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ABSTRACT

Observations of the New England coastal front show that the
extraordinary temperature gradients are caused by ageostrophic wind
deformation, that is, deformation in the vertical plane. The phenomenon
is therefore an instance of rapid (non-classical) frontogenesis, a process
broadly characterized by a lack of geostrophic balance between the
temperature gradient and vertical wind shear. The primary cause of the
deformation has thus far been difficult to identify. Furthermore, the
relevance of a secondary vertical circulation comparable to that driven by
slight mass-momentum imbalance in large-scale fronts has not been
established.

Local sea-surface heating (in itself frontogenetical) and the
surface roughness contrast at the coast have been proposed elsewhere as
the necessary catalysts for the frontal collapse. The alternative
explored in the present study is that the frontogenesis arises primarily
from an interaction between an initially balanced baroclinic flow and an
inland mountain barrier. The advantage of this purely orographic theory
is that it can be shown to be consistent with the systematic, long-term
steepening of an upwind gradient. It thus becomes a more robust mechanism
under certain environmental conditions.

The likelihood of the orographic mechanism is investigated both
analytically and numerically. The analysis proceeds from a canonical
study of linear line-source disturbances in an unbounded, stable,
baroclinic atmosphere. The results are used to identify a plausible
feedback mechanism to account for the virtually unlimited frontogenesis
observed in nature. The feedback is found to involve a secondary response
to increased stratification in the vertical, rather than the horizontal.
By requiring upward motion in a stably-stratified flow, the barrier plays
an analogous role to the classical mechanism of horizontal wind
deformation, which requires geostrophic adjustment. The feedback is

significant only in the case of a narrow (high Rossby number) mountain
profile.
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The linear analysis is suggestive, but still less than conclusive,
especially in regard to the long-term consequences of a feedback. Hence,
numerical simulation using a new Lagrangian technique is called upon to
solve the idealized two-dimensional initial-value problem. The simulation
confirms the expectation of upwind blocking and frontogenesis via the
proposed mechanism, and reproduces several observable features of coastal
fronts.

Comparing solutions for different mountain widths and vertical
shears leads to a consistent and largely intuitive explanation for the
quasi-stationary character of the observed front, and its dependence on
the details of the mountain profile. The disturbed flow in the
simulations becomes progressively isolated at the ground, where a
strongly-stratified blocked layer develops on the windward side of the
mountain. This cold pool has limiting dimensions determined by the
mountain barrier, and exhibits a gradual strengthening of temperature and
parallel velocity gradients. The long-term explanation thus involves the
simultaneous advection of ambient absolute momentum and potential

temperature, and the reduction of nonlinearity in the unblocked flow.

The analysis and numerical simulations provide a qualitative
understanding of the alternative explanations for the vertical
deformation, namely the coastal gradients of surface heating and

roughness. The analysis suggests that the heating is potentially the
stronger effect, whereas the roughness gradient produces better agreement
with the observed location of the frontogenesis. The ability of the
heating and friction to support the frontogenesis is readily established.
The numerical experiments confirm the simple analytical conclusion that
horizontal shearing deformation also enhances the orographic
frontogenesis. ;In fact, a more robust frontal structure is predicted when
the basic state contains a temperature gradient along the barrier.

Thesis supervisor: Kerry A. Emanuel
Title: Professor of Meteorology
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CHAPTER 1. INTRODUCTION AND BACKGROUND

The purpose here is to investigate a simple hypothesis concerning

the enhancement, and especially the causation, of shallow atmospheric

fronts by orography. Related studies of the barrier effect of mountain

chains on existing fronts include some of the earliest synoptic analyses

by the Norwegian meteorologists, and the extensive Alpine Experiment of

1982. In the interim, the theories of mountain flow and frontogenesis

have developed in relative isolation. Each, it seems, has succeeded by

neglecting an essential feature of the other, i.e., the baroclinicity of

frontogenetical disturbances or the ageostrophy of orographic ones.

It is clear that a formal treatment of orographic frontogenesis

will require a difficult synthesis. The approach in the present work is

to develop insights from the existing theories and from a generalized

linear analysis of line-source disturbances, and then to use numerical

simulation to test the sufficiency of one of the more obvious

frontogenetical mechanisms, to be spelled out in section 1.4. Both

efforts will focus on obtaining and studying a system governed by a

minimal set of parameters. The numerical model, in particular, will be

designed to avoid additional degrees of freedom.

The chief observational reference for the study is the New England

coastal front, a well-documented perennial phenomenon which is

extraordinary among fronts in the atmosphere. Strong circumstantial

evidence, to be reviewed in section 1.3, points to the crucial role of the

frictional and thermodynamic land-sea contrast in this instance. However,
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the alternative hypothesis of this paper is that the coastal mountains are

part of a sufficient frontogenetical mechanism which does not require

coastal geography, per se. Such a scenario is also supported by

circumstantial evidence, but has not been emphasized by researchers.

1.1 The relationship between fronts and orography

Although the New England front forms in situ within a stratified

atmosphere (Bosart, 1975), an example of orographic modification of an

existing frontal system provides a useful model. On the basis of surface

observations in Scandinavia, Bjerknes and Solberg (1921) described the

typical passage of a warm front over a mountain range. Their illustration

is reproduced in Fig. 1.1, and shows some of the receding cold air

becoming trapped on the windward side of the mountains. Godske et al.

(1957) note that blocking of this kind is also common in Greenland and

western North America.

Analytical principles allowing a physical interpretation of the

illustration have for the most part become available after the time of the

Scandinavian observations. For example, it is now known (Long, 1972;

Baines and Davies, 1980) that the ability of an obstacle to block a layer

of homogeneous fluid increases sharply as the height of the barrier

approaches the fluid depth. Beyond a critical ratio of these heights, the

impinging fluid lacks both the kinetic energy to lift the free surface

(supercritical flow) and the potential energy to "spill" completely over

the obstacle (subcritical).

Contrary to the simplified illustration, the pooled air must

spread upstream to some extent in response to the stagnation pressure. If



Fig. 1.1. Profile of a warm front crossing a mountain range (from
Bjerknes and Solberg, 1921).
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this process is rapid, the detached front should move as a density

current; otherwise it remains geostrophic, with the spreading beginning

well in advance of the separation. The distinction must be determined by

the mountain width and frontal velocity. What is unusual about the

adjustment process in this case is that the trapped air continues to move

relative to the mean flow. Hence, without dissipation or inhomogeneities

in the two air masses, there is no asymptotic shape for the density

interface in a rotating atmosphere.

Fronts moving parallel to a ridge are affected by a dynamically

similar deformation, also relevant to observations of in situ

frontogenesis. This particular variation has been documented by Bosart et

al. (1973) for the Appalachian chain, by Lilly (1980) for the Rockies, and

by Coulman et al. (1985) for the Great Dividing Range of eastern

Australia. Coulman et al. point to a further example along the Andes

range in South America. In all cases, the front on the east side of the

ridge is strengthened and accelerated relative to the west side.

The synoptic analysis in Fig. 1.2 is taken from Baines (1984) and

shows the Australian phenomenon, known as the "southerly buster" because

of its dramatic effect on the coastal cities. The nearly identical

Appalachian front has acquired the name "back-door" (Bosart et al., 1973),

and has been linked to the phenomenon of cold-air "damming" (Baker, 1970).

An explanation for the wind-side enhancement of obliquely-oriented

fronts is complicated by the contrasting surface boundary layers across

the coastal ranges. Yet, even if the smoother, and sometimes cooler, sea

surface assists the movement on the east side, the synoptic analyses

clearly show the maximum deformation occurring along the mountain



Fig. 1.2. Sequence of sea-level synoptic analyses showing the
development of a southerly buster on a cold front (from Baines, 1984).
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barrier. Moreover, the typical antisymmetry of the deformation seen in

the Australian example is consistent with the induced parallel circulation

in steady quasi-geostrophic flow over a mountain ridge.

Baines (1984) also discounted the coastal contrast, and showed

with a time-dependent linear model that partial blocking of the

geostrophic wind behind the front would produce an ageostrophic current

along the barrier in the direction of the front on the windward side, but

opposite the front on the leeward side. Although his model is strictly

linear, the speed at which the disturbance propagates along the ridge

suggests a density current. Baines further showed that the depth of the

disturbance decays away from the mountain on the scale of the Rossby

deformation radius based on the mountain height.

Essentially the same structure and length scale emerge from a

nonlinear analysis if it is assumed only that the deflected air conserves

potential vorticity and eventually achieves geostrophic balance. (The

connection between the deformation radius and the potential vorticity for

nonlinear, stratified flows was described by Hoskins, 1975). The

geostrophic adjustment behind back-door fronts cannot be significantly

different from the inferred spreading process in the first illustration.

An indirect advantage of studying systems of homogeneous fluids is

that most of the principles have analogues for continuously-stratified

flows. The latter normally provide a better description of the

atmosphere, but also a more difficult problem in analysis. The effort to

generalize the interpretations of orographic modification of existing

fronts has to contend with the basic difference between layered and

stratified fluids. What distinguishes the latter is a continuous spectrum
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of internal waves which not only act more efficiently to redistribute

disturbance energy, but also resist the nonlinear interactions which

characterize external waves in homogeneous flows (see Smith, 1977).

An effort to broaden the notions of frontal modification into ones

of orographic frontogenesis will begin in the next section with a

selective review of the theories of frontogenesis and stratified

hydrostatic mountain flow. Inasmuch as the study refers principally to

the New England coastal front, the next step is a careful review of that

still unexplained phenomenon. The wealth of case studies has already

eliminated much of the mystery concerning the mature character of the

coastal front. The emphasis in section 1.3 will therefore be placed on

identifying aspects of the initial synoptic environment and early

frontogenesis. The reviews of theory and observation will be followed in

section 1.4 by a description of the proposed orographic mechanism and the

procedure for testing it.

1.2 Relevant aspects of frontogenesis and mountain flow theory

The time-dependent analytic models of frontogenesis rely on the

classical mechanism of geostrophic wind deformation. The model of Stone

(1966) assumes the quasi-geostrophic form of the two-dimensional

Boussinesq system, in which ageostrophic advection is neglected. The more

successful semi-geostrophic theory of Hoskins and Bretherton (1972) allows

ageostrophic momentum and temperature advection, but continues to bind the

ageostrophic circulation to the task of maintaining thermal wind balance.

The balance assumption eliminates gravity-inertia waves, and along with

them, the possibility of energy dispersion and additional ageostrophic

steepening of momentum and temperature gradients.
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The velocity fields in Stone's (1966) solution were sufficiently

realistic to confirm the predominant role of geostrophic deformation in

large-scale frontogenesis. The greatest achievement of Hoskins and

Bretherton (1972) was to expose the feedback mechanism which allows

frontal collapse in a finite time. In their solutions, the frontogenesis

outruns the background stretching deformation because the ageostrophic

velocity feeds back on the solenoidal field which generates it. Hoskins

and Bretherton also obtained semi-geostrophic solutions of the Eady

problem of baroclinic instability, and found that horizontal shearing

deformation of the meridional temperature gradient was a less effective

mechanism for frontogenesis.

It is well-known that fronts in nature, even those with

planetary-scale dimensions, do not conform to the balanced or

semi-balanced models near the ground (e.g., Sanders, 1955), where indeed

they are often accompanied by secondary features such as gravity waves and

squall lines (Plotkin, 1965). Numerical simulations by Keyser and

Anthes (1982) have explained some of the discrepancy as a consequence of

surface friction, while Sanders (1955) and Plotkin (1965) have also

emphasized diabatic effects. Emanuel (1985) showed that the

semi-geostrophic model yields more realistic vertical velocity fields when

reversible latent heating is incorporated through horizontal variations in

potential vorticity.

Fronts which violate the geostrophic balance assumption are not

systematically weaker than classical fronts; indeed, evaporatively-driven

density currents and coastal fronts are two examples which can be

considerably stronger. There is a need to make a distinction between
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semi-geostrophic frontogenesis and the processes which lead to fronts that

are only weakly influenced by rotation. Since "ageostrophic" does not

exclude the semi-balanced process, the term "rapid" frontogenesis will be

used here. Part of the reason for the choice is that "slowness" compared

to the background rotation period is necessary to insure semi-geostrophy

(Hoskins, 1982). Although other mechanisms can be as effective in

breaking the rotational constraint, the terminology is reasonable

if all tend to produce characteristics of rapid frontogenesis, per se.

It is probably not possible to find a time-dependent analytic

solution for rapid frontogenesis. The classical theory of density

currents (e.g., Benjamin, 1968) assumes an initial discontinuity and so

offers few insights for frontogenesis in a stratified flow. In fact, it

would be a prodigious task to show analytically that solutions of the

inviscid Boussinesq primitive equations can develop discontinuities from

smooth initial conditions.

Ley and Peltier (1979) developed an analytic model for the

secondary wave-like phenomena accompanying large-scale frontogenesis.

However, they were obliged to treat the semi-geostrophic part of the

disturbance as a small perturbation on the background deformation, so that

wave motions generated by local frontal imbalance would add linearly. The

separation of a disturbance into non-interacting linear and nonlinear

regions is a common device when weakly-nonlinear theory is inadequate

(cf. also the Lighthill, 1952, theory of jet noise). The approach is most

convincing when the nature of the nonlinearity and the reason for the

non-interaction are known.
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A similar idea has been used speculatively for upstream influence

in two-dimensional stratified barrier flow, which Pierrehumbert and Wyman

(1985, hereafter PW) determined was not a weakly-nonlinear phenomenon.

They suggested, on the basis of numerical simulation, that breaking lee

waves could excite an upstream disturbance with linear properties still

capable of significantly decelerating the fluid.

The non-interaction theory applied to mountain flow is plausible

for several reasons. In the first place, the linear upstream response

contains shear layers of the type observed and simulated in barrier flow.

Also, because of its long horizontal scales and reduced velocities, the

upstream disturbance can remain laminar and slowly-varying well beyond the

ordinary threshold for nonlinearity. Finally, according to linear theory,

the influence radius as a fraction of the width of the forcing (presumed

to be a two-dimensional region with the same dimensions as the mountain),

is apparently correlated with the degree of blocking in PW's simulations.

The simulations and analysis by PW are a major contribution to the

theory of stratified, hydrostatic mountain flow, and will be summarized in

chapter 5. Their study, like the classical theory, examines the

dependence on the Rossby and Froude numbers characterizing the basic

state. The theory can be organized according to the importance of

background rotation. Rotation is unimportant if the mountain width, £, is

a small fraction of the inertial distance, XI = U0 /f (where U0 is the

mean flow speed and f is the Coriolis frequency), i.e., if the Rossby

number, Ro = UO/(fU) is large. In that case, all of the disturbance

energy is carried vertically in buoyancy (gravity) waves of uniform

vertical wavelength, AG = U0 /N, where N is the buoyancy frequency.
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Vertical overshooting and downstream waves are absent in the hydrostatic

limit.

The Froude number for stratified fluids can be defined as the

ratio of the mountain height to the internal scale, AG, i.e., Fr =

Nh/U 0. In the homogeneous case, it is more natural to use the undisturbed

height, D, of the free surface. This leads to the definition Fr o =

(gD)1/ 2 /U0 , where g is the acceleration of gravity. Steady solutions

for the nonrotating stratified fluid exhibit characteristics both of

supercritical homogeneous flows -- in which Fro < 1 by definition and the

pressure is high over the mountain -- and of subcritical homogeneous

disturbances - in which Fro > 1 and the pressure is low. In the

stratified case, the disturbance develops alternating regions of high and

low pressure over a symmetric obstacle. The pressure and vertical

velocity in steady solutions are anticorrelated with the horizontal

velocity; this can be seen as the mechanism whereby energy propagates

vertically but not horizontally, relative to the mountain.

Hydrostatic balance implies that the amplitude of the pressure

disturbance is the product of the buoyancy perturbation and the vertical

scale, i.e., N2hXG = Fr U0
2 . The relationship between the pressure and

velocity noted above is such that the regions of maximum deceleration

(where u' = -Fr Uo) coincide with the high-pressure levels over the

mountain. The surface deceleration is weaker because it occurs upstream,

where the vertical displacements are smaller.

It is important to recognize that the pressure cannot be neglected

in energy considerations aimed at determining the location and strength of

the decelerated regions. Ignoring the pressure anomaly at the mountaintop
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allows the conclusion that all of the kinetic energy of the surface flow

is given up to potential energy at the critical point U0
2 /2 = N2h 2 /2. The

partial analysis then implies incorrectly that Fr = 1 is sufficient to

bring the surface flow to rest at the summit, in violation of the

condition that the velocity components be anticorrelated.

The linear solutions show, in fact, that the pressure along the

undisturbed level of the bounding streamline first increases on approach

to the mountain, but then recovers to its ambient value at the position of

the peak. Further, the hydrostatic assumption requires that the vertical

pressure gradient supply all of the work done against reduced gravity,

whence it follows that the pressure anomaly at the summit is sufficiently

negative to restore the velocity to its mean value.

This finite-amplitude interpretation of the linear results is

consistent with the fully nonlinear solutions (Lilly and Klemp, 1979).

The linear theory also correctly predicts that the first flow stagnation

induced by symmetric or sinusoidal topography requires Fr = 0(1), and

occurs in the layer n < z/XG < 3'/2, either directly over the summit or

slightly downstream. Hence surface stagnation is preceded by convective

overturning, or "wave-breaking", high over the mountain.

The finite-amplitude theory in the nonrotating limit is based on

Long's (1955) discovery that the fully nonlinear system reduces to a

linear equation (Poisson's equation) for the streamline displacement if

steady state is assumed. The "nonlinear" (strictly, transcendental) lower

boundary condition for the displacement can be expanded in powers of the

mountain "amplitude", Fr, to obtain a weakly-nonlinear theory (Smith,

1977).
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The lowest-order analysis for the hydrostatic case predicts

wave-steepening "into the wind", i.e., such that the velocity anomalies

are enhanced at all levels over the lee slope. This effect is not

explained entirely by nonlinear momentum advection, which favors negative

anomalies; rather, it is clear that the nonlinearity increases the overall

amplitude of the pressure perturbation in the lee.

Lilly and Klemp (1979) were able to obtain fully nonlinear

solutions of the nonrotating, hydrostatic problem by using an elegant

numerical procedure. They also noted that mountain waves could be

"unsteepened" by choosing a terrain profile which mimics the linear

streamline pattern at the steepening levels over a symmetric mountain.

Much of the understanding about nonrotating flow past asymmetric mountains

is based on their analysis.

In linear, hydrostatic flow past broad mountain ridges, with Ro <<

1, the Coriolis force acts on a parallel wind to balance most of the

induced streamwise pressure gradient, and waves are strongly suppressed.

In the quasi-geostrophic limit, the balance is exact and there are no

waves. Accordingly, the streamline displacement conforms to the shape of

the mountain at all vertical levels, and decays on a scale of Aqg = fX/N

(there being no internal scales).

It follows that the hydrostatic pressure perturbation in the

2 qg
quasi-geostrophic solutions has an amplitude of N hAq = Ro- 1Fr U 0

As noted, the parallel wind scales with the pressure gradient, or v/U 0 =

O(Fr), so that the streamwise component responsible for the parallel flow

has an amplitude of u'/U 0 = O(RoFr). Hence the nonlinearity of the

response is determined by RoFr, rather than Fr, when Ro is small.
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Pierrehumbert (1984) has emphasized the fact that RoFr = Nh/(f ) depends

only on the nondimensional steepness of the mountain.

The circulation over a broad mountain ridge is anticyclonic

because of the high pressure and geostrophic balance. Hence it is the

parallel, rather than streamwise, disturbance velocity which changes sign

at the summit. The streamwise component in turn reaches its maximum value

at the same point. Away from the mountain, downstream as well as

upstream, the normal flow is decelerated.

As in the nonrotating case, finite-amplitude solutions can be

obtained analytically for broad mountains. It must be assumed that the

nonlinearity preserves the geostrophy of the parallel flow, and that the

fluid is horizontally uniform far upstream. Solutions for the resulting

semi-geostrophic problem take into account the advection of perturbation

temperature and parallel momentum by the meridional circulation. Exact

analysis requires a mathematical transformation to a Lagrangian vertical

coordinate (Merkine, 1975) - for example, the streamfunction.

Semi-geostrophic solutions for isolated mountains have been

obtained by Pierrehumbert (1984). Because the governing equation is

identical to the quasi-geostrophic case, the perturbation streamfunction

is only a distortion of the linear quasi-geostrophic solution. The

velocity perturbation is altered in much the same way as the relative

vorticity in semi-geostrophic frontogenesis. If u'qg is the

quasi-geostrophic perturbation velocity, then the semi-geostrophic result

is given by 1+u'sg/U 0 = (l-u'qg/U0)-.

The semi-geostrophic analysis implies that the balance assumption

breaks down in the accelerated regions when RoFr is order-unity. Since
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this is also the linearity condition, it seems that the semi-geostrophic

analysis is of little additional value. However, Pierrehumbert (1984)

speculated, and PW confirmed, that an important part of the solution,

namely the upstream deceleration, remains quite accurate until

wave-breaking begins around RoFr = 3.

The most interesting mountain disturbances occur in the

"mesoscale" regime, Ro = 1. Under such conditions, neither the buoyancy

nor the inertial restoring force is negligible, and gravity-inertia waves

appear in the lee. The pure inertia waves are confined energetically to

the immediate boundary, and exhibit the interesting property of a

vanishing pressure perturbation. Exact nonlinear solutions exist for the

inertia waves but not for the mixed gravity-inertia disturbance.

1.3 The New England coastal front as an example of rapid frontogenesis

The first case studies of the New England front were published by

Bosart et al. (1972), who also introduced the name "coastal front". The

observations leave little doubt that the land-sea boundary layer contrast

determines much of the character of the mature front. Hence, even if the

coastal mountains are necessary to complete the process, the widely-used

term is probably not a misnomer.

Part of the evidence for a strict coastal mechanism lies in the

fact that the frequency of occurrence peaks in December, and that coastal

fronts are virtually unknown in the summer months. Of course, the summer

minimum can be attributed to the lack of a large-scale temperature

gradient, but the peak during the first of the winter months probably does
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reflect the mesoscale baroclinicity imposed by the coastline. The

difference between air and sea-surface temperatures is greatest for the

region in December.

The composite synoptic analysis in Fig. 1.3 summarizes the

large-scale weather pattern. The cold anticyclone in eastern Canada is

already receding at the time of the frontogenesis, which takes place

either just offshore or on the coastal plain in southeastern New England.

The position and timing of the anticyclone are different in cases of

back-door fronts, in which the cold air first arrives along the coast in a

northeasterly flow (Bosart et al., 1973). In the coastal front cases

described by Bosart et al. (1972), Bosart (1975), and McCarthy (1977), the

cold air is well-established before the flow becomes easterly. By that

time, the period of large-scale cold advection is nearly at an end.

The distinction is further clarified by noting that coastal

frontogenesis occurs within a large-scale thermal ridge, with steadily

increasing southwesterly shear and warm advection. In place of a

southward-moving cold front and upper-level cold advection, the coastal

front environment features a lowering warm frontal inversion signalling

the approach of a warm front from the south. The inversion typically

reaches the level of 850 mb over New England by the time the surface

frontogenesis is underway.

The frontogenesis begins suddenly, in that the convergence zone

which is to become the front more than doubles in strength in the first

three hours of a typical event. The initial stage conforms to one of two

main patterns. In those reported cases in which the air-sea temperature

contrast is largest, the coastal convergence normally precedes the



Fig. 1.3. Composite analysis of sea-level pressure at onset of coastal
frontogenesis (from McCarthy, 1977).
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transition of the large-scale flow from cold to warm advection, and the

front conforms more closely to the shape of the coastline. It is clear in

the analysis of the onset of the event of 24 December 1970, reproduced in

Fig. 1.4, that the warm advection at the ground never penetrates beyond

the immediate coast, except over Cape Cod. In the analysis of 4 December

1968, shown for comparison, the easterly flow reaches well inland to the

high terrain. Such cases are often characterized by a period in which the

most rapid warming occurs at the (higher) inland stations. In all cases,

the surface flow over inland sections eventually weakens and turns into

the north.

These two patterns are evidently connected with the initial

strength or weakness of the pressure ridge over land, as well as that of

the large-scale easterly flow. The high pressure is primarily a

reflection of an extremely shallow temperature anomaly, of which no

evidence exists at 850 mb (Bosart et al., 1972). To the extent that the

ridge is the result of cold-air damming, its presence is initially

independent of any strong frontogenesis which may ensue. However, the

combination of radiative cooling over land and sensible heating over water

also contributes to the hydrostatic pressure gradient. It is likely that

in the more baroclinic events, the resulting land-breeze tendency is

strong enough to establish the initial coastal convergence and

frontogenesis.

The description of the coastal front as a land-breeze becomes

inadequate soon after the appearance of the convergence zone. One reason

is that the front becomes quasi-stationary over land, where the

land-breeze model requires surface divergence and frontolysis. Further,



Fig. 1.4. Mesoscale synoptic analyses of two coastal front events
near time of onset. The cases differ in air-sea temperature contrast and
geostrophic wind speed. (From Bosart et al., 1972)
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the notion of a land-breeze circulation embedded in a geostrophic onshore

flow requires sudden relative cooling by the land surface as the

ocean-equilibrated flow crosses the coast. With radiative effects

curtailed by cloudiness, such an effect is of dubious importance.

Eliminating the land-breeze model certainly does not exclude a

more fundamental solenoidal theory for coastal fronts. The latter

requires only a baroclinic flow prevented through some mechanism from

achieving or maintaining geostrophic balance. In some instances of

frontogenesis, such as low-viscosity density currents, there is no other

mechanism than the rapidity with which the density anomaly is created.

Thunderstorm gust fronts provide the most familiar example. In

large-scale frontogenesis, background geostrophic wind deformation is the

crucial mechanism, as revealed analytically by Stone (1966) and Hoskins

and Bretherton (1972).

The data analyzed by Bosart (1975) make it clear that neither of

these factors is instrumental in the case of the coastal front. In the

first place, there is sufficient time during the 6-12 h development of the

front to reach thermal wind balance with the initial temperature

gradient. Furthermore, the coastal front forms without exception in a

zone of neutral or adverse geostrophic deformation.

The need to identify an ageostrophic deformation mechanism has

produced speculation on the possible role of the surface friction and

orography. Any diabatically-forced high pressure anomaly over land is an

independent effect also worthy of consideration, particularly since a flow

of 10 m/s has a stagnation pressure of only about 1 mb. The diabatic

effect has been mentioned in connection with the possibility of an initial
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land-breeze circulation. However, for the reasons already cited, and

because the effect does not explain the failure of the cold air to respond

to large-scale changes in the geostrophic wind, it is believed that local

diabatic forcing is not necessary. This point will be argued further in

chapter 5 in discussing a numerical simulation by Ballantine (1980), who

concluded otherwise.

Ballantine also determined that the coastal contrast in surface

roughness makes a non-essential, though positive, contribution to the

frontogenesis. This conclusion is a more persuasive one simply because

the frictional contribution is not as sensitive to the details of the

environment. It can be shown, for example, that an Ekman-type balance

using Rayleigh friction requires that the deceleration vary roughly as the

square of the turning angle, with a typical angle of 20 deg corresponding

to a decelaration of only about ten percent. It is known that even a low

mountain barrier has the potential for a much greater effect on a

statically stable flow.

Certain quantitative details of the vertical structure of the

coastal front are needed to complete the review. The topography of

southern New England is shown in Fig. 1.5. The east-west cross-section

through the southern mountains is sufficiently complex to make it

difficult to identify the characteristic vertical and horizontal

distances. An average value for the height of the two ridges is about 500

m, and the horizontal scale appears to be about 100 km. However, the

"half-width", or distance over which half of the relief occurs, is much

shorter than 100 km.
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McCarthy (1977) provides cross-sectional isentropic analyses for

several cases during 1969-1975, based on a combination of surface

observations and sounding data. Fig. 1.6 shows the strong case of 24

December 1970, also studied by Bosart et al. (1972). The cross-section

spans the state of Massachusetts along roughly the same line as in the

topographic cross-section in Fig. 1.5. Although soundings were available

only at the endpoints, McCarthy's analyses of several other cases using

additional upper air data over Boston contained no surprises. His

conclusions about the shape of the isentropes over the water and along the

mountain slopes are reasonable inferences in view of the obervations of

ocean temperature and surface wind.

The warm-front inversion near 850 mb happens to be unusually weak

in this case. Of particular interest is the stratification below 850 mb

in the upstream sounding (CHH). The potential temperature plotted between

1000 mb and 850 mb determines a buoyancy frequency of about .01 s- 1, a

low value for the troposphere. However, it may be assumed that the

ambient stratification was stronger during the early frontogenesis, when

the air was colder over the water. Indeed, the vertical gradient is

generally larger at CHH in McCarthy's other cases, and is nearly twice as

strong at ALB in the case shown. The horizontal temperature gradient

evident in the slope of the 275 K isentrope is also noted. The wind

profile at CHH showed a uniform southwesterly shear totalling 20 m/s

between 1000 and 800 mb. Thus, the best estimate for the ambient shear is

.01 s- 1, which, however, probably underestimates the thermal wind (and

indirectly the warm advection) in the layer.
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A far more detailed cross-section, based on aircraft observations

analyzed by Neilley (1984), is shown in Fig. 1.7 in order to bring out an

important point. The data were obtained along the coast of New Hampshire,

where the coastal topography is steeper, and the air-sea temperature

contrast stronger. Neilley (1984) has demonstrated that the front behaves

essentially as a density current with relative normal flow on both sides,

and an extremely subgeostrophic vertical shear of the parallel wind. The

ageostrophy suggets an important, if secondary, role for local diabatic or

frictional effects in determining the flow on the smallest scales of the

well-developed front. For the time being, modelling these small-scale

characteristics must be given a lower priority than the effort to identify

the basic dynamics and dimensions of the cold-air pooling.

1.4 Proposed mechanism for rapid frontogenesis

The proposed frontogenesis mechanism is a simple extension of the

blocking scenario investigated by PW. The single addition to the

conditions in their study is a synoptic-scale horizontal temperature

gradient. Although the focus is on a streamwise gradient, a component

along the mountain barrier will also be considered, in analogy to the

oblique case of frontal deformation discussed in section 1.1. Thus, it is

proposed that a two-dimensional barrier under conditions of large-scale

warm advection can instigate and support rapid wind-side frontogenesis, in

which the maximum strength of the gradient is limited only by diffusion.

It is further proposed that a component of temperature gradient parallel

to the barrier can substantially strengthen and accelerate the

frontogenesis through the process of horizontal shearing deformation.
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There are fundamental differences between the classical and the

hypothesized orographic mechanisms. The proposed initiating mechanism

consists of a barrier-induced ageostrophic vertical circulation, which

evidently cannot be distinguished analytically from the additional

solenoidal circulation made possible by the horizontal gradient. In

contrast, the deformation field in classical frontogensis is horizontal

and independently balanced, or else (in the Eady problem) can be analyzed

independently of the ageostrophic circulation because of the balance

assumption. A further crucial difference is that in the classical case,

fluid parcels reside in the geostrophic deformation for the duration of

the frontal collapse. The residence time in the ageostrophic deformation

may be quite limited.

A frontogenetical feedback mechanism missing from the barotropic

simulations of PW is suggested by the Scandinavian "model" discussed in

section 1.1. Namely, in the baroclinic flow, the energy needed to

overstep the barrier increases in time as the static stability, and local

Froude number, are modified by vertical shearing deformation of the

potential temperature field. The implied feedback is positive only in the

warm-advection case.

Since background rotation is a necessary feature of the baroclinic

flow, a stagnant layer cannot extend indefinitely far upstream, but is

limited essentially to the deformation radius. If this radius is strictly

determined by the barrier height and a uniform ambient potential

vorticity, it is not time-dependent. Thus, the frontogenesis is expected

to occur at an upstream distance approximating the deformation radius,

provided the initial Froude number and horizontal temperature gradient are

large enough.
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There is some reason to suspect that coastal frontogenesis depends

crucially on non-uniform initial conditions. In particular, the shallow

high pressure over land and the stratification discontinuity near 850 mb

appear from observations to be indispensible features of the environment.

The present investigation aims, however, to determine the robustness of

a basic mechanism, and will leave the matter of non-uniform initial

conditions largely to inference or later study. Note, however, that the

generation of a meso-high by orographic means is not excluded.

It will be assumed that the development of a steady, nonlinear

inviscid solution from uniform initial conditions demonstrates the

insufficiency of the proposed mechanism for given parameter choices.

Conversely, if such an equilibration does not take place without the help

of numerical effects, a process of frontogenesis limitable only by

diffusion will be inferred. In this regard, it should be known that all of

PW's rotating barotropic simulations reached a quasi-steady state which

contained no stagnant fluid.

Thought experiments about orographic frontogenesis require very

difficult deductions about the disturbance pressure and parallel wind. A

more fruitful exercise is a formal analysis of the linear response to

stationary line sources in a baroclinic flow. This part of the study is

carried out in chapter 2 to determine whether baroclinicity in the linear

disturbance offsets or supports the possible nonlinear effect described

above. Chapter 3 attempts to relate the linear analysis to physical

scenarios involving smooth forcing distributions. The linear baroclinic

solutions, interpreted at finite amplitude, should crudely indicate under

what conditions the vertical stratification can be sufficiently enhanced

to allow blocking.
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Chapter 4 is devoted to describing and verifying a new grid-point

model developed for rapid frontogenesis. The model simulations to test

the orographic hypothesis are presented in chapter 5, along with the

overall conclusions of the study. The simulations are limited to cases of

moderate Froude number, in which blocking would not not occur under

barotropic conditions.



CHAPTER 2. LINEAR RESPONSES TO LINE-SOURCE FORCING

Because frontogenesis in general is a nonlinear alteration of

temperature and velocity fields, it is not directly accessible through

ordinary linear analysis. Strictly interpreted, the linear study in this

chapter will describe only the weak reaction of a stable baroclinic flow

to isolated stationary forcing. Further, since nonlinear interactions are

not modelled, the nature of the forcing is necessarily ad hoc. The

expectation based on the discussion in chapter 1 is that the linear

solutions will illuminate the important processes in the generation of a

finite-amplitude upstream response, while also resolving the disturbance

into barotropic and baroclinic effects. In addition, the linear results

are to be used to verify the numerical model developed later for the

finite-amplitude study.

2.1 The physical model and equations

The essential features of rapid frontogenesis are captured in the

two-dimensional primitive equations with constant background rotation.

Applications of slab-symmetric f-plane models include stratified flow over

a ridge, sea-breeze circulations, slant convection and classical

frontogenesis, all of which share basic properties with rapid

frontogenesis. To obtain the minimal baroclinic version of the model, it

will be assumed that the flow is Boussinesq and hydrostatic, and that the

basic geostrophic wind and thermal stratification are uniform, except for

a constant shear in the parallel velocity component.
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The first undertaking is to develop the parameter and forcing

dependence for the linearized system. It will be shown that the problem

is completely determined by the amplitude and shape of the forcing

distribution and three dimensionless quantities: the Rossby and Froude

numbers, and a third parameter measuring the baroclinicity. The

dependence on the first two has been studied extensively in the case of

steady topographic forcing since that particular problem was formally

posed by Queney (1947). Recently, Pierrehumbert (1984) has used

asymptotic analysis of the Green's function solution to investigate the

barrier effect of mountain ridges. The same approach will be used here to

study the special effects of baroclinicity and interior forcing.

Emphasis will be placed on describing the steady upstream response

to interior and topographic forcing, and on determining the forcing

strength needed to induce nonlinear effects in the near-field response.

More particularly, estimates of the horizontal velocity perturbation will

be sought in terms of the three flow parameters just named and the

amplitude of the forcing. The baroclinic topographic problem will be

covered briefly at the end of the chapter in further preparation for the

discussion of blocking and frontogenesis theories in chapter 3.

The nonlinear, non-hydrostatic and time-dependent system is

written, for reference, in the form

du/dt = fv - Px (2.1a)

dv/dt = -fu (2.1b)

dw/dt = b - Pz (2.1c)

db/dt = 0 (2.1d)

0 = ux + Wz, (2.1e)
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in which d/dt 3 a/3t + ua/ax + wa/az is the parcel derivative in two

dimensions, and b - g6/6 0 is the potential buoyancy, i.e., the product of

the gravitational acceleration and nondimensional potential temperature.

The notation for the Coriolis parameter, pressure, velocity and

independent variables is standard. The equations belong to the same

Boussinesq system used by Williams (1972) and Hoskins and Bretherton

(1972) for large-scale frontogenesis, and by Bennetts and Hoskins (1979)

for slant convection.

Appropriate boundary conditions include no-normal-flow at the

ground and energy radiation at large z or x. The basic state is to

consist of linear fields of both temperature, B = fVzx + N2z, and

velocity, (U,V) = (U0 , V0 + Vxx + Vzz), with U0 , V0 , Vx, Vz and

the buoyancy frequency, N, all constant. These choices are consistent

with the requirements of two-dimensionality and basic-state geostrophic

and hydrostatic balance. The absence of shear in the x-component of

velocity can be a significant limitation of the model, and will be

considered further in chapters 3 and 5.

The normalization of the equations is based on vertical and

horizontal distance scales, H and L, to be specified later. The remaining

scales are N2H and N H2 for the perturbation buoyancy and pressure, L/Uo

for the time, and U0 , U0a and UoH/L for the perturbation velocity

components in x, y and z, respectively. Here a = (1+Vx/f) is the

square-root of the nondimensional absolute vorticity, assumed positive.

With u, v, w, b and p henceforth representing the nondimensional

perturbations, and x, y, z and t the nondimensional independent variables,

the linearized system is
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R(ut + ux) = v - RF2Px + RFu(x,z) (2.2a)

R(vt + vx ) = -u - RF3w + RFv(x,z) (2.2b)

0 = b - Pz (2.2c)

bt + bx = -w - (RF)-1Y u + Fb(x,z) (2.2d)

0 = ux + wz .  (2.2e)

The three parameters are defined R = U 0/(faL), F = NH/U 0 and 3 =

Vz/(Na). The friction and heating, Fu, Fv and Fb, are in units of

U02/L, U02a/L and N2HUo/L, respectively. These forcing terms are intended

to include certain "apparent" sources such as nonlinear meridional (x-z)

advection and linear zonal advection of momentum or temperature. Hence

the terms "friction" and "heating" are used loosely.

In the vertical momentum equation (2.2c), the neglected

acceleration terms are proportional to F- 2 and the square of the aspect

ratio, H/L. If the forcing has depth and width scales of h and X, and

since the only alternative vertical and horizontal scales are U 0/N and

Ug/f, it can be shown that H/L may only assume the values f/N, h/X and

products of these with U 0 /(Nh) and f./U0 . Hence, the hydrostatic

approximation (dw/dt = 0) adopted above is justified for all quasi-steady

disturbances of interest with h/X < 10-1 and 14 on the order of 10 - 2

-1
s .

The mathematical inhomogeneities in the problem consist of the

three sources and topographical forcing. Although these introduce

external length scales, the overall notation will be simplest if the

internal scales, H = Uo/N and L = U0 /(fa) are used. The scaling is not

aimed at further reducing the equations. The choices for H and L imply
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that R = F = 1, and show that in the absence of baroclinicity and forcing,

the hydrostatic equations are fundamentally parameter-free.

The parameters associated with the forcing are its nondimensional

depth, Nh/U 0 EFr, and width, fat/U0 - Ro-1 , which have been identified

as a Froude number and an inverse Rossby number, respectively. An

interior source is therefore proportional to some nondimensional,

order-unity distribution, gl(Ro x,Fr-1z), which may have order-unity

variations with respect to its arguments.

Steady topographical forcing is imposed at z = 0 by the boundary

condition

*(x,0) = Fr g0 (Ro x), (2.3)

where z = -fZudz' is the nondimensional mass streamfunction, and go has

properties like gl. Note that the height of the topography enters the

linear problem as an amplitude, Fr, rather than an actual distance (in the

sense of a wavelength or decay scale). Further information or assumptions

will be needed to determine the amplitude of the interior forcing.

The baroclinic parameter, 0 = Vz/(Na), is related to the

Richardson number, Ri - N2 /Vz 2 , through 2 = Ri-(l+Vx/f)-1

Because Ri involves a horizontal temperature gradient in this case, the

condition for neutral linear modes is that Ri > (1+Vx/f) - l (e.g.,

Bennetts and Hoskins, 1979). To eliminate free inertial instability,

the Richardson number inequality and the equivalent condition Id < 1 will

be assumed throughout. Under the further assumption that U0 > 0,

particular attention will be given to the case 3 < 0, corresponding to

basic-state warm advection and negative parallel shear, as this choice is

relevant to the frontogenesis problem.



-41-

2.2 Dispersion properties of the neutral baroclinic modes

The time-dependent wave equation is derived by Bennetts and

Hoskins (1979). Its steady-state, nondimensional form, based on

(2.2a)-(2.2e), is

+xxzz +  xx - 28xz + zz = 0, (2.4)

where the streamfunction i satisfies *x = w and z, = -u in accord with

mass conservation. The first term in the equation is related to the

advection of horizontal vorticity, -uz = zz, and is necessary for the

existence of wavy, propagating solutions. The terms xx and zz

arise, respectively, from the gravitational and inertial restoring

forces. In effect, these forces are modified by the advection of

basic-state wind, V(z), and temperature, B(x), which gives rise to the

baroclinic term proportional to B. A separate balance among the last

three terms, which are elliptic when J < 1, yields a trapped response to

localized forcing.

The nature of the inhomogeneities for the streamfuncton

equation, and the various limiting responses, will be considered in the

next section. A useful preliminary is to examine the effect of 8 on the

free waves directly from the dispersion relation,

-k 2  + k 2 - 2kp + j = 0, (2.5)

obtained by assuming normal-mode solutions, * = 10exp(ikx+iPz), to (2.4).

Such modal solutions are vertically evanescent for real k in the range k2

< 1- 2, and horizontally evanescent for real p in the analogous interval.
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A graph of the dispersion relation for the plane-wave modes is

shown in Fig. 2.1 for the values 8 = 0 and 8 = -0.6. In view of the

symmetry of (2.5), the graphs can be continued to k < 0 by reflecting the

plotted curves in the origin. Changing the sign of 0 causes a reflection

in either axis.

A salient effect of non-zero 8 is to allow propagating modes to

exist with wavelengths longer than the barotropic vertical and horizontal

cutoffs, AG = U0 /N and XI = U0/f, i.e., within the normally evanescent

ranges IpI < 1 and fkl < 1. In particular, the limit point at k = V(1-0 )

= S~, consists of a solution with velocities exactly along the basic

isentropes. The point thus represents a pure inertial oscillation with

zero pressure disturbance, and will be identified henceforth as the

baroclinic inertial limit. When 8 = 0, the isentropes are horizontal, and

such a solution is no longer possible for finite p.

The solution at p = -V(1- 2) = Ok has intrinsic velocities

parallel to the basic absolute momentum surfaces, M E x+Bz = const

(dimensionally, M* = U0aM = fx*+V). If M' is the "intrinsic" absolute

momentum, defined by measuring x in the basic flow-relative frame, the

system conserves total absolute momentum, m = M'+v. Hence the second

limit, the baroclinic buoyancy limit, is a pure buoyancy oscillation with

v = 0. When B = 0, the 11-surfaces are exactly vertical and the pure

buoyancy oscillations (k + co) are not hydrostatic. However, the slope for

general 8, namely cM = -(fa/N)(3M/ax)/(3M/3z) = -fa 2 /Vz, can be as

small as ±10 -2 in strongly sheared environments. The shear thus makes

possible purely buoyant, hydrostatic motions despite the background

rotation.
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2 2
The parameter 1- E r is proportional to the inertial

restoring force along the basic isentropes. Thus, wI = rf gives the

dimensional frequency of free oscillations on these surfaces, and the

lowest frequency possible in the neutral modes. The analogous frequency

on the absolute momentum surfaces may be expressed wG = cgrN. The

parameter r2 is also proportional to the Ertel potential vorticity, q

a(b,m)/8(x,z) = fa 2N 2 r 2 , which is an individual constant in the nonlinear

system. The potential vorticity is often invoked to restate the

Richardson number condition cited in the previous section. That is, the

linear modes are neutral if, and only if, r > 0.

The analogy between the barotropic and baroclinic pure

oscillations extends to the energetic properties of the waves; that is,

the group propagation at the baroclinic limit points k = r and P = -r is

entirely horizontal or vertical, as in the limits k = 1 and p = ±1. This

can be appreciated most easily by noting the relationship between the

slope of the graph of p(k) and the direction of group propagation. If w'

is the wave frequency in the stationary frame, then the graph in Fig. 2.1

has slope

dz/dx ,=0 = -( 8W'/x)/(8 '/z). (2.6)

Therefore the slope of the energy vector, cgz/cgx ' = ('/3z)

/(aw'/ax), is also that of the perpendicular to the graph. Here cgz and

cgx ' denote the two components of the group velocity relative to the

stationary frame.

For the most part, the group velocity for k > 0 is directed away

from both axes (viewed as coordinate axes). However, it can be seen that
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for B3 > r, group propagation is slightly upward. Inasmuch as the phase

propagation is also upward, these shallow modes have an anomalous phase

tilt for gravity-inertia waves. The intrinsic horizontal group speed, in

general cgx - cgx'-l = -(P/k)cgz, is also found to be positive if

and only if B > r. The transition occurs because the correlation between

the velocity and the hydrostatic pressure changes sign when the fluid

motions become shallower than the basic isentropes, i.e., when upward

displacement is associated with warm anomaly. (Instability is then

precluded only by the inertial restoring force.) This explanation is

based on the equivalence of the energy vector and the "pressure flux",

whose components are pu and pw.

The other transition, at I lk = r, coincides with a critical value

of the horizontal pressure flux, pu. It can be seen that for the steeper

waves, i.e., (Ilk > r, the relative group speed, cgx ' , is negative. As

a consequence of the strong vertical advection of background parallel wind

in these modes, v is more strongly correlated with vertical than with

streamwise displacement. The Coriolis acceleration in the x-momentum

equation then fails to offset the advection, and an unusually strong

horizontal pressure gradient arises.

Thus, the solution atlBlk = r resembles nonrotating hydrostatic

gravity waves in having only vertical dispersion, while in the steeper

waves, the pressure disturbance is strong enough that Ipu > 1 (in units

of U0
3 ) and cgx' < 0. The baroclinic buoyancy waves have the "proper"

tilt in that group propagation is upward (downward) if the corresponding

M-surfaces slope to the left (right) with height. The fact that upstream

propagation also requires downward propagation in a warm-advection basic
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state (a < 0) will be thematic in the results to follow. Upstream-

propagating modes can also be recognized as having u smaller in amplitude

than the x-component of perturbation absolute momentum, u-y' (where y' is

the parallel displacement), which in turn is proportional to the pressure

perturbation (see Smith, 1979).

The discussion of energy propagation is a proper context for some

remarks on transient waves. If 3 = 0, the horizontal group speed for the

transients may be written without explicit reference to the frequency as

c = 1 + P-1/V(1+12 /k 2 ), (2.7)

where the second term takes the sign of the intrinsic horizontal phase

speed. In discussing mechanisms for upstream influence in a steady,

nonrotating flow, Pierrehumbert and Wyman (1985) point out that

sufficiently large p-1 (identifiable with the Froude number) permits

upstream energy propagation, as can be seen by taking p/k = 0 in (2.7).

However, modes with p * 1 in such a system must have k = 0 (and are not

buoyancy oscillations). Moreover, energy propagation by these so-called

"columnar modes" clearly requires a horizontal spectrum of buoyancy waves

near k = 0.

Therefore the columnar disturbance can be understood only in

connection with transient or evanescent modes. In a rotating system, the

frequency of the upstream transient waves must be at least O(f), since in

order to get p-1 > 1, it is necessary to satisfy

(w'/k - 1)2 - k - 2 > 1, (2.8)
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22the left side being the same as -. Therefore, unless the relative

frequency w' and the horizontal scale 1/k are at least 0(1) (in units of f

and U0 /f, respectively), not even the transients will carry the

disturbance upstream, regardless of the vertical scale of the forcing. PW

used this fact implicitly to interpret their barrier-flow simulations.

They estimated the radius of upstream influence by integrating (2.7), with

p/k = 0, over a time period of length 1/f.

Another way to generalize the columnar disturbance is to associate

the k = 0 modes with the steady, horizontally-evancescent normal modes of

the rotating system. However, the connection is misleading if the steady

solution significantly underestimates the amplitude of the upstream

disturbance during the transient phase. It will be assumed here that

rotation is important enough that the effect of the transients, with w'

and k > 1, is to produce only a small shift in the sufficient conditions

for blocking. Note, however, that this assumption is incorrect in PW's

infinite Rossby number simulations, in which blocking occurs despite the

non-existence of steady-state upstream effects.

In the rotating barotropic case, the horizontally-evanescent

modes alone determine the upstream response when the forcing consists of a

distribution in z. In the baroclinic case, the analogous modes with real

p become both damped and oscillatory in x, and the damping distance no

longer vanishes at the buoyancy limit, p = r. In fact, 1/ kj remains 0(1)

throughout p < r for moderate values of B, thus permitting a more

significant upstream disturbance. Recall, as well, that the baroclinic

plane-wave disturbance can extend a certain distance upstream because of

the negative horizontal group speeds. These important upstream baroclinic

effects will all appear in the Green's function analysis.
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2.3 Green's function for an interior source

The foregoing energy considerations will be needed in the

construction of the Green's function solutions to the forced equation.

To establish some preliminary contact with the physical problem, consider

the form of the inhomogeneity in the streamfunction equation. Given the

sources Fu, Fv and Fb, the problem for i is found from (2.2a)-(2.2e)

to be

a a2  a
t(P) = b-ux b axaz v (2.9)u

where f is the linear operator in (2.4). Hence, a circulation can be

driven by x-gradients in the heating or in the vertical derivative of the

streamwise friction, as well as by a vertical gradient in the cross-stream

friction.

Since it may be assumed that the friction decreases upward from

the ground, (2.9) shows that the first two sources are negative if the

strongest friction and cooling occur downstream. However, the sign of the

third source is less obvious. If the transverse friction is due to

surface stress, and the basic-state surface flow, VO, is negligible, the

sign of Fv must be opposite that of the induced low-level flow parallel

to the forcing. Most often, this flow is toward low pressure, so that

F, < 0, and the third source is also negative. The important task of

estimating the actual forcing amplitude for these and other physical

scenarios will be undertaken in the next chapter.

Because the contribution from topography is additive, (2.9) may be

solved subject to l = 0 at z = 0. Let the forcing consist of a
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concentrated source at x = xo and z = z0, i.e., £(') = 6(x-x 0 )6(z-z 0 ).

Then, after obtaining

p = Ok/(1-k 2 ) + k(k 2 -r 2 )1 / 2/(k2 -1) (2.10)

from (2.5) for the vertical wavenumber, the Green's function for all z > 0

may be written

a exp (z-zL exp(iOz-zo0)-exp(io(z+zo) ) (1
- f exp ik(x-x+ 1-k2  2ik(k 2-r2) 1/2 . (2.11)

The square-root occurring in P 0 (k) - k(k 2 -r 2 ) 1/ 2 /(k 2 -1) must be chosen

to satisfy a radiation condition at z + a=. For k 2 < r 2 , Im{k(k -r 2 ) 1 / 2 }

< 0 is needed for boundedness. Elsewhere p0 is real, and the branch

corresponding to upward energy propagation, namely (k -r2 )1/2 > 0, must

be used in (2.11).

The negative branch of (k2-r 2 )1 /2 is the implicit choice for the

unreflected waves (first term in the integrand) below the source, which

are obviously the result of downward group propagation. The negative

branch can be identified in Fig. 2.1 as being continuous at k = 1 and

containing the baroclinic buoyancy waves. If 8 > 0, these waves instead

have upward group velocity. It follows from these remarks and

ray-tracing theory that the baroclinic modes, with bounded P and k, will

alter not only the symmetry of the solutions with respect to the forcing

level, but the length scales as well.

The term depending on z+zO in the Green's function integral can be

attributed mathematically to an image near x = x 0, z = -z0 . However, as

long as # 0, the wave equation is non-separable and the location of the
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image is wavenumber-dependent. The phase of the unreflected waves can be

expressed

c+(x,z) = k(x-xo) + -(z-zo ) , (2.11)

where P+ - k/(1-k 2 ) g 0 is defined. The phase of the reflections can

then be written more transparently as q+ref(x,Z) = f-(x,0) + l*z.

If 3 * 0, then p+ # -P- and the angle of reflection from the lower

boundary differs from the angle of incidence. Also if # 0, the damped

modes in -r < k < r are tilted toward the ambient absolute momentum

surfaces, and their image points are shifted toward the extension of the

M-surface containing the source, i.e., the surface x-x 0 + B(z-z 0 ) = 0.

By using the radiation constraints on 10, the Green's function can

be rewritten with a real integrand as

1 r exp(-P0ilz-z0o ) - ex p ( - P0i(z+z) )  0(z-z0)
= -

2 Tr k(r 2 -k 2) cos k(x-xo+ l-k 2 ) dk

S(z-zo)
1 2 sin (k(x-xo+ 1-k2 )+ I z-z) (2.12)

2 J  { (2.12)
Sr kV(k 2-r 2

B(z-zo)
sin (k(x-xo+ 1-k2  )+P 0 (z+z 0 )

kV(k2-r2) }dk,

where 1Oi = (1-k 2 )-1 k/(r 2 -k 2 ) in the first integral, and 10 =

(k2_1)-k/(k2 -r 2 ) in the second. For later reference, the equivalent

vertical transform is given without the reflection terms as
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1 r exp(-koi x-xo ] B(x-xo)
= 2 (r2_ 2) cos 1(z-zo+ 1 2 J d1

5(x-xo)
S 1 sin ((z-z+x2 )-k x-xO

+ - )-ko-xo d (2.13)
r J(P 2 -r 2 )

S(x-x o )
gnsin (P(z-zo+ i_ 2 )-ko(x-xo ) )

l+sgn(x-x O) 1 i (1-r2
2 27r 1 PJV( 2 -r 2 )

a(x-x o )
sin (P(z-zo+ 1_2 )+ko(x-xo))

(2-r} d+ *. ,

where koi = (1-2 )- V(r 2- 2), etc. The horizontal asymmetry of the

plane-wave component is more apparent in the second formulation. Notice

in particular that there is no wavy disturbance in x < xO if r = 1 (0=0).

The vertical transform is, however, of limited use because the integral

for the wave reflections is unwieldy when B # 0.

Both (2.12) and (2.13) can be reduced to simpler forms by applying

certain near- and far-field approximations. These will be discussed

separately in the next two sections. Except for the propagating part of

the far-field response, all of the limiting solutions are affected by one

or more of the singularities in the integrals, which therefore merit some

preliminary consideration.

In an infinite domain, the simple pole in the long-wave integrals

(0 < k < r and 0 < p < r), would produce logarithmic behavior in the

streamfunction at large x and z. However, the pole is removed through the

effect of a solid lower boundary, which stops the growth of Y outside a

radius comparable to the height of the source.
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There is no singularity near the source because the overall factor

multiplying the integrand in (2.12) decreases as k - 2 , rather than k - ,

for large k (showing the effect of vorticity advection). It is

significant that the same factor becomes k-2 for all k when the problem

is posed with f = 0. The integral then diverges because of the small

wavenumbers, regardless of the boundary conditions. The implied large

response in the limit of weak rotation is concealed by the scaling in

(2.12), but in fact, the dimensional streamline displacement, T*/UO, is

proportional to I E: U0/f in this limit.

The f = 0 singularity has an interpretation similar to that for

steady flow over a two-dimensional step (e.g., Lilly and Klemp, 1979).

That is, in practical applications, the assumptions of a uniform

environment, zero viscosity and two-dimensional forcing often cease to

apply on scales comparable to XI when this distance is large enough to

produce an extreme response. If the assumptions do not break down before

AI becomes very large, then indeed only a nonlinear or unsteady response

is possible.

An integrable square-root singularity at k = r also affects the

solution when the O(AI) horizontal scales are relevant. Although the

energy propagation becomes horizontal at this point in the spectrum, where

the graph of p(k) is vertical, the analysis will show that vertical

dispersion due to buoyancy still affects the associated downstream

wave-train. An analogous result will be found to apply to the buoyancy

disturbance (P = r) directly above and below the source. There, the

amplitude and phase of the streamfunction are controlled by horizontal

dispersion induced by rotation. As already observed, this rotational
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influence yields to nonlinear, three-dimensional, transient or other

effects as f + 0. The other limit, N + 0, requires a non-hydrostatic

analysis.

Finally, it is noted that the square-root singularity splits from

the essential singularity at k = 1 when # 0. The effect is to

superimpose broader vertical scales on the slowly-decaying inertial wave-

train, and (less significantly) to suppress the very short vertical scales

on one side of the horizontal axis. Analogously, the buoyancy disturbance

acquires intermediate horizontal length scales, and the rapidly-varying

component is concentrated on one side of the vertical axis. The

horizontal dispersion of the buoyancy disturbance, whose slowly-varying

components are especially important for upstream influence, will be easier

to analyze in the vertical transform (2.13).

2.4 Far-field asymptotic response

The trapped part of the far-field Green's function, valid in

(x-xo) 2 + (z-zo) 2 > 1, is

I 'exp[-rk z-zl ]-exp[-rk(z+z n ) ]qg 7r 0 rk cos k[x-x 0 +B(z-zo)] dk. (2.14)

This limit is obtained by ignoring the short waves and letting k + 0 in

(2.12). The integral has the closed-form expression,

q 1log [x-xp+B(z-z0)] 2 + r2(z-z) 2  (2.15)
y log 2 (2.15)

qg 4rr [x-x 1+ (z+z 0 )] 2 + r 2 (z+z 0 ) 2

in which the image position xj E x 0 + 2 z 0 is introduced to bring out the

symmetry (notice that x-x0 and x-xl may be interchanged with z-z0 and
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z+zO, respectively). The logarithmic solution is recognizable as the

Green's function for the three elliptic terms in (2.4), without the

vorticity advection. The corresponding circulation is precisely that

required to maintain geostrophic balance in the disturbed flow, whence the

notation "qg" for quasi-geostrophic.

The quasi-geostrophic solution is substantially influenced by the

baroclinicity. Mathematically, induces a transformation to the

non-orthogonal coordinates X = x+Oz and Z = rz. This system is aligned

with the basic absolute momentum surfaces and stretched vertically by the

factor r- 1. Eliassen (1962) showed that the solution implicitly

includes the nonlinearity in the original y-momentum equation if the X

coordinate surfaces are redefined to lie along the surfaces of total

absolute momentum, M+v. Hence there is no formal distinction between the

quasi-geostrophic and semi-geostrophic problems, except for nonlinearities

in the lower boundary condition.

The Eliassen transformation is particularly useful because the

boundary remains a coordinate surface. However, the form of the

barotropic solution can also be recovered through the transformation X' =

rx, Z' = z+Bx, if the above definition for xl is used. It follows that an

orthogonal transformation, x' = x±z, z' = z~x, also converts (2.15) to the

simple logarithmic potential.

In physical space, the orthogonal transformation is a rotation

through an angle (1/2)tan-l 1 [2s/(1-s 2 )] acB , where s = fa/N < 1, and

aB = fVz/N 2 is the slope of the basic isentropes. The fact that the

quasi-geostrophic result in stretched coordinates (and with no boundary)

is unbiased with respect to the buoyancy and absolute momentum surfaces
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distinguishes it from the near-field solutions to be discussed in the next

section.

The effect of a on the velocity can be isolated by writing (2.15)

in the form

T 0 = (1/2r) (log R - log Rref), (2.16)

where the definitions T0 = riqg, R2 = (X-X 0 ) 2 +(Z-Z 0 ) 2 , and Rref 2 =

(X-X 0 ) 2 +(Z+ZO) 2 are used, along with X0 = xo+zg and ZO = rz0 . Now, in

terms of the derivatives -8T0/3Z E uo and 3aY0/X - wo, which give the

perturbation velocity field for B = 0, the actual velocity perturbation is

u = ug - (W/r)wo,
(2.17)

w = (1/r)wo.

Because of the increased depth of the circulation, the amplitude of the

vertical velocity is evidently increased by introducing baroclinicity of

either sign. However, in the convergent regions, where u < 0 and w > 0,

the horizontal deceleration is reduced if S < 0. The latter feature

is a consequence of the ambient vertical shear, which provides a second

source (the first being horizontal convergence) for the perturbation

parallel momentum needed to balance the pressure anomaly.

Near the ground, the baroclinic effect on the amplitude of the

velocity is negligible, but the changes in its distribution are not. In

particular, since the maximum in lul is displaced to x = x 0 +z 0o, the

baroclinicity substantially favors the long-wave upstream response for

moderate negative values of B. The displacement increases the opportunity

for blocking because of the increased vertical shear (the 0 contribution
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to au/az leading to a further enhancement of the vertical stratification),

and presumably also because of the increased distance between forcing and

response. It remains to be seen whether the shorter waves offset or

contribute to this long-wave effect closer to the forcing.

From a direct examination of TOZ, it is learned that u

varies as (z-zo)- 1 relatively near the source (1 < z-z01 < z 0 ), but

decreases more rapidly, as z 2, far above the source ( z-zOI > z 0 )

because of the lower boundary. Inside an order-unity radius from the

forcing, a qualitative estimate for the long-wave contribution can be

obtained by setting log R = 0 in (2.16). Thus,

T(xo,zo) " -log(2rzo)/(2r) (2.18)

is reasonably accurate for z 0 > 1, and provides a useful estimate for the

quasi-geostrophic contribution to the total disturbance mass flux beneath

the center of circulation. For shallow forcing, z0 < 1, it is easy to

show directly from (2.13) that the mass flux contribution from real i < 1

is bounded by z 0
2 /(2fr). The corresponding estimate for the surface

velocity perturbation is u < z 0 /(2'r).

An examination of the mixed gravity-inertia wave disturbance will

complete the far-field analysis. Because these waves propagate to the lee

of the forcing, and are weaker than the near-field buoyancy and inertia

waves, they are not expected to play a role in blocking or wave-breaking.

The analysis is therefore included for completeness, and to provide a

check on subsequent numerical results.

The wavy part of the far-field disturbance is approximated by the

method of stationary phase, applied to the second integral in (2.12).
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The approximation assumes Ix-x01 > 1 and Iz-zo > 1, but not k < 1, as in

the trapped far-field limit. Because the stationary-phase method is

essentially a ray-tracing procedure, the remarks of section 2.2 on

plane-wave energetics will be directly relevant.

Let a - Iz+z 0 /(x-x 0) be the slope of the ray connecting the

observation point to either the source or its (ordinary) image. Allowing

a to take the sign of x-xo, but not z-z0, anticipates the symmetry of the

wavy disturbance. The stationary-phase condition on k, referring to

either of the sine terms in (2.12), is then

( - k k 2 +1 [sV(k 2 -r 2 ) - ] a - (k 2-1)(k2-r 2 ) = 0, (2.19)

for which a positive solution, ks2 , will be sought. Here s = (z-z0)/

zIzOI takes the values ±1 for the primary disturbance, and a fraction of

±1 for the reflections.

The familiar physical interpretatidn of (2.19) is that a must be

the slope of the energy (or group velocity) vector for some wavenumber.

Close examination of the dispersion curves in Fig. 2.1 shows that at least

one solution, from the interval k > 1, can be found throughout x > 0, and

that one or two additional solutions, from r < k < 1 or r < I <1, may

also exist by virtue of the baroclinic basic state. Only the latter

wavenumbers are relevant in the upstream region (a < 0), which cannot be

reached by the barotropic waves.

The stationary-phase condition for = 0 and a > 0 has the exact

solution k 2 = 1 + a2/ 3 = ks0
2 . The first-order correction for a must

then satisfy ks 0ksl = -(s/3)(a+2al/3), whence
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k2-1 = a2 /3 _ 2 ss (a + 2a1/3 ) + 0(2), a > 0. (2.20)

Thus if 0 is small, the sign of Bs determines whether the local horizontal

scale is lengthened or shortened by the baroclinicity. In the

warm-advection case, for example, the scale is shortened above the

forcing, where 3s < 0.

The fact that fs is positive in regions where the propagating

waves slope toward the M-surfaces suggests a physical interpretation of

the baroclinic effect. Namely, when as > 0, vertical propagation becomes

significant at relatively small k because the rotational constraint can

be broken while the waves are still shallow. Conversely, if as < 0, the

wave motions produce large v anomalies, and relatively steep motions are

required before buoyancy effects can prevail. The modification of k s is

greatest near the vertical axis (a > 1), where it will be shown that the

vertical wavenumber is relatively unaffected by 0 (indeed this has been

assumed in the above argument).

Since the basic isentropes slope in the same direction as the

M-surfaces, analogous reasoning indicates that ps must vary with the

sign of as in the same way as ks. For confirmation, note first that

the complete phase of the far-field solution has the symmetric form s =

ks'(x-xo) + ps' zIZO + 0(82), where the new (primed) wavenumbers are

related by (2.10), except with a replaced by Bs. From the symmetry of the

dispersion relation, it can be deduced that P '2-1 must be given by the

right side of (2.20) with a replaced by 1/a. It is then readily confirmed

that the actual vertical wavenumber, ps, for both the primary and

reflected waves is increased in the region as < 0 and reduced in Bs > 0,
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and that the modification is greatest near z = +z0 (1/ > 1) and smallest

near the vertical axis.

The results for ks and ps together yield

s = ((x-xo) 2/3+ z±zo 2/33/2 ( 1/ 3 -s 1 / 3  + 0(2) (2.21)

for the full stationary phase. The lowest-order result reduces to s =

x-x0 at z = z0, and ps = Iz±z0o at x = xo, revealing the wavenumber

limits k = 1 and p = 1. However, the vertically- and horizontally-

propagating regions are not accurately represented by the stationary-phase

approximation, which has errors of order 1/(x-xo) and i/ zIz0O. The

lowest-order part of ps can also be found in Queney's analysis of the

corresponding mountain-wave problem (e.g., Queney, 1948).

The amplitude of the stationary-phase estimate depends on the

second derivative of the phase, kk (see Bender and Orszag, 1979), and

for present purposes, requires a small-B expansion of the denominator in

(2.12). The complete approximation to first order in B may be written

1 sin(s + 7/4J
p = [ (1 + BA)sp V6r s01/2

(2.22)

sin((gs)ref + 7/4J

( s 0)ref/2

where sO is the lowest-order phase estimate [cf. (2.21)], and "ref"

denotes the reflections. Thus, at lowest order, the amplitude of both the

primary waves and the reflections is constant on the respective phase

surfaces. The mountain-wave solution does not share this particular

property.
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The quantity

A = -('/ /3+ /3 +3 (al/3+L /3-1

in (2.22) determines the amplitude correction due to S. Since A takes the

sign of s, the amplitude is increased by the baroclinicity in the regions

where the wavenumbers are decreased. This relationship implies that the

amplitude changes in the velocity field are at least partially offset by

the wavelength modification. Further analysis at first order shows that,

with one exception, the conflict is resolved in favor of the amplitude

correction. Thus, for example, Usp = -a'sp/3z is slightly reduced in

amplitude above the forcing when S < 0. However, for large enough z0, the

correction in the reflected part of the disturbance takes the sign of the

wavenumber correction.

The small-B expansion is invalid wherever the correction terms are

O(1). The breakdown regions, a < 181 3 and -1 < 3, are also the

regions where multiple stationary wavenumbers may exist, specifically in

the intervals k 2-1 < 0(S 2 ) and 2-1 < 0(a2), respectively. It is not

helpful to know these wavenumbers precisely, because the formalism leading

to (2.22) does not apply to a significant portion of the two regions. The

reason for the failure is that the various stationary contributions

overlap (higher derivatives of the phase are not negligible), or that one

of the far-field assumptions, Ix-xo0 < 1 and Iz+z0 < 1, is violated.

The near-field analysis of the next section reveals some of the

anticipated focusing of wave energy by the baroclinicity, which will also

be apparent in the numerically-generated solutions presented in

sections 2.6 and 2.7. Part of the justification for the near-field

analysis still depends on identifying the stationary wavenumbers. Hence
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this section ends with a qualitative discussion of the baroclinic effect

on the symmetry of the wavy disturbance. Only the primary disturbance

will be mentioned, but the conclusions also apply to the reflections

whenever the appropriate regions would include the physical domain, z >

0. The case B < 0 is summarized in Fig. 2.2.

It is found, first of all, that the solution in 0 < -B(z-zo) <

4 (x-xo) on one side of the horizontal axis is affected by three

stationary wavenumbers. Two of these, ks = 1 ± O(a/3), combine to give

large amplitude to the barotropic inertial disturbance, whose important

feature is a strong vertical gradient. The third wavenumber occurs near

the baroclinic inertial limit, ks = r, where p is bounded. Its

existence implies a large contribution at the forcing level from the

longer vertical wavelengths normally removed by buoyancy effects. On the

opposite side of the forcing level, the slowly-varying inertial waves are

the only stationary contribution.

Near the vertical axis in 0 < -(x-xo) < a (z-z 0 ) (above the

source) or in 0 < B(x-xo) << B4(zo-z) (below the source), the phase is

stationary at 9s = 1 + O(a-1/a3 ). The large horizontal gradient

characterizing barotropic buoyancy waves therefore dominates both areas.

When x = x0 is crossed, the phase is no longer stationary for large k.

Thus where a(z-z 0 ) is positive (negative), the horizontal gradient is

reduced on the downstream (upstream) side of x = x 0. On the other hand,

the influence of the baroclinic buoyancy waves, with ps = r, is found on

both sides of x = x0 , but only in B(z-zo) > 0. Here again, the importance

of the stationary phase of the baroclinic waves is to focus more long-wave

energy along the axis. Note that the region affected by the longer

buoyancy waves is below the source if B < 0.



x=xo

X-Xo= 0  (z-zo)\\ x-X0 =3I3 (z- Zo)

s. p. region

z-zo =I 3 (X-Xo)

Z= Z

z-zo= -I 3 (x-xo)

s. p. region

cose /9<0 BC= Baroclinic
BT = Borotropic

Fig. 2.2. Schematic showing type and location of propagating waves

forced at (xo,zo), assuming baroclinic basic state (3 < 0). Regions
dominated by either buoyancy or rotational effects are shaded.
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2.5 Near-field asymptotic response

The near-field disturbance is produced, in principle, by

non-dispersive waves propagating vertically or horizontally along x = x0

or z = z0. However, as noted in section 2.2, a bounded near-field

solution cannot be found which is entirely unaffected by dispersion from

rotation or buoyancy. One of the objectives here is to describe this

effect formally.

Although the approximation along each axis requires essentially

the same analysis, it is clear at the outset that certain properties will

distinguish the two regions. Whereas the horizontal near-field

disturbance along x = x 0 is restricted to modes with the same tilt, the

vertical near-field solution contains both upstream- and

downstream-tilting modes in x > x 0, and is entirely excluded from x < x 0.

The horizontal near-field limit of (2.12), nominally valid in,

Ix-x01 < 1, is obtained by assuming k > 1 and i = 1. The result

G 2 1 f sin(k(x-x0)+ z-z0) - sin(k(x-xo)+z+zo) dk + CG (223)
G 2f kl k 2  G

determines the contribution from the gravity waves. The factor k- 2

produces a long-wave singularity which has been discussed in section 2.2.

Thus, in order that YG be bounded, an undetermined long-wave interval, k

< kl, has been removed from the integral and its contribution written as

CG.

The ambiguity associated with k, will be resolved by assuming that

the long-wave contribution is independent of x, i.e., CG = CG(z). The
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relevance of k1 is then to determine the region of validity of the

x-dependent part of 'G, which will be seen to shrink with increasing

vertical distance from the source. With regard to the x-dependence, it is

noted straight away that CG is affected by the baroclinic gravity waves

when # 0. These have an intermediate horizontal scale close to the

inertial distance which will not show up in the following analysis.

Before turning to the problem of estimating CG, a closed-form

expression for the barotropic gravity-wave integral will be found by

assuming the second x-derivative is unaffected by the long waves. Thus,

kj = 0 is assumed, in writing

a2  1
x T = -sin z 0 [6(x-xo) cos z - sin z], (2.24)
ax G w(x-xo)

in which it is understood that z and z 0 must be interchanged below the

forcing. This result shows an alternation above z = z0 between a

symmetric and an antisymmetric horizontal structure, a characteristic of

gravity waves propagating in one vertical direction.

By itself, the expression in brackets is the Green's function for

mountain waves in a non-rotating flow. The interior forcing in the

presence of a reflecting boundary evidently creates an interference

pattern in which the symmetric component, 6(x-x 0), takes either sign at

the forcing level, while the antisymmetric part at z = z 0 is limited to

one sign or zero, as z 0 varies.

The appropriate integral of (2.24) is

C = -sin z0 J-xI cos z - - x n log x-xo sin z) + CG , (2.25)
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except that z and z0 must be interchanged in z < z0. It is clear that the

x-dependent part of this estimate, being unattenuated in z, is not

directly affected by horizontal dispersion. When the Green's function is

used in a convolution integral over distributed forcing, the x-dependence

is equivalent to a double x-integral over the forcing (cosine term) or its

Hilbert transform (sine term).

A procedure for obtaining the integration constant, CG(z), is

suggested by an analysis used by Queney (1947) and Pierrehumbert (1984) to

find the z-derivative of the streamfunction along a topographic boundary.

The Green's function is first rewritten as a vertical transform (2.13),

and reduced to one dimension by setting x = x0 . To isolate the

gravity-wave contribution, the complex integration path is altered as

shown in Fig. 2.3b. Thus, in the region B(z-zo) > 0,

1 I exp(-Pi z-z0L' 2(xz) = 2 +r 2) di

(2.26)

1 C sin 1z-z 0  1 sin i z-zo
- ( S z du + J J du ] +

f r /(P -r2) r -( 2-r2)

When the integration contour is redrawn for B(z-zo) < 0 (the dashed

contour in the right-hand diagram of Fig. 2.3b), the two plane-wave

integrals are replaced by a single integral over the complementary

interval (1,-). If 3 < 0, this contour is also used for the omitted

reflection integrals, in which z+zO replaces Iz-z0o.

Since the phase is stationary near the branch point at p = r,

ignoring the x-dependence cannot produce a singular limit. If Iz-zo0 > 1,

the two plane-wave integrals can be related to the Gamma function with
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parameter 1/2 by letting p = r+e, and assuming e < 1. The integration

constant for (2.24) is determined in this way to be

1 ( Alsin(r lz-z0+l) . (2
G(z) = ( (2r zi ) i / 2 n + ***. (2.27)

2r (2rr z-zoI j1/ 2

The second of the two wavy integrals has been approximated by the

incomplete Gamma function, r(zl; 1/2) with z 1 = (1-r) z-z01 serving as the

integration limit. It suffices to note that as z1 increases, Al varies

from zero to unity, and P1 from zero to n/4, each with a damped

oscillation about the higher limit. Therefore if Iz-z01 > 1/(1-r), the

contribution from the last integral in (2.26) roughly doubles the value

which obtains when r = 1, or when Iz-z0 is small. In the same limit, the

complementary integral which applies to the region B(z-zo) > 0, and in

some cases to the reflections, vanishes.

The vertical damping and r/4 phase shift in (2.27) are

characteristics of a dispersive wave disturbance. Nevertheless, the

result is different from the standard stationary-phase approximation,

which cannot be used near the vertical axis. The analysis succeeds in

quantifying the contribution from the baroclinic gravity waves, and in

confirming their presence below the forcing in the warm-advection case.

The contributing waves have phase surfaces close to the ambient

M-surfaces, x + z = const, which implies an intermediate (order-unity)

horizontal scale below the forcing for moderate negative values of a.

Since the baroclinic waves are superimposed on the barotropic gravity

waves, the analysis reveals an enhanced upstream disturbance in the near

and intermediate field in the case of basic-state warm advection.
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Inside a radius Iz-zg01 1, the special long-wave estimate (2.18)

is the best choice for the integration constant (replacing CG), and the

nondispersive part of the remaining near-field approximation (for the

inertial disturbance, k = 1) is also additive. Thus, the three

contributions near the source cone from the regions k < 1, k = 1, and k >

1 on the real k-axis.

The vertical near-field approximation involves the large-P limit

of the Green's function expressed as a vertical transform [cf. (2.13)].

The integral vanishes in x < x0, while in x > x0, it is

I = -I sin[g(z-zo)+x-xo] - sin[p(z-zo)-(x-x)] d. + C I  (2.28)
I 2r 21

The boundary reflections of the horizontal wave-train are insignificant

for z0 > 0(1), and are omitted. As expected, TI has different symmetry

properties from TG. The closed-form expression for (2.28) is simply

= I sin(x-x0) + CI ,  (2.29)

showing only even symmetry about the forcing level. The z-dependence here

corresponds to a double z-integral over an actual forcing distribution.

The remainder of the approximation for the inertial wave-train is

found by analyzing the horizontal transform (2.12) near the branch point,

and neglecting any z-dependence. Since the wave energy is less

drastically divided according to phase tilt than in the gravity waves, the

baroclinic effect (favoring either upward or downward propagation) will be

neglected.



-69-

Although the analysis is formally valid only in x-xo > 1, an

acceptable approximation can be obtained for x-xo = 0(1) by considering

higher-order terms in the expansion parameter sE k-1 < 1. The result of

including terms to 0(e2) in the integrand is

1 sin( + 129/128
[2T(x-xo)]i/ 2  4 I (xx0)2

(2.30)

5/8 cos(x-xo +J }.
x-xO 4

The coefficients of the higher-order terms in (x-x0)- i are products of

Taylor coefficients and values of the complete Gamma function with

parameters 3/2 and 5/2.

The higher-order terms produce a new local minimum, CI u -0.22,

near x = x0 + 1.5, where the lowest-order term by itself is decreasing

monotonically toward x = x 0. This value of CI can be interpreted as the

inertia-wave contribution to the disturbance mass flux below the center of

the circulation. Inside x-xo0  1, CI must be replaced by the long-wave

approximation (2.18), plus the nondispersive part of YG

Some caution is necessary in extending the near-field results to

cases of distributed forcing. The problem is that the neglect of the long

waves, k < k1 and V < p1, in estimating the derivatives of the

streamfunction implies a scale selection in the direction perpendicular to

the inertia and gravity wave-trains. Since the scale does not appear

anywhere in the asymptotic results, it must be understood that the

near-field analysis assumes an effective forcing length scale which is

always the smaller of Ro- 1 (or Fr) and 1/k1 (or 1/pi). (The fact that

such restrictions do not apply to CI and CG underscores the importance

of the baroclinicity.)
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Thus it remains to find practical estimates for the wavenumbers kl

and p1, which are at least 0(1). An examination of p(k) in (2.10), with B

= 0, reveals that k1
2 must be considerably larger than the nondimensional

distance I zzo0 in order to justify p = 1 throughout the short-wave

interval. The neglect of the long waves is therefore appropriate only in

(x-x 0 ) 2 < I/ zzO < 1,and the effective Rossby number is no smaller than

O(Izzgo-1/2). In the nonrotating limit, the corresponding

dimensional radius is infinite, and the nondispersive part of YG is

valid everywhere.

Similarly, the vertical near-field approximation applies in

(z-z0)2 < 1/(x-xo) < 1, and the effective Froude number does not exceed

0([x-xo]- 1 / 2 ). It is noted that at the limits of the near-field

regions, i.e., where (x-x0)
2 = 1/ z±z01 or (z-z 0 ) 2 = 1/(x-x 0), the

nominal contributing wavenumbers, k 2 > Iz-z01 or 2 > x-x 0 , begin to

overlap the stationary-phase interval around k 2 = [(z-z 0 )/(x-xo)]2/ 3 or

2 = [(x-xo)/(z-zu)] 2 1 3 , whose contribution was found to damp with

height.

2.6 Numerical evaluation of the Green's function

The alternative integration contour drawn in Fig. 2.3a best serves

the purposes of numerical evaluation. The resulting asymmetric form of

the horizontal transform, including the reflections, can be written
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= exp[-ki(x-xo (z-z2 0)sgn(x-x0)] sin JOrz sin 10rZO
1 l+ki _2

0 kiV(ki 2 +r2) idk

(2.31)

) sin k(x-xo -2 sin pOz sin 11ozo
l+sgn(x-x0) 1-k

- -k dk

r k/(k2 -r 2 )

where P0r = (ki 2 +1)ki- 1 /(ki 2 +r 2 ). This version is preferred

because numerical convergence is improved in x < x 0 , and because there are

no singularities (except ki = =) in the first integral.

The numerical integration of the damped modes is truncated at the

smaller of the limits ki = 1/(e) and ki = (log iex')/x', where x' -

Ix-x0+a(z-zo) . It can be seen that the absolute truncation error is then

bounded by e, which is taken to be .01. The plane-wave integral is

truncated at k = 30 and, near the inertial singularity, I = 30. The

branch-point singularity is removable if r * 1.

The integration is carried out using the Romberg scheme (iterated

Simpson's Rule) on subintervals of variable length determined by the

condition that the phase of the primary and reflected waves vary by no

more than 27. The solutions to be shown are contour plots of 1500 data

points (50 horizontal by 30 vertical). The calculation time for each

point averages about 1 sec on a PDP 11/44 computer.

Attention will be focused on two aspects of the solutions. The

first is the maximum amplitude of the streamfunction, Ym, or what is the

same, the mass flux beneath the center of the circulation. The quantity

'm/zO is the upper bound on the vertically-averaged downstream

deceleration, and therefore measures the effectiveness of the waves in
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removing disturbance energy. For comparison, note that in the absence of

pressure and Coriolis effects, a nondimensional streamwise frictional

forcing of unit amplitude implies ux = -1, or if the friction begins at

x = 0, u(x=l) = -1.

The other relevant aspect of the solutions is the baroclinic

effect on the upstream deceleration, which is expected to favor blocking

when a < 0 and zo is large. Solutions will be obtained using different

forcing heights and for the three the cases a = 0 and 3 = ±0.6 (r = 0.8).

Negative forcing will be used for the sake of physical relevance.

In the first set of solutions, shown in Fig. 2.4, the source is

placed at x 0 = 0 and z 0 = n/4. The fact that the circulation is centered

at the forcing level, rather than above or below the source, reveals the

importance of the inertia waves in determining the horizontal mass flux.

However, the nondispersive part of the gravity-wave contribution adds

considerably to Tm. Setting x-xo = 1 and z = z0 = N/4 in (2.25) yields

TG = -0.25, or over half of the computed value of Tm = -0.47 in the

barotropic solution.

On the basis of the present solution and those to follow, it

appears that the result CI 
= -0.22 obtained in section 2.4 is a good

practical estimate for the inertia-wave contribution. However, it can be

verified that (2.25) gives the position and amplitude of subsequent crests

in the downstream wave train much more accurately. For smaller z0, the

amplitude is overestimated by (2.25), as the reflections begin to

interfere. On the other hand, because the inertial response has little

dependence on z0 for higher forcing, the average downstream deceleration,

'm/zO, is maximal when z0 = 1. Negative forcing at this level yields an

average u = -0.6 below the source.
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Fig. 2.4. Steady perturbation streamfunction for negative line-source
forcing at xO = 0, z0 = 'r/4, assuming 0 = (a) 0, (b) -0.6 and (c) +0.6.
Contour interval is one-tenth the forcing strength.
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The absence of an upstream disturbance in the first solutions

shows that the long and intermediate waves, p « 1 and p = r, are

negligible for z0 somewhat smaller than unity. The quasi-geostrophic

contribution is nevertheless responsible for the obvious distortion of the

phase surfaces along x = z-z0 in the warm-advection case. This surface,

shown in the figure as a dashed line between the basic absolute momentum

and buoyancy surfaces, is the major axis of the elliptic long-wave

response centered at the source. In the cold-advection solution, the same

line would be the minor axis.

The baroclinic solutions show clearly the expected wavelength

modification in the gravity-inertia lee waves. In further agreement with

the stationary-phase analysis, there is relatively little energy above the

source in the case 8 < 0, and a relatively large amount in the

cold-advection case (recall that the baroclinic buoyancy wave energy

propagates upward when f > 0). A final point of agreement with the

analysis relates to the vertical gradient above and below the forcing

level. Because of the deflection of the barotropic inertia waves, the

strongest gradient (or phase shift) appears above the forcing in the

negative-a case, and below in the positive-0 case. This particular effect

will be more apparent in the topographic solutions, which are free of

reflections.

Putting the source at z0 = 7/2 (Fig. 2.5) allows a somewhat

stronger long-wave contribution, with a noticeable upstream disturbance.

The barotropic gravity-wave contribution in this case brings the

circulation center nearer to the source. With z = z0 = n/2 in (2.25), the

maximum theoretical contribution is YG = -1/(fe) = -.12 and occurs close
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Fig. 2.5. As in Fig. 2.4, except z 0 = r/2.
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to the source at x = 1/e = .37. Taking 'I = -. 22 and 1qg = -(log 7)/

(27) = -. 18 [from (2.18)] for the remaining contributions yields a

surprisingly good estimate for the computed value, Tm = -.58, in the

barotropic solution. Note the striking effect produced by the separation

of wave energy into pure gravity and pure inertia modes in the positive-8

solution.

In the remaining solutions, a major part of the disturbance occurs

upstream from the source. First, note that for the choice z0 = w (Fig.

2.6), the analytic estimate Ym - -.29 (k < 1) - .22 (k 1 1) - .00 (k >

1) once again comes close to the computed value. The dispersive part of

the buoyancy disturbance is evident for the first time in Fig. 2.6b, where

S = -0.6. The crest of the buoyancy wave-train occurs, as predicted, at z

= 2.2, where the sine argument in (2.27) hase the value R/2.

The buoyancy disturbance is significantly enhanced when S < 0 but

remains rather confined to the vicinity of x = xO in Fig. 2.6. The slope

of the M-surfaces, shown by the dashed line through the source, gives an

indication of the horizontal scale of the baroclinic waves (the vertical

scale being unity). Much of the upstream enhancement is due to the

quasi-geostrophic contribution, whose major axis is also indicated.

The source in the final numerical solutions (Fig. 2.7) is placed

at z0 = 3f/2. This height is about 2.3 km when Uo = 10 m/s and N = .02

s-. The solution shows that the negative shear causes a doubling of

the low-level upstream deceleration as far out as x = -3. When 5 < 0, the

vertical gradient of T is greatest near the ground, where the

downstream-propagating reflections are largely confined. Although the

forcing level is somewhat high for the physical problem studied here, the
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potential for some baroclinic enhancement of the upstream influence is

clearly established.

2.7 Baroclinic response to topographic forcing

The solution for an inhomogeneous lower boundary condition and a

barotropic basic state was first obtained by Queney (1947), who also

worked out certain details of the non-hydrostatic and beta-plane

solutions. The one-dimensional (z = 0) Green's function has been further

analyzed by Pierrehumbert (1984). Since much of the analysis required to

generalize the results to baroclinic conditions has been covered in

sections 2.4 and 2.5, the technical discussion of the baroclinic

mountain-wave problem will be brief.

For a mountain profile go = 6(x), the steady linear response

expressed as a perturbation streamfunction is

1 r _z
T = f exp(-o0iz) cos k(x + -k2) dk

(2.32)

+ 1 r cos [k(x + -- z + poz] dk
r 1-k

where P0i = (1-k 2 )-1 kV(r 2 -k 2 ), p0 = (k2-1)-k(k 2 -r 2 ), and r =

1- 2 , as before. The horizontal transform has only the essential

singularities at k = 1 and k = c, while the equivalent integral over i has

an additional singularity at p = r. The essential singularity at k = 0, P

= 1, is not integrable at x = 0 (directly over the mountain).

The asymmetry between k and p is of course the result of the

boundary inhomogeneity. The non-integrability of the pole, or branch

point if 0 = 0, at p = 1 implies that the streamfunction amplitude, in
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addition to its horizontal derivatives, is determined by non-dispersive

buoyancy waves along x = 0, as will be seen in the formal near-field

approximation.

Consider first the long-wave approximation of (2.32), which will

be familiar as the quasi-geostrophic solution. The effect of is

exactly as in the response to interior forcing, namely a transformation of

the coordinate variables. Thus, the long-wave limit,

1 00
qg = f exp(-rkz) cos k(x+Oz) dk, (2.33)

can be evaluated as

1 Zqg X2+Z 2  (2.34)

with X = x+az and Z = rz. The other transformations mentioned in section

2.4 are not useful. The further limit qg + 6(x) = go as z + 0 shows

that (2.34) and the remaining contributions are not additive at small x.

The Green's function has -a8qg/az < 0 everywhere on the

boundary except at x = 0, where there is infinite acceleration. The

corresponding flow over an isolated broad mountain is accelerated within

roughly a half-width from the summit, and decelerated elsewhere. Thus,

since w necessarily changes sign at the top, the two meridional velocity

components are out of phase. The velocity can be written generally as

u = ruo - wo
(2.35)

A w
w = w ,

where u 0
= -8/3Z and wg = _//aX. The amplitude of the vertical component
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is of course unaffected by the baroclinicity. However, because of the

phase relationship between u and w, the region of accelerated flow is

shifted streamwise a distance of order B. As a result of of the 1/x 2

dependence in (2.34), the upstream deceleration is then somewhat less

significant if a < 0. A physical interpretation of this effect was given

in the discussion of the long-wave response to interior forcing.

The stationary-phase analysis for the far-field wavy response

naturally leads to the same expression for the phase, ps, as shown in

(2.21). However, the amplitude in this case depends only on the second

phase derivative, kk. If the definition a - z/x is used, the estimate

to first order in a can be written

1 cos( s + f/4)
sp 7 x ( 2 / 3 (1+ 2 / 3 ))1/ ( + ). (2.36)

Here A = -(1/3)[ (a1/3 +-1/ 3 ) _ (1/2)(al/ 3+a- 1 /3)-1/ 2 ] is

strictly negative, contrary to the analogous result for Ysp.

Since A has the same sign as the correction for the stationary

wavenumbers ks and ps [see (2.20)], the sign of 0 turns out to have a

more important effect on the lee-wave velocity field when the forcing is

topographical. Applying the forcing amplitude to the vertical velocity,

rather than to higher derivatives of T, is also responsible for the

above-mentioned short-wave singularity, and the fact that the estimate

does not decay in the vertical for fixed x.

The horizontal near-field approximation contains the familiar

Green's function for nonrotating mountain waves, namely,
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SG = 6(x) cos z - - sin z + CG . (2.37)

Recall from section 1.4 that the validity of the first part of the

approximation is restricted to a z-dependent radius, in this case xI <

z-1/2 < i.

The dispersive contribution to TG, found by changing variables

in (2.32) and setting x = 0, is infinite when 5 = 0. Hence the short

waves completely determine the streamfunction amplitude near x = 0 in the

barotropic case. For 8 * 0, an additional contribution from the

baroclinic gravity waves appears. Since dp/dk = +(2/r2 )V(P -r2) near the

stationary wavenumber, v = r, the contribution is found to be

r 2 cos(rz + f/4)

CG = 2 2 (, 8 > 0, (2.38)
/(2xrrz)

or 0[(1-r)- 1 z- l] if a < 0, where it is assumed that z > 1/(1-r).

Because of this restriction on z, the result is irrelevant for very small

The integration constant for the vertical near-field approximation

is trivial: C, = 0. Hence the analysis of the inertial disturbance is

more usefully applied to the vertical derivative of the streamfuncton.

Except for an overall factor, the nondispersive part of a8/Dz is the same

as for T in (2.28). Thus,

TI/Dz = z sin x + CI'. (2.39)

An expression for -CI' is given by Pierrehumbert (1984) as the Green's

function for u(x) on the boundary. Unlike CI, this contribution has no
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extremum near the forcing (mountain), so little is gained by considering a

longer expansion of the integrand, u(k)exp(ikx), in powers of k-1 E <

1. For reference, Pierrehumbert's result is given as

=- ( /2 sin(x + ) . (2.40)

Close to the mountain, the vertical derivative of the horizontal

near-field estimate (2.37) is additive.

It is noted once again that the near-field estimate (2.39) breaks

down around z = x- 1 / 2 . In this case, the restriction does not imply

an effective value for the Froude number, which is not a length scale in

the mountain-wave problem (the "forcing" excites all vertical scales).

However, because of the underlying hydrostatic assumption, the physical

depth of the region in which (2.39) is valid is indirectly limited by the

rotation. That is, the length scale U0/N must not become so large (via N

+ 0) that f/N is not small. No such restriction applies to (2.37), which

is valid at an arbitrarily large dimensional radius as Uo/f + , provided

a steady state is still possible.

Some of the foregoing conclusions will be verified next by

numerically evaluating certain topographic solutions. Because the actual

Green's function is unbounded along x = 0, "bell-shaped" mountain

profiles, specified by g0 (x) = (1+x
2/92)- 1, will be substituted for

6(x). The numerical approach is as follows. The Green's function, with

the unbounded gravity-wave contribution formally removed, is obtained

first in essentially the same way as for interior forcing. This result is

integrated numerically over go(x) to obtain the rotating part of the

solution for the regular mountain. Finally, the gravity-wave contribution

is calculated separately using (2.37) and added.
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The mountain half-widths in Figs. 2.8 and 2.9 are X = .5U 0 /f and X

= UO/f, respectively. What is most noteworthy in both figures is the

negligible, but adverse, effect of negative a on the upstream

disturbance. Clearly, low-level upstream enhancement requires an elevated

source when 8 < 0. Also in accordance with the ray-tracing analysis, the

cold-advection solutions feature large-amplitude vertically-propagating

disturbances which resemble solutions in the nonrotating limit.

The baroclinicity has an equally striking effect on the surface

velocity within the inertial wave-train. Near x = 3, setting 3 = -.6 more

than doubles the negative values of u at the ground compared to 8 = 0.

The surface velocities at x = 3 in Fig. 2.8 are roughly -0.5 U0 (3=0),

-0.1 U0 (S>0) and -1.0 U0 (j<0). This contrast results from the vertical

deflection of the energy in the barotropic inertia-waves, as discussed in

section 2.3.

Another difference between the the Ro = 1 and Ro = 2 solutions is

in the strength of the trapped (quasi-geostrophic) contribution. It can

be seen that the phase surfaces are most strongly affected in the case of

the broader mountain, and especially if B < 0. The bias toward positive

values of the streamfunction is generally due to the long waves, as

expected from (2.34). It can also be verified that the far-field phase

surfaces conform closely to the stationary-phase prediction: x 2/ 3 +

z2 / 3 = const.
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Fig. 2.8. Steady perturbation streamfunction for bell-shaped mountain

ridge of width Ro - 1 = 1/2, centered at x = 0, assuming a = (a) 0, (b)
-0.6 and (c) +0.6. Contour interval is one-tenth the mountain amplitude.
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CHAPTER 3. RESPONSES TO DISTRIBUTED FORCING

The linear results of chapter 2 will be applied here to a small

number of hypothetical forcing scenarios. Many of the assumptions to be

made follow earlier attempts to model highly-nonlinear forced

disturbances. As discussed briefly in chapter 1, efforts of this kind

have typically led to good qualitative understanding without yielding

elegant or quantitative results. Thus, the goal in this chapter is only

to establish the consistency of the proposed orographic mechanism with

easily accessible details about the amplitude, dimensions and shape of

linear disturbances in a minimal environment for frontogenesis. The

alternative mechanisms involving surface friction and diabatic effects

will also be examined.

The first step in the analytic approach is to establish the role

of interior forcing, whose relevance has heretofore been inferred from

observations and numerical simulation. Under certain assumptions, the

sources written into the linear equations (2.2) may be considered to

include the nonlinear advection of momentum and temperature, as determined

by some independent (locally-valid or superimposed) disturbance.

Specifying this disturbance can be likened to making a closure hypothesis

in a theory for turbulent mixing. One approach to closing the system

(2.2) is to postulate weak nonlinearity and use a known linear, or

simplified nonlinear, topographic solution to evaluate the source terms.

The other approach is to assume the existence of highly localized regions

of turbulence capable of launching a wide spectrum of propagating waves.



-88-

Implicitly, both concepts use a non-interaction hypothesis, which

considers the disturbance forced by the nonlinearity to be incapable of

systematically weakening the presumed forcing. The theory of coherent,

nonlinear shallow-water waves (e.g., Segur, 1973) in effect enforces

non-interaction through a solvability condition. However, the same

formality is not possible in cases of continuous external forcing, in

which the shape and amplitude of the waves are not adjustable. Moreover,

there is no significant interaction between stable, barotropic internal

gravity waves. The comparison will nevertheless suggest an interpretation

of the notion of "orographic adjustment" mentioned by Pierrehumbert and

Wyman (1985).

3.1 The role of interior forcing in orographic adjustment theories

The wave-generation theory of upstream influence assumes further

that the nonlinear conditions determining the forcing decay upstream fast

enough to preserve the basic state for the secondary linear disturbance.

This second hypothesis is needed in the Lighthill (1952) theory of jet

noise, and is implicit in Ley and Peltier's (1979) study of wave

generation through frontal collapse. PW have taken the turbulence idea

somewhat beyond speculation for barrier flow by showing the coincidence of

wave-breaking and upstream surges of horizontal long-wave energy. Since

the resulting "columnar" disturbance is more resistant to turbulence than

ordinary mountain waves, and can modify the environment without

qualitatively affecting the linear propagation, the barotropic mechanism

may be only weakly restricted by the localization hypothesis.



-89-

What is missing from PW's interpretation are details of the manner

in which the mountain height becomes imposed on the disturbance as a

length scale. They have, however, produced evidence for a type of

orographic adjustment process, in which the height of the mountain is

dynamically "adjusted" through the formation of a stagnant boundary layer

whose depth depends linearly on h as well as AG. It is reasonably clear

that the amplitude of the vertical streamline displacement, i.e., z' = h,

can be considered a length scale of the response as soon as the laminar

solution breaks down. However, since the convective patches first occur

high over the mountain, at a level independent of h, the adjustment

process at the ground probably depends in a complicated way on transient

waves and lower boundary reflections.

If the absence of strong downslope winds in coastal front events

can be taken as evidence, blocking in the baroclinic case must not be

related to wave-breaking. In fact, the nonlinearities attributable to

rotation and baroclinicity (notably the vertical advection of perturbation

potential temperature) differ from breaking waves in two important

respects. In the first place, the nonlinearity appears to be strongest at

low levels near the mountain, rather than at a steepening level. As a

result, the imposition of the mountain scale on the disturbance may be

more direct, particularly because, as noted in chapter 1, background

rotation makes it possible for an external vertical scale to determine

directly the horizontal scale of the response.

In a second departure from the wave-breaking process, low-level

deceleration enhances, rather than weakens, the baroclinic nonlinearity

through vertical shearing deformation. Thus, a non-dissipative
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two-dimensional flow appears to have no means of equilibrating the

nonlinearity as the disturbance evolves. It is therefore suggested that

orographic adjustment in this case is a process in which the nonlinear

effects grow stronger and more concentrated in a narrow layer separating

stagnant fluid below from a weakly-disturbed flow aloft.

This hypothesis is founded on the idea that an obstruction can be

effectively broadened by the presence of an adjacent stagnant pool. The

modified length scale is limited in theory to the deformation radius

determined by the mountain height. Orographic adjustment should therefore

lead to the condition RoFr = 1 relating the two limiting dimensions of the

modified obstacle. Given nonlinear near-field conditions, i.e., Fr > 1,

it follows that the adjusted flow above the obstruction has Ro < 1. In

that case, PW's barotropic simulations imply a negligible upstream

disturbance above the obstacle. Presumably, the entire adjustment process

fails in a moderately-nonlinear barotropic flow because (1) upstream

energy propagation is less efficient, and (2) the low-level deceleration

does not produce positive feedback.

The analysis of the nonlinear apparent sources in (2.2) will

require assumptions of weak nonlinearity, baroclinicity, or rotation.

These do not further restrict the overall analysis, because the upstream

linearity assumption already makes a complete analytic description of

blocking or frontogenesis impossible. The goal is simply to establish

formally a mechanism for positive feedback which is unique to the

warm-advection situation. The feedback will be measured from steady

solutions, under the assumption that the nonlinear processes and initial

low-frequency transience only produce gradual shifts in the parameters
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governing such solutions. This weak form of Long's (1955) hypothesis was

identified above as a non-interaction hypothesis.

The proposed analysis is also incapable of showing how the

mountain height becomes a length scale in the response. That process may

be accessible by analyzing the weakly-nonlinear reaction to parameterized,

flow-dependent changes in the (effective) shape of the upstream terrain.

Such an analysis should first be perfected for a barotropic flow. Here,

the transition to a regime in which the mountain provides a vertical

forcing distribution will be assumed as part of the orographic adjustment

hypothesis. That is, it is expected that the mountain height will be

selected dynamically as a response scale if a positive feedback is

possible.

Interpreting the forcing terms in (2.2) as apparent sources also

brings in local time dependence as a forcing "mechanism". Intermittent

forcing is clearly involved in the wave-breaking theory, which requires

localized convective overturning, but will not be studied here in relation

to baroclinic blocking. In fact, all additional terms not directly

related to the horizontal temperature gradient or rotation will be

ignored. The justification is that the nonlinear terms vanish identically

on the right side of (2.3) when the steady, nonrotating, barotropic

momentum and temperature fields are used to evalute them (see Smith,

1977).

The possible sources of upstream energy are not limited to local

inertial effects. For example, the presence of a uniform temperature

gradient in y and the associated x-component of thermal wind introduces

several linear advection terms. In the three prediction equations, they
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are F u = -UU x , F v = -UlV x and Fb = -Ulb x - ayV, where Ul(z)

= -yZ, and y = -Uz/N = const.

The Ul-advection will not be considered further in this chapter

except to note that ray-tracing theory predicts a refraction of the

propagating waves as the local Rossby number varies along the ray path

(e.g., Klemp and Lilly, 1982). Suffice it to recognize that the local

Rossby number for a propagating mode increases downward from an elevated

source when By > 0, so that (1) no trapping can occur (Ro # r) and (2)

the streamwise group speed cannot change sign from negative to positive

(Ro # r/* +)

The focus therefore will be on the apparent heat source, Fb

-ByV, which establishes a mechanism for shearing deformation of the

horizontal temperature gradient. The neglect of the Ul-advection is

easier to rationalize if By is greatest near the ground, and if the

actual vertical shear is strongly subgeostrophic, as it appears to be in

nature. The effect of a critical level (U 1 = -1) above the source is

beyond the scope of the present work.

The survey of forcing scenarios in this chapter will include a

qualitative examination of friction and heating at the ground, which were

discussed briefly in chapter 2. A linear relationship between Fv and v

will be assumed for the transverse friction, and a step-like model of

surface heating and streamwise drag will be considered. The transverse

friction is of particular interest because observations of the parallel

surface wind in coastal front events show a weaker "drainage" flow than

might be expected with such a large ageostrophic component of streamwise

velocity.
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3.2 The effect of baroclinicity in the semi-geostrophic limit

Although fully nonlinear analytic solutions are not available for

the topographic problem, it will be possible to treat the semi-geostrophic

limit by means of a weakly-baroclinic generalization of the nonlinear

barotropic solutions found by Pierrehumbert (1985). The analysis

indicates an enhancement of the deceleration in the strongly nonlinear

regime which is, however, probably too weak to change the transient nature

of the upstream surge discovered by PW. Consequently, only narrow (Ro >

1) mountains ridges will remain candidates for blocking in laminar flows.

It was pointed out in chapter 1 that nonlinear semi-geostrophic

solutions are identical to the linear quasi-geostrophic ones except for a

coordinate transformation, and that the nonlinearity only weakens the

upstream deceleration and vertical shear. In appendix A, the coordinate

transformation is applied in the context of a baroclinic basic state. The

new vertical coordinate is the undisturbed height, 1, in units of fa./N,

and the dependent variable, X, is a streamfunction for the particle

displacements, x' and z'.

Thus if is the undisturbed (geostrophic) horizontal position in

units of X, X(x, ) satisfies

RoFr Xx = z-4 E z'

(3.1)
-RoFr Xg = x- E x',

in which x and z are also normalized by the semi-geostrophic scales, k and

faX/N. According to (A.3), with Ro < 1,
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Xxx + XC - 2 8Xx = -BRoFr J(Xx,k ), (3.2)

where the Jacobian is defined with respect to x and C. The variable X has

been scaled so that the lower boundary condition reads Xx = g 0 (x), with

go order-unity. The horizontal velocity is obtainable from X via u+1 =

(1+z')-1 = (1-x'x)-1 . Hence positive values of x'x correspond

to accelerated flow.

Now assume weak baroclinicity such that M < /IRoFr < 1, and

write X = XO + XL + "'*. There is no important loss of generality in

considering a bell-shaped mountain profile, g0 (x) = (1+x ) . In that

case, X0 = tan-1(x/(1+ )), and the correction satisfies

2 RoFr + 2(x2(+ (3.3)VX (x 2 + (+2 2 , X1 = 0 on 5 = 0, (3.3)

where V2 - a2 /ax 2 +a2 /@ 2 . It should first be verified that when RoFr = 0,

the correction produces a shift in the horizontal velocity pattern, as

found in the exact linear analysis of section 2.6. In the case of

negative B, the correction BXI has a negative center at an order-unity

height above the summit (since V 2X1 < 0 at x = 0), and indeed the maximum

surface wind is then shifted upstream, where the correction for x'x is

positive. [The reduction of u at the summit is an 0( 2) effect which

cannot be deduced from (3.3)].

When RoFr > 2, BXi becomes positive at low levels over the

mountain, and the nonlinearity offsets the purely linear baroclinic

effect. To obtain a conservative bound on the resulting surface

displacements, note that the area integral of the nonlinear contribution

to the right side of (3.3) is (4/3)RoFr. Hence, taking zo = 1 in the
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long-wave analysis of (2.13) leads to k11 < +(4/3)RoFr/(27) along C = 0,

as compared with (1 = x/(+x 2) < 1/2 in the linear solution of (3.2).

It thus appears superficially that the correction is not negligible for

RoFr >> 1.

However, PW1's simulations show that the semi-geostrophic solution,

by neglecting meridional accelerations, considerably overestimates the

actual displacements when RoFr > 1. Thus, although the breakdown of the

laminar solutions for broad topography may be delayed through the

reduction in lee velocity, it is reasonable to conclude that the actual

nonlinear contribution to x does not grow fast enough to change the

character of the breakdown at (or beyond) RoFr - 3. The expansion

assumption JBRoFr < 1 strongly limits the size of a near the breakdown,

but it can be tentatively assumed that the laminar solutions behave

similarly for larger < i.

To give more generality to these conclusions, consider now the

problem of semi-geostrophic flow over a smooth step. An analytic solution

is given by X0 = (x/r)tan-1[x/(1+C)] - [(1+C)/27]log[1+x 2 /(1+C) 2 ], which

is simply the normalized horizontal integral of the previous result. It

is clear from inspection that the Jacobian of the resulting displacements,

z 0 ' = (RoFr/) tan- 1(x/(1+0)) and xO' = (RoFr/2f) log(1+x 2/(1+C)2 J,

vanishes identically. Hence, the solution of the linear part of (3.2)

includes the nonlinear effects to 0( 2 ) for this terrain shape. The

correction for negative a makes the low-level horizontal displacement more

negative upstream, but the surface velocity is actually increased

everywhere, according to (2.35) with Sw < 0 and r - 1 (although the

next-order correction yields decelerated flow far downstream). The more
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negative upstream x' in the case of negative 3 implies increased surface

divergence.

The smooth step thus appears to present an even weaker obstacle

when the basic state is characterized by warm advection. The

unboundedness of the solution for x' requires some comment, however. It

is well-known that plateau topography does not permit a nontrivial steady

solution in the absence of rotation, because of an excessively constrained

relationship between the adverse pressure gradient and the horizontal

convergence. The f-plane solution is possible because of an additional

conversion of potential energy stored in the basic horizontal pressure

gradient. Through this mechanism, the flow is permanently deflected

toward low pressure while ascending the step.

On the other hand, the details of the parallel flow make both of

the semi-geostrophic solutions unphysical at very large Ixl. Since v is a

linear combination of x' and z', the parallel velocity slowly increases to

infinity as log lx in the plateau solution, while the same growth occurs

in the y-displacement (y') in the case of the isolated mountain. These

are artifacts of the equally unphysical assumption that the long waves are

two-dimensional, time-independent and inviscid. The solutions remain

useful only to the extent that the upstream boundary condition for v and

y' may be considered adjustable.

With respect only to the parallel flow and f=0 problems, the

isolated mountain solution resembles the Green's function for interior

sources studied in chapter 2. It is appropriate to re-emphasize an

important difference between these two which pertains to the dependence on

an external vertical length scale. If £qg is the linear operator in
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(3.2), the solution of tqg() = 6(z-z 0 )/(1+x2 ), subject to = 0 at the

ground, is

1 log (X-X 0 )2+( Z-Z 0 +1)2 (3.4)
qg = 4r (X_X) 2 +(Z+Z 0 +1) 2

where X = x+Bz and Z = rz. The corresponding velocity perturbation at the

ground may be expressed using the definition X = Z 0 +1 as

uqg(x,0) = - 0 )
2 + 2  (3.5)

The perturbation is negative everywhere, and decreases as 1/x 2 beyond

Ix-x01 = . Because the details of the forcing at the boundary do not

affect the response, these results are also representative of many smooth

vertical distributions with depth or decay scales of z0.

Since z0 = O(RoFr) in the semi-geostrophic solution, (3.4) and

(3.5) show that zo takes over as the horizontal scale of the response

below z = z0 when RoFr > 1. The corresponding dimensional distance is

the Rossby deformation radius, LD Nh/(fa). By contrast, the linear

mountain-wave response always scales with X, so that the interior forcing

has a wider influence than simple topography when RoFr = LD/£ is large.

This conclusion becomes important in the next section, in which the

advection of b and v by a non-semi-geostrophic meridional circulation is

considered.

3.3 Apparent forcing in the near field

The momentum and temperature fields in flow over a narrow barrier

produce a substantially different distribution of apparent forcing. On
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reverting to the scaling of chapter 2, the nonlinearity in the y-momentum

and buoyancy equations may be written Fv = -J(i,v) and Fb = -J(1 ,b) =

-BJ(P,v). Here, the buoyancy source has been expressed in terms of v by

using the result b = vy - r 2, which follows easily from the steady,

homogeneous form the equations for v and b in (2.2).

The formal justification for treating the near-field nonlinear

terms as sources must be based on i = O(Fr) < 1 or v = O(Ro-1Fr) < 1,

where the estimate for v follows from making a scaling change to L = X (R

= Ro) in (2.2b). Strictly, all but the O(Ro 2) gravity-wave terms xx +

xxzz cG(4) must be considered part of the inhomogeneity in (2.7)

when Ro > 1. Smith (1982) carried out the indicated large-Ro analysis

formally, but his assumption that the near-field topographic solution was

valid everywhere led to spurious far-field results (Pierrehumbert, 1984).

The intention here is to assume, less formally, that the source terms are

locally non-zero and can be evaluated from local solutions of the linear

topographic problem, £(4) = 0.

If such a solution is denoted by a zero subscript and inserted

in the right side of (2.9), the problem for the correction, 1, may be

written

( () J( 0 ,v 0), P1 = 0 on z = 0, (3.6)

where the expansion parameter (Fr or Ro- 1) is absorbed in 1. Since the

partial derivative is taken along an absolute momentum surface, it is

clear that baroclinic effects are potentially quite significant. In fact,

it will be assumed in the following that the partial derivative at

constant x can be neglected compared to the horizontal derivative. This
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simplification is justified if the mountain has finite amplitude and is

considerably steeper than the M-surfaces. It is also a convenient

assumption in that it allows i1 to be obtained from the horizontal

derivative of the solution of £(p) = J( 0o,vo), which in turn resembles the

problem for the Green's function if the Jacobian is predominantly of one

sign.

The y-momentum equation may be integrated to yield vo = - BO - uo,

where 0g - fXuodx', and the subscript denotes the near-field topographic

solution. Hence the advection of vo (and indirectly bo) may be written in

the form

J( 0 ,v 0 ) = -(u0 2+wOUOz). (3.7)

Both uO and the vorticity, ugz, are O(Fr). The x-integral reduces the

second term by a factor of O(Ro-1), but since the velocity components

are related by wo/u 0 = O(Ro), it can be seen that both parts of the

v-advection are formally of order Fr . The estimate for the long waves

contains the additional factor k 2 < 1. Hence, the nonlinearity is indeed

isolated near the mountain in the rotating topographic solution.

The Jacobian is negative upstream, then vanishes (along with uO

and wo) near the mountaintop, and remains small in the inertial lee-wave

disturbance, where the two components of advection have opposite sign.

1
The upstream region of negative v-advection for the case Ro- = 0.3 can

be seen by comparing the transform solutions for 40 and vo plotted in

Fig. 3.1. In general, the vertical component of the advection dominates

when Ro is large. Thus, the nonlinearity is primarily due to upward

motion in a reinforced vertical stratification. The reinforcement is

caused by tilting the basic horizontal temperature gradient.
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Let it be assumed that B is negative and large enough to make the

M-surfaces less steep than the mountain. Then, since the distribution

peaks with negative values on the windward flank of the mountain, a

positive source for 1I appears near the summit, with a somewhat broader

negative source of comparable strength upstream, according to (3.6). The

long-wave response to such a distribution is considerably reduced by

cancellation between the positive and negative regions, but this happens

only outside the "semi-geostrophic" radius A = z 0+1.

The effect is well illustrated by the x-derivative of the results

(3.4) and (3.5) for a single peak. Thus, for the dipole forcing, gl(x) =

-2x(1+x2 )-2, the surface velocity perturbation, written with

semi-geostrophic variables, is

u = JoFr 2(x-xo)X (3.8)
qg Ror (x-x 0 )2 + A2(3.8)

where x 0 is now the position of the peak value, -J 0 , of J( 0 ,v 0 ), and J 0

is normalized by fa2U 0 . The overall factor Fr estimates the vertical

integral over the forcing, while lf Ro arises from the horizontal

derivative. The maximum deceleration is thus of order -JoRoFr - 2 , which

varies inversely with RoFr, as does the response (3.5) to forcing of one

sign. However, (3.8) decays as x 3, rather than x- 2 , for large x .

The flow described by (3.8) is divergent near x = x 0 and

convergent everywhere upstream from x = x0 - XIA3. It is clear from

inspection of the Green's function solutions, e.g., Fig. 2.6, that the

total response to dipole forcing will exhibit the same type of pattern.

However, the horizontal length scales, as well as the amplitude dependence
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on Ro, will be determined by the relative importance of the long and short

waves. For moderate values of 8, the baroclinic gravity waves, with k =

0(1), will produce roughly the same amplitude as the Green's function

contribution, CG(z), except for the factors FrRo-1 (from integrating

the forcing) and I0Jo. It will be seen that the contribution from

the barotropic gravity waves, with k > 1, decreases more slowly than 1/Ro

at large Rossby numbers. The intermediate and short waves both tend to

reduce the width of the divergent region, and bring the convergence closer

to the source.

The barotropic gravity-wave contribution is easiest to describe in

the context of near-field topographic solutions, which requires a brief

digression. Recall that the gravity wave disturbance alternates on a

vertical scale of XG = Uo/N between two horizontal structures. These

are the mountain profile itself, g0(x), and its Hilbert transform, GO(x) =

r-l/g0(xo)dxo/(x0-x). For the bell-shaped mountain, it happens that

GO (x) = xg 0 (x), whence

A= Fr(I cos z Rox sin z (3.9)
1 + (Rox)2 1 + (Rox)2

This type of disturbance dominates the flow directly over the mountain

whenever Ro > 1. The amplitude of the corresponding horizontal velocity

perturbation is Fr, and thus does not reflect the width of the mountain as

in the semi-geostrophic result.

The Hilbert transform does not exist for a smooth step; however,

the divergence of the transform actually results from the long waves,

which are extraneous in a near-field solution. The near-field f-plane

disturbance can be seen after arranging for the unbounded long-wave
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contribution to appear at x= . Thus the integral of (3.9),

A 1 1

*G = Fr (- tan-(Rox) cos z - log (Ro 2 x 2 + 1) sin z) (3.10)

is accurate for the rapidly-varying disturbance near the step (in fxl <

1). The flow at the ground remains convergent throughout x < 0, in

contrast to the semi-geostrophic result given in the previous section.

Moreover, the logarithmic behavior is accurate out to jxl = 0(1), so that

if Ro is large, the topographic step presents a particularly strong

barrier to the flow.

According to (2.24), the mountain-wave structure must be

multiplied by sin z, and integrated with respect to x to obtain the

near-field response to the interior forcing. To highlight the small-x

structure, let the horizontal distribution of J(ip,vo) be represented

simply as gl(x) = -J 0 , and its Hilbert transform as Gl(x) = -J0 vx. The

response below z = z 0 is then

G j Fr sin z (cos z0 - Ro(x-x 0) sin z0) (x-x0). (3.11)

Only one integral is required because of the horizontal derivative

contained in (3.6). The factor Fr is due to the vertical distribution, as

in (3.8).

In general, v is proportional to the area under the graph of gl

and the linear Taylor coefficient of gl. The familiar choice gl(x) =

1/(1+x2), has v = 1, while the Gaussian distribution with the same

half-width, i.e., gl(x) = exp(-x2log2), has v = 2[(log 2)/n]1/ 2 = .94.

The first derivative of the Gaussian thus produces a slightly weaker
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symmetric response. This is more significant in the topographic solution,

in which the Hilbert transform determines the surface velocity

perturbation. The surface velocity in the case of interior forcing is

uG  - 8 JoFr (cos z 0 - V#Ro(x-xo) sin z0) (x-x 0 ). (3.12)

Thus for f/2 < z0 < n, the barotropic gravity waves offset the low-level

divergence found close to x = 0 in the baroclinic gravity-wave and

long-wave contributions. If a bell-shaped mountain is intended, the

second term in (3.12) is an approximation of the same logarithmic

structure which produced low-level convergence in (3.10), but here has an

overall factor Ro-'. The short wave contribution then vanishes as

log(Ro)/Ro for large Rossby numbers.

Fig. 3.2 presents contour plots of the perturbation streamfunction

in a baroclinic flow (8 = -0.6) forced by the dipole source gl(x,z) =

6 (z-zo) d/dx (1+Ro2x )- 1. The two cases shown are for Ro-1 - 0.5 and

Ro-1 = 0.3. The forcing is assigned an amplitude of -100 and centered

at x0 
= 0, z 0 = /2. It can be seen that the velocity perturbation

contains significant upstream low-level convergence, and attains an

amplitude of about U0/3 at the ground just upstream from the center of the

forcing. The response is somewhat weaker for the narrow distribution

(Ro-1 = 0.3), for the reason just cited. Notice that the analysis also

predicts an acceleration of the flow in the lee of the mountain.
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3.4 Alternative mechanisms for coastal convergence

The alternative primary mechanisms for convergence and

frontogenesis involve sharp horizontal gradients of boundary-layer heating

and friction. These can be crudely modelled by specifying the forcing as

F = -T - 1 sgn x exp(-z/Fr), (3.13)

where T is the nondimensional time scale, in units of 1/f, for the heating

or friction, and Fr is the nondimensional boundary-layer depth for the

parameterized forcing processes. Recall that the buoyancy is normalized

by NU0 . Since this is not as practical as N2h in the present context, the

heating time scale will be written as Tb = Fr-l(frb*), where Tb*

is defined as the dimensional time required to heat the air by an amount

N2 h. The frictional time can be written simply as Tu = fTu*, where

Tu* is the time needed to decelerate the mean flow to rest. These are

not strictly e-folding times since (3.13) does not depend on the

perturbations.

It is emphasized that the forcing times refer to the differences

between sea and land. If the physical problem requires it, the

antisymmetric horizontal pattern in (3.13) can be changed so that F

vanishes on either the upstream or downstream side of the coast, which is

placed at x = 0. Such a change affects the variables v, p and b, but not

the meridional circulation.

To further simplify, note that the vertical structure in (3.13)

has a sine transform, f 0"exp(-z/Fr)sinpzdz = Fr 2 1(1+Frp2 2) - I , which

resembles that of a concentrated source at z = Fr, i.e., Frj6(z-Fr)sinzdz

= Fr sin(Frp), for Frp < n. Hence the response to the smooth distribution
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in (3.13) is reasonably well represented by all but the rapidly-varying

part of the response to a concentrated source of strength Fr at z = Fr.

With this simplification, the problem for both the frictional and

"embedded land-breeze" disturbances is just the Green's function problem:

t(*) = -FrT-16(x)6(z-Fr), where T = fTb* or fTu*.

For quite a range of Froude numbers, the solutions of chapter 2

all indicate a maximum deceleration of the mean flow of about UO/2 at the

ground just downstream from a source of unit strength. Thus, a surface

drag can be considered as a possible primary frontogenetical mechanism,

with a direct nonlinear effect on the flow, if Tu = 0(1), or Tu* is on

the order of 3 h. Whether this is a reasonable frictional time depends on

the actual land-sea contrast, as well as the depth of the boundary layer

and the efficiency of the mixing. A typical mixing coefficient of K = 5

m 2/s (Orlanski and Ross, 1977), in conjunction with a no-slip boundary

condition, requires a boundary-layer depth of h = /(K/Tu*) = 200 m if

Tu = 1. It is not likely that such a shallow frictional boundary layer

could be maintained without an exceptionally strong static stability,

which is also needed to keep Fr = 0(1) for such shallow forcing. Yet in

reality, the ocean-heated air in the coastal front events has relatively

weak static stability.

To assess the strength of the boundary-layer heating, note for

example that N2h = 6 K when N = .02 s- 1 and h = 500 m. A heating rate

of 6 K in 3 h is not impossible in nature, but clearly could occur only

over water, and only during a period of large-scale cold advection. The

indication, therefore, is that the coastal heating contrast may be

significant briefly during the initial stages of the frontogenesis. The
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same conclusion was reached tentatively in chapter 1 on the basis of the

apparent connection between an early onset of coastal convergence and an

especially strong land-sea thermal contrast.

The two remaining mechanisms are secondary in nature, i.e.,

consequences of an independently forced convergence. Consider first the

effect of an apparent heat source, Fb = -yv, made possible by a basic

temperature gradient parallel to the primary forcing (note: 3y =

f-IN- 1By, where By is the dimensional buoyancy gradient). It is

assumed that v is induced independently by topographic or other causes, so

that the apparent heating is strictly a secondary mechanism.

The combination of y and a sheared horizontal flow v(x) either

establishes, or modifies, a streamwise component of temperature gradient,

and forces a thermally direct (relative to the secondary gradient)

meridional circulation. Recall that horizontal shearing deformation

provides the primary mechanism for frontogenesis in the nonlinear Eady

problem (Hoskins and Bretherton, 1972). In general, if v varies linearly

in x, the x-gradient of temperature will vary linearly in time.

In view of the homogeneous equation for v, the response to the

apparent heating is governed by

t(9 ) = +ByU0, (3.14)

where u0 is the perturbation velocity associated with the primary

disturbance. In the case of positive By, which is relevant to the

coastal front, the equation for 1 has negative sources in the decelerated

regions of the main disturbance. Since such forcing creates additional

low-level convergence in phase with the primary convergence, shearing

deformation clearly provides a positive feedback when y > 0.
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It can be shown that the potential vorticity of the flow is

proportional to rl2 - 1-(B 2 +By 2 ), which is therefore constrained to be

positive. In particular, Sy is not expected to exceed unity unless the

associated vertical shear is subgeostrophic. In any event, the source

strength in (3.14) is O(Fr y) for the topographic disturbance, or

O(FrT-1 y) for the streamwise friction or diabatic forcing.

The qualitative effects of a transverse frictional stress are also

within fairly easy reach. Let the forcing be given in this case by Fv =

-Tv 1 vs(x) exp(-z/Fr), where vs is the perturbation parallel flow

at the ground, and the friction time TV is normalized by 1/f. The

maximum in vs coincides with the maximum upstream displacement from

geostrophic position, as well as the point of zero streamwise velocity

perturbation if the flow is steady. Although the linear near-field

solution has vs = O(Ro-1Fr), it is clear that the actual parcel

displacements, and therefore vs, can be larger than indicated by the

linear results in areas where the flow verges on stagnation. Of course,

the role of the y-momentum is to minimize the barrier effect and prevent

stagnation, but the Coriolis force is relatively ineffective for narrow

mountains, or presumably if v is reduced by friction.

Two aspects of the response to y-friction will be emphasized.

First, a y-momentum sink acts more strongly on the large scales than does

the heating or streamwise friction, as shown formally by the lack of an

x-derivative on Fv in (2.9). Since the Coriolis effect works

cumulatively with the large scales to reduce the barrier effect of an

obstacle, the transverse friction can have an important positive effect on

the prospects for blocking.
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The second qualitative aspect of the y-friction is that the

maximum surface velocity perturbation due to Fv must occur at a large

fraction of the distance XI downstream from the primary deceleration,

i.e., at the point where u0 = 0. The result is a downstream shift in the

zone of maximum convergence. Unlike the non-orographic primary mechanisms

considered at the beginning of this section, the more complete frictional

scenario thus appears to place the likely axis of frontogenesis well

onshore. Only the amplitude of the effect puts the frictional mechanism

in doubt as the primary cause of the coastal front.

3.5 Summary and discussion of analytic results

The goal of chapters 2 and 3 has been to study the simplest

physical system capable of supporting frontogenesis in a baroclinic

environment, under the assumption that all imbalances are externally

induced. Although the type of frontogenesis being modelled is

demonstrably nonlinear and time-dependent, the approach has consisted of

obtaining solutions for the steady, linear response to interior forcing.

Two arguments for the relevance of the linear approach have been

given in chapters 1 and 3. First, it is known from numerical and

laboratory simulations of barotropic flow past a barrier that the upstream

disturbance appears suddenly, as the result of wave propagation from

turbulent patches in the near field. It may be assumed that the

subsequent nonlinear development of blocked flow depends primarily on the

component waves which act on the upstream fluid parcels for the longest

time, i.e., the steady waves. The second way in which the linear

solutions are useful is in illuminating the baroclinic feedback, whose
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effectiveness, it appears, can be predicted from either a weakly-nonlinear

or a locally-nonlinear analysis.

The effect of baroclinicity can be reduced for analysis to the

dependence on a single parameter B, which is related to the Richardson

number. The two most relevant consequences for steady disturbances are

easy to understand physically. These are (1) the tilting of the

(quasi-balanced) long-wave response in the same direction as the B and M

surfaces (the result of additional sources of perturbation b and m), and

(2) the creation of a wider horizontal spectrum of vertically-propagating

gravity waves (the result of reduced generation of perturbation v). In

the case of basic-state warm advection (B < 0), in which the M-surfaces

have the same tilt as waves with downward group propagation, the

additional gravity-wave energy appears below the source and extends

upstream as well as downstream.

Together, the two effects imply that the purely topographic

response is weakened upstream when B < 0. Yet the orographic mechanism

central to the present study assumes a basic state characterized by warm

advection. Support for the orographic hypothesis therefore requires

either a recognition that the linear and nonlinear processes are entirely

distinct, or an assumption that nonlinear interactions can act as an

elevated source of considerable depth. The second possibility has been

pursued in chapter 3. In particular, the above-mentioned feedback

mechanism has been emphasized, rather than attempting to model transience

and turbulence (which may be unecessary anyway for frontogenesis).

To pin down the feedback mechanism, the nonlinear baroclinic

effect in two Rossby number regimes has been considered. For Ro « 1, the
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semi-geostrophic solutions are valid upstream if RoFr < 3, and these

implicitly take into account the barotropic nonlinearity. An additional,

explicit nonlinearity due to weak basic-state warm advection offsets the

linear baroclinic effect, which is known to diminish upstream influence.

However, the amount of compensation in the case of bell-shaped or plateau

topography is not significant until close to the point of breakdown of the

laminar barotropic solution. It has thus been concluded that the feedback

mechanism probably fails as long as the balance assumption applies in the

near field and upstream.

The nonlinearity arising from a non-semi-geostrophic circulation

(Ro > 1) can be expressed as a quasi-horizontal derivative of the

v-advection (assuming moderate ), and may be interpreted as the

consequence of a locally-reinforced static stability. The linear analysis

is directly relevant if the nonlinearity is localized or weak by virtue of

Ro-1 < 1 or Fr < 1. In view of the forcing-height dependence of the

line-source response, the latter assumption does not allow as strong a

feedback as when the forcing can be placed at the top of a

finite-amplitude mountain. However, this distinction largely vanishes

if the results are interpreted qualitatively for Fr = 0(1) and Ro = 0(1).

Beyond this, the analysis cannot describe the long-term consequences of

the feedback; however, a consistent long-term scenario was proposed in

section 3.1, and will be tested by numerical simulation in chapter 5.

The analysis confirms that the sign of the apparent near-field

forcing allows positive feedback through additional low-level deceleration

only in the warm-advection case. The approximate strength of the forcing

was obtained through a scale analysis; its further dependence on such
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details as the shape of the mountain and the baroclinicity will be

considered in chapter 5.

The line-source analysis produces a number of diagnostic results

of relevance to alternative theories of rapid frontogenesis. The induced

mass flux below the forcing can be estimated from separate asymptotic

analyses of k << 1, k >> 1 and i >> 1 (k = 1), corresponding to the

quasi-geostrophic, nonrotating and inertial limits. The surface velocity

perturbation is largest when the forcing height is O(U 0/N), which yields u

U0/2 at a fraction of the inertial distance downstream from a source of

positive unit strength.

The surface velocity estimate provides necessary conditions in

order for the strict "coastal" mechanisms, consisting of heating and

roughness gradients, to be considered primary causes of frontogenesis. It

appears that offshore heating produces the stronger steady response,

whereas the frictional mechanism has the virtue of placing the greatest

surface convergence well onshore, where it is also observed during coastal

front events. Both alternative mechanisms differ from the topographic

mechanism in that the forcing tends to grow weaker as the flow adjusts to

the heating or frictional drag. This distinction must be inferred, since

the adjustment process is missing in the linear model.

Apparent heating through secondary shearing deformation of a

transverse temperature gradient can be analyzed for qualitative

understanding by neglecting the associated thermal wind. Positive

feedback is easily demonstrated when the sign of the gradient is the same

as in the New England coastal front. The relative strength of the

secondary convergence equals the nondimensional gradient, By =

By/(fN), which can be as large, in nature, as the primary gradient B.



CHAPTER 4. A LAGRANGIAN NUMERICAL MODEL FOR RAPID FRONTOGENESIS

This chapter is concerned with the description and verification of

a Lagrangian grid-point model developed to simulate rapid frontogenesis.

The attention paid to the numerical modelling technique is thought

warranted for two reasons. In the first place, the method constitutes a

new way of integrating the time-dependent primitive equations for

two-dimensional incompressible flow. The second reason is that the

proposed model is suitable for a larger class of disturbances

characterized by extreme temperature and velocity gradients but slow

recirculation. The main features of the model will be summarized in the

last section so that a careful reading of the entire chapter will not be

necessary for continuity.

4.1 Overview of Lagrangian numerical modelling

A Lagrangian numerical method is chosen with the primary purpose

of resolving temperature and velocity fields on smaller scales than any

practical choice of grid spacing. Eulerian models are subject to the

effects of "numerical diffusion", in which the finite-difference advection

terms limit the strength of the simulated gradients. The conclusions

drawn from Eulerian simulations of large-scale frontogenesis, such as

those by Williams and Plotkin (1972), Orlanski and Ross (1979) and Keyser

and Anthes (1982), are probably not significantly influenced by numerical

diffusion. However, at scales more typical of atmospheric density

currents, transient energy can exist predominantly in the form of

nonlinear gravity-inertia oscillations. In such disturbances, the
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interplay of wave-steepening and dispersion, which is presumably critical

in rapid frontogensis, can be obscured by spurious dissipation.

It was mentioned in chapter 2 that non-hydrostatic effects are not

crucial in familiar instances of rapid frontogenesis. Nevertheless, the

proposed Lagrangian model makes no assumption of hydrostatic balance.

Unlike Eulerian models, which gain considerable simplicity from such an

assumption (e.g., R.T. Williams, 1967), the efficiency of the diagnostic

step of the Lagrangian model cannot be substantially improved in this

way.

Numerical models for the non-hydrostatic incompressible equations

are of two main types, distinguished by the diagnostic phase of the

computation. Vorticity-streamfunction models are widely preferred for

two-dimensional frontogenesis simulations (e.g., Orlanski and Ross,

1979). The streamfunction is obtained at each step by solving a Poisson

equation, V2  = y, in which the vorticity, y, is predicted directly.

The alternative is based on a diagnostic equation for the

pressure, essentially V2p = -V*(*Vw), involving the self-advection of the

meridional velocity w = (u,w). In this case, w is determined

prognostically. Velocity-pressure models are preferred for simulating

classical hydrodynamic instabilities (e.g., G. Williams, 1970), presumably

because they are more amenable to scale-dependent mixing and energy

conservation schemes. They are also more appropriate for

three-dimensional modelling, where no mass streamfunction exists.

The model to be developed here is closely related to the

vorticity-streamfunction treatment. A Lagrangian model using the

alternative velocity-pressure approach has been designed and tested by
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Hirt et al. (1970) for applications to homogeneous fluids with free

surfaces. The present model seems preferable for rapid frontogenesis,

because it better accommodates both buoyancy and topography. On the other

hand, the method of Hirt et al. should be preferred for simulations of

viscous and three-dimensional flows.

It is important to distinguish the fully Lagrangian treatments

from the use of "markers" or pseudo-Lagrangian advection schemes. The

marker-and-cell technique (e.g., Harlow and Welch, 1965) uses tracer

particles to predict the position of free surfaces, and the "semi-

Lagrangian" models (e.g., Bates and McDonald, 1982) in effect combine

backward and forward time-steps to improve the accuracy of the advection.

However, in both cases, the fields of dependent variables, including the

velocity, are defined on an Eulerian grid.

A secondary motive for developing a Lagrangian model is to achieve

accurate conservation of potential vorticity, a quantity which is known to

play an important role in balanced frontogenesis. The importance of

potential vorticity conservation has been noted in the numerical modelling

work of Eliassen and Thorsteinssen (1984), who simulated mountain waves

using a Lagrangian vertical coordinate.

In simple two-dimensional flows, potential vorticity conservation

is the result of the conservation of potential temperature, absolute

momentum and mass (Hoskins and Bretherton, 1972). In a Lagrangian model,

where tracer quantities are already exactly conserved, it is therefore

valuable to provide for accurate mass (i.e., volume) conservation, as

well. It will be shown that volume conservation between resolved material

surfaces can be achieved exactly in the spatial finite-differencing.
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Preserving this important feature then becomes a guiding principle in the

design of the time-differencing.

4.2 The Lagrangian equations

Hirt et al. (1970) resorted to volume integration and direct

manipulation of the finite-difference equations to avoid explicitly

transforming the continuous equations to Lagrangian coordinates. The

explicit transformation will be shown here to provide a more familiar

context in which to develop the finite-difference scheme.

As a first step, the standard dimensional vorticity-streamfunction

equations are obtained from (2.1a)-(2.1e) in their inviscid, adiabatic

form:

dy/dt = bx - fmz  (4.1a)

dm/dt = 0 (4.1b)

db/dt = 0 (4.1c)

V29 = y. (4.1d)

Here y = wx-uz is the horizontal vorticity, and m = v+f(x-U0 t) is the

intrinsic absolute momentum, i.e., the part due to ageostrophic

displacements in x. (The term Uot is replaced by an integral if U is

time-dependent.) In addition, the diagnostic relations, u = -Yz and w =

Px, are needed for the advection terms (dy/dt, dm/dt, db/dt). The lower

boundary condition for the inviscid equations is simply w = dzs/dt, or

(4.2)x = -go,(x) JlZ,
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where gg'(x) is the derivative of a height function, g0 (x) = zs/h. A

radiative upper boundary condition is the appropriate choice for the

intended mesoscale simulations.

Now let and define some alternative coordinate system for the

vertical plane. By assumption, the Jacobian J(X,Z) E 8(X,Z)/a( , ) of the

cartesian positions, X and Z, with respect to and r is strictly positive

(the upper-case letters are used to emphasize the dependence of x and z

upon , C and t). It can then be shown that the various differential

operators are related by

x ++ J(P,Z)/J(X,Z) (4.3a)

z ++ J(X,p)/J(X,Z) (4.3b)

d /dt ++ E + Z4 + 't, (4.3c)

where ( E d /dt and ( E dr/dt, and it is understood that each of the

partial derivatives on the right side is taken with two of the independent

variables , C and t held fixed. These transformations apply even if x

and z are not rectilinear.

The Lagrangian coordinates are determined by 0 = = 0, whence the

prognostic equations for the flow, derived from (4.1a)-(4.1c), are

Ft = J(b,Z) + J(fm,X) (4.4a)

mt = 0 (4.4b)

bt = 0, (4.4c)

with r yJ(X,Z). The equation of mass conservation, transformed directly

from (2.1e), and the definition of the vorticity, provide the two

diagnostic equations,
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J(X,Z) - J(i,X) = 0 (4.5a)

J(X,X) + J(Z,Z) = r(m,), (4.5b)

which can be viewed as a pair of coupled, first-order, inhomogeneous

equations for the velocity components,

Xt = X and Zt = Z. (4.6)

The conservation of J(X,Z) E A( , ) implied by (4.5a) was used to write

(4.4a).

Although the prognostic equations are now formally linear, the

diagnostic equations for the velocity are nonlinear because of the time

dependence of X and Z. This reverses the situation in the Eulerian system

(4.1). In addition, the velocity equations differ from (4.1d) in being

non-separable (in and C) unless XC = Zg = 0. The combination of

these characteristics shifts the computational workload even further than

usual toward the diagnostic problem, i.e., the solution of (4.5). As

remarked earlier, the hydrostatic approximation, J(i,Z) = 0, is not used

here since it offers no important simplification.

4.3 The grid and finite-difference scheme

The numerical grid produces a pattern of adjoining quadrilateral

cells with time-varying physical shapes. The most efficient scheme for

"vectorized" computation is achieved by making the Lagrangian coordinate

surfaces pass through pairs of opposite vertices in these quadrilaterals,

it being assumed that the lower boundary is a coordinate surface. Thus,

the vertex coordinates of the cell "centered" on ( i,ij) can be listed
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in counterclockwise order as ( i, j-AC/2), ( i+A /2, Cj), (gi,

Cj+AC/2) and (Ci-AC/2, Cj), as shown in Fig. 4.1. Note that the

C-surfaces are chosen to follow the terrain. At the solid lower boundary,

it is necessary to locate three (instead of two) vertices of each bounding

quadrilateral on the boundary itself. The solid boundary thus contains,

in effect, two of the C-surfaces, and is twice as well resolved in the

horizontal as the interior surfaces.

Because A and AC are arbitrary increments, the Lagrangian

coordinate system can be identified with the indexing scheme. In

discussing the details of the finite-differencing, the dependent variables

will be denoted with pairs of subscripts, as X( i,j-1/2) -

Xi,j-1/2, for example. Where necessary, single superscripts will be

used for time indexing.

The problem of mass conservation needs special attention. It is

easily shown that the physical volume of a quadrilateral grid cell is

exactly half of

2Aij = DEXij DgZij - D Xij D Zij E JA(Xij,Zij), (4.7)

where Dc and D are centered difference operators, e.g., DQXij

Xi+i/2, j - Xi-1/ 2 ,j. Differentiating (4.7) with respect to

time yields JA(DXij/at, Zij) - JA(3Zij/3t, Xij) = 23Aij/Dt.

Thus if (4.5a) is satisfied with the finite-difference operator JA

replacing J, exact mass conservation (Aij = const) is achieved without

regard to the mesh size, i.e., for arbitrarily large Aij.

Time-differencing errors will still be responsible for small

changes in the cell volumes. However, the volume-integrated divergence
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can be made to decrease as At 2 (where At is the model time step) either by

adopting a leap-frog scheme, or by including a correction term, Dij , in

the finite-difference form of (4.5a). The approach involving the Dij

will be used here for reasons of economy. According to this choice, the

dependent variables are staggered in time, with the vorticity and velocity

alternating with the particle positions and conservative variables, b and

m, as illustrated in Fig. 4.2. All of the time derivatives in (4.4) and

(4.6) can then be evaluated as centered differences. (The equations for b

and m may be ignored unless diabatic or mixing effects are introduced.)

The form of the divergence correction, or "apparent mass source",

Dij , is obtained as (B.1) in Appendix B. The greatest complication

arises along the topographic boundary, where the grid cells cannot be

treated as quadrilaterals. Thus, (B.3) specifies an additional apparent

source required for mass conservation in the finite-difference form of

(4.5) along the boundary.

The numerical scheme can now be outlined as follows. After

initializing the dependent variables, X, Z, X, Z, y, b and m, the two

vorticity sources (buoyancy and rotation) are evaluated. The vorticity is

then stepped forward according to

Dt .. = JA(bij ,Zij) + J (fmij,X ij), (4.8)

which corresponds to (4.4a). Next, the divergence correction is

evaluated, and used with the vorticity as a source in the diagnostic
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velocity equations,

JA(XijZ ij) - JA(ijXij) = Dij (4.9a)

JA(Xij,Xij + JA(Zij Zij) = ij ,  (4.9b)

corresponding to (4.5). After these are solved for the particle

velocities, the positions are stepped forward according to

DtXij = Xij (4.10a)

DtZij = Zij (4.10b)

[cf. (4.6)]. Similar equations for b and m are integrated at this time if

(4.4b) and (4.4c) contain sources. The new values of X, Z, b and m

determine new vorticity sources and the steps can be repeated. The

diagnostic algorithm used to solve (4.9) will be discussed in the next

section in connection with the boundary conditions.

The conserved quantity in (4.7a) has already been identified

as the finite ,area element Aij. It is also possible to identify the

entity on the right side of (4.7b). The expanded form of this expression

for the cell vorticity can be arranged as a sum over the four vertices,

r = 2 Vk Ask, (4.11)
k=l

in which Vk is the velocity component in the "tangential" direction,

i.e., parallel to the appropriate diagonal of the quadrilateral, and Ask

is the average length of the two sides meeting at the k-th vertex. Hence

(4.11) identifies rij as a finite-difference circulation integral.

Interpreting the second diagnostic equation in this way provides an idea
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of the model's accuracy as the cells become deformed through shearing and

stretching.

4.4 Boundary conditions

Successful techniques already exist for treating both open and

closed boundaries in Eulerian grid-point models. Most of these can be

adapted for the Lagrangian model with only simple refinements. Indeed,

the radiative boundary conditions chosen for the upper and lateral

boundaries are based on principles of linear wave propagation, and are

therefore simpler in the absence of explicit advection.

The greatest technical challenge is posed by the combination of

stationary forcing and strong mean flow. To keep the grid centered on the

forcing region (e.g., the mountain), it is necessary to add grid points

continually at the upstream boundary, while removing points at the

downstream boundary. However, it will be seen that extrapolating the

dependent variables to the new upstream points is essentially the same

process as advection, which has been largely worked out in the development

of Eulerian models.

The details of the lower boundary condition will be considered

first. The no-normal-flow constraint (4.2) is appropriate as one of two

conditions needed to solve the velocity equations (4.5). Following a

boundary grid point, the topographic slope, which is known as an analytic

function of position, must be made available concurrently with the

velocity and vorticity. A forward time step is therefore needed for the

surface position, Xin (and in practice does not compromise numerical

stability). Corresponding to (4.2), the lower boundary condition has the

the finite-difference form
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*n n *n n
Z,1 /2- g0o '(Xi 1 / 2 X1/2 i W. i = 1 to Nx, (4.12)

n n-1/2 n-1/2

where the inhomogeneous term i - Zi,1/2 - g0(Xi1/2)]/At is

simply a hedge against the points' drifting off the boundary. Since the

boundary contains two C-surfaces, the subscripts (i- 1/ 2 ,1) also apply in

(4.12), with i taking the same integer values (see Fig. 4.1).

At the lateral boundaries, periodic conditions are the easiest to

impose. However, some form of open boundary condition is necessary for

the accurate simulation of a large-amplitude response to isolated

forcing. An adaptation of the widely-used phase advection scheme of

Orlanski (1976) will be used here. It is important to recognize that,

because the scheme assumes a non-dispersive, linear disturbance, the

lateral boundaries are always capable of ruining long-term simulations

featuring nonlinear upstream (or downstream) influence.

The phase-advection boundary condition requires an estimate for

the local propagation speed c. For some predicted variable, p, the

estimate is based on the formula c = -(8p/8x)/(3 /t), or in

finite-difference form (at the left boundary, i = 1/2, with a factor

-2At/Ax removed),

n-2 n-2 n-1 n-1
n 212 -/2 , J 21/ 2 ,j - 1/ 2,j

c. = j, = 1 to N . (4.13)
J 'n-i n- 2' z

11 /2,j 11/2,j

In the present study, the variable p = Z is used. A three-point filter is

applied to the cj, which are first limited to one sign, corresponding to

outward propagation. Dependent variables at the left boundary can then be

predicted according to
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n n-1 l-cj + n-1 n j (4.14)
11/2,j 1/2j l+cj 1/2, /2,j (4.14)l+cj

which is a rearrangement of (4.13). The advection scheme is "upwind" and,

following a recommendation by Klemp and Lilly (1977), semi-implicit.

Similar equations are used at the right boundary (i = Nx, j = 1/2 to

Nz- I /2 )-

The phase speeds defined by (4.13) are also used to update the

velocities in a buffer containing two columns (i = -1/2 and 0 in Fig. 4.1)

reserved for the left boundary. At the end of each period Atbuf

Ax/U 0 , the buffer columns become the model boundary, and the two rightmost

columns of the grid are eliminated. The velocities and positions in the

buffer are initialized by assuming normal derivatives of the perturbations

vanish, e.g., XC = 1. The positions are subsequently updated according

to (4.10). The conservative variables are required to satisfy the

zero-normal-derivative condition, e.g., b = Bg, at the moment the

buffer becomes part of the domain.

At the upper boundary, an energy radiation condition is even more

crucial than at the lateral boundaries for accurate simulations of

mesoscale disturbances. In a stratified atmosphere, energy which is

generated with frequencies exceeding the Coriolis frequency tends to

disappear rapidly from the forcing region through the mechanism of

vertical group propagation. Although variations in background wind and

stratification, as well as nonlinear processes, can trap some of the

disturbance energy at low levels, it is important that these effects be

clearly distinguished from that of a reflective upper boundary.
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In Eulerian models, the use of a viscous absorbing layer beneath a

rigid upper boundary has been a successful method of effecting a radiative

boundary condition. This approach has been used recently in mesoscale

numerical studies by Orlanski and Ross (1977), Clark and Peltier (1977)

and Pierrehumbert and Wyman (1985). Scale-dependent dissipation schemes

are, however, considerably more difficult to implement on a Lagrangian

grid, and absorbing layers in general are costly of computer resources.

Fortunately, an elegant alternative is available which is

well-suited for the Lagrangian equations. The scheme is that proposed by

Klemp and Durran (1983), who found it was possible to sharply reduce the

generation of downward-propagating wave groups by applying principles of

linear gravity waves to the information contained in a one-dimensional

transform of the boundary data. The basic equation,

au.i/t = -N H _ wI , (4.15)
I=1

specifies the horizontal acceleration (au/3t) in terms of the entire

distribution of vertical velocity (w) along the boundary. The weights

Hn = (1+(-l)n)/(7n) are those of a discrete Hilbert transform, and N

is the constant buoyancy frequency at the boundary.

This particular form of the basic scheme was proposed by Garner

(1985) as a way of avoiding the explicit Fourier transforms and the

assumption of periodic lateral boundaries which were part of the original

design by Klemp and Durran (1983). Garner further showed that weak

background rotational effects and a baroclinic basic state could be

accommodated by including a modified Coriolis term in (4.15), and by
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replacing the wI with wIc-Bul, where aB - -Bx/Bz is the

slope of the basic isentropes. The amplitude of a plane-wave reflection

for given wavenumber vector (k,p) is reduced by a factor of order f p/(Nk)

by the two corrections. However, as a practical matter, the correction

for background thermal wind shear in large Rossby number simulations is

more important than the Coriolis correction in controlling reflections.

The appropriate form of the modified Coriolis term is (3u/3t)f =

-f(f+Vx)(x-U0t- ), where E is the initial horizontal position. The

finite-difference formulation of (4.15) must be semi-implicit to be

consistent with the staggered time scheme, which choice is also indicated

for computational stability. Best results are achieved by taking the

values of wI-aBu I from staggered positions on the two rows adjacent

to the one containing the predicted ui . The complete inhomogeneous

condition to be applied to the finite-difference equations at time tn is

then

n n- 1 NAt x (n' +X n

i i 4 = 1  I-1/2 , B I-1/2

(4.16)

- f 2 a 2 At (X n +1/2 Ut -

where the index j = NZ-1/2 is omitted and the second sum (*) is taken

over n' = n, n-i and j' = Nz-l, Nz . Because the lower boundary

condition is applied to two c-surfaces, (4.16) must also be satisfied on

the adjacent row, j = Nz-1, with i+ 1/ 2 and I replacing i and I-1/2.

The description of the basic model is now complete except for the

details in the solution of the diagnostic system. The solution procedure

is essentially the "error vector propagation" (EVP) method of Roache
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(1976), adapted to accommodate the non-separable equations and unusual

boundary conditions. The EVP method is entirely analogous to the

analytical technique of combining particular and homogeneous solutions of

a differential equation.

The particular solution is obtained first as follows. A set of

values (e.g. from the previous step) is used as a first guess for the

horizontal velocities along the lower boundary. Since the lateral

boundary velocities, X1 /2,1 and XNx,1/2 , are specified by (4.13)

or its downstream equivalent, the set of independent guesses is a vector

of length 2(Nx-1). The corresponding vertical velocities are found

next, either from (4.15) or (at lateral boundaries) from (4.14). All

terms in the expanded form of (4.9) are then known for the j = 1 cells,

except the four which involve the velocity components at the top vertex j

= 11/2 (i = 1 to Nx). For i = 1 to Nx-l, these components are

obtained by solving (4.9) as a system of two linear equations in two

unknowns. The downstream phase-advection prediction corresponding to

(4.14) is used at the right boundary to finish off the row.

Repeating the last two steps for successive rows eventually yields

values of X and Z on the top rows Nz-1 and Nz-1/2 . In general, these

velocities do not satisfy the upper boundary condition (4.16). Hence the

final steps in the procedure are aimed at finding a homogeneous solution

of (4.9), (4.12) and (4.14) which corrects the error in (4.16).

In the homogeneous form of the equations and boundary conditions,

lower boundary guesses are related linearly to upper boundary errors by an

"error-propagation" matrix of size 2(Nx-1). The matrix elements are

obtained by successively solving the homogeneous problem with lower
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boundary guesses consisting of all 2(Nx-1) unit vectors, as described by

Roache (1976). Finally, the product of the inverse error matrix with the

vector of upper boundary errors yields a vector containing the corrections

for the first guesses along the lower boundary.

The non-iterative nature of the EVP method is an important

advantage for Eulerian models. Specifically, note that the bulk of the

work occurs in computing the inverse error-propagation matrix, which is a

one-time calculation in a fixed-geometry model. The advantage need not be

entirely lost in the Lagrangian model if the simulated nonlinear processes

are slower than the linear wave motions. An economical treatment using

dual time steps is discussed in the next section, along with several other

model refinements.

4.5 Further refinements of the model

The heavy demand of computation time by the diagnostic calculation

can be alleviated by taking advantage of a natural separation of time

scales. The CFL stability condition on the time step is already somewhat

relaxed because the grid-relative phase speeds in the high-frequency

transients tend to be smaller in the Lagrangian frame. However, a much

more important savings results from the linearizing the diagnostic

equations about a state which can be updated less frequently than the

model variables.

The time interval AtL for the updating (which entails a long

matrix computation) is limited only by the time scale for the nonlinear

processes, and can therefore exceed At. A comparable separation of

computational time scales was used by Klemp and Wilhelmson (1978) to
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handle the high-frequency acoustic waves in their compressible model of

deep convection. In the present model, certain additional correction

terms become necessary in the velocity equations and lower boundary

condition in order to keep the time-differencing errors at 0(At2), rather

than 0(AtL2). These are described in Appendix B.

To see the equivalence of the linearized Lagrangian system and the

wave equation (2.4), consider a baroclinic basic state defined by B = N 2

+ fVz and fM = f 2 a 2 + fVze , with X = and Z = C. The linearized

diagnostic vorticity and divergence equations (4.9) are then

X' - Z' =0
t tc

(4.17)
-X + Z' = r,

t t

where the prime denotes a perturbation. The linearized form of the

vorticity prediction equation (4.8) is

rt = f 2 a 2 X' - N 2 Z' + fV (Z' - X) . (4.18)
t tc tc z tc tc

Differentiating (4.17) with respect to time, substituting for rt from

(4.18) and eliminating X' yields

Z' - f 2 a 2 Z' + 2fV Z' - N2Z' = 0 (4.19)ttc z E E

for the vertical displacement, Z'. But since 8/3t is the parcel

derivative and the flow is steady, 2/at2 = U0 2 2/2 may be used, along

with Z' = /Uo, to obtain the dimensional form of (2.4).

The next task in refining the model is to introduce a basic-state

meridional shear. This can be accomplished by setting X = U0 + Ul(z) in
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the initial and lateral boundary conditions. However, it is better to

avoid the resulting systematic deformation of the grid cells by treating

the sheared part of the linear horizontal advection as in an Eulerian

model. If the independent variables are redefined by

1 = UI(z) x , = Ul(z) x , (4.20)

where the x-derivatives are at constant z, then only the constant part of

the basic meridional velocity (UO) appears with the perturbation velocity

on the right side of (4.10), as desired.

If f t 0, the basic-state potential temperature must vary linearly

in y when U1 # 0, and y-advection terms will appear in the buoyancy

equation. With the absolute momentum defined as m = v + f(x-U0 t-Ult), the

prediction equations may be written

Yt = -Ul(z) Yx

mt = -Ul(z) mx (4.21)

bt = -Ul(z) bx + fUl'(z) v + Q ,

where fUl '(z) must equal the negative of the temperature gradient in y,

and Q E -f(UjV/8z - VUl') = -fUl 2 (V/Ul)/z. Notice that Q vanishes

identically if the basic shear is everywhere parallel to the wind in the

new Lagrangian frame. The derivatives in (4.21) are evaluated using

upstream differences and the formula (4.3a), except at an inflow boundary,

where the advection is set to zero.

Simulations of orographic disturbances can also develop large

perturbation shears capable of excessively distorting the Lagrangian
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mesh. Strong horizontal divergence can be equally damaging. For this

reason, the Lagrangian model is not useful in highly nonlinear situations

roughly characterized by Iu-Uol > 2U 0 . Although this constraint

eliminates the kind of blocked barotropic flows simulated by Pierrehumbert

and Wyman (1985), a range of moderately nonlinear baroclinic, and

potentially frontogenetical, flows with lu-U01 = U are not excluded.

However, these latter situations can be simulated with greater realism,

and numerical stability, through a combination of parameterized

subgrid-scale mixing and periodic remapping of the grid.

There are several reasons for introducing a viscosity

parameterization. In the first place, it becomes necessary in order to

include the effects of a surface drag. The mixing is also a purely

computational strategem in that it controls two-grid-space noise and

protects the linear boundary conditions from potentially damaging

large-amplitude, high-frequency motions. The unusual upstream boundary

scheme used in the present model can create extraneous shear layers of the

type that cannot be removed by gravity-wave propagation. They are,

however, easily controlled by scale-dependent mixing. In the baroclinic

simulations, an unrealistic vertical shear can develop along the lee slope

of the topography in association with a film of cold air in the lowest

grid points. This shear is reduced through eddy mixing of the

perturbation potential temperature, as well as velocity.

Only the simplest possible scale-dependent mixing scheme will be

considered here. The three prediction equations are re-written with
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viscous terms as

Yt =  K V2y '

mt = K V2 m' (4.22)

bt = Pr- 1K V2 b' ,

where the prime denotes the departure from basic-state, and Va2

a-2a 2 /ax2 + 32 /az 2 . The eddy-viscosity coefficient, K, the Prandtl

number, Pr, and the mixing aspect ratio, a, are taken to be constant. By

implication, the vertical and horizontal mixing lengths are uniform, which

tends to enhance the mixing in well-resolved regions. The bias is not

always realistic but can be tolerated in the pursuit of simplicity.

To begin the evaluation of the viscous terms in (4.22), fields of

centered-difference first derivatives are generated using the formulae in

(4.3). At the upper and lateral boundaries, the normal derivatives are

set to zero. At the lower boundary, the vertical derivatives are equated

with the appropriate parameterized surface fluxes, to be described next.

Obtaining second derivatives of y', m' and b' by applying (4.3) to the

first derivatives is straightforward everywhere but at the lower

boundary, where the mixing terms for m and b require one-sided vertical

differences.

The suface flux of momentum is based on the standard formula

(e.g., Ching, 1975)

K(Dus = Cd Us us , (4.23)

where the horizontal velocity us = (u'+U 0, v')s is evaluated at the
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ground using v' = m - M. If the drag coefficient is written as Cd =

Re-1Cd', where Re = UoH/K is the Reynolds number, then Cd' must be

0(1) or smaller if the vertical distance H is the boundary-layer depth

(taking Cd' = 0 imposes a free-slip condition). Orlanski and Ross's

(1979) standard choice of K = 5 m2 /s leads to Re-1 = 10 - 3 when U 0 = 10

m/s and H = 500 m. In all of the viscous simulations, H will be set equal

to the mountain height, and Re-1 = 10- 3 considered an upper bound.

Orlanski and Ross's choice a- 2 = 1000 will also be adopted consistently.

The mixing terms for the "half-cells" along the lower boundary

ought not be evaluated directly because of the anomalous vertical

resolution. Rather, mixing tendencies for the cell vorticity, and for

values of b and m at the lower-middle vertex, are obtained from the next

higher grid points, where, accordingly, the surface fluxes are defined.

The vertical derivative of the vorticity (hence the vorticity flux) is

evaluated as a one-sided difference at the lower boundary, taking y $

-u z from the momentum flux formula as the boundary value. The surface

heat flux is specified by

(b') = Ch -b' , (4.24)

where the derivative on the right is evaluated across the lowest full grid

cell. There are many alternatives, but (4.24) is interesting in that it

tends to restore the vertical stratification to ambient conditions.

Setting Ch = 0 shuts off the heat flux through the boundary.

The remapping procedure consists of interpolating the model

variables to more regularly-distributed physical positions. It clearly
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gives up some of the advantage of the Lagrangian method by reverting

temporarily to a coarser resolution in the regions of strong gradient.

However, it should be appreciated that each remapping has available all of

the original data points in the highly-resolved regions, and that the

transport of conserved quantities across fixed locations remains more

accurate than in Eulerian models with the same abundance of grid points.

The interpolation is applied to the perturbation fields of

meridional velocity, absolute momentum, and buoyancy. The remapping

algorithm is designed to leave the existing surfaces nearly intact beyond

a distance of about twice the mountain height in the vertical, or about

two half-widths in the horizontal. The open boundaries in particular are

unaffected. The variables are first interpolated along the existing

c-surface to more regular x-positions (which define the new i-surfaces),

and then along the new g-surfaces to regular z-positions. Finally the new

field of vorticity is recovered diagnostically using (4.5b) with the new

velocities and positions. The actual interpolation formula uses

Gaussian-weighted averages. The weights are wi = exp(-(Axi/Ax) 2 ) for

the horizontal, and wj = exp(-4(Azj/Az) 2 ) for the vertical

interpolation, where Axi and Azj are the distances between the

original and interpolated positions.

4.6 Linear test simulations

It is conventional to verify numerical models versus linear

analytic solutions by choosing model parameters which guarantee an

extremely weak response (e.g., Durran and Klemp, 1983). However, the

Lagrangian model can be linearized more simply by excluding the
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perturbation velocity from the lower boundary condition, and by omitting

both the EVP updating and divergence corrections. This formal approach to

removing the mountain amplitude as a parameter will be followed here.

For the linear tests, the initial distribution of physical

position is specified by

x(5, ) =
(4.25)

Z( , ) = hg 0 (C/) cos 7
2 CT

where CT is the upper boundary coordinate. Hence the C-surfaces follow

the terrain shape (hgo) at low levels, and become horizontal at the top of

the model. The conservative variables are initialized as

b(S,) =  N2C + fVz
(4.26)

m(C,C) = fa2  z + Vz.,

with Vz the constant ambient (upstream) shear. Since r z according to

(4.25), this initial state is not balanced near the mountain. The choice

is made not only for simplicity, but actually to provide for a smoother

startup. That is, (4.25) avoids a large temperature and velocity anomaly

in the air pushed off the mountain.

The mean flow enters via the lower boundary condition, which

specifies Z = U(t)hgo'(xg), with xg the geostrophic position and U(t)

a function varying from zero to U0 over a period of about one advection

time across the mountain. The perturbation velocity is initially zero.

Although the eddy mixing is turned off in the test simulations, a weak

Rayleigh damping is applied to the vorticity to allow the lateral

boundaries to be placed closer to the mountain and to be treated with an

explicit (hence faster) phase-advection scheme.
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The mountain profile for all but one of the test simulations is

bell-shaped: go(x) = 1/(1+x2). The amplitude is specified by Fr = Nh/U 0 =

1, which has no effect on the character of the response. Plots from the

first simulation in Fig. 4.3 show the time sequence in the development of

steady hydrostatic mountain waves in a nonrotating flow. The conditions

are established by setting h/Z = 0 and Ro - 1 = 0 (respectively, "AR" and

"RO" in the figure heading). Because of the initial imbalance, the

convergence to steady state is slightly accelerated, but on the other hand

the transient disturbance is not entirely natural. The normalization of

x, z and t in this and subsequent figures is observationally-oriented,

i.e., based on the scales £, h and £/U 0 . Thus, since Fr = 1, the

theoretical vertical wavelength, kG = 2nU 0/N, is a about six model

units. The positions of the boundaries in the figure are also those of

the initial grid.

The scales for u' and w (perturbation X and Z) are U0 and U0 h/Z,

respectively. The analytic solution [see (3.9)] therefore has u' = O(Fr)

and w = 0(1). In Figs. 4.4a and 4.4b, the model solution at t = 40 can be

compared with the steady-state analytic solutions for u' and w. The

agreement is satisfactory despite the low spatial resolution of only 2 x

36 (horizontal) x 24 (vertical) grid points covering a domain measuring

zT = 15 units high by 2xL = 24 units wide. The execution time on a

(Cray) vector computer is about five seconds for the 960 time steps. The

linearized version of the model is probably faster than any other designed

for simulating incompressible, slab-symmetric flow on an f-plane.

The second simulation imposes the "mesoscale" condition Ro- =

0.5, which should give rise to both ageostrophic gravity-inertia lee waves
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Fig. 4.3a. Time sequence of perturbation streamwise velocity, u',

in linearized model simulation of nonrotating, hydrostatic mountain

waves. Ridge profile is bell-shaped, with amplitude ten times the contour
interval. Time interval is 4 (/Uo).
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Fig. 4.4a. Comparison of nonrotating linearized model solution at t =
40 (top) with steady-state analytic solution for u'. Mountain profile and
contour interval as in Fig. 4.3.
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and a more nearly balanced upstream disturbance. These characteristics

can be seen in Fig. 4.5, which presents the time sequence for u' and v'.

Since v' is normalized by U0 , the geostrophy of the motion can be

judged from the ratio RoAu'/(v'Ax), containing the finite-difference

derivative of u'. The basic state is made barotropic by setting E

Vz/(Na) = 0 ("BX" in the headers). With Ro = 2, the inertial time, i/f,

is twice the model time unit. Hence, the inertial wave-train, having zero

intrinsic group speed, develops at the rate of about one wavelength per

twelve (47) advection times. The inertial wavelength is 2rRo = 4n

half-widths.

The quasi-steady (t = 40) model solutions for u', v and w are

compared to the analytic solutions in Fig. 4.6. The "analytic" solution

for u' is obtained essentially as described in chapter 2 through numerical

quadrature of the appropriate inverse Fourier transform. However, the

solution for v' in Fig. 4.6b is the result of integrating the gridded

values of u' directly according to the linearized momentum equation. The

assumption v' = 0 at x = -6 makes this technique somewhat less accurate

than the model simulation for the long wavelengths. The vertical velocity

component in Fig. 4.6c is obtained by numerical convolution of the Green's

function for * with the derivative of g 0 (x).

The next two simulations contain a strong streamwise temperature

gradient, still with Ro-1 = 0.5. The velocity perturbation for the

warm-advection case, a = -0.6, is shown in Fig. 4.7, along with the

steady-state transform solution. The slope of the basic-state isentropes

in the figure is /(RoFr) = -3/10, and that of the absolute momentum

surfaces is B-1/(RoFr) = -5/6. The model correctly simulates the
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comparative weakness of the upstream deceleration, and of the buoyancy

waves over the mountain. The cold-advection case, 8 = 0.6, in Fig. 4.8

shows an enhancement of these same two features, as well as the weaker

inertial wave train anticipated in chapter 2. The model also captures the

drastic wavelength modification by 3. The amplitude discrepancies in the

far-field waves are the result of the weak Rayleigh damping introduced to

suppress the transients as they approach the lateral boundaries.

The solution plotted in Fig. 4.9 is included primarily to test

the treatment of the parallel velocity at the upstream boundary. The

mountain is broadened on the lee side to produce greater upstream

deceleration and larger v anomalies (see chapter 5). The particular

profile is formed by joining opposite halves of two bell-shaped mountains

at x = 0, i.e.,

(1+x ) - 1 , x < 0;
g 0 (x) = { (4.27)

(+x2/£12 - I , x > 0

The Rossby number will be defined by the width of the upstream (x < 0)

portion. The broadening factor used in the simulation is X1 = 5. Lilly

and Klemp (1979) noted that a singularity appears in the nonrotating

solution as 21 + o. The same "plateau singularity" was discussed in

chapter 2. In the rotating case, a side-effect of the broadening is the

suppresion of the far-field lee waves, whose amplitude depends on the

projection of the mountain profile onto 0(AI ) wavelengths. The

asymmetric bell mountain will be used extensively in the finite-amplitude

experiments of chapter 5.
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Fig. 4.7. As in Fig. 4.6a, except basic state is baroclinic, a = -0.6.
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Fig. 4.9. Horizontal perturbation velocity components in steady (t =
50) linearized model solution for baroclinic (0 = -0.6) flow past
asymmetric bell mountain (B5). Mountain has windward slope of width
Ro- 1 = 1/2, and amplitude ten times the contour interval.
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The inverse Rossby number is increased to Ro- 1 = 1 in the final

set of linear simulations, primarily to verify the scale and amplitude

changes in the lee waves. The transform for the bell-shaped mountain has

only a weak dependence on Ro near k = Ro. Hence much of the lee-wave

activity is little affected beyond the changes in the normalized

wavelengths. The cases shown in Figs. 4.10, 4.11 and 4.12 are for = 0,

-0.6 and 0.6, respectively. Recall that the condition Ro = 1 is a severe

test of the radiative upper boundary condition, which assumes weak

rotational effects (i.e., horizontal scales much shorter than U 0/f). The

errors due to the upper boundary condition are more apparent in the

parallel velocity component, which is more sensitive at large scales.

4.7 Nonlinear test simulations

The first nonlinear simulation imposes the simplest condition

Ro - 1 = 0. The amplitude of the bell-shaped mountain is set at Fr = 0.4,

a value which is large enough to produce steepening but considerably below

the overturning threshold, Fr = 0.85 (Lilly and Klemp, 1979). The small

time interval is At = 1/16, while the "nonlinear" time step is AtL =

1/4. The two velocity components at t = 20 are plotted in Fig. 4.13. The

solutions show the right kind of steepening, with relative enhancement of

the velocities at all levels over the lee slope. However, at all but the

lowest levels, the amplitudes fall short of the linear values, u' = tFr

and w = +1, which are lower bounds for the analytic nonlinear solutions.

The time sequence for the same simulation (Fig. 4.14) shows that

energy is still converging at upper levels after t = 20, but that the

amplitude of u' remains too low. The error is the result of the low
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Fig. 4.10a. Comparison of linearized model solution at t = 40 (top)
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half-width of Ro- = 1 and amplitude ten times the contour interval.
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spatial resolution, the dual time scales and (to a lesser extent) the weak

Rayleigh damping used for the sake of stabilizing the lateral boundaries.

It should be borne in mind that the goal of the numerical modelling is to

simulate steep temperature and velocity gradients, rather than

high-frequency nonlinear oscillations.

Shown in Fig. 4.15 are the coordinate surfaces for the nonlinear

simulation at t = 5, when the geostrophic flow has moved a distance of 4.5

units. The disturbance which persists near x = 4.5 reveals the initial

deformation of the c-surfaces over the mountain. In order to expedite the

data processing, all of the plotting in chapters 4 and 5, including Fig.

4.15, employs only half of the model data, namely the data defined on

coordinate surfaces indexed with integer j and half-integer i (see Fig.

4.1).

The final simulation (Fig. 4.16) shows the result of adding a

vertical shear to the mean flow in x. To balance the shear, the basic

isentropes have a slope in the direction normal to the cross-section.

Although there is temperature advection at the ground, the radiation upper

boundary prevents global baroclinic instability. In order to avoid a

critical layer below the model boundary, a weak shear was chosen by

setting By E -Uz/N = 0.1.

It can be seen in the plotted solution for u' and b (normalized by

N2h) at t = 30, that the disturbance energy is being deflected to a

shallower trajectory by the refractive effect of the shear. According to

ray-tracing theory, steady modes with wavelengths of ff or longer are

confined below z = 5.5 (half the height of the critical level) because

they have no vertical propagation in the weak, rotating flow at higher
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levels. The lack of energy above z = 5.5 shows that the mountain injects

very little steady wave energy at shorter wavelengths than r half-widths.

4.8. Synopsis of Lagrangian model

* Governing system consists of two-dimensional, f-plane,

non-hydrostatic, Boussinesq primitive equations.

* Average vorticity of each fluid element (cell) changes according

to imbalances between solenoidal and Coriolis accelerations, determined by

cell vertex configuration.

* Vertex configuration is obtained diagnostically, subject to mass

conservation and finite-difference circulation theorem.

* Time-differencing is staggered, with vertex positions and

velocities alternating.

* Positions needed in diagnostic calculation may be updated less

frequently than velocities if separation of linear and nonlinear time

scales is assumed.

* Lower boundary condition acts to keep lowest vertices in contact

with uneven boundary; upper boundary condition enforces upward propagation

of linear gravity-inertia wave groups (assuming weak rotation and shear).
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* Lateral boundary condition on velocity is based on "phase

advection", using time-variable phase speed estimates. Condition on

conservative variables (absolute momentum and potential buoyancy) is

"zero-normal-gradient" of perturbation.

* Lagrangian grid is replenished at regular time intervals with

new points at upstream boundary. These are initialized in accordance with

lateral boundary conditions.

* Viscosity parameterization assumes constant-coefficient,

biharmonic mixing, and surface fluxes proportional to squared velocity

(nonlinear drag law) or perturbation static stability.

* Lagrangian grid can be remapped in the vicinity of the forcing

region by interpolating the perturbation variables to more regular points.

* Advection by sheared part of basic-state flow is treated as in

an Eulerian model.

* Principal advantage: model requires fewer points to simulate

systematic generation of steep gradients; principal disadvantage: requires

more points to simulate rapid oscillations and/or large divergence along

solid boundary.



CHAPTER 5. NUMERICAL SIMULATIONS AND CONCLUSIONS

5.1 Review of previous modelling

Pierrehumbert and Wyman (1985) appear to be the first to

theoretically and systematically investigate upstream influence by a

two-dimensional barrier in a stratified flow. Their numerical model is a

modification of the hydrostatic primitive-equation model of Orlanski and

Ross (1977). PW retained the flow-dependent eddy-mixing parameterization

and radiative lateral boundaries of the earlier model, and included

topography and a wave-absorbing upper boundary layer. For the most part,

these features seem to meet the exigencies of simulating mesoscale

mountain-waves under conditions permitting convective overturning. PW

chose a Gaussian mountain profile, which decays much more rapidly than the

bell-shaped mountain at large distances from the summit. As indicated in

chapter 3, the difference is slight in the near field.

The significant feature of the non-rotating simulations was a

horizontal surge of long-wave energy coinciding with the onset of

wave-breaking after an impulsive startup. For Froude numbers exceeding

1.5, or about twice the observed threshold for wave-breaking, the

laterally-radiating energy was sufficient to permanently arrest a layer of

fluid on the boundary upstream from the mountain. PW found a linear

dependence of the depth of the stagnant layer on the Froude number, and

therefore deduced that the flow underwent an "orographic adjustment",

whose result was to keep the effective Froude number from exceeding 1.5.

The rotating simulations also produced upstream surges, but the

resulting low-level shear layers always retreated back toward the mountain



-166-

after roughly an inertial period. A diagram showing the dependence of the

maximum upstream transient deceleration, l-umin E -U'min, on the

parameters Ro and Fr is reproduced in Fig. 5.1. The results demonstrate

that u'min is determined qualitatively by the steady-state theory; that

is, u'min is proportional to Fr and RoFr in the regions Ro > 1 and Ro <

1i, respectively. However, the actual deceleration plotted in Fig. 5.1 for

Ro < 1 exceeds the semi-geostrophic prediction by a factor of at least

two. In the large Rossby number case, the departure from linear theory is

smaller but the duration and width of the transient disturbance in the

narrow-mountain simulations are large enough to make the steady solutions

practically useless.

PW showed that the upstream penetration of the transients could be

explained by assuming the disturbance was due to long-wave group

propagation away from a vertical source distribution. On the basis of the

same assumption, Emanuel (personal communication) has suggested that the

strength of the upstream disturbance may depend physically on the ratio of

the steady-state linear horizontal decay scale to the forcing width,

presumed to be that of the mountain. It can be seen that constant values

of this ratio, X/9 = Ro/(Fr 2 -1), closely follow the shape of the

deceleration curves. The idea is consistent with the notion of the

mountain as a vertical energy source which is well separated in space from

the response. However, the nature and development of the vertical forcing

are left unexplained.

The specific problem of coastal frontogenesis was investigated by

Ballantine (1980) using a three-dimensional boundary-layer model similar

to that of Pielke (1974). The model incorporates a sophisticated
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eddy-flux parameterization as well as a 15-km-scale representation of the

topography of southeastern New England. The potential technical

limitations of the model arise from decisions to (1) place one of the

lateral boundaries at the highest point of the terrain, (2) treat the

upper boundary as a reflective free surface, and (3) allow no temperature

advection across the lateral boundaries.

These features did not prevent the model from developing a

realistic pattern of coastal convergence and frontogenesis over an equally

realistic period of about a half day. A time sequence of potential

temperature from Ballantine's case-study experiment is shown in Fig. 5.2.

Notice that the sea-surface heating is strong enough to destroy most of

the stratification in the heated layer during the first three hours.

Hence, there is an implicit assumption that the air mass has been in

contact with the water for considerably less than three hours before the

initialization.

By repeating the experiment without orography or land-sea

roughness contrast, Ballantine showed that both the coastal convergence

and the backing of the low-level wind to northerly in the cold air can

result entirely from an adjustment to the local heating. Such a mechanism

probably does operate in the initiation of those coastal fronts which

begin during large-scale cold advection. In the general case, it is hard

to justify the initial temperature field over the warm water, without

which the crucial isallobaric response identified by Ballantine is absent.

Ballantine's mechanism can be viewed from a flow-relative frame as

a solenoidal circulation forced by a moving heat source on the boundary.

It can then be seen that the best prospects for rapid frontogenesis are
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realized when the induced flow of cold air stays even with the edge of the

heat source. In that situation, the maximally heated air remains in

contact with the unheated air, and moreover, recirculation is curtailed.

To the extent that the initial surge of air toward the heating behaves as

a density current, its speed depends on the density contrast as well as

its own depth. There seems to be nothing in the heating mechanism to

permit a dynamic adjustment of this depth, whence it would follow that the

frontogenesis depends crucially on initial conditions and the speed of the

heat source (mean flow).

The small-amplitude steady-state form of this problem was

discussed at the end of chapter 3. It was found that a heating rate which

neutralizes the stratification over the heating depth ia 3 h would produce

a velocity perturbation comparable to the mean flow. Ballantine's

solution suggests that a similar threshold for the heating rate applies in

the time-dependent rigid-lid formulation of the problem.

What the heating mechanism lacks is a means of preventing a

large-amplitude inertial oscillation of the type described by PW.

Without further physical constraints, the Coriolis effect will eventually

destroy the front, or convergence zone, by turning the cold air away from

the heat source. The lifetime of the front beyond the time of approximate

air-sea temperature equality is then limited to about half of an inertial

period (9 h). It should be noted that Ballantine's frontogenesis is also

the partial result of an apparent heat source, consisting of the shearing

of the north-south gradient. The effect could be rendered more realistic,

and more significant, by allowing temperature advection through the

northern boundary.
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The purpose of the numerical experiments in this chapter is to

simulate adiabatic frontogenesis appearing as a disturbance on an

otherwise balanced, baroclinic basic state. Under these conditions, the

orography is the only significant means of establishing the necessary

vertical deformation. It is, however, noteworthy that the omission of

boundary heating or cooling is still not the most conservative assumption,

since in some cases, the large-scale air mass is slightly warmer than the

sea surface.

The numerical model is described in detail in chapter 4, which

includes a synopsis in section 4.8. The basic design is Lagrangian; that

is, the grid points move with the flow. The advantage of such a model is

that it provides more accurate conservation of tracer quantities such as

potential vorticity, and improves the resolution of steep gradients. The

chief disadvantage is that the flow in highly divergent regions, in

particular at the mountaintop in the present application, must be remapped

periodically onto more regularly spaced points. The remapping is

performed after every two advection times (across the mountain half-width)

in all of the experiments to follow.

To minimize the deformation of the Lagrangian grid without a

crucial loss of realism, asymmetric mountain profiles will be used, in

which the lee slope is broader than the windward slope. This type of

asymmetry enhances the low-level deceleration in both the large Rossby

number (Lilly and Klemp, 1979) and small Rossby number (Pierrehumbert,

1984) regimes. It was also found here to reduce the gradients in the lee

of the mountain. A physical reason for such a choice of topography is

that downward surface flow over complicated terrain, such as exists in New
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England, is inhibited by strong vertical stratification in the valleys.

This may well account for the absence of high winds in the valleys of

New England in many easterly-flow regimes.

The parameter region of interest is roughly defined by 1 < Fr <

1.5 and Ro > 2, in which blocking does not occur in a barotropic flow

(PW). For reference, consider that a Froude number of 1.5 over terrain of

height 500 m implies UO = 7 m/s when N = .02 s - 1. For the same flow

speed, Ro = 2 requires a mountain half-width of k ; 35 km. This distance

may even be considered a large value for New England if "half-width" is

strictly defined (as in chapter 1). All of the experiments are to be

carried out under hydrostatic conditions, with h/ < 1/20.

Unless otherwise stated, the eddy mixing will used only for

computational stability during startup. Thus, in the "inviscid"

simulations, the Reynolds number, Re = Uoh/K (with K the constant mixing

coefficient), will be specified such that the dimensional mixing time, T

(Re h/Z) X/Uo, is at least 100X/U 0. The surface flux coefficients (see

section 4.5) are set at Cd = 0.5Re-1 and Ch = 0.5 except in the

surface drag experiments in section 5.4. The thermal mixing is shut off

in section 5.2. Elsewhere it is determined (without great consequence) by

Pr = 2.

The scaling of the variables will be as in chapter 2, except with

H = h and L = £ serving as the length scales. Thus, for example, the time

scale is a/Ug, and the potential buoyancy scale is N2h. With only a few

exceptions, the experiments are run in an initial domain measuring zT =

10 units high and 2xL = 20 units wide, represented by Nx = 40 points

by Nz = 24 points. The geostrophic wind starts up smoothly during
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approximately the first advection time. The initial temperature

surfaces are distorted to follow the terrain, with the result that

upstream transients are suppressed early on, and a strong low-level

disturbance in the lee is avoided. The meridional velocity is initially

zero.

5.2 Blocking threshold for two asymmetric mountains

The first model experiments will attempt to identify the marginal

conditions for blocking of baroclinic flow past the mountain g0 (x) =

x/(1+x 2). This choice is identified by Lilly and Klemp (1979, hereafter

LK) as an effective shape for "unsteepening" the density contours in

nonlinear hydrostatic solutions of Long's equation for steady,

two-dimensional nonrotating disturbances. The "LK" profile has the

further property that the minimum steady-state surface velocity occurs at

the ground at x = 0 in the linear solution, or slightly above and upstream

from this point in the nonlinear solutions.

LK's analysis indicates that the fully nonlinear solution has

umin ' 0.3. The non-rotating barotropic experiment shown at the top of

Fig. 5.3 produces a (nearly) steady-state umin of 0.26 for the same

Froude number (the plotted values are of the perturbation, u' = u-1). The

discrepancy is mostly due to a combination of computational and explicit

dissipation. The linear solution, uG(x) = 1-Fr/(l+x 2 ) along z = 0,

gives umin = 0 under the same conditions.

The second experiment in Fig. 5.3 was conducted with Ro- = 0.2

and 6 = -0.4. Recall that rotation in a barotropic flow reduces the

low-level upstream deceleration; in fact, for the LK profile, uqg(x) =
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Fig. 5.3. Potential temperature (solid, contour interval 0.5) and
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= 1) flow past LK mountain at t = 20, assuming barotropic (top, Ro- 1
0) and baroclinic (bottom, Ro- 1 = 0.2, t = -0.4) basic state.
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1+2Frx/(1+x 2)2 is a significantly weaker response at z = 0 than uG(x).

Yet the nonlinearity and baroclinicity are sufficient to produce a small

volume of stagnant fluid at x = 0 in the figure. The flow at this point

comes to rest by t = 16 (roughly half the inertial period), and has umin

= -0.1 at the time shown. Unlike PW's barotropic simulations using a

larger-amplitude Gaussian mountain, the solution here does not surge and

retreat. For the chosen marginal conditions, there is no significant

spreading of the stagnant fluid. On the other hand, because of the

gradual simultaneous increase in the low-level stratification and parallel

velocity, the baroclinic solution cannot be considered steady.

A second comparison between barotropic and baroclinic solutions

can be seen in Fig. 5.4 for the two-scale mountain profile defined by

(4.27). Each half of the mountain is bell-shaped, but the lee side is

made five times wider than the side facing the wind by setting Z1 = 5 in

(4.27). It should be borne in mind that the model slightly underestimates

the barrier effect for this profile (to be called "B5"), largely because

of the discrete representation of the topography. LK note that the

minimum steady-state surface wind in the linear solution is approximately

umin = 1 - Fr(1/4 + 7-llogZ 1 ) for large Z1. It appears from

interpolating their finite-amplitude calculations that that the nonlinear

modification is small when X1 = 5. Thus the model result, umin = 0.31,

for the B5 profile shows less deceleration than the theoretical value of

about 0.25 for Fr = 1.

The marginal case of flow stagnation for Fr = 1 and Ro- 1 = 0.2,

also shown in Fig. 5.4, is found at B = -0.8. The quasi-steady model

solution has umin = 0.1, which represents a small recovery from a flow

reversal at t = 16. As with the LK profile, the vertical stratification
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near the mountain in the marginally-blocked solution is roughly twice that

of the steady barotropic solutions. It is probably only coincidental that

the condition for stagnation in LK's solution of Long's equation is Fr =

2.0 for the LK profile (i.e., roughly the simulated local Froude number at

the mountaintop). Indeed, the analogous condition for the B5 mountain

appears from their results to be somewhat weaker. Although an increased

stratification is intuitively consistent with blocked flow, one cannot

expect the theoretical critical Froude numbers to apply very accurately to

subregions of a variably-stratified baroclinic fluid.

A more careful attempt to assess the consequences of local Froude

number anomalies was made in chapter 3. It appeared that the secondary

response to a weak modification of the temperature field by the mountain

was controlled, in effect, by the nonlinear advection of parallel

momentum. The general analysis indicated that the advection amplitude is

independent of the Rossby number when that parameter is large, and that

the strength of the response decreases slowly with Ro- 1 until the

inertial distance is several times the half-width of th2 forcing. It is

emphasized that these conclusions follow from a number of assumptions, and

from an idealization of the mountain and forcing shapes.

Fig. 5.5 summarizes a parametric study of blocking carried out for

the LK and B5 profiles. Curves are drawn at the boundaries of the regions

of the a-Ro-1 plane in which the horizontal temperature gradient was

sufficient to reverse the flow for a particular value of Fr < 1.4. A time

limit of At = 20 was imposed as a further condition, since dissipative

effects cannot be ignored much beyond this period. Notice that no

blocking occurs in any case for Ro - 1 < 0.1. This range of Rossby
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Fig. 5.5. Blocking boundaries in Ro-1- parameter space for four

values of Fr, and for two asymmetric mountains "LK" and "B5" defined in

text. Flow reversal occurs by t = 20 when parameters are chosen from

above the curves, which are interpolated from values of minimum upstream

velocity observed in simulated cases marked by dots.
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numbers yields the least reliable information because (1) the inertial

half-period is considerably greater than At = 20, and (2) the model may

not adequately resolve the horizontal temperature gradient. It is,

however, necessary for the the curves to have a vertical asymptote at

Ro- 1 = 0, where Coriolis effects and the horizontal temperature gradient

both disappear. No reliable simulations were achieved for Froude numbers

large enough to cause blocking near this limit.

The Ro-dependence in the figure was not anticipated by the chapter

3 analysis, which indicated that the best prospects for blocking (without

breaking lee waves) should occur near Ro = 1, the value for which the

upstream response to dipole forcing of fixed strength i3 greatest. In

fact, the analysis was made possible by the fact that the baroclinic

feedback effect was relatively weak for large Ro. For a consistent

explanation, it must be recalled that background rotation eliminates a

long-wave singularity in the solution for steady flow over a step. Thus,

it will be sufficient to show that the well-known large-amplitude

non-rotating response at large X1 significantly offsets the effect of

narrow forcing as Ro increases.

To this end, the advection of v at the ground was evaluated in

several solutions of the linear topographic problem of flow past the LK

and symmetric bell-shaped ("Bl") mountains. Graphs of J(p0,v0) versus

x using LK profile solutions (via Fourier transforms) are shown in Fig.

5.6a for the cases Ro-1 = 1i, Ro-1 = 0.6 and Ro-1 = 0.2. The

horizontal distance is normalized by the mountain width, as in the model

plots. Notice that negative values of the Jacobian become more important

for narrow mountains, both in absolute terms and in relation to the



Fig. 5.6. Surface advection of v', in units of Fr 2 , diagnosed in
steady linear flow past (a and b) "LK" and (c) "Bl' mountains, with
half-width Ro- = (top) 1, (middle) 0.6 and (bottom) 0.2. Basic state
is barotropic in (a) and (c), but a = -0.6 in (b).
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positive regions of the same distribution. It has already been shown that

negative forcing is needed to feed back positively on the low-level

convergence. Fig. 5.6b displays the same information for a highly

baroclinic basic state. The growth of the negative source with increasing

Ro is even more pronounced in this case.

The BI profile produces a qualitatively different result, seen in

Fig. 5.6c. While the amplitude of the v-advection still increases with

Ro, the distribution is such that the negative region no longer dominates

at large Ro. Because of the strong divergence at the mountaintop, the

Lagrangian model could not complete a simulation of sufficiently large

amplitude to produce an upstream flow reversal with the B1 mountain.

However, it is suggested here that the Froude number condition is not

greatly altered by the baroclinicity in the case of the symmetric

mountain. The barotropic and baroclinic solutions can nevertheless be

expected to differ drastically in the duration of the period of blocked

flow.

The chapter 3 analysis neglected to consider carefully a second

possible sensitivity to the Rossby number. Namely, the effectiveness of a

(sloping) mountain as a vertical source may depend on the ratio of the

horizontal response decay scale to its half-width. The sensitivity should

be greatest when the two scales are comparable, as in the baroclinic

experiments of Figs. 5.3 and 5.4. As observed by Emanuel (personal

communication) in regard to PW's blocking summary (Fig. 5.1), the

sensitivity is formally expressed by the ratio X/I = Ro(a 2 Fr2-1) between

the barotropic decay scale (corresponding to an effective mountain height,

OFr) and the mountain half-width. Thus if aFr is supercritical (> 1) for
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the baroclinic flow, the nonlinear "forcing" may remain sensitive to Ro

somewhat beyond Ro = 1.

5.3 Basic frontogenesis experiments

The first long-term experiments are to test, by itself, the

proposed mechanism of a streamwise temperature gradient in a primarily

orographic disturbance. It will be seen that conditions which are

supercritical for blocking can eventually lead to "partially" steady

frontal structures in the baroclinic case. In addition to an initial flow

reversal, frontogenesis requires a means of preventing the large-amplitude

geostrophic adjustment oscillation which interferes with upstream

influence in the barotropic case. The experiments should show how this

works.

A successful frontogenesis simulation was achieved with the B5

profile for the strongly supercritical parameters Fr = 1.2, Ro-1 = 0.2

and 3 = -0.8. The contours of total potential buoyancy are plotted in

Fig. 5.7a as a time sequence ending at t = 30. Notice that the

discontinuity in the horizontal gradient moves upstream to about x = -5.5

by t = 30. At t = 40 (not shown) the gradient is somewhat stronger, but

the frontal discontinuity remains near its final position in Fig. 5.7a.

The gradient at the ground is ultimately limited by the continual

remapping and the weak thermal diffusion being used for the sake of a

smooth startup. These effects slowly heat the region of reversed fluid

while new isentropes are being advected into the frontal zone.

The fields of perturbation velocity for the same four times can be

seen in Fig. 5.7b and 5.7c. The maximum parallel component is v' = 2.8 at
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the mountaintop in the last panel (in which the contours 2.2 and 2.6 are

omitted). The total y-momentum at the same point is v = v'+FrB = 1.8.

Where the flow is stagnant, v' should increase by a unit amount in a

nondimensional period At = Ro, or roughly the time between panels.

However, the parallel velocity at the ground is increasing at about half

this rate between t = 24 and t = 30 because of the vertical advection and

mixing.

For 3 = -0.8, the angle between the basic b and m surfaces is

unusually small, as is the potential vorticity. As the gradients of b and

m increase, the corresponding contours must become even more nearly

parallel to keep the potential vorticity constant. In the present

solution, v' in the frontogenetical region is nearly parallel to

basic-state M, and therefore to total m. Hence, the fields of b and v'

become nearly indistinguishable when the gradients become large in the

upstream region.

All three perturbation velocity components at t = 30 are shown in

Fig. 5.8 for a closer examination. The reversed fluid extends to x = -6,

but is very shallow compared to the mountain height. Notice that the

total streamwise velocity is more than doubled on the lee side. Indeed,

the absence of a realistic frictional boundary layer is evident in the

excessive surface values of both u' and v' in x > 0. In the same

connection, the vertical velocity field probably suffers from an

underestimated frictional convergence in the cyclonic frontal

circulation. The simulated vertical motion above x = -5 is only w = 0.12

Uoh/Z, or about .003U0 when h = 500 m and X = 20 km.

It should be noted from Figs. 5.7b and 5.7c that the formation of

the cold pool on the windward side of the mountain has the side-effect of
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slightly reducing the gravity-wave activity directly over the mountain.

This is the anticipated result of altering the effective breadth of the

obstacle. Note, too, that the limiting radius of the cold pool is close

to the Rossby deformation radius of RoFr = 6 units based on the mountain

height, or about 8 units based on the height of the frontal boundary over

the summit. An attempt to characterize the equilibrium which exists after

t = 30 in the experiment will lead to a slight improvement of this

estimate.

Fig. 5.9 shows a time sequence of potential temperature from an

experiment with Ro-1 = 0.4, i.e. twice the previous choice. The other

parameters are the same. The sequence is carried to t = 40 (48 h if 1/f =

3 h) to show the equilibration of the surface frontal position near x =

-3. The deformation radius determined by the mountain height is also 3

units (half-widths). The stagnant fluid at the ground is resolved by only

two grid points at t = 30, while at t = 40, the total streamwise velocity

is positive everywhere. The cold air is evidently too shallow to resist

erosion by mixing and inertial effects. The three velocity components at

t = 30 are shown together in Fig. 5.10. The v' field is larger by a

factor of 2 than in the previous experiment, in accordance with the

inverse dependence on Ro.

One of the reasons for the lack of inertial oscillations in

developing large-scale fronts is that the secondary circulation is itself

frontogenetical in the regions of strongest gradient, and continually

alters the conditions for equilibrium. The initial upstream surge in the

baroclinic barrier problem must also induce a secondary circulation. If

this circulation is frontogenetical, as when a < 0, it should reinforce
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the mass-momentum balance and at least partially damp the surge recovery.

This argument is offered to explain the remarkably weak transient

oscllations in the warm-advection model experiments. In contrast, the

cold-advection simulation shown in Fig. 5.11 is notable for the

comparative unsteadiness in the upstream velocity.

The fact that the upstream gradients increase indefinitely in the

supercritical warm-advection case indicates that the feedback argument can

be extended to explain the partial frontal equilibrium seen in the first

two experiments. Namely, to prevent further acceleration of the vertical

circulation, the temperature and parallel velocity at each point in the

frontal zone must increase so as to preserve the existing proportion. The

proportion is determined by the frontal slope according to Margules's

principle.

The constraint may be expressed using (a/at)bx = -uxbx and

(a/at)mz = -uzmx (neglecting vertical advection) as

uxbx bx
- - 1. (5.1)

fuzmx  fmz

But this implies a u = cm, with au = -ux/uz and am = -mx/m,

the slopes of the constant-u and constant-m surfaces. If the balance

holds at the upstream edge of the region of steep gradient, then

approximately au = aM as well. It has been shown by Hoskins and

Bretherton (1972) that as the m and b surfaces coalesce in regions of

steep gradient, their slopes must tend to a fixed limit, requiring in turn

that u = const along the common surfaces. Thus, it follows from the

various assumptions that the slope of the basic-state absolute momentum

surfaces determines the limiting frontal slope in the barrier problem.
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This particular chracterization of the partial equilibrium of

barrier fronts can be checked further by choosing smaller 8 in the

numerical model. Thus, the final experiment of this section uses a

-1
narrower B5 mountain, with Ro-  = 0.1 and Fr = 1.2. The choice 8 = -0.6

is slightly supercritical for these parameters. The ordinary deformation

radius is 12 units, which was also used as the distance from the mountain

to the model boundary. However, it can be seen in Fig. 5.12 that the

slope of the isentropes (and of the upstream u-surfaces by t = 60) is not

that determined by the deformation radius, but rather is close to that of

the basic M-surfaces, which determine a horizontal scale of only 7.2

half-widths. The vertical circulation in the experiment is essentially

steady by t = 60 (one inertial period), and further integration showed

that the sharp temperature gradient made no progress beyond x = -8.

For at least two reasons, the theoretically important M-surface

length scale, h/aM, probably contains little practical predictive

value. First of all, the idealizations and assumptions may not stand up

to realistic complications such as diffusivity, three-dimensionality and

non-uniformity of the environment. Second, the difference between the two

scales identified in the analysis may be small in comparison to variations

in ambient conditions. Thus, the emphasis is to be placed on having

identified a consistent mechanism which uses the initial stratification of

the air mass to damp the inertial oscillations and fix the axis of

frontogenesis.

The most obvious alternative mechanisms for eliminating a surge

recovery are (1) three-dimensional perturbation pressure effects, and
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(2) surface friction in y. However, if the basic modelling assumption of

two-dimensional geography is accurate, a disturbance pressure gradient in

y cannot be an overriding effect. The question of surface drag will be

examined in the next section.

The last experiment of this section considers a slightly less

asymmetric bell mountain, namely a "B3" profile (Z1 = 3). The fields of

potential temperature and u' at t = 20 are shown in the lower half of

Fig. 5.13, where they can be compared to the B5 solution seen before.

There is a noticeable difference in the upstream progress of the reversed

fluid between the two cases, but what is more significant is that the

difference is small despite the great (factor of 2 at t = 5) disparity in

the early response of the velocity fields. The comparison highlights the

difference between the initial linear upstream disturbance, and the

subsequent nonlinear evolution of the cold pool. Not unexpectedly in view

of the foregoing analysis, the latter process seems less sensitive to the

breadth of the mountain.

5.4 Experiments with shearing deformation and surface drag

The numerical model provides an opportunity to study the secondary

effect of a transverse temperature gradient without neglecting the

associated thermal wind. As noted in section 3.1, the prediction

equations acquire advection terms due to the sheared part of the basic

velocity Ul(z) = -(By/f)z = -ByNz, where y is dimensionless. As in

section 4.7, the secondary gradient, By, is constant, and the advection

by U1 is evaluated explicitly in the model. In addition, the buoyancy

equation has the second source db/dt = -Byv', which is the contribution



08130 U (--) AND B

AR - 0.05 FR - 1.20 RO - 0.20 8X - -0.80 BY - 0.00 T - 20.0 U - 1.0 X - 19.5

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 B
CXI -- >

Fig. 5.13. Comparison of fields of total buoyancy (contour interval
0.5) and u' (interval 0.1) in flow past B5 (top) and B3 mountains, at t =
20. Parameters are Fr = 1.2, Ro - ' = 0.2 and a = -0.8.

0 1 2 3 4 5 6 7 8-7 -6 -5 -4 -3 -2 -1



-197-

from shearing deformation of the transverse gradient. (The basic-state

advection vanishes in the case of parallel shear.) The basic isotherms

and shear vector cross the mountain ridge at an angle tan-1 l(y/O).

It was shown in chapter 3 that when y > 0, secondary cold

advection develops in decelerated regions of the flow, and feeds back

positively on the deceleration. A simulation performed with B = 0.1,

but Fr, Ro and B as in the first frontogenesis experiment, shows that the

vertical shear in x does not change the conclusions of chapter 3, i.e.,

the frontogenesis is indeed reinforced by the additional temperature

gradient. The cases By = 0 and By = 0.1 are compared at t = 20 in

Fig. 5.14. The lower figure, with the secondary gradient, exhibits a

slightly more advanced front and a deeper layer of convergence than in the

original case. The direct effect of cold advection is apparent in the

extra isentropes at the bottom of the cold pool in the lower panel.

Fig. 5.15 makes the same comparison for the B3 mountain. For this

more nearly symmetric obstacle, the upstream deceleration is less

extensive, and the secondary cold advection in the lower panel is rather

negligible. In fact, the vertical stratification in the cold pool is a

bit weaker in the case By = 0.1. The most striking difference between

the cases, however, is in the depth of the cold air at its upstream edge.

The horizontal convergence is also deeper, as in the B5 experiment.

The principle of potential vorticity conservation is the best tool

for understanding the effect of y, even though its value is primarily

diagnostic. If q2 E J(m,b)/(fN 2) is the nondimensional "symmetric"

portion of the potential vorticity, then the total potential vorticity has
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the form q3 = q2 - By(By + y/N), where y = wx - u'z is the

vorticity of the perturbation vertical circulation. Conservation of q3

thus implies that q2 , which is also a measure of the symmetric stability,

is reduced from its undisturbed value of 1-3 2 in the frontogenetical

region, because y < 0.

It is convenient to view this alteration as a local increase in

SI. The diagnosis of q2 does not reveal whether the change will be

expressed as decreased vertical stratification or as increased (negative)

vertical shear of the parallel wind. However, the simulations with >

0 suggest that weaker cases of blocking may exhibit the former tendency,

while the strongly supercritical cases, with large advective changes in

N 2 , will develop strong vertical shear. (Other ways to reduce q2 are

inconsistent with the basic properties of the frontal region.)

A more obvious consequence of reducing the symmetric potential

vorticity is a more rapid coalescence of the m and b surfaces in the x-z

plane. Recall that when these surfaces merge, semi-geostrophic balance

requires that the u-contours also assume their common shape. Such a

tendency can be seen in both of the experiments with y > 0, and may

indicate a more complicated feedback than has heretofore been described.

Namely, the coincidence of the u and b contours tends to prevent warm-air

entrainment into the upper portion of the cold pool, thus leading

progressively to a deeper layer of convergence.

The shearing deformation has essentially the same consequences for

a slightly broader (Ro-1 = 0.3) B5 mountain, as seen in Fig. 5.16.

Note, however, that the frontal surface at t = 20 has less curvature than

in the previous simulation. This appears to be the result of a weaker
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startup surge and earlier geostrophic adjustment. It is useful to observe

that the front in the By = 0 experiment settles near the point x =

-3.5. This distance is comparable to both the (environmental) deformation

radius, LD = 4, and the M-surface radius, h/cl = 3.2. The 8 > 0

experiment became numerically unstable shortly after t = 30 because the

advection of u' by Ul(z) at the mountaintop was too strong for the time

step. However, the cold pool at t = 30 still had not moved beyond x = -4.

The purpose of the surface drag experiment to be described next is

to determine whether upstream rotational effects can be significantly

reduced through the destruction of low-level parallel momentum, and

whether more realistic surface velocities away from the front can be

achieved. Since the model is equipped with only the simplest kind of drag

and mixing parameterizations, only qualitative realism is expected.

The high-viscosity simulation is carried out with Re- 1

0.03h/Z, whence the mixing time (assuming a mixing depth of h) is 33Z/U0 .

The surface drag coefficient (essentially the ratio between the squared

velocity and the surface momentum flux) is Cd = 1.5Re- 1 instead of the

control value of 0.5Re-1. The thermal mixing time is 679/Uo since Pr =

2, but the assumption of small surface heat flux is retained with Ch =

0.5.

Fig. 5.7a compares the streamwise velocity perturbation for the

"inviscid" control experiment, Fr = 1.2, Ro-1 = 0.2, ~ = -0.6, with that

for the corresponding high-viscosity experiment. The friction moves the

downstream region of high velocities off the ground to a height of about

h/2, and considerably weakens of the anomaly. Also, the region of small

and negative u inside the cold pool is broader and stronger as a result of
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the friction. Although the chosen parameters are only slightly

supercritical for blocking, the reversed fluid has already reached x =

-5.5 by t = 20 in the second experiment, and continues to spread upstream

well beyond the deformation radius at x = -5 (the distance h/a M = 3 is

even shorter). The frictionally-induced upstream penetration of

low-momentum air is not accompanied by the same amount of convergence as

in the more supercritical inviscid experiments. This circumstance

combined with the strong horizontal mixing eliminates any semblance of a

front at the ground.

The effect of the surface drag and mixing on the parallel velocity

is even more dramatic (Fig. 5.17b). The largest value of v' no longer

appears at the summit, but occurs in a relatively weak jet centered at a

height of about h/2 above the windward slope. Similar structures are of

course seen in more sophisticated frontogenesis simulations (e.g., Keyser

and Anthes, 1982), as well as in the observations (e.g., Fig. 1.7).

Running the model with a simple viscosity parameterization

demonstrates that the distribution of surface velocity away from the front

can be made more realistic by including boundary-layer effects, and that

upstream influence, per se, is enhanced by the friction. However, it is

clear that the present assumption of uniform mixing length and surface

roughness, and the particular choice of mixing parameters, are too

restrictive to permit the baroclinic-orographic mechanism to generate a

strong quasi-stationary front. Further modelling with a more realistic

mixing scheme will probably show that a gradient of surface roughness (and

boundary temperature) can cause a significant adjustment of the inviscid

model prediction of the frontal position.
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5.5. Conclusions from the numerical modelling

The numerical experiments with the Lagrangian model confirm the

basic hypothesis of this study that two-dimensional topography alone is

sufficient to produce upstream flow stagnation and frontogenesis in an

otherwise balanced, baroclinic flow. The original theory that the cold

pool would evolve to a balanced size determined by the mountain height is

also supported. Only a small theoretical refinement was needed to

accommodate the unusual condition that the front "advects" with the

mountain through the ambient flow. It is remarkable that the potential

vorticity dynamics expounded for classical fronts by Hoskins and

Bretherton (1972) are flexible enough to describe partially-equilibrated

barrier fronts with so little adjustment.

The simulations reproduce some, but by no means all, of the

characteristics of the New England coastal front. The model achieves

realistic length and time scales, as well as reasonable horizontal shears

and temperature contrasts. It also shows a significant response to a weak

version of the north-south temperature gradient, a well-known concomitant

of strong coastal frontogenesis. The principal unrealistic features are

(1) the extreme uniformity of the stratification in the cold air, and (2)

the excessive positive velocity perturbations at the ground. The first

problem is clearly the result of periodically remapping the model data.

Although the Lagrangian method was effective in economically generating

large temperature contrasts, the remapping necessitated by the divergence

over the mountain prevented a determination of true frontal "collapse".

The extreme positive velocity perturbations, on the other hand,

are attributable to several factors. Most significant, of course, is the
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absence of realistic mixing and drag, but the two-dimensionality

assumption may also be responsible. To a lesser extent, the large lee

velocities resulted from the large values of a (small values of the

Richardson number). Although 8 = -0.8 is not an unrealistic

respresentation of the surface temperature gradient, it may well

overestimate the vertical shear and temperature gradient in the

large-scale air mass.

The sensitivity of the upstream effects to the mountain shape must

be carefully considered when judging the importance the orographic

mechanism in New England. The choice of a lee-broadened mountain

substantially enhances frontogenesis, and was rationalized as a kind of

parameterization of complicated terrain under conditions of large static

stability. This argument, and the proper dynamical definition of the

mountain half-width, will require further investigation before the

observed Rossby-number sensitivity can be fully understood.

Formal analysis using linear theory has provided rather persuasive

evidence of an orographic adjustment process which is different from that

for barotropic flows, the context in which the theory was originally

proposed. The existence of an internal length scale absent from both the

linear and nonlinear classical theories of mountain flow constitutes

circumstantial evidence for such an adjustment. The process appears to

operate through a positive feedback on the local Froude number below the

mountaintop, as well as a negative feedback on the nonlinearity at higher

levels. Even the latter process does not quite reproduce the barotropic

scenario, which involves wave-breaking. The linear analysis falls short

of specifying a relationship between the barotropic blocking condition and

a suitably defined modified Froude number determined locally by baroclinic
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effects. Such a result may require an analysis of the transient

disturbance.

Modelling rapid frontogenesis as an adiabatic and inviscid

alteration of a balanced, stratified flow altogether removes the role of

the coastline. In this way, the present study adopts as extreme a view as

the earlier numerical simulation of coastal frontogenesis, which assumes

impulsive heating. As described above, the orographic hypothesis

nevertheless has an advantage in explaining the persistence of the front,

not to mention its occurrence when strong local heating cannot be

demonstrated. In view of the shortcomings of both explanations, a likely

inference is that the local heating often supplies the additional

convergence and temperature contrast needed to generate the extraordinary

small-scale features (i.e., gradients and vertical circulation) observed

in some real events, especially when the present model identifies the

large-scale environment as only marginally frontogenetical.



COORDINATE TRANSFORMATION FOR BAROCLINIC SEMI-GEOSTROPHIC
FLOW

When the nonlinear system (2.1) is rewritten using a Lagrangian

vertical coordinate, the form of the mathematical problem becomes much

simpler in certain limits. Let and C be Lagrangian coordinates defined

by dg/dt = dC/dt = 0, with 5 = x-U 0 t and C = z far upstream. Then the

assumption of uniform wind shear and thermal stratification in a

geostrophic basic state implies b = fV;z + N2 C and m = fa 2 + VzC,

where the potential buoyancy b and intrinsic absolute momentum m are

individual constants.

If the formulae (4.3) are used to replace z with C as one of the

independent variables [so that z = Z(x, ) becomes a dependent variable],

the steady-state hydrostatic version of (2.1) reduces to a vorticity

equation of the form

N2Zx + (fa) 2 E+ fVz(1-J(,Z)) = -UOYx, (A.1)

and a continuity equation of the form

Zg - Ex = 0. (A.2)

Here y = -uzlx is the horizontal vorticity, and all partial

derivatives are at constant x or t. The relation u/U 0 = 1/Z; can be

used to express the vorticity as y/U 0 = (u/U 0 ) 3 Z cc*

Now let x and E both be normalized by the horizontal scale X, and

z and C by the vertical scale fat/N. If X(x,C) is defined by Xx =

APPENDIX A.
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(z-C)/(RoFr) and X. = -(x-E)/(RoFr), then (A.2) is satisfied, and the

vorticity equation becomes

Xxx +Xc - 2xx + Ro 2 X xx-CC  RoFrJ(X,X ) - Ro 2 ((u 3 -1)XC)x, (A.3)

where u is now normalized by UO, i.e., u = (1+RoFrx)- 1. The lower

boundary condition is Xx = g 0 (x), where go is an order-unity function

specifying the terrain shape. The correct form of the radiation upper

boundary condition when Ro # 0 is still not clear; however, Lilly and

Klemp (1979) have obtained the appropriate condition for laminar solutions

in the limit Ro = co.

The nonlinearity in the baroclinic problem is thus restricted to

the two terms on the right side of (A.3). The quasi-geostrophic

assumption, Ro = 0, eliminates the inertial nonlinearity, while the

assumption of a barotropic basic state, 8 = 0, removes the Jacobian term.

It is not strictly necessary to assume steady-state in the quasi- or

semi-geostrophic problem; however, the restriction on the size of du/dt

applies as well to accelerations of U0 . Note that since the inertial

nonlinearity is unbounded when RoFr = 0(1), and where Xx < 0

(accelerated regions), the semi-geostrophic approximation is not uniformly

valid in space in the nonlinear regime, RoFr > 1.



APPENDIX B. APPARENT MASS SOURCES IN FINITE-DIFFERENCE EQUATIONS

In order to solve the diagnostic equations (4.5) for the velocity

at time tn without producing an O(At) mass divergence, it is necessary

to extrapolate the particle positions forward one-half time step from

their standard values at tn-At/2, using the velocities Xij n - 1 and

Zijn- 1 defined at time tn-At. A convenient alternative to direct

extrapolation is to write (4.5a) with the source term,

n in-1 *n-i

ij -JA( , ij ), (B.1)

which introduces errors of the same order (At2 ). When the same short-cut

is used for the vorticity equation, the apparent source vanishes

identically.

A crucial modification of the divergence correction is needed

where the atmosphere meets the uneven lower boundary. Here the

appropriate definition of the cell volume is

1 Xi+1/2A! = A. + I(Zi-1/ 2+ i+i/ 2 ) DX - 2 gg(x)dx, (B.2)

Xi-1/ 2

in which Ai is the area of one of the quadrilaterals with three

boundary vertices (and the index j = 1 is omitted). The correction

Din in (B.1) must therefore be augmented by the time derivative of

2(Ai-A i '), which may be written

D n (X1/2 +1) - 2+ 2) D . (B.3)Di/2+Xi+i/2) DZ i -(ZiI/2+ + 1/ 2) D X. (B.3)i E
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The indicated sum is taken over the two segments which terminate on the

boundary.

The diagnostic (EVP) algorithm described in chapter 4 makes it

possible to evaluate the velocities in (B.3) implicitly at time tn

rather than tn-1. A forward time step can be used to obtain the

positions at t = tn, but errors of only the same order are introduced by

using instead a third divergence correction, Di''. Di'' is defined in

the same way as Di', but with in and in replaced by in- 1 and

Zn - 1, and Xn and Zn replaced by (1/2)X n - 1 and (1/2) n -1.

A computational separation of time scales governing the linear

(At) and nonlinear (AtL) processes allows less frequent updating of the

matrix used to solve the diagnostic system. To keep the time-differencing

errors at O(At2), rather than O(AtL2), further correction terms are

necessary in the velocity equations and lower boundary condition.

In general, each of the Jacobian terms in the diagnostic equations

gives rise to a new inhomogeneity of the form J(Qn, pn 0-1/ 2 -

pn-1/2), where the index n corresponds to the time of the most recent

calculation of the velocity, Q, and no denotes the time of the last

updating of the position variable, P, in the EVP routine. With the same

index notation, the correction for the nonlinear part of the lower

boundary condition can be written (win+l), = -(g 0o(xno)-go0 (Xn))

Xn, which belongs on the right side of (4.12).



APPENDIX C. FIGURE CAPTIONS

Fig. 1.1. Profile of a warm front crossing a mountain range (from
Bjerknes and Solberg, 1921).

p. 9

Fig. 1.2. Sequence of sea-level synoptic analyses showing the
development of a sourtherly buster on a cold front (from Baines, 1984).

p. 11

Fig. 1.3. Composite analysis of sea-level pressure at onset of coastal
frontogenesis (from McCarthy, 1977).

p. 23

Fig. 1.4. Mesoscale synoptic analyses of two coastal front events near
time of onset. The cases differ in air-sea temperature contrast and
geostrophic wind speed. (From Bosart et al., 1972).

p. 25

Fig. 1.5. Plan view and vertical cross-section of topography of
sourthern New England. Cross-section is averaged over state of
Massachusetts. (From Passarelli and Boehme, 1984).

p. 28

Fig. 1.6. Cross-sectional analysis of potential temperature (K) and
water vapor mixing ratio (g/kg) between Chatham, MA, and Albany, NY,
during coastal frontogenesis on 24 December 1970 (from McCarthy, 1977).

p. 30

Fig. 1.7. Analyzed cross-sections of aircraft-observed potential
temperature and wind in mature coastal front (from Neilley, 1984).

p. 32

Fig. 2.1. Dispersion relation for gravity-inertia plane waves assuming
baroclinic (solid) and barotropic (dashed) basic state. Limit points k =
(1- ) Er and P = -r, and direction of group velocity, are indicated in

baroclinic case.
p. 41

Fig. 2.2. Schematic showing type and location of propagating waves
forced at (xo,zo), assuming baroclinic basic state (a < 0). Regions
dominated by either buoyancy or rotational effects are shaded.

p. 60
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Fig. 2.3. Original and deformed complex Fourier integration paths for
(a) horizontal and (b) vertical transforms, showing branch points at k or
P = ±r, and essential singularities at k or v = ±1. In left-hand
diagrams, imaginary values in upper half-plane take the sign of z-z or
x-x0 to permit unique determination of square-root, whose sign is absorbed
in path direction in right-hand diagrams.

p. 66

Fig. 2.4. Steady perturbation streamfunctin for negative line-source
forcing at x 0 = 0, z 0 = ir/4, assuming a = (a) 0, (b) -0.6 and (c) +0.6.
Contour interval is one-tenth the forcing strength.

p. 73

Fig. 2.5. As in Fig. 2.4, except z0 = fr/2.
p. 75

Fig. 2.6. As in Fig. 2.4, except z0 = T, and 5 = 0.6 is omitted.
p. 77

Fig. 2.7. As in Fig. 2.4, except z 0 = 3rr/2, and 1 = 0.6 is omitted.
p. 78

Fig. 2.8. Steady perturbation streamfunction for bell-shaped mountain
ridge of width Ro- = 1/2, centered at x = 0, assuming 8 = (a) 0, (b)
-0.6 and (c) +0.6. Contour interval is one-tenth the mountain amplitude.

p. 85

Fig. 2.9. As in Fig. 2.9, except Ro-1 = 1.

p. 86

Fig. 3.1. Perturbation streamfunction and parallel wind in linear
barotropic flow past bell-shaped ridge of width Ro- 1 = 0.3. Contour
interval is one tenth the mountain amplitude (negative contours dashed).

p. 100

Fig. 3.2. Perturbation streamfunction forced by dipole source defined
in text, centered at x0 = 0, z0 = u/2. Horizontal forcing scale is Ro-1

= (a) 0.5 and (b) 0.3, and contour interval is 1/20 of forcing strength.
p. 105

Fig. 4.1. Schematic representation of model grid. Lateral boundary
condition is applied at points marked with triangles; topographic and
radiation conditions apply at points indicated by large filled circles.
Upstream buffer points are shown as open circles.

p. 121

Fig. 4.2. Diagram of time-differencing scheme, showing staggering of
velocities and positions. Velocities are obtained diagnostically at t =

tn from vorticity (pn) and positions extrapolated from tn-1/2.
p. 121
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Fig. 4.3a. Time sequence of perturbation streamwise velocity, u',
in linearized model simulation of nonrotating, hydrostatic mountain
waves. Ridge profile is bell-shaped, with amplitude ten times the contour
interval. Time interval is 4 (£/UO).

p. 139

Fig. 4.3b. As in Fig. 4.3a, except model variable is w and contour
interval is 0.1.

p. 140

Fig. 4.4a. Comparison of nonrotating linearized model solution at t =
40 (top) with steady-state analytic solution for u'. Mountain profile and
contour interval as in Fig. 4.3.

p. 141

Fig. 4.4b. As in Fig. 4.4a, except model variable is w.
p. 142

Fig. 4.5a. Time sequence of perturbation streamwise velocity, u',
in linearized model simulation of rotating, hydrostatic mountain waves.
Ridge profile is bell-shaped, with half-width Ro-1 = 1/2 and amplitude
ten times the contour interval. Time interval is 5 (Z/Uo).

p. 144

Fig. 4.5b. As in Fig. 4.3a, except model variable is v'.
p. 145

Fig. 4.6a. Comparison of linearizedmodel solution at t = 40 (top)
with steady-state analytic solution for u'. Mountain profile and contour
interval as in Fig. 4.5.

p. 146

Fig. 4.6b. As in Fig. 4.6a, except model variable is v'.
p. 147

Fig. 4.6c. As in Fig. 4.6a, except model variable is w, and contour
interval is 0.1.

p. 148

Fig. 4.7. As in Fig. 4.6a, except basic state is baroclinic, 8 = -0.6.
p. 150

Fig. 4.8. As in Fig. 4.6a, except basic state is baroclinic, 8 = +0.6.
p. 151

Fig. 4.9. Horizontal perturbation velocity components in steady (t =
50) linearized model solution for baroclinic (8 = -0.6) flow past
asymmetric bell mountain (B5). Mountain has windward slope of width
Ro - 1 = 1/2, and amplitude ten times the contour interval.

p. 152
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Fig. 4 .10a. Comparison of linearized model solution at t = 40 (top)
with steady-state analytic solution for u'. Mountain is bell shaped, with
half-width of Ro- 1 = 1 and amplitude ten times the contour interval.

p. 154

Fig. 4.10b. As in Fig. 4.10a, except model variable is v'.
p. 155

Fig. 4.11. As in Fig. 4 .10a, except basic state is baroclinic, B =
-0.6.

p. 156

Fig. 4.12. As in Fig. 4.10a, except basic state is baroclinic, B =
+0.6.

p. 157

Fig. 4.13. Nonlinear model solution for u' (top, with contour interval
1/10 the mountain amplitude Fr = 0.4) and w (contour interval 0.1) at t =

20 in nonrotating flow past bell-shaped mountain ridge.
p. 158

Fig. 4.14. Time sequence (At = 10) of u' in nonlinear simulation,
showing evidence of upward energy flux. Conditions are as in Fig. 4.13.

p. 159

Fig. 4.15. Lagrangian coordinate surfaces in nonlinear (Fr = 0.4),
nonrotating mountain-wave simulation at times t = 1 (inset) and t = 5.

p. 161

Fig. 4.16. Nonlinear (Fr = 0.9) model solution for potential buoyancy
b (solid, contour interval 0.5) and u' (solid and dashed, contour interval
0.1) at t = 30. Mountain is bell-shaped, with half-width Ro-1 = 1/2.
Basic state has zonal (y) temperature gradient, and negative vertical
shear of meridional (x) velocity, determined by 3y = 0.1.

p. 162
Fig. 5.1. Contours of maximum deceleration, -u'min = l-umin,

appearing upstream from a Gaussian mountain of amplitude Fr and half-width
1/Ro, based on two-dimensional numerical simulation (from Pierrehumbert
and Wyman, 1985).

p. 167

Fig. 5.2. Three-hourly sequence of potential temperature
cross-sections from three-dimensional numerical simulation. Contour
interval is 3 K. (From Ballantine, 1980)

p. 169
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Fig. 5.3. Potential temperature (solid, contour interval 0.5) and

perturbation velocity u' (solid and dashed, interval 0.1) in nonlinear (Fr

= 1) flow past LK mountain at t = 20, assuming barotropic (top, Ro-

0) and baroclinic (bottom, Ro- 1 = 0.2, B = -0.4) basic state.
p. 174

Fig. 5.4. As in Fig. 5.3, except for B5 mountain, and B = -0.8 in
lower panel.

p. 176

Fig. 5.5. Blocking boundaries in Ro- 1-8 parameter space for four

values of Fr, and for two asymmetric mountains "LK" and "B5" defined in

text. Flow reversal occurs by t = 20 when parameters are chosen from

above the curves, which are interpolated from values of minimum upstream

velocity observed in simulated cases marked by dots.
p. 178

Fig. 5.6. Surface advection of v', in units of Fr2, diagnosed in

steady linear flow past (a and b) "LK" and (c) "Bl" mountains, with
half-width Ro- 1 = (top) 1, (middle) 0.6 and (bottom) 0.2. Basic state

is barotropic in (a) and (c), but S = -0.6 in (b).
p. 180

Fig. 5.7a. Time sequence of total potential buoyancy (temperature)

for nonlinear baroclinic flow past B5 mountain, ending at t = 30.
Parameters are Fr = 1.2, Ro- 1 = 0.2 and B = -0.8. Time interval 6

(/U 0 ). Contour interval 0.5 (N 2 h).
p. 183

Fig. 5.7b. As in Fig. 5.7a, except model variable is perturbation
streamwise velocity, u' and contour interval is 0.2.

p. 184

Fig. 5.7c. As in Fig. 5.7a, except model variable is perturbation
parallel velocity, v' and contour interval is 0.2.

p. 185

Fig. 5.8. Perturbation velocity components, u', v' (contour interval

0.2) and w (interval 0.1) at t = 30 in the experiment of Fig. 5.7.
p. 187

Fig. 5.9. Time sequence of total potential buoyancy (temperature) for

nonlinear baroclinic flow past B5 mountain, ending at t = 40. Parameters

are Fr = 1.2, Ro-1 = 0.4 and B = -0.8. Time interval 10 (2/U0). Contour

interval 0.5 (N2h).
p. 189

Fig. 5.10. Perturbation velocity components, u', v' (contour interval

0.2) and w (interval 0.1) at t = 30 in the experiment of Fig. 5.9.
p. 190
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Fig. 5.11. Time sequence of perturbation streamwise velocity, u', for
nonlinear baroclinic flow past B5 mountain, ending at t = 40. Parameters:
Fr = 1.2, Ro- 1 = 0.2, S = +0.8. Time interval 10; contour interval 0.1.

p. 192

Fig. 5.12. Time sequence of total buoyancy (solid, contour interval
0.5) and u' (solid and dashed, interval 0.1) in flow past B5 mountain,
ending at t = 60. Parameters: Fr = 1.2, Ro- 1 = 0.1 and 8 = -0.6. Time
interval 10 (/U 0 ).

p. 194

Fig. 5.13. Comparison of fields of total buoyancy (contour interval
0.5) and u' (interval 0.1) in flow past B5 (top) and B3 mountains, at t =
20. Parameters are Fr = 1.2, Ro- 1 = 0.2 and B = -0.8.

p. 196

Fig. 5.14. Comparison of fields of total buoyancy and u' in flow past
B5 mountain, at t = 20, with transverse buoyancy gradient 1 = 0.1
(bottom) and without (top). Other parameters: Fr = 1.2, Ro = 0.2 and

= -0.8. Contour intervals as in Fig. 5.12.

p. 198

Fig. 5.15. As in Fig. 5.14, except for B3 mountain.
p. 199

Fig. 5.16. As in Fig. 5.14, except Ro- I = 0.3.
p. 201

Fig. 5.17a. Comparison of perturbation streamwise velocity, u', in
flow past B5 mountain, at t = 20, with strong surface drag and mixing
(bottom) and without (top). Other parameters: Fr = 1.2, Ro- 1 = 0.2 and
S = -0.8. Contour intervals as in Fig. 5.12.

p. 203

Fig. 5.17b. As in Fig. 5.17a, except model variable is v'.
p. 205
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