‘-) is delayed by Tp  relative to DPP,(¥) . Hence,

we can write
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DP, () DP,(t + T5)

it

DS = DS T

4]

UP, (8 UP, (¢t - T¢)

UsS,® = US,t -1
(2-20)

7 where from Figure 2 1

r[:(m = «%hcos §h

P
oy
/tl:\ - -4?,1“ cos ¥y
T G (2-21)

i and ‘P\n is the fhickness of the n-th layer.
It should be notéd that these transit times decrease with increasing
angle of incidence rather than increase as one's intuition might guess.
In fact, d/ividing )/\,, by ’l‘.’:ﬁ and T(:) gives the vertical phase
velocities for P and SV wavefronts in the layer. These phase velocities
are always greater than O{n for P waves and greater than ﬂh for
SV waves at nqn—normal incidence.
In our formulation, we shall célculate the response of a layered
medium to an impulsive plane wave source incident to an interféce.

We know physically that waves recorded at some interface due to such

a source is a train of impulses arriving at unequal time intervals due

N
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to varying layer thicknesses and different P and SV transit times
through each layer.

In order to simplify our layer iteration we shall choose a small
enough time increment AT so that to‘any desired precision we can

write

n) .
™~ ——

n)
’t's m, AT

s

(2-22)

where Jh and M, are integers, wm, is greater than X, ‘

(m )
and AT is much smaller than T, or T

This approximation to the transit terms can be interpreted in
two ways. If the layer velocities of a model are exactly specified
a priori, then our f;)rmulation is approximate, but can be made as
-accurate as nece;ssary by decreasing AT 5o that the "round off
error" introduced by (2-22) becomes small. Such errors shéw up as
a distortion in the high frequencies of the spectrum of the impulse
response of the layers. On the other hand, we can make equations
(2-22) exact for a suitable AT by perturbing the velocities in (2-21)
slightly so that 'E’“: and TL;\ are exactly divisible by AT ., In
this case our formulation is exact, but our layered model has velocities
not exactly what we specified beforehand. As AT is reduced, the
perturbed velocities come as close as desired to the correct velocities.

Assuming that (2-22) is valid and that an impulsive plane wave
’ N
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source is located somewhere in the layered medium, then the primed
and unprimed waves in (2-20) are each a series of pulses occuring

at integer multiples of AT . Taking the Fourier transrm of (2-2 0)

and utilizing (2-22) we obtain

L,
1
Dph(i") = Dph(E) zZ
1 . Mn
DSn(f) = Dsn("'\) z
' : -2
S UP»y = UP () 2
1 ="
us, @ = US @z
(2-23)
where the transbrm variable 2Z is defined by
. - wwat
2- = €
(2-24)
Each wave in (2-23) is a series in integer powers of Z , e.g.
' K
2 Q.2 . because a, z is the transform of an_impulse of
X
area Q, attime KAT . Since AT is small compared to the

transit times through each layer, many of the coefficients Qg in

each series will be zero.

To complete the layer matrix iteration, we define the 2x2 sub-

matrix
5]
z" 0
L = m,
N o 2

(2-25)
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Substituting this matrix and the vectors of (2-12) into (2~23) we get

8:, Zh O E},,

= -4

vl O 21T

" (2-26)
- - ¥inally, we combine this equation with (2-14) and (2-19) to
obtain the basic layer iteration, which is
. , -1 .
a nH -1 Z n - ann a "
u‘h-H . Rn Z-n Z n u n
(2-27)
We shall later refer to the coefficient matrix of this expression as
they layer matrix Cn ,l.e.
y -
Zn -Rh ZV\
(:n = -T; ' -1
-RV\ Z n Zn
(2-27a)

Applying this iterationto N adjacent layers of a medium, we

obtain

\ (2-28)
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where Q(z) is the matrix product

Qe =C.C, - C,

At this point, we remark that increasing -£,, and ™M, by

(2-28a)

reducing AT for a given set of layers does not appreciably increase
the computer time required for calculating QLE) although larger
storage is required. This is because the number of multiplications
required depends primarily on the number of physical layers in the
model. If one considers the multiplication of two polynomials of
large degree in 2  with most of their coefficients equal to zero,
this can be arranged by indexing so that all the zero coefficients are
ignored.

(iur 4 x4 layer matrix C n is analogous to the simpler 2x 2

layer matrix derived for normal incidence by Goupillaud, Sherwood

and Trorey and other authors. Their matrix relation in our notation

is

DP, Z ~Yee 2 | |DR ,]

N -2
» b 37 [UR.
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2.4 Conservation of Energy Across an Interface

Several useful results for the interface matrix Ah and the
layer matrix C n of the previous section are obtained by conserv-
- ing the power flowing across a unit area of the n-th interface. The
net power flowing downward through the interface must be the same
just above and below the interface. Since our up and down trayelling
waves have amplitudes equal to the square root of the transmitted

power for each type of wave this implies the identity

A * ¥ é_'* ! _l* __l
ah+l an-ll-( - uh%\uh‘r‘ = n a,, - LLh u" (2._29)

which should be true instantaneously in time for any transient waves.
In order to prove (2-29), we first define a tilda operator (n )

as follows: Let M be a square matrix with 2m rows, which is

partitioned in 4 m;m submatrices ng . Then F’i equals ™M ex-

cept that the off.diagonal submatrices M , and My, are multiplied

by -1. s

Ve

Now we can write (2-14) in the form

-

3,\,, An "A\q -a-h a.h

¥
N
337?

e :Azj An n "LTV\J - Us

Taking the scalar dot product of the transpose of this equation and
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(2-14), we obtain

* % "% "
amna T Ui Uy, :[ah y T U ]AY\AV\ %,

nal

Uy,
In order to prove (2-29), we shall show that
~¥ A I
A wWiin “ (2-30)
From (2-19) and (2-16Db)
- ' r ‘
A A, = T T,
: 1 1 -
_Rh IZ _——Rn iz

Multiplying these matrices gives

* -1,

(TTY-ROTOR, RITY'- TR

=

?

>
>
n

' % - % -1 1 ¥ — 1 -4,
R(TTY - (TR 7Ty -R(TTY R |

Consider the diagonal matrices of this product. Let
’ ¥.~1 Y %.~1 40

D=0CT) -ROTY R
Using (2-16a), we write this as

N\
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-—

r 1 -1 1__‘*__'A~1;
D = (T'T) - R{T'T) R

"~ Hence

\ { ] ___) t Iy !V -1 1
(T*THD =1, - (TTHR(TTY'R
Using (2-16¢) twice and (2-16a) we can show that

(T*TIR = R(T'T)
Therefore,
(T*T)D =1, -RR = T
from (2-18a). Thus we finally have

D =L,
, _ ~ %
for the diagonal matrices of A n A n . For the off diagonal ma-

trices, we note that
(] Ty O -4 ' Y 14 -1 '_3 \ -4
R(TT) = [T, -RRIR"] = [R-R]

T, | -1

TR = [R'G -R'R‘)J'1 [R™"-R')

"

using (2-18a). Since these products are equal, their difference is

the null matrix. Therefore, we have shown that
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(2-30)

2

and that (2-29) is true. Matrix- /A\h is obtained from A n by

changing the sign of the elements of the last two columns and then
the last two rows. This does not change the determinant, hence

Ah and An have equal determinants., From equation (2-30),

we deduce then that

dx| AL = dalAN =t

(2-31)
Therefore, Ah and its inverse commute, i.e.
~* ~ ~X
A A, = AA = 1,
(2-31a)
These results for Ahcan be easily extended to products of layer
matrices like C n in (2-27). Matrix Ch can be written as
K 1
| Z. O
Ca = A,
%)
-1
O a
(2-32)

For a matrix product P - MN where M and N are square
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with an even number of rows, one can show that P = M N ..

Therefore

. Z o
Ch(’/z)Céz) = AA

which reducesto

.

* -
Coem(Ce =13

using (2-31). Also

Z 0O
da|C@] = e [A] A o
N 0 Z

¥
ped J-d’lc.h(’/a)\ = 1

(2-32a)
using (2-30) and (2-24). As with ’A\n ‘ C}}) and its inverse
commute, i.e.

r\,¥ ~ X
CuonCm=CoC =1,
| ’ , (2-33)

For a product of layer matrices

Qe = Col, - Cw

(2-34)
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- we obtain
% ~ ~* ~7 ~
_QuaQaey = Cun Cum - CY\(’/ 2) CYS*) - L)
(2-35)
which reduces to

P
| ,

@tf/z)Qw = 1,

by repeated application of (2-33). Taking the determinant of (2-34)

gives |

delow = MMadlc@l = 1
. "
(2-36)

using (2-32a). Thﬁs Q(a) also commutes with its inverse, i.e.

X %

Q('/z)Q(Z) = QQZ)Q (l2) = I4

(2-37)
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~-2.5 -ASimple Case

In order to clarify this matrix technique, we consider a simple
“example, that of single léyer between two halfspaces. Settingn=1

in (2-27), we have

3, gz, RiZ) e

4

T | -R,2, 7

el

(2-38)

et us assume that an impulsive source 9, 1is incident to the layer
from below in the halfspace which is layer 2. Also, we suppose that
" no sources exist in the upper halfspace, layer 0. In this case,

i, = Roa, ° . Equation (2-38) then becomes

1 -1
az -1 Zi ‘Ri Zl ﬁ:{oal
= T‘l L

z Rz, Zlla

Solving for &, and c_kz in terms of S, gives

wl

<l

. ‘ 1
S ZicIZ~ RgziRozi) -r1§7.

-1 ' ' ~1
d, = T,(ZR.2, - R)I -R2ZR.2)T5,
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For an impulsive source .5-2 at time zero, we know on physi-
cal grounds that Cl. and a,_ must be trains of impulses which exist
only for positive time and die out with increasing time. This implies
that the inverse matrix in each wave vector must have a converging
expansion in a power series in positive powers of Zi l.e.

[ <]

1 - ;
(Iz - R121R021) = Z\ (R121R0213

t=
(2-39)

This is proved mathematically in Chapter III for any number of layers.

g

Our solutions for W, and 37_ become

u, = Zzi(R;ZiRozi)LTigz (2-40)

(T.2.R2, +RTD D RZRZITS,

(2-41)

n

da

-,

These expansions are simply the summation of all the multiply reflected
rays inside the layer. This is seen by noting the sequence of matrices

operating on S, from right to left in each term of the summation. For

u, , the first term is

£, T3,

Multiplication of ‘52 by Ti gives the first arrivals across the

bottom interface with all P and SV conversions included. Then

N



41.

multiplication by Z:L delays the P and SV components of this trans-
mitted vector by their different transit times through the layer.
Thus, ZiT-i §Z contains the first P and SV arrivals at the top of
the layer due to §2 incident on the bottom of the layer.

—

The second term in W, is
'
21R124ROZ1T1 §1

This vector represents the first term after two later internal reflec-
tions within the layer, one at interface 0 and the other at interface 1.
Each multiplication by Zi between and after reflections indicates
anothe; transit through the layer by the P and SV components of the
vector. Later terms in the expansion for U., represent higher order
multiple reflections inside the layer.

‘The expanéion for az is similarly interpreted. We see that the
first term is

R,5.

which is the source vector reflected off the bottom of the layer with
no time delay. The next vector wave is the sum of two terms in (2-41)

which are quadratic in Zi . Using (2-16d) these terms sum to give

T,2,R.2.T. 5,

This vector contains all waves which have travelling up through layer

N\
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1 and back down into the layer halfspace with one internal reflection
at the top of layer 1. As in the case for Ti. , later terms in the
expansion of a,_ are waves multiply reflected within layer 1 before
being transmitted to the lower halfspaqe .

This method of expansion-into multiply reflected waves is

very cumbersome for more than one layer. A systematic way of cal-
culating such inverse matrices recursively is given in Chapter 1V for

multilayer problems.
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2.6 Calculation of Particle Velocities and Stresses from P and SV

Waves

It is useful to compute the horizontal and vertical components
of particle velocity at an interface due to all four waves UP, US, DP
and DS. This is necessary when comparing theoretical results to re-
corded seismograph déta, since velocity components are usually
recorded in the field.

Using ecuations {(2-4) f”?d Figure 2, we find the total horizontal

and vertical velocity components to be

&= SwmS (UP+ DP) + =¥ (US +DS)
Feg(,osé F[_B(xra‘(

W = =8 (UP -DP) + _Sm¥ (US-DS)
m \/ﬁpm\’

(2-42)
From Snell's law, we have
Cosd = P, swnm O - mY—':PﬁS/;n.\O’
(2-42a)
whelje
= CNZ_
P =Wy~ 5 T VGNSS

(2-42b)



44,

‘Substituting these relations into (2-42), we obtain the velocity

. vector
v 1 VR ||DP i Ves||UP
Vor ~ 0
e = +
N _4, _ 4 {lu
@ & )03 " gellYS

(2-43)
Generally speaking, we cannot recover the four up and down
travelling waves in (2-43) from a single two component seismograph
record. However, if the receiver is at the frge surface of a layered

halfspace, then the up and down travelling wave vectors are related

by

d = R.a

o

where R is the reflection coefficient matrix for waves incident

(o]

from below the free surface. If the properties of the surface layer

s

are known, then Ro can be calculated, assuming the phase velocity

is determined by other means. Then we can invert (2-43) to obtain

.

|UP S W
Ve K

!

(2-44)
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where AK is the 2 x2 matrix

v‘—ﬁ VP, '\;—F Vs \
N _ o [+ S
K - R o +
-1 ) - 1
2 \Ps . V% VP

(2-45)
It is also desirable to compute records of the normal and tan-
~ gential stress at an interface due to the four travelling waves. The
stress components are given in Appendix A by equation (A-7) in terms of
elastic potentials .l Replacing the elastic potentials by their corres-
ponding waves as defined by (2-6) gives us the stress components

as

T = —(x +h7y¢4 C—"S’g) + W v Y
Dr S
22 ——— (UP + DP) e (US + DS)

Tay = B5m cq’\m“y(up ~DP) + (wsq‘r‘s“‘%’)(us -DS)

Vpu?cos S ‘ \]7’/33“5“

These equations reduce further using (2-42a) and (2-42b). Finally,

we obtain
, [T -y BUW-9)pp B3 up
F = +

Tax B -¥0S VR(i-v) x| US

. (2-46)
where ¥ = L1 - 2((-‘5/C)2'
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2.7 = ~Tigure Captions

2.1 Elastic plane waves in an isotropic homogeneous layer.
Shear and compressional waves have phase vélocity\c in x direction.
Instantaneous particle velocities are measured in direction of large
arrows in x-z plape .

2.2 Instantaneous waves measured at x=0 on each interface.
Primed waves are evaluated at the bottom of each layer, unprimed

waves at the top.
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Chapter III

Extension to Multilayer Problems

3.1 Introduction

In this chapter, we apply the layer matrix iteration of Chapter
II to some multilayer problems. Section 3.2 shows how our 4x4
layer matrix reduced at normal incidence to two 2 x2 layer matrices,
one for P waves and one for SV waves. The general form of products
of such layer matrices is discussed both as a review of previous
work, e.qg. Goupillland (1961), Sherwood and Trorey (1965), and as
an introduction to section 3.3 which examines products of layer ma-
trices for non-normal incidence. In section 3.4, the reflection and
transmission responses of a stack of layers between two halfspaces
are computed. Fin%lly, we use the principle of conservation of energy
to obt;ain a relat‘ion between the reflection and transmission responses

of section 3.4.

-
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3.2 Layer Matrix Products for Waves at Normal Incidence

In this section, we show how the P and SV waves uncouple in
the layer matrix iteration when the waves are at normal incidence to
the layers. We then consider products of such layer matrices. The
form of such products has been discussed by Goupillaud (1961),
Sherwood and Trorey (1965), Robinson and Treitel (1966), and
Claerbout (1968).

Our treatment differs from that of the above authors only in the
definition of reflection and transmission coefficients. The reflection
and transmission ‘coefficients . in our case, are defined in terms of the
square root of the instantaneous power carried by each wave, whereas
the other authors define their coefficients in terms of particle velocities
or pressures caused by the waves in a layer. As a result of this,
our reflection and “transmis sion coefficients are related by different
identities . alth.ough in the end o[ur layer iteration has exactly the
same form as that of the other authors.

The uncoupling of P and SV waves as the phase velocity goes
to infinity is most easily sean from (2-11). Letting all reflection
and transmission coefficients go to zero which convert modes,

e.g. s , tps we obtain the interface relation



5.

4 O ;—rpp ol [DP WPP o:o o|]DP
| , | i
@) Ol _tpp O VP ‘Y‘|Pp 0.1 O Up'
I ' |
|
O o : O ts| | US @) -yl O 1]] US
- | “n- “n+d t ‘ Jn- -nh

which splits into the following separate relations for P and SV waves:

1 ~%e| [OP tep O] [DP
t up _ '
0 el 1°7) rpp 4 ] upP n .
and
) 1
i ~Yss 05 tss O DS
O s [US e 1]]us
n n+4 n n

(3-2)

-4 '
pP z O ||DP
UP oz llup
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(3-4)
Since the P and SV equations have identical form and are un-
coupled, we need only consider one type of wave. Dropping all ref-
erences to P waves in (3-1) and inverting the matrix on the right-hand

side gives

n n - n+i (3_5)

where we have used the identities

P |

1
r?.
. = 1 r=-r
t t (3-6)

These identities come from (2-18a), (2-16a) and (2-16¢) when the
phase velocity goes to infinity.
Now, we insert (3-3) into (3-5) to get the basic layer matrix

relation in the form

D S 1 r 1D
R
U L PP #|lu

n n na+i (3_7)
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which is essentially the same as obtained by Claerbout (1968). We

now follow Claerbout and postulate that iterating over N layers

gives a product of layer matrices with the following form:

- : - 17 1
D@ 5(2) 9 | D@
-R, ’
= 2
: R 2K
U@ 7 /) Z Sem| U
- ) A G
where
n
Kh = Z-—QL
i=1
(3-9)
and  $(=) and 1(%) are polynomials in 2 defined by
2(x, = 1y)
$@) = — (1 + 52 +{—122 toeee + §2(K 27 )
1
e
L=
1 \ z 2‘(KV\""Qi)
Q) == (\rn $ R+ GoR ke G 02 )
R
e (3-10)

2K, 2Kn
This also implies that Z g‘(’/;) and % (}(‘/2) are polynomials
'so that each element within the matrix of (3-8) is a polynomial.

By comparison with (3-7), we see that (3-8) is true for n=1.

Let us assume (3-8) is true for arbitrary n. Then, using (3-7), we

obtain
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— - . \ —-
%‘“(2) %Y\( 9:7 1 Y\h‘»i
'-’Qm»l
_K“ %
Z ) )
to o ,
2Ky 2K, . ) ' ¥l 24 59
(2 qz)  Z TSUR) | Vo 2]
%hfiz) Ci“*g %)
— K
= Z

where
h ] 2—0“*1
'g'mgﬂ = C%n(%) * G %ﬂ(i))/tnﬂ
1 2L . *
‘ (jn-u(ﬂ - (V‘m,%v‘(i) + Z C}h(‘z’ﬂ)/ tosi
(3-11)
Since

§ @) 1/t

n

%1(1\ = Yy / t,

the iteration in (3-11) indicates that ’}hm and C&,,(z\ are poly-

nomials of degree 2 (X, -_23) which have the form shown in (3-10).
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This completes the induction proof of (3-8).
The determinant of the matrix in (3-7) is
A s
det = 1 - ¥~ = 1
2
t,
using (3-6). Since the matrix of (3-8) is a product of matrices like
that of (3-7), it also has a determinant equal to 1. This gives an

important identity relating £@) and %_(2) , namely

S Sy = glarguasa) =1
(3-12)
Claerbout obtains a constant different from 1 in this equation due to
his definition of reflection and transmission coefficients. This equa-
tion states that the autocorrelations of the polynomials § @) and
3-( 2) differgby only an impulse of amplitude 1 at zero time.
For all real w ;chis equation also indicates that the power spectra of

$(2) and C}(Z) differ by a constant equal to 1,
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3.3 General Form of Layer Matrix Products

In this section, we use the strategy of the previous section

to show that at non-normal incidence a product of layer matrices

Qe = C@»C e - (@

(3-13)
has an inverse which can be written in partitioned form as
Fe G@)
-1 f\/* _S‘\
Q(2) = (Y3) = Z
n n
25 25
1y
2 Gam) 2 F0R) .
(3-13a)
where
n
Sh = mi
i=1
(3-14)

We shall also show that F(ﬂ and G(:Z) are matric polynomials of

the form

2s,~1,-m,

H

Fz)

2
F, + Fiz + Foz v ooy Fzs“—.o‘_mf‘

6(2) 6‘0 + G,Z +6222+ ..o + 6 22‘3,\—.9.-«1\.

25,-4, ~m,

n

(3-15)

L
where FL and GL are real 2 x2 matrix coefficients of %

25, 25,
From this, we see that % FW/9ana 2 GO/2) in (3-13a) are

matric polynomials containing only positive powers of Z

N
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From (3-13), we obtain an iteration for Qh(i) , i.e.

R, = C»Q, @

(3-16)
Using (2-33) and this relation, we obtain
~-1 -1 ~ ¥% l/
Qe = Q@ C.wa)
(3-17)
which is the iteration we shall use to prove (3-13a). For n=1, we
have using (2-27a)
.Z—l Z_iR, -
el ~ ¥ i 1 i ﬁJ
Q= = Qiu/z) = T,
. |
_Z LR* Z 1
(3-18)
Since the SV transit time, wm;4Q% , is always greater than the
. -,

P transit time, ).;A‘lf , through the i-th layer we can factor 2%
out of the brackets in (3-18) and leave only positive powers of

inside. Thus, we can define matrix polynomials Fi () and

Git‘é) by

-m -4 *_1
Z SF}Q) = Ezi-Tl

-m, R R
z 61(27 Zi R1T1

. (3-19)

I
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Then (3-18) can be written as

_ Fj(%) G ()
-1 my
Q &) = 2
2 2m, '
ERRCAT N S U5
(3-20)
where from (3-19)
i m‘__Ql -
‘ 2 e} j—i
SO ,
0 i - (3-21)
and : . .im‘—.ﬂ, 0 - .
' 1
G (2) = RiTl
..O 1..

Clearly F1 (2) and 61(2) can be written in the polynofnial
matrix form of (3-15), the highest power of Z being m, —Jli
Therefore, we have verified (3-15) and (3-13a) for n=1. To complete
the proof, we assume the forms of (3-13a) and (3-15) are true for
(n-1) layers and show that this implies they are true for n layers.

From (3-17) we have



-1 -4 1
(" N T
F-h_.(? ) Gvr(l%) Z n Zn R\‘!
-4 *q
= Z
h(z) s
an—l z n~| l
)
e 2 Fuw|| 7R, 2,
(3-22)
-my
Now we factor 2 out of the right-hand brackets in this equation.

This leaves only positive powers of 2 within these brackets to be
multiplied by polynomial matrices of the left-hand brackets. Thus,

we have

—Fh(z) G (2)

-Sn

-1
Qh(ij = Z

25y 25y
: G2 2 U
B ) (3-23)
where
m, -1 ! ¥y
F =z (RoZ, + G@E.R.)T,
and
m, =1 *_1q
Gh(i) = Z (F;,_(f)Zth + thai)zn> Th
(3-24)

This verifies (3—13@) for all n. From this iteration, we see that
Fh(i) and Gn(;ﬂ each have degree 2w, higher than Fh~:lu)

and G‘h_(ii) due to the term

AN
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2" 7

n

which occurs in each iteration. Thus, if EE;LV has degree'
25“‘1—11 —-my , then Fh(v‘i) has degree 25, -4y - Wy,
This completes the proof of (3-15) by induction.

A useful result of (3-13a) aﬁd (3-15) is that only two subma-

~1
trices of Qh( 2) need to be determined by iteration since the re-
maining two submatrices are obtained by replacing 2 by !/z in
the first two. This is the ‘same as reversing each sequence of pulses
in time, i.e. replacing t by -t in the pulse sequence represented
by each polynomial in 2 .

So far in this section, we have essentially duplicated the proofs
of section 3.2. Equations (3-13a), (3-15) and (3-24) in this section
are matrix extensid\ns to non-normal incidence of equations (3-8), (3-10)
and (3-11) of thé previous section. The only complication which pre-
vents both sets of equations from being completely analogous is that

-1

Z L does not commute with other matrices in the non-normal

incidence case and cannot be factored out in as simple fashion as
-4

[ 8 N . .
Zz was in the normal incidence case.

Finally,.we drive several identities for the non-normal inci-
dence case which are analogous to (3-12) in the normal incidence
case. From (2—37)., we see that QhLET and its inverse comrr;ute
since they have non-zero determinants., Q h(ﬂ is obtained

-4
from (D in 3-13a), i.e.

N
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" 25 * ® 7
z " E(‘/E) - GhQE)
N;} =5,
= l = 2
Qh(az) Qh /)
25, * *
-z G F @
L n o
(3-25)
—-Sn
Thus, Qh&) can also be expressed as # times 2x2 poly-
nomial matrices. Taking the product
-1
Q@Qw =1,
we obtain the identities
v *
F—n(—i:) E (/2) — Gh(z) Gh(I/Z) - :[2 (3-26)
, " % * 0
Fa G - G@FE@ = B-27)
Iz and 14 are respectively 2x2 and 4x 4 identity matrices.
From
-1
Qh(ﬂ Qh("‘-) = 1 4
we derive
3 X _
) - GoGuw= = 1
FuaFe ~ @6, 2 26)
GlunFe - FaGun = O
n n h n (3-29)
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These identities are used in the next section and in Chapter

IV which describes plane waves in a layered halfspace.
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3.4 Transmission and Reflection Responses of a Layered Medium

We now consider the solution of P and SV plane waves in
multilayer media. In this section, we treat the case of W elastic
layers between two elastic halfspaces as shown in Figure 3.1, We
shall assume that a known upgoing piane wave source §n+1
is incident to the n-th interface from the lower halfspace. With no
other sources in the medium, we shall calculate the reflected vec-

' -

tor ém, and the transmitted vector U,  in terms of Sy

Substituting (3-13a) into (2-28) yields

d, F ) 6(2’) am.

-5
= z
_ 25 25 -
U, % 6(1/1) 2z F('/i) Wt (3_30)
Letting )
a\ = R o U,
Uy, = St
we find

o ! -S

—R a ] -F‘(g) 6(2)-1 -a:n-n W

I
N

. 2s —
i11 _2256 (/2) Z F(’IQ),_ LSWH

(3-31)
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Multiplying the second row of this equation by Ro and subtracting

it from the first row gives

-

- - ~ 25 2s ~r
O Fy- 2 ROC‘J('/z) , 6(2)~2R_°F('12) A,

Nt

n+t |

25 : 2
U, |z G z Fuaf|
(3-32)

From the first row, we obtain

(n)

a\-\-n = R(Z) §n4i

(n)
where we define R (2) to be the reflection response of the n layers

(3-33)

given by

(M

-1
R@ = = [Fm - zzsROGL’/z):] [G(a) - zzSRoF('/z)]

(3-34)
[{~}}

——

We also define a transmission response ‘ (Z) for the layers such

that

\ 15 I _
uo = Tkz) SVH-I = TO U,

. : (3-35)

—-—

To calculate !J, most easily, we invert (3-31) using (3-25) yielding

‘ ) * * 1 —
3 ' 2 [ (/3) - GM@ TR

* % -
§h+l L“'ZZSG (/2) F(i)_ ] U,
(3-36)
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From the second row, we obtain
-1
s % 28 % -
6, =% |[F@® - 2 GU» Re)
, (3-37)
Comparing this equation to (3-35), we see that the transmission re-

sponse is

()] S * 2s ¥ -1
T = z T, |Fe - 2 GomR.,]
(3-38)
Substituting (3-37) into the first row of (3-36) gives another expres-

sion for the reflection response, i.e.

-1
m * 2s ¥ '
R = |G - SFuaR J[F@ - =2 GUoR,]

(3-39)
m
If we transpose this solution for R(z) we obtain the solution given

in (3-34). Therefore, the reflection response is symmetric, namely

*(n) ()

= Z)
R R (3-40)

This is a proof of the reciprocity relation between source and receiver
when both are located just below the n-th interface. That is, the
reflection coeﬁficient for P to SV conversion equals the coefficient for
SV to P conversion, all waves having the same phase velocity c.
Setting the right-hand sides of (3-39) and (3-34) equal to‘each

other yields another relation
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D:-(n _ Z2SR°G('/27] [Gf*(i‘) - ZZSF*('/z)Re]

- [G (2) - ZZSROF('/Z)][F”Ei) - EZSG’*('IZ)R‘,]

(3-41)
which can be verified by applying identities (3~26) through (3-2 9)
to each product of this equation. One can show that the reflection
and transmission fesponses are simply related to each other by con-
serving energy through the stack of layers. When l'lh,,. = gm. is
the only wave vector incident to the n layers, we have
* - X ¥ -
S-S0 = dum-dm v Bem-LE -

Forreal W, i.e. |2| = i , each scalar product on the right-hand
side of this equétion represents the energy density flow of the P and
SV components leaving the n layers through an interface. The left-
hand sidé contains the energy density flow of the incident source
waves. Putting in the reflection and transmission responses, this

equation becomes

* *w (n) ) ©) -
5 (va) - 8y = (‘/1) {R (‘/z)RLi) + T(‘/Q)T(as}' S
+

for arbitrary sources. This is only possible if
X m n

¥y —©
R('/zuR(z) + T(T/z) by = Iz (3-43)

\
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n) _
We shall prove this equation using the solutions for Rtl) and | @)

given by (3-38) and (3-39). They give

(3 nd (0)
Rh(l/z)R(z) + T('/a) (z) = [F(‘/ﬂ - 2 R GKi)]
- 28 % »% x__
. {[z “R.Fo - G(va)][z FoaR, - G+ T.T,

. [Fei N -z 6*('/ R o] )

(3-44)

We now evaluate the terms within braces { } of this equation
-2
using (3-41). Multiplying (3-41) by Z Rb from the left, we get

[z R - R.Gua [ FuaR, - G*(ﬂ}

- R Fum - PRG6Ww][F -2 GuaR.]
‘ (3-45)

Now, since

we can write (3-45) as

[QSR Fay - G('lz)][zst*(:/;)R - G*(z)]
2-T.T. {Go/a)L FlunR. - G (2)] + sz)[Fm 3 GUDR ]}

+ [Fer - S PRG@[FY ) —2 G emR,]
(3-46)
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Rearranging the terms inside braces in this expression gives

25 % X ¥ X
ﬂ } = % LG(’/z)F(_‘/z) - F(’/z)G(.’/z)]Rc*‘ [F('/z)F(z) - G('/;)G(sn]

But from (3-26) and (3-27), we see that the terms of the first

bracket vanish, and the second bracket reduces to 1 2 There-

L)

fore,

It
1

2
and (3-46) reduces to
-29 2S5 __% ¥
[2 "R,F - Gu][z Fum - Gw) =
¥ - ¥
ToTo + [F('/z) -2 ZSROGLE)_][F (2 - 2256*('/2) R‘,] (3-47)

The left-hand side of this equation is the same as the product of the
bracketed times inside the braces of (3-44). Substituting (3-47) into
(3-44) gives

-1
[Fum - 2 R.Gw®] {[Fun-3 REW@][F & - 2”6 waR,]| -

-1
[F*(z) - 2GR RJ

which equals Iz . This completes the proof of (3-43).
Finally, we shall calculate the transmission response for a source
just above the O interface and verify the principle of reciprdcity

for transmitted waves through the layers.

Let a source 36 = 5, be incident from above the layers
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at interface 0 . Then setting

w = O

n+i

and

in (3-30) gives the equation

= < ) Gw ][ 3a,,]
Rou‘ +T° So s Fa N
= Z
25 25
q, z Gwa zFu|| O
(3-48)
Multiplying the second row of this equation by R o and sub-
tracting the result from the first row gives
b -9 2s
T,5, = % (Feay - 2 R‘,G('m) d...
Solving for a‘,,,, we obtain
‘Uﬂ 1
dy = T @8
(3-49)

(D)
where T (2) is the transmission response given by

-1
Yin) !

S 2s
T = 2 [Fe) -2 RG] T,

. (3-50)
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(o)

This transmission response is related to T @ by the
reciprocity principle. For example, a unit impulsive SV source just
below the n-th interface gencrates a transmitted P wave just above the
0 interface which equals the SV wave recorded below the n-th interface
generated by a unit impulsive P source above the 0 interface; all waves
and sources naving a common phase velocity C.

This reciprocity relation can be expressed in terms of the trans-

mission responses, i.e,

’*(Y\\

" (0)
Tey = Tw

(3-51)
This is easily vverified from the solutions given by (3-50) and
(3-38). Taking'the transpose of (3-50) gives
X s * 25 ¥ -1
D= 2z I, [F(z\ -2 6(1/;3R°]
(3-52)

where we have used the identity
"%
TO - To —

Comparing (3-52) to (3-38) we see that

¥ __©
I @&y = | @ :

as conjectured.
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3.5 Figure Captions

3.1 Stack of n elastic homogencous layers between two elastic

halfspaces. An upgoing source $.,, 1is incident to the layers from

the lower halfspace.
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Chapter 1V

Waves in a Layered Halfspace

4.1 Introduction

This chapter describes the propagation of homogeneous
plane waves in a layered halfspace, the uppermost interface being
free. As in Chapter III, we can define reflection and transmission
responses of a layered halfspace for a deep upgoing plane wave
source. Since no energy is transmitted across the free surface, the
transmission response is defined in terms of upgoing waves arriving
at the free surface from below. Such a response is useful, for ex-
ample, in computing the distortion produced by a layered crust on
teleseismic events recorded at the Earth's surface.

The reflec’gion response contains all the energy of the inci-
dent source since no waves pass through the free surface. As shown in

Section 4.2, this implies that
<
)
R&o R = 1,

which is a special case of the conservation of energy theorem given in
Chapter III.

Section 4'.3 describes the reflection and transmission response
when a downgoing source is located just below the free surface. This

transmission response equals the transpose of the transmission response
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for a deep source,
In Section 4.4, it is shown that the reﬂectioﬂ response for

a surface source equals the positive time part of the autocorrelation
matrix of the transmission response due to a deep source. This is
an extension to non-normal incidence of a theorem proved by Claer-
bout for compressional waves at r;ormal incidence. A possible use
for this theorem is to obtain reflection seismograms for the Earth's
crust from teleseismic events recorded at the free surface. At nor-
mal incidence, it is possible in principle to use the surface source
reflection response to calculate the impedances of the crustal layers
as described by Kunetz (1962) and Claerbout (1968). Unfortunately,
this inversion scheme is not easily extended to non-normal incidence
for reasons given in Section 4.3.

The estimation of the matrix polynomial

2s
M@z = Fay - 2 ROG(‘/z)

for observed transmitted waves at the free surface is discussed in
Section 4.4. The calculation of M(z) is useful because each re-
flection and transmission response discussed above can be obtained
from M(z) and Ro the reflection coefficient matrix for the free
surface. One may also remove the crustal reverberations contaminating

- : X
teleseismic waves by premultiplying the upgoing waves W, by M@.
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4.2 Transmission and Reflection Responses of a Layered Halfspace

for a Deep Source

We now adapt the results of the previous chapter to solve for
the P and SV plane waves in a layered halfspace. Ilet the upper half-
space in Figure 3.1 be a vacuum so ;cllat interface 0 is free. This) change
affects only the reflection and transmission coefficients at interface
0. No transmitted waves are possible across interface 0 so that

To = O . Also by conservation of energy

(4-1)
For a deep plane wave source ﬁh“ = §n+, , the waves
transmitted througH the layers to the free surface are given by (3-37),

i.e.

¥
’ u, = 25 M ~Zsa) S e
(4-2)
where we define the matrix
M@y = [F(z) - EQSROG(’/z)]
’ (4-3)
We shall call the matrix coefficient of  Sp,,  in (4-2) the

transmission response X( 2) of a layered halfspace generated by

N



76.
a deep source. Thus,
Xy = 2M @ =2 [F@ -2 GuaR,]
(4-5)
The reflection response generated by §n“ and recorded just be-
low the n-th interface is given by (3-39). Using (4-1) and (4-3) this

reflection response can be written as

n ‘28 * -25 ¥ X 25 % .
R@ =z [Fun -2 GaRJR[F@-2 GuaR,]
25, ¥ *_4
=z M UaR M (3
(4-6)
Similarly, fr;Dm (3-34), we obtain an alternate expression
n 25 -1
: R @) = % M (2) RQM(‘/Z\
(4-7)

. )
Comparing these last two equations, we see that R (2) is sym-

metric as in the previous chapter in which interface 0 was not free.
Taking the transpose conjugate of (4-6) and multiplying it by (4-7),
we have

*m ") - 25

~1 2
WnHR@= 2z MR M@ =z

S

-1
M2y R, M (/)

which reduces to -

¥y
R(i) Rm = 12

(4-8)
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using (4-1). This is a special case of the conservation of energy
theorem, equation (3-43), in which no waves are transmitted across
the free interface, interface 0.

We define the elements of the reﬂection response by

) Fep*) Fep(2)

R@ =

| Fps(2) st

(4-8a)
This notation is similar to that used in (2-12) to define the reflection
matrix for a single interface. In this case, the elements of are
frequency dependent rather than constant as in (2-12).
Putting these elements into (4-8) yields three scalg' identities,

which are

FopU/2) Fpo@) + Yops(W/adrps(2) = (4-9)

Y‘Pp('/'z) Fsp(2) t Vs (1/2) Pes (2) O (4-10)

{)
(e

Fsp(172) Psp(2) + Tg(1/2) rgs(2) (4-11)

Equations (4-9) and (4-11) state that eﬁergy is conserved when
the incident source at the bottom of the layers is either an impulsive P

or SV wave of unit power. In the frequency domain, these two equations

N
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show that the sum of the power spectra of reflected P and SV waves
equals 1 for either type of incident impulsive source. Moreover,

m
since R (%) is symmetric, we also have

Vps(2) = Visp(2)
(4-12)
Using this relation and subtracting (4-11) from (4-9) gives
Vpp /I, (2) = g (/2) g (2)
(4-13)
which shows that impulsive responses Y‘PPL?.) and Vssl2)

have equal power spectra. Thus, their Fourier spectra differ only by
a phase shift.

Let us define the Fourier spectra

-Ld: (w)
PP
S e = Apme
~ i pst)
s = Apdw e
- f.c‘; (w)
Vo (2) = Ass(“’) e

(4-14)

where

-lLwal
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Each A (w) in (4-14) is a non-negative amplitude spectrum and
each (1)((») is the phase lay spectrum associated with A (w) ,
Forreal W  replacing 2 by 1/2 on the left-hand side of
(4-14) is equivalent to reversing the sign of W on the right-hand

) \
side. Since each element of R (2)  represents a real time func-
tion, changing the sign of W oﬁly changes the sign of the phase
lag d)(w) of each term in (4-14).
Substituting the above spectra into (4-13) and (4-9) yields

two relations for the amplitude spectra of (4-14):

>
3
i

>
3

of (4-15)

Pre
g
H
=
§
>
_U
-0~
£

(4-16)
We néw utilize (4-10) to obtain an interesting equation relating the
phase lags. Combining (4-10) with (4-12) and substituting (4-14) and

(4-15) into the result, we derive

(g + cbps(w)) e__ (- dpstw) + ¢55(w))

e = =
‘Thus

d)Ps&“’\ = (d:'pp(w) + dw))

2 (4-17)

H

nI=
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Let us consider the low frequency limit of (4-17). For very long
wavelengths, the effect of the stack of layers above interface n dis-
appears and the reflection coefficients of r() (z) become those of a
homogeneous halfspace. For large phase veloéity, i.e.

C>>°(>ﬁ

the elements of R(n) (z) are obtained from equations (A-61) in Appendix

A:
e .
rep = =1+ 4(2)[1+5] . o
- 3% -
+1 4(2) [1 - 4]
s = = T > 0
4.z
Vs =  eNap > ©
1 - 49021 - B/
Therefore, c};rs(o) = O, c\')ss(o) = O , and d’fl’(& = =+

for large phase velocities. Equation (4-17) can thus be written with

no sign ambiguity as

c\%s = (P, = @ + G ?)

2 (4-18)

Equations (4-15), (4-16), and (4-18) show that given the Fourier
amplitude and phase spectra of any two of the four eiements of r(M) (z)

we can easily calculate the spectra of the other two elements.
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4.3 Transmission and Reflection Responses of a Layered Halfspace

for a Surface Source

In this section, we place a downgoing source vector 5, just
below the free surface of the halfspace and solve for the upgoing vec-
tor U, and the downgoing vector a'm., . These solutions will
give us respectively the reflection and transmission responses of
the medium for a surface source.

The downgoing wave a. equals the source vector 5‘ plus
the upgoing vector a. as it is reflected at the free surfaces. This
reflected vector is Roa, where Ro is the reflection matrix for the

free surface. Assuming that no deep sources exist in the lower half-

space, we set U,,, = O . Putting these quantities into (3-30),
we obtain
- - r - - - A
u S z (2) o *
’ Rou‘ + S, -5 o G n
= Z
- 25 25
a, J z G/a) Z F('/z)J ©
(4-26)

We now premultiply the second row of this equation by Ro

and subtract the result from the first row, giving
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28 25 . -
S F) -2 R,Geo),G@~zR,Fen)[d,,,
1 .
~S
= %
_ 25 2s
u, 2 G(/2) z Fw/a) |[O |
(4-27)
From the first row of this equation, we find
s 25 —1_
ah{-l = z [FG‘\ -2 R"G(‘/z)] Sn
-1
= ZS M (=) S,
(4-28)
and from the second row
- ©oas -1 -
a, = z GwaM w5,
(4-29)

-—

Taking the matrix coefficient of S, in each of the last two equa-

tions, we define the reflection response R(Z)
n)

response T@& as follows:

and transmission

25 -1 .
Raey = 2 GuwaM () (4-30)

s ~1
— - ~)
(@) : M@ (s



83.

where

R@ S,

&
1

(4-32)

ahn = TQZN §‘

(4-33)
There are two additional reciprocity relations we can obtain by

interchanging source and receiver positions, i.e.,

¥
T(i) = X

(4-34)

and

G %
.‘th) = R&

(4-34a)
The first relation is obvious from (4-3) and (4-5). The second

relation is easily shown if we write RL%L) in the form

-1

- R,

S

-2
Rwy) = [FyGwa z

using (4-30) and (4-3). To show that P\(Z) is symmetric, it is

only required to show that

~1 ,”‘* %
F(z) G (i72) = G (va) Fn )
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which follows from (3-29).

In both this and the previous sections, it is necessary to cal-
culate M(Z) for each transmission and reflection response. We
now derive a useful recursion relation for obtaining M (2) for

n layers. Equations (3-24) which give recursion formulas for

F( ) and G'L%) can be written as

¥4

Foy = 2 (R v GL®ZRZIZT,

m, s =) X

S 25, | n-i =1
-22 hROGh(’/SD = ~-% (i R :.vGrv(.‘/ﬂ + 2 Ro‘:\;ﬁ‘/z} Z \'\R\n2 n)z th

where Sn is given by (3-14). Summing these equations using
(4-3) yields

My

2s, ., ~1_* 4
[\/\h@\ = z [Mh_c'z) -2 ROMn‘(.f/a)ZnRhElh‘)Z“ Lo

(4-35)
This relation is a matrix extension of a scaler relation derived by
Claerbout (1968) for compressional waves at normal incidence. To

start the recursion, we let

-1 ¥y

M'm = 2‘“.[1-2 - ROZ,R'.EJZ.T.'

(4-36)
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from (3-19).

These two equations can be used to calculate M w(2) much
more rapidly than calculating Fn(?.) and 6“(?.) separately us-
ing equations (3-24). We can also use (4-35) to show conceptually
how the rays are summed in a mul’gilayer transmission problem. Let

us write this equation as

", 2Snmt -1 ' -~ )6_1
Mhu'\) = 2 Mnsxi)[IZ -2 th-?) R"th/;)z‘thz\r\] ZhT\“

or using (4-7)
th-1

. \ - *.
M@ = ZN"M“(_]%Y[IQ - Ry 2R, 2. ] Z:Tﬂ 1

(h=1) (4-37)
where R @) is the reflection response of the n-1 layers
above the (n-1)-th interface for a source located just below that inter-

face. Iterating upward through the layers using this equation and

(4-36) we obtain

y

Sn o ' s S '
M“GE\ = % [I,"‘ R”%.RlZ.]Z.T 1[—-[2— R(Z)zszza]Zsz

- (n-) -1 %
- (1, - R(Z)Znhah]ZhTh
(4-37)

For a deep source just below the n-th interface the transmission res-

ponse recorded just below the free surface is given by (4-5) .

-1 %y



86.

Using (4-37) this transmission response becomes

-1 |
' (o) _ ) o) .
X(z) = [I 2_- ZCRIZ|R ] le[lz- ZZRZZZR(Q)] Zz I 2
-y '
-+ [1,-Z.RZRw] 2,7,
(4-38)
(R)
On physical grounds, each reflection function R () is an in-

finite series in positive powers of Z , the first term being R K
the reflection coefficient matrix for the k-th interface. Since X(z) is
realizable each inverse in (4-38) must have a converging series expan-

sion in positive powers of Zz. . Thus we can write

(k-1

1, - ZR.ZRw 12T,

— ] (%-1) _ 2 .
2T + (ZRZR@)ZT +( VZET +
(4-39)
Let us consider the transmitted wave
q@ = X@3§,.,
(4-39a)

The accumulation of multiple reflected waves inside the n-th layer is

given by
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n-1

<,1
[Iz - ZHR;ZY\R (z)] Zth S

(4-40)
from (4-38). Assuming an expansion like (4-39) for this expression,

we see that the first three terms of (4-40) are

(-1

ZT s +(ZR.ZR®)ZT.5. + ( V2T,

n n

(4-41)
Each of these terms adds a contribution to Gh , the upgoing

wave just below the (n-1)-th interface. The first term contains the

—

direct P and SV arrivals, due to 3,‘,_, being transmitted through
the n-th layer. The second and third terms represent the first term

after multiple internal reflections inside the n-th layer. FEach reflec-
. (n-1
tion off the (n-1)th interface, indicated by R (2) , increases the
(-1
complexity of the waves because R (2) is the reflection res-

ponse of all the n-1 layers above the n-th layer. Thus, we have

-1 1

G, = |I,- Z.R.Z.R )] ZT.5...

—

Fach term of Uy, which is already very complex, is how operated
‘on in a similar fashion by the next matrix operator in (4-38) which

results in

<t
it
"
{
M
x
NN
Y
~
L
_—
N
-
-Cl
]

n-1i
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This matrix multiplication generates multiple reflections inside the
(n-1)-th layer, each reflection being "filtered" by the reflection res-
ponse of the (n-2) layers above the (n-1)-th layer.
Continuing this process through the layers gives the transmitted
wave a, evaluated just below the free surface. If we take the
first term of the expansion of each inverse of (4-38), we see that

the direct P and SV waves transmitted through the layers are given

by

a,(d."‘e‘:*) = Z|Tl Z o.T:z. e Z nTh §nﬂ

(4-42)
This term contains all possible combinations of P and SV waves trans-

mitted through each of the n layers . with no reflections.
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4.4 Calculation of Reflection Response R 2 from the Trans-

mission Response X (2)

In this section, we prove a useful relation which enables us
to calculate the reflectién response R(’U due to a surface plane
wave source, from the transmission response X () generated
by a deep source. A possible application of this relation is to con-
vert horizontal and vertical component seismograms for teleseismic
events to reflectioh-—type seismograms caused by surface plane wave
sources. Such reflection seismograms are usually easier to interpret
than transmission seismograms in mapping layers of the Earth's crust.

The relation we shall prove is

. : *
L, + R.R@ + RuaR, = X=X ()
| (4-43)
Responses R (2) and X (2) are used to calculate the up-

-

going waves -Y-‘. and )?, reccrded below the free surface, i.e.,

R g,

]l
n

(4-44)

and

(4-45)
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where S, is a downgoing source located just below the free
surface, and S nel is an upgoing source just below the n-th
interface.

R (2) represents a realizable time function. Therefore,
it must contain only positive powers of Z . Similarly, R(‘/ z)
must contain only negative powers of Z ., To obtain R@) using
(4-43), we calculate the autocorrelation matrix X (1/32) Xx‘( 2)
which contains positive and negative powers of Z , and set
those terms containing positive powers of 2 equal to R.R2y.

This remarkable theorem was formulated in the normal incidence
case by Claerbout (1968). He derived a scaler relation similar to
(4-43) for compressional waves.

At normal incidence, each matrix in (4-43) becomes diagonal
so that two uncoupled scaler theorems are obtained, one for P waves
and one for SV wéves.

The proof of (4-43) we now give is a little more complex than
Claerbouig's proof, but follows his steps almost exactly. We first
substitute the expression for X (2) given by (4-5) into (4-43).

This gives the equation we shall prove, i.e.

% ~1
M W’”hz + R.R@ +R<'/2>R°] = M@

(4-46)

From the first row of (4-26) and equation (4-28) we obtain

-1
5 + R,v, = FeaaM @
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Using (4-44) this yields

-1
I,+ RRa= F@aMm

(4-47)
Transposing (4-30) we obtain
-2s *-i %
Rt/aR, = 2 M uaG»R,
(4-48)
Summing these two equations, we find that
¥
M('/z)[I2 + R R + Rum Ro] =
* w1 -2 *_4 b
My FeayM (0 + 2 M /2y G Ro =
* -25 % -1
MuaFa + 2 G@OR M ¥ M (2
(4-49)

¥
We replace M (/2) and M=) inside the
braces { } on the right~hand side of this equation by expres-

sions in F(i) and (-(2) from (4-3). The result is

-5 ¥

{[Ft‘/a) - i_sztz)RJ Fo + 2 G@ Ro[}?m - ZQSROG('/a)]

-

2
Since the two middle terms cancel and Ro = I 2 , this

reduces to
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{ F¥(;/2) F - G“(a) G ('/;&)}

_ But this expression equals Iz from (3-28). Equation (4-49)

therefore reduces to

* - -1
M (13) [il + R,R@ + RwnR,] = M@

proving (4-46) and (4-43).
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4.5 Estimation of M (2)

A useful inverse problem is to estimate the matrix polynomial
Mtz) from recorded data at the free surface. Given M(z) and the
reflection coefficient matrix Ro for the free surface, equations
(4-5), (4-7), (4-31), and (4-43) show how to calculate transmission
and reflection responses for a layered halfspace for a plane wave
source located either at the free surface or just below the deepest
interface. An important application would be to remove the effects
of crustal reverberatioun on teleseismic events recorded at the free

surface of the Earth's crust. To see this, we rewrite (4-2) as

% S -
M () ie;y = z S@

(4-50)
where a(i’.) is a vector of the upgoing P and SV waves arriving at
the free surface., and 5(2) is an upgoing plane wave teleseismic
event incident to the base of the crust. M2y ) u@ and SLi.)
each repxiesent time functions sampled every AT sec., The term
zs in (4-51) has the effect of delaying the source in time by SaT
which is the one-way transit time for SV waves through the crustal
layers.

If we have calculated M (2) for the crustal structure below
the receiver, we can perform the multiplication of M*LZ) by QL%)
indicated by (4-50) to obtain the upgoing wave S(2) which is uncon-

taminated by crustal reverberations. This multiplication corresponds

N\
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to a straight forward convolution in time.

The first step is to convert recorded horizontal and vertical
velocity components at the free surface to P and SV components of
U2). To do this , we need to know the phase velocity ¢ of the
teleseismic event and the physical qﬁantities X., B, and P,
for the uppermost crustal layer. From this information, we can cal-

culate

(4-51)
where matrix Ki is given by (2-45).
~ We now assume that our particle velocity data has been trans-

formed to upgoing waves W . Let us define the following series in Z .

, K
- - 1
Q) = Z Siz

t=0

ob
_ _ t+p
wu@) = U,z

+t=0

25

t

M(Z) = Mii

+t=0

(4-52)

The source is assume to have a finite time duration X&T , and time
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is defined to be zero when the first source vector 50 arrives at the

base of the crust. The recorded waves W(2)  at the surface have

—

an infinite number of terms, the first sample W, arriving at time

paT which is the one-way transit time through the crust for P
waves. M(2) is a matrix polynomial of degree 25 with real matrix
coefficients ’VLh

Inserting equations (4-52) into (4-50) yields an equation in
which an infinite series of 2 on the left equals a polynomial in
Z on the right-hand side. Equating coefficients of powers on

on each side of the equation, we obtain an infinite set of linear equa-

tions in the matrix coefficients of M + 1 l.e.

[ % 19 1 i )
uo S O MO O
- % X )
VTS M o
-~ X -~ ¥ — .
U, u, uo M2 - .
* . O
. . . - %
Se
X ¥ ﬁﬁ M §¥
L‘tzs l’lzs-l ¢ 25 .'
¥ - x % :
uzsu uzs u' 5*
K
. . . O
——X -* ‘
EU-oo+zs llw‘ ]

5-p

28108
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These equalions illustrate the recursive nature of the observed

data W (2) . For n greater than s-p+k we have

* _ ¥ _* =¥ M
EhMo = —{Uhth,-*Uh,z‘Mz‘\“ see ot W as ZS}
(4-54)
independent of the source S @) . This equation seems to give
a rapid matrix recursion for calculating u@ if M(i) were known.

-1
To do this both sides of (4-54) would have to be multiplied by Mo

~ X -
to give U, in terms of earlier values of W(2) . Unfortunately,
this is not possible because M o is always singular. It can be

shown from (4-37) that for any number of layers the first term of M(%)

has the form
6] (e

Mo""

WMoy Maa

which cannot be inverted. The basic reason for this is that P and SV
transit ti/mes through a layer are always unequal integer multiples of
AT .
Another reason ™ o must be singular is seen directly
from the first s-p equations of (4-53). If M o were non-singular,

these equations would force the first s-p data samples to vanish, i.e.

% _ ¥ —_
u = u ¢ oo = us_p\1 - 0

© i

1

This is impossible on physical grounds, because the first arrival of

a(i) should be Go , the direct P wave through the crustal layers.

N
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In the case of normal incidence, we can treat P and SV com-
ponents separately and derive a set of equations like (4-53) and a
recursion relation like (4-54) for each component. All terms will be
.scaler terms rather than vectors or matrices and the s-p leading zeros
in (4-54) will not occur. As a result, the scaler recursion equations
can be used to compute UP (0“ U S(ﬂ)). Such computations
are described by Claerbout (1968).

Returning to the non-normal incidence case, we consider the
inverse problem of calculating M_,(i) from  W(2) and S@)
The infinite number of rows in (4-53) do not overdetermine the system
of equations if the solution for M (2) is exact. In any practical
computations, however, there are errors in 6(2) due to inexact
transformation of particle velocity components to upgoing P and SV
components of w2 . Also, estimates of 5(2) will certainly
have errors. T};erefore, instead of choosing 4s+2 rows of data to
compute Mo ) M, y °°° Mzs: it is more practical to compute the
least sqtllares solution of M () utilizing all the rows of data. In
the absence of errors in Uuz) or §(9.) the least squares solu-
tion is, of course, also the exact solution.

To do this, we multiply both sides of (4-53) from the left by
the transpose of the coefficient matrix. This gives the normal equa-
tions for a two channel filter problem. These equations are Wéll
known (Backus, et.al., 1964, Schneider, et. al., 1964) and can be

rapidly solved by an adaptation of a recursion algorithm by Levinson

N
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to multichannel problems (Wiggins and Robinson, 1965). The normal

equations we obtain are

- - ~

A R, - A M.
Ry

Ld
® -

&xﬂ—v
_:R.zs ﬁzs-i "t ﬁo -Mis- L O {4-55)

where R T and )j,,c are 2 x 2 correlation matrices defined by

(¢}

Y
L,
Q

<

>
L@
<

.
‘s

ob
_ _ %
t=0
-" K *
ﬁ't = Zu‘i-twﬁ S, 4-s6)
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Chapter V

Application to Two Transition Zones in the Earth

5.1 Introduction

The discrete time calculation of P-SV body waves described in
the previous chapters can be readily applied to many transition zones
within the Earth. The only serious restriction for the method is that
critical angles of reflection must not be exceeded at any interface be-
tween layers of aﬁ assumed model, since this introduces inhomogeneous
waves into the model response.

In this chapter, the time domain responses of two transition-
zones are illustrated by computed examples. The first zone is the
crust of the Earth. In section 5.2, the transmission responses of two
plane layer crustal models under the Large Aperature Seismic Array
(LASA) in Montaha ‘are calculated for normalvand non-normal incidence
of impulsive teleseismic sources. The second transition zone con-
sidered i/s the core-mantle boundary. Reflection responses in time
for five models of this zone are calculated for a wide range of inci-
dent angles for P and SV sources in the mantles. These responses
are described in section 5.3.

A computer program was written in Fortran IV for the IBM 360,
Model 65, to solve for the reflection and transmission responses of
a stack of elastic layers between two halfspaces to an upgoing source

in the lower elastic halfspace as shown in Figure 3.1. The program
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allows the upper halfspace to be solid, fluid, or vacuum. If the
upper halfspace is a vacuum (i.e., interface 0 is free), then the
matrix éolynomial M (z) for all the layers is calculated using the it-
eration given by (4-35). The transmission response X(z) for the

layered halfspace is then given by (4-5), i.e.,

* *
Xiz) = 2M @ =z Adj (M@)
det IM(2)] (5-1)

where ddlM(z)l " is a polynomial in integer powers of z. On the

other hand, if the upper halfspace is solid or fluid then the iterations
in (3-24) are utilized to calculate matrix polynomials F(z) and G(z) |
separately for the stack of layers. From (3-34), the reflection response

h
R (2) for the layers is given by

(L))

. -4
() = - [Feo - 2 R,Gws] [6( -2 RFwa)
(5-2)

This expression is used to calculate the core-mantle reflection res-
ponse where the upper halfspace is taken to be the fluid core and the

lower halfspace the solid mantle.
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5.2 Transmissicn Response of Two LASA Crustal Models

In their study of crustal variations under LASA, Glover and
Alexander (1969) computed long period spectral responses of plane
layered crustal models which were approximations to models obtained
by seismic refraction studies in Montana.

Two of their models, USGS3 and TIl are used in this sec’;ion
to illﬁstrate the horizontal and vertical components generated at the
surface by impulsive teleseismic sources. These two crustal models
have the layer pai'ameters listed in Table 5.1.

With a time’incrernent of AT = ,05 sec., which is the sample
interval of the LASA digital recording equipment, matrix polynomials
M (z) were calculated for each model for horizontal phase velocities
corresponding to incideﬁt P wave angles of 0° and 30° in the mantle.
The four elements Z)f each M(z) are displayed as sampled functions
of tirr;e in Figurés 5.1 to 5.4. For display purposes, each time func-
tion has been convolved with a gaussian pulse having a width of 34T
sec. The actual time resolution of the computed response is AT =,05
sec., which is 1/20 the interval between vertical timing lines.

At normal incidence, the matrix M(z) for each model is diagonal,
so that the transmission response X(z) is qlso diagonal containing only
" the uncoupled P and SV responses, i.e., upgoing P and SV waves gen-
erated respectively by impulsive P and SV sources incident to the
crust from the mantle.

As shown in Figures 5.2 and 5.4, at non-normal incidence, the
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Layer Parameters

15 /3 r d
Model Layer km/sec km/sec g/cm3 km
No. :
USGS3 1 3.00 1,77 2.40 2.5
2 6.15 3.61 2.90 19.5
3 6.70 3.96 3.02 27.0
4 8.30 4.60 3.65 had
Til 1 2.60 1.50 2.31 .3
2 3.70 1.85 2.54 2.0
3 6.08 3.51 2.85 15.0
4 6.97 4,11 3.10 17.0
S 7.58 4,47 3.22 23.0
6 8.07 4,67 3.55 o

TABLE 5.1 Parameters of LASA Crustal Models Based on Seismic
Refraction Studies (after Glover and Alexander (1969)).
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off-diagonal elements of M (z) are no longer zero, indicating that
coupling between P and SV waves in the transmission response X(z)
is significant.

The vertical and horizontal components of motion generated at
the free surface of each model by impulsive P and SV sources can be

obtained from X(z) by taking the matrix product

1
v(z) = = K X(2)
(5-3)
where K is a scalar matrix given by (2-45). The first column of V(z)
contains horizontal and vertical velocity components caused by an
impulsive P source, whereas the second column of V(z) contains
velocity components generated by an SV source in the mantle.

Plots of the %our velocity components of V(z) for each model
are s};own in Piéures 5.5to 5.8. The upper two records in each
figure are generated by an impulsive P wave and the lower two records
are due to an impulsive SV source, all waves having the phase vel-
ocity indicated in each figure.

The time functions are generated recursively in the computer
program by dividing Adj (M(i)) by the polynomial det IMw@)]
‘The infinite series obtained in integer powers of z can be terminated
after some arbitrary power z“ has been reached. This corresponds
to calculating a time window of length haT for each response.

In each particle velocity figure, zero time is defined to be the
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arrival time of the first direct P wave through each model. At normal
incidence the SV wave in each model lags about six seconds behind
the first P motion. At non-normal incidence, some direct P wave
energy arrives at zero time even for those traces generated by impul-
sive SV sources in the mantle.

Once M(z) has been calculated for a layered halfspace, the fre-
guency response of the medium for any W is obtained by setting
z = e—i.wa't . This has a computational advantage over Haskell's
method if a large ‘window of spectral points are to be computed, be-
cause in Haskell'ls technique, a new iteration through the layers has
to be computed for each frequency.

Since vertical transit times for P and SV plane waves in each
layer are rounded off to integer multiples of the sampling increment
AT , there is sgme time distortion introduced in the transmission
respoﬁse of the 'crustal models. This distortion is too small to be
seen in Figures 5.5 to 5.8, and can only be detected in the frequency
domain. Figure 5.8a shows the frequency response of the velocity com-
ponents plotted in Figure 5.6 for model USGS3. The four spectra
are obtained from (5-3) and (5-1), i.e.

~lSwar ~1 '
Vi = & KM
Vpe (5-4)

Thus, it is only necessary to invert the spectral matrix of M(z)

to obtain V(w ) rather than Fourier analyze the particle volocity data
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directly.

Figure S.Bb show:s"the same spectral responses calculated
exa_ctly using Haskell's matrix formation. Corr‘lrparing this figure to
Figure 5.8a, we see that responses calculated from M (z) have some
slight distortion in amplitude and nhase which 'increases with fre-
quency. This distortion can be neglected over the frequency range

shown in any practical computations.

Bl
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5.3 Reflection Response of the Core-Mantle Roundary

Recently, Teng (1967) computed the reflection and transmission
responses of five plane layered models of the core-mantle boundary
.of the Eart{. Using Haskell's technique, he computed the amplitude
response of each model for incident plane P and SV waves over a
period range of 2 to 100 seconds. From these responses, Teng quali-
tatively discussed several questions:

(1) For an assumed structure of the core-mantle boundary,
what effects on core phases can be expected and which core phases
are more sensitive to the layered structure ?

(2) At which epicentral distances do these effects become
more pronounced ?

(3) What frequency bands (or records from what instruments)
are most suitable to 'detect these effects ?

(4) What 'window length is best suitable for a study of the
core-mantle boundary ?

Mc;st of these questions can be directly answered by examining
the impulsive responses in time of the various models. In this sec-
tion, the reflection responses of each model considered by Teng are
calculated. These can be used as guides for estimating the variation
of a.mplitude and wave shape of reflected core phases at different
angles of incidence in the mantle.

A listing of layer parameters for each model is given in Table

5.2. These models are arranged in increasing complexity of their

\
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Layer Parameters

Model Layer 23 3 od Thickness
No. No. km/sec km/sec gr/cm?’ km
1 0 8.040 0.000 10.060 oo
1 13.680 7.200 5.355 20.00
2 13.700 7.225 5.325 80.00
3 13.700 7.250 5.300 s
2 0 8.150 0.000 9,400 0o
1 13.720 7.195 5.675 18.00
2 13,710 7.200 5.665 20.00
3 13.700 7.205 5.655 20.00
4 13.690 7.215 5.645 20.00
5 13.680 7.220 5.640 haud
3 0 8.150 0.000 9.400 had
1 10.200 5.200 6.200 11.00
2 11.600 6.100 5.670 13.00
3 13.000 6.840 5.660 12.00
4 13.690 7.210 5.650 co
4 0 8.300 0.000 9.500 oo
1 10.000 2.800 6.700 30.00
2 13.600 7.500 5.500 0
5 0 8.300 0.000 9.500 s
1 -13.300 4,800 6.700 100,00
2 13.600 7.500 5.500 R

The interface between the zeroth and the first layers
corresponds to a depth of 2898 km. The model num-
ber refers to:

(1) Gutenberg - Bullard I (Landisman et al, 1965)

(2) Standard model (Dorman et al, 1966)

(3) Model R 1 (Dorman et al, 1966)

(4) Model 94 (Phinney and Alexander, 1966)

(5) Model 81 (Phinney and Alexander, 1966)

TABLE 5.2 Models of Core Mantle Boundary (after Teng(1967)).
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spectral reflection response. Models 1 to 3 represent a transitional
lower mantle meeting a fluid core at a sharp interface. These models
were obtained from free oscillation studies (Landisman, et al, 1965,
and Dorman, et al, 1966). Models 4 and 5 were suggested by Phinney
and Alexander (1966) to fit observed P waves diffracted along the core
mantle boundary. Models 1 and 2 have more than one layer bu’; the
impedance contrast  between layers is negligible except for the inter-
face 0 which is between the fluid core and first solid mantle layer.

On the other hand, models 4 and 5 each have one layer between

mantle and core, iout the contrasts in shear velocity and density across
each interface are large enough to cause strong oscillations in the
amplitude spectra of the reflection response. Figure 5.9 is a dupli-
cation of Teng's Figure 2. showing the amplitude spectra of SV to SV
and P to P reflection coefficients for the 5 models each calculated for
an incident angie of 60° in the mantle. For the more complex models,
it is clearly difficult to interpret these spectral responses in terms

of reflec’;ed core phases in time, especially for short period phases.
One can synthesize a time domain response by inverting a band limited
spectrum, but strong oscillating precursors will result.

The impulsive reflection response in time for each model was

“calculated for incident angles of 0° to 75° for P waves and 0° to

~ 329 for incident SV waves. These responses are plotted in Fig-
ures 5.10 to 5.24. These figures are arranged in three groups of five.

The first group contains the P to P reflection response F?P(-H for
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models 1 to 5. The second group is a set of P to SV reflection res-
ponses [ps (t)  and the third group are the SV to SV reflection res-
ponses Vss{t) for the five models. On all figures the vertical
scale equals 1. between adjacent traces. No reflection response
can exceed 1. at any time although the SV to SV responses are often

near

nearly 1. because the {luid core is ,aApérfect reflector for shear waves.
Source and receiver are located just below the lowest interface in
each model of Table 5.2., and time equals zerc when each impulsive
source is excited'..

Let us examine first the Fpp responses in Figures 5.10 to 5.14.
As Teng pointed out from the frequency responses, Models 1 and 2 are
indistinguishable, and in fact the effect of the layering is nil since
only the reflection off the fluid core shows up. Model 3 has an in-
teresting response;for two reasons. At normal incidence, two short
period phases o'f opposite polarity might be detected since they are
separated by 5 sec. However, long period data would be destructively
interferecfl because of the opposite polarity of the two pulses. At
large angles of incidence, it is seen that one could easily mistime
the first arrivals of this response by 5 seconds and also obtain the
incorrect polarity. It appears that a time window of 5 to 10 seconds
is needed to adequately detect such a feature in the response. Models
4 and 5 offer even more chance of mistaking the arrival time and polarity

of the first motion of the r,. response. Also, much larger time windows

PP

of 30 to 60 seconds would be needed to discriminate these last two



111.
models from numbers 1 to 3.

Kanamori (1967) showed that transition zones with linear velocity
and density grédients must be sharp (¥ .25 km) to produce PcP phases
so similar in shape to P events for A& =~ 47° to 75°. Thus, to ex-
plain observed core phases a sharp discontinuity must exist at the
core-mantle boundary.

In view of the model responses discussed above, however, it is
possible that more than one ‘c'ﬁscontinuity could exist and not be easily
detected since most studies utilize only the first few seconds of short
period PcP phases for calculations of first motiqn and amplitude.

Buchbinder (1968), for example, documents evidence from earth-
quakes and explosions showing that PcP first motions go through a
sign reversal at & = 32~°, corresponding to an incident angle of about
36© at the qore—mantle' boundary. Assuming a single plane interface
between mantle and core, Buchbinder found that with acceptable vel-
ocities for the mantle and core, an abnormal density ratio of 1. was
needed to I;roduce a.first motion sign reversal at 36° incidence angle.

One possible way to avoid this density problem is to insert a
layer of intermediate velocities and density between core and mantle.
The reflection response, rpp(t) for Model 4, shown in Figure %.13, has
a Weak' first impulse which changes polarity between 15° and 30° in-
cident angie. To strengthen this first impulse an
change to the interval between 300 and 400: it is only necessery to

lower the compressional velocity of layer 1 in Model 4.
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and Iy for Models 4 and 5 show

The reflection responses r s

ps
even more pronounced multiple reflections due to the strong reflec-
tion coefficien;cs for P to SV and SV to SV waves at the fluid core bound-
ary. Of particular interest is rqg for Model 4 . At normal incidence,
it predicts three strong arrivals separated by about 20 sec. time. As
the angle of incidence increases, the first and third arriv;als die out
and a new first arrival of opposite polarity emerées; If such layering
exists, this variation with incidence angle could be verified with good
quality long period ScS data.
5.4 Conclusion
The present time domain approach to layered media problerhs
can give high resolution reflection and transmission responses with
no precursors in time. E[‘hese responses can be directly compared
with observed records of particle velocity. The roundoff error intro-
duced by the discrete time formulation is negligible provided At
is chosen small enou'gh/. For thin crustal layers ( ~ 2 km. thick)
AT =.0.5 was found to be fine enough for frequencies up to 2 cps.
In calculating each time domain response, polynomial matrices
are obtéined which can be Fourier analyzed to obtain the spectral res-
ponse of the layers, without repeating the layer iteration for e2ch
frequency value.
Simple reflection responses in
models are much easier to interpret than spéctral responses in terms

of recorded data.
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.5.5 Figure Captions
5.1 Elements of 2x2 ;n’atrix polynomial M(z)l'flor crustal model
USGS3. Normal incidence case. |

5.2 Elements of 2 x 2 matrix polynomial M(z) Af’or crustal model
USGS3. Phase velocity of 16.&0 km/sec corresbonds to P waves
incident at 30° and SV waves incident at 16.1° fo base of crust.
5.3 Elements of 2 x2 matrix polynomial M (z) for crustal model
TIl. Normal incidence caseﬁj’

5.4 Elements of 2x2 matrix polynomial M (z) for crustal model
Til. Phase velocity of 16.14 km/sec corresponds to P waves
incident at 30o~and SV waves incident at 16.8° to base of crust.
5.5 Particle velocity components at free surface of crust model
USGS3. Top trace is generated by impulsive P-source at normal
incidence. Bottom trace is generated by impulsive SV-source at
normal incidence.

5.6 Particle velocity components at free surface of crust model
USGS3. Traces 1 and 2 are generated by P source at 30° incidence
and traces 3 and 4 are generated SV source at 16. 1° incidence.
5.7 Particle velocity components at free surface of crust model
TIl. Top trace is genera.ie:d by impulsive P-source at normal inci-
denne. Bottom trace is generated by impulsive SV-source at normal
incidence.

5.8 Particle velocity components at free surface of crust model

TIl. Traces 1 and 2 are generated by P-source at 30o incidence,

and traces 3 and 4 are generated by SV-source at 16 .89 incidence.
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5.8a Spectral response of horizontal and vertical velocity compon-
ents shown in Figure 5 ..'6. for model USGS3 at nén—normal incidence.
Solid lines are responses for impulsive P—sourc‘:.e and dashed lines
are for impulsive S-sources. Responses are calculated by inverting
the spectral matrix of M(z).
5.8b Spectral response of the velocity components in Figure 5.6
for model USGS3 at non—r’lormal incidence. Responses are calculated
by Haskell's rpethod as a ché?:k on the accuracy of the response in
Figure 5.8a.

5.9 Reflection responses rpp(w) and rgg(w ) for 5 models of the
core-mantle boundary over the period range 2 to 100 sec. (after
Teng, 1967).

5.10-5.14 Reflection responses Ipp in time at different angles
of incidence to the core mantle boundary. Figures are for models 1
to 5 given in Table 5.1. Vertical scale equals 1. between traces.

5.15 - 5.19 Reflection responses r ¢ in time at different angles

p

of incidence to the core mantle boundary. Figures are for models 1
to 5 given in Table 5.1. Vertical scale equals 1. between traces.

5.20 -5.24 Reflection responses r_. in time at different angles

S8

ot 1incidence to the core mantle toundary. Figures are for models 1

to 5 given in Table 5.1. Vertical scale equals 1. between traces.
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Chapter VI

Plane Waves in a Medium of Solid and Fluid Layers

6.1 Introduction
In this chapter, the treatment ol elastic waves in Chapters

1I and 1II is modified so that one may calculate homogeneous plane
waves in a medium of solid and fluid layers. Dorman (1962) used
Haskell's matrix formulation to obtain the period equation for the
normal modes of a layered halfspace for any sequence of solid and
fluid layers. Recently, Teng (1967) calculated the frequency res-
ponse of body waves reflected off and transmitted through various
models of the Mantle-Core boundary of the Earth., In an appendix,
Teng derived a 4x’4 fluid layer matrix which can be used with solid
layer matrices to éompute waves in alternating fluid and solid layers.

- As noted by Haskell (1953), the basic difficulty at a solid-
fluid interface is that four elastic potentials in the solid cannot be
calculated from two velocity potentials in the fluid or from the nor-
mal stress 'tl.i and vertical particle velocity w at the
interface. In order to solve such an underdetermined system of
equations, other boundary conditions for the layered medium have to
be imposed. Dorman, for example, used two extra constraints,
namely, that the «s;tress components vanish at the free surface, and
that no upgoing sources exist in the lower halfspace below his layered

model.
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‘We shall consider a problem similar to that solved by Teng.
Our layered model consists of a set of horizontal solid and fluid
layers sandwiched between two halfspaces. The upper halfspace
may be solid, fluid or vacuum, and the lower halfspace may be solid
or fluid. The additional constraints are that a known upgoing source
be located in the lower halfspace just below the lowest interface,
and that no downgoing sources be located in the upper halfspace.

Reflection and transmission responses for the set of layers
are calculated, and from these responses, body waves inside each

fluid and solid layer can be computed.
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6.2 Dcscription of Solid and Fluid Layers

Following Dorman, we assume a horizontally layered medium
of homogeneous, isotropic solid and fluid layers. When possible,
we combine all adjacent solid layers into single inhomogeneous solid
layers, and similarly combine adjacent fluid layers. This results in
a model of alternating solid and fluid layers, where each new layer
is inhomogeneous if it consists of more than one homogeneous layer.
We shall assume in general that the new layers are inhomogeneous.
These layers are numbered 1 to n from top to bottom. We shall
assume that the set of layers is bounded from above and below by
homogeneous halfspaces. Within the medium, a typical sequence of
three such layers is shown in Figure 6.1. Layers k and k+2 are solid
and layer k+1 is fluid. As shown in Appendix A, compressional waves
DP and UP in a flleid are obtained by replacing each elastic potential
term | 'gn({ls'?‘ - «t) by (13'(13‘ F-ot)/«  where <l>‘ is
the first total derivative of a velocity potential C}) . In this way,
the fluid waves retain the same physical form as in an elastic solid,

i.e.,
UP(huF - ) = VPR osd Ve,
DP(psF - ) = pok wosd Ve,

(6-1)
where  Vp ~—and Vp, are the total particle velocities assoc-
iated with the up and downgoing waves respectively. The particle

velocity directions are the same as shown in Figure 1 for anelastic solid.



144,

The layer matrix iteration for fluid compressional waves at
non-normal or normal incidence has the same form as the uncoupled
compressional waves in a solid layer at normal incidence. Since
layer k+1 consists of adjacent homogeneous fluid layers, we can
apply iterations like those of section 3.2 to obtain a matrix relating

waves at the top and bottom of the inhomogeneous layer. Let UPKH

and Dpx“ be the fluid waves at the top of layer k+1, and let
] ]
UPxs+, and DPy;,  be waves at the bottom of this layer

as shown in Figure . Given'the thickness, velocity and density
of each homogeneous fluid layer within layer k+1, we can apply equa-

tions (3-5) and (3-7) successively to obtain a relation of the form

| I

DP | edS® 9| [pP

I
ri;]

|UP | _ZZP‘;l(‘/z) 2 $¢/2) |y P'J

L Kt K+ 1

(6-2)
where Pk“m’t is the one way transit time for compressional plane
waves through layer k+1, As in (3-8) and (3-10) $¢2) and oa_(z)
are polynomials in 2 . The proof of (6-2) is the same as for (3-8)
and will not be repeated here. If layer k+_l consists of only one homo-
" geneous fluid layer, then S$czy = 1 and %(2) = 0.

A similar matrix relation can be derived for 1ayérs k and k+2
in Figure 6.1, Applying equations (2-26), (2-27), (2-28) and (3-13a),

we can relate the waves at the top of each inhomogeneous layer to
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those at the bottom. For layer k, one obtains

g ‘ rF(z) G

~ 25 23

Uy | 'z G 2 Fgy) Gy
(6-3)

where F(‘E‘-) and G (2) are 2 x 2 matric polynomials in 2 , and

SKA'L' equals the one-way transit time for planc SV waves through

layer k. If layer k consists of a single homogeneous layer, then

is the null matrix and

Py
SKZ O
Fizy = = s,
0 Z*

as shown by (2-25) and (2-26). As in the fluid layer, P AT
equals the P wave transit time through layer k.

The purpose of equations (6-2) and (6-3) is to isolate the
solid-fluid interfaces, since no problems arise at solid-solid or
fluid-fluid interfaces. In the following section, the problem of cal-
culating the solid waves in layer k+2 from those in layer k is solved

in detail.
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6.3 Recursive Calculation of Reflection Response

. (R+1)
In this scction, the reflection response matrix R () s

determined for interface k+1 in Figure 6.l such that

(R+1)

a = R(Z) Cl\uz

K+ 2
(6-4)

This reflection response was introduced in Chapter III, equation (3-33)
for a completely solid layered medium. In this case, we shall derive

(R+1) (R~
R () in terms of (2)

a recursion formula for finding
This recursion can be used to find the reflection response of the com-

plete set of layers. For example, if layer 1 is solid, we have

) (o)
so that R = R Starting with R the reflection response

(m
R (=) for all the layers can be calculated if layer n+l is a solid

0"

halfspace.
Referring to Figure 6.1, the difficulty is in relating the solid
waves in layers k and k+2. One cannot directly calculate a

K+ 2

and amz from aK and U w  because two degrees of freedom
are lost in crossing interface k, i.e. four solid waves are linearly
combined to give two fluid waves. At interface k+1, two fluid waves
are not enough tc; determine the four solid wave components of &TH”

and Uy,, .
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However, we can calculate a matrix which gives the solid

~ !
waves W and 3,“: leaving the fluid layer in terms of the

1
incident waves U 4 and ak . Let S£2) be this 4x4

matrix defined such that

3 S S [ 3«

K+2

-\ - -
le LSQILE) SZ'th‘)_‘ _uK+2 N
K+1 (6-5)

where SijLz) are 2 x 2 partitioned submatrices of S(i‘) . The
EJLE) are derived later on in this section.
Assuming 5 (2) is known, one can find the recursion for-
(*+1) (k-1
mula for calculating (2) from R (2) . At interface k-1, we

have

(R-1)

d‘K = R(i) U*K

(6-6)

Substituting this equation into (6-3), we obtain

. (R) \
aK = \/ (2) GK
(6-7)

where

1

K)

(K) (K) 25, (K-1) K) . vy 25 (R-1)
\/ (2) = - [F (2) -2 R @) G(‘/z)] [6(1) -z R@ Fya

(6-8)

)
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(R)
We note that \/ (2 depends only on the phvsical parameters of

the layers above the k-th interface.

The second row of (6-5) gives

(K+1) i T (R+)
1
W, = Sza(i) a‘K + Szz(z) W,,a
(6-9)
[]
Using (6-7) to eliminate aK yields
1 _ (R+1) -1 CR+1D
a = (I,-S,@V La) ) S, Uy,,

(6-10)

Similarly, putting (6-7) into the first row of (6-5), one gets the re-

lation

(X+1) (K) N (K+)
S Ve b, + S () Oy,
(6-11)
1 ‘
We eliminate U in (6-11) by using (6-10). This gives the
final result
-1
a [S(K*l; f__ S(:w \/UO (Kzg) (K+)
TRe2 T 2 (2)( DVE 522 ' Slz(i) K+2

(6-12)

By comparing this equation with (6-4), one sees that

(RaD (k1) (k¥ (K) (R+1) (H+r)

R = Sm\/(z)( Sczw\/m)5<z>+ I

(6-13)
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(X+ 1) (x)
This equation is e recursion formula for R (2) since \/ (2)
(x-1)
depends on R (2) . As shown below, the submatrices

depend only on the properties of layers k-1, k, and k+1. Therefore,
(R+1)
R (2) is a function of layers k+1, k, ... 0.

The remainder of this section gives the algebraic details in
the calculation of S (2) defined by (6-5). The first step is to
write the linear equations relating the solid and fluid waves on each
side of interfaces k and k+1. These equations are obtained from
(2-11) by eliminating those reflection and transmission coefficients

which vanish or are undefined at a solid fluid interface. Doing this

for interfaces k and k+1 gives two sets of equations, i.e.,

- v I 11T . [ | |

Epp tep OO bP 1 -T%l| DP

r—"— - ‘-l- —I —_—— = - | - -—-' -— - _— - -

“Fop ~Tsp 1 O DS | = O |tPP UP "
I S '

"‘r[;s “r;s : 0 1 UP O : 't'ps

- ~ - -K

Us

(6-14)
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DS
upP
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Kl
US
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(6-15)

For convenience, let us define the following vectors and scaler

guantities:

—_ +~PP
T =
| tps
[ -—E
o - PP
,tl(-n - |
.‘EPS
Y\K - [Y\??]K

_ -'L"PP .
K _t;p K
o [te
K+ 'tSP"K-H

{
R+

r :“ [Y\'FP]K-H

(6-16)

The equalities between primed and unprimed transmission
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coefficients above are proved in Appendix A. They are reciprocity
relations, for solid-fluid interfaces similar to the relation T'=T* for
solid-solid interfaces. Substituting these terms and those of (2-12)

into (6-14) and (6-15), we obtain

% 1

K aK = Dpkﬂ - TKUR(+!

=

"'RK 3,( + C\K = ;EKUPKH

(6-17)
and
' i —
TK‘H DPK-H = aK*Z - RK#I uK'l"l
: ' { = ¥ -
- Y1<+|Dpr<+x + UPK+I = Lx+x. uk“
(6-18)
The second equation of (6-17) and the first equation of (6-18)
are
— hary ”n~
d|<-r2‘. - RK-H\*K*?. + LK+( DPRH
i o= R4 £, UP
UK - RK ax + TK R+
(6-19)
! ]
The fluid waves DPK+: and UPK+, can be replaced by ex-

pressions in the solid waves. From the first equation of (6-17) and the
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‘ - o - F 1« ";:9(.. — tn
F Up h(-’rl © Dp Lk-n K+2
- — .
DP o W]|UP ] T -3,
- K+1 - ~ Kot & -
(6-20)
The inverse matrix relation for (6-2) is
SR - 2p N
DP C[£%en -99) [op
T Ry
= Z
' 2p
UP -2z 9/ §) |[UP
- N - ol
K+1 kel K+ !
(6-21)
Taking the first row of (6-21) and the second row of (6-2) gives
o s quia) 2" ] erh
- 2
Up = 2P Cé .
DP S¢72) | o P 9@ || UP
- K+l - - 4K
K+1 (6—22)
Substituting this result into (6-20) yields
- 2p l 129 . L, Ve _ -
0 |” 2 q(/2) - ¢ 2 50/2) 2 IDP Tl Uiy
Kl
Z =
§3) ' 2p
P ~* )
 z g —nazswa | |UP] [T .d, |

K+l

K+l
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Inverting the matrix on the left-hand side of this equation, we obtain

- ! — 27 P - ‘;E' A:' a T
DP -%(2)+r,< Zz 5(1/2) z Kt P ka2
|
T A %
P 2p 1 2p ="
UP | E 2 g+t 2 503 Ty d, |

K+

where

Az) = [$@) - rKZQ%('/z)]+ \r;“[%(z) - PKZQPS(//Q)]
(6-25)
using (3-12).
Finally, we substitute (6-24) into (6-19) to obtain the matrix
S(Z) in (6-5) which relate the solid waves above and below the fluid

layer. The resulting submatrices of S (2) are

(k41 P = - ¥
(2) = 2 TK-}ITK
1t D(Z)
(R+1)

_ -q(2) + v, 2§(’/2)’f ’t
|2(2) - RK~H T /_‘)(2')< c) K41
(K+1) | ' 2P — =%
MO RK + A(z(g(uz) +rk+,§(/g))’tk’l_fk
(K+1) P— ='x

6 (z) = 2 Txltx-u
22 AY S

(6-26)
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The superscript k+1 on cach SLJ is the layer number of the inhomo-
geneous fluid layer between solid layers.
To illustrate the use of (6-5), let us consider a single homo-
geneous fluid layer between two solid halfspaces. Assuming that no
)
downgoing sources exist in the upper halfspace, we set éK = 0.

From (6-5), we then obtain

(R+1)
— 2 T
‘am = Sm( YU
{ (e
U, = 95,0, o
(K+1) (K1)
,9_(?‘), . is the reflection response (2) of the fluid

(K+1)
layer, and 5 22(9-) is the transmission response. In this case,

layer k+1 is a homogeneous fluid so that S$e2) = | and %(2) =0,

From (6-25) and (6-26), we therefore obtain the reflection response

(w4 2p 1\ |

812(2) = RR.H T Nz T T
. 1 2p
(1‘ - Pkrk+12 )

i ¥
2p \ 2p { 2p 2 ~ ?X
= RR“ + 12 [1 + Ny Z2oF (N Yyar 2 ) 4 eee ’tm o
The first term, RK-H . is the reflection coefficient matrix for the
2p
bottom of the fluid layer. The infinite series in powers of % is

a sequence of multiply reflected waves inside the fluid layer. An up-

going wave UK+2 is transmitted across interface k+1 by the multi-

plication
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U, = Ltee tSPJK;FKn

Each of the multiple reflections generated inside the fluid layer is
then transmitted back across interface k+1. This is done by multi-

plying each wave by

\

_\ tPP
T LE2 - !
t

PSdkyy

The transmission response for the fluid layer is given by (6-26).

Thus,

(R+1) P ~'*

S @ = % Tk Tuw
(1- gl 2

2p)

P vo_2P . 2p.2 ~ =X
= 2 [1 + Y\KY‘R"HE + (Y\er,*li ) + s TKTK+1

In this case, the multiple reflections inside the fluid layer are trans-

mitted to the upper halfspace. This is indicated by the factor

“"TR = typ
'{P‘i

(R+1)
(2)

K

o S

22
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6.4 Reflection and Transmission Responses for a Medium of Solid

and Fluid Lavyers.

Using the results of the previous section, we can calculate
the reflection and transmission responses of the stack of alternating
fluid and solid layers described in Seétion 6.2. These layers are
numbered 1 to n as shown in Figure 6.2. We shall assume that the
stack of layers is bounded by two halfspaces. Above interface 0 is
a homogeneous halfspace (layer 0) which is solid, fluid, or vacuum.
Below interface n is a homogeneous halfspace (layer n+l1) which is
either fluid or solid. A known upgoing source gmu is incident
to the stack of layers from below.

. As shown in Figure 6.2, there are several cases to consider
in calculating the reflection and transmission responses of the layers. '
For example, layers 1 and n may each be fluid or solid. If the lower
halfspace is ﬂuid, then the upgoing source §m,, contains only
a compressional component UPWH . Finally, the upper half-
space ma;y be solid, fluid or vacuum. All combinations of these cases
will be discussed below.

(n

Let us first calculate the reflection response R (2) for all

those cases when the lower halfspace is solid. If layer 1 is solid,

-we have

(o)

R @ .

I
0
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~where R

R o is well defined if the upper halfspace is solid, fluid or vacuum

o 1s the reflection coefficient matrix for the first interface.
"Then, applying the iteration given by (6-13), we can obtain the reflec-
tion response for all layers above the deepest fluid over solid inter-

. ()
face. If layer n is fluid, then the iteration yields R (Z) which

is the reflection response for the complete stack of layers.

[}
If layer 1 is fluid, then we can set d‘, = O in (6-5) and

obtain
h
d, = S5, ®u,
0 (6-28)
(1) ¢
Thus R 2y = S ‘2(2) , and we can iterate from interface 1

)
down through the layers to obtain R () if layer n is fluid.
(n-1)

If layer n is solid, then the iterations above yield R 2)

where interface (n-1) is the deepest fluid over solid interface. To
QY (h-1)

obtain &) from R (21 is a straight forward calculation

using the method of Section 3.4 since only solid homogeneous layers

within layer n and the solid lower halfspace are involved.

We now consider those cases in which the lower halfspace is
fluid. The reflection response from below for the complete set of layers
is a scaler Y'“?E) wh‘ichrequérils the ratio of the downgoing reflected
compressional wave to the upgoing incident compressional source.
Again, we considér two cases for layers n. If layer n is solid, then

(h=-1) n=-N
we can calculate () exactly as before. Using R ) , we
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"
can compute \/ (2) from (6-8) such that

| L2 B
an = \/ (2) U,

(6-29)
At the n-th interface, the solid and fluid waves are related by equa-

tions (6-17), i.e.,

— % !
T, ah = Dpn-n - TnUPn-l-l (6-30)

{ § 1 -_—
_Rh ah + U, = ThUph+l
(6-31)
-
Substituting (6-29) into (6-31) and solving for W, gives

1 1 - n) - 1;_

u,. = (12 ~th(2)) ’thUPn-n
| | (6-32)

In these equations, UP,\“ is the upgoing compressional source

in the lower fluid halfspace. Putting (6-32) and (6-29) into (6-30)

and solving for the reflected wave Dph“ we obtain
W Doy s
S B () ‘ N =
PP = [\rh + T V@ (I,-R, V@ Tn]UPM,
(6-33)

Therefore, the reflection response of the complete stack of layers is

the scaler coefficient of U ph-n , l.e.,
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-1
) — % Mo ' (n A
v o= 6, 4+ ’3‘:“\/(2) (lz - Rh\/ (2)) Ty
(6-34)
If layer n is fluid rather than solid, then we select layer n-1, which

is solid, and repeat the algebra of equations (6-29) to (6-34). In

th=1
this way, we obtain ¥ (2) , the reflection response for all layers
(n-1
above interface n-1. From V (2) , one can easily calculate
()
F @ since layer n consists of homogeneous fluid layers. The

form of a product bf layer matrices for fluid layers is the same as the
(w
matrix in (3-8). This equation can be used to calculate V¥ (2) from
(n=0 '
(2) . The details are omitted here.
From the above discussion, we have shown how to calculate
(n)

the reflection response R (2) for all cases where the lower half-

, (n)
space is solid, and the response ¥ () if the lower halfspace is

fluid. The reflected downgoing waves in each case are

W
ah“ = R(Z)S“M

and
(n

DP,, = ra@ UP,...
Let us now compute the transmitted body waves generated in

the layers by the upgoing source in the lower halfspace. To do this,

we derive an iteration which calculates \lK from U,_,, where
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-layer k+1 is an inhomogeneous fluid layer between two solid layers

as shown in Figure 6.1. Combining (6-7) and the second equation of

(6-5) gives

oo (X+1) (R) X+ 1)
u, = (I, - S.(z)\/u)) S @) U,

i

I

(RaD

-1
(R+D (R) -
‘ = \/(z)(l - S, Vw) S04,

Q-
x
l

(6-35)
Finally, we insert these primed waves into (6-3) to obtain the desired

iteration for transmited waves:

~1

(R (K) (KY _ (R41) () (K41
GK [G (‘/2)\/ (2) + F (l/;):”l 82,(2) (Z)J S (2) U.
(6-36)

If the lower halfspace is solid and layer n is fluid, we can start this

iteration by setting

u. = S

h4, hi

On the other hand, if the lower halfspace is a fluid and layer n is

]

solid, equation (6-32) can be used to calculate W, from the com-
|
pressional course UPV\~| . Then from U, and
f (n?
a = V@aru U , equations (6-3) yield the imprimed

n

wave U, at the top of the n-th layer. At this point, the iteration
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of equation (6-36) can be used to obtain the transmitted waves in
each shallower solid layer.

At the top of the set of layers, layer 1 may be solid or fluid.

If layer 1 is solid, the previous iterations finally give U, , the up-
*
going wave just below the first interface. The wave transmitted into

the upper halfspace is

where To is the transmission coefficient matrix for interface 0. If

the upper halfspace is a fluid, the transmitted compressional wave is

VP, = [te tsel G,

O——

l o is the null matrix if the upper halfspace is a vacuum. Thus
u, = O if interface 0 is free.
The reméining case to consider is when layer 1 is fluid. The
procedure then is to compute U- 2 from the iteration technique
since la');'er 2 must be solid. From the second equation of (6-5), we

obtain the wave
{D)
a, = S, U,

directly since no downgoing sources exist in the upper halfspace. The
’ n
matrix S 2‘22‘ is given by (6-26) as

P
z T

ANGD
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The vector factor
- )
T, = [ T PPJ
t Fs o

has 0 elements if interface 0 is free and if the upper halfspace is a

fluid then tps = 0O
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6.5 Figure Captions

6.1 Typical sequence of alternating solid and fluid inhomogeneous
layers. Layers k and k+2 are each a stack of homogeneous solid
layers, and layer k+1 is a stack of homogeneous fluid lavers.

6.2 Stack of alternating solid and fluid inhomogeneous layers
between two homogeneous halfspaces. Source -s-n.'.i is located in

lower halfspace which may be solid or fluid. Upper half space may

be solid, fluid or vacuum,
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Chapter VII

Conclusions and Future Work

The theory of the discrete time calculatioﬁ of homogeneous
plane P and SV waves in a plane layered medium ‘has been develscpad
for elastic layers and for interbedded solid and fluid layers. This
method has several advar;tages over the Haskell-Thomson technique
for the calculafcion of body wa;’e responses of layered media. High
resolution time domain responses of any window length can be cal-
culated with no spurious precursor introduced by band limiting the
spectral response. A layer matrix iteration through the complete set
of layers for o given model need be computed only once in the dis-
crete time method. Matrix polynomials containing all the spectral
information of the layers are obtained. These polynomials can be
rapidly Fourier analyzed to yield the same specfral responses as ob-
tained by Haskell's technique with very little error introduced by the
discrete time approximation. On the other hand, Haskell's method
requires a new iteration through all the layers .for each spectral value
which can be time consuming.

Given a crustal strl:ic;:ure , the effect of reverberations cr.
teleseisniic events recorded on the free surface can be removed by
a direct convolution in time, whereas in Haskell's method, spectra
must be divided to eliminate the layer effect{s .

The inversion problém of recovering the layer impedances from
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the reflection response of a layered halfspace due to a surface source
was previously solved f;3r r;ormal incidence by AKunetz . The exten-
sion to non-normal incidence was attempted with some success in
that the polynomial matrix M(z) for the layers gém be calculated from
transmitted waves recorded at the surface . The IAextracA:tion of the
layer impedances from M (z) seems to be difficult at non-normal iﬁ—
cidence.

In order to utilize the ltlggh resolution of this method, wide
band, three component recording of §eismic data should be under-
taken. This would greatly facilitate comparing theoretical model

studies with actual data being recorded in order to determine the fine

structure of transition zones of the Earth.
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Appendix A

Calculation of Reflection

and Transmission Coefficients

A.1 Solid over Solid Interface

Reflection and transmission coefficients for plane waves incident
to an interface between elastic media were first calculated by Knott
(1899). His coefficients gave ratios of reflected and transmitted poten-
tials to incident ;;otentials. Zoeppritz (1917) computed coefficients
which were ratios of particle displacements. From these fundamental
equations, many authors have computed the effect of various layers in
the Farth on seismic waves. Two excellent and readable reviews of
significant papers with corrections of errors are given by Macelwane
(1936) and Richter (1958).

In this Ap'pendix, we calculate the reﬂection and transmission
matrices, R and T, defined by equations (2-12) in the text. The ele-
ments of these matrices are reflection and transmission coefficients
which are ratios of waves such as defined in (2-7) and (2-8). Let us
consider incident waves from above jnterfaoe 1 as shown in Figure A-1.
We use subscripts i, r, and t to denote incident, reflected and trans-
mitted potentials $ and F in each layer. Using (2-4) (2-7) and (2-8)

we define the following waves at interface 1:



171.
[}

DP = - \rweess, 5
o5, = Ve o F
Up! = VP 8, % F
Us = Hr At pl
DP,

‘T'V/ana Cos cs".2 c(’«‘g'::
DS,

1!

i

i

H

H

S R B.F

(A-1)

These waves are vector quantities measured in the directions shown by
arrows in Figure A-1. To obtain the desired reflection and transmission
coefficients, we divide the reflected and transmitted waves defined
above by one incident wave, the other incident wave being 0. Doing

this for each incident wave at the same phase velocity ¢, we obtain the

reflection and transmission matrices

- u
| S-‘ Fai O(T‘Yr ]
o %1 BIFL
v |Vee Ysp L AU T
R - = ~ ﬁ'lF" F"
3 1 -
rps Vss - ’ﬁj'&"‘f"{: ——5
L L -
_ a T
+ ! i ‘E" fg?d: _S:-t
T’ .__ t?p P - ' L fol?ﬁ‘ ﬂ: F:
it B2 Fr it A e
Pt XZGT Pta BEF

(A-2)
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where

In this section of the Appendix, we state the usual 4 x 4 matrix
equations in the potentials by matching particle velocities and stresses
across the interface. These equations are scaled and partitioned so

t ]
that P\ and T can be computed by inverting only 2 x 2 matrices.

From this solution, three useful theorems are proved, i.e.

% \

iy 1

(A-4a)
AR ' ¥ R
(L) R P\ ) R = (A-4Db)
-1
-TRT (A-4c)

1

aid R

i

We recall that primed matrices are calculated for incident waves from
above an interface, whereas Unprimed matrices are for incident waves from
below. The asterisk (*) indicates the transpose of a matrix.

Theorems (i) and (ii) are statements-of the principle of reciprocity
between a plane wave source and a receiv:er, both near a flat interface
between two half spaces. These two theorems are also true for an inter-
face between any combination of solid and fluid half spaces as shown

in later sections of this Appendix. Theorem (iii) in conjunction with (i),
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and (ii) show that the primed matrices, R' and T', can be computed from

R and T.
It should be emphasized that theorems (i) to (iii) are essential for
obtaining the simple form of the layer matrix in Chapter 2. Other choices

for up and down going waves than those of (A-1) do not seem to give as

simple a layer matrix.

In medium 1 the incident and reflected compressional potentials

are

5

It

_g.(XSIhCS, + Ecosgl - o(,-b)

i

Ty

‘gr(Xs'mS. - ZQ03§4 - 0(|+.)

(A-5)
whereas the incident and reflected shear potentials are
\
Fi = Fi (xsiny, + Zcos ¥, - (3,t)
F\’_ = Fr(X S3h>$, - Z oS ¥, - ﬁ,—t)
(A-6)

The transmitted compressional and shear potentials are

% = gtLXs}ng + Zcsd, - 0(1“0

F; (xsin¥, + Zces¥, - /ﬁ’at)

I

(A-7)
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The particle veldcity components are given by

)

+
o
T

|

L o= b()fr

St \ ¥x

ot

o/
w

b= 2 (3 - F)
w = < -
and the stress components are
Y., = AVF 4 2udw
22 AL S5
_ d )
Tax =AM (3% + %%ZJ' (a-9)

s , , \
To evaluate these velocities and stresses in each medium, we set

S-s. = gn +-§v-
FL Fi t Ty

It

in medium l,and in medium 2 we let
5, = f.
F,o o= Fe

The necessary boundary conditions at the interface are continuity of
particle velocity and stress components. The resulting equations are

essentially those of Knott {1899) and have been rederived by many
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following equations:

o|e

where

-F. —)X:z 2 f z(%)?ﬁz

/‘Ppg 2
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Keeping both incident waves in the formulation, we obtain the

2 (1]
%, ¥,

u
v

i
55,

2~ U

ﬁzF-t

(A-10)

(A-10a)



176.

We now consider each incident wave separately. Setting

n

"
Fi = O in (A-10) and dividing by o(? g";_ gives us a matrix

equation in the coefficients of the first column of R' and T' in (A-2).
11! 2 i
Similarly setting '(S; = 0 and dividing by /3, F;_ vields equa-

tions for the second column of coefficients in R' and T'. Combining

these matrix equations gives

2 1
-, S L R LN (0 | IR TR
3
-P : '\
o 1 Tuz -1 toep %%’1 Top %%4

2 -ps || R Jf;s,;\@;;

H

(A-11)
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This equation can be solved by partitioning it into 2 x 2 matrices.

We define the following matrices:

—"?d;' 1. A\
A =
R 2
ZFL(@C{'-)('?«\, FL\(L
[ -1 - PﬂL 1
B; =
| v PAENH
- 1 \
a Vep GP@W
LY‘PS % Vos A
i t’ frPat + AT
T - PP FaPa2 ° Fitaz
L =
' ]
\/{oa?ou f P
L 't?s F2Tp2 fatpt

(A-12)
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We wish to solvé for R' and T' defined by (A-2). From the above equa-
tions, we can show that .’R, and 'L/ conveniently factor as

R - LRL,

T = CzT‘Li

(A-13)

Therefore, (A-11) can be written in the partitioned form
] I R [ ]
B, ' B, |-LRL, B,
I
,,,,,,, :N_“__- ‘_:1‘_‘- - (- -
A . - Az L,_T Li -As
! . 11 1 J
(A-14)

Solving for R' and T' we get equations

-1

)

| - -1
R - LB8,L,T

A
+-
r-..
>,
~>
»[—L
—-l..
H
—t

(A-15)
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Hence

—
i
~
—
»
)
A
+
&
&
N
I

To obtain the unprimed reflection and transmission coefficients,

which are for incident waves from below the interface, we interchange

indices 1 and 2 in (A-16). This gives

-1 -1 -1 -1
T = 2L(BB, + AA) L,

R

"

-1 - -1 -1
%Lz(BzBs 'A:Ai) LiT
(A-17)

Using these solutions, we now prove the three theorems given by

(A-4). From (A-16) and (A-17), we obtain

_4}

2L.(B.B, + AA,) L,

__{

4 4 -1 *
2L—|<BzB1 + AzAi) Lz
(A-18)

To prove (A-4a), we show that the right hand sides of (A-18) are equal.
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It is suffient to show that

: *
2 -1 : -1 2 -1 -1
L (BB, + AWA) = [LL(BIB, « ALAL)]
(A-19)
From (A-12) we obtain
. FRe O |[ARa) (-1 =
' 8B, - ‘o
| O Pt JLA e | T A TR A

~?d|(‘o1\‘2~r'[xl_ﬂ) E(;P{}Z (f’gcxz"ﬂ - f‘[}f,—ij

i

: (P¥2 —P¥) ~%h2 (1" ¥, -1 - /’.“,)
(A-20)
and
r"m(f’.‘o’. - le:\‘z‘ 1]} - (F{\GI "faxz)-

in A~1 /'\ 2 =

Rufu(ple 0 - palsant]) Aol d-pH)

(A-21)
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If we interchange indices 1 and 2 in (A-21) and transpose the result,

we obtaiﬂ (A-20). Thus we have shown that

2 -1

Ce.e, = (LLAA)

(A-22)
and
2 -4 2 -1 ¥
L|A‘A2 = (Lszﬁi)
(A-23)
This proves (A-19) and therefore the first theorem, which is
X )
(A-24)

The second theorem, equation (A-4b), is easily proved from re-

sults used in the first theorem. From (A-16), we deduce that

1 -1 4 -1 -1 -1
R = Li(B; BZ—Ai A2)<Bi B{*P\J\J L*
‘ 4

T - 2L EBBAA, + DL,

1"

= J_ - Z(I -+ LiB.iiBzAin[—ii)

(A-25)
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In order to show that R'* = R', we need only show that M = M*, where

M = LB B,ALALL,

(A-26)
From (A-22), we have
4 4 _3 P
LB B,L, - {LzAzAiLi]
(A-27)
Therefore,
1 -1 % g -1 %
M= [LAALLAAL = M
(A-28)

This proves theorem (ii), i.e. R'* = R'. If we interchange subscripts 1
and 2, the result is R* =R,
Finally, we prove theorem (iii), equation (A-4c). Using (A-16) and

(A-17), we can write

TR = -gT[Lz(B'JBi—A'iAJlﬂT —

(TR = ST A, - 8,8,)LT

(A-30)
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The bracketed terms in each equation are equal because of (A-22) and

(A-23). Also T'* =T by theorem (i). Therefore,

t

T R 3 (T‘Rl)%

Using theorems (i) and (ii), this equation becomes

]

' -1
R = -~ TRT

which proves theorem (iii).

(A-31)

(A-32)

We now consider the solution of {A-11) as ¢ goes to infinity. From

(A-3) and (A-10), we have

Pun/C o L/

Pﬁh/c —> 1/ﬁn

¥, —

(A-33)

(A-34)

(A-35)

as ¢ goes to infinit'y. Dividing the first and third row of (A-11) by ¢ and

“then letting ¢ go to infinity results in the matrix equation



I

are

-/, O
I
|
|
O | —Fz
o
o | ik,
i
]
£ 0
L
~F' O
/e, O
0] ~F
L J

184,

(A-37)

This equation separates into two 2 x 2 matrix equations, which

I

1/

1
WERIMS

1/, “tlpp %2

facky

r;P@

1l

Cle{ﬂ

1
tsp P2l

(A-38a)
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12 - pzw-rss ~Cpa\( B -P O

/s, ‘//szﬂt'ss@f Jc'ps\/?‘-ﬁl | Vg, O

i

(A-38b)

The second column on the right hand side of each of these two
equations is zero. Thus, the equations are homogeneous in the unknown
coefficients Y"sp 5 ‘t",P , r'Ps , "ttps . Since the left hand most matrix in
each equation has a non-zero determinant, these mode conversion coeffi-
cients must vanish, as expected for normal incidence.

Solving for the remaining reflection and transmission coefficients
gives

P S ke
' Patha T Lok,

—tPP = 2VF|°(1F2°(2

Fa%z + Py

It

r‘ss — lfa3a = A
Faﬁz + Fl/j;

+
&
I

2\Pfi pa e
afta + Pifh

(A-39)
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The unprimed reflection and transmission coefficients are obtained
from the above equations by interchanging subscripts 1 and 2. One can
then verify the three theorems in (A-4) by inspection since each R and

T matrix is diagonal.
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A.2 Solid over Tluid Interface

Previous equations can be modified to treat the case where medium
1 or 2 is a fluid. The necessary changes are the following:

(i) Continuity of U is not necessary at a solid-fluid interface
so that the first rows of (A-10) and (A;-ll) should be eliminated.

(i)  The tangential stress ‘T ,yx must vanish at the interface.
This occurs if either _u, or _u, vanishes in the second equation of
(A-9). Hence, for any liquid-solid interface, Taix goes to zero auto-
matically if B, or /3, go to zero.

(iii) In the fluid medium, no shear potentials exist, and each
compressional potential £ must be replaced by an equivalent term in a
velocity potential C}: . To see the relationship between ‘§ and (‘D

we define the velocity potential to be the plane wave.
b = $(pF - )

from which we obtain the particle velocity component W and negative

pressure Tgzz as

w = - Eé»_ = — cosd c\>'
RES

T = - )&) = L '

w = o= ey

(A-40)

For a solid medium, the corresponding terms due to a displacement
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potential 'g are computed from (A-8) and (A-9) to be

"
w = —-—o(COScS-g'

v = /0&2(1 ~2/u3,m15)§"

22

(A-41)
As the rigidity M goes to zero, this last pressure term goes to

. 11
T = /oo( -§

From these equations, we see that replacing 'g\ by Ci)'/O( , letting
== O , and dropping shear potential terms in F converts either
medium to a fluid.

The first case we consider is a solid over fluid interface. Applying

changes (i), (ii) and (iii) described above to equations (A-10) and (A-11}

we obtain the following matrix equation:

[ 2 ar 1 a ~
e 2Rl -p)[e wVB] e 20@0)
—_— e~ - = - - - -|—- —_ =y e ——_ = —
~?LJ i : Tﬁz | ' = Fk‘ ‘.1

: 'Yhéigé T lss

) - — - - - - - — —
2 PO ||GER €ER 2@, oAy

(A-42)
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Since the lower medium is a fluid, we note that the transmission coeffi~

11 )
cients are obtained from (A-2) by replacing —Si by ¢+/°J‘2 , l.e.

‘t' = Efi‘i.?(_&é)* ° “‘:‘SP = fi%i.dzcEt .
e =\ e o

Let us define the {following vectors:

o
n

| i [3’. 1 "2(%)2196'] = "F'[Xl > (X.*DP/&]

6i*z = - [?“2 » O ]

]

[-E'PP > t;P ]

(A-43)

The asterisk (*) indicates the transpose of a vector.

Matrix equation (A-42) can be written in partitioned form as

!

*

J— )

)
'
(=
—
{
*

—_— — = -

—a-l 1 Tt-*Li —Ai
5 -

- —— v o o— ——
-

(A-44)

1 ,
where A, , R and L1 are defined in (A-12). This equation is a de-
of 4
generate formA(A—lél) . Writing out these equations enables us to solve



and finally

R

]
i

_ 2LA'aB L,

(E*aA-: a, -f 2)

As in the solid over solid interface case, we can prove that

!

R

V%

R

H
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(A-45a)

(A-45D)

To do this, we calculate the following two vectors using (A-12)

- and (A-43):

v /|

L(x,~1)\ﬁv;j

(A-46)
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and

oL, = -F [x,/a“ ) (Xfl)@]

(A-47)

The denominator in (A-45a and b) is a scalar determined by dotting

these two vectors, i.e.
% -1 -1 2 2
(b1l—~1 )(LiAi C_‘z) - f2 = _F‘?&Z(Xn [Pur* [.X\~1]Pﬂl) ~ Fz

From (A-46) and (A-47), we see that

(A-48)

Hence, the second term of R' in (A-45b) contains the matrix product
% -1 )
(LA B = -ralBl L)L,

which is symmetric. This shows that R' is symmetric. Substituting (A-46)
and (A-47) into (A-45a) and (A-45Db), yields explicit expressions for the

|
elements of T and R , 1.e.

:E* = 2\/F'F2?0(2 [X./\I_?Z ’/(X'_ﬂ\[é—m}
YA




where

\6,2/ Pt

D/' (¥,~ 1)

Tﬁ

Pr)
L)

a
K\ (\6! - j‘)@

(5.~ ')1?/51 _J

A = F,’P«z{_xlz/?ou + (X.‘l)l?/él] + fa
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(A-49)

L

(A-50)

At normal incidence, the equations for reflection and transmission

coefficients are most easily obtained from (A-42). Dividing the second

row of this matrixhequation by ¢ and letting ¢ go to infinity yields the

equation

- P2 | [-Yee V3]
1/4s "rPs\[;% Vs
i
O || BepVE2 L \fh
41 Fas ]

I

From this equation, we easily obtain the solutions

(A-50a)
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V" Lot ~ 1
PP Padha + 1k

i

H

PP

[o1°(1+ Fl&'

Ss

(A-50D)

The other coeffi'cients, which convert energy from one mode to another,
all vanish. The solutions given above can be obtained from the solutions
for a solid over solid interface, equations (A-39), by setting /32 = O
We now consider an incident P wave in the lower fluid medium.
The matrix equations are obtained from (A-11) by interchanging subscripts
1 and 2 everywhere, unpriming the reflection and transmission coeffi-
- cients, deleting the first row and second column of the 4 x 4 matrix and
deleting the second column of reflection and transmission coefficients,
and finally letting /3, go to zero.

The result of all these changes is the equation



194,

i . A r 7
~fa | ~ P35 QF‘(%?&I I = Vep -z
R T - — - - - = = -
|
- \{ 2R P
-‘Pe(g Il ?dl 1 -‘:PP %ﬁ%} _ <2
| =
1
l 2
- ] — X -t _C?.___%
0 2p@% - | ps\ Fra| ) J
(A-51)
which can be expressed in terms of partitioned matrices as
% =1
FaVep + \}szdlbi\—irr = T (A-51a)
o 1
aZV}P + Vf’z?am.AiLilt = &L, (A-51b)
where
_ Tep
ft' =
tps
. ._From (A-51b) we obtain
-— 1 -1 ,
T = L1A1 O"L(l - Y\FP)
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Substituting this into (A-51a) gives the reflection coefficient

Putting this relation into (A-51Db) vields

_ -1
T = Al A G,
P 757
(b|A.O1 "/Dz)

At this point, we can easily prove that T

(A-53) and using (A-48) we obtain

% -

¥ 2P b Ly
)

(btAlaz "loz)

\

(A-52)

(A-53)

Transposing

*
which equals T by comparison with (A-45a). We can also write

this as

I
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which is a degenerate case of theorem (i), equation (A-4a) for a solid
over solid interface, i.e.
¥

T = T

Expanding the expressions (A-52) and (A-53) gives

¥,/
T = A X
A (A-54)
B’,"D\FP;BI
e = - + 2pP,
AN (A-55)

where A\ is given by (A-50).
For the normal incidence case we divide the second row of (A-51)

-by ¢ and let ¢ go ;co infinity. This gives the matrix equation

Lf,’z i O ][ ~*e ] [ -f2 ]

-1/, WK O 'tf’i>\!‘€,“'%52 = 1 /%y
- \[Faf3:

| © ° IO'J e °

(A-56)

which has the solution



i

N
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/oloi‘l - F*DLZ
F!O(l -+ Flb{l

(A-57)
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A.3 Fluid over Fluid Interface

We treat now an interface between two fluid media using equation
(A-51). Since no shear waves exist in a fluid medium, we eliminate the
third column of the 3 x 3 matrix in this equation and set /3, = O

This gives the result

Fa =F ] Yee ~fa
Par 177 tPP\J%—%‘ﬁ Paz

which has the solution

_ Flpol?. — 2V
pP P\ Paz + FaPus

i?P - 2 \)f’c’ﬁ(lloz?osz -

F,'Pogz + F.?ou
(A-58)

As ¢ becomes very large

,P‘,(n/c - i/°<h

Therefore, at normal incidence equations (A-58) reduce to
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r - Fto(l - /OQD(Q
PP -
/‘3, A, t+ Fa."(z

_tPP = 2 lolo(llozo(i
Fis, + pads

(A-59)

which are the same solutions given by (A-57).
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A.4 TFree Surface

If we set P, = O , then the interface between the two media
is free, and no transmitted waves exist in medium 2. The boundary
conditions reduce to two, i.e. the vanishing of /E'za and Tax at the
interface.

The matrix equation for the reflection and transmission coefficients
is obtained by deleting the first and third rows and last two columns of

the 4 x 4 matrix in (A-11). This gives the 2 x 2 equation

— 2 - 1 [ e} %
X' 2(%>?ﬂl Y\PP rsp ;‘35,: ' C.) B
aENe. —%, e g @Y, -Y
L (2') d v Vps Far Mss | TN/ '
(A-60)
which is valid for a free surface over a solid medium.
Inverting the left most matrix we obtain
\ | — 2 B . 2
Yep rsp\{% ' ~%, 2(B) | =¥ 2(&:)Ta
~ det . .
v
o 2@ @k ¥
where

4
det = -(K.z + 4(%)?&17/31)



Thus

4
. \ -—'t{lz -+ 4 (%—') FuPai
X,z + 4 (%'y?dl?m

-
-
3
1
l
Ay
4
1

2
{ ' \ - 4 (“%") V'Pou?f&! Xl
V‘ps = Y\SP -

¥+ 4 e

If we define the reflection coefficient matrix

\ \
, ee  Tsp

Y‘ P s T;S

then we can prove’ directly from (A-61) that

RR -1

20%.

(A-61)

which is a special case of the conservation of energy theorem given by

(a-18a) when no transmission coefficients exist.

At normal incidence (A-60) reduces to

\
Fop = ¥ =1

\

(
Y'ps r$P = O

{1

\
Finally, we consider the reflection coefficient rpp

at the free
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-surface of a fluid. Since no shear waves exist in a {luid, the only

non-vanishing equation in (A-60) is

)
\KcY‘PP —~K}

I

Thus
‘ }

for all phase velocities c.
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A.5 Figure Captions

A-1 Incident, reflected and transmitted waves at an interface be-

" tween two isotropic, homogeneous halfspaces.
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MEDIUM 1|

(1)

MEDIUM 2

FIGURE  A-|
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Appendix B

"~ "Orthogonality Relation for P and SV Waves

In this appendix, we calculate the energy density flows for
plane P and SV waves incident to a horizontal interface. It is shown
that when both P and SV waves have the same horizontal phase 'velocity
then the energy density for both waves together equals the sum of
the individual energy density flows. Thus, no cross terms in the P
and SV waves occur.,

let $(p-+ - a) and F (5% - pt) be
elastiq displacement potentials for P and SV waves respectively as
described in Section 2.2. Following Morse and Feshbach (1953),

Vol. 1, section 2.2, we define the intensity vector

S = -du.L
ot (B-1)
where W equals the particle displacement vector due to both P
and SV incident waves, and T_. is the stress dyadic associated

with the particle displacement. The instantaneous power carried by

' A
the P and SV waves across a unit area with normal vector n equals

(B-2)
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——

We first calculate the intensity vector S . From (2-3a,b) we

obtain the total displacement vector

u = 'g‘é + F.\.LXS

(5 + 5, F)& s (5 -5, F)a

i

(B-3)
A A
where X and 2 are unit vectors inthe X and 2 direc-

A
tions. Unit vectors f) and S have (X,%) compon-

ents given by

A
P = (Px » Pg)
A
5 = (Sx ., Sg)
(B-4)
Taking the time derivative EE yields
Dt
- " " a i o,
-g&t = (o(px-§ + ﬂSzF )+ (oi?;_§ -ﬁsf )=z
(B-4)
The stress dyadic L is calculated from
= = - _ T
L = ANED + u[X + (T ]
(B-5)
where A and M are the Lamé constants for a homogeneous

isotropic medium. The divergence of W contains terms in 'G
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only since F causes no dilation in the medium

Thus, from
(8-3)
S 2 2 i n
V-io o= (P Py = S
(R-6)
and
= _ A A | A A 1]
T@E WD = x5 + #1265
(B-6)
The dyadic 6‘1 is given by
Vi = X3 + 2du
dX oz
Therefore
Vi =

A A ] U A " n
XX (Pg§ + 5,5, F) + X2 (Pps - S2F)
A n N aa " "
£z (PP S+ sQZF ) + 22 (’pig S,5.F)

(B-7)
Adding V&

to its transpose yields the symmetric dyadic

T

s (T = K2(es

i

W AA B ‘ »
v +5,5,F) + XE(ZPx?zg b I55-531F )

b 2% (60,5 + [s2-52)F") & 232(pr§ - 5,5,F)

(B-8)
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Substituting equations (B-8) and (B-6) into (B-5), we obtain the sym-

metric stress dyadic,

T o= 38 [0 2ee)S v 2asisF o fdulane,s + (psF ]

\ » A A " "
+ %?y[zp‘ng‘\u (s2-sHF J + 2i[0samed) § - 2uSs,F ]

(B-9)

Putting (B-9) and (B-4) into (B-1), we obtain an expression for the

—

intensity vector S

S = %{I«P,s“msf"lumwsm“+z,usxst"J +

+ [P § - ﬂsxF:"][Q/“?fo;" r sy - Si)F"]}

* %IL[«PXS"+/3‘32':"1[2,u?x?z$"+ﬂt52-s?AF"J +
+ e, S ~poaF Jlr DS - %S;SXF"]}

(B-10)

The power transmitted through a unit area of horizontal interface with

A
‘normal vector 2z is therefore

S-% = [«pS + 25,F (26005 +u(st-8M)F ]

+ [d?z‘iu—/ssxF"][(Mz«uPZ)g" - Z/aSzSXF“]

(B-11)
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—.Substituting the identities

Mmoo pp e A= plT 287

A

2 2
Pr = 4-P » S;= L~ S«

into (B-11), we obtain after some algebra

w2

S.5% = pc&3pz§ - Pﬁ3SzF R

+ [JSNF‘.‘ [(5 Px = ‘*Sx}{i[&l(PZSE + PyS,) + ok/g,]

(B-12)

n 1]
The cross terms in ‘S’ F do not vanish for arbitrary

o)
directions 'ﬁ and § , so that in general the energy glow across

.a unit horizontal area contains these terms. However, if <

and
F have the same horizontal phase velocity C, then 6 and
A o
S are related by Snell's law, i.e.
Px = Smo = o/c
Sx = sam Y = /3/C.
(B-13)

Substituting these components into the first brackets of (B~12) causes

1 1" -
the coefficients of "; F to vanish. Th_erefore,

"2 PN

FS‘%‘: ID‘*BPZQ + fﬂaSaF

(B-14)
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Comparing this equation to the waves defined in (2-4), we see that

the upgoing energy flow across a unit horizontal area equals
2

upP. + US

and the downgoing energy flow is
2 2
DP  + DS
This is the motivation for the particular choice of P and SV waves de-
fined in (2-4). As a result, several useful conservation of energy

theorems are proved in Chapters 2, 3, and 4 for layered media.





