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Abstract

A robust method of determining one-dimensional velocity structure from vertical
seismic profile travel times is formulated by the linearized least squares technique
known as Gauss' method. Since this algorithm uses point to point ray tracing and con-
siders headwave refractions, it is versatile enough for even wide offset surveys. The
technique is tested with synthetic data under a variety of conditions and is found to
produce good results in the presence of noise and when the horizontal layering is
improperly modeled.

Three sets of field data, from Mounds, Oklahoma, the Gulf Coast, and the Michigan
Basin, were studied with this technique. The Michigan Basin data set was especially
interesting as it consisted of data from eight source offsets ranging from 110 to 1940
m with sources azimuthally spread about the borehole for the purpose of seismic
imaging of a potential reservoir. Good agreement was found between the zero-offset
VSP inversion results and velocities from well logs. An attempt made to image the
reservoir in question, a Silurian pinnacle reef, by means of travel time residuals calcu-
lated from an average model of the region was successful at least from a qualitative
point of view.

Thesis Advisor: M. Nafi Toksiz
Title: Professor of Geophysics
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CHAPTER 1

Vertical Seismic Profiling

1.1. Introduction

Vertical seismic profiling (VSP) is an important technique in geophysical explora-

tion because it provides a direct record of the seismic wave field within the Earth.

Each geologic horizon within the structure may be studied directly. The source

waveform can be observed on both sides of the horizon, as incident, reflected and

transmitted waves. The changing response of the medium to the same signal at many

depths may be recorded in situ. Rock properties such as velocity, impedance, and

attenuation for both compressional and shear waves may be recovered (Gal'perin,

1974; Hardage, 1983; Toksiz and Stewart, 1984). In addition, the VSP may be used as

a densely sampled check-shot survey to relate sonic logs and surface seismic surveys.

The more common surface seismic survey measures the reflected seismic wave field at

the Earth's surface. VSP records complement more conventional surface seismic

records by enabling us to resolve some of the inherent nonuniqueness problems of

reflection seismic data.

1.2. The VSP Geometry

VSP data is collected in a fashion similar to the surface seismic method except

that there are usually far less receivers per shot. Instead of recording, say, hundreds

of channels per shot as in reflection experiments, only a few channels (usually only

one) per shot are recorded. Often three component VSP data are recorded to capture

the vector wavefield.



Another major difference is between the horizontal reflection seismic geophone

arrays and the vertical VSP geophone arrays. Because of the modified geometry, the

downgoing (transmitted) seismic wave field dominates at least the early part of the

VSP record while the surface seismic experiment records only upgoing (reflected)

waves. Good signal to noise ratios can be achieved with only a few traces or even a

single trace; the large amount of stacking usually required for surface reflection data

is unnecessary. The ray tracing geometry needed to model each experiment is thus

quite different. In fact, the VSP geometry is just like that associated with local earth-

quake seismology except that the source and receiver positions are reversed.

Figure 1.1 shows a schematic view of an idealized VSP experiment. It is idealized

in some of the same ways that the theory presented in this thesis is idealized: the geo-

logic layering is horizontal and the layers themselves are homogeneous. Other ideali-

zations include the straight, apparently cylindrical borehole and the point source

which produces only compressional waves. Deviated holes and nonideal sources are

not problems for the methods presented in subsequent chapters as long as the

assumptions regarding the simplicity of the structure are valid.

1.3. The Utility of Travel Time Inversion

Travel time studies play a fundamental role in seismic interpretation. Full

waveform inversion schemes (e.g. Stewart, 1983; Beydoun, 1985) make use of ampli-

tude information contained in the entire seismic trace to solve for velocity, attenua-

tion and density from the upgoing and downgoing waves. Why, then, would anyone be

interested in travel time inversion which can provide only the velocity structure? The

more complete results of full waveform inversion come at a price. It is much more

expensive, in terms of computer time, than travel time inversion. Existing full

waveform methods cannot handle refracted arrivals or the joint inversion of data from

multiple sources. Many properties of the survey which are of little interest to



someone using travel time inversion become critically important when the full

waveform problem is considered.

Full waveform inversion also has difficulties dealing with headwave refractions due

to problems calculating amplitudes. The forward travel time problem is actually easier

to solve for refracted waves than for direct waves so that headwaves do not pose

difficulties for travel time inversion.

1.4. Overview

The problem of travel time inversion of multi-offset VSP data is addressed in

detail in subsequent chapters. Chapter 2 describes the forward problem, one-

dimensional ray tracing. The special problem of root-finding near an asymptote is also

treated. Chapter 3 presents a review of travel time inversion for VSP geometries and

describes two different formulations of the inverse problem. Potential problems asso-

ciated with both methods are discussed. The fourth chapter treats data acquisition

for this problem. Measuring travel times from a Vibroseis source by manual and

pseudo-manual methods are discussed. Chapter 5 presents the results of the travel

time inversion of three sets of field data. The emphasis is on the interpretation of

multi-offset data collected during the MIT/CGG Experimental Group Shoot in the

Michigan Basin in 1983. Two appendices discuss the inversion formulation presented

in Chapter 3 in greater detail and compare several variations on the method. Appen-

dix C studies data error surfaces for this inverse problem. Appendix D investigates the

validity of cubic spline interpolation of sampled data.
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JHgure Caption

Figure 1.1. Schematic view of an idealized VSP experiment geometry with simple hor-

izontal geologic layering.



Figure 1.1
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CHAPTER 2

One-Dimensional Ray Tracing

2.1. Introduction

In a medium with velocity variations in only one dimension, it is a straightforward

matter, at least in principle, to find the minimum time path between a source and

receiver combination. This is the forward problem.L

In order to solve the inverse problem, it is necessary to solve the forward problem

repeatedly for trial models and compare these results with actual observed data. This

chapter presents methods for the one-dimensional ray tracing of direct and critically

refracted rays. One section is devoted to numerical problems associated with the ray

shooting process which is used to find the appropriate ray parameter.

2.2. The Direct Wave

For a given one-dimensional velocity distribution V(z) we can formulate the

travel time and range equations for a ray which does not reach the bottom of its tra-

jectory (i.e. for which the angle of incidence never exceeds 900).

From Figure 2.1, we see that

= sin 
(2.1)

ds

and

dz = cos. (2.2)
ds

The range of the ray is then given by
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X = fds sin . = fdz tan i (2.3)

and the travel time by

S-7 =  (2.4)V Vcos6'

A simplifying approximation that is often made is that the Earth is made up of a series

of homogeneous layers so that discrete analogs of the range and travel time equations

are used. Consider the VSP geometry shown in Figure 2.2. The range and travel time

equations for a ray from a source at the surface to a receiver at depth d from the top

of layer m are

m-I
z = h tanj + d tanm (2.5)

i=l

and

t = + d (2.6)
=l- Vi cos~ Vm cos '

where h is the thickness of the ith layer. Values of i. can be found from Snell's Law:

p sin- sini+l (2.7)

where p is the ray parameter. For computational ease, the travel time and range

equations are usually reformulated in terms of the ray parameter so that equations

(2.5) and (2.6), respectively, become

m-1 hip V dp V
X = E + (2.8)E V= v- p ' V1 -pl-VT

and

t = h + (2.9)
t=1 vi1-p Vi V Vl--vFy V



It is necessary to start from a given value of 1 at either the source or the receiver

in order to get the travel'time-depth calculation going. In some cases the initial value

of 6 (or equivalently the ray parameter p) may be found analytically but very often it

must be approximately determined with numerical methods.

2.3. Finding the Ray Parameter

In order to solve the forward problem, the value of the ray parameter p must be

found for each ray. In the direct ray case, p cannot be found analytically in general

so that some form of root-finding will be necessary. It will turn out that the most

stable algorithm for this particular root-finding problem is also the simplest method.

Given a discretized velocity vs. depth model, the ray parameter is implicitly deter-

mined by equation (2.8). Because of the nonlinear form of the equation numerical

methods must be used. The ray parameter is bounded above and below for physical

reasons:

1
0 < p < (2.10)

Vmax

sin 13
Since p = -- , a negative ray parameter implies either a negative velocity or a

negative angle of incidence. The first is of course physically unrealistic while the

second implies a ray heading away from the receiver. The ray parameter is bounded

above by 1/ V,, which is the reciprocal of the maximum velocity above the receiver.

If pV x - 1, then the denominator of at least one of the terms on the right hand side

of equation (2.8) will be imaginary which does not make sense because the range is a

real quantity. The locus of z = x(p) is thus bounded as p increases by an asymptote

at 1/ Vm as shown in Figure 2.3. For larger values of x, small changes in p mean

enormous changes in z.

To determine p (x), a two-point straddle method must be used to keep p within

bounds. This criterion rules out many root-finding algorithms such as Newton's



method or the secant method. The method of false position (Acton, 1970) is such a

two-point straddle method. To solve z(p) = z between pi and P2, one would simply

compute z(pl) and z(p 2 ) and linearly interpolate between them to find ps. Then

throw away either Pi or P2 so that the root is surrounded by the survivor and ps and

repeat this procedure until

Iz(pn) -z < . (2.11)

The method of false position always converges unless the two original endpoints strad-

dle a discontinuity which is unfortunately almost the case in this problem since one

endpoint is at a discontinuity. One suggestion might then be to use P2 = 1/ Vma - 6 as

the upper bound instead but this has the effect of limiting the offset to z(1/ Vma - 6)

which may be undesirable in VSP inversion.

It is necessary, therefore, to fall back on the bisection method which always

works, no matter how simple-minded it may seem. Given endpoints p 1 and P2, choose

S= ~-(P I + P2) and, as in false position, keep p3 and either p i or p 2 so that the root is

surrounded. Lather, rinse, and repeat.

Convergence to within e = 0.3 meters (my criterion) for a structure in which

max = 3 km/sec is achieved after only 10 iterations. Depending upon the offset

(corresponding to the height of z on the asymptote), the method of false position may

require many more.

2.4. The Critically Refracted Wave

The upper traces on a VSP record section often show first arrivals which have

been critically refracted along layer interfaces. Since these headwave refractions are

first arrivals, it is necessary to include them in the inversion.

There are two conditions which must be met if headwaves are to be observed.

They both constitute geometrical constraints resulting from Snell's Law. For the



horizontally layered case, headwave refractions occur only along the top of layers

having higher velocities' than any above. Figure 2.4 shows a hypothetical velocity

model in which there are only two possible critically refracted rays: one bottoming at

2.1 km/s and the other at 2.4 km/s. Layers 3 and 4 in the figure define a low velocity

zone and there is no ray with a real takeoff angle which would be critically refracted

along the 2/3 or the 3/4 interface.

Another existence criterion for the headwave refraction is that the source offset

must exceed what is known as the critical distance. The critical distance is a constant

"overhead" which is the horizontal projection of the path down to the refractor and

up to the geophone (Fig. 2.4).

The range and travel time equations describing headwaves are in general much

simpler than the corresponding equations for direct waves because the ray parameter

is not an unknown but is the reciprocal of the velocity of the refractor. This can be

seen by noting that the angle of incidence at the refractor is 900 so that from (2.7)

sin 900 1
P V T (2.12)

A ray bottoming on the top of the rth layer and reaching a geophone at depth d from

the top of the mth layer (m < r as in Figure 2.4) is governed by the critical distance

zxr which is given by

Zcr = h tan , + r h tan46 + (hm -d)tan6m, (2.13)
i=1 i=m+1

where, by Snell's Law, sin1i3 = ". It is apparent that if 9 is to remain real, then all Vi

should be less than or equal to the refractor velocity V, which verifies the first

existence criterion mentioned above. The overhead zxr is always positive since all of

its terms are positive.
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The equation for travel time is

r-lh cosa3 r-1 h cosdj (hm -d)cosm z
= v + - + . (2.14)

t=1 i=m+1 m r

Equation (2.14) is often written in terms of the ray parameter as

r-1 1 r-1

i=1 5 +1

(hm -d) - + . (2.15)

Telford et al. (1976) show that the first arrival in a one-dimensional layered

geometry is either a direct or a critically refracted wave. In order to calculate the

travel time of the first arrival, find the minimum of the travel times of the direct and

all possible refracted waves.
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Figure Captions

Figure 2.1. Offset VSP geometry with one-dimensional velocity function.

Figure 2.2. Offset VSP geometry with discrete one-dimensional velocity layering.

Figure 2.3. Plot of source offset z (p) vs. p for receiver depth 310 m in a simple model.

Simple bisection is the most efficient root-finding technique for large offsets due to

the effects of the asymptote.

Figure 2.4. Critically refracted raypaths for a one-dimensional model. Due to the low

velocity zone, only two headwave paths are possible.
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CHAPTER 3

Travel Time Inversion

3.1. Introduction

The process of recovering model parameters from data is called inversion or

parameter estimation. The relationship of the data to the model is very often non-

linear so that the inverse problem may not be solvable in general by simple means

such as linear regression according to the least squares criterion. In fact, there is no

simple method of solving nonlinear parameter estimation problems that guarantees

results. Nonlinear problems may have all of the problems associated with linear

inverse problems (such as eigenvalues of vastly different magnitudes in their linear-

ized versions) plus their own special problems too (such as multiple error minima).

The traditional way of approaching nonlinear inverse problems involves a lineariz-

ing approach called Gauss' method. There are various approaches (e.g. Beck and

Arnold, 1977; Aki and Richards, 1980), some of which are more useful than others but

all of which are useful on some problems. They all seek to minimize the error associ-

ated with the parameter choices by systematically (or randomly) searching the model

space for the minimum error according to some error criterion, usually, but not

always, least squares.

Consider the problem of estimating the P wave velocities of two homogeneous

layers given travel time data for rays passing through them in a VSP geometry. Figure

3.1 shows a contoured plot of data variance for part of (V,V 2 ) model space. A

minimum is found in the middle of the plot. Without explicitly calculating the data

variance at every point in (V, V2) space, how should one find this minimum? In this

two dimensional case, it would be feasible to exhaustively search (V 1, V2) space, but as



more and more layers are added, both exhaustive and Monte Carlo type searches

become impractical.

VSP travel time inversion is a refinement of techniques used to estimate seismic

velocities from check-shot surveys. The travel time difference between two receiver

locations can be used to calculate an average interval velocity at depth (Grant and

West, 1965) with

= (3.1)

A better approximation for small source offsets is the slanted straight ray velocity:

V = -,os (3.2)

Grant and West (1965) introduced an integral equation method of inverting a travel

time vs. depth curve to obtain a function V(z). The operative word here is curve since

their method relies on values of the travel time derivative with respect to depth and it

can be treacherous to estimate derivatives from sampled data. The ray trace integral

equation they present is

(Z) JO I I V2( - VW (3.3)

Stewart (1983) investigated the straight ray methods and the integral equation tech-

nique and found that, as expected, the successive refinements produce better results.

He also noted that the ray trace integral behaves poorly in the presence of noise due

to the boot-strapping nature of the numerical integration required to solve (3.3) for

V(z).

Least squares travel time inversion has been used successfully in similar studies

in the past, particularly in earthquake seismology. Crosson (1976), for example, per-

formed a joint inversion of earthquake arrival time data for hypocentral parameters



and one-dimensional velocity structure. Stewart (1983) presents a VSP travel time

inversion similar to the method presented in this work for calculating layer velocities

from zero-offset VSP data. Stewart's algorithm differs from the present method in

many details but also in two significant ways. First, this algorithm is able to deal with

headwave refractions in situations where they are first arrivals so that the extension

to offset VSP inversion is made. Second, the computer implementation of this method

should be considerably faster than Stewart's technique since analytic expressions for

the elements of the partial derivative (Jacobian) matrix are used instead of finite

differencing.

A slightly different tact was taken by Pujol et al. (1985) in their generalized inver-

sion of offset VSP travel time data. They take both travel times and the source offset

distance as data and thereby manage to avoid root-finding (see Chapter 2) in their ray

tracing. The ray parameters become free parameters like the velocities in this

scheme. A problem with the method of Pujol et al. arises since p and V vary indepen-

dently. Because of this, their product can grow larger than one which renders equa-

tion (2.9) meaningless. This problem, they claim, is overcome by careful manual

adjustment of the damping parameter. Pujol et al. also ignore headwave refractions

because the near surface traces in their study areas show very complicated first

arrivals, perhaps due to complex geology (J. Pujol, pers. comm.).

Lines et al. (1984) use travel time data from offset VSP experiments to estimate

two-dimensional dip near the borehole. They use velocities obtained from sonic logs

but suggest that a simultaneous inversion for layer velocities and dips is possible

although subject to ambiguity.

3.2. The Linearized Inverse Problemm Gauss' Method

The formulation of Gauss' method involves setting the partial derivatives of the

data error function with respect to all model parameters to zero and then finding the



roots of linearized versions of the resulting simultaneous equations (Menke, 1984;

Beck and Arnold, 1977). Gauss' method is a least squares technique since the error

function that we attempt to minimize is the sum of the squares of the data residuals.

The formulation, as presented by Beck and Arnold (1977), proceeds as follows.

Assume that the data error function is the sum of squares of the residual travel times,

i.e.

S=, (to - tcc) 2 ,  (3.4)
i=1

where the observations to form the data vector d and the computed travel times tcLc

form the vector g(m). In vector notation the sum of squares is

S = [d - g(m)T [d - g(m)]. (3.5)

This is a simplified form of the maximum likelihood expression

SML = [d - g(m)]TCjl[d - g(m)] + (m - m )TC l(m - mp) (3.6)

(Tarantola and Valette, 1982; Aki and Richards, 1980) which seeks to use a priori esti-

mates of the model parameters (the vector map) to impose stability and uniqueness on

the problem. An equivalent technique, damping, was used in this study to ensure sta-

bility in the inversion while nonuniqueness has not proved to be a problem. The

matrices Cd and Cm are data and model covariances, respectively. The explicit use of

these covariances in the formulation of this problem was avoided for the sake of sim-

plicity and because the data and model errors are not known well enough to assign

covariances. The covariance matrices can also be used to scale the data or model

parameters if either group is made up of quantities with different physical dimensions.

The gradient of S with respect to the model parameters is

VmS = 2[ - Vmg(m)][d - g(m)]. (3.7)

Let



G(m) [Vmg(m)].

If m = Tis the solution to g(m) = d, then VmS is zero at & since S is minimized so that

GT(f[d - g(&)] = 0. (3.8)

If g(m) has continuous first and bounded higher derivatives with respect to m near ft

then steps may be taken to approximate (3.8) as a linear function. Since the solution

lh is not known, replace it in the equation with an estimate m6 near lh and then

expand (3.8) to first order:

GT(ni6)[d - g(im) - G(mn)(f - n)] a 0. (3.9)

An approximation to the solution ' is obtained from (3.9) and is

ki0 ma + [GT(m)G(m)]-'GT(r)[d - g(mo)]. (3.10)

Due to the assumptions and approximations made, equation (3.10) will not generally

find the actual minimum of S but usually a better estimate than in3, say ml, so that a

more precise statement is

m, = -o + [GT()G( 06)]-G T(mn)[d - g(mn)]. (3.11)

Usually a number of iterations will be required to minimize S. Use the new model as

the next "initial" model and repeat the process. A more general statement of equa-

tion (3.11) is then

n+, 1 = n% + [GT(m0)G(m0)]-GT(rm)[d - g(w*)] (3.12)

which is known as Gauss' method.t

If the assumptions are stretched (e.g. if rn is far from l), the estimate n0+1 may

be worse or much worse than nm was. Stability problems such as these are often

ameliorated by the addition of damping to (3.12) which changes the solution n0+l 1

t Gauss' method is known by many names. Other popular names are the Gauss-Newton method, the
Newton-Gauss method, and the linearization method.

I ---- --- -



(Beck and Arnold, 1977). The general formulation is due to Levenberg (1944) but has

been modified by many others:

nk+1 = nm + [GT(nJ)G(mn) + AQ]-'GT(rk)[d - g(mk)]. (3.13)

Although the intent of damping is to add stability to the inversion by preventing GTG

from becoming singular, a connection can be made with the maximum likelihood

inverse discussed above. Menke (1984) shows that damping small eigenvalues of GTG is

equivalent to introducing the a priori information that the model parameters are

small. Indeed, VmSL = 0 leads directly to equation (3.13) if the covariance matrices

are both expressible in the form a21.

Among the simplest modifications to Levenberg's formula (equation 3.13) is an

algorithm called the method of steepest descent: which is obtained from (3.13) by set-

ting 1) = I and letting X become very large so that AX overwhelms GTG and produces

mk+l = mk + X-' GT[d - g(m~)]. (3.14)

Gauss' method and the method of steepest descent are essentially endpoints of a

virtual continuum of nonlinear inversion techniques. Steepest descent tends to be

quite stable even when very far from the solution in model space but is not particu-

larly accurate when the solution is neared. Gauss' method, on the other hand, may be

unstable away from the solution but approaches a final solution very quickly as that

solution is neared and the linearizing approximations get better and better (Brown

and Dennis, 1972). Another point of view is taken by Beck and Arnold (1977) who

admit that the method of steepest descent is valuable for finding the direction of des-

cent but point out that the magnitude of the step size is arbitrarily chosen.

$ The method of steepest descent means different things to different people. The definition in the text
is from that of Beck and Arnold (1977). Some readers may be more familiar with an iterative one-
dimensional line search algorithm which is also called the method of steepest descent (e.g. by Luenberger,
1973).



-- -- ~ ~ 'IhYIIY h IKE I i i h ii l h .

A compromise approach is advocated by most researchers which uses the global

convergence properties of the descent method while far from the solution, but gives

more and more weight to Gauss' method contribution as the iterations proceed.

Therefore, the important question now is, how does one optimally update the damping

factor XO? For the 0 = I case, the damping parameter X should be decreased as the

iterations proceed, but the best choice of updating algorithms is not generally agreed

upon, nor perhaps should it be. Differences in problems and in the shapes of their

sum of squares surfaces are so large that one "optimum" method probably does not

exist. Because the damping in equation (3.13) changes the final solution (by introduc-

ing a priori information), it may be desirable to use the smallest value of X possible as

convergence is reached. The details of the inversion formulation including analytical

expressions for the partial derivatives are given in Appendix A. Several variations on

Gauss' method are presented in Appendix B.

3.3. Pitfalls in linearized Inversion

There are a number of possible problems associated with Gauss' method. There is

no guarantee, for example, that a solution found in this way will be a minimum, let

alone a global minimum.

Linear least squares problems always have paraboloidal model error surfaces (Fig.

3.2a) while the error surface associated with linearized problems may have multiple

minima as shown in Figure 3.2b (Menke, 1984). For lower dimensional models, graphi-

cal methods such as the contour plot shown in Figure 3.1 may be helpful in searching

the model space for the global minimum. This becomes all but impossible in higher

dimensions so that even if it is known that there is a global minimum to the model

error function, there is in general no way of determining solely from the data whether

it has been found. This is because the shape of the error surface away from the esti-

mate mk cannot be predicted as it can in the linear problem (Menke, 1984). As the

---



error surface for the linear problem is quadratic, linearizing a nonlinear problem has

the effect of fitting a paraboloid through mk and returning the minimum of that para-

boloid as the revised estimate mk+ (Fig. 3.3). If the initial estimate m, is close enough

to the solution n (again, hard to predict), Gauss's method eventually converges

because any minimum with continuous derivatives is quadratic locally (Menke, 1984).

Sources of error in the travel times will be discussed in Chapter 4. The covari-

ance matrix Cm relates these errors in data to model errors. It is defined to be

m, = AmAmT - (GT()G( )) (3.15)

(Aki and Richards, 1980) where Am is the model error vector and ac is the variance of

the data. The variance is defined to be

2- S
ad - (3.16)I-n

where I is the number of observations (i.e. travel times) and n is the number of model

parameters (velocities). The difference 1 -n is the number of degrees of freedom of

the system. If Cm is a diagonal matrix, then the model parameters are independent

and their individual errors can be estimated by

(A Vi) 2 = 2a(GT(m)G(4))- (3.17)

where the subscripts refer to matrix elements. These error estimates are only valid,

strictly speaking, for the linear problem and are usually underestimates of the errors

for the nonlinear problem.

The assumption that the covariance matrix is diagonal is generally not valid.

Returning to the contoured data variance plot shown in Figure 3.1, it is clear that

there is some interdependence between the two velocities. Appendix C describes some

of the other information available from these contoured data variance plots.



3.4. Layer Stripping Inversion

The linearized inversion technique presented above requires a reasonable start-

ing model. A much simpler exact inversion, called layer stripping, can be used in

many cases to provide such a starting model. It is called layer stripping because one

layer velocity at a time is found using only the travel time data and the velocity profile

above. As soon as a new velocity is found, it becomes part of the model, one layer hav-

ing been stripped off the problem.

Pujol et al. (1985) also present a layer stripping velocity inversion which is very

similar to a procedure used in the present work. The layer stripping attack works only

for waves arriving at the geophone from above so that headwave refractions cannot be

included. For zero-offset VSP surveys, however, headwave refractions are usually not

seen and inversions of this sort get good results (Stewart, 1983; Pujol et al., 1985).

As outlined in previous sections, the travel time for a ray from the surface to a

geophone a distance d from the top of the m th layer is given by

t = E + , (3.18)
= V\/1 -p2v Vm/1 - p 2 V

and the range is given by

S= ph, + (3.19)

Equations (3.18) and (3.19) may be manipulated to produce an equation for the geo-

phone layer velocity in terms of the ray parameter p and all of the layer velocities

above the geophone layer:

1

Vm j 1 d 1h4FIf 1. (3.20)

If (3.20) is inserted into (3.18), then p may be found numerically given an observed t.



Equation (3.20) may then be used to obtain Vm which is of course the goal.

If geologic layer thicknesses are unknown a priori, then each geophone may be

considered to mark the bottom of a new layer. If geologic reasoning or well log results

suggest particular layer thicknesses, then all of the velocities found from equation

(3.20) for a given layer may be averaged to determine layer velocities.

It is desirable to compute both p and Vm to high precision in order to avoid

excessive error accumulation because of the deterministic nature of the layer strip-

ping inversion. Even in noise-free data, effects like round-off errors can adversely

affect the velocities. Deeper layer velocities are often poor estimates even if the data

are fairly noise-free. This algorithm is so susceptible to noise in the data that one wild

data point can sometimes ruin a model, especially if it is shallow in the section and the

model layering is based on the geophone spacing.

As mentioned above, the layer stripping method does not require any sort of ini-

tial guess at the solution so that it can be used to generate the initial guess required

by Gauss' method or one of the related algorithms. This tactic is especially promising

if headwave refractions constitute only a small number of the first arrivals. Layer

stripping is certainly better for this application than calculating interval velocities

since the latter method usually neglects source offset and always assumes straight

rays.

3.5. Numerical Experiments with Synthetic Data

A number of synthetic data sets were employed to investigate the properties of

the inversion methods presented in this study. Table 3.1 presents a summary of the

experiments. All of the algorithms described in Appendix B were implemented on a

Vax 11/780 computer. Table 3.2 presents a comparison of these methods for some of

the present experiments in terms of the number of iterations required for conver-

gence to an arbitrary minimunm
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The best algorithms seem to be the straight Gauss' method and a modification of

the damping technique given by Brown and Dennis (1972). The statistics recorded in

Table 3.2 are misleading since the finite difference Levenberg-Marquardt algorithm

uses, as the name implies, finite difference approximations to the partial derivatives.

It is much less efficient than using analytic partial derivatives as is discussed in

Appendix B. The choice of the best algorithm appears to depend on the amount of

noise in the travel time data and the number of free parameters in the problem.

The first travel time data set (Experiment A) was calculated from a simple five

layer model with increasing velocity with depth. Figure 3.4 shows 50 theoretical ray

paths from a source offset of 91.4 m while the velocity model and time vs. depth curve

are shown in Figure 3.5. Both the layer stripping and Gauss' method inversion tech-

niques were easily able to recover the velocities to high precision. The effect of adding

increasing amounts of noise to the travel times is shown in Figures 3.6 (B) and 3.7 (C)

The normally distributed random noise had a zero mean and standard deviations of 2

ms (henceforth to be denoted N(0,4 ms2 )) and 5 ms, respectively. As expected, the

models obtained from inversion look less and less like the true model as more noise is

added. The velocities obtained from the inversion tend to oscillate about the true

model velocities, apparently attempting to compensate for velocity errors above. This

effect is an argument for smoothing results obtained from noisy field data if the noise

is unsystematic.

In the next experiment (D) the same model was overparameterized by subdividing

each layer into three. That is, each of the 183 m thick layers was divided into three 61

m thick layers with the same velocity. The same travel time data were used to invert

for fifteen layers instead of five. The results are shown in Figure 3.8. Figures 3.9 (E)

and 3.10 (F) show the inversion results in the presence of increasing noise. Once

again the compensating velocity oscillation is visible. The degradation of the inversion



results due to noise is much more severe in this experiment since the redundancy of

the data set has been reduced. The 50 travel times were sufficient to easily resolve

five layer velocities but were not capable of resolving fifteen layer velocities in the

presence of noise. More travel times would improve the results.

The source was moved to 914 m away from the borehole for the next experiments.

Figure 3.11 shows the theoretical ray paths for this trial. Travel time data were gen-

erated from the same five layer model for the same receiver depths and inverted for

five and fifteen layer velocities as before. The results are shown in Figures 3.12 (G)

and 3.13 (H). Both inversions successfully recovered the true model although the

fifteen layer model shows small oscillations in velocity about the true value in the top

three layers. The source of error in the upper layer may result from contributions

from travel times to deeper receivers. Whereas the deeper layers are affected by only

a few travel times and the associated partial derivatives, the shallower layer velocities

are affected by all of the data and subject to errors throughout the model. This prob-

lem will reappear in similar configurations during subsequent trials.

A new model, with ten layers and low velocity zones, was used to calculate travel

times for the next experiment. The ray paths for source offsets of 91.4 m and 914 m

are shown in Figures 3.14 and 3.15. The models obtained via inversion are nearly

exact fits as can be seen from Figures 3.16 (I) and 3.17 (J). This experiment indicates

that low velocity zones are not a problem for this algorithm.

The next numerical experiment looked at the effect of using multi-offset travel

time data in a single inversion. This experiment was based on the same ten-parameter

model used in I and J. This time, the 100 travel times were from three source offsets:

91.4 m, 305 m, and 914 m. Experiment K (no noise) converged very quickly to the true

model (shown in Fig. 3.16a) while Experiments L (N(0,4 ms2 )) and M (N(0,25 ms2 )) con-

verged rapidly to degraded versions of the true model. The results show that the solu-



tion to the inverse problem is about the same whether there are 100 receiver positions

and one shot point or 33 receiver positions at each of three shot points. However, the

model errors are often smaller in the multi-offset case.

Frequently the layer thicknesses are not known a priori or the true velocity

structure is not parameterizable as flat layers. One strategy that may be used in such

cases is to assign arbitrary layer thickness to the model and proceed as usual from

there. The response of the inversion technique to this situation was tested by calcu-

lating travel times from a model with uneven layer thicknesses and inverting for a

model with constant thickness layers. The effect of normally distributed random noise

was investigated for these travel time data. Figures 3.18 through 3.20 (Expts. N - P)

show the inversion result and the travel time vs. depth curve for standard deviations

of 0 ms (i.e. no noise), 2 ms, and 5 ms, respectively. For the noise-free case (Fig. 3.18),

the inversion result is about as close as possible considering that a perfect fit is

impossible. Only at the very top, where the first arrivals were headwaves, did the

inversion fail in some sense. It is similar to a problem discussed earlier. The addition

of noise to travel times seems to affect the deeper velocity structure more than the

near surface velocities.

A good starting model of course speeds convergence. In order not to bias these

experiments by providing unrealistically good or bad initial models, the layer stripping

inversion, which does not require a starting model, was used to obtain the first

approximation. For simple structures and noise-free data, layer stripping is sufficient.

In slightly more complex situations, it provides a starting model often just a few itera-

tions away from the best fit. Figure 3.21 shows an example of the output of the layer

stripping algorithm for the case of a simple five layer model and travel time data with

N(0,4 ms2 ) added noise (Experiment B). The final inversion result is shown in Figure

3.6. An unfortunate aspect of layer stripping in the presence of noise is that compen-
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sating oscillations in velocity increase with depth due to the single pass nature of the

algorithm. The model shown in Figure 3.21 is only slightly affected by this

phenomenon; it is easy to see that the velocity oscillation could get out of control if

too many more layers are added. Figure 3.22 shows an example of this unbounded

velocity oscillation for Experiment 0. To prevent such wild (and unphysical) velocity

oscillations, the layer stripping program was written to constrain velocities to be in

the range 1.2 - V 8.2 km/s. Still, an initial model like that shown in Figure 3.22 (for

Expt. 0) will cause the ultimate inversion to require many iterations. In this situation

and others like this, a constant velocity initial model (V = 3.1 km/s) was used with

more satisfactory results. Whether to use the layer stripping results or a constant

velocity model as the trial model for the full inversion depends on model determined

from layer stripping. Wild oscillations in velocity usually indicate a poor fit caused

perhaps by the presence of noise in the travel times.



Number Number Low Source Added

Experiment of of Data Velocity Offset Noise

Parameters Points Zone (m) (ms)

A 5 50 No 91.4 0

B 5 50 No 91.4 2

C 5 50 No 91.4 5

D 15 50 No 91.4 0

E 15 50 No 91.4 2

F 15 50 No 91.4 5

G 5 50 No 914 0

H 15 50 No 914 0

I 10 100 Yes 91.4 0

J 10 100 Yes 914 0

34 91.4

K 10 33 Yes 305 0

33 914

34 91.4

L 10 33 Yes 305 2

33 914

34 91.4

M 10 33 Yes 305 5

33 914

N 36 120 Yes 610 0

0 36 120 Yes 610 2

P 36 120 Yes 610 5

Table 3.1. Summary of numerical experiments used to test travel time inversion algo-
rithm.



Experiment
Algorithm D G H I J N

Gauss 3 38 79 3 68 t

Scaled Levenberg Damping 3 * 59 3 84 85

Modified Brown & Dennis 3 38 72 3 52 45

Modified Box-Kanemasu 7 77 t 7 *

Finite Difference 7 5 17 5 8 11
Levenberg-Marquardt

Convergence Criterion
(Iterations continued 10-10 10-8 10-8 10 -10 10-8 3x10 -7
until data variance
falls below value)

t Computations stopped when model parameters diverged.
* Computations stopped when convergence was not attained after 100 iterations.

Table 3.2. Comparison of algorithms presented in Appendix B for various numerical
experiments summarized in Table 3.1.



Figure Captions

Figure 3.1. a) Velocity vs. depth curve for a simple two layer velocity model. b) Travel

time vs. depth curve for the model in (a). c) Contoured data variance for travel times

shown in (b). The data variance is E(tob - tc) 2/f where f is the number of

degrees of freedom in the system. f is defined as the number of data points (tob, in

this case) less the number of parameters. In a properly parameterized system which

is free from noise, the minimum data variance is zero.

Figure 3.2. a) The model error surface for a one-dimensional linear problem. The

error surface for a linear problem is always a paraboloid. b) The model error surface

for a nonlinear problem may have multiple local extrema (after Menke, 1984).

Figure 3.3. The error surface for a nonlinear problem (solid line) and for the linear-

ized version of the same problem (dashed line; after Menke, 1984).

Figure 3.4. Theoretical ray paths for Experiment A. Note exaggerated horizontal

scale.

Figure 3.5. a) Velocity vs. depth profile for Expt. A. Solid line is true model; dashed

line is inversion result. b) Travel time vs. depth curve for Expt. A.

Figure 3.6. a) Velocity vs. depth profile for Expt. B. Solid line is true model; dashed

line is inversion result. b) Travel time vs. depth curves. Solid line is curve for Expt. A;

dashed curve for Expt. B (N(0,4 ms2 ) added).

Figure 3.7. a) Velocity vs. depth profile for Expt. C. Solid line is true model; dashed

line is inversion result. b) Travel time vs. depth curves. Solid line is curve for Expt. A;

dashed curve for Expt. C (N(0,25 ms2 ) added).

Figure 3.8. a) V(z) vs. z profile for Expt. D. Solid line is true model; dashed line is

inversion result. b) t (z) vs. z curve for Expt. D.



Figure 3.9. a) V(z) vs. z profile for Expt. E. Solid line is true model; dashed line is

inversion result. b) t(z) vs. z curves. Solid curve is for Expt. D; dashed curve for

Expt. E (N(0,4 ms2) added).

Figure 3.10. a) V(z) vs. z profile for Expt. F. Solid line is true model; dashed line is

inversion result. b) t(z) vs. z curves. Solid curve is for Expt. D; dashed curve for

Expt. F (N(0,25 ms2) added).

Figure 3.11. Theoretical ray paths for Expts. G and H.

Figure 3.12. a) V(z) vs. z profile for Expt. G. Solid line is true model; dashed line is

inversion result. b) t (z) vs. z curve for Expt G.

Figure 3.13. a) V(z) vs. z profile for Expt. H. Solid line is true model; dashed line is

inversion result. b) t (z) vs. z curve for Expt H.

Figure 3.14. Theoretical ray paths for Expt. I.

Figure 3.15. Theoretical ray paths for Expt. J.

Figure 3.16. a) V(z) vs. z profile for Expt. I. Solid line is true model; dashed line is

inversion result. b) t (z) vs. z curve for Expt I.

Figure 3.17. a) V(z) vs. z profile for Expt. J. Solid line is true model; dashed line is

inversion result. b) t (z) vs. z curve for Expt J.

Figure 3.18. a) Inversion result for Expt. N (dashed line) drawn over true model (solid

line) Note that a perfect fit is impossible. b) t (z) vs. z curve for Expt. N.

Figure 3.19. a) Inversion result for Expt. 0 (dashed line) drawn over true model (solid

line) b) t(z) vs. z curves. Solid line is curve for Expt. N; dashed line is curve for Expt

0 (N(0,4 ms2) added).

Figure 3.20. a) Inversion result for Expt. P (dashed line) drawn over true model (solid

line) b) t(z) vs. z curves. Solid line is curve for Expt. N; dashed line is curve for Expt

P (N(0,25 ms2) added).
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Figure 3.21. a) Dashed line is layer stripping result (V(z) vs. z model) used for trial

model in Expt. B; solid line is true model. b) Travel time vs. depth curves. Solid line is

curve calculated from true model; dashed line reflects added N(0,4 ms2 ) noise.

Figure 3.22. a) Dashed line is layer stripping result (V(z) vs. z model) used for trial

model in Expt. 0; solid line is true model. b) Travel time vs. depth curves. Solid line is

curve calculated from true model; dashed line reflects added N(0,4 ms2 ) noise.
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CHAPTER 4

Measuring Travel Times

4.1. Introduction

This chapter describes methods that might be useful for accurately and precisely

measuring travel times from digitized VSP record sections. Methods for automatically

picking times are investigated and the utility of such methods is discussed.

Picking arrival times is of course a very crucial step in travel time inversion

because the travel times are the data. The problem of picking arrival times is familiar

to earthquake seismologists who must carefully determine when first breaks occurred

in order to locate earthquakes. If an impulsive energy source is used in seismic

reflection or VSP experiments, the analyst is faced with the same problem: When

exactly does the first arrival come in? Even small errors in these picks can result in

large model errors. Fortunately for some analysts, the author included, most seismic

experiments today are conducted with a Vibroseis® source for which the first arrival,

after a preprocessing step to be described below, is actually a peak or trough and thus

usually very easy to pick.

Another potential problem is avoided by the recording equipment which begins

recording at the shot time so that there is never any ambiguity about travel time

versus arrival time. To the analyst, they are the same.

Vibroseis is a registered trademark of Cononco, Inc.



66

4.2. The Vibroseis Source

The Vibroseis source is a large ground vibrator which sweeps across some

preselected frequency range. The sweep duration, terminal frequencies, and peak

force are all variables depending upon noise conditions, target characteristics, and

* even cultural considerations. Typical sweeps last 12 to 16 seconds and cover from two

to four octaves from, say, 10 to 80 Hz (Fig. 4.1a). Sweeps which are nonlinear in

instantaneous frequency (Fig. 4.1b) are often used to concentrate more energy in the

higher frequencies as these frequencies are attenuated more rapidly by the Earth

(Hoover et al., 1984). Modern vibrators are able to produce a peak force of 200 000 N

but much less force is normally used to avoid damaging roads and other structures.

Multiple vibrators are often used to increase the imparted energy.

The input waveform F1(t), sometimes called the pilot, is crosscorrelated with the

output signal F 2 (t) recorded at the geophone. The result (Fig. 4.1c) is a zero-phase

waveform which is amplified and compressed in time (Waters, 1978). If the recorded

waveform is defined by

F2 (t) = EarFi(t - T) (4.1)

where a, and 7j are the amplitudes and delays of the various arrivals, then crosscorre-

lation with the pilot gives

s12(t) = F2 (t) * FI(-t) = aF(t - rT) * F(-t) = ai,9 11 (Ti). (4.2)
i i

The output signal 9 12(t) is thus a weighted and delayed sequence of autocorrelations

rp1(7T) with peaks at all Ti. The first autocorrelation peak occurs at delay Tr and

corresponds to the first arrival. That the final output is inherently noncausal should

not be a concern; the preprocessing described here is delayed by the operator length.

A typical autocorrelation function for a linear sweep is of the form



-11 inTk (T-) cos 2rfo , -T r - T (4.3)
Trk T

where

f ,f 2 are the terminal frequencies,

(f + f )
fo - 2 is the carrier frequency,

T is the duration of the input signal, and

k - f2 -f
T

This autocorrelation function is called the Klauder Wavelet (Geyer, 1972).

4.3. Interpolation

As the first autocorrelation peak may usually be easily identified on VSP records,

it would seem to be a straightforward matter to pick the appropriate local maximum

for every trace on the section. Since this is digital data one might think to pick the

local maximum amplitude sample. This procedure fails, however, to take advantage of

the additional precision contained in the sampled waveform. The continuous wavefield

is adequately sampled since there is usually analog anti-aliasing circuitry in the

recording equipment. Because neither the recorded waveform nor the crosscorrela-

tion is aliased, the sampling theorem says that the continuous waveform can be

exactly reconstructed (Oppenheim et al., 1983). The continuous time function z(t) is

given by

sin 21 W(t - n
x(t) = [n] 2W (4.4)

n=-c 2 rW(t- n
2W

where the discrete time sequence values z[n] z( ) and W is the bandwidth of

z(t). This equation can be used as a formula for bandlimited interpolation. A number

of problems can arise, however, since one seldom has sample values recorded for all



time. Another drawback of sampling theorem interpolation is that a large number of

computations is required to convolve a sequence with an infinite length filter. 'One

might argue that x[n] 0 before recording was started and that z[n]-*0 as the coda

decays. But the Klauder Wavelet is not time-limited to the recording window. Typically

912(t) is only two seconds long while the full Klauder Wavelet lasts twice the sweep

length which may be 12 to 16 seconds so that there is surely some error introduced.

Practical application of the sampling theorem therefore turns out to be difficult, so

theoretical soundness was temporarily dispensed with in favor of the computational

ease of cubic spline interpolation; the validity of the cubic spline interpolation is dis-

cussed in Appendix D.

It is clear that, at least from an engineering point of view, it is better to make use

of some sort of interpolation scheme than not to interpolate at all as can be seen from

the following example. Consider wide offset (2 000 m) VSP data recorded digitally at

500 samples per second at 10 m intervals in a 5 000 m/s homogeneous medium (Fig.

4.2). The travel time difference between the direct waves to 1 000 m and 1 010 m is

only 0.9 ms which is less than half the sampling interval. If no interpolation were used,

no moveout at all would be seen between these traces. The situation may be much

worse when dealing with complex structures or headwave refractions.

Cubic spline interpolation fits a third order polynomial between adjacent samples

so that the interpolated time series is continuous through the second derivative

(deBoor, 1978). The particular algorithm used in this study treats the endpoints in

the "not a knot" sense described by deBoor (1978).

The method used to pick all of the travel times used in this study uses cubic

spline interpolation and the Golden Section search algorithm to find the peak of the

appropriate autocorrelation feature.



The Golden Section search technique is a rapid method for minimizing a unimodal

function without using derivative information. Adding a negative sign in the appropri-

ate place turns it into a rapid method for maximizing a unimodal function which is the

problem under consideration here. This algorithm is described in detail in Foulds

(1981). Given a search interval [a,b], Brent (1973) shows that the number of itera-

tions required to achieve convergence to within 6 is about

log (b - a) - log6 (4.5)
logy

where y7 which is Euclid's golden section. For example, finding the maximum
2

value of the crosscorrelation in a 2 ms interval to within 0.01 ms requires only 11

function evaluations with the Golden Section technique whereas a brute-force

approach would require 100.

An alternate approach to the maximization problem involves using the derivative

information given by the cubic spline coefficients. One could find the roots of the

polynomial derivative and choose the choose the abscissa with the larger function

value as the maximum of the polynomial. This method, turns out to be computation-

ally trickier to implement since the spline coefficients from the correct gap must be

identified and used in the root-finding. (But then nearly everything is trickier than

using an existing IMSL subroutine.)

The computer implementation of this method displays the seismogram, allows the

analyst to point at the autocorrelation peak, and then searches for the maximum in

the manner described. The program that does all of this is quite robust and very fast

because the Golden Section search is quite efficient. The Michigan data set was digi-

tized at 500 samples per second and the program seeks a peak in the interpolating

spline with a tolerance of 0.01 ms. This is admittedly ambitious but is far better than

no interpolation and certainly no worse than eye-balling linearly interpolated data.
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4.4. Automatic Methods

Partial automation of the above process is quite feasible and has been imple-

mented. There are certain situations for which partially automated picking might

actually improve the accuracy of the travel time measurements. If the feature

representing the first arrival is not clearly identifiable on every trace or if the shape

of the feature is slowly changing, then a trace-to-trace crosscorrelation technique

may be able to follow the feature more consistently than an analyst. Vibrators at wide

offsets or impulsive energy sources are examples of potentially troublesome

waveforms.

Completely automatic time picking is always a lively issue in seismology. Several

authors (e.g. Allen, 1982) report limited success with P-picking algorithms. For VSP

processing, Stewart (1983) reports poor results from a scheme to pick first breaks (for

an impulsive source) based on second derivative values. He suggests the use of sam-

pling theorem interpolation to find the point of maximum amplitude for zero-phase

waveforms (from Vibroseis-like sources) which sounds hopeful but fails to consider

some of the noise problems which may be encountered. A free-running P wave picker

is bound to make seriously bad picks on data which show other large features or con-

tain, for example, only a low frequency waveform due to problems clamping the geo-

phone to the borehole wall. Since perhaps 5% of the traces in the data sets to be

treated here are bad for one reason or another, automating the process would not be

very helpful unless it could be made sufficiently sophisticated to be able to detect and

discard faulty picks or poor quality waveforms. Otherwise, the user will have to fre-

quently overrule the machine's pick. It is arguable whether the time spent monitoring

the program's performance and modifying its picks would be significantly smaller than

the time spent hand-picking the travel times. There is also something to be said for

staying close enough to the dataset to understand its particular quirks and shortcom-

,l- Ii ' IlAl Ih



ings.

A trace-to-trace crosscorrelator was implemented for this study which ably fol-

lows a given feature until it is lost in noise. At that point the analyst must manually

reidentify the feature before letting the program continue. This program also makes

use of the Golden Section search algorithm and cubic spline interpolation to pick the

successive peaks of the trace-to-trace crosscorrelation. To minimize problems due to

round-off errors, it is better to try to follow the features of a single trace down the

section as far as possible rather than to use a leap-frog technique.

4.5. Errors in Travel Time Measurements

The errors in the travel time measurements are due to a variety of sources.

Stewart (1983) lists time-picking errors, inexact zero times, instrument imprecision,

and depth errors.

The techniques listed in this chapter seek to minimize time-picking errors. For

zero-phase data (e.g. Vibroseis source), the error in the actual time pick from the

record should be quite small assuming that the right feature is picked, perhaps only

0.2 ms. Aki and Richards (1980) give an expression for travel time uncertainty in the

presence of noise:

At= 1

Wlog 2 [ + 1+ J (4.6)

where 5 e and N2 are the power in the signal and the noise, respectively, and W is the

signal bandwidth. Given VSP data digitized at 500 Hz, the effective value of W is some-

what less than 250 Hz, probably closer to the high end of the vibrator sweep frequency

which in the case of the Michigan VSP data (see Chapter 5) was 114 Hz. The signal to

noise ratio for the Michigan VSP data averages about 5:1 so that At is about 2 ms.

Experience suggests that this is a reasonable value although, as Stewart (1983) points



out, it may be a little high since the VSP analyst is aided by visual correlation with

neighboring traces.

Errors from bad time bases and other instrumental errors are added to the data

during the experiment and are difficult, if not impossible, to correct. One could ima-

gine inverting for the time origin as is done in joint earthquake hypocenter and veloc-

ity inversion (e.g. Crosson, 1976) but this would undoubtedly add more error than it

would alleviate. Sources cited by Stewart (1983) give estimated total timing errors

between 0.5 ms and 1.0 ms. Pujol (pers. comm.) reports time picking errors alone of

less than 1.0 ms.

Another source of error in the travel time data is the receiver depth. The wireline

is usually slackened once the geophone is locked at depth to diminish cable wave

noise (Stewart, 1983) so that tool slippage may occur undetected. Even if the tool is

clamped tightly, the accuracy of placement depends on a number of factors such as

the depth reference (usually the floor of the drilling platform), cable stretching, and

winch operator enthusiasm.* Stewart (1983) estimates the total depth error may be as

high as several feet and introduces an additional 0.5 ms (or more) in timing error.

The total travel time error is therefore expected to be about 1 ms.

I witnessed a VSP survey in the Gulf of Mexico last winter. "I thought the company man said 50 foot
intervals," I said when the depth meter showed a value 48.1 feet above the previous measurement. The
operator, who had been up for almost two days, said, "Yeah. We try to get it pretty close." So much for
quantifying operator error.
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Figure Captions

Figure 4.1. (a) Vibrator pilot waveform which linear in frequency with time. (b) Loga-

rithmic vibrator pilot waveforrm (c) Klauder wavelet.

Figure 4.2. Typical VSP geometry showing raypaths to two receivers showing the travel

times to both. The difference, 0.9 ms, is less than the resolution of uninterpolated

data.
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CHAPTER 5

Examples With Field Data

5.1. Introduction

The utility of an analysis technique is best tested with real data. Three sets of

field data were inverted using the travel time inversion techniques presented here.

Two of the data sets are rather simple examples with nearly zero offset sources and a

fairly simple structure. The third set, however, came from a multi-offset experiment

from which well over one thousand travel times were measured.

5.2. Mounds, Oklahoma YSP

The first data set analyzed came from a VSP experiment run prior to the Gas

Research Institute's Hydrofrac Monitor Project near Mounds, Oklahoma to obtain

velocity estimates for modeling the area before and after hydrofracture. The P wave

data studied here were collected from a near offset VSP with a Vibrator source 46 m

from the top of the well. The well, which is only 350 m deep, is straight but slightly

deviated from vertical so that the projection of T.D. on the surface is 18 m closer to

the source than the well-head. This 3" deviation was taken into account in the inver-

sion.

The model chosen for the inversion consists of twelve 30.5 m thick layers.

Thinner layers were not used since there were only 43 travel times available. The

resulting model is shown in Figure 5.1 along with a travel time versus depth curve. The

only other model of the area available was a preliminary model used by the Amoco

Production Co. (R. Heiser, pers. comm.). It is shown in Figure 5.1 as a dotted line. To

say that the models agree is overstating the case since the Amoco model is very



simple. They do not disagree, however.

The absolute values of the velocity errors, obtained from the covariance matrix,

are small, averaging 43 m/s. As discussed in Chapter 3, these values are probably

underestimates. The RMS travel time error is 0.2 ms. These small errors, underesti-

mates that they may be, suggest a very good fit.

5.3. Gulf Coast VSP

The velocity structure near a particular well on Alabama's gulf coast has been

investigated previously by Wingo (1981), Stewart (1983), and Keho et al. (1984). It pro-

vides a good opportunity to compare results. Wingo's (1981) results were obtained by

repeated forward modeling while the latter two papers used travel time inversion. In

addition, Keho et al. (1984) studied spreading, transmission coefficients, attenuation,

and radiation patterns. The experiment was done by the Amoco Production Co. near

Gulf Shores, Alabama, in May 1980. A slanted weight drop device, offset 80 m from the

well-head, was used as both a P and S wave source. SH waves with opposite polarities

were generated by reversing the direction of the weight drop from right to left per-

pendicular to a line from the source to the borehole. Wingo (1981) picked travel times

from the vertical P wave component and picked SH wave times by overlaying the

traces recorded from the left- and right-slanted source configurations and identifying

the onset of reversed polarity energy.

Receivers were spaced 3.05 m apart from 3.05 m to a depth of 488 m for both the

P and S wave experiments. Because of the dense geophone spacing in the hole, the

model to be obtained from travel time inversion could have quite thin layers. Stewart

(1983) used 12.2 m thick layers in the hopes of detecting thin layers of gas sands.

Forty layers, each 12.2 m thick were also in this study. The P and S wave travel times

were inverted separately for velocity. Modified Brown and Dennis damping (see Appen-

dix B) was used to maintain stability and the initial models in both cases were



obtained using the layer stripping technique developed in Chapter 3.

The inversion results are shown in Figures 5.2 and 5.3. The travel time vs. depth

curves are also shown. The results are close to the velocities presented by Stewart

(1983) and Keho et al. (1984) and agree reasonably well with the lithology presented in

the latter paper. The average velocity error in the P wave model is about 107 m/s.

The P wave RMS travel time error is 0.5 ms; the S wave RMS error is 1 ms.

The shallow well (490 m) penetrated only unconsolidated sands, silts, and shales.

Two thin layers of gas sands were found at 405 m and 457 m. The low P wave velocity

at those depths hints at their presence.

5.4. Michigan Basin VSP

The third data set considered, from the Michigan Basin, was much larger than the

first two in that the borehole was about 1900 m deep and data were used from sources

at eight different offsets. The structure of the study area in this experiment is also

more complicated.

These VSP experiments were undertaken as part of the M.I.T./C.G.G. Experimen-

tal Group Shoot in Manistee County, Michigan in September and October, 1983. A pri-

mary goal of the study was to evaluate the effectiveness of the VSP technique as a tool

for reservoir delineation (Compagnie G6n6ral de G6ophysique, 1985). The borehole

used for this study, State Burch 1-20, was a dry well less than 300 m away from a pro-

ducing well (State Springdale 1-20). The source rock for the producing well is a Silu-

rian pinnacle reef 1370 m deep.

Before presenting the findings of the current study, it is worthwhile to think

about the task at hand. Can a small three-dimensional structure like the reef be suc-

cessfully delineated solely on the basis of a one-dimensional model? No, of course not,

but there is some hope. If a reasonable one-dimensional model can be found which, on



the average, represents the velocity structure for the subsurface around the well,

then higher order effects such as the variation of travel time residuals for the

different source offsets may perhaps be used to identify velocity perturbations. Tomo-

graphic techniques might then possibly be used to understand these anomalies.

Because there is no good reason to conduct multi-offset VSPs unless a two- or three-

dimensional structure is expected, a purely one-dimensional interpretation is inade-

quate. A qualitative interpretation will therefore be presented of the travel time

residuals from around the Burch 1-20 well.

The eight VSPs analyzed in this study are a subset of the 13 VSP experiments run

during the group shoot. Besides the VSPs, a 3D seismic reflection survey and a tran-

sposed VSP (with the source in the borehole and receivers along the surface) were

also conducted to compare the utility of these three techniques in reservoir delinea-

tion (C. G. G., 1985). A map of the study area is shown in Figure 5.4. Table 5.1 lists the

source positions and depth ranges covered from each offset. The receiver spacing

used for most of the survey was 9.1 m.

The data were treated in three groups. The first group was made up of two zero-

offset experiments run at different times at offset A. The first zero-offset VSP run on

Burch 1-20 was performed by Schlumberger Well Services for the Marathon Oil Com-

pany. The second was undertaken during the Group Shoot by the Compagnie G6n6ral

de G6ophysique. A record section from offset A is shown in Figure 5.5. In addition, the

shallower C. G. G. data were collected later than the deeper traces with some overlap

in the middle. Efforts were made during processing to tie the two sets of C. G. G. data.

That the travel times measured at some of the depths common to the two VSPs were

different indicates that at least one of the experiments had timing problems or

perhaps depth control problems. Figure 5.6 shows the difference between times

obtained from the Schlumberger and C. G. G. data at common depths. Below the sec-



tion of the hole which was cased, C. G. G. times are usually earlier while above the cas-

ing Schlumberger-derivid travel times are systematically earlier. Both data sets were,

however, used in this study. The second group consisted of four VSPs with approxi-

mately 600 m source offsets. Offsets B, D, E, and G were all shot on the same trip up

the well as the lower section of A offset data. Multiple vibrators were used so that data

from all five offsets could be taken while geophone remained clamped at each station.

The final group of three VSPs (F, J, and L) were collected together in a similar fashion.

All three had source offsets of about 1 800 m.

Travel times were picked from all of the traces used in this study with the

methods described in Chapter 4. The eight travel time vs. depth curves are shown in

Figures 5.7 through 5.14. The source elevations, although only slightly different from

the well-head elevation in most cases (Offset L is an exception), were considered in all

of the subsequent work.

The A offset data set was inverted for two kinds of models which differ in their

layering strategy. Since various well logs were available, C. G. G. (1985) produced a

velocity model with layer boundaries taken from the logs. These layer boundaries are

a form of a priori information. Minor modifications to this thickness model were made

based on information from a refaction survey by the Marathon Oil Co. and P velocities

picked from a full waveform acoustic log. A strong reflection seen in the middle of the

Detroit River Salt suggested a subdivision. Mud logs from that level indicate that the

Detroit River layer is actually as many as 20 sublayers of alternating anhydrite (5.5-6

km/s) and salt (5.5 km/s). The result of the inversion for 36 layer velocities (with the

top layer velocity held fixed) is shown in Figure 5.15; the velocities themselves may be

of interest in this case and are given in Table 5.2. P velocities obtained from the full

waveform acoustic log are shown in Figure 5.16. There is a very good fit. The RMS

travel time error is 1.5 ms. When a priori layering information is not used, the results
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are similar but do not appear to fit the log-derived P wave velocities as well. Figures

5.17 and 5.18 show the inversion for models with constant thickness layers 30.5 and 61

m thick, respectively. Although the RMS travel time errors, 0.8 ms for the 30.5 m

model and 1.0 ms for the 61 m layer model, are quite low, a tradeoff between model

variance and model resolution (e.g. Menke, 1984) is very apparent here. The width of

the velocity curve in Figures 5.17 and 5.18 represent the 95% confidence interval. The

61 m thick layers are clearly better resolved than the 62 layers of the 30.5 m model.

Before the travel times picked from the offset VSPs were added to the inversion

data set, a static correction was made to the remove the effect of the glacial till's

varying properties throughout the study area. The source of the static shift seen in

the offset VSPs is thought to be either shallow velocity anisotropy, lateral velocity

variations in the glacial till, variations in the thickness of the till, or some combination

of these factors (C. G. G., 1985). 180 m monitor holes drilled near most of the vibrator

stations indicate that the glacial till does not vary wildly in thickness. Support for the

anisotropy theory comes from the apparent azimuthal independence of the negative

(i.e. observed before calculated) static shifts, the increase in shift with distance, and

the fact that the sign of the time shift is correct. The Bell Shale, at about 625 m, is

perhaps the responsible anisotropic material. The static shift at offset G, however, is

10.6 ms which may be too large to be explained by a single anisotropic layer. On the

basis of evidence from the transposed VSPs, C. G. G. (1985) believes that variations in

the velocity of the glacial till is a better explanation.

The A offset model was used to calculate travel time vs. depth curves for the seven

other offsets and the average travel time residual for each offset was subtracted from

each of the observations. Data from the 600 m offsets were then added to the set and

inverted as before with the log-derived layering. The resulting model is shown in Fig-

ure 5.19. Finally, the three data sets from 1 800 m offset sources were added and the



travel time inversion was repeated with close to a thousand data points. The com-

puted model is shown iri Figure 5.20.

5.5. Analysis of Travel Time Residuals

As suggested earlier, travel time residuals from multiple source offsets might

enable qualitative statements to be made about three-dimensional structure based on

only one-dimensional models. This is similar to a technique used in earthquake

seismology. Most computer programs for earthquake location rely on a one-

dimensional crustal model. Perturbations in the velocity structure local to seismic sta-

tions are modeled by constant shifts applied to observed arrival times. These time

shifts are known as "station corrections." The residual static corrections already

made are also first order models of lateral structural or velocity variations.

The model obtained from inverting all of the data together represents an average

velocity structure in the vicinity of the borehole. Travel time residuals were calcu-

lated for each offset at all of the receiver depths based on this average model. Plots of

travel time residual vs. depth are shown in Figures 5.21 through 5.28.

The travel time residuals can be divided into two broad categories: those that are

structurally significant and those that are not. The latter category includes residuals

originating from bad travel time picks, timing errors, and depth errors. Figure 5.29

shows a well profile derived from a caliper log of Burch 1-20. Several washed out zones

are visible in the figure, notably in the F Salt, the B Salt, and the A2 Evaporite. Even

though a special probe with longer arms was used in these sections, it is prudent to

regard travel time anomalies at those levels with suspicion. The fact that data were

collected at the same time from offsets A, B, D, E, and G makes it very likely that the

similar residual signatures seen in the washed out zones on these five plots (Figs.

5.21-5.24 and 5.26) are from the same source, possibly depth errors or bad time picks

due to poor geophone coupling with the geophone wall. The largest anomalies occur



at the same depths on all five curves. There are similar wild variations in the wash-

outs in the plots for offsets F, J, and L (Figs. 5.25, 5.27, and 5.28). The residuals for

the 1 800 m offset experiments are quite noisy to begin with due principally, it would

appear, to poor time picks which are in turn due to a lower signal to noise ratio on the

seismograms. It is also plausible that the one-dimensional assumption begins to break

down in this region at such large offsets.

There is still some information left in the travel time residual plots despite all of

the above caveats. The curves for offsets B (Fig. 5.22) and D (Fig. 5.23) are almost

identical as are those for offsets F (Fig. 5.25) and J (Fig. 5.27) if the noise is ignored.

The shapes of the curves for offsets E (Fig. 5.24) and G (Fig. 5.26) are also similar. Do

the differences between curves from the reef side (B, D, F, and J) and the off-reef side

(E, G, and L) of the well point to the presence of the reef? Figure 5.30 and 5.31 show

theoretical raypaths for offsets D and J assuming a one-dimensional geometry and the

velocity structure derived from all eight offsets. The geometry of this experiment was

fortuitous in that waves transmitted through the reservoir could be recorded since

Burch 1-20 was so much deeper than the Springdale reef. The approximate position of

the pinnacle reef is sketched on these figures although of course the rays shown are

not affected by it in this one-dimensional model. Nevertheless, it appears that the

travel times from offset D (and B) to receivers at depths from about 1 450 m to T.D.

ought to be affected by the reef. Likewise, times from about 1 450 m to T.D. should be

affected from offsets J and F. The sign of the travel time anomaly, at least in this first

order approximation, is correct given the assumed velocity structure of the reef. The

reef, which is composed of the Brown Niagran carbonate, displaces the B Salt which is

a much slower material. In addition, the A2 Evaporite (see Table 5.2) is more com-

pacted above the reef than off to the side. The velocity of the A2 Evaporite near Burch

1-20 is about 5.2 km/s whereas it is 6.5 km/s above the reef at Springdale 1-20 (C. G.

G., 1985). In fact, this large velocity contrast and accompanying density contrast



makes possible one of the usual techniques for detecting reefs in this region from

reflections. Caughlin et al. (1976) report that a weakening of the A2 Carbonate

reflection event is characteristic of a reef. This would clearly be the case if the

velocity-density contrasts at the A2 Carbonate/A2 Evaporite and A2 Evaporite/Al Car-

bonate were small.

The small backwards "S" shape visible on the residual curves from offsets B and D

below 1 600 m is probably not related to the reef since a similar feature can be seen

on the E and G offset curves.

There is a large anomaly at about 1 520 m on the residual curves from offsets F, J

and, in the opposite sense, L. The ray diagram for J offset (Fig. 5.31) shows incidence

angles near horizontal for these arrivals. It is likely that the observed arrivals

correspond to rays which also traveled through the faster Brown Niagran of the reef

and arrived earlier than expected. A possible explanation for the residual of opposite

sign seen on the curve for offset L (Fig. 5.28) is that the average velocity structure

used to calcualate the residuals is weighted by the excess of data from sources on the

reef side and that the anomaly from L is merely compensation in the other direction.

The justification for the above qualitative statements lies in Fermat's Principle. It

states that the travel time along a given ray is stationary with respect to the path.

Therefore perturbations of travel time due to perturbations in velocity along the origi-

nal raypath are the only first order effects; perturbations to the raypath itself are

higher order effects on the travel time.

Because of the encouraging qualitative results, an attempt was made to make

some rough calculations of the dimensions of the reef. It appears, however, that the

assumption of one-dimensionality has been pushed as far as it can be pushed. For

example, Figure 5.30 shows that from offset D the first arrivals at depths below about

1 520 m traveled approximately vertically through the reef. The thickness of the



anomalous velocity structure can therefore be computed from

h =At AV (5.1)

where At is the travel time residual and AV is the velocity contrast between the reef

and the material being sampled by rays not passing through the reef. Such an

"unperturbed" velocity model was calculated by inverting travel times from the off-

reef side of the well but including offset A since it was the only source position for

which travel times could be obtained all the way to the surface. Interpreted dipmeter

logs suggest that the layering seen from offset A is not flat but rather that the well

nicks the west flank of the carbonate reef (C. G. G., 1985). This is confirmed by full

waveform inversion (Beydoun, 1985). Travel time residuals from offsets B and D are

only 2 ms which given unreasonably low values for the thickness h given any but a

very small velocity contrast. It is important also to remember that the sampling inter-

val of the waveform data is only 2 ms so that there is a fairly large margin of error.

Proceeding further, rays from the 1 800 m offset sources on the reef side would travel

approximately horizontally through the structure (see Fig. 5.31). The travel time

residuals from offsets F and J are about 7 ms. A simple formula for the width of the

reef is

w =At AV (5.2)

which leads to an aspect ratio which agrees with the assumed dimensions of the pinna-

cle reef structure which is thought to be perhaps 90 m thick and 300 m wide. The

velocity contrast in this case would have to be only 45 m/s. The primary difference in

velocity structure that would be seen by rays on opposite sides of the reef is the thin-

ning of the B Salt formation (-5 km/s) over the reef and its replacement by the Brown

Niagran carbonate (~6 km/s according to a sonic log from the State Springdale 1-20

well) that makes up the reef itself. The Al and A2 layers also thin over the reef. It is

indeed stretching this argument to say that the combined effect of the velocity
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changes about the reef do or do not account for the necessary contrast since the

structure is so complicated.

These interpretations are admittedly speculative and it is questionable whether

the presence of the reef would even be inferred via this method if it were not

expected. C. G. G. (1985) bases delineation of the Springdale reservoir on the charac-

teristics of various reflection events seen on the VSPs and on differences in mode

conversion on opposite sides of the borehole due to the dip of the reef's flanks. It

appears, however, that travel time anomalies may also be useful indicators for reser-

voir delineation.



t For various reasons (e.g. poor clamping), travel times could not used from every depth in each range. Also,
the full survey included geophone positions outside the depth range indicated which were not used in this

study.

$ Includes travel times from two separate surveys. See text.

Table 5.1. Summary of source and receiver positions from Michigan Basin VSP used in
this study.

Source Offset Azimuth Depth Range tData Set (m) from well (m)

AS 109 ESE 1902 to 9

B 622 SE 1902 to 887

D 632 ESE 1902 to 887

E 732 WNW 1902 to 887

F 1874 SE 1902 to 732

G 601 NE 1902 to 887

J 1840 ESE 1902 to 732

L 1944 WNW 1902 to 732
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Off Reef Model Near Burch 1-20

Depth to base Thickness
of formation Thickness Formation

(kin) (km/s) (km)

0.027 0.914t 0.027 glacial till
0.175 1.659 0.148 glacial till
0.305 2.822 0.130 Sunbury/Ellsworth Shale

0.348 2.659 0.043 Antrim Shale
0.370 3.555 0.022 Traverse Formation
0.544 5.496 0.175 Traverse Limestone
0.627 4.155 0.083 Bell Shale/Dundee Limestone
0.758 5.288 0.131 Detroit River Anhydrite/Salt
0.864 6.185 0.106 Detroit River Anhydrite/Salt
0.928 6.504 0.064 Amherstburg Dolomite
0.948 4.905 0.020 Bois Blanc
0.981 5.547 0.033 Bois Blanc
1.050 6.158 0.069 Bass Island
1.056 5.075 0.005 Salina
1.060 5.442 0.005 Salina
1.176 4.314 0.115 F Salt
1.185 5.275 0.010 F Salt
1.203 4.743 0.017 F Salt
1.246 4.532 0.043 F Salt
1.277 3.571 0.031 C Shale
1.280 3.843 0.003 C Shale
1.391 4.777 0.110 B Salt
1.429 6.565 0.038 A2 Carbonate
1.447 5.219 0.018 A2 Evaporite
1.502 7.127 0.055 Al Carbonate
1.505 6.392 0.003 Al Evaporite
1.517 5.850 0.012 Brown Niagran
1.526 6.449 0.009 Grey Niagran
1.611 6.440 0.085 Grey Niagran
1.620 6.519 0.009 Clinton
1.684 6.341 0.063 Clinton
1.702 4.366 0.018 Cabot Head Shale
1.729 5.851 0.028 Manitoulin
1.756 4.757 0.026 Cincinnatian Shale
1.808 5.269 0.052 Cincinnatian Shale
1.865 3.860 0.057 Utica Shales
1.901 5.721 0.036 Trenton Limestone

t Velocity held constant during inversion.

Table 5.2. Velocity model obtained from travel time inversion given layer boundaries

from logs (layering modified from C. G. G., 1985).
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Figure Captions

Figure 5.1. a) Velocity vs. depth model obtained from travel time inversion of Mounds,

OK. VSP (solid line). The width of the velocity curve represents the 95% confidence

limits. The dashed line is a simple model of the area provided by the Amoco Produc-

tion Co. b) Travel times picked from the VSP record section.

Figure 5.2. a) P wave velocity model from Gulf Coast VSP. Layer thickness is 12.2 m.

The width of the velocity curve represents the 95% confidence limits. b) P wave travel

times picked by Wingo (1981).

Figure 5.3. a) S wave velocity model from Gulf Coast VSP. Layer thickness is 12.2 m.

The width of the velocity curve represents the 95% confidence limits. b) S wave travel

times picked by Wingo (1981).

Figure 5.4. Map of the M.I.T./C.G.G. Experimental Group Shoot study area in Manistee

Co., Michigan.

Figure 5.5. VSP record section from the zero-offset source (109 m). The geophone

spacing is 9.1 m except from 530 m to 878 m, where the spacing is 18.3 m.

Figure 5.6. Plot of travel time difference (C.G.G. minus Schlumberger) at common

depths for two VSP surveys conducted from same source location (offset A).

Figure 5.7. Observed travel time vs. depth curve from Michigan Basin VSP for offset A

(109 m ESE of borehole). The accompanying line (plotted on top of the observation in

this case) is the curve calculated from the offset A model for this offset and used in

the calculation of static corrections.

Figure 5.8. Observed travel time vs. depth curve from Michigan Basin VSP for offset B

(622 m SE). The accompanying line is the curve calculated from the offset A model for

this offset and used in the calculation of static corrections.
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Figure 5.9. Observed travel time vs. depth curve from Michigan Basin VSP for offset D

(632 m ESE). The accompanying line is the curve calculated from the offset A model

for this offset and used in the calculation of static corrections.

Figure 5.10. Observed travel time vs. depth curve from Michigan Basin VSP for offset E

(732 m WNW). The accompanying line is the curve calculated from the offset A model

for this offset and used in the calculation of static corrections.

Figure 5.11. Observed travel time vs. depth curve from Michigan Basin VSP for offset F

(1874 m SE). The accompanying line is the line calculated from the offset A model for

this offset and used in the calculation of static corrections.

Figure 5.12. Observed travel time vs. depth curve from Michigan Basin VSP for offset G

(601 m NE). The accompanying line is the curve calculated from the offset A model for

this offset and used in the calculation of static corrections.

Figure 5.13. Observed travel time vs. depth curve from Michigan Basin VSP for offset J

(1 840 m ESE). The accompanying line is the curve calculated from the offset A model

for this offset and used in the calculation of static corrections.

Figure 5.14. Observed travel time vs. depth curve from Michigan Basin VSP for offset L

(1 944 m WNW). The accompanying line is the curve calculated from the offset A model

for this offset and used in the calculation of static corrections.

Figure 5.15. Velocity vs. depth curve from travel time inversion of A offset data. The

layering in this model follows boundaries determined from well logs. The width of the

velocity curve is the 95% confidence limit.

Figure 5.16. P velocities from a full waveform acoustic log. These data are only avail-

able below 600 m.

Figure 5.17. Same as 5.15 with constant thickness layering. Layer thicknesses are

30.5 nm.
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Figure 5.18. Same as 5.15 with constant thickness layering. Layer thicknesses are 61

ML

Figure 5.19. Velocity vs. depth curve from travel time inversion of A offset data and

data from all 600 m offsets (B, D, E, and G). Width of velocity curve repesents 95%

confidence interval. Layering determined from well logs.

Figure 5.20. Travel time inversion result with all available data (966 travel times). The

95% confidence interval is shown by the width of the velocity curve. Layering deter-

mined from well logs.

Figure 5.21. Travel time residual vs. depth for offset A Residual is given by tobs - tceLc

where tc.l is computed from average model obtained by inverting travel time data

from eight offsets together.

Figure 5.22. Travel time residual vs. depth for offset B.

Figure 5.23. Travel time residual vs. depth for offset D.

Figure 5.24. Travel time residual vs. depth for offset E.

Figure 5.25. Travel time residual vs. depth for offset F.

Figure 5.26. Travel time residual vs. depth for offset G.

Figure 5.27. Travel time residual vs. depth for offset J.

Figure 5.28. Travel time residual vs. depth for offset L.

Figure 5.29. Well profile of Burch 1-20 well. A well profile is obtained by reflecting a

caliper log about the borehole axis and reducing the amplitude of each log by a factor

of two to adjust for the change from diameter to radius. Wash-outs in salt and other

evaporite layers may cause bad travel time picks if the geophone is poorly clamped in

those formations.

Figure 5.30. Theoretical ray diagram from offset D (632 m). This plot can also be used

for offsets B, E, and G. Horizontal scale is the same as the vertical scale. The



approximate shape and position of the Springdale reef is sketched in for offset D. It is

important to realize that statements about wave amplitude cannot be made based

solely on the convergence or spreading of rays in these diagrams since these are sim-

ply ray tracing results. Ray theory states that wave amplitude increases where rays

merge and decreases with spreading. To investigate a strucuture for amplitude

response, a set of equally spaced rays should be traced into a given angle. The rays

shown in the diagram are not equally spaced but were chosen to reach the receiver

positions.

Figure 5.31. Theoretical ray diagram from offset J (1 840 m). This plot is approxi-

mately correct for offsets F and L also. The approximate outline of the Springdale reef

is shown.
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CHAPTER 6

Conclusions

The topic of travel time inversion applied to the vertical seismic profile has been

explored before. In this work, an attempt was made to thoroughly understand many of

the subtleties of the method in one dimension, especially in the extension to wide

offset and multi-offset inversion. A Gauss' method style algorithm was developed to

simultaneously invert multi-offset travel time data for a model with any sort of hor-

izontal layering. Headwave refractions are considered and the elements of the partial

derivative (Jacobian) matrix are found analytically rather than by finite differencing

which results in a large time savings. A very general VSP geometry is assumed so that

a deviated well or buried source, for example, do not present a problem. Further, the

existing algorithm could be used to invert first arrivals from a transposed VSP.

Efforts have been made to explain and circumvent potential problems with, for

example, one-dimensional ray tracing and the application of damping to Gauss'

method. The nonlinearity of offset VSP travel time calculation has been investigated

and shown to play a part in slowing iterative convergence. A simple layer stripping

velocity inversion has been described which helps solve the sometimes formidable

problem of choosing a starting point for Gauss' method.

Synthetic data sets were used to test the velocity inversion algorithm. The effects

of source offset, over-parameterization, wrong parameterization, and random noise

were studied and found to degrade the solution to the inverse problem only slightly

except in the case of very high levels of noise. In that case, the resulting velocity

model was found to oscillate about the true model. The effect of incorrect parameteri-

zation on the inversion is an averaging of the true model which, when used to calcu-
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late travel times, produces a very good fit. This indicates that if the layering is not

known a priori, the solution to the inverse problem is not unique. Well logs have been

used to provide this a priori information.

Since accurate picking travel times from VSP records is an issue of key impor-

tance to a successful VSP inversion, methods for improving the pick were studied.

Cubic spline interpolation was found to be a quite accurate and time-efficient method

of increasing resolution and a good alternative to sampling theorem interpolation.

Three sets of field examples were investigated. While the first two tests were com-

paratively simple in the sense that the experiments had nearly zero source offset and

the wells studied were shallow and situated in fairly simple structure, the results were

good and demonstrated the utility of the method. The third field example involved

multiple source offsets about a reasonably deep well. Besides yielding good results, it

showed the potential for using observed departures from average structure to make at

least qualitative statements about the three-dimensional structure.

During this work, a robust, versatile and possibly well-documented set of com-

puter programs were written which may be of use in future VSP analysis. They will be

used for routine VSP analysis and for such research endeavors as the design of

optimal experiments.
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APPENDIX A

Formulation of Linearized Inversion

As stated in Chapter 3, the linearized least squares method seeks to minimize the

sum of the squares of data residuals. This appendix gives an alternative derivation

(which is more common though perhaps less rigorous) of the linearized inversion for-

mulation for travel time inversion. The partial derivatives with respect to layer veloci-

ties are given for the direct and refracted rays.

In travel time inversion the travel time residual is defined by

r = tobs - tcac = At. (A. 1)

The travel time residual is expanded to first order in a Taylor expansion in the model

parameters, in this case n layer velocities:

At V V (A.2)
j=1 j

at
where the partial derivatives a depend on the path taken.

The travel time equation for a direct wave from the surface to a receiver in the

mth layer, equation (2.9), may be differentiated giving

at d_ (A.3)
S V where-p

where
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hi if j < m
m-1

d = z - Eh if j=m
k=1

0 if j >m.

The partial derivative in equation (A.3) differs from that presented by Pujol et al.

(1985). Their expression (in the present notation),

at -d p+ 2d
6Vj V 2 1 -p2 2V (1 -p/ 2 )3  (A.4)

contains a second term which results from differentiating the square root term

1 -p 2 Vj2 as well. This is a higher order partial derivative, however, which is really a

ray path perturbation since N/1 -pV = cosyi.

To see this, suppose that the velocity V(z) is perturbed slightly to V(z)+6V(z).

The travel time between two points A and B on a ray, given by

t = V (A.5)

is affected in two ways. First, the velocity in the integrand of equation (A.5) becomes

V(z)+6V(z). The second effect is a ray path perturbation. Fermat's Principle, how-

ever, states that the travel time is stationary with respect to the ray path so that the

contribution of the ray path perturbation to dt is not a first order effect (Aki and

Richards, 1980). Only the velocity perturbation 6V contributes. The perturbed travel

time becomes

t+t +6t = V()+V( (A.6)
fA V(z)+6 (z) ,

Subtracting equation (A.5) from this expression gives, to first order,

ds6 V(A.7)
V2 (A.7)
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which corresponds to equation (A.3).

There are several cases to consider for refracted waves. For a ray from the sur-

face which bottoms on the top of the rth layer and reaches a receiver in the mth

layer, there are four different partial derivatives depending on the layer's position in

the stack.

at < (A.8)j- <m (A.9)

av viV

t - 2hi m < < r (A.10)

Vr =(A.11)a V1 V2 1- h? j

If there are I observations and an n layer velocity model, a linearized system of I

equations in n unknowns can be formulated. It follows that
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at,

a v,
Ot2
av

v,

at, atI

at, at,
av av,

A V1

A V2

AVn

At,

At 2

At,

(A.12)

which, following the notation of Chapter 3, may be written as

G(mo)( - o,6) = d - g(m o )

where L is the true velocity model,

m, is an estimate of M,

d is the observed travel time vector,

and g(mo) is the calculated travel time vector.

The system is similar to the usual least squares problem

Ax = b

(A.13)

which is solved by the steps

ATAx = ATb

x = (ATA)-Ab

This result is akin to equation (3.12):

mk+l = r + [GT(Mk)G(mJk)]-IGT(r)[d - g(mn)] (A.14)

Note that in most cases equation (A.13) represents an overdetermined system so

that the step analogous to going from Ax = b to ATAx = ATb represents great space sav-

ings in computer memory as the full sensitivity matrix G is never actually used. Since

GTG is symmetric, the storage requirements are reduced from I -n to n-(n + 1)/ 2. All

of the algorithmic variations presented in Appendix B also have this property.



APPENDIX B

Comparison of Inversion Methods

B.1. Introduction

In order to choose the best inversion scheme for this work, a number of different

methods were pitted against each other in trial inversions of synthetic travel time

data. This appendix introduces the contestants which are variations on Gauss'

method involving three aspects of the inversion: damping, model perturbation, and

partial derivative calculation.

B.2. Scaled Levenberg Damping

An example of the first kind of variation is one of the methods suggested by Beck

and Arnold (1977). It is a modification of Levenberg's (1944) method which scales the

amount of damping applied to GTG in equation (3.13) by choosing the value of 0 to be

not necessarily equal to I. Instead 0 is set equal to the diagonal .elements of GTG.

They choose the damping parameter X to be

rT G Q GT rT (B.1)
S

where r is d - g(mo)

and S is the sum of squares of the data error or rTr

This formulation has the additional benefit of making the results invariant under scale

changes in the parameters, something that cannot be said about the 0 = I approach.

This turns out not to be of great consequence in this particular problem since all of

the parameters are velocities.
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B.3. Modified Brown and Dennis Damping

Another updating scheme for the damping parameter is a modification of a

method due to Brown and Dennis (1972). The method, which is unscaled, sets Q = I

and decreases A in a very simple manner as the solution is neared. Far from the solu-

tion, the correction follows the method of steepest descent by choosing values of A so

large as to swamp the Gauss' method contribution. As the solution is approached,

damping is no longer required to maintain stability and the value of A is reduced

accordingly. A small improvement on their method was implemented to achieve speed-

ier final convergence in this study. The modified Brown and Dennis method calls for

S=cl r(n0) (B.2)

with

10-7  <r(m3 ) < 5x10'~

10-  5x10o IIr() ll < 5x10o 3

c = 10-2 5x10 I lr(r)IK < 1

1 1 I r(m) 0 0 < 10
10 10 - Ir( n)

where II r(n ) f (called the infinite order norm) is simply the largest travel time resid-

ual. This method was the most successful when a large number of parameters were

involved.

B.4. The Modified Box-Kanemasu Method

The second type of variation on Gauss' scheme involves adjusting the model

parameters. Gauss' method advocates simply adding the perturbations to the previous

model as in equation (3.12). A different way of adjusting the model perturbations is

presented by Beck and Arnold (1977) as a modification of the Box-Kanemasu interpo-

lation method. The algorithm seeks to minimize the sum of squares of the travel time
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residuals (S = rTr) by approximating S at each iteration by a parabola in error space

and trying to adjust the model just far enough to minimize S. If equation (3.12) is

rewritten as two equations,

A~rm = (G(Mn) T G(nk))-'G( )T [d - g(imo)] (B.3)

M+1l = mk + Ank (B.4)

then the interpolation is achieved by introducing a scalar factor hk+1 into equation

(B.4):

rk+1 = M + hk+44l. (B.5)

Finding the optimum hk+1 involves fitting the parabola to S, minimizing S in that con-

text, and then using the appropriate value of hk+ i to scale Amk in equation (B.5). Beck

and Arnold add steps to insure that the improvement hk+lAmk actually will reduce S

instead of possibly allowing it to grow. This method is remarkably stable but also very

slow since the value of S must be calculated twice instead of once on every iteration

as part of solving for hk+1. This requires more of the time-consuming ray tracing and

associated root-finding discussed in Chapter 2. The modified Box-Kanemasu method is

also slow to converge.

B.5. Finite Difference Levenberg-Marquardt Algorithm

The last departure from the straight Gauss' method formulation involves using

finite difference approximations to the elements of the partial derivative matrix G(m)

(Brown and Dennis, 1972; Stewart, 1983). This method is easy to implement since

there exists a finite difference Levenberg-Marquardt subroutine in the IMSL package.

It is not, however, recommended if it is convenient to calculate the values of the par-

tial derivative matrix analytically. This is especially the case in travel time inversion

where calculating travel times is usually a great deal more time consuming than cal-

culating partial derivatives. The partial derivative calculation typically involves only
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one or two terms and no root-finding. In the test runs, the finite difference algorithm

typically took more than ten times as much CPU time as other methods. It was, how-

ever, very stable since the damping parameter in this particular package is modified

by the Brown and Dennis (1972) method which was discussed above.



APPENDIX C

The Data Variance Surface

Contoured plots of data variance are full of interesting information. Their major

drawback is that they are limited to only two dimensions. These two dimensions will be

sufficient for the following discussion which can be generalized to higher dimensions.

The units used in this appendix are cubits in flagrant violation of the SEG guidelines.

Figure C.1 shows data variance plots for four geometries which differ only in their

source offsets. The true velocities are V1=5, V2=9. Several observations can be made

based on these plots.

As the source offset is increased, the error surface begins to look less and less

like the quadratic error surface characteristic of the linear least squares problem.

This effect is due to the larger and larger deviations from straight rays that are

observed as source offset increases. If the ray paths were straight, velocity inversion

would be a linear inverse problem. An additional source of nonlinearity at larger

offsets is the presence of headwave refractions as first arrivals.

Another effect of increasing source offset is that the interdependence between

the two model parameters increases and the trend of the error contours turn from

vertical toward diagonal. The error analysis taken up in section 3.5, because it

assumes model parameter independence, is only strictly valid when the trend of the

contours (or, equivalently, the eigenvectors of the linearized system) are either verti-

cal or horizontal. The reason these contours drift away from vertical is that the

fastest rays are more often headwave refractions as the source offset becomes larger.

With the possibility of headwave refractions comes a trade-off between VI and V2.

Since there can be no critical refractions at zero offset (Fig. C.lc) the best velocity for
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Since there can be no critical refractions at zero offset (Fig. C. ic) the best velocity for

V, is 5 no matter what velocity is used for V2. The velocities are nearly independent.

At the largest source offset (Fig. C.1f), the velocities are completely dependent on

each other.

A third observation can be made from the curves shown in Figure C.1. The inner-

most contour is ad = 5x10 - 4 for all four plots yet the contours become tighter as the

source offset increases indicating that a given poor fit generally has less data variance

(or a more gently dipping error surface) for smaller source offsets. This observation is

not as important as the previous two since it is just a scaling effect. If larger offsets

are used, the overall path lengths and travel times increase so that magnitudes of the

travel time errors increase while the relative size of the error remains the same.

The rotation of the error surfaces seen in Figure C.1 suggests that the simultane-

ous use of multi-offset VSP data might provide more stability to the problem. Stability

problems in least squares inversion occur as GTG (see Chapter 3) becomes singular

which happens when one or more of its eigenvalues nears zero. This is illustrated by

the data variance plots. The eigenvectors corresponding to the smaller eigenvalue is

directed along the long axis of the data error contour. As the smaller eigenvalue

decreases, the ellipse lengthens. An interpretation of this is that the Jacobian matrix

exerts less control over variations of the model parameters in the direction

corresponding to this eigenvalue. The large eigenvalue eigenvector, on the other

hand, is better behaved. Variations in its direction are minimal. The rotation of the

contours (or eigenvectors) in Figure C.1 shows that at each the various source offsets,

the travel time data is best capable of resolving a particular direction in (Vi, V2 ) space.

Multi-offset data, therefore, would be capable of pinning down velocity variation from

many sides. Figure C.2 shows this to be true. While X / min varies from approxi-

mately 6 to 11 in the four experiments taken separately, XA,/ Xhin is just 3 when they
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are treated together.
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Figure Captions

Figure C.1. Contoured data variance for a simple two-layer model at four offsets. a)

Velocity model. b) Travel time versus depth curves for the four source offsets. c) Data *

variance for zero offset. d) Short offset (2000). e) Wide offset (4000). f) Very wide

offset (6000).

Figure C.2. Contoured data variance plot for four-source VSP experiment. The source

offsets used vary from zero to 6000.
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APPENDIX D

Cubic Spline Interpolation of Sampled Data

This appendix examines the validity of using cubic spline interpolation instead of

sampling theorem (also known as "sinc function") interpolation to augment sampled

continuous time data.

A seismogram is composed of discrete samples of a continuous time velocity func-

tion. The analog signal is low-pass filtered before the A/D conversion so that it is

bandlimited to (less than) half of the sampling frequency. The results of the sampling

theorem (see equation 4.4) can be used to reconstruct the lowpass filtered continuous

time signal as outlined in Chapter 4. Practical implementation of sampling theorem

interpolation, however, is computationally slow and has additional problems which are

also discussed in Chapter 4. Cubic spline interpolation, on the other hand, is very fast

and, as will be shown, quite accurate.

Four kinds of interpolating functions will be discussed: the zero-order hold, the

first-order hold (linear interpolation), the cubic spline, and sampling theorem interpo-

lation. In addition, two ways of thinking about interpolation will be presented.

The time domain version involves convolving a discrete time sequence represent-

ing the sampled data which has been converted to an impulse train with various

impulse responses. Figure D.1 shows the impulse responses for the four algorithms

listed above. As can be seen from the waveforms, three of the four impulse responses

are symmetric about the time origin which means that they are zero-phase filters.

This is a desirable characteristic for interpolation filters to be used in travel time

picking since phase distortion will seriously alter time picks. The zero-order hold (Fig.

D.la) is therefore a bad choice. Linear interpolation (Fig. D.lb) might be thought of as
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the default scheme since it is what an analyst sees if the sample points are merely

connected with straight lines by a plotting program.

Another way of visualizing interpolation is to imagine inserting one or more zeros

between discrete time sequence values and then lowpass filtering (Oppenheim et al.,

1983). The magnitudes of the frequency responses are shown in Figure D.2 for the

four interpolation filters. The ideal case, sampling theorem interpolation, would be

implemented with an ideal lowpass filter (Fig. D.2d). Cubic spline interpolation (Fig.

D.2c) is clearly the second best choice as far as the lower frequencies are concerened.

The relatively high stop-band gain is worse than linear interpolation but may not be a

problem for data which are sampled at a higher than necessary rate or lowpass

filtered prior to digitization. The predominant frequency content of a VSP seismogram

is near 50 Hz (Fig. D.3) which is well below the 250 Hz Nyquist rate for the data set

used in this study.

Although cubic spline interpolation is not bandlimited (see Fig. D.2c), it provides

a very reasonable substitute for perfect bandlimited interpolation since the resulting

waveform has no phase distortion, appears more continuous than linear interpolation,

and has good amplitude response.
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Figure Captions

Figure D.1. Impulse responses of several interpolation functions. (a) zero-order hold

(b) first-order hold (c) cubic spline (d) sampling theorem.

Figure D.2. Magnitudes of frequency responses for the same interpolating functions as

in Figure D.2. Functions (b), (c), and (d) are all zero-phase; (a) is linear phase.

Figure D.3. Magnitude of the Fourier transform of a typical VSP seismogram used in

this study. The peak is near 50 Hz.
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