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ABSTRACT

DISCRETE TIME SOLUTION OF PLANE
P-SV WAVES IN A PLANE LAYERED MEDIUM

by

Clint Wellington Frasier

Submitted to the Department of Earth and Planetary Sciences

in partial fulfillment of the requirement for the
degree of Doctor of Philosophy.

For plane waves at normal incidence to a layered, elastic medium
both the forward and inverse discrete time problems have been previously

solved. Here, the forward problem of calculating the waves in a medium

of plane, homogeneous, isotropic layers is extended to P and SV body

waves at non-normal incidence, where the horizontal phase velocity of

each wave is greater than the shear and compressional waves of each

layer.

Vertical travel times for P and SV waves through each layer are

rounded off to unequal integer multiples of a small time increment
This gives a 4 x 4 layer matrix analagous to the 2 x 2 layer matrix for

normal incidence obtained by previous authors.

Reflection and transmission responses for layered media are de-

rived as matrix series in integer powers of a Fourier transform variable
z=e D 7 . These responses are generated recursively by polynomial
division and include all multiply reflected P and SV waves with mode
conversions.

For a layered halfspace, the reflection response matrix for a

source at the free surface equals the positive time part of the autocor-
relation matrix of the transmission response matrix for a deep source.

This can be used to convert surface records of teleseismic events to

reflection seismograms for mapping the crust. For a known crustal

structure, the reverberations contaminating a teleseismic event can be

removed in time by a simple convolution, rather than by dividing spectra.

Time domain transmission responses for two crustal models under

LASA, and reflection responses for several core-mantle boundary models
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are calculated as examples of the method. These responses are use-
ful for studying the first motion and window length of transition layer
responses.

Finally, the method is extended to media containing any arrange-
ment of solid and fluid layers.

Thesis Supervisor: Keiiti Aki
Title: Professor of Geophysics
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Chapter I

Introduction

1.1 Purpose of Investigation

Seismic body waves passing through transitional velocity zones

of the Earth are often approximated mathematically by plane elastic

waves propagating through a stack of homogeneous, isotropic plane

layers. For such models, the Haskell-Thomson technique is particu-

larly well suited, because it allows one to impose a sinusoidal elastic

wave source at one interface of a layered medium and iterate through

the layers to obtain the transmitted waves emerging from the layers.

Reflected wales for a layered model are also easily calculated.

Applications of this method to study the filtering effect of the

Earth's crust on teleseismic events have been made by Haskell (1960,

1962), Hannon (1964), Phinney (1964), and Fernandez '1965) for long

period seismic data, and more recently by Leblanc (1967) for short

period data. Teng (1967) computed the spectral response of reflected

and transmitted waves from several models of the core-mantle bound-

ary to be used as a guide for examining recorded core phases.

Since seismic body waves are recorded as particle motions

in time, it is often desirable to synthesize a time domain response

from a spectLCal response 4L a tra4on 44LnI calcula b s

technique. Thiq can be done numerically, but one must always deter-

mine experimentally which frequency sampling increment and window



length are to be used for the inversion to time.' A basic difficulty

is that reflection and transmission responses of layered media are

not naturally bandlimited in frequency. As a result, a spurious

oscillating precursor occurs in the synthesized time function which

can obscure the time and polarity of the theoretical first motion.

Other difficulties are discussed with examples by Leblanc (1967).

In the references on crustal studies mentioned above, tele-

seismic sources in the mantle are assumed incident to crustal layers

of lower velocity. Also, the reflection responses computed by Teng

had source waves in the lower mantle incident to a set of layers of

lower velocity at the core mantle boundary. Thus, for both of these

cases, no critical angles of incidence are reached at layer interfaces

for a complete range of incident angles for P sources. Incident

angles for S sources in each case can exceed 300 without producing

inhomogeneous waves.

The purpose of this thesis is to present a systematic method

of calculating the responses of a plane layered mediam directly in

time for homogeneous plane P and SV waves in order to avoid the

problems of spectral inversion described above.

When a plane wave puls: is incident to a set of plane layers,

a sequence of multiple reflections inside the layers is generated.

The reflection and transmission responses of the I .... tLhts consist

of wave trains of reverberations which last indefinitely but decay in

time. In this investigation, a technique for generating these wave

-- ~ ~---l~l~--L---a -C--^-r__--r_~-.-r^-.__.



trains is developed, such that all P and SV waves with mode conver-

sions are included in each response. High.resolution responses

with no precursors in time are obtained which can be calculated to

any length time window.

The theoretical development of this method is an extension

to non-normal incidence of a discrete time problem first solved by

Wuenschel (1960) for compressional waves at normal incidence.

The basic strategy is to express the vertical travel times of P and SV

waves through each layer as unequal integer multiples of a small time

increment A4 . The plane P and SV waves are assumed to be arbi--

trary wave forms which satisfy their respective wave equations and

are sampled every e X seconds. Taking the Fourier transform of

these waves yields series in integer powers of z=e . As each

wave passes through a layer, it is delayed by an integer multiple

of At , e.g., %t~ . This causes the Fourier transform of the

wave to be multiplied by zn .

The result is that layer matrices are obtained in which the fre-

quency LW does not occur explicitly but only in powers of z=e

which is the delay operator for time AZ . Taking products of such

layer matrices for a layeied medium, we can calculate reflect4 on and

transmission responses which are infinite series in integer powers of

z. The coefficients of each serIes are the time samples of each rs-

ponse occuring at integer multiples of A . In this way, numerical

inversion over a calculated spectral window is avoided.

~~I~ _I~L .. ~--. I--L- ^.
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1.2 Description of Chapters

This thesis can be divided into three sections. The first sec-

tion consists of Chapters II to IV which give the theoretical develop-

ment of the discrete time solution of plane waves in a plane layered

elastic medium. Chapter II reviews the discrete time solutions for

waves at normal incidence obtained by Wuenschel (1960) and modified

by later authors. For non-normal incidence, P and SV waves are de-

fined to be proportional to the total component of instantaneous particle

velocity associated with up and down travelling compressional and

shear potentials in each layer. The waves are scaled so that the

square of each wave equals the instantaneous energy density flux

carried by the wave across a unit area of horizontal interface. This

choice of waves results in a simple 4 x 4 layer matrix which is com-

pletely analogous in 2 x 2 partitioned form to the normal incidence

case obtained by previous authors. To illustrate the technique, the

reflection and transmission responses of a single layer between half-

spaces are calculated and expanded into multiply reflected rays in-

side the layer.

Chapters III and IV contain applications of the layer matrix to

m'ultilayer problems. In Chapter III, the reflection and tranismission

_response matrices for a stack of elastic layers between two elastic

halfspaces are computed. Responses of a layered halfspace to a

deep source below the layering and to a source below the free sur-

face are described in Chapter IV. Principles of reciprocity and
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conservation of energy are verified for each response of Chapters

III and IV. It is shown that the reflection response matrix of a

layered halfspace to a surface source equals the positive time por-

tion of the autocorrelation matrix of the transmission response ma-

trix for a deep source. This suggests that teleseismic events recorded

at the free surface of the crust can be converted to reflection seismo-

grams for mapping the crustal layers.

The second section is Chapter V which illustrates the calcu-

lation of discrete time responses for two transition zones in the Earth.

The first example shows the transmission response of two crustal

models under the Large Aperture Seismic Array (LASA) . The second ex-

ample is a set of reflection responses off various models of the core-

mantle boundary. Yhese theoretical responses are calculated to

demonstrate the high resolution capabilities of the technique for model

studies of transition zones.

Chapter VI is the final section of the thesis. In it, the theory

of Chapters II to IV is modified so that any arrangement of solid and

fluid layers can be treated. Reflection and transmission responses

for a medium of interbedded solid and fluid layers between halfspaces

Zlar derived.
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12.

Matrix Formulation of Plane P and SV

Waves in' a Layered Elastic Medium

2.1 Introduction

The frequency domain solution for plane waves in an elastic

medium of homogeneous, isotropic layers was first solved with a ma-

trix iteration by Thomson (1950). Haskell (1953) applied Thomson's

matrix formulation to obtain the period equations for Rayleigh and

Love waves for a multilayered half space. This technique has been

applied very successfully to deduce possible crustal structures of the

Earth from the dispersion curves of long period surface waves.

Haskell (1960, 1962) applied his matrix iteration to study the

filtering effect of a layered crust on body waves recorded at the sur-

face. Dorman (1962) and Teng (1967) modified Haskell's formulation

so that sequences of fluid and solid layers could be treated.

In this chapter, we solve Thomson's problem directly in time for

impulsive plane wave sources located at an interface between layers.

We consider only P and SV body waves which are homogeneous plane

waves, that is, all waves have a phase velocity c which is greater

than the compressional and shear velocities of any layer in the medium.

A receiver is located at an interface of the layered medium. In our

formulation, we calculate all multiply reflected P and SV waves as they

are transmitted from source to receiver.
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The primary purpose of calculating the impulsive response of

a set of elastic layers is to obtain synthetic seismograms for body

waves without the intermediate step of numerically inverting a Fourier

spectrum calculated by Haskell's method. In short period earthquake

phases ('-1 sec.), crustal layers on the order of five kilometers

thick or less can cause rapid oscillations in the amplitude and phase

spectra of the frequency responses calculated by Haskell's method.

In order to calculate a time record, one must first choose a small

frequency sampling increment and tabulate the spectrum over a finite

frequency window. If this discrete spectrum is numerically inverted,

the time record is contaminated by aliasing. This effect can be elim-

inated by making the spectrum continuous, i.e., connecting adjacent

amplitude and phase points by straight line segments as done by

Aki (1960) and Harkrider (1964). Inverting this continuous spectrum

yields a bandlimited time record which has an oscillating precursor.

Such a precursor is not a problem for long period surface wave syn-

thesis. However, for short period body waves, it obscures the po-

larity and arrival time of the first motion.

The direct time formulation described in this chapter avoids

the inversion problems described above. We obtain a realizable

impulsive response for a set of layers with the correct first motion

and onset time. Later arrivals, which are multiply reflected P and

SV waves, are separated in time with a resolution practically unattain-

able by spectral inversion.
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The problem of plane wave compressional pulses at normal in-

cidence to a layered medium was first solved by Wuenschel (1960).

He reduced Haskell's formulation to the normal incidence case and

obtained a matrix iteration relating the Laplace transforms of vertical

motion and normal stress at the top of a layer to those at the bottom.

By ingeniously constraining all layers to have transit times which are

integer multiples of a small time increment A' Wuenschel showed

that for impulsive sources, the vertical motion and stress at each

- 2 S
interface could be expressed as a ratio of polynomials in e

which can be expanded into an infinite series in integer powers of

-Zs At
e . Such a series is inverted by inspection to yield a series

of impulses in time every ZAt seconds. In this sense, Wuenschel's

solution is a time domain solution even though Laplace transforms are

used in the formulation.

Later this solution was expressed in terms of up and down

travelling waves in each layer by Goupillaud (1961), Sherwood and

Trorey (1965), and Robinson and Treitel (1966). This solution is also

summarized by Claerbout (1968) in connection with an inverse prob-

lem solved by Kunetz (1962), in which the layer impedances are re-

covered from the upgoing waves recorded at the free surface of a layered

halfspace.

In this chapter, we formulate the non-normal incidence problem

in terms of up and down travelling impulsive P and SV waves in a

layer. This gives a layer iteration which has exactly the same form
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as for normal incidence, except that scalar matrix elements in the

latter case are replaced by 2 x 2 matrices in the former. In order to

handle the unequal P and SV transit times through a layer we apply

Wuenschel's strategy and choose a very small time increment 4' ,

so that P and SV transit times can be expressed as integer multiples

of L t .

In the following three sections, the basic layer iteration for P

and SV waves is derived and compared to the normal incidence case

when the two wave types uncouple. Section 2.5 discusses the response

bf:a sinigle layer sandwiched between two halfspaces to impulsive

plane wave sources. An expansion of this response into multiply re-

flected plane waves is demonstrated. The last section of this chapter

gives expression for the velocity and stress components in terms of

the up and down going P and SV waves in a layer.
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2.2 Formulation of the Problem

We consider a horizontally layered elastic medium, each layer

being homogeneous and isotropic. In each layer, we have four elastic

plane waves to satisfy arbitrary boundary conditions. These waves

are the up and down travelling P and SV waves. We restrict ourselves

to body waves travelling horizontally in the positive x direction with

a phase velocity c which is greater than the compressional and shear

velocities of each layer. Thus, inhomogeneous interface waves such

as Rayleigh or Stonely waves are not included. All particle motions

are in the x - z plane, z being depth. Horizontally polarized shear

waves (SH) are uncoupled from the P and SV waves and will not be

treated here.

In the n - th layer we define plane wave elastic potentials f

(for compressional waves) and F (for shear waves) as shown in Figure 1.

The upgoing compressional and shear potentials are given respectively

by

Sx3t) - i-

and the downgoing potentials by

(2-1)

Unit vectors p and s are the directions of P and SV wave propaga-

tion in the layer, and subscripts u and d indicate up and down going

-so----- i--ulT-Limurr~a*-~~114 -- r._l__..rr__r..----- ---.~ .i*ilx~-~.--~ -~.,
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waves respectively. Vector 7 is the position vector ? = (x,z).

Each P and SV potential satisfies its wave equation in two di-

mensions, i.e.

VF F -

where oC and [3 are the compressional and shear velocities of the

layer. These velocities are related by Snell's Law

%Zyl s Y (2-2)

Associated with each type of potential is a particle velocity

vector. For a compressional potential f the velocity vector is

-')P 
(2 -3 a)

and from a shear potential F we obtain a velocity

(v x F( -V3F F S
(2-3b)

The double primes in these expressions indicate the second total de-

rivative of each potential with respect to its argument. Unit vector

y points out of the x-z plane towards the reader as shown in Figure 2. 1.

In most multilayer problems, one obtains a matrix iteration re-

lating physical quantities in one layer to the same quantities in an ad-

jacent layer. In elastic wave problems examples of such quantities
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are particle displacements, velocities, stresses and potentials.

In this case, we use (2-3a,b) to define the following up and

down going P and SV waves in the layer:

II

velocity vecto r that wave. We define the directions of positive

US(A~V AP)

(2-4)

Each wave is expressed as a positive constant times the particle

velocity vector for that wave. We define the directions of positive

velocity (and positive wave) to be along the unit vectors given in the

last column of equations (2- 4) above. These directions are shown by

large arrows in Figure 2. 1.

Although these waves are vectors we can describe them only

by their magnitude and sign in the following matrix iteration. At this

point, we drop the bars over UP, US, etc. in (2-4).

In Appendix B, it is shown that UP 2 and US 2 are the energy

density flows for the upgoing compressional and shear waves respec-

tively. Similarly DP 2 and DS 2 are down going energy density flows.
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Each squared wave has the physical units of power transmitted per

unit area of horizontal interface in the x-y plane. Such powers are

instantaneous since f and F are arbitrary plane waves rather than

sinusoidal functions.

Let Zn be the depth to bottom of the n-th layer. The waves

defined by (2-4) are valid throughout the layer. We shall evaluate

each wave at the top and bottom of the layer at the horizontal dis-

tance x=o. At the top of the layer, we define the waves

UP cs) = UP (6 F - )

US ( w US (00- )

Ph DItrI ( ,i: - o- 4-

DS .()

Similarly, at the

at 2 - 2, to

UPh(-1)

US,(,)

bottom of the n-th layer

be

UP(5- ()

- US(*F-(E)

DPRd)

IS )

X=

(2 -7)

we define the primed waves

X(28)

(2-8)

DS(% s - #t)
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The ray directions of the primed and unprimed waves are

shown by arrows in Figure 2.2. These waves are functions of time

only since their positions are fixed. To keep the figure uncluttered,

the velocity vector directions and wave fronts of Figure 2. 1 are

omitted.
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2.3 Layer Matrices

In this section, we derive an iteration which relates waves

just above the n-th interface to those just below it. Then an itera-

tion is obtained which connects waves at the top and bottom of the

n-th layer. Combining the iterations yields a basic layer iteration

which can be applied to multilayer problems.

Figure 2.2 shows four waves arriving at the n-th interface

and four leaving it at x=O. We can therefore express each wave

leaving the interface as a linear combination of those waves arriving,

provided we calculate the reflection and transmission coefficients

for the interface. From the definitions of the waves in (2-4), (2-7),

(2-8), the magnitudes of the reflection and transmission coefficients

give ratios of square roots of power reflected by and transmitted

through the interface. In addition, the sign of the coefficients must

give the correct polarity of particle motion so that waves can be sum-

med properly. These reflection and transmission coefficients are de-

rived in Appendix A.

We denote reflection and transmission coefficients by r and t

respectively for incident waves below an interface. For incident waves

above the interface, the coefficients are primed, i.e., r' and t'. The

type of mode conversion is indicated by subscripts p and s. For example,

rps would equal DS (UP)/~,(-. if UP (4) were the only wave arriving

at the n-th interface.

From Figure 2.2 we see that the equations for the waves leaving

the n-th interface are
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= ,, DPi
: poP

DP+,, . p DP,

t P,

+ Irss U S %4+ GS, US,,,

+ 4-$U S 4j

I- I

+ r, DS,

+ r, DS,

S I
+ tsp, DS,

I I
+ tssDSr,

+ - ssUS,,,

+ tUS(2-10)

(2 -10)

Since these reflection and transmission coefficients apply to the n-th

interface, they are understood to be subscripted n.

Let us first separate the primed from the unprimed waves. This

will give us an iteration across the n-th interface. Putting only the

unprimed functions on the left of (2-10) yields

o -rp

0
I

0

-rs,

-I -

I +fF~ sp

-t ps css

D P

OS

UP

U S
hvi

3r'ps

!

_spI 0

-ss 0I Q_£
YiO

0

"6

OP

OS

uS

(2-11)

Define the following submatrices and vectors:

4 p tpUP14.,

I
UPh

us IV

O
i
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K,

La

~ps

Ko- p

tsp]

t

O

SDS

(2-12)

Substituting these into (2-11) gives the partitioned matrix

equation

jv 4

K.

-R

CI

I
tL

(2-13)

where primed matrices and vectors are obtained by priming their

elements.

The inverse of the left hand matrix in (2-13) is

-I-

RT

T

[2'

L0

U, iU S

S12

I~
-R.

T.
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Therefore, (2-13) becomes

1ii~

0

O
I

ah

We now define A , the interface matrix, to be this matrix product,

i.e.

d %
cY)I

AVI

ftI

U W
1

where the 2x2 partitioned matrices of A

S-R R

T, R nn R,

-T, R,

are A .. given bynr Lj

A,,A 12

A 22

(2-14)

RTI

-TV
(2-15)

These submatrices can be reduced to more compact form.

Appendix A it is shown that directly from their solutions that

(2-16a)

\R

R#I R
n a n (2-16b)

Elt

I74I

(2 -13 a)

A,,

A21

= TV

-1 I

R VITV TW
-jI

TTn i R



R = - T. R .T.

The asterisk denotes the transpose of a matrix. Using these three

identities we obtain

-1

RT Tvt R,
(2-16d)

Hence

A,
(h)

A -, -1 iR-T4 n
and

-1 I I
+ T, R, R,

(2-17a)

()Matrix
Matrix Al, is further reduced by conserving energy across the n-th

interface. Let the downgoing incident wave just above the interface

be an arbitrary source vector

I

The transmitted wave is therefore T and the reflected wave is

N 5 . Conservation of instantaneous power through a unit area

of interface gives

+ I
R" R,)

and

25.

(2-16c)

(n.
AW,1

(2-17)

I I

- Th

s ( T T
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This is possible only if

R R

Similarly for an arbitrary incident source from below the interface

we obtain

LI + R R =Iz
(2 -18b)

These identities can be verified from their solutions in Appendix A.

Substituting (2-18a) into (2-17a) and using (2-16a) gives

(n) Ii
P l I +

T, WT)

= T

Therefore, the interface matrix can be written in the simple form

A
-i R,

1Z
(2-19)

This interface matrix is interesting because it is completely analogous

to the simpler.case of compressional waves at normal incidence de-

rived by Goupillaud (1961), Sherwood and Trorey (1966) and others.

They obtained interface relations which in our notation can be written

(2 -1 8a)

~_rm_ i ___I_1L___li_ _~_~X1~(

I

-T,'Tn

An
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-- D Ib i DP

J UP. P 1 U P
(2 -19a)

Hence the 2x2 interface matrix Q, for their case is

The scalar elements of this matrix correspond to the 2 x 2 submatrices

of A. in (2-19). This similarity is carried over into the derivation

of the layer matrix iteration which follows.

The next step in the non-normal incidence case is to relate the

waves at the bottom of the n-th layer'to those at the top. This is not

difficult because only time delays are involved.

The waves UP,(t) and UP,(.i) represent the same upgoing

plane compressional wave except for a time delay Tp it takes the

wave front to travel through the n-th layer along the Z axis at x = 0.

I (h

Similarly USt) equals LSJLCt) after a delay of ls seconds, the

shear wave transit time, through the layer. For the down travelling

waves DP t,) is delayed by Tp relative to DP( -L) . Hence,

we can write
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DPabit = tDP9(t + p

UP V (_) UPh(t- rr

US.r: = USJ
(2-20)

where from Figure 2 1

-- I (2-2 1)

and is the thickness of the n-th layer.

It should be noted that these transit times decrease with increasing

angle of incidence rather than increase as one's intuition might guess.

In fact, dividing -. N by ~L and Tr, gives the vertical phase

velocities for P and SV wavefronts in the layer. These phase velocities

are always greater than o( for P waves and greater than 13, for

SV waves at non-normal incidence.

In our formulation, we shall calculate the response of a layered

medium to an impulsive plane wave source incident to an interface.

We know physically that waves recorded at some interface due to such

a source is a train of impulses arriving at unequal time intervals due
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to varying layer thicknesses and different P and SV transit times

through each layer.

In order to simplify our layer iteration we shall choose a small

enough time increment Zt so that to any desired precision we can

write

(2-22)

where . and rn, are integers, n, is greater than -P,

and A is much smaller than "p ors L

This approximation to the transit terms can be interpreted in

two ways. If the layer velocities of a model are exactly specified

a priori, then our formulation is approximate, but can be made as

accurate as necessary by decreasing AL so that the "round off

error" introduced by (2-22) becomes small. Such errors show up as

a distortion in the high frequencies of the spectrum of the impulse

response of the layers. On the other hand, we can make equations

(2-22) exact for a suitable AT by perturbing the velocities in (2-21)

slightly so that p and 'Ts are exactly divisible by AT . In

this case our formulation is exact, but our layered model has velocities

not exactly what we specified beforehand. As A" is reduced, the

perturbed velocities come as close as desired to the correct velocities.

Assuming that (2-22) is valid and that an impulsive plane wave
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source is located somewhere in the layered medium, then the primed

and tinprimed waves in (2-20) are each a series of pulses occuring

at integer multiples of Yr . Taking the Fourier transform of (2-20)

and utilizing (2-22) we obtain

-9DP>) = DPhc1J )
DSID ) i

US>) U n :Z) a
(2-23)

where the transform variable 2 is defined by

(2-24)

Each wave in (2-23) is a series in integer powers of Z , e.g.

K
4K a because Qa- is the transform of an impulse of

area LK at time K t . Since A't' is small compared to the

transit times through each layer, many of the coefficients o< in

each series will be zero.

To complete the layer matrix iteration, we define the 2 x 2 sub-

matrix

(2-25)
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Substituting this matrix and the vectors of (2-12) into (2-23) we get

*

oo1 fkU
(2-26)

-- Finally, we combine this equation with (2-14) and (2-19) to

obtain the basic layer iteration, which is

fI d 1
-R ]

-Zin

(2-2 7)

We shall later refer to the coefficient matrix of this expression as

they layer matrix C , i.e.

C% TV, r

I-z f

Applying this iteration to Vn

obtain

-i-R, n e a i

adjacent layers of a medium, we

E i
CL

(2-27a)

(2-2 8)

f

= Q ( )
U I
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where Q~u) is the matrix product

C C 2- (2-2 8a)

At this point, we remark that increasing A,, and rm, by

reducing At' for a given set of layers does not appreciably increase

the computer time required for calculating Q(3) although larger

storage is required. This is because the number of multiplications

. required depends primarily on the number of physical layers in the

model.. If one considers the multiplication of two polynomials of

large degree in F with most of their coefficients equal to zero,

this can be arranged by indexing so that all the zero coefficients are

ignored.

Oir 4x4 layer matrix C is analogous to the simpler 2 x 2

layer matrix derived for normal incidence by Goupillaud, Sherwood

and Trorey and other authors. Their matrix relation in our notation

is

1 J AP
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2.4 Conservation of Energy Across an Interface

Several useful results for the interface matrix Ah and the

layer matrix C " of the previous section are obtained by conserv-

ing the power flowing across a unit area of the n-th interface. The

net power flowing downward through the interface must be the same

just above and below the interface. Since our up and down travelling

waves have amplitudes equal to the square root of the transmitted

power for each type of wave this implies the identity

U Z
(2-29)

which should be true instantaneously in time for any transient waves.

In order to prove (2-29), we first define a tilda operator (,v )

as follows: Let M be a square matrix with Zm rows, which is

partitioned in 4 mxm submatrices Mi . Then M equals M ex-

cept that the off diagonal submatrices M,, and M2, are multiplied

by -1.

Now we can write (2-14) in the form

[ I J

1~-1

Taking the scalar dot product of the transpose of this equation and
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(2-14), we obtain

*ts a4 I

*
-LJ U

%'hi l4n~
zL~tt~ I

I'I
In order to prove (2-29), we shall show that

A. A =I, (2-30)

From (2-19) and (2-16b)

A

P' 1
I 1

Tn T

12 ]R n 2

Multiplying these matrices gives

S(TT) -

R'(TT*)-' (T) R'

Consider the diagonal matrices of this product. Let

n = (Tr - _ ' (TT*) R'

Using (2-16a), we write this as

A,

A.A,

(T T)i R -

r

LI ."J

I:;r

n,

(TT R) (TT) R

(TT ) - R (-



A I --
0(T T - ' R T*T R'

(IT) D
(T'T)D

= I (T'T ) R(T ' T) -.- (III#,r)1R

Using (2-16c) twice and (2-16a) we can show that

(T*T ) R SR (T T

Therefore,

(T*T')D = 12

from (2-18a). Thus we finally have

D -I,

for the diagonal matrices of

trices, we note that

R (<T )

S -1

(T T) R

L(i - RR) ]

-I

* For the off diagonal ma-

= ER -

using (2-18a). Since these products are equal, their difference is

the null matrix. Therefore, we have shown that

Hence

35.

itI X=TTI-RIR

A- X
A ,A Y
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AVA%

(2-30)

and that (2-29) is true. Matrix- A is obtained from A

changing the sign of the elements of the last two columns

the last two rows. This does not change the determinant,

Ah and An have equal determinants. From equation

we deduce then that

0 by

and then

hence

(2-30),

aj IAvl = ajIA = .

(2-31)

Therefore, Anand its inverse commute, i.e.

AjAn - A A

These results for AHcan be easily extended

matrices like C in (2-27). Matrix C can

O

to products of layer

be written as

'1

0
(2-3 2)

For a matrix product P = MN where M and N are square

S14

(2 -3 la)

- 1

= AC(5
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Vie
with an even number of rows, one can show that

Therefore

CQ' C'

which reduces to

C ('/h )

-1

0\ O
2AV

-I

using (2-31). Also

caj I C p) ,V.* I,.,I a
O

-I

.t4 3 , )IjjIL

(2 -3 2 a)

using (2-30) and (2-24). As with A C, p) and its inverseI n

commute, i.e.

C-%-- 14
(2-33)

For a product of layer matrices

a(z = C,O C , z) C j..n
(2-34)

0

-i.

7
LO

CL3 -C~,r\
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we obtain

-.. Q/i);: Q r
-CC"t) C ('/) C (1/, --- C(2)

r

(2-35)

which reduces to

cQ ) (IpC~i
by repeated application of (2-33). Taking the determinant of (2-34)

gives

- deI C*I(2I

using (2-32a). Thus Q() also commutes with its inverse, i.e.

QQ/ln) Q~z - Qcf)Q c'/ )

- 1

(2-36)

= T4
(2-37)

= 14
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2.5 -A Simple Case

In order to clarify this matrix technique, we consider a simple

example, that of single layer between two halfspaces. Setting n = 1

in (2-27), we have

[ j T,
!

(2-38)

Let us assume that an impulsive source 52 is incident to the layer

from below in the halfspace which is layer 2. Also, we suppose that

no sources exist in the upper halfspace, layer 0. In this case,

o , a . Equation (2-38) then becomes

S2.

Solving for U, and

- I .

T,
-Rmo

C12. in terms of

-R Z

77 j l:o, j

S 2 gives

I
112 - R,

-T R
- T, (ZjR2j

-1

SR,) Z)T) T ,

R' X)(I R, 2, RO ,)T,

Ui, = 7

-Rjtj 41
-1

ZI
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For an impulsive source Sg at time zero, we know on physi-

cal grounds that , and c. must be trains of impulses which exist

only for positive time and die out with increasing time. This implies

that the inverse matrix in each wave vector must have a converging

expansion in a power series in positive powers of Z1 , i.e.

(2-39)

This is proved mathemaLically in Chapter III for any number of layers.

Our solutions for (, and become

L

LZ ,(k I1 P0o ) T S (2 -4 0)

i= o (2-41)

These expansions are simply the summation of all the multiply reflected

rays inside the layer. This is seen by noting the sequence of matrices

operating on S2 from right to left in each term of the summation. For

LL, , the first term is

Multiplication of S2 by T gives the first arrivals across the

bottom interface with all P and SV conversions included. Then
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multiplication by Ztdelays the P and SV components of this trans-

mitted vector by their different transit times through the layer.

Thus, ZT, F contains the first P and SV arrivals at the top of

the layer due to St incident on the bottom of the layer.

The second term in U, is

ZjR',Z 4K7 ZZT , §2

This vector represents the first term after two later internal reflec-

tions within the layer, one at interface 0 and the other at interface 1.

Each multiplication by Zi between and after reflections indicates

another transit through the layer by the P and SV components of the

vector. Later terms in the expansion for U, represent higher order

multiple reflections inside the layer.

'The expansion for 2 is similarly interpreted. We see that the

first term is

which is the source vector reflected off the bottom of the layer with

no time delay. The next vector wave is the sum of two terms in (2-41)

which are quadratic in 2i . Using (2-16d) these terms sum to give

I

Ti 2 <Ro 2 , T,

This vector contains all waves which have travelling up through layer



42.

1 and back down into the layer halfspace with one internal reflection

at the top of layer 1. As in the case for , , later terms in the

expansion of J are waves multiply reflected within layer 1 before

being transmitted to the lower halfspace.

This method of expansion into multiply reflected waves is

very cumbersome for more than one layer. A systematic way of cal-

culating such inverse matrices recursively is given in Chapter IV for

multilayer problems.
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2.6 Calculation of Particle Velocities and Stresses from P and SV

Wave s

It is useful to compute the horizontal and vertical components

of particle velocity at an interface due to all four waves UP, US, DP

and DS. This is necessary when comparing theoretical results to re-

corded seismograph data, since velocity components are usually

recorded in the field.

Using equations (2-4) and Figure 2, we find the total horizontal

and vertical velocity components to be

ci,= SAS (UP-- DP)

G( = - - E (uP -. DP,
fr; -CY.L

co Y" (US - OS)
v\p PCO-D-

+ S"(US' (US-DS)

(2-42)

From Snell's law, we have

co.S 5 = PcSc

(2-42a)

where

t, f( )- L
P14 zirI

(2 -42b)

1 C,_-T~ = PO( SIOV"
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Substituting these relations into (2-42), we obtain the velocity

vector

LUV vvJL U JS]

(2-43)

Generally speaking, we cannot recover the four up and down

travelling waves in (2-43) from a single two component seismograph

record. However, if the receiver is at the free surface of a layered

halfspace, then the up and down travelling wave vectors are related

by

S = R -

where R, is the reflection coefficient matrix for waves incident

from below the free surface. If the properties of the surface layer

are known, then R. can be calculated, assuming the phase velocity

is determined by other means. Then we can invert (2-43) to obtain

u[v

(2 -44)
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where . is the 2 x 2 matrix

I-

K 1
_r3 JR 0

i-

+.
1

(2-4 5)

It is also desirable to compute records of the normal and tan-

gential stress at an interface due to the four travelling waves. The

stress components are given in Appendix A by equation (A-7) in terms of

elastic potentials. Replacing the elastic potentials by their corres-

ponding waves as defined by (2-6) gives us the stress components

as

- (o (UP + O P) + _ V C DS)

-IP) + ¢ I- o-S)V,_P Vrr Co-

These equations reduce further using (2-42a)

we obtain

where

where

and (2-42b). Finally,

-% 13) 3rO. V (t--6) Up
V I I- I -6 )P '

2 (2-46)"Ir = L - 2(r/c) .
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2.7 Figure Captions

2.1 Elastic plane waves in an isotropic homogeneous layer.

Shear and compressional waves have phase velocity c in x direction.

Instantaneous particle velocities are measured in direction of large

arrows in x-z plane.

2.2 Instantaneous waves measured at x=O on ea'ch interface.

Primed waves are evaluated at the bottom of each layer, inprimed

waves at the top.
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Chapter III

Extension to Multilayer Problems

3.1 Introduction

In this chapter, we apply the layer matrix iteration of Chapter

II to some multilayer problems. Section 3.2 shows how our 4x4

layer matrix reduced at normal incidence to two 2 x 2 layer matrices,

one for P waves and one for SV waves. The general form of products

of such layer matrices is discussed both as a review of previous

work, e.g. Goupilland (1961), Sherwood and Trorey (1965), and as

an introduction to section 3.3 which examines products of layer ma-

trices for non-normal incidence. In section 3.4, the reflection and

transmission responses of a stack of layers between two halfspaces

are computed. Finally, we use the principle of conservation of energy

to obtain a relation between the reflection and transmission responses

of section 3.4.
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3.2 Layer Matrix Products for Waves at Normal Incidence

In this section, we show how the P and SV waves uncouple in

the layer matrix iteration when the waves are at normal incidence to

the layers. We then consider products of such layer matrices. The

form of such products has been discussed by Goupillaud (1961),

Sherwood and Trorey (1965), Robinson and Treitel (1966), and

Claerbout (1968).

Our treatment differs from that of the above authors only in the

definition of reflection and transmission coefficients. The reflection

and transmission coefficients, in our case, are defined in terms of the

square root of the instantaneous power carried by each wave, whereas

the other authors define their coefficients in terms of particle velocities

or pressures caused by the waves in a layer. As a result of this,

our reflection and transmission coefficients are related by different

identities, although in the end our layer iteration has exactly the

same form as that of the other authors.

The uncoupling of P and SV waves as the phase velocity goes

to infinity is most easily seen from (2-11). Letting all reflection

and transmission coefficients go to zero which convert modes,

e.g. rps , ps we obtain the interface relation



0 0 PPo 11i 0

0 01 0.I

0

-r
0

7LS

DP

'DS

up

US
V)+i

0 ts i
- -

o!I

which splits into the following separate relations for P and SV waves:

P D opL p i juP
? h + -

and

L ss L-d, Ol DS

-sUS -r's 1 US

(3-1)

(3-2)

From (2-23), we obtain

SDP]
UP o0

o DP

t IUP.

51.

0

0

0

1

DPI

oS

UP

US
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O 1 US

(3-4)

Since the P and SV equations have identical form and are un--

coupled, we need only consider one type of wave. Dropping all ref-

erences to P waves in (3-1) and inverting the matrix on the right-hand

side gives

r D
1 Un-y- n i

(3-5)

where we have used the identities

1- + = 1

(3-6)

These identities come from (2-18a),

phase velocity goes to infinity.

Now, we insert (3-3) into (3-5

relation in the form

D _

U 2
II.-

(2-16a) and (2-16c) when the

) to get the basic layer matrix

SD1 ]
%" Y
I tr

(3-7)

US

D 1

U,/
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which is essentially the same as obtained by Claerbout (1968). We

now follow Claerbout and postulate that iterating over VI layers

gives a product of layer matrices with the following form:

-K4

5.c()

-Zk ('/2

DW,

I)c )

(3-8)

where

Kh = Z-k

(3-9)

and C-) are polynomials in a defined by

L j

IT±L
t-4

7Ct

+ +-

+i-I-c~7,

+ 6*C

-I-..

+ n.(K _J§ )

+ (,j; -

(3-10)

This also implies that Z K('j/) and 2 q(Ii are polynomials

so that each element within the matrix of (3-8) is a polynomial.

By comparison with (3-7), we see that (3-8) is true for n = 1.

Let us assume (3-8) is true for arbitrary Y. Then, using (3-7), we

obtain

and --()

Dl,

-U oo

p)t



Sr(2\

z<V

- 0' l

where

+ -v
- (S .

(3-1 1)

Since

Cpjiw

the iteration in (3-11) indicates that are poly-

which have the form shown in (3-10).

54.

V 1 )

Z5 -~,

-4+1
-tn~

I

l

2 ~1 4
'i-

- h+ 1/)

-1- T2 .iy~t-t

and c(t)

C 2I+I~t/
hS1It)

%nrl(~~

nomials of degree 2 (K - A] )
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This completes the induction proof of (3-8).

The determinant of the matrix in (3-7) is

using (3-6). Since the matrix of (3-8) is a product of matrices like

that of (3-7), it also has a determinant equal to 1. This gives an

important identity relating (E) and o , namely

(3-12)

Claerbout obtains a constant different from 1 in this equation due to

his definition of reflection and transmission coefficients. This equa-

tion states that the autocorrelations of the polynomials (.) and

( 2) differ'by only an impulse of amplitude 1 at zero time.

For all real 0W this equation also indicates that the power spectra of

LEU) and C() differ by a constant equal to 1.
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3.3 General Form of Layer Matrix Products

In this section, we use the strategy of the previous section

to show that at non-normal incidence a product of layer matrices

C cz Cj
(3-13)

has an inverse which can be written in partitioned form as

-i

V)(t

S I

Gcz

(3-13a)

where

(3-14)

We shall also show that F(:z and G( ) are matric polynomials of

the form

HZ I I

Go + G31 +
2S -ftQ -I M

(3-15)

where FL and & are real 2 x 2 matrix coefficients of

From this, we see that Z FL/z) and in (3-13a) are

matric polynomials containing only positive powers of .

/L jC

Q h(~~)

2G
:5FOiid

+ Fez + F, +
i1

ZS,
~ Gciln)
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From (3-13), we obtain an iteration for ,(e) , i.e.

(3-16)

Using (2-33) and this relation, we obtain

-1 C

(3-17)

which is the iteration we shall use to prove (3-13a). For n=1, we

have using (2-27a)

, R,

ZK Z,

(3-18)

Since the SV transit time, 'l~ , is always greater than the

P transit time, ILLStC , through the i-th layer we can factor Z

out of the brackets in (3-18) and leave only positive powers of

inside. Thus, we can define matrix polynomials F (a and

G (-) by

(3-19)
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Then (3-18) can be written as

-I
F;(p

-2'/T:)

G IP)

2/-2

where from (3-19)

Frw
LO

1 L( 2) =

R-

i
IT

(3-21)

Clearly I, 2T and Gi ) can be written in the polynomial

matrix form of (3-15), the highest power of . being Mn -1

Therefore, we have verified (3-15) and (3-13a) for n= 1. To complete

the proof, we assume the forms of (3-13a) and (3-15) are true for

(n-1) layers and show that this implies they are true for n layers.

From (3-17) we have

(3-20)

and
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R"R

7-(n-/
"- G (,/h)h-i

ZSn,.I

~~-1

(3-22)

Now we factor 2 out of the right-hand brackets in this equation.

This leaves only positive powers of ! within these brackets to be

multiplied by polynomial matrices of the left-hand brackets. Thus,

we have

-Sn

c:ja)

2sn
-7-Gholi)

G.( )

2S --

GV: I

(3-23)

Mn -1

c z (Eh

My% (F ,
Gh( z v,

(2) RI,1+ G. ZlR'.l)T.

i,' +G r,) -

(3-24)

This verifies (3-13a) for all n. From this iteration, we see that

F, ) and G n(2 each have degree 2mn, higher than , -i)

and G CZ) due to the term
h- 1

- n-

-1
Q h~a

where

and

~ (t)YI-l

'R I
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which occurs in each iteration. Thus, if FC-2) has degree

2S1-_-~--i , then F(Z) has degree 25S-.31 - mi

This completes the proof of (3-15) by induction.

A useful result of (3-13a) and (3-15) is that only two subma-
-1.

trices of Q C) need to be determined by iteration since the re-

maining two submatrices are obtained by replacing Z by '/Z in

the first two. This is the same as reversing each sequence of pulses

in time, i.e. replacing t by -t in the pulse sequence represented

by each polynomial in Z .

So far in this section, we have essentially duplicated the proofs

of section 3.2. Equations (3-13a), (3-15) and (3-24) in this section

are matrix extensions to non-normal incidence of equations (3-8), (3-10)

and (3-11) of the previous section. The only complication which pre-

vents both sets of equations from being completely analogous is that
-L

L does not commute with other matrices in the non-normal

incidence case and cannot be factored out in as simple fashion as

Lt was in the normal incidence case.

Finally, we drive several identities for the non-normal inci-

dence case which are analogous to (3-12) in the normal incidence

case. From (2-37), we see that Q (Y) and its inverse commute

since they have non-zero determinants. Q ) is obtained
-I

from Q"CZ) in (3-13a), i.e.



QP) =
-1i

/QI/)

Thus, LQ4) can also be expressed as Z times 2x2 poly-

nomial matrices. Taking the product

-i

Q V) Q p
we obtain the identities

F-i G. -

-AGc'/ 2

G~~ Fw
n 1 O )

are respectively 2 x 2 and 4x 4 identity matrices.

-a
QhC Q( c1 = 14

we derive

(2ff)

G/a) Rz,VN V O0
G G c/$)

- a,
(3-29)

61.

[- l/a
[. Zgn

*,L

(3-25)

= 14

12

12

0

(3-26)

and 4

From

(3-27)

(3-28)

-YI-

G VP)z-
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These identities are used in the next section and in Chapter

IV which describes plane waves in a layered halfspace.
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3.4 Transmission and Reflection Responses of a Layered Medium

We now consider the solution of P and SV plane waves in

multilayer media. In this section, we treat the case of V1 elastic

layers between two elastic halfspaces as shown in Figure 3.1. We

shall assume that a known upgoing plane wave source

is incident to the n-th interface from the lower halfspace. With no

other sources in the medium, we shall calculate the reflected vec-

tor %,I and the transmitted vector Uo in terms of S,+j

Substituting (3-13 a) into (2-28) yields

1=-S I

25C ~e (3-30)

Letting

Rjl

U+ A

we find

zs[ -z G ] /?U1J L2GQ/ls
Fo/a-• S F;El 01 +,

(3-3 1)

Al

Rvoj n+
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Multiplying the second row of this equation by R o and subtracting

it from the first row gives

0

U,

Z, r.

2S

z~ Fct/a~
(3-3 2)

From the first row, we obtain

(&1 n~

(3-33)

where we define S(.) to be the reflection response of the n layers

given by

(in) -i

We also define a transmission response

(oi

S(2)

(3-34)

for the layers such

that

T (O)
C) 7-t SH4 I = ToU,

(3-35)

To calculate

[:z I
S+,i

, most easily, we invert (3-31) using (3-25) yielding

L72G e/i)
[-2 Gt 'u

{G (t) ,,

F -r

(3-36)

-- -

-s

iZG(/)

:h~ I
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From the second row, we obtain
-A

, t - 20_S h) R,] S

(3-3 7)

Comparing this equation to (3-35), we see that the transmission re-

sponse is

-i

(3-3 8)

Substituting (3-37) into the first row of (3-36) gives another expres-

sion for the reflection response, i.e.

-1
(h) 2s Zs

R F- [RF iJ[ -F2s G c2) R

(3-39)

If we transpose this solution for (a) we obtain the solution given

in (3-34). Therefore, the reflection response is symmetric, namely

(3-40)

This is a proof of the reciprocity relation between source and receiver

when both are located just below the n-th interface. That is, the

reflection coefficient for P to SV conversion equals the coefficient for

SV to P conversion, all waves having the same phase velocity c.

Setting the right-hand sides of (3-39) and (3-34) equal to each

other yields another relation
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LF~-2RGJI..)] [c~w - 2 F ,2 ]1

[G~ (2) if2-5RF(1/0J1 ) -z /-z) GR(12) o

(3-4 1)

which can be verified by applying identities (3-26) through (3-29)

to each product of this equation. One can show that the reflection

and transmission responses are simply related to each other by con-

serving energy through the stack of layers. When i.h+, =  ;h+, is

the only wave vector incident to the n layers, we have

("I.)*S d$ (1/2) A a) + LL '
e h, +, h+1 (3-42)

For real W, i.e. 1 = i , each scalar product on the right-hand

side of this equation represents the energy density flow of the P and

SV components leaving the n layers through an interface. The left-

hand side contains the energy density flow of the incident source

waves. Putting in the reflection and transmission responses, this

equation become s

-arbtr/;ry s c Rhis2i + T (sili
n+1 -+r h+,

for arbitrary sources. This is only possible if

(+ 1(1) c(a + 12 (3-43)



67.

We shall prove this equation using the solutions for RZ) and I) z)

given by (3-38) and (3-39).

Y 01)
R(,/)R

They give

RoG(]_- [Fc. -

- G 1i zj ,Ff• LS RoF- - G;]

-1
- tG (/~ki

(3-44)

We now evaluate the terms within

using (3-41). Multiplying (3-41) by

braces {
-2S

of this equation

Z 8 from the left, we get

-2wSRF - RoGc'uj1Ii: Fc'z R.,

2S X
- - G -/zS[R FCvFl"

-GHJ

Ro]

(3-45)

Now, since

Ro 0 To To

we can write (3-45) as

--TG

+ [F('I

- G (,/&i)]
2S F' Gci

GXz)I~
- SG'/ oR ]

*6 (0)

-+ T~a \ l(z)

ToT

12

2S X

- G ('a) R 0}

(3-46)

- [RG <e]F(

- RoGG t(W )

S I ( -a

C s F (,Jz) R
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Rearranging the terms inside braces in this expression gives

i I b25 LG'I, F/z- F('G'/)]fF't [FZm - G- aG

But from (3-26) and (3-27), we see that the terms of the first

bracket vanish, and the second bracket reduces to I . There-

fore,

= I

and (3-46) reduces to

R. F G cv- 23-25 a)
- Gc.~]

To O + F(' a) - G F 2 G t R (3-47)

The left-hand side of this equation is the same as the product of the

bracketed times inside the braces of (3-44). Substituting (3-47) into

(3-44) gives

Ro}

z2S G* ) R6IF )E -

which equals T2 . This completes the proof of (3-43).

Finally, we shall calculate the transmission response for a source

just above the 0 interface and verify the principle of reciprocity

for transmitted waves through the layers.

Let a source do - 60 be incident from above the layers

25 G- -- 12S GL]
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at interface 0 . Then setting

U VI+ = 0

and

in (3-30) gives the equation

-5 I
-S I

[ Qi 6s
z F('I)FC9.

Multiplying the second row of this equation by R

tracting the result from the first row gives

and sub-

Solving for

a h

-S

we obtain

Ti
-I

- - -t ~

is the transmission response given by

RG

- 21 RGe/&j F~

(3-4 8)

is

where

T c

(3-49)

S Cr-2~

(3-50)

CA
0I IT
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This transmission response is related to T C by the

reciprocity principle. For example, a unit impulsive SV source just

below the n-th interface generates a transmitted P wave just above the

0 interface which equals the SV wave recorded below the n-th interface

generated by a unit impulsive P source above the 0 interface; all waves

and sources having a common phase velocity C.

This reciprocity relation can be expressed in terms of the trans-

mission responses, i.e.

I (n " {o]

T Tk
(3-51)

This is easily verified from the solutions given by (3-50) and

(3-38). Taking the transpose of (3-50) gives

- G c ",,Ro
(3-52)

where we have used the identity

I

TO = To

Comparing (3-52) to (3-38) we see that

I

T= T an

as conjectured.
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3.5 Figure Captions

3.1 Stack of n elastic homogeneous layers between two elastic

halfspaces. An upgoing source S, is incident to the layers from

the lower halfspace.
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Chapter IV

Waves in a Layered Halfspace

4. 1 Introduction

This chapter describes the propagation of homogeneous

plane waves in a layered halfspace, the uppermost interface being

free. As in Chapter III, we can define reflection and transmission

responses of a layered halfspace for a deep upgoing plane wave

source. Since no energy is transmitted across the free surface, the

transmission response is defined in terms of upgoing waves arriving

at the free surface from below. Such a response is useful, for ex-

ample, in computing the distortion produced by a layered crust on

teleseismic events recorded at the Earth's surface.

The reflection response contains all the energy of the inci-

dent source since no waves pass through the free surface. As shown in

Section 4.2, this implies that

= 2

which is a special case of the conservation of energy theorem given in

Chapter III.

Section 4.3 describes the reflection and transmission response

when a downgoing source is located just below the free surface. This

transmission response equals the transpose of the transmission response
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for a deep source.

In Section 4.4, it is shown that the reflection response for

a surface source equals the positive time part of the autocorrelation

matrix of the transmission response due to a deep source. This is

an extension to non-normal incidence of a theorem proved by Claer-

bout for compressional waves at normal incidence. A possible use

for this theorem is to obtain reflection seismograms for the Earth's

crust from teleseismic events recorded at the free surface. At nor-

mal incidence, it is possible in principle to use the surface source

reflection response to calculate the impedances of the crustal layers

as described by Kunetz (1962) and Claerbout (1968). Unfortunately,

this inversion scheme is not easily extended to non-normal incidence

for reasons given in Section 4.3.

The estimation of the matrix polynomial

M F# PRG"

for observed transmitted waves at the free surface is discussed in

Section 4.4. The calculation of M(z) is useful because each re-

flection and transmission response discussed above can be obtained

from M(z) and Ro the reflection coefficient matrix for the free

surface. One may also remove the crustal reverberations contaminating

teleseismic waves by premultiplying the upgoing waves L, by M (i).
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4.2 Transmission and Reflection Responses of a Layered Halfspace

for a Deep Source

We now adapt the results of the previous chapter to solve for

the P and SV plane waves in a layered halfspace. Let the upper half-

space in Figure 3.1 be a vacuum so that interface 0 is free. This change

affects only the reflection and transmission coefficients at interface

0. No transmitted waves are possible across interface 0 so that

To O . Also by conservation of energy

RoR = R = ,
(4 -1)

For a deep plane wave source U V, = Sn, , the waves

transmitted through the layers to the free surface are given by (3-37),

i.e.

(4-2)

where we define the matrix

(4-3)

We shall call the matrix coefficient of Sn, in (4-2) the

transmission response X () of a layered halfspace generated by
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a deep source. Thus,

-1I

z7 M zF G [Pc -. 2R.

(4-5)

The reflection response generated by S, and recorded just be-

low the n-th interface is given by (3-39). Using (4-1) and (4-3) this

reflection response can be written as

SLFi G ) R 0 (4 F - -6

(4-6)

Similarly, from (3-34), we obtain an alternate expression

R = aM <* R, Ms

(4-7)

Comparing these last two equations, we see that R Wi) is sym-

metric as in the previous chapter in which interface 0 was not free.

Taking the transpose conjugate of (4-6) and multiplying it by (4-7),

we have

SM s -i -i
RLRtd i M~tRMt M..M,,

which reduces to

R <Rm I,
(4-8)
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using (4-1). This is a special case of the conservation of energy

theorem, equation (3-43), in which no waves are transmitted across

the free interface, interface 0.

We define the elements of the reflection response by

(n)
L psP (7)

rss ( n

(4-8 a)

This notation is similar to that used in (2-12) to define the reflection

matrix for a single interface. In this case, the elements of are

frequency dependent rather than constant as in (2-12).

Putting these elements into (4-8) yields three scalr identities,

which are

-pp '/a) rppl ) +

V-pp(,/;) rsp(-)

Equations (4-9) and (4-11)

the incident source at the bottom

or SV wave of unit power. In the

Vps (/z) ssC ()

- P '.i C

= O

- I

(4-9)

(4-10)

SS '" ' ' / S3 "  - (4-11)

state that energy is conserved when

of the layers is either an impulsive P

frequency domain, these two equations



78:

show that the sum of the power spectra of reflected P and SV waves

equals 1 for either type of incident impulsive source.

since R .

Moreover,

is symmetric, we also have

(4-12)

Using this relation and subtracting (4-11) from (4-9) gives

(4-13)

which shows that impulsive responses "pp "C) and fss( R

have equal power spectra. Thus, their Fourier spectra differ only by

a phase shift.

Let us define the Fourier spectra

'pp( (1) A ( ) e

A
- L4SJL)

(4-14)

where

- L W:t

rp P (I/ -) r? P (a) Irss (1/) V-3 (;I)
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Each A Cw) in (4-14) is a non-negative amplitude spectrum and

each w) is the phase lay spectrum associated with A w) .

For real LW replacing 2 by I/1 on the left-hand side of

(4-14) is equivalent to reversing the sign of CW on the right-hand

side. Since each element of RC) represents a real time func-

tion, changing the sign of W only changes the sign of the phase

lag tCw) of each term in (4-14).

Substituting the above spectra into (4-13) and (4-9) yields

two relations for the amplitude spectra of (4-14):

A > -- A <wsss P (4-15)

A -> = 1 A 4 L
(4-16)

We now utilize (4-10) to obtain an interesting equation relating the

phase lags. Combining (4-10) with (4-12) and substituting (4-14) and

(4-15) into the result, we derive

(W) + c (W) ±(W)W
PP Ps P

Thus

P 2 (4-17)
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Let us consider the low frequency limit of (4-17). For very long

wavelengths, the effect of the stack of layers above interface n dis-

appears and the reflection coefficients of R(n) (z) become those of a

homogeneous halfspace. For large phase velocity, i.e.

C> 4 > (3

the elements of R(n ) (z) are obtained from equations (A-61) in Appendix

A:

- i + (3)[ +,
S(3/L o

.4/3>

Therefore, (o O So) O and (si = -

for large phase velocities. Equation (4-17) can thus be written with

no sign ambiguity as

'2 (4-18)

Equations (4-15), (4-16), and (4-18) show that given the Fourier

amplitude and phase spectra of any two of the four eiements of R(n ) (z)

we can easily calculate the spectra of the other two elements.
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4.3 Transmission and Reflection Responses of a Layered Halfspace

for a Surface Source

In this section, we place a downgoing source vector just

below the free surface of the halfspace and solve for the upgoing vec-

tor U, and the downgoing vector In+, . These solutions will

give us respectively the reflection and transmission responses of

the medium for a surface source.

The downgoing wave , equals the source vector S, plus

the upgoing vector U1  as it is reflected at the free surfaces. This

reflected vector is goal where 'R is the reflection matrix for the

free surface. Assuming that no deep sources exist in the lower half-

space, we set Uh, O . Putting these quantities into (3-30),

we obtain

R§GcI -s

25 5

L u RGi Z Fi a )

(4-26)

We now premultiply the second row of this equation by Ro

and subtract the result from the first row, giving
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2 SR

11 G ('/p)

G {.- - 2  R ., F ) f I , ,

2F (/'i) 0

(4-27)

From the first row of this equation, we find

- 2. Ro,Go)]
ht-

-i
= 1s[

-i
I i~ Sz ,

(4-28)

and from the second row

2lz~
I C . )
I t)S

(4-29)

Taking the matrix coefficient of Sj in each of

tions, we define the reflection response RLz)

response

the last two equa-

and transmission

as follows:

TRz)

2.5 -I

2 GC3(/2 M Li)

= M -1
S '

(4-30)

(4-31)

-S) I

i ,
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where

(4-32)

(4-33)

There are two additional reciprocity relations we can obtain by

interchanging source and receiver positions, i.e.,

R <

(4-34)

and

z

(4-34 a)

The first relation is obvious from (4-3) and (4-5).

relation is easily shown if we write RlC) in the form

-2S

Rle) = Lc~c/~

The second

- i
R 01

using (4-30) and (4-3). To show that is symmetric, it is

only required to show that

F -IFc cG ('u
-I

* it F .

FA I R C2)-S

Cj V-I I c~t~ s,

= X It)

R u)
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which follows from (3-29).

In both this and the previous sections, it is necessary to

culate M lZ) for each transmission and reflection response.

now derive a useful recursion relation for obtaining M (2)

L\ layers. Equations (3-24) which give recursion formulas

F( Z and G ) can be written as

,,' - ( 0 ',
R(2

where S,

(4-3) yields

( -)) - i I -*h -1, -1% V1 h_ V,""1 Vt Y1 , V1

is given by (3-14). Summing these equations using

m, 2s . o 1 _
= jjn1c) -/ n )

(4-35)

This relation is a matrix extension of a scaler relation derived by

Claerbout (1968) for compressional waves at normal incidence. To

start the recursion, we let

- R,,RIi 2 T,iM1 t) : "1[2

(4-36)

cal-

We

for

for
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from (3-19).

These two equations can be used to calculate (1) much

more rapidly than calculating F,(-) and G()- separately us-

ing equations (3-24). We can also use (4-35) to show conceptually

how the rays are summed in a multilayer transmission problem. Let

us write this equation as

h hVInT

or using (4-7)

Thi- -1 1112 - ] 1

(4-37)

where R <a] is the reflection response of the n-l layers

above the (n-1)-th interface for a source located just below that inter-

face. Iterating upward through the layers using this equation and

(4-36) we obtain

(n-li - --

(4-37)

For a deep source just below the n-th interface the transmission res-

ponse recorded just below the free surface is given by (4-5).
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Using (4-37) this transmission response becomes

-1I (o)

[2 P1 Z R 2I TIRE- _Z2 Z 2Rmi2R Z 2

(n-I)

(4-3 8)

On physical grounds, each reflection function R <) is an in-

finite series in positive powers of Z , the first term being R

the reflection coefficient matrix for the k-th interface. Since X.z2 is

realizable each inverse in (4-38) must have a converging series expan-

sion in positive powers of _. . Thus we can write

-. i

[2. K KR K K

Z K + (Z R, Z KR ;)ZT +( K +

(4-3 9)

Let us consider the transmitted wave

(4-3 9a)

The accumulation of multiple reflected waves inside the n-th layer is

given by
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(4-40)

from (4-38). Assuming an expansion like (4-39) for this expression,

we see that the first three terms of (4-40) are

Sz S T ..,. (z R v)T, + _T ,

(4-41)

Each of these terms adds a contribution to Ah , the upgoing

wave just below the (n-l)-th interface. The first term contains the

direct P and SV arrivals, due to S,., being transmitted through

the n-th layer. The second and third terms represent the first term

after multiple internal reflections inside the.n-th layer. Each reflec-

tion off the (n-l)th interface, indicated by R C% , increases the

complexity of the waves because () is the reflection res-

ponse of all the n-i layers above the n-th layer. Thus, we have

IT - 1 (io-) - -

Each term of h which is already very complex, is how operated

on in a similar fashion by the next matrix operator in (4-38) which

results in
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This matrix multiplication generates multiple reflections inside the

(n-1)-th layer, each reflection being "filtered" by the reflection res-

ponse of the (n-2) layers above the (n-1)-th layer.

Continuing this process through the layers gives the transmitted

wave LA evaluated just below the free surface. If we take the

first term of the expansion of each inverse of (4-38), we see that

the direct P and SV waves transmitted through the layers are given

by

C,,(cdirec ) Z ,T J2 T. 7 - T,, ,

(4-42)

This term contains all possible combinations of P and SV waves trans-

mitted through each of the n layers with no reflections.
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4.4 Calculation of Reflection Response R (21 from the Trans-

mission Response X. ) .

In this section, we prove a useful relation which enables us

to calculate the reflection response R(- due to a surface plane

wave source, from the transmission response X (Z) generated

by a deep source. A possible application of this relation is to con-

vert horizontal and vertical component seismograms for teleseismic

events to reflection-type seismograms caused by surface plane wave

sources. Such reflection seismograms are usually easier to interpret

than transmission seismograms in mapping layers of the Earth's crust.

The relation we shall prove is

, + R.Rto) + R(O/R = XC1/zX<0z
(4-43)

Responses R (.) and X ( are used to calculate the up-

going waves r, and X, recorded below the free surface, i.e.,

= Rw ,

(4-44)

and

X,

(4-45)
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where S, is a downgoing source located just below the free

surface, and S n, is an upgoing source just below the n-th

interface.

R(2) represents a realizable time function. Therefore,

it must contain only positive powers of Z . Similarly, (/a)

must contain only negative powers of Z . To obtain [ using

(4-43), we calculate the autocorrelation matrix X (k) X 2 )

which contains positive and negative powers of t , and set

those terms containing positive powers of Z equal to o t ().

This remarkable theorem was formulated in the normal incidence

case by Claerbout (1968). He derived a scaler relation similar to

(4-43) for compressional waves.

At normal incidence, each matrix in (4-43) becomes diagonal

so that two uncoupled scaler theorems are obtained, one for P waves

and one for SV waves.

The proof of (4-43) we now give is a little more complex than

Claerbout's proof, but follows his steps almost exactly. We first

substitute the expression for X (1) given by (4-5) into (4-43).

This gives the equation we shall prove, i.e.

(4-46)

From the first row of (4-26) and equation (4-28) we obtain

-i

S + FmV= (-
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Using (4-44) this yields

F~- M (~tA

(4-47)

Transposing (4-30) we obtain

= Z IA ('I-a)G~(n-R,

(4-48)

Summing these two equations, we find that

Rbz + R ej )

+ G~ a) R ol

{ o) Fc~ - 3s~ 2) IRb ' Mcim

We replace

braces I

M ("t) and M ( i) inside the

on the right-hand side of this equation by expres-

(:) and G (-

-2S
C-7 G~) . F

Since the two middle terms cancel and

from (4-3). The result is

-2s * S G+ - Gw OI i) -#15 C

2
RO 12 , this

reduces to

M * ('/2)71z

(4-4 9)

sions in

fii*Fe

0]

M 0 F(:z) -M-

+ R R(z)
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But this expression equals from (3-28). Equation (4-49)

therefore reduces to

M ( 1 ) [I 2.+ 1:,R(:;a -I-

proving (4-46) and (4-43).

92.

G ('I;:)

41
= " 2

- G c:z)
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4.5 Estimation of M ()

A useful inverse problem is to estimate the matrix polynomial

(Zc) from recorded data at the free surface. Given M C) and the

reflection coefficient matrix , for the free surface, equations

(4-5), (4-7), (4-31), and (4-43) show how to calculate transmission

and reflection responses for a layered halfspace for a plane wave

source located either at the free surface or just below the deepest

interface. An important application would be to remove the effects

of crustal reverberation on teleseismic events recorded at the free

surface of the Earth's crust. To see this, we rewrite (4-2) as

~S-

(4-50)

where U(3) is 'a vector of the upgoing P and SV waves arriving at

the free surface, and SC ) is an upgoing plane wave teleseismic

event incident to the base of the crust. M Cl , La) and S(?-)

each represent time functions sampled every ZA't sec. The term

R in (4-51) has the effect of delaying the source in time by S41

which is the one-way transit time for SV waves through the crustal

layers.

If we have calculated M (7) for the crustal structure below

the receiver, we can perform the multiplication of M L) by -LL -)

indicated by (4-50) to obtain the upgoing wave S() which is uncon-

taminated by crustal reverberations. This multiplication corresponds
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to a straight forward convolution in time.

The first step is to convert recorded horizontal and vertical

velocity components at the free surface to P and SV components of

U.t). To do this, we need to know the phase velocity c of the

teleseismic event and the physical quantities (, /(, and pi

for the uppermost crustal layer. From this information, we can cal-

culate

(4-51)

where matrix K is given by (2-45).

We now assume that our particle velocity data has been trans-

formed to upgoing waves L . Let us define the following series in

t+p

2S

M n M+

(4-52)

The source is assume to have a finite time duration K'A , and time
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is defined to be zero when the first source vector So arrives at the

base of the crust. The recorded waves LCE) at the surface have

an infinite number of terms, the first sample LU arriving at time

p.'t which is the one-way transit time through the crust for P

waves. M L~) is a matrix polynomial of degree ZS with real matrix

coefficients M .

Inserting equations (4-52) into (4-50) yields an equation in

which an infinite series of - on the left equals a polynomial in

2 on the right-hand side. Equating coefficients of powers on

on each side of the equation, we obtain an infinite set of linear equa-

tions in the matrix coefficients of M , i.e.

U, U, o  2 o

. 00

SO
• • •--)c

U U U,

U. s+- U U, S

5
K

U. + s u~

(4-53)
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These equations illustrate the recursive nature of the observed

data tCL) . For n greater than s-p+k we have

- - U MU2 + - 2S Mzs

(4-54)

independent of the source S Lt) . This equation seems to give

a rapid matrix recursion for calculating t( ) if M () were known.
-i

To do this both sides of (4-54) would have to be multiplied by M

to give U in terms of earlier values of UiC ) . Unfortunately,

this is not possible because M is always singular. It can be

shown from (4-37) that for any number of layers the first term of M(2)

has the form

M 0  l n21

which cannot be inverted. The basic reason for this is that P and SV

transit times through a layer are always unequal integer multiples of

Another reason Mo must be singular is seen directly

from the first s-p equations of (4-53). If M o were non-singular,

these equations would force the first s-p data samples to vanish, i.e.

U = UI, ULs-p- C>

This is impossible on physical grounds, because the first arrival of

U(I) should be IA. , the direct P wave through the crustal layers.
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In the case of normal incidence, we can treat P and SV com-

ponents separately and derive a set of equations like (4-53) and a

recursion relation like (4-54) for each component. All terms will be

scaler terms rather than vectors or matrices and the s-p leading zeros

in (4-54) will not occur. As a result, the scaler recursion equations

can be used to compute UP(2) (or USC)). Such computations

are described by Claerbout (1968).

Returning to the non-normal incidence case, we consider the

inverse problem of calculating M. 1C] from UL~) and S.~)

The infinite number of rows in (4-53) do not overdetermine the system

of equations if the solution for M (2) is exact. In any practical

computations, however, there are errors in U( ) due to inexact

transformation of particle velocity components to upgoing P and SV

components of LAN-) . Also, estimates of 5(2) will certainly

have errors. Therefore, instead of choosing 4s+2 rows of data to

compute M , I * " Mzs, it is more practical to compute the

least squares solution of IM (~2) utilizing all the rows of data. In

the absence of errors in LtU() or S C-) the least squares solu-

tion is, of course, also the exact solution.

To do this, we multiply both sides of (4-53) from the left by

the transpose of the coefficient matrix. This gives the normal equa-

tions for a two channel filter problem. These equations are well

known (Backus, et.al., 1964, Schneider, et. al., 1964) and can be

rapidly solved by an adaptation of a recursion algorithm by Levinson



to multichannel problems (Wiggins and Robinson, 1965). The normal

equations we obtain are

~p~0 * *r

* I

2 Js YS 23-1

where R ft and ,

& . a

J -2 Is+1

j ho

M

M

4-55)

0 -4-55)

are 2 x 2 correlation matrices defined by

- - T. s -P

(4-56)
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Chapter V

Application to Two Transition Zones in the Earth

5.1 Introduction

The discrete time calculation of P-SV body waves described in

the previous chapters can be readily applied to many transition zones

within the Earth. The only serious restriction for the method is that

critical angles of reflection must not be exceeded at any interface be-

tween layers of an assumed model, since this introduces inhomogeneous

waves into the model response.

In this chapter, the time domain responses of two transition

zones are illustrated by computed examples. The first zone is the

crust of the Earth. In section 5.2, the transmission responses of two

plane layer crustal models under the Large Aperature Seismic Array

(LASA) in Montana are calculated for normal and non-normal incidence

of impulsive teleseismic sources. The second transition zone con-

sidered is the core-mantle boundary. Reflection responses in time

for five models of this zone are calculated for a wide range of inci-

dent angles for P and SV sources in the mantles. These responses

are described in section 5.3.

A computer program was written in Fortran IV for the IBM 360,

Model 65, to solve for the reflection and transmission responses of

a stack of elastic layers between two halfspaces to an upgoing source

in the lower elastic halfspace as shown in Figure 3.1. The program
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allows the upper halfspace to be solid, fluid, or vacuum. If the

upper halfspace is a vacuum (i.e., interface 0 is free), then the

matrix polynomial M(z) for all the layers is calculated using the it-

eration given by (4-35). The transmission response X(z) for the

layered halfspace is then given by (4-5), i.e.,

t= cS)M (a) z Adj (M Ca)
S M l (5-i)

where hj iM()l is a polynomial in integer powers of z. On the

other hand, if the upper halfspace is solid or fluid then the iterations

in (3-24) are utilized to calculate matrix polynomials F(z) and G(z)

separately for the stack of layers. From (3-34), the reflection response

'( ) for the layers is given by

-1

(5-2)

This expression is used to calculate the core-mantle reflection res-

ponse where the upper halfspace is taken to be the fluid core and the

lower halfspace the solid mantle.
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5.2 Transmission Response of Two LASA Crustal Models

In their study of crustal variations under LASA, Glover and

Alexander (1969) computed long period spectral responses of plane

layered crustal models which were approximations to models obtained

by seismic refraction studies in Montana.

Two of their models, USGS3 and TI1 are used in this section

to illustrate the horizontal and vertical components generated at the

surface by impulsive teleseismic sources. These two crustal models

have the layer parameters listed in Table 5.1.

With a time increment of A'r = .05 sec., which is the sample

interval of the LASA digital recording equipment, matrix polynomials

M(z) were calculated for each model for horizontal phase velocities

corresponding to incident P wave angles of 00 and 300 in the mantle.

The four elements of each M(z) are displayed as sampled functions

of time in Figures 5.1 to 5.4. For display purposes, each time func-

tion has been convolved with a gaussian pulse having a width of 3A't

sec. The actual time resolution of the computed response is if' =.05

sec., which is 1/20 the interval between vertical timing lines.

At normal incidence, the matrix M(z) for each model is diagonal,

so that the transmission response X(z) is also diagonal containing only

the uncoupled P and SV responses, i.e., upgoing P and SV waves gen-

erated respectively by impulsive P and SV sources incident to the

crust from the mantle.

As shown in Figures 5.2 and 5.4, at non-normal incidence, the
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Layer Parameters

Model

USGS3 1
2
3
4

TI1

TABLE 5.1

Layer km/sec
No.

3.00
6.15
6.70
8.30

2.60
3.70
6.08
6.97
7.58
8.07

km/sec
km/sec

1.77
3.61
3.96
4.60

1.50
1.85
3.51
4.11
4.47
4.67

P p 3
g/cm

2.40
2.90
3.02
3.65

2.31
2.54
2.85
3.10
3.22
3.55

d
km

2.5
19.5
27.0

0o

.3
2.0

15.0
17.0
23.0

co

Parameters of LASA Crustal Models Based on Seismic

Refraction Studies (after Glover and Alexander (1969)).
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off-diagonal elements of M (z) are no longer zero, indicating that

coupling between P and SV waves in the transmission response X(z)

is significant.

The vertical and horizontal components of motion generated at

the free surface of each model by impulsive P and SV sources can be

obtained from X(z) by taking the matrix product

Vw = I KXco
(5-3)

where K is a scalar matrix given by (2-45). The first column of V(z)

contains horizontal and vertical velocity components caused by an

impulsive P source, whereas the second column of V(z) contains

velocity components generated by an SV source in the mantle.

Plots of the four velocity components of V(z) for each model

are shown in Figures 5.5 to 5.8. The upper two records in each

figure are generated by an impulsive P wave and the lower two records

are due to an impulsive SV source, all waves having the phase vel-

ocity indicated in each figure.

The time functions are generated recursively in the computer

program by dividing NAdj (Ma)) by the polynomial de I M~) .

The infinite series obtained in integer powers of z can be terminated

after some arbitrary power zn has been reached. This corresponds

to calculating a time window of length flAt for each response.

In each particle velocity figure, zero time is defined to be the
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arrival time of the first direct P wave through each model. At normal

incidence the SV wave in each model lags about six seconds behind

the first P motion. At non-normal incidence, some direct P wave

energy arrives at zero time even for those traces generated by impul-

sive SV sources in the mantle.

Once M(z) has been calculated for a layered halfspace, the fre-

quency response of the medium for any W is obtained by setting

z = e . This has a computational advantage over Haskell's

method if a large window of spectral points are to be computed, be-

cause in Haskell's technique, a new iteration through the layers has

to be computed for each frequency.

Since vertical transit times for P and SV plane waves in each

layer are rounded off to integer multiples of the sampling increment

AT , there is some time distortion introduced in the transmission

response of the crustal models. This distortion is too small to be

seen in Figures 5.5 to 5.8, and can only be detected in the frequency

domain. Figure 5.8a shows the frequency response of the velocity com-

ponents plotted in Figure 5.6 for model USGS3. The four spectra

are obtained from (5-3) and (5-1), i.e.

(5-4)

Thus, it is only necessary to invert the spectral matrix of M(z)

to obtain V(w ) rather than Fourier analyze the particle volocity data
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directly.

Figure 5.8b shows the same spectral responses calculated

exactly using Haskell's matrix formation. Comparing this figure to

Figure 5.8a, we see that responses calculated from M(z) have some

slight distortion in amplitude and phase which increases with fre-

quency. This distortion can be neglected over the frequency range

shown in any practical computations.
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5.3 Reflection Response of the Core-Mantle Boundary

Recently, Teng (1967) computed the reflection and transmission

responses of five plane layered models of the core-mantle boundary

.of the Earth. Using Haskell's technique, he computed the amplitude

response of each model for incident plane P and SV waves over a

period range of 2 to 100 seconds. From these responses, Teng quali-

tatively discussed several questions:

(1) For an assumed structure of the core-mantle boundary,

what effects on core phases can be expected and which core phases

are more sensitive to the layered structure ?

(2) At which epicentral distances do these effects become

more pronounced ?

(3) What frequency bands (or records from what instruments)

are most suitable to detect these effects ?

(4) What window length is best suitable for a study of the

core-mantle boundary ?

Most of these questions can be directly answered by examining

the impulsive responses in time of the various models. In this sec-

tion, the reflection responses of each model considered by Teng are

calculated. These can be used as guides for estimating the variation

of amplitude and wave shape of reflected core phases at different

angles of incidence in the mantle.

A listing of layer parameters for each model is given in Table

5.2. These models are arranged in increasing complexity of their
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Layer Parameters

fZ P
km/sec gr/cm3

Model
No.

1

Layer
No.

oV

km/sec

8.040
13.680
13.700
13.700

8.150
13.720
13.710
13.700
13.690
13.680

8.150
10.200
11.600
13.000
13.690

8.300
10.000
13.600

8.300
13.300
13.600

The interface between the
corresponds to a depth of
ber refers to:

TABLE 5.2

zeroth and the first layers
2898 km. The model num-

(1) Gutenberg - Bullard I (Landisman et al, 1965)
(2) Standard model (Dorman et al, 1966)
(3) Model R 1 (Dorman et al, 1966)
(4) Model 94 (Phinney and Alexander, 1966)
(5) Model 81 (Phinney and Alexander, 1966)

Models of Core Mantle Boundary (after Teng(1967)).

0.000
7.200
7.225
7.250

0.000
7.195
7.200
7.205
7.215
7.220

0.000
5.200
6.100
6.840
7.210

0.000
2.800
7.500

0.000
4.800
7.500

10.060
5.355
5.325
5.300

9.400
5.675
5.665
5.655
5.645
5.640

9.400
6.200
5.670
5.660
5.650

9.500
6.700
5.500

9.500
6.700
5.500

Thickness
km

20.00
80.00

ao

oo
18.00
20.00
20.00
20.00

00

oO

11.00
13.00
12.00

30.00
o00

100.00
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spectral reflection response. Models 1 to 3 represent a transitional

lower mantle meeting a fluid core at a sharp interface. These models

were obtained from free oscillation studies (Landisman, et al, 1965,

and Dorman, et al, 1966). Models 4 and 5 were suggested by Phinney

and Alexander (1966) to fit observed P waves diffracted along the core

mantle boundary. Models 1 and 2 have more than one layer but the

impedance contrast between layers is negligible except for the inter-

face 0 which is between the fluid core and first solid mantle layer.

On the other hand, models 4 and 5 each have one layer between

mantle and core, but the contrasts in shear velocity and density across

each interface are large enough to cause strong oscillations in the

amplitude spectra of the reflection response. Figure 5. 9 is a dupli-

cation of Teng's Figure 2. showing the amplitude spectra of SV to SV

and P to P reflection coefficients for the 5 models each calculated for

an incident angle of 600 in the mantle. For the more complex models,

it is clearly difficult to interpret these spectral responses in terms

of reflected core phases in time, especially for short period phases.

One can synthesize a time domain response by inverting a band limited

spectrum, but strong oscillating precursors will result.

The impulsive reflection response in time for each model was

calculated for incident angles of 00 to 750 for P waves and 00 to

" 320 for incident SV waves. These responses are plotted in Fig-

ures 5.10 to 5.24. These figures are arranged in three groups of five.

The first group contains the P to P reflection response [-p ( W for



110.

models 1 to 5. The second group is a set of P to SV reflection res-

ponses rps () and the third group are the SV to SV reflection res-

ponses rss C) for the five models. On all figures the vertical

scale equals 1. between adjacent traces. No reflection response

can exceed 1. at any time although the SV to SV responses are often

near
nearly 1. because the fluid core is a perfect reflector for shear waves.

Source and receiver are located just below the lowest interface in

each model of Table 5.2., and time equals zero wlen each impulsive

source is excited.

Let us examine first the rpp responses in Figures 5.10 to 5.14.

As Teng pointed out from the frequency responses, Models 1 and 2 are

indistinguishable, and in fact the effect of the layering is nil since

only the reflection off the fluid core shows up. Model 3 has an in-

teresting response for two reasons. At normal incidence, two short

period phases of opposite polarity might be detected since they are

separated by 5 sec. However, long period data would be destructively

interfered because of the opposite polarity of the two pulses. At

large angles of incidence, it is seen that one could easily mistime

the first arrivals of this response by 5 seconds and also obtain the

incorrect polarity. It appears that a time window of 5 to 10 seconds

is needed to adequately detect such a feature in the response. Models

4 and 5 offer even more chance of mistaking the arrival time and polarity

of the first motion of the rpP response. Also, much larger time windows

of 30 to 60 seconds would be needed to discriminate these last two
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models from numbers 1 to 3.

Kanamori (1967) showed that transition zones with linear velocity

and density gradients must be sharp (= .25 km) to produce PcP phases

so similar in shape to P events for - 470 to 750. Thus, to ex-

plain observed core phases a sharp discontinuity must exist at the

core-mantle boundary.

In view of the model responses discussed above, however, it is

possible that more than one discontinuity could exist and not be easily

detected since most studies utilize only the first few seconds of short

period PcP phases for calculations of first motion and amplitude.

Buchbinder (1968), for example, documents evidence from earth-

quakes and explosions showing that PcP first motions go through a

sign reversal at A = 320, corresponding to an incident angle of about

360 at the core-mantle boundary. Assuming a single plane interface

between mantle and core, Buchbinder found that with acceptable vel-

ocities for the mantle and core, an abnormal density ratio of 1. was

needed to produce a.first motion sign reversal at 360 incidence angle.

One possible way to avoid this density problem is to insert a

layer of intermediate velocities and density between core and mantle.

The reflection response, rpp(t) for Model 4, shown in Figure 7. 13, has

a weak first impulse which changes polarity between 150 and 300 in-

cident angle. To strengthen this first impulse and move the sign

change to the intcrval between 300 and 40 , it is only necessary to

lower the compressional velocity of layer 1 in Model 4.
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The reflection responses rps and rss for Models 4 and 5 show

even more pronounced multiple reflections due to the strong reflec-

tion coefficients for P to SV and SV to SV waves at the fluid core bound-

ary. Of particular interest is rss for Model 4. At normal incidence,

it predicts three strong arrivals separated by about 20 sec. time. As

the angle of incidence increases, the first and third arrivals die out

and a new first arrival of opposite polarity emerges. If such layering

exists, this variation with incidence angle could be verified with good

quality long period ScS data.

5.4 Conclusion

The present time domain approach to layered media problems

can give high resolution reflection and transmission responses with

no precursors in time. These responses can be directly compared

with observed records of particle velocity. The roundoff error intro-

duced by the discrete time formulation is negligible provided A

is chosen small enough. For thin crustal layers ( " 2 km. thick)

It =.05 was found to be fine enough for frequencies up to 2 cps.

In calculating each time domain response, polynomial matrices

are obtained which can be Fourier analyzed to obtain the spectral res-

ponse of the layers, without repeedting the layer iteration for each

frequency value.

Simple reflection responses in time for core-matl boundary..

models are much easier to interpret than spectral responses in terms

of recorded data.
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5.5 Figure Captions

5.1 Elements of 2x2 matrix polynomial M(z) for crustal model

USGS3. Normal incidence case.

5.2 Elements of 2x2 matrix polynomial M(z) for crustal model

USGS3. Phase velocity of 16.60 km/sec corresponds to P waves

incident at 300 and SV waves incident at 16.10 to base of crust.

5.3 Elements of 2 x 2 matrix polynomial M (z) for crustal model

TI1. Normal incidence case.

5.4 Elements of 2 x 2 matrix polynomial M (z) for crustal model

TT1. Phase velocity of 16.14 km/sec corresponds to P waves

incident at 300 and SV waves incident at 16.80 to base of crust.

5.5 Particle velocity components at free surface of crust model

USGS3. Top trace is generated by impulsive P-source at normal

incidence. Bottom trace is generated by impulsive SV-source at

normal incidence.

5.6 Particle velocity components at free surface of crust model

USGS3. Traces 1 and 2 are generated by P source at 300 incidence

and traces 3 and 4 are generated SV source at 16.1 "' incidence.

5.7 Particle velocity conponents at free surface of crust model

TI1. Top trace is generated by impulsive P-source at normal inci-

dence. Bottom trace is generated by impulsive SV-source at normal

incidence.

5.8 Particle velocity components at free surface of crust model

TI1. Traces 1 and 2 are generated by P-source at 300 incidence,

and traces 3 and 4 are generated by SV-source at 16.80 incidence.

II _ ~-~-L-~III-IS~Z-~I .WI 111_-_--l^m -II^LiV- -~_I~IIII
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5.8a Spectral response of horizontal and vertical velocity compon-

ents shown in Figure 5.6 for model USGS3 at non-normal incidence.

Solid lines are responses for impulsive P-source and dashed lines

are for impulsive S-sources. Responses are calculated by inverting

the spectral matrix of M (z) .

5.8b Spectral response of the velocity components in Figure 5.6

for model USGS3 at non-normal incidence. Responses are calculated

by Haskell's method as a check on the accuracy of the response in

Figure 5.8a.

5.9 Reflection responses rpp(w ) and rss ( w ) for 5 models of the

core-mantle boundary over the period range 2 to 100 sec. (after

Teng, 1967).

5.10 - 5.14

of incidence

to 5 given in

5.15 - 5.19

of incidence

to 5 given in

5.20 - 5.24

ot incidence

Reflection responses rpp in time at

to the core mantle boundary. Figures

Table 5. 1. Vertical scale equals 1.

Reflection responses rps in time at

to the core mantle boundary. Figures

Table 5. 1. Vertical scale equals 1.

Reflection responses rss in time at

to the core nantle houndary. Figures

different angles

are for models 1

between traces.

different angles

are for models 1

between traces,

different angles

are for models 1

to 5 given in Table 5. 1. Vertical scale equals 1. between traces.
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Chapter VI

Plane Waves in a Medium of Solid and Fluid Layers

6.1 Introduction

In this chapter, the treatment of elastic waves in Chapters

II and III is modified so that one may calculate homogeneous plane

waves in a medium of solid and fluid layers. Dorman (1962) used

Haskell's matrix formulation to obtain the period equation for the

normal modes of a layered halfspace for any sequence of solid and

fluid layers. Recently, Teng (1967) calculated the frequency res-

ponse of body waves reflected off and transmitted through various

models of the Mantle-Core boundary of the Earth. In an appendix,

Teng derived a 4 x 4 fluid layer matrix which can be used with solid

layer matrices to compute waves in alternating fluid and solid layers.

As noted by Haskell (1953), the basic difficulty at a solid-

fluid interface is that four elastic potentials in the solid cannot be

calculated from two velocity potentials in the fluid or from the nor-

mal stress 'tr and vertical particle velocity C,) at the

interface. In order to solve such an underdetermined system of

equations, other boundary conditions for the layered medium have to

be imposed. Dorman, for example, used two extra constraints,

namely, that the stress components vanish at the free surface, and

that no upgoing sources exist in the lower halfspace below his layered

model.
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We shall consider a problem similar to that solved by Teng.

Our layered model consists of a set of horizontal solid and fluid

layers sandwiched between two halfspaces. The upper halfspace

may be solid, fluid or vacuum, and the lower halfspace may be solid

or fluid. The additional constraints are that a known upgoing source

be located in the lower halfspace just below the lowest interface,

and that no downgoing sources be located in the upper halfspace.

Reflection and transmission responses for the set of layers

are calculated, and from these responses, body waves inside each

fluid and solid layer can be computed.

_L~I~~I~L_ -..LCIIII.L. -.. ~- tl~--l_ ^.I
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6.2 Description of Solid and Fluid Layers

Following Dorman, we assume a horizontally layered medium

of homogeneous, isotropic solid and fluid layers. When possible,

we combine all adjacent solid layers into single inhomogeneous solid

layers, and similarly combine adjacent fluid layers. This results in

a model of alternating solid and fluid layers, where each new layer

is inhomogeneous if it consists of more than one homogeneous layer.

We shall assume in general that the new layers are inhomogeneous.

These layers are numbered 1 to n from top to bottom. We shall

assume that the set of layers is bounded from above and below by

homogeneous halfspaces. Within the medium, a typical sequence of

three such layers is shown in Figure 6.1. Layers k and k+2 are solid

and layer k+1 is fluid. As shown in Appendix A, compressional waves

DP and UP in a fluid are obtained by replacing each elastic potential

term (Pt - i) by '( F - WL)/a< where 4 is

the first total derivative of a velocity potential . In this way,

the fluid waves retain the same physical form as in an elastic solid,

i.e.,

UPC . - D{) = f Vp.

(6 -1)

where VpU and Vpd are the total particle velocities assoc-

iated with the up and downgoing waves respectively. The particle

velocity directions are the same as shown in Figure 1 for an elastic solid.
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The layer matrix iteration for fluid compressional waves at

non-normal or normal incidence has the same form as the uncoupled

compressional waves in a solid layer at normal incidence. Since

layer k+l consists of adjacent homogeneous fluid layers, we can

apply iterations like those of section 3.2 to obtain a matrix relating

waves at the top and bottom of the inhomogeneous layer. Let UPh,

and DP +) be the fluid waves at the top of layer k+l1, and let

I I

UPK+1  and DP[) , be waves at the bottom of this layer

as shown in Figure . Given'the thickness, velocity and density

of each homogeneous fluid layer within layer k+l, we can apply equa-

tions (3-5) and (3-7) successively to obtain a relation of the form

2PP

(6-2)

where A z:JZ is the one way transit time for compressional plane

waves through layer k+l. As in (3-8) and (3-10) (V) and %(R)

are polynomials in R . The proof of (6-2) is the same as for (3-8)

and will not be repeated here. If layer k+l1 consists of only one homo-

geneous fluid layer, then C-) : i and J(2) O.

A similar matrix relation can be derived for layers k and k+2

in Figure 6.1. Applying equations (2-26), (2-27), (2-28) and (3-13a),

we can relate the waves at the top of each inhomogeneous layer to

~--~---__IYCZ_~~~-..-. .. _ _IdYIICI ~ PII~PT~ IYBL
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those at the bottom. For layer k, one obtains

(6-3)

where F(.) and G (z) are 2 x 2 matric polynomials in Z , and

SKAT equals the one-way transit time for plane SV waves through

layer k. If layer k consists of a single homogeneous layer, then

is the null matrix and

as shown by (2-25) and (2-26). As in the fluid layer, p~~'

equals the P wave transit time through layer k.

The purpose of equations (6-2) and (6-3) is to isolate the

solid-fluid interfaces, since no problems arise at solid-solid or

fluid-fluid interfaces. In the following section, the problem of cal-

culating the solid waves in layer k+2 from those in layer k is solved

in detail.
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6.3 Recursive Calculation of Reflection Response

In this section, the reflection response matrix (

determined for interface k+l in Figure 6.1 such that

8I<
I.)

R: 2 U

(6-4)

This reflection response was introduced in Chapter III, equation (3-33)

for a completely solid layered medium. In this case, we shall derive

recursion formula for finding (~ in terms of )r

This recursion can be used to find the reflection response of the com-

plete set of layers. For example, if layer 1 is solid, we have

so that R Ro. Starting with the reflection response

(R for all the layers can be calculated if layer n+l1 is a solid

halfspace.

Referring to Figure 6.1, the difficulty is in relating the solid

waves in layers k and k+2. One cannot directly calculate KK+2

and U K. from (K and US because two degrees of freedom

are lost in crossing interface k, i.e. four solid waves are linearly

combined to give two fluid waves. At interface k+l, two fluid waves

are not enough to determine the four solid wave components of d 2

and FU(+2 .

___II__IIWLllsC_~I_;I.I~I~WI ilL~~_
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However, we can calculate a matrix which gives the solid

wave s Ci

incident waves t,++

and 1 k+2 leaving the fluid layer in terms of the

and C

matrix defined such that

U+Z
5 i')

U, 211~ )

. Let S (a)

2SC Z)

be this 4x4

K+1 [

where S C2) are 2x2 partitioned submatrices of S(a)

are derived later on in this section.

Assuming S ~) is known, one can find the recursion for-
(mul+or calculating

mula for calculating R (a) from * At interface k-1, we

have

JK

(6-6)

Substituting this equation into (6-3), we obtain

(6-7)

where

(K)

IF -CF
.SK  ( - I)L qz MR) 

N1 FK

(6-8)

5 i(a )

(6-5)

. The

I

ULK

V (a) '

~ (t)

= Rcm,



We note that V ( -)
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depends only on the physical parameters of

the layers above the k-th interface.

The second row of (6-5) gives

Ci+i)

- I (Z)21UK

(6-9)

Using (6-7) to eliminate S yields

- +() Ve ) ES2

(6-10)

Similarly, putting (6-7) into the first row of (6-5), one gets the re-

lation

(K+I)

We eliminate

final result

K+2

in (6-11) by using (6-10).

(k)
V(z)

This gives the

12

By comparing this equation with (6-4), one sees that

~(2)
- (K I)

2 SZV()) S2

I k( i)

- (iE,

K-i2

(x+ l (K)
I
K, LA+

(6-11)

I V+ 2

(6-12)

(Ni-)

±S~z
(6-13)

. I
LI.K

22

)I 2 21

V(A)V+) - 2
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This equation is a recursion formula for R ( since V ()

depends on R (Z . As shown below, the submatrices

depend only on the properties of layers k-l, k, and k+l. Therefore,

(R ) is a function of layers k+l, k, .. . 0.

The remainder of this section gives the algebraic details in

the calculation of S () defined by (6-5). The first step is to

write the linear equations relating the solid and fluid waves on each

side of interfaces k and k-1. These equations are obtained from

(2-11) by eliminating those reflection and transmission coefficients

which vanish or are undefined at a solid fluid interface. Doing this

for interfaces k and k+l gives two sets of equations, i.e.,

oDP 0 ?pr P

-,P1 - 1 0 DS O p UPPP P 1 <41

0:UP t

S I

US
K

(6-14)

_U (1_1__ __jL__a__~ Y__~_~_I__
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- I-P I 0

- P '

U p' I

K+I

o -r

0 I-t y'

0

0

-1s

tsp

DP

OS

UP

usUS
K+2

For convenience, let us define the following vectors and scaler

quantities:

K :PP* K

-1 s
I

L p -L K

rK [I r]

*11

tsp J

L i K+1

)
w, I-

(6-16)

The equalities between primed and unprimed transmission

(6-15)

= DrI P] x+ I
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coefficients above are proved in Appendix A. They are reciprocity

relations, for solid-fluid interfaces similar to the relation T'=T* for

solid-solid interfaces. Substituting these terms and those of (2-12)

into (6-14) and (6-15), we obtain

t. 1K

-RK K +

DP k+1

tK
(6-17)

and

K+I DPK+

I I

D+I PK+1

S2+

+ UPK+,
iE

H4

(6-18)

The second equation of (6-17) and the first equation of (6-18)

+ DPK+( K+I

+ , UP,+I

K tRUP

(6-19)

The fluid waves DPk, and UP,+, can be replaced by ex-

pressions in the solid waves. From the first equation of (6-17) and the

are

d

I,

= TUPI<41

= R --- K+ I C.,L V< -

K1 12

R i KI~-

- V-. UR,

RV+DK+1
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and the second equation of (6-18), we

UP

OP +1I

o DP

- UP K

The inverse matrix relation for (6-2) is

DP

UP
K+ I

- 1DP I

Kt I <+ I

2P

- g ('/

Taking the first row of (6-21) and the second row of (6-2) gives

I p

UP - 2PKI

D IP <"

i KIi

PDP

%-UP

Substituting this result into (6-20) yields

. p 1 2p1
- Y

V()

P-St

2P

pI

UP
K+1I

u

KLj/2

: K-i
(6-20)

(6-21)

K+I

-2Ku

(6-22)

k-fl

1<c

K<+2

(6-2 3)

IO
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Inverting the matrix on the left-hand side of this equation, we obtain

DP

UP
K4I

IP

L

p p- - C'/ ) ' L u

2PI 2p --

(6-24)

where

2P

(6-25)

using (3-12).

Finally, we substitute (6-24) into (6-19) to obtain the matrix

in (6-5) which relate the solid waves above and below the fluid

layer. The resu]

it

C2)
12

( (+.)Ool
21

S 212)~

ltihg submatrices of S (-) are

P-I 7

ZS ( t)

2?

±. 1 (c%.Gie)+ P+t

"P - I X
-KT K+

L6C i)

(6-2 6)

rr

+1

++. K+I

, z~S'

RKSI

1

R

K2 + rk
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The superscript k+l on each 5 is the layer number of the inhomo-

geneous fluid layer between solid layers.

To illustrate the use of (6-5), let us consider a single homo-

geneous fluid layer between two solid halfspaces. Assuming that no

downgoing sources exist in the upper halfspace, we set = O

From (6-5), we then obtain

(~+I)

S
I K  - 2S UK+

22 R+ 2  (6-27)
(1<1)

S() is the reflection response R ut) of the fluid

layer, and S 22( ) is the transmission response. In this case,

layer k+l is a homogeneous fluid so that () = i and c(z)=O.

From (6-25) and (6-26), we therefore obtain the reflection response

r 2S I _

12 M-n

2 2, 2p -

2P
bottom of the fluid layer. The infinite series in powers of Z is

a sequence of multiply reflected waves inside the fluid layer. An up-

going wave l +2 is transmitted across interface k+l by the multi-

plication



Ku*K-t'I 1<42 S tS tJp< k+2-i~l

Each of the multiple reflections generated inside the fluid layer is

then transmitted back across interface k+l. This is done by multi-

plying each wave by

I:

1<4)

T+ps7K+J

The transmission response for the fluid layer is given by (6-26).

Thus,

-I

22 ( I 2 P)

P + 1 ,2P ' 2P

r.4, r. ., 2 ) '
* .]

< K+1

In this case, the multiple reflections inside the fluid layer are trans-

mitted to the upper halfspace. This is indicated by the factor

1<~ p~i

in S,22 )

155.
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6.4 Reflection and Transmission Responses for a Medium of Solid

and Fluid Layers.

Using the re sults of the previous section, we can calculate

the reflection and transmission responses of the stack of alternating

fluid and solid layers described in Section 6.2. These layers are

numbered 1 to n as shown in Figure 6.2. We shall assume that the

stack of layers is bounded by two halfspaces. Above interface 0 is

a homogeneous halfspace (layer 0) which is solid, fluid, or vacuum.

Below interface n is a homogeneous halfspace (layer n+l) which is

either fluid or solid. A known upgoing source S is incident

to the stack of layers from below.

As shown in Figure 6.2, there are several cases to consider

in calculating the reflection and transmission responses of the layers.

For example, layers 1 and n may each be fluid or solid. If the lower

halfspace is fluid, then the upgoing source Sh , contains only

a compressional component UPr I  . Finally, the upper half-

space may be solid, fluid or vacuum. All combinations of these cases

will be discussed below.

Let us first calculate the reflection response R C) for all

those cases when the lower halfspace is solid. If layer 1 is solid,

we have

(0)
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where Ro is the reflection coefficient matrix for the first interface.

R, is well defined if the upper balfspace is solid, fluid or vacuum

Then, applying the iteration given by (6-13), we can obtain the reflec-

tion response for all layers above the deepest fluid over solid inter-

face. If layer n is fluid, then the iteration yields 8 () which

is the reflection response for the complete stack of layers.

If layer 1 is fluid, then we can set di4 = O in (6-5) and

obtain

(6-28)

Thus R 212 ~ ) , and we can iterate from interface 1

down through the layers to obtain J ) if layer n is fluid.

If layer n is solid, then the iterations above yield R .s

where interface (n-1) is the deepest fluid over solid interface. To

obtain R ) from R <Z) is a straight forward calculation

using the method of Section 3.4 since only solid homogeneous layers

within layer n and the solid lower halfspace are involved.

We now consider those cases in which the lower halfspace is

fluid. The reflection response from below for the complete set of layers

is a scaler " (2) which equals the ratio of the downgoing reflected

compressional wave to the upgoing incident compressional source.

Again, we consider two cases for layers n. If layer n is solid, then

we can calculate (2) exactly as before. Using R u? , we



can compute V z.) from (6-8) such that

(2) Ui

(6-2 9)

At the n-th interface, the solid and fluid waves are related by equa-

tions (6-17), i.e.,

- OP.. - VPUP.+,

*1 L, - hLPY9

(6-30)

(6-3 1)

Substituting (6-29) into (6-31) and solving for UL

- R Vo z

1

In these equations, UPV, is the upgoing compressional source

in the lower fluid halfspace. Putting (6-32) and (6-29) into (6-30)

and solving for the reflected wave

(2)

D[v;, +

we obtain

(i 2

(6-33)

Therefore, the reflection response of the complete stack of layers is

the scaler coefficient of

158.

gives

- (I ,
(6-32)

- I

I-R a

D Ph+ 1

U Ph+, , i.e.,
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+ Vv (I V.V

(6-34)

If layer n is fluid rather than solid, then we select layer n-1, which

is solid, and repeat the algebra of equations (6-29) to (6-34). In

this way, we obtain Y (i) , the reflection response for all layers

above interface n-1. From V (Z) , one can easily calculate

(n)
() Ci) since layer n consists of homogeneous fluid layers. The

form of a product of layor matrices for fluid layers is the same as the

matrix in (3-8). This equation can be used to calculate Vi C ) from

" (1E) . The details are omitted here.

From the above discussion, we have shown how to calculate

the reflection response R (2 for all cases where the lower half-

spac6 is solid., and the response U Li) if the lower halfspace is

fluid. The reflected downgoing waves in each case are

= Ry 4

and
(h)UP

Let us now compute the transmitted body waves generated in

the layers by the upgoing source in the lower halfspace. To do this,

we derive an iteration which calculates Lk from U where

_I_ I XII^__IIL~I~ _..i YLiillliS~i~-.lil-
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layer k+l is an inhomogeneous fluid layer between two solid layers

as shown in Figure 6.1. Combining (6-7) and the second equation of

(6-5) gives

UK . = - " ( +0 VQZ)
,,u]

-i (W+ 1)

(22i

(6-35)

Finally, we insert these primed waves into (6-3) to obtaiin the desired

iteration for transmited waves:

+) F() 5( Z) Sp)L_S21 2 K42(')

(6-36)

If the lower halfspace is solid and layer n is fluid, we can start this

iteration by setting

On the other hand, if the lower halfspace is a fluid and layer n is

On the other hand, if the lower halfspace is a fluid and layer n is

solid, equation (6-32) can be used to calculate ULt from the com-

pressional course UP .

j W Va I)

.Then from tl
Then from U 1 and

, equations (6-3) yield the imprimed

at the top of the n-th layer. At this point, the iteration

. ) (R+0 (K) - I (N-11)
V VQZ)) S z) U,

wave LA

U K G(I<)CK
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of equation (6-36) can be used to obtain the transmitted waves in

each shallower solid layer.

At the top of the set of layers, layer 1 may be solid or fluid.

If layer 1 is solid, the previous iterations finally give U, the up-

going wave just below the first interface. The wave transmitted into

the upper halfspace is

LLIIo .=T u ,

where To is the transmission coefficient matrix for interface 0. If

the upper halfspace is a fluid, the transmitted compressional wave is

lt?? tspIl

o is the null matrix if the upper halfspace

I
, O if interface 0 is free.

The remaining case to consider is when

procedure then is to compute U from the

since layer 2 must be solid. From the second

obtain the wave

is a vacuum. Thus

layer 1 is fluid. The

iteration technique

equation of (6-5), we

L
U,

directly since no downgoing sources exist in the upper halfspace. The
(I)

matrix S 'Z is given by (6-26) as

-o 1*

matri )

Z( I)

UP,

= S "j-) a:
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The vector factor

0 F 3
has 0 elements if interface 0 is free and if the upper halfspace is a

fluid then tps = 0 .
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6.5 Figure Captions

6.1 Typical sequence of alternating solid and fluid inhomogeneous

layers. Layers k and k+2 are each a stack of homogeneous solid

layers, and layer k+l is a stack of homogeneous fluid layers.

6.2 Stack of alternating solid and fluid inhomogeneous layers

between two homogeneous halfspaces. Source 6, is located in

lower halfspace which may' be solid or fluid. Upper half space may

be solid,'fluid or vacuum.
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Chapter VII

Conclusions and Future. Work

The theory of the discrete time calculation of homogeneous

plane P and SV waves in a plane layered medium has been developed

for elastic layers and for interbedded solid and fluid layers. This

method has several advantages over the Haskell-Thomson technique

for the calculation of body wave responses of layered media. High

resolution time domain responses of any window length can be cal-

culated with no spurious precursor introduced by band limiting the

spectral response. A layer matrix iteration through the complete set

of layers for a given model need be computed only once in the dis-

crete time method. Matrix polynomials containing all the spectral

information of the layers are obtained. These polynomials can be

rapidly Four-ier analyzed to yield the same spectral responses as ob-

tained by Haskell's technique with very little error introduced by the

discrete time approximation. On the other hand, Haskell's method

requires a new iteration through all the layers for each spectral value

which can be time consuming.

Given a crustal strticture, the effect of reverberations on

teleseismic events recorded on the free surface can be removed by

a direct convolution in time, whereas in Has-kell's method, spectra

must be divided to eUminate the layer effects.

The inversion problem of recovering the layer impedances from
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the reflection response of a layered halfspace due to a surface source

was previously solved for normal incidence by Kunetz. The exten-

sion to non-normal incidence was attempted with some success in

that the polynomial matrix M (z) for the layers can be calculated from

transmitted waves recorded at the surface. The extraction of the

layer impedances from M (z) seems to be difficult at non-normal in-

cidence.

In order to utilize the high resolution of this method, wide

band, three component recording of seismic data should be under-

taken. This would greatly facilitate comparing theoretical model

studies with actual data being recorded in order to determine the fine

structure of transition zones of the Earth.

I~~(~aili 1/I~_I~ I__ FXII___U i-
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Appendix A

Calculation of Reflection

and Transmission Coefficients

A.1 Solid over Solid Interface

Reflection and transmission coefficients for plane waves incident

to an interface between elastic media were first calculated by Knott

(1899). His coefficients gave ratios of reflected and transmitted poten-

tials to incident potentials. Zoeppritz (1917) computed coefficients

which were ratios of particle displacements. From these fundamental

equations, many authors have computed the effect of various layers in

the Earth on seismic waves. Two excellent and readable reviews of

significant papers with corrections of errors are given by Macelwane

(1936) and Richter'(1958).

In this Appendix, we calculate the reflection and transmission

matrices, R and T, defined by equations (2-12) in the text. The ele-

ments of these matrices are reflection and transmission coefficients

which are ratios of waves such as defined in (2-7) and (2-8). Let us

consider incident waves from above interface 1 as shown in Figure A-1.

We use subscripts i, r, and t to denote incident, reflected and trans-

mitted potentials " and F in each layer. Using (2-4) (2-7) and (2-8)

we define the following waves at interface 1:

;C_ _~
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DPI

SI
I

P

P2
S2

11

/ ( Ci C

I!

-+Vf72,L7 s /3r
- (%~2C~o$ t

(A-1)

These waves are vector quantities measured in the directions shown by

arrows in Figure A-i. To obtain the desired reflection and transmission

coefficients, we divide the reflected and transmitted waves defined

above by one incident wave, the other incident wave being 0. Doing

this for each incident wave at the same phase velocity c, we obtain the

reflection and transmission matrices

R Ip r..

P9 tsJ
I tP tssJ

LLr I

2-t ~ ,

¢<i

_ '

FtI16J F
Ii

Vi~piP, F

(A-2)
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where

(C

(A-3)

In this section of the Appendix, we state the usual 4 x 4 matrix

equations in the potentials by matching particle velocities and stresses

across the interface. These equations are scaled and partitioned so

that R and T can be computed by inverting only 2 x 2 matrices.

From this solution, three useful theorems are proved, i.e.

() *T = T (A-4al I

an R , R = R (A-4b)

i- -TRT (A-4c)

We recall that primed matrices are calculated for incident waves from

above an interface, whereas iflprimed matrices are for incident waves from

below. The asterisk (*) indicates the transpose of a matrix.

Theorems (i) and (ii) are statements of the principle of reciprocity

between a plane wave source and a receiv -r, both near a flat interface

between two half spaces. These two theorems are also true for an inter-

face between any combination of solid and fluid half spaces as shown

in later sections of this Appendix. Theorem (iii) in conjunction with (il,
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and (ii) show th'at the primed matrices, R' and T', can be computed from

R and T.

It should be emphasized that theorems (i) to (iii) are essential for

obtaining the simple form of the layer matrix in Chapter 2. Other choices

for up and down going waves than those of (A-i) do not seem to give as

simple a layer matrix.

In medium 1 the incident and reflected compressional potentials

are

-+ - osS
- S - ()

- ir( S~~i)6
(A-5)

whereas the incident and reflected shear potentials are

S . (x sin ,

Fr XY s', vi -

+ jCos I - (3,+

F"
(A-6)

The transmitted compressional and shear potentials are

-F 2L - - aa t)

+ ] C'L6S ' 2+ F (x sl - (3,t)

(A-7)

--~-LIL~~-)~i_ L-P~IIIIII- II~I* L~I i_~L--*--~n~- ll~------.

o~,-t)

-(31 -0~ ~oS ~i
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The particle velocity components are given by

0U-Lu

(A-81

and the stress components are

To evaluate these velocitie

LU

+ (A.

s and stresses in each medium, we set

-9)

FL+ F,

in medium 1,and in medium 2 we let

F, = F,
The necessary boundary conditions at the interface are continuity of

particle velocity and stress components. The resulting equations are

essentially those of Knott (1899) and have been rederived by many

) __ I_ (/I_ 1___* XI I__~ I1__~II~~II_

3
3a{f SFSX

-byaTa-

F,
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authors. Keeping both incident waves in the formulation, we obtain the

following equations:

-1 (p2

- 1'62

-21 CCO.ic(

-I1

C.&-

-1
-I

-1oI

C 2

11-t

" I

(,Fi

(A-10)

where

= 1 2()
Y L

(A-10Oa)

C

It-.

C_

'U:

Ill___ill__L__Lly__~XI*UU (- ~l- ~ L~

.2\
) I pz

210 ,
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We now consider each incident wave separately. Setting
11

FL = o in (A-10) and dividing by o gives us a matrix

equation in the coefficients of the first column of R' and T' in (A-2).

Similarly setting = O and dividing by f3/- F

tions for the second column of coefficients in R' and T'.

these matrix equations gives

--:1

-/OlyI

-1

-Pii
2

2r (~fr

z-1

yields equa-

Combining

T I

I % --p i
3'FP

tXa 2

- PsL+ 2

-%,

-I21c,
-pl'~ 2,~2~pC

It~
1

- 2

(A-11)

___III*IIYIYn__JI_____II^-.
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This equation can be solved by partitioning it into 2 x 2 matrices.

We define the following matrices:

A - L
i -[d

-1.K.
r I

v-~pp

I'

[
?pi

I

r-

r

rp

4:sP4I;.1,

I

ss
0o'Pi

UC

L.

(A-12)

_ I _jl~l ~~~ _1 ~~-~X-X~CI IIIII;

1-

P;'d;-1
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We wish to solve for R' and T' defined by (A-2).

tions, we can show that Y and i

From the above equa-

conveniently factor as

LI R L,
-i= LTL,-T1
LT L

(A-13)

Therefore, (A-11) can be written in the partitioned form

5, -L,R L,

L-1 I

LL,

BI

-Ai

(A-14)

Solving for R' and T' we get equations

- -I I

- LB B, LT

+ LA A, L',T'

- -I

SI

(A-15)

B,

A,

I

R

R

~--~-"I---~-YI~Y"~"YP- "- *"- Y"~YII lb LI i~lj~l~lll~-Cf;



2L,(B, B, + A, A L,

L, (BI B2
- -1 -,

A,A2, L,T
(A-16)

To obtain the unprimed reflection and transmission coefficients,

which are for incident waves from below the interface, we interchange

indices 1 and 2 in (A-16). This gives

2 L 1,(8,,i

2LI ( B, E31

= 1 -LB

L, ( BB,

-1 -11
-2 ,A,)) L,

- A,A,) L,T

Using these solutions, we now prove the three theorems given by

(A-4). From (A-16) and (A-17), we obtain

-i

- 2LI(E,33 2 + AjAz) L

±AA) L,
-= L, - -1 Lr

4L,(B, BA 2AI)L2
(A-18)

To prove (A-4a), we show that the right hand sides of (A-18) are equal.

Hence

T

179.

T

R
(A-17)

I
-i

T
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It is suffient to show that

L, (3, B, + AIA -+ A'A
A.A,):Z

(A-19)

From (A-12) we obtain

z -1

L ,6BB2

PIP( O0

O , 4,

-rf, ['r :11)

I- ml)

(A-20)

and

LA-

LiA,Az

- rfD2- 13)

1(IvI i] -f2

Bp I(I -YI 1,(3

3-3

-1

- fy,2fPI, 2 - 1

- (0A2 f,',)

- (fIPd
6

(A-21)

1113:2 (r2 CX i I- 1

-,VA 2- (P k, -I

L ,2( B~,

-P(r6 v
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If we interchange indices 1 and 2 in (A-21) and transpose the result,

ve obtain (A-20). Thus we have shown that

2L -1

Ll B62 B-
(A-22)

and

L,A,

(A-23)

This proves (A-19) and therefore the first theorem, which is

T- =T
(A-24)

The second theorem, equation (A-4b), is easily proved from re-

sults used in the first theorem. From (A-16), we deduce that

R- i z L J 2- _

I

- 2(I

-4 -1
L-1-B IB2. \ ,P\ +1) L,

+-1'

+ L±BBAZAIL,)
(A-25)

i,8:a,,"
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In order to show that R'* = R', we need only show that M = M*, where

-1

L z B, zM
-1 -1

A, AL,
(A-26)

From (A-22), we have

-L -i

Li B, .L,
I -j 

LAAjZjL
(A-27)

Therefore,

- II = MW

This proves theorem (ii), i.e. R'* = R'. If we interchange subscripts 1

and 2, the result is R* = R.

Finally, we prove theorem (iii), equation (A-4c). Using (A-16) and

(A-17), we can write

-ALi

-( A -

L2(P I A-(T'R')* - B 2 ) L.
(A-30)

-i

ZA 2A
-L, L A- i

L11 L?-k2AAL
(A-2 8)

TR A)LJ T (A-29)

-~I-~ Il~)----r-~--L -C~LII~I~Y-~LII Y-* P U-

I

Zq

-LIT ILz.(B-.B,
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The bracketed terms in each equation are equal because of (A-22) and

(A-23). Also T'* = T by theorem (i).

TR

Therefore,

(TR )

Using theorems (i) and (ii), this equation becomes

-I

R -TRT

which proves theorem (iii).

We now consider the solution of (A-11) as c goes to infinity. From

(A-3) and (A-10), we have

(A-33)-- I / '".

-~- (A-34)

(A-35)

as c goes to infinity. Dividing the first and third row of (A-11) by c and

then letting c go to infinity results in the matrix equation

(A-31)

(A-32)

______IIY*iYYII____--~-_14_-111~- .-.LIII-~-~C - l--X~ill
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-P,1

- - - - - - - - - - I-

I

f5i 0

Y

0

-b

- 11(,

(A-37)

This equation separates into two 2 x 2 matrix equations, which

are

-/h p

1/(jL P p L2
10.X 0

0

0 J

(A-3 8a)
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-Y-ss

[1

1/o,

___nl^__ LI____11__XYI- IC-- LII ~ .~iX~il- -li~-^-llII* III~- I~_- ^XLi

-YT

f-AI2ii

I - P

-PI

rl
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(A-3 8b)

The second column on the right hand side of each of these two

equations is zero. Thus, the equations are homogeneous in the unknown

I I I
coefficients sp., p , n p s , ps . Since the left hand most matrix in

each equation has a non-zero determinant, these mode conversion coeffi-

cients must vanish, as expected for normal incidence.

Solving for the remaining reflection and transmission coefficients

gives

D (P(2 39

'ss -- -- d

f P

/0232 - P( 3 3

+ ((A-39)

~ _C rlYY_~~Y__I__ICI~ LL_1113e~-~ 1 - ll*
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The unprimed reflection and transmission coefficients are obtained

from the above equations by interchanging subscripts 1 and 2. One can

then verify the three theorems in (A-4) by inspection since each R and

T matrix is diagonal.

IIIII___1YIL___L1L__LY___I___IIIILI- P
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A.2 Solid over Fluid Interface

Previous equations can be modified to treat the case where medium

1 or 2 is a fluid. The necessary changes are the following:

(i) Continuity of i is not necessary at a solid-fluid interface

so that the first rows of (A-10) and (A-11) should be eliminated.

(ii) The tangential stress T x must vanish at the interface.

This occurs if either _/, or cl, vanishes in the second equation of

(A-9). Hence, for any liquid-solid interface, t'Tx goes to zero auto-

matically if /3, or /3, go to zero.

(iii) In the fluid medium, no shear potentials exist, and each

compressional potential i must be replaced by an equivalent term in a

velocity potential + . To see the relationship between i and

we define the velocity potential to be the plane wave.

from which we obtain the particle velocity component Lb and negative

pressure 'L, as

(A-40)

For a solid medium, the corresponding terms due to a displacement

~I ~_I_~_ 1L __j^__~_~ ~j____~___^~_I____
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potential i are computed from (A-8) and (A-9) to be

- / C CS i

IV

(A-4 1)

As the rigidity / goes to zero, this last pressure term goes to

/ I"

From these equations, we see that replacing by '/ , letting

/ -) O , and dropping shear potential terms in F converts either

medium to a fluid.

The first case we consider is a solid over fluid interface. Applying

changes (i), (ii) and (iii) described above to equations (A-10) and (A-11)

we obtain the following matrix equation:

2

IA-- P2p,,

e'~l ''

f5Q ;,~- P ,9 ,~
-Pss

'- -

N Vi

-2r -plY,

(A-42)

_LI_____ __I_^ ^_ __~~_11Y

Ird

S, F;PP

2e,
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Since the lower medium is a fluid, we note that the transmission coeffi-
II1

cients are obtained from (A-2) by replacing S.
I

by €€/( ,i.e.

t
Ii' - ____

* p _ _, _ ,
v1 ~p( 3I , F

Let us define the following vectors:

-e Y,
b

Q.2

(~~- £)i~j

,oIJ

(A-43)

The asterisk (*) indicates the transpose of a vector.

Matrix equation (A-42) can be written in partitioned form as

bt i

I

A,
r

-1I

-LRL,

N -C2 R;

(A-44)

where A and L, are defined in (A-12). This equation is a de-

generate form (A-14). Writing out these equations enables us to solve

C( ; $1-

Ic -X

= - F,[t,
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- IIt

for R and

-1

-A,L,R L,

. Thus

b
f 2? L

and finally

2-L

-2V7 6b1 L 1
(A-45a)

R S2 LIA I az-61 LIS -1

6 JA I .2 ) (A-45b)

As in the solid over solid interface case, we can prove that

R = R

To do this, we calculate the following two vectors using (A-12)

and (A-43):

(-I P/ 1-i
~I~t,

(A-46)

I
ru

\IP~5~2

I
;E

bi Aa,

z I

?". Fr'

- 12)
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and

__* -

61 LI

(A-47)

The denominator in (A-45a and b) is a scalar determined by dotting

these two vectors, i.e.

From (A-46) and (A-47), we see that

-1

L.A I a2
(A-4 8)

Hence, the second term of R' in (A-45b) contains the matrix product

-i i

which is symmetric. This shows that R' is symmetric. Substituting (A-46)

and (A-47) into (A-45a) and (A-45b), yields explicit expressions for the

elements of Ti
I

and , i.e.

A

1 o5-1 - IW-'%,

0 2za~~P,

-1

P*2(-~ILI )ii

I

- T-> k /f Z

L (L- P -i P2

-1* -1

(L tA, az,](SIL I)
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-I

(A-49)

where

= 12-/-p
+ (x,- W ,S1]+g P

(A-50)

At normal incidence, the equations for reflection and transmission

coefficients are most easily obtained from (A-42). Dividing the second

row of this matrix equation by c and letting c go to infinity yields the

equation

-PI

f,

f P r k

En-pa

'Ad

(A-50a)

From this equation, we easily obtain the solutions

IR
-

SIV

2

(31

P rl
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S 2 , - lZ

-t = O

tss - 0

(A-50b)

The other coefficients, which convert energy from one mode to another,

all vanish. The solutions given above can be obtained from the solutions

for a solid over solid interface, equations (A-39), by setting /3, = O

We now consider an incident P wave in the lower fluid medium.

The matrix equations are obtained from (A-11) by interchanging subscripts

1 and 2 everywhere, unpriming the reflection and transmission coeffi-

cients, deleting the first row and second column of the 4 x 4 matrix and

deleting the second column of reflection and transmission coefficients,

and finally letting /a go to zero.

The result of all these changes is the equation
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-1 ±pp rp Pl

±PS 2
fYSIpPi~

O

(A-S1)

which can be expressed in terms of partitioned matrices as

w -1

P1 PP t 1

where PP
t PS

-From (A-51b) we obtain

- Yfp)

~1% I ~

I _ - -

1~o(2 j

O '

lO2t (A-5 1a)

a + VPrP A1LI (A-5 b)

-Ii LA~A
-- 2. 1

(3,
-2p~p I

,(i
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Substituting this into (A-51a) gives the reflection coefficient

( -Aa +
Aia, -1- K:)

0
(A-52)

Putting this relation into (A-51b) yields

-i

T~~ /03)AIU

(A- 53)

At this point, we can easily prove that

(A-53) and using (A-48) we obtain

-* - j

-- E
% -1a

(b±Ala 2

t . Transposing

- PZ)

which equals

this as

[O

by comparison with (A-45a).

Osp

0 tPs

We can also write

O
0

I __I_____ _ _~
( bA a -

2 ~F~1 i 1L,

¥*I
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which is a degenerate case of theorem (i), equation (A-4a) for a solid

over solid interface, i.e.

T -- F

Expanding the expressions (A-52) and (A-53) gives

SI\ (A-54)

- -A-i-Z 2

(A-55)

where A is given by (A-50).

For the normal incidence case we divide the second row of (A-51)

by c and let c go to infinity. This gives the matrix equation

- A
- I

1: -f3
V'~(

(A-56)

which has the solution

IP2

/t/I 2
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YPP p,-+ f

t,, 2 gI oC 2 c L

tes =

(A-57)
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A. 3 Fluid over Fluid Interface

We treat now an interface between two fluid media using equation

(A-51). Since no shear waves exist in a fluid medium, we eliminate the

third column of the 3 x 3 matrix in this equation and set /3, = O

This gives the result

E 1
Tprz2

~0~

which has the solution

p -

~ppp,~d + 1
0

1

2 ,Pc2 z
2 +

(A-5 8)

As c becomes very large

T"(n /C p

Therefore, at normal incidence equations (A-58) reduce to

~- P2

~P4c Z

.±Pp - =
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(A-59)

which are the same solutions given by (A-57).
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A.4 Free Surface

If we set Fz = O , then the interface between the two media

is free, and no transmitted waves exist in medium 2. The boundary

conditions reduce to two, i.e. the vanishing of a and at the

interface.

The matrix equation for the reflection and transmission coefficients

is obtained by deleting the first and third rows and last two columns of

the 4 x 4 matrix in (A-ll). This gives the 2 x 2 equation

2((9 ?3

) --

~4')
i ~ ~ iPAJ

r J

(A-60)

which is valid for a free surface over a solid medium.

Inverting the left most matrix we obtain

2

->1
4

+ C a113

F Il

rsjJ

where

S=

II c

C)?O
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Thus

ts5
+ 4

P . 4- 2 _-Ps

(A-61)

If we define the reflection coefficient matrix

rps

-I

YJ

then we can prove directly from (A-61) that

R RR =I

which is a special case of the conservation of energy theorem given by

(a-18a) when no transmission coefficients exist.

At normal incidence (A-60) reduces to

I I

= O

Finally, we consider the reflection coefficient

I= Ys p

at the free
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surface of a fluid. Since no shear waves exist in a fluid, the only

non-vanishing equation in (A-60) is

Ir -

Thus

I = -1

for all phase velocities c.



2 O'.

A. 5 Figure Captions

A-1 Incident, reflected and transmitted waves at an interface be-

tween two isotropic, homogeneous halfspaces.
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Appendix B

Orthogonality Relation for P and SV Waves

In this appendix, we calculate the energy density flows for

plane P and SV waves incident to a horizontal interface. It is shown

that when both P and SV waves have the same horizontal phase velocity

then the energy density for both waves together equals the sum of

the individual energy density flows. Thus, no cross terms in the P

and SV waves occur.

Let ( .F - *) and F .s - /t) be

elastic displacement potentials for P and SV waves respectively as

described in Section 2.2. Following Morse and Feshbach (1953),

Vol. 1, section 2.2, we define the intensity vector

(B-l)

where L equals the particle displacement vector due to both P

and SV incident waves, and L is the stress dyadic associated

with the particle displacement. The instantaneous power carried by

A

the P and SV waves across a unit area with normal vector h equals

(B-2)
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We first calculate the intensity vector

obtain the total displacement vector

I A

I=(p,f I

F ) xt'%

From (2-3a,b) we

+ ( I'I -

A

where X and 2 are unit vectors in the and . direc-

tions. Unit vectors and have (X, ) compon-

ents given by

= p~)

(B-4)

Taking the time derivative yields

II

S(O(p~S
II II

-/3S )A+ c~

The stress dyadic

- xI~.c

is calculated from

T

(B-5)

where X and /. are the Lame constants for a homogeneous

isotropic medium. The divergence of L c

(B-3)

(B-4)

contains terms in
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only since causes no dilation in the medium. Thus, from

(8 -3)

+ 2

(B-6)

and

S x I

= ×

AI

-. -

The dyadic is given by

= x xE
A +

a-z~

Therefore

~If
A A Ili

Y, x

II FUI

+S
+-

+ x_.

4A

to its transpose yields the symmetric dyadic

.u. - T , f ,._1 ' s szF)
A A

-I- [&a-sSl] R)

+ nR (pp + [sR-sx]F)
SA ( 2

Z 2(7, P

(B-6)

- SS F

Adding

(B-7)

ssFS )

(B-8)

~ __ _I__~^II -L-~II.-I~I^II~-LII

I ~~ LC)
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Substituting equations (B-8) and (B-6) into (B-5), we obtain the sym-

metric stress dyadic,

- Y ,, [. + S

n~ l 2

4-/Lp~lI + sr-5x)F I + [ -/ASII

(B-9)

Putting (B-9) and (B-4) into (B-1), we obtain an expression for the

intensity vector S

- I "F X+F"][(A+ 2 C I) I
[a', 2

+ 2/sSaF

+ - fJxj q + s/ F 1[

Z + 2

+tsL - s

- s)F-t~ s, -s,,)

+ [plj~a'F13(J+ AP)S+

(B-10)

The power transmitted through a unit area of horizontal interface with

is therefore

II IiF . II

+171 i F[(X + 3 FI (\4 :l'>

-t- 11

- ~2/4SS ]

(B-11)

normal vector

/ +
;A SX SZ X ZIAA [:Z ?" P, A X~Fll

PXP2II

S h~
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-Substituting the identities

into (B-11), we obtain after some algebra

into (B-il), we obtain after some algebra

I' 2
3 0pQ P~j& - r sZ-

+ 1( rP. - Y JZ2(Pzsg + ps'x) + cA//1

(B-12)

The cross terms in F do not vanish for

rA

directions p and S , so that in general the energy

-a unit horizontal area contains these terms. However, if

F have the same horizontal phase velocity C , then

A

S are related by Snell's law, i.e.

arbitrary

glow across

" and

p and

S, = SA ' = /3 c
(B-13)

Substituting these components into the first brackets of (B-12) causes

the coefficients of to vanish. Therefore,

= ; 3<12." F+ I I 2

(B-14)
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Comparing this equation to the waves defined in (2-4), we see that

the upgoing energy flow across a unit horizontal area equals

UP + US

and the downgoing energy flow is

2 2

DP DS

This is the motivation for the particular choice of P and SV waves de-

fined in (2-4). As a result, several useful conservation of energy

theorems are proved in Chapters 2, 3, and 4 for layered media.




