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ABSTRACT

STOCHASTIC APPROACH TO THE ANALYSIS OF HIGHWAY PAVEMENTS

by

HANI KHALIL FINDAKLY

Submitted to the Department of Civil Engineering on
January 22, 1971 in-partial fulfillment of the requirements
for the degree of Master of Science.

A probabilistic method of analysis is presented as an
integrated part of a rational approach to the analysis and
design of highway pavements.

The suggested approach is based on the Monte Carlo
simulation procedure. The pavement is represented by a
mathematical model based on "Layered Systems Theory". It
consists of three different layers with various mechanical
properties which are acted upon by vehicular loading and
environmental conditions.

The stochastic nature of the model is derived from the
changes in the environment and the variability and inhomo-
deniety of the materials properties. This results in unpre-
dictable behavior of the system associated with probabilities
of overloading or inadequate capacity of the system of some
components thereof to carry its stipulated functions.

The behavior of the system is characterized by its re-
sponse to various excitations. This response may be in the
form of developed stresses, strains or deflections at any
point in the system, or it may, at later stages, take the
form of damage manifested by cracks or excessive deformations.
Regardless of the nature of response, it is uncertain in
nature and should be characterized statistically rather than
deterministically.

The stochastic approach for the analysis of pavement
systems, therefore, provides realistic and sufficient infor-
mation about the behavior of the system in operational
environment.

This approach seems to be promising and can be pur-
sued further for a comprehensive study of the performance



and failure of pavement systems under realistic operational
environment. However, it is suggested that obtaining closed
form probabilistic solutions may be more efficient at these
subsequent stages of performance evaluation and study, where
simulation has proved to be very costly.
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I. INTRODUCTION

In recentyears the behavior of materials and structures

have been the subject of extensive studies. These studies

have emphasized the variability which occurs in the magnitude

and distribution of the structural loadings, in the properties

of the material, in the surrounding operational environment,

and in the response of the structures and other engineering

systems to such excitations (1)*.

In highway systems, the increasing use of unconventional

road structures emphasizes the need for a better understanding

of the contribution which each element of the pavement struc-

ture and the surrounding environment (including mechanical

loads), makes to the overall behavior of the whole system.

A highway pavement system is a joint product of a com-

plex interaction of the pavement structure, vehicular loads,

and environmental conditions operating on the system. The

behavior and the performance of the system, therefore is

greatly influenced by these parameters. Any variability in

one or more of these parameters implies a variability in

the response and the overall performance of the system.

This study presents a simulation procedure based on

the "Monte Carlo" method for the investigation of variability

in the response of the pavement system. The method has been

used in a variety of disciplines to study and predict the

* The numbers in the parenthesis refer to the list of referen-
ces.



behavior of both deterministic and stochastic phenomena.

Simplified stochastic models which yield both mean behavior

and deviations from the mean can be obtained using the pro-

posed simulation procedure.

A three-layer model representing a highway pavement

system is analyzed, taking into consideration the variability

of certain parameters in the structure itself as well as in

the surrounding environment operating on the system. Cumula-

tive distribution functions of the response of the system

under variable loads and environmental conditions are obtain-

ed. This study is only a demonstration of the effectiveness

of the method, and is not necessarily an exact evaluation of

the actual performance of the pavement system under real

operational environment.

This study is presented in five chapters. In Chapter

II, the principles of computer simulation techniques are

discussed, with the relevant justifications for the use of

these techniques. Also discussed in this chapter are the

Monte Carlo method of analysis as a sampling technique and

its application to physical problems. Chapter III presents

a methodology for the application of the Monte Carlo method

to the analysis of a three-layer model representing a high-

way pavement system. A numerical example and results are

also presented in this chapter.

A summary and conclusions are found in Chapter IV, while

Chapter V presents some recommendations for future work.

10
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II. COMPUTER SIMULATION TECHNIQUES

2.1 Definition and Scope

The word "simulation" has been used quite freely to refer

to a number of different things. Recognizing the inherent in-

consistencies and ambiguities involved in the use of the term,

many definitions have emerged for simulation. Churchman has

defined "simulation" as follows:

"x simulates y" is true if and only if:

a) x and y are formal systems

b) y is taken to be the real system, and

c) x is taken to be an approximation to the real system (8)

Shubik's definition of simulation, however, appears to be

more appropriate because it is typical of more popular definitions

(41), it states:

"A simulation of a system or an organism is the operation

of a model or simulator which is a representation of the system

or organism. The model is amenable to manipulations which would

be impossible, too expensive, or impractical to perform on the

entity it portrays. The operation of the model can be studied

and, from it, properties concerning the behavior of the actual

system or its subsystems can be inferred."

For the purpose of this study, however, a narrower defi-



nition of simulation will be used, and it will' be restricted

to experimentation on mathematical models. Also, our primary

interest lies in simulation experiments that are performed on

digital computers. In addition, we are concerned with experi-

ments which take place over extended periods of time, under

stochastic or dynamic conditions, and which have solutions

that are not necessarily deterministic by strictly analytical

means.

With these constraints, the following definition, simi-

lar to that suggested by Naylor et al. (33), is used in this

study:

"Simulation is a numerical technique for conducting

experiments on a digital computer, which involves certain

types of logical and mathematical models that describe the

behavior of a physical syztom (or some component thereof)

over extended periods of real time".

2.2 Rational for Computer Simulation

It is recognized that in order to study and predict the

future behavior of any system, certain steps must be taken in

a systematic manner, these include:

i.. Observation of the physical system.

2. Formulation of a hypothesis of a mathematical
model that attempts to explain the observa-
tions of the system.

3. Prediction of the behavior of the system on
the basis of the hypothesis by using the
mathematical or logical deduction, i.e., by
obtaining solutions to the mathematical model.



4. Performance of experiments to test the validity
of the hypothesis or the mathematical model.

Generally, it may not be plausible to follow all these

steps for any particular problem, and some form of simulation

may be a satisfactory substitute.

For example it may be either impossible or very costly

to make field observations on the real system. In highway

systems for instance, it is almost impossible to perform

experiments on the pavement structure where all combinations

of the factors affecting its performance, such as temperature,

moisture, loads, different combinations of materials proper-

ties for each layer can be used in such tests.

Furthermore, the observed system may be so complex that

it is impossible to describe it in terms of mathematical

equations for which analytic solutions that could be used to

predict the behavior of this system are possible to obtain.

An example of this is the complex interaction between the

environmental factors and the materials' properties in the

pavement structure, and the interaction between the environ-

mental factors and the response of the structure itself.

These make it virtually impossible to describe the performance

of the system in an operational environment in mathematical

forms. In such cases, simulation have proved to be an effec-

tive tool to describe and predict the future performance of the

systems (33).

Although in some cases a mathematical model can be formu-



lated to describe the system, it may not be possible, however,

to obtain a solution to it by ordinary analytical techniques.

Again, the complexity in the highway systems and other economic

systems can well provide examples for this case. In such

cases it may be possible to use complicated mathematical

models to simulate the systems under consideration. Although

this approach does not guarantee precise prediction of the

future performance or exact solutions to the model describing

the system; it is possible to experiment with a variety of

alternative solutions and decision rules to determine which

solutions or decision rules are more realistic than others

in predicting the behavior of the system. Therefore, computer

simulation techniques such as the Monte Carlo method, which

has been employed in this study, are used as efficient tech-

niques of numerical analysis for solving complicated stochas-

tic models or systems.

The principal justification for computer simulation is

its ability to overcome the aforementioned difficulties in

implementing a scientific method to study and analyze

physical and other systems. There are, however other reasons

for which computer simulation may be necessary. The follow-

ing are a few of these additional reasons. They are not in-

tended to be mutually exclusive and are closely related to the

above discussion.

1. The use of computer simulation permits the study
of systems with complex internal interaction

14



between their different components, by break-
ing down each system into subsystems, where it
may be possible to model these subsystems and
analyze them separately.

2. Detailed observations on the system being simula-
ted may lead to a better understanding of the
system and to suggestions for improving it,
which otherwise would not be possible. This may
include the study of the effects of certain in-
formational, environmental, or characteristic
changes on the behavior of the system. This is
achieved by making alterations in the model of
the system and observing the effects of these
alterations on the performance of the system.

3. Simulation can be used to foresee the impli-
cations of introducing new components into the
system. Also, it is very useful with new situa-
tions about which little or now knowledge is
available. In such cases simulation can serve
as a "preservice test" to try out new alternatives
for physical and geometric characteristics of
a system, before taking the risk of experimenting
it on the real system. Economy and safety, the
main objectives in engineering design are, hence,
satisfied by the implementation of computer
simulation.

4. In certain stochastic problems, the sequence of
events may be of particular importance, where
information about expected values may.not be
sufficient to describe the process. Monte Carlo
methods may be the only satisfactory way of
providing the information in such cases. The
sequence of occurence of certain environmental
and loading effects has a great importance on
the evaluation of the performance of a highway
pavement and the degree of damage that exists
at any period in the lifetime of the pavement.

2.3 Monte Carlo Methods

The systematic development of the Monte Carlo methods

started in the early 1940's, in nuclear physics where attempts



were made to simulate the probabilistic problems concerned

with random neutron diffusion in fissile materials (19).

In general, Monte Carlo methods comprise that branch

of experimental mathematics which is concerned with experi-

ments on random numbers. The simplest Monte Carlo approach to

probabilistic problems is to observe numbers which are ran-

domly chosen in such a manner that they simulate the physical

process being studied, and to infer the probable solution

for the behavior of the physical system from the behavior of

these random numbers.

Problems handled by the Monte Carlo methods can be of

two types: probabilistic or deterministic depending on whether

or not they are directly ccncerned with the behavior and the

outcome of random processes (19).

The first group consists of those problems which involve

some kind of stochastic process. The second group are those

deterministic mathematical problems which cannot be solved by

strictly deterministic methods. It may however be possible

to obtain approximate solutions to the latter group of

problems by simulating a stochastic process which has moments,

density functions, or cumulative distribution functions that

satisfy the functional relationships or the solution require-

ments of the deterministic problem. Exarmples of this group

are solutions to high order difference equations and multiple

integral problems.



The greatest success of the Monte Carlo method has been

in those areas where the basic mathematical problem itself

consists of the investigation of some random process. There-

fore, it seems obvious that this method can serve as a power-

ful tool to solve a boundary-value problem with random input

parameters. This is one of the main reasons why this particu-

lar method has been chosen for the analysis of the highway

pavement problem.

2.3.1 Monte Carlo Analysis

In order to define the characteristics of the Monte Carlo

method, it is suitable to present a simple example on how the

method works for solution of mathematical problems.

The development of mathematical statistics played an

important role in the computation of integrals. Since "proba-

bility" can always be regarded as a measure, the problem of

determining the probability of some event or its mathematical

expectation can be reduced to a problem of computing some

integral, such as the following:

1
o ( )d (2.1)

Assume that the values of the function 4(i) lie between o and

1, i.e., o<()< 1 for a<<b. Therefore the problem is to

find the area A of the region R, (Figure 1), bounded by the
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curve r=P(5), the C-axis, and the coordinates =o and C=l.

Naturally, the restrictions imposed on the function f(E) are

not necessary, since there is a possibility of shifting and

scaling.

Now let a point (x,y) fall randomly in the square o<E<l,

o<n<l, with independent coordinates which are uniformly dis-

tributed between a and b. Since o<x<l, and o<y<l, the proba-

bility (p) that the point (x,y) falls within the area under

the curve is equal to A, which is the required area.

Using any technique for finding independent uniformly

distributed variables as discussed in the following section,

say x and y, the following condition should be satisfied:

(x) < y (2.2)

in order to guarantee that the random point (x,y) lies within

the region R under the curve. Therefore, N pairs of sampled

random variables are taken and a test is run on each to

determine whether they satisfy the inequality (2.2). If this

inequality holds for n pairs out of N, the ratio of n/N is

approximately equal to the probability that any random point

(x,y) falls within the region R, so

n = fo ()d( (2.3)

It is clear then that the number of tests N will affect

the accuracy of the computation of such integrals and the



Figure 1. USE OF THE MONTE CARLO METHOD FOR COMPUTING INTEGRALS.



associated error. Also it is interesting to notice that the

-restrictions that are usually required to evaluate this in-

tegral such as the smoothness of the function need not be im-

posed in this method. All that is required is that the function

be bounded and measurable.

A more general case is that in which a modeled process

of the type discussed in the previous example, is used for

estimating the unknown mathematical expectation of some

random variable x. The same example is used here; i.e., it
1

is required to evaluate the integral / (()dS.
0

Let (y) be a uniformly distributed variable over the

range (o,l). Then the mathematical expectation of the variable

x = q(y) is

M = fI ()d (2.4)
x o

It is necessary, therefore, to sample N independent

values of the variable yl, Y2"", YN3 in order to evaluate the

integral. It is also necessary to compute the arithmetic mean:

N
X = 1 (Yi )  (2.5)

i=l

This value of the arithmetic X is approximately equal

to the value of the integral. The value of the errors in-

volved in computing some of the values of ((yi) will be



"smoothed out" if the value of N is large. This will guaran-

tee the stability of the method against any disturbances

arising from defect of randomness in the machine.

The process, then, involves the estimation of the proba-

bility of some event A, or its mathematical expectation by

means of a modeled process. The following characteristic

features can be inferred from the above discussion:

1. Large number of computations of a uniform type
is performed, and

2. The error involved in the computation is "smoothed
out" for larger number of samples

3. It is also known that this method needs a compara-
tively small amount of "memory for storage of
intermediate results which is well suited for
multi-dimensional problems" (8). This point is
extremely significant in very large and complex
problems where the storage problem becomes an
important issue in the computation process (8,19,28).

The above discussion shows that the Monte Carlo method

is a modeling procedure where a random event A, occuring with

probability p, is modeled by means of the independent variable.

2.4 Random Numbers

The essential feature common to all Monte Carlo compu-

tations is that at some point a random value is substituted

for a corresponding set of actual values with similar statistical



properties. This random value is called "random number", on

the basis that it could well have been produced by chance by

any suitable random process. However, the fact that random

numbers are not usually produced in a random way does not

influence their effectiveness in this method; the important

thing is the distribution of these numbers and not the source

they come from.

In order to discuss the techniques for generating random

numbers, it is essential to define some terms that are closely

related to the properties and the use of these numbers according

to the way they are produced.

First, it is important to define what is meant by a

"random event" and "probability". A random event is an event

which has a chance of happening, and probability is the

numerical measure of that chance.

In Monte Carlo work, random numbers are classified into

three categories, according to the way they are produced and

used, random, pseudorandom, and quasirandom.

Random numbers, y, are the numbers that are produced by

chance and follow a standardized rectangular distribution of

the type shown in equation (2.6).

0, y<O

F(y) = y, O<y<l (2.6)
1, y>l



where F(y) is the cumulative frequency distribution of the

function y.

However, in practice these so-called "random numbers"

are substituted by some other numbers which are convenient

to produce and are equally effective from statistical point

of view.

For electronic digital computers it is most convenient

to calculate a sequence of numbers one at a time as required

by a specified rule. These numbers, however, are so devised

that usual statistical tests will detect any significant

departure from randomness. This sequence is called "pseudo-

random". One good advantage of the use of a specified rule

in producing random numbers is that the sequence is repro-

ducible for purposes of computational checking.

Pseudorandom numbers are generally used in all classes

of problems of the Monte Carlo type. However, in some cases

the violation of some statistical tests of randomness may not

invalidate the results. In such cases non-random sequences

may deliberately be used, provided that this sequence have the

particular statistical problem. Such a sequence is called

"quasirandom" (19).

Several methods of generating sequences of random numbers

are available. Naturally, all the methods embody some



quasirandom physical process that generates sequences of.

random numbers of a desired length and property (33). One

of the principle requirements of these sequences, as in any

other random sampling procedures, is statistical indepen-

dence (18).

Three alternative methods are used to generate sequences

of random numbers; they are:

1. Manual methods

2. Library methods

3. Computer methods

Manual methods include such slow procedures as coin

flipping, dice rolling, card shuffling, etc., which are the

simplest but the least practicable methods.

A number of library tables for random numbers have been

published (37). These numbers are generated by one of the afore-

mentioned methods before being tabulated. The one advantage of

such tables is that they offer reproducible sequences of

random numbers. However, the method lacks the speed and, in

some cases, the sufficiency of the numbers contained in the tables

where it is not desirable to use the same "random data" for

solution of all the problems!

Computer methods include: analog computer methods, and

digital computer methods.



Analog computer methods depend on some random physical

process (such as the behavior of an electric current), thus they

are fast, but the sequences they generate are again non-reproducible.

Three modes for providing random numbers on digital computers

have been suggested by Tocher (45): external provision, internal

generation by a random physical process, and internal generation

of sequences of digits by a recurrence relation.

In examining several methods for generating random numbers,

it seems that an acceptable method to be used for such purposes

must provide sequences of random numbers having the following

properties:

1. They are uniformly distributed,

2. They should be statistically independent,

3. They can be reproducible, and

4. Through a desired length of a sequence, they should
be non-repeating.

Furthermore, for this method to be largely acceptable,

it must be capable of generating random numbers at high rates

of speed and with minimum amount of computer memory capacity

(33,39).

2.5 Sampling of Random Events

The generation of simulated statistics (random variates)*

is entirely statistical in nature and is carried out by supplying

*The term "variates" means a random variable having a certain
mathematical expectation or probability of occurrence.

25



pseudorandom numbers generated by one of the methods mentioned

in the previous section. These numbers are supplied into the

process or system under study (where the system is represented

by a probabilistic model), and then numbers (random variates)

are obtained from it as the required solution. In general,

simulation involves replacing an actual statistical span of

elements by itstheoretical counterpart, i.e., a span described

by some assumed standard statistical or probability distribution

and then sampling from this theoretical population by means of

some type of random number generator (33). However, in some

cases it may not be possible to find a standard theoretical

distribution that describes a particular stochastic process or

some of its components. In such cases, the stochastic process

can be reproduced or simulated only by sampling from empirical

distributions rather than from theoretical ones (This, naturally,

assumes the existence of empirical data.).

In.considering stochastic processes involving either

continuous or discrete random variables, a function F(x),

known as the "cumulative distribution function" of x, denotes

the probability that a random variable X takes on the value of

x or less. If the random variable is discrete, then x takes

on specific values and F(x) is a step function. If F(x) is

continuous over the domain of x, then the probability density

function is f(x) = dF(x)/dx. The cumulative distribution



function can be stated mathematically as

x

F(x) = P(X<x) = / f(t)dt (2.7)

where F(x) is defined over the range 0<F(x)<l, and f(t)

represents the value of the probability density function of

the random variable X.

Several methods for generating pseudorandum numbers or

uniformly distributed random variates over the interval (0,1)

have been developed (33). Uniformly distributed random variates

will be denoted by d, when 0<d<l, and F(d) = d.

There are three methods for generating variates from

probability distributions -- the "inverse transformation"

method, the "rejection" method, and the "composition" method.

These methods are discussed in references (33,41); however, a

brief description of the first method is presented here because

of its relation to the simulation of the highway system under

consideration.

Inverse transformation method for generating stochastic

variates on a computer is done as follows (see figure 2).

If one wishes to generate random variates x i's from some

particular statistical population whose density function is

given by f(x), the cumulative distribution function F(x) first

must be obtained. Since F(x) is defined over the range 0 to 1,

one can generate uniformly distributed random numbers over the



same range and set F(x) = d. Therefore, for any particular

value of d, say do, which has been generated by any of the

methods mentioned previously, it is possible to find the corres-

ponding value for x, which is in this case x . This is done by
O

inversing the function F, if it is defined. So

do = FX(x ) (2.8)

-1
x FX-1 (d ) (2.9)

-1
where FX- (d) is the inverse transformation of d on the unit

interval into the domain of x. This can be summarized mathe-

matically by saying that if random numbers corresponding to a

given F(x) are generated (equation 2.10),

x
d = Fx(x) = J f(t) it (2.10)

then

P(X<x) = Fx(x) = P[d<F(x)] = P[Fx 1 (d)<x] (2.11)

and consequently FX-I(d) is a variable that has a probability

density function f(x). This is equivalent to solving equation

for x in terms of d. Figure 2 is an illustration of this method.

2.6 Monte Carlo Simulation Models and Their Properties

The primary concern in this section is that with mathe-

matical models. Mathematicalomodels of systems in general

consist of four well-defined elements: components, variables,
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Figure 2. SAMPLING PROCEDURE BY THE INVERSE TRANSFORMATION METHOD.
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parameters, and functional relationships (34).

Components of the mathematical models tend to vary widely

depending on the nature of the model being simulated and the

purpose of simulation. A highway pavement structure can be a

component of highway transportation system. While the different

layers, the geometry, etc. can well serve as components of a

highway pavement structure which is under consideration in

this study.

The variables that appear in the model are used to relate

one component to another and may be conveniently classified as

exogenous variables, status variables, and endogenous variables.

Exogenous variables are the input variables and are assumed

to have been predetermined independently of the model being

simulated. They may be regarded as acting on the system but

not being acted upon or influenced by the system (34,35).

The state of the system over a certain period of time is

described by the status variables. These variables interact

with both the exogenous and endogenous variables according to

an existing functional relationship of the elements of the system.

The output of the system is represented by the endogenous

variables. Clearly, these variables are generated from the inter-

action of the input variables and the status variables according

to some existing functional relationships.
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Whether a particular variable should be classified as an

exogenous variable, a status variable, or an endogenous vari-

able depends on the purpose of the research. For example,

vertical deflection may be regarded as an endogenous variable

in a study concerned with the pure analysis of load applica-

tion on a layered system, but may legitimately be treated as

an exogenous variable in models concerned with predicting

cumulative damage and distress of highway pavements. Exogenous

variables may be used in two different ways in simulation

experiments. They may either be treated as given parameters

(determined by the environment, geometrical, and physical

factors associated with the system), which of course have to

be estimated first, and read into the computer as input data,

or if they are stochastic variables, they may be generated in-

ternally by the computer by one of the methods mentioned in

Section 2.4.

In the language of experimental design, exogenous variables

or parameters are categorized as "factors". In conducting computer

simulation experiments on a given system, the main concern is

with the effects of the different levels of the various factors

on the endogenous variables of the system. This is to say that

a computer simulation experiment compromises a series of computer

runs in which the effects of alternative factor levels on the

endogenous variables are tested empirically (using simulation

data) (33).



The functional relationships describing the interaction

of the variables and components of a model are two-fold --

identities and operating characteristics. Both identities

and operating characteristics are used to generate the be-

havior of the system. Identities may take the form of either

definitions or tautological statements about the components

of the model. For a pavement, the vertical deflection may be

defined as the difference between the vertical level before

a load was applied and that upon load application. An operating

characteristic is a hypothesis, usually mathematical equation,

relating the system's endogenous and status variables to its

exogenous variables (33). Compatibility equations and stress-

strain relationships for a layered system are examples of the

operating characteristics of the pavement system. Operating

characteristics for stochastic processes take the form of

probability density functions. Unlike components and variables,

which can be directly observed from the real system the para-

meters of operating characteristics can only be derived on the

basis of statistical inference. Naturally, the accuracy of the

results of simulation depend on the accuracy of these estimates

of the system's parameters.

In this study, the functional relationships describing the

interaction between the variables and the components of an

engineering model are called "'congruity relationships". The



reason behind this is the fact that these equations and

definitions relate the different variables and components

and describe their inter-compatibility and congruences.

2.7 Representation of the Elements of the Simulation Model in

the Monte Carlo Analysis

To illustrate the aforementioned system of classifying

elements of mathematical models, and to set forward the problem

under consideration, the elements chosen in this section repre-

sents a typical example of the problem being faced in the real

world for any engineering system.

The behavior of a material in a given operational environ-

ment can be represented by a set of responses, Ri where the

subscript (i) is a number that varies in unit steps from 1 to

the number of responses desired, say N. The choice of the

response terms depends on the particularaspects of the

material behavior under consideration. The set of response

terms R. 's constitutes the endogenous variables in the simulation

model.

The material is characterized by a set of relevant properties

P.j, and the environment is described by a set of conditions Ck.

The subscripts j and k take the values 1, 2, ... , n and 1i, 2, ... ,m

respectively, where n is the number of pertinent material properties,

and m is the number of prevailing environmental conditions considered.
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In general, material properties, environmental conditions

and response terms are all expected to vary with time.

The three sets of quantities respectively can be regarded

as a vector of material properties, an environmental vector, and

a response vector..

In a deterministic approach, a functional relationship

between each response term and the associated material proper-

ties and environmental conditions is usually assumed to exist.

Material properties also vary systematically with the environ-

ment. These relations are the ones referred to as the Congruity

Relationships in the previous section of this Chapter. So:

R = i [P 2' "" Pj' "" Pn, CI, C2' .." Ck'... Cm] (2.12)

P = j [C1 , C2 , ... , Ck, ... , Cm ]  (2.13)

However, both material properties and environmental conditions

are subject to considerable random variability over fairly wide

ranges, even under well-controlled laboratory tests. For brevity

the attention is focused in this section on the situation where

the environmental factors are not correlated. The modifications

which are required to account for the correlation of the environ-

mental factors are discussed in section (2.8) of this chapter.

Therefore, the Ck vectors are treated as random variables with

probability density functions f and associated cumulative
Sck



distributions F . When the environmental factors are cor-
ck

related*, their joint frequency distributions** yield the

necessary statistical data. If the environmental factors are

not correlated, their independent frequency distribution

sufficiently describe the environment.

Materials properties are inherently variable. Even though

the observed variabilities can partly be imputed to the

variability in environmental conditions and to experimental

and measurement errors, material properties basically can vary

under idealized, constant environmental conditions and identical

test specimens. Therefore, the teims P. are also considered to

be random variables with probability density functions fp. and
J

and cumulative distributions Fp..

In as much as the material properties are dependent on

the environment conditions, statistical correlation is implied

by equation (2.13). However, even under strict conditions of

stable environment, material properties can be inherently cor-

related (24). The joint density function fp 1,P 2,.p Pj'

rather than the density functions fp. gives "complete" information

J

This correlation exists when there is an interaction be-

tween the environmental parameters. An example of this

is the interaction between moisture and temperature and

the effect of one on the other.

This may be written as f(Cl,C2, .. ,Cm )
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about the inherently correlated material properties.

Variability in material properties and environmental

conditions in any engineering system implies variability in

material behavior, i.e., in the response terms Ri . To any

system, in general, the basic inputs are the constituent

materials characterized by a set of relevant properties, and

environmental Conditions surrounding the system and affecting

its operation. The environment is meant to include loads

(mechanical and thermal) as well. So the material properties

and the environmental conditions are the basic inputs to the

model, i.e., the exogenous variables. The geometry of the

layers and of the load enters the model through the congruity

relationships, and are also inputs to the model. A set of

density functions fR. or alternatively cumulative distribution

functions FR. represents the variability in material behavior

and response, i.e., the endogenous variables.

To evaluate fR.i prerequisite data should be available
1

for the density functions fp and fCk
. Even if these density

functions are somehow evaluated, then considerable difficulty

can arise in determining fi by analytical methods. -Such
R
1

difficulties can be encountered if fp.
J

and fCk
are not normal

and the congruity relationships are not linear. In these cases,



a numerical solution can be obtained by the Monte Carlo

method.

The simulation method for the evaluation of the cumulative

distribution function FRi has been proposed in an algorithmic

form which is suitable for computer progranmming. The method is

probabilistic in its approach and is based on conditional proba-

bility of the form shown below.

Initially, we consider a situation in which the endogenous

variables (i.e., the response terms Ri ) are related to m non-

correlated environmental variables Ck(k=1,2,...,m) and n material

properties Pj(j=1,2,...,n). The cumulative distribution functions

F and Fp are assumed to have been previously determined and
kJ

that the congruity relationships of the form of equations (2.12)

and (2.13) are at hand. The method comprises the following steps:

1. Draw the first set of values CK , k = 1,2,...,m of the
1

environmental factors CK from populations with cumulative

distributions F.
K

2. Obtain the conditional probability distribution function

of each material property P. for the values C available from

step 1 above:

Fplc K (P.Ppj ICK = Ck ), k 1,2,...,m (2.14)
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Whereas this equation takes the following form if the material

properties are not influenced by the environment:

FP jlCk FPj 
(2.14a)

3. Using the distribution functions obtained from step 2,

draw the first set of values pJ j = 1,2,...,n of the material

properties P..

4. Compute the first set of endogenous variables, Ri.,
1

using the congruity relationship (2.10).

5. Repeat the previous steps M times to obtain M sample

values of the R.. The summary for the conditional probability1

used in this procedure is stated in equation (2.15) below:

FPC k (P p jlCk = ckl), j = 1,2,...,m (2.15)

where c. is any set of values of c. from populations with

cumulative distributions F C

In much the same algorithm, i.e.,

FpjCk (P Ck) . FCk (Ck) = Fp (P) (2.16)

the inherent interdependence of material properties can be taken

into account. When the environmental factors are correlated, some

modifications have to be introduced in the above algorithm in a

similar way (24).
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As a result of M simulations, histograms, means, variances,

and percentage points can be obtained. If the number M is

sufficiently large, the histograms can accurately represent the

continuous distribution of the parent populations.

From the above discussion, it is clear that this method is

based upon, and is only reliable as the technique used to obtain

a sample value x of a random variable x with a given distribution

F . Various techniques have been suggested for this purpose; in

fact there is a considerable amount of literature devoted to this

subject (32,33). Most techniques (22,33,47) are based on the

generation of pseudorandom numbers which are uniformly distributed

in the region between 0 and 1, which is discussed in Section (2.5)

above.

The "inverse transformation" method suggested in section (2.5)

has been employed in this study to generate random variates from

certain probability distributions. However, care should be taken

in the selection of random number generators as some are less

efficient than others, depending on the nature of the problem, the

parameters involved in the simulation, and the statistical

properties of these parameters. An approximate normal deviate

generator has been used in case of normally distributed properties

in this study. The generator which is part of the IBM/360 system,

and can be found under SUBROUTINE GAUSS, in the system's library,



is based on the Central Limit theorem. It uses 12 uniform random

numbers to compute each normal deviate, which is done by calling

another generator (SUBROUTINE RANDU) twelve times. The latter has

been used when the material properties and environmental conditions

are assumed to be uniformly distributed. AWNDU is based on the

"power residue" method to compute sets of randomly distributed

numbers (22). "Listings of both subroutines (i.e., RANDU and GAUSS)

are found in Reference (22).

In the next chapter, application of the above method is

presented as applied to a mathematical model representing a highway

pavement structure taking into account the effect of the variability

in the material properties and environmental conditions on the

behavior of the pavement under a static condition of load application.

2.8 Final Procedural Remarks on the Use of the Method

The simulation procedures suggested and discussed above is a

simple numerical method giving statistical answers to specific

problems which are not amenable to analytical procedures due to

their inherent complexity and interacting characteristics. The

method is approximate in nature, however, adequate currency can be

attained if the number of simulations is "sufficiently" large.*

In this case, the decision as to how many samples are to be drawn

: The "Sufficiency" conditions here depend on the available and
the required statistical data.



out should be preceded by sensitivity analysis. The choice of

sample size to be used for simulation experiments is one of the

most important decisions to be made in planning a simulation study.

It is completely inappropriate to select these sample sizes arbi-

trarily and then assume that the estimates thereby obtained are

sufficiently accurate to yield valid conclusions. Instead, it is

essential that statistical analysis be conducted to determine the

required sample sizes. Hillier and Lieberman (21), Meier et al.

(29), Naylor et al. (33), and Wagner (45) suggest various techniques

for determining the size of simulation experiments.

Several other techniques have been developed to reduce the

number of simulation experiments. They are either regression type

of analyses or variance analyses (11,19,21,29,33,45). Variance

reducing techniques are aimed to increase the information in the

"interesting regions" of the distribution functions FR., and

consequently to decrease the information in the "non-interesting

regions or ranges". For instance, most structures usually are

designed with a very low probability of failure, so that the low

probability regions of the distribution functions of the variables

* Information on the entire cumulative distribution function of the
variables representing the material behavior is obtained by
statistically taking a sufficiently large number of values
simulated using the Monte Carlo method. However, only a small
portion of the distributions, referred to as the "interesting
region", may be of interest in design and safety considerations.
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contributing to such failure in the structure will be of prime

interest (46). Therefore, it can be concluded that a larger

number of simulations over the range of interest would simultaneously

yield fairly good estimates of the cumulative frequency distributions

over than range, and a reduction of the computer time for simulation.

This is achieved by conducting a sensitivity study on the system

under consideration to determine the regions of most interest.

The other factors which have an influence on the cumulative

frequency distribution of the endogenous variables are the proba-

bility density functions of the exogenous parameters (i.e., the

environmental variables and the material properties), their

interaction and their correlations. In case of interacting

parameters, it is suggested that a joint density function of the

form shown in equations (2.17) and (2.18) below, be used rather

than the single density functions. If these parameters are

stochastically independent, then

f(C 1 ,C2,...,C) = H
k=l (2.17)

where the probability that the response R falls below a particular

value r, will be

m

F ( r) P= (R<r) = H (2.18)
fG fk=1

The restriction R<r defines the region of interest G.
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The probability density functions of the different simulated

parameters are either assumed or obtained by some statistical tests.

Sampling from the actual, statistically determined distribution is

superior to that obtained from assumed distribution. However,

when the statistical data for the density functions of the parameters

under consideration are not available, special care should be

taken in assuming such density functions. This can be done by

looking into the literature for statistical representation of the

same or similar parameters.



III. THREE-LAYER HALF-SPACE VISCOELASTIC SYSTEM

3.1 Model for' the Pavement System

A pavement system is represented by a three layer model

with two layers of a finite depth and the third layer being

infinitely deep. Horizontally, the layers are assumed to

extend infinitely. The materials in the layers are linearly

elastic or viscoelastic, isotropic, with properties varying

in a certain statistical manner. The load is assumed to be

a single load uniformly distributed over a circular area at

the surface of the top layer. The model is shown schematic-

ally in Figure (3). The formulation of the problem for the

numerical solution of the stresses, strains, and deflections

for the model is that developed in References 13, 14, and 30.

The material properties that are pertinent here are the

compliance or the creep function, and the Poisson's ratio.

Geometric properties are represented by the heights of the

different layers.

The exogenous variables of the model are: material prop-

erties, geometric factors, environmental conditions (inclu-

ding mechanical loads).

Poisson's ratio is assumed to be constant and does not

vary with the environment. Therefore, the compliance or the

creep function is the only property which is assumed to be

influenced by the environment, and is also assumed to be

statistically distributed in a certain form.
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The environmental operating on a highway system is assumed

to be composed of three components: the traffic load, the

temperature, and the humidity or moisture.

The traffic load is independent of the values of temper-

ature and moisture, but there is an unknown relationship

between temperature and moisture. Temperature is assumed to be a

random variable having a certain distribution in the range (T1,T2)

where T1 and T2 are the extreme points of an assumed working range

of temperature. The values for an average temperature values over

a one year period in the Boston area were obtained from tables of

the U.S. Weather Bureau in Boston. Then two distributions for the

temperature were assumed, having the extreme values reported by the

weather bureau:

a) Uniform (rectangular) distribution over the range between
TI and T2

b) Normal (Gaussian) distribution over the same range, where
a statistical average and mean were calculated from the
values of temperature obtained from the above tables.

Several investigations have been conducted to study the effect

of temperature on the modulus of the asphalt and soil layers in pave-

ments (7,33,38). Figure (4) has been used in this study to establish

an empirical relationship between the temperature and the modulus

of the different layers. This has been based on a study conducted

by Dormon and Metcalf (7), which is derived from experimnental obser-

. . a



vations. The moduli of the materials constituting the layered

system are assumed to vary with the temperature in the follow-

ing manner:

E = A e-i (T+C) i = 1,2,3 (3.1)

where "A" and "a" are assumed to be constants for the layers,

and the subscript (i) refers to the layer of interest (Fig-

ure 4). Ideally, the two parameters (A and a) should also

be considered random variables with certain statistical dis-

tributions. "A" represents the value of the modulus at T = -C,

where C is the value of the temperature at which the creep

function or the modulus have been determined, or some refer-

ence temperature. At a given temperature T, which is a

random variable distributed in the range (T 1 ,T2) , the value

of the compliance D can vary between D (T) and DU (T), where

the subscripts (k) and (u) refer to the lower and upper bound

values of the function. The position of (D) will greatly

depend on the moisture. No direct relationship was ascer-

tained to determine the coupled effect of the moisture and

temperature in evaluating the modulus or the creep properties

of the material in the layers of a pavement system. Further

work in this area is necessary.

Two curves are therefore arbitrarily drawn for the rep-

resentation of the functional relation that has been assumed

in equation (3,1) between the material properties and temperature.



The upper-bound curve is for the best condition of moisture,

which may be the driest, and the lower-bound curve is for

moisture conditions approaching saturation. This is true when

the relation of equation (3.1) is for the modulus or the creep

function ot the materials. In case of the compliance, the

inverse of the relation exists, i.e.,

D. = e (T+C) (3.2)
SA.

The upper-bound curves discussed above become the lower--bound

curves for the compliance, and vice versa.

From the above discussion, it is clear that the effect of

the moisture has been implicitly incorporated in the analysis,

although no direct and explicit relation has been established

between both the moisture content and the temperature on one

hand, and the material properties, on the other hand.

Figure (4) shows the relation between the temperature and

the modulus of the material with the assumption that:

a) The moduli and the temperature are uniformily
distributed between upper and lower bounds
defining best and worst moisture conditions.*

* Note that both distributions assumed here have been arbitrarily
chosen for the sake of demonstration. Any realistic or

hypothetical type of probability density function can be used

in the model to represent the behavior of the elements of the

model.
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b) The modulus as well as the temperature,
are assumed to be normally distributed
between the above limits.*

In the first case, the distributions are assumed to be

uniform (i.e., rectangular) of the following form:

T = T1 + dl (T 2 - T1

D = D1 + d 2 (D u - D)

(3.3)

(3.4)

where "dl" and "d2" are pseudorandom numbers uniformly distri-

buted in the range (0< (dl,d2)<l). The above distribution

is shown in Figure (4).

The coefficient "a" in the assumed exponential relation-

ship between the temperature and the compliance, can also be

assumed to be a statistical variable with a certain distribu-

tion, as shown in equation (3.5) below:

a = a + d3 (a2 - a1) (3.5)

where the term a is uniformly distributed** in the range be-

* Note that both distributions assumed here have been arbi-
trarily chosen for the sake of demonstration. Any realis-
tic or hypothetical type of probability density function
can be used in the model to represent the behavior of the
elements of the model

** The same discussion in the above footnote is applicable
to the variable a.



tween al and a2. This assumption is more realistic since it

satisfies the modulus-temperature superposition and shifting

principles, but it will result in a more complicated situation

and will considerably affect the computer time. In the pre-

sent analysis a is assumed to be a constant for each layer.

In the second case, i.e., when the temperature and the

compliance are assumed to be normally distributed in an

assumed working range of values (Figure 4), a standard normal

(Gaussian) distribution has been chosen using a random number

generator for normally distributed variables as illustrated

in section (2.7) of Chapter II.

The above techniques and assumptions are employed using

a computer program that considers a three-layer system with

a static load applied at the top of the surface layer (13,

14,30). The program is a primary model for the study of the

behavior of pavement systems under traffic load. It calcu-

lates the stresses, deflections, and strains developed at

any point in the system. The program handles linear elastic,

linear viscoelastic, or partially viscoelastic.system. The

formulation of the problem for analytical solution for the

stresses, strains, or displacements of the three-layer system

is found in References (13,14,39).

The effect of the variation in the environment and in

the material properties is taken into consideration in the

following manner. The compliance or the creep functions used

as input to the program are represented in the form of a
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series of exponentials, namely the Dirichlet Series, for math-

ematical conveniences (equation 3.6).

n
D = G e i, j 1,2,3 (layer number) (3.6)

i=1

Therefore, for a given axle load, a radius "a" is determined

as the contact area between the wheels and the pavement with

a certain load intensity, and, depending on the temperature

of the surroundings, the material property is randomly chosen

for each layer, i.e., the value of the compliance or the

creep function is selected f rom a given spectrum between

upper and lower bound values D and D u . D and Du are used

as input to the program in the following manner:

n -tsD E G.e i, j = 1,2,3 (3.7)
3 i=1 i

u u -t6.
D E G.e i, j = 1,2,3 (3.8)

3 i=l

where the superscripts "T" and "u" on the coefficient of the

exponential series (Gi ) denote upper and lower values respec-

tively. The variation in the coefficients (G0) will even-

tually yield a variation in the creep or elastic compliances.

The assumption made here for simplicity, is that only the

instantaneous or the elastic portion of the creep function

varies statistically, by fixing the value of the retardation

time (1/6i). However, the whole curve may vary statistically



in an unknown manner. More statistical tests .can contribute

to the understanding of scch varialoun. Future changes to

accomodate such variation can be made by changing the prob-

ability density function which has been arbitrarily assumed

in this study.

Selecting the value of the compliance or the creep func-

tion in this model fixes a value for the moisture content

which can easily be calculated, provided that the functional

relationship between the modulus or the compliance and the

moisture is given.

The above process is repeated a number of times for a

selected sample value of temperature. The number of iter-

ations mainly depends on the sensitivity of the material

properties to the variations in the environment and to the

statistical characteristics of the material properties as

has been discussed in section (2.8) of Chapter II. A flow

chart of the computer program describing this process is

shown in Appendix I.

In order to make use of the data, the values of the

response terms are calculated for a given set of environ-

mental variables by selecting a range of material properties

for a given monthly variation in the temperature depending

on the surrounding moisture conditions. This requires the

determination of the monthly, rather than daily, temperature

variation in each layer over a cycle of one year, for example.

The magnitude of stresses or strains is calculated on this
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basis for several times each month, and a most probable value

can be predicted. This procedure is repeated over the whole

year period. Assuming that the results are additive, if a

critical or intolerable value of stress is reached, then the

system is assumed to have partially failed. The analysis is

applicable to the case where the value of the defection is

limited and therefore, the value of the compressive stress

or strain at the second interface* is limited. However, the

values of temperatures in this study were chosen randomly

between upper and lower limits over the whole year and are

based on a monthly variation because the sequence of their

occurrence is not critical when the static load case is

studied. When the repeated loading case is studied, it is

important to emphasize on the significance of the sequence

of occurrence of events to account for accumulation of re-

sponse over extended periods of time.

In the next section, an illustrative example is presen-

ted where numerical values of the inputs and outputs of the

model are also listed. Discussion of the results obtained

through the computer programs are also presented in this

section.

3.2 Numerical Example of Simulation of the Three-Layer
System

To illustrate the effectiveness of the techniques dis-

* The interface between the second layer and the subgrade.
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cussed above, and to give typical results, a three-layer' half

space viscoelastic system with the following geometry and material

properties have been analyzed.

a7 '= 1.19
h

H = 2.0

6
D. (t) =

j=1

j -ta.

where the

Di. (t)= Z Gj  -tS.

values of G , and 6. are
3

given in Tables 1, and 2, and

the compliances are also shown in Figure (5) for materials used in

each layer.

3.3 Results and Discussion

Simulation of the data in this example was conducted by drawing

100 sample values of the input variables which were assumed to have

two different statistical properties:

1) Uniform distribution for the temperature and the viscoelastic
creep compliances, and

2) Normal (Gaussian) distribution for the variables mentioned
above.

Figure (6) shows typical response functions in terms of the

vertical strains (EZz) at the first interface under the center of

the loaded area, versus time. This figure shows that for a 15%



TABLE 1

Extreme Values for the. Coefficients of the Dirichlet Siries

Representation of the Creep Compliance Z G.e t *

First Layer Second Layer Third Layer

Upper Extremes Upper Extremes Upper Extremes

1 1 1

G = -0.5750 uG =-1.1500 uG3 = 0.0
2 2 2

UGi =-0.0863 uG2 =-0.1725 uG3 = 0.0

3 3 3
UGi =-0.0575 uG2 =-0.1150 uG= 0.0

4 4 4
-G, =-0.0863 G2 =-0.1725 G3 = 0.0

55 5
uG =-0.0575 uG6 =0.1150 G3 = 0.0

6 06
, = 0.5750 UG = 1.1500 uaG = 1.1500

Lower Extremes Lower Extremes Lower Extremes

' 1 =-o0.4250 G =-0.8500 G I =-0.0

2 2 2
kG =-0.0638 ,G =-0.1275 ZG = 0.0

3 3 3
G~ =-0.0425 ~G =-0.0850o R = 0.0

4 4 4

G =--P.0638 0G =-0.1275 kG = 0.0
5 55

kG =-0.0425 kG =-0.0850 G = 0.0
6 6 6

G = 0.4250 G = 0.8500 G = 0.8500

R R 3

All tne Ui. values are mu±ltplied uy 1u
G1 Ju 1 for example is ( -0.0005750 ).

ithe actuL.al valut Uof
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TABLE 2

Exponents of the Coefficients of the Creep Compliance

.in the Dirichlet Series Representation Z G.e-tci

6, = 10.00

6, = 3.162

63= 1.00

6 4 = 0.316

0.10

6, = 0.0

65 =
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Figure 6. TYPICAL DISTRIBUTION OF THE TIME - DEPENDENT NORMALIZED VERTICAL STRAIN FOR MATERIAL

PROPERTIES SHOWN IN FIGURE 5.



variations in the input creep compliances a relatively wide scatter

results in the response function. This also shows that for each

value pf the creep compliances of the different layers, any of the

response curves shown in Figure (6) has a chance of occurrence.

This variation in the response is substantial enough to justify

the use of a probabilistic treatment.

The frequency distributions of the vertical strain at two

different points in time are plotted in Figures (7) through (10).

Figures (7) and (8) represent frequency distribution for the first

case, i.e., when the probability density functions of the input

variables are assumed to be uniform. While Figures (9) and (10)

represent the corresponding frequency distributions of the vertical

strain for normally distributed input variables. Each histogram in

Figures (7) through (10) is in fact a cross-section at that particular

point in time of Figure (6).

The trend in these histograms appears to be toward that of the

corresponding distribution of the input variables, although there

are some peaks or irregularities. The reason for these deviations

from the assumed distributions may be attributed to the fact that

the number of samples drawn for the simulation experiment was not

sufficiently large to be representative of the parent populations.

To validate and check these description of the histograms, it

is possible to conduct simple statistical tests called "Goodness-of-

fit" tests, to estimate the coincidence of the obtained results with
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those from theories. A X2 - test was, therefore, conducted on

the results of the above simulation. Both cases showed that they

fit their corresponding theoretical distributions within a

reasonable degree of accuracy.

Moreover, to confirm the fact that the lack of adequate

number of samples is responsible for the discrepancy between

theoretical distributions and those obtained by simulation, the

temperature distributions obtained from the IBM System/360 Random

Number Generator are plotted in Figures (11) and (12). Figure (11)

is a frequency distribution of uniformly distributed temperatures,

and Figure (12) is that of normally distributed temperatures.

These figures show a trend similar to the corresponding

distributions of the response terms shown in Figures (7) through

(10).

The cumulative distributions of the above histograms are

plotted in Figures (13) through (18).

The above results and their scatter show the importance of

the statistical nature of the materials properties and other

input variables -that will describe the resulting scatter in the

response of the pavement to load and environment. In order to

use the results of such simulations is the analysis of response

of the pavement systems, one may use first and second order

movements, i.e., the mean, the variance and the coefficient of

variation. From this, a summary of the simulation may be plotted
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as those in Figures (19) and (20). Figure (19) describes the

mean, deviations, and extreme values for the time-dependent

strain shown in Figure (6), when the input properties were assumed

to have a uniform distribution. The corresponding values for the

normally distributed input variables are shown in Figure (20).

In the design process, it is more realistic to consider all

information s-imilar to that shown in Figures (19) and (20). Using

averages and single values for the design may result in a very

conservative design, or else failure may be more eminent than

that predicted.

Finally, variations in the load function may result in a

change of the physical properties of the materials in the pavement

that would affect significantly its response. This type of

behavior is not being accounted for if classical averaging

procedures are followed in the design. While it is obvious that

the extreme values of the response shown in Figures (19) and (20)

may be due to this type of behavior, and therefore it allows the

designer to consider the uncertainty associated with their

occurence to account for these properly in the design.

The next step to be taken in this type of analysis is to use

the results obtained from the simulation of the system under a

single stationary load and operational environment into a

repetitive load mode applied randomly to the system. From this,

the effect of load repetitions and varying environment on the.
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response and behavior of the system can be studied. Consequently

the analysis of the so called.primary response behavior of the

three-layer system under realistic load and environmental

excitations would be completed.

The response of the bystem to a repeated loading mode under

constant environment has been studied determninistically, and can

be found in references (13) and (14).

It is clear that the study presented in this thesis is

essential for the study of damage and failure of pavement

systems. This stage of damage progression and failure may be

characterized as the secondary response stage as distinguished

from the primary response stage presented in this work.



IV. CONCLUSIONS

It has been shown that simulation is a rather promising

approach in dealing with problems that involve various

degrees of uncertainty due to the variation in certain para-

meters in them. The highway pavement is a good example of

these problems, and simulation provides a systematic approach

for developing a meaningful probabilistic input-output

relationship. Another advantage associated with the use of

the simulation procedure discussed above is that is can

handle any irregular shape of probability density function

of the input parameters.

However, it is clear that in order to obtain a useful

and accurate probabilistic output, the number of simulation

experiments to be conducted has to be very large. A .sensi-

tivity study is needed to optimize the number of samples

required for a specific problem (21). This means that high

accuracy requires large computer time, which can be a major

setback in the use of the method for simulation of the model.

Therefore, it seems that if the probability density

functions of the input parameters have some standardized

forms, a more realistic way to attack the problems will be

that of using a closed form probabilistic solution. This

closed form solution will provide very useful information

regarding probabilistic properties of the output, such as

the mean,.the variance, coefficient of Variation, etc., which

are needed for purposes of design or further analysis. Since
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this approach has proved useful in many applications in

engineering, it seems that even if the shapes of the prob-

ability density functions are not that of some standardized

forms, it can be approximated to fit a standardized

theoretical form. The error involved here is hardly

significant due to the high degree of uncertainty associ-

ated with the problem. Therefore, if the stochastic proper-

ties of the problems are known, an alternative formulation

and solution of the problems based on the above techniques

will be considerably more economical.

However, in the present analysis of response of the

pavement system under static load conditions, it is not

feasible to use closed form probabilistic solutions. The

reason for this is due to the fact that the response terms

are expressed numerically as a function of time. This

means that the resulting response is not found in a single-

valued form. Therefore, simulation is thought to be a reason-

able approach in this analysis.



V. RECOMENDATION FOR FJTRE WORK

5.1 Primary Response Model

An immediate extension for this approach would seem to

study the system under realistic operational environment. Assuming

that the system is linear, the classical input-output relation

for linear systems may be expressed in the following form of a

convolution integral:
t

y(t) = I h(t - T) * x(T) dT (5.1)

where y(t) represents the response of the system,

x(T) represents a history of the excitation function, and

h(t - T) is a characterization function of the system, and

is usually called the "response function".

Equation (5.1) considers a linear system as a black box,

characterized by its response function h(t --t), and is being

acted upon by a history of some excitations described by x(T),

as shown in figure (21).

This relation is a very useful one, and may be used as

described below to study the behavior of the system under realistic

operational environment.

Since the vehicular load is applied on the pavement in a

repeated mode, it may be represented by some frequency wave such

as a half sinusoide, or haversine function, etc., to describe

the history of load. The response function h(t - T) can be
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represented by the response of the system to a unit step load.

This response is obtained using the method described in the

thesis. However, since the environment is an important factor

in the response of the system, equation (5.1) may be modified

to include another term 4(s) describing an arbitrary history of

the environment (equation 5.2).

t t
y(t) = x(T) h[(t - T) , (s)] dT (5.2)

S=T

The excitation function x(T) may be treated as a random

variable, i.e. with random amplitude and frequency of arrivals

of vehicles. The response function can also be treated as a

random variable with certain statistical properties and asso-

ciated means and variances. A simulation study may then be con-

ducted to study the cumulative response under this type of

random excitation and environmental history. Damage may then

be accumulated according to a certain damage rule, such as that

suggested by Miner:

E D = E ni 1 (5.3)
1 N f

Healing and recovery may also be accounted for by some time-

dependent process characterizing the system.

Different manifestationof damage can be predicted and

accumulated by the suggested model, each by satisfying a certain

criterion until an untolerable threshold is reached by one or

a combination of more than one type of damage. At this limit,
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the system is considered to have failed structurally.

Another alternative for simulation of this process, which

has proved to be costly, is that of using a closed form pro-

babilistic solution.

Equation (5.1) in fact describes a deterministic system.

A probabilistic description in the time domain of the process

may be written as:

R y() = I f h (a) h(B) Rx(T+a-) d dB (5.4)

If the statistical properties of the pattern of load appli-

cation as well as that of the environment are known, and if the

statistical scatter of the material properties is also known, a

probabilistic solution may be developed to yield the probabilistic

information that will be provided otherwise by simulation.

5.2 Performance Prediction Model

Highway pavements belong to a class of structures which are

identified as structure-sensitive systems. Structures-sensitive

systems are those engineering systems in which damage or failure

of a component results in a loss in the level of performance,

rather than the abrupt incidence of total failure. For these

systems, internal damage develops within the operational environ-

ment over a certain period of time, and failure is viewed as the

ultimate conditions which result from the loss of performance.
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Failure, therefore, is the extent of damage which has been accu-

mulated as a consequence of structural deterioration over a

range of stress, strain, time, and environmental conditions in

an operational environment.

The performance level of pavement system, as a structure-

sensitive system, may be defined as the degree to which the

stipulated functions of the system are executed within the en-

vironment. This level is, therefore, dependent on the history

of the applied load and its distribution, on the quality of the

construction materials used and their spatial distribution, on

the history of the environment, and on the extent to which

proper maintenance practices are executed over the entire life

of the system.

Finally, damage in the structure may be defined as the

extent of structural deterioration resulting in a loss in the

performance of the system.

Figure (22) illustrates that the performance of the system

diminishes in some way until an unacceptable level is attained.

This behavior results from the combined action of the load and

the environment during the operational life period of the system.

Therefore, performance, which is in this case the integrity

level of the system at any time is one minus the amount of damage

accumulated within that time.



Pi(ti ) = 1 - Di(t i )11i 11i
(5.5)

Where Di is the amount of damage accumulated from Ys (t) in

equation (5.2).

Since damage is probabilistic in nature, the performance level

will be dependent on the temporal and spatial distribution of

damage at any time during the life period of the system. Damage

progression in highway pavements can be represented by a Markov

process model. A Markov process, is one with the following properties:

P[X(n+l) = x(n+l) (X(l) = xl) (X(2) = x2) . . .

(X(n) = xn ) ] = P[X(n+I) = n+ I X(n) = xn ]  (5.6)

This simply states that there is only one step dependence.

The future state depends only on the current state, and the

dependence of the future events on the past is of a particularly

simple nature.

The transition of the state of the system may be repre-

sented by birth and death processes with the birth representing

more damage due to cumulative response and aging effects, and

death representing some level of maintenance introduced at that

stage.

Each stage in the Markov chain will represent a certain level

of damage, or otherwise performance level, accumulating over a

period of time, in this case it may be a few months or one year,
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as the case may be. The transition probability matrix can then

be established on this basis. The rewarding matrix will express

the amount of damage or loss in perfornmance that will be involved

in the transition from one state to another. The final stage

is one where failure takes place at, and can be reached when the

damage reaches some untolerable limit, or when the performance

reaches some unacceptable level, at which time the system is

considered to have failed.

This analysis provides very useful information that can be

used in design practices based on reliability criteria. A dis-

tribution of the life time of the system can be obtained by find-

ing the distribution of the time to reach the final state which,

in this case is a trapping state since the system is rendered

unusable upon entering that state. The amount of maintenance

required throughout the life of the system can also be predicted

through the model, since maintenance will be responsible for a

Dossible transition from one state to a previous one (filling a

crack, a hole, etc.).

Therefore, an important factor is achieved also in this

process, which is the introduction of maintenance prediction in

the design process based on quantitative and scheduling estima-

tion of the maintenance required throughout the life time of the

system. From an economics point of view, this will also be very

helpful in estimation of the expected values of construction as

88



well as operation of the highway system.

A schematic representation of this process is presented in

figure (23).

5.3 Summary

Factors contributing to the initiation, propagation, and

propagation of damage can be divided into three categories:

(a) materials properties and pavement geometry, (b) load variables,

and (c) climatic conditions. A substantial variability is asso-

ciated with the measurement or prediction of each of these

factors, thereby resulting in a stochastic nature of the response

and behavior of pavement systems. To account for these varia-

bilities, the damage model should be capable of yielding sta-

tistical estimates of the temporal and spatial distribution of

the different modes of structural deterioration resulting from

the action of load and environment throughout the service life

of the system. A pavement system is represented by a three-layer

Viscoelastic system describing its physical and geometrical

properties. The load application can be represented by a Poisson

process of random occurrence at a certain rate of arrival.

Temperature, moisture, and other environmental variables may be

assigned some statistical distribution of a standard type such

as normal distribution, uniform distribution, etc.
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Damage is'accumulated due to repeated load action within

the operational environment. A Markov process model can be

used to describe the progression of damage over some relatively

long periods of time. Each state in the Markov process defines

a certain level of damage or perfotrmance. A transition matrix

will provide the probabilities of the transition of the different

states into others. The reward matrix will provide some quanti-

tative measure of damage or loss in the performance level through

the transition from one state to another. Maintenance practices

will cause the transition of a certain state to a previous one,

in other words, it will raise the level of performance or de-

crease the amount of damage in the system.

Failure is then the state of untolerable extent of damage

or unacceptable level of performance.

The above analysis provides a realistic study of the be-

havior and performance of highway pavement systems based on

realistic inputs and outputs of the system. The system is also

characterized by a model which is based on a true representation

of the physical behavior of the system as well as its geometrical

properties.

The following features designate the above method of approach

from the viewpoint of design practices:

1. Prediction of the distribution of the performance level of



the system at any period throughout its lifetime.

2. As a-consequence of (1) above, maintenance estimates

and scheduling will be based on more realistic grounds.

This will facilitate incorporating maintenance in the design

process as wellas the economical analysis of costs of con-

struction and operation of the system.

3. Prediction of'the distribution of the lifetime of the pave-

ment. This is very important in any design process as well

as economical analysis, since resurfacing is required after

this period.

4. All the above analyses are based on a probabilistic approach

which accounts for the unpredictive occurrences of events, an

approach which is more realistic and more reliable.
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APPENDIX I

COMPUIER PROGRAM

This Appendix Contains a Flow Chart and a Program Listing

of the Simulation Program for the Three-Layer Viscoelastic System.
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Read Input Data ----- Print Input Data

Call subroutine "RANDU" or
"GAUSS"

Generate Random Numbers

Generate values for Tempor-
ature between Specified
Upper & Lower Limits

Compute Corresponding
Extreme Values for
Modulus

Generate Values for Modulus
between Specified Upper &
Lower Extremes

Call Main Program- Stationary
Load Program

Return fromMain

Printed Computed Response
NO Terms

are all
values for tem- YES is number of NO

perature simulated ' simulations the maximum-
required

YES
S 97

. . 1



C THIS IS THE MAIN PROGRAM FOR THE ANALYSIS OF A LINEAR VISCOELASTICMAIN0001
C THREE-LAYEP HALF-SPACE UNDER A UNIFORM CIRCULAR LCAD, FOR THE CASEMAINCO02
C THAT TJ-E MULTIIPLE COiNVJLIJTION INTEGRALS ARE EVALUATED EXACTLY. tAINO003
C IN ADDITION TO THAT, TH PPOGRAM USES THE MI.NTE CARLO SIMULATION MAIN0004
C PROCEDURE TO GENRL,ATE RAN,OM 4UMBFERS AS REPRESENTATIVE SAMPLES PAIN005
C FUR THE VALUES !UF THE RESPONSE TERMIS DESIREDo THIS IS A STOCHAS- MAING06
C TIC APPROACH TJ PREDICT THE PROBABILITY THAT A DESIRED RESPONSE MAIN0007
C TERMI(BE IT STRESS, STRAIN, ORP. DEFLECTION) TAKES A CERTAIN VALUE. MAINOO08
C TH. PRUGRAM, TAKtS INTO CCNSIDERATION THE EFFECTS OF CFE INHERENT MAIN'009
C VAR IATION IN Tilt P RPERTIES uF THE MATERIAL(WHICH IS IN THIS CASE MAINO010
C THE CREEP COMPLIANCE OF THE DIFFERENT LAYERS CIONSTITUTING THE MAINo011
C SYSTEM.)° IT ALS IO TAKES INTO ACCO!UNT THE EFFECT OF THE CONSTANTLY MAINCO0.2
C VARYING ENVIRONMENT.L COND IT IONS(SUCH AS TEMPERATURE AND NOISTURE) MAIN0013
C ON THE BEHAVIOR OF THE SYSTEM 0  MAIN0014
C THE NECESSA-RY SU-~FRUIUTINES ARE VISCC., CNVIT,CNSTNT,SOLVE,AND TERPUoMAINOOi5
C ALSO NECESSARY IS THE REAL FUNCTION OSURPROGRA v JBo M AINO016

STHE INPUT IS IDER, ILAYER, I LEFLE, H, A, R, ZZ, ,NJJJ, DELTX, MAINOO17
00 DELXX, N, NN, NS, iN'O'TH, IARBp TI( ), T2( ), THE VECTORS YL1( ),MAIN0018

C YL2( ), YL3( ),'YU1( ), YU2( ), YU3( ),AI, A28 A3, AND DELTA( ), MAINOO19
C YL2( ), YL3( ), YU1( ), YU2( ), YU3( ),A1, A2, A3,. TLI, DELTA( ).MAINOJ20
C IDER IS A DUMMY FOR THE STRAINS,, IST IS.A DUMMY WHICH, TOGETHEK MAINOO21
C WITH IDEFLE DTERP"INES WHICH STRESS, STkRAIN OR DEFLECTION IS DESIRMA'IN0022
C IST IS 1 FR NiORMAl_ STRESS, NRMAL STRAIN OR ROPMAL DEFLECTION, MAIN0O23
C IS 2 FUR SHEAR STRESS, RADIAL STRAIN OR RADIAL DEFLECTILON, AND IS tAIN0024
C .3 FOR RADIAL STRESSo H IS THE THICKNESS OF THE SECCNI) LAYER(THE MAINOC25
C. THICKNESS LOF THE FIRST LAYER IS ONE ). A IS THE RADIUS OF THE LOAD.MAINO026
C RP IS THE OFF-SET AT WHICH THE RESPONSE IS DESIRED,. ZZ IS THE DEPTHMAINQ027
C AT WHICH THE SOILUTI ON IS DESIRED, ILAYER IS THE LAYER OF INTERESTMAIN0028
C (1, 2, OR 3) IDEFLE IS PUSITIVE IF THL DEFLECTION IS DESIRED, vPAINO029
C ZERO FOR THE STRESSFS, AND NEGATIVE IF THE STRAINS ARE DESIRED. MAIN0030
C NJJJ IS AN INIPUT TO TIFtE SUFBROUTINIE SCLVE, AND IS EXPLAINED IN MAIN0031
C I)LTAIL TtHERF, DELTX AND DE LXX ARE INPUTS TJ THfE SUBRCUTINE TIME MAI.NO032
C fiND ARE EXPLAINED IN DETAIL THERE, N AND NNN ARE ALSO INPUTo N MiAINO033
C IS THE NtI.U'i BER UF TFERMiS IN THE DIRICtHLET SRIES REPRFSENTATI0NS )FMAINO034
C THE INPUT CEfEP FUNCTuIS, NNN IS THE NUMBER GF POINTS IN TIME AT MAINO035
C whICH THE SJLUTIUN IS DtSIR:Doa THE VECTORS YL1( ), YL2( ), YL.3( )MAIN 036



C ARE TF-E CONSTANTS FOR THE SERIES REPRESENTATIGNS OF THE CREEP MAIN0037
C FUNCTIONS CF THE ASSUMED LOWER BOCUNC FOR THE FIRST, SECOND AND MAINO038
C THIRD LAYERS RESPECTIVELY, WHILE THE VECTORS YUC(' ), YU2( ), AND IAINOC39
C YU3( ), ARE THE SAME CCNSTANTS FCR AN ASSUMED UPPER L.IMIT(PROBABLYMAINO040
C AT THE MOST FAVORATE MOI.STURE CONDITIONS).. NS IS THE NUMBER OF MAIN0041
C SAMPLES TO IE ,WN, EACH MONTHo NMOLNTH IS THE NUJMBER OF MOfNTHS MAIN0042
C OVER WHICH THE SI.'!IULATION IS CONDUCTED* IARB IS AN ODD INTEGER NOTMAIN0043
C 1MURE THAN 7 CHARECTkERS TU BE USED AS INPUT TO THE RANDOM NUMBER MAING044
C GENRATION SUBGROUTINE, IT IS HCWEVER ACVI.SED TO USE A VALUE OF MAINCO45
C 65549 F,. A 3ETTER STASTICAL DISTRIBUTIOiW OF THE GENERATtED RANDOM MAINOO46
C IJlU!,,BERSo T ( ), AND T2( ) ARE VECTORS CONTAINING RESPECTIVELY THE MAINO047
C LOC ERA AND UPPER LIMITS OF TEMPERATURS FOR EACH MCNTH OF THE YEARoMAINC048
C TLIM IS THE INITIAL VALUE OF TftM;PE-.ATURE AT WHICH BOTH THE. UPPER MAIN0049
S ANID LOJWE CREEP CUAVES HAVE .EEN MEA.UREU,, NTEMP IS THE NI.MBER OF MAIN0050

C TEMPERATURtS USED IN COMPUTATION S. Hl_ RESULTS OF THE PROGRAM AREAAIN0051
C THE JES I.ED, STRA.IN 'R I.)ISPLACEMENT iT EACH OF THE NNN TIMES. MAIN0052

DIMENSION G(2;,3) MAIN0053
1 4 DIMENS ION( 201) A INC054

DIMENSION El ()iEr2(6),E3(6E),E A ( 36),E(36),EC(360) ,C1(20,12),C2( MAINO055
120, ) ,C3(2 ,1 2) , (2 ), 12) , EL1 (6,2 , 12 ) ,EL2 6(6,20,12) , EL3(6, 20, 12) , MAIN0056
2EUl ,20,!2),EU ( 6 t ,2U,2),EU.3(6,2U,12),EF( ,2C,12),ES 6,20,12),ET(MAINOO57
36,2) , i2) rl (2),T12) T 1 , YL (6) ,YL2 (6) ,YL 3 (6) ,YUl(6),YU2(6) ,YU3(6) MAINCU58
COMMON CC( 8,2 J), CC(8,20)',FF ( ,2 ) ,T (201 ) , OELTA(20) MAINO059

CMM ]N /MANE/ IDtR, ITEM, STNI tW 1DEFLEG H ,A,P,ZZ ,ILAYER, MAINO060
1 N, JJ J, D LX, L TX X MAIN0061

EQUIVLENCE( G(1, i ), i( i) ), (G ,2) ,E2( 1)) , (G( i ,3) ,E3(1 ) .) MAINO.062
DO 222 II =i1,li"" MA I NC0063

C THE LOOP THR .OUGH 726 ALLCOS MULTIPLE SETS OF CATA TO BE RUN. MAINOO64
RE AC (5, 9) I OL"D JR MAIN0065
WiRI TE(,88) IDER MAIN0066

88 FORMAT(7H I&ER = 110) MAING067
ITEM=IDER IMAIN0068

C ITEM IS A DUMMY AND IS GIVEN THE VALUES OF -1, O, 1 FOR THE NORMAMAIN0069
C STRAIN, CIRCUMFERE-TIAL STRAIN, AND RADIAL STRAIN RESPECTIVELY, MAIN0070

READ(5,2 1) ILAYLR, ID FLE MA IN0071
READ( 5, 52) IST, -!,A,R,ZZ MAIN0'072



20 FORMAT(515)
52 FORMAT(I 5/5F10.5)

'4RITE(6,210) IST, ILAYER, IDEFLE,H,A,R,ZZ
21) FORMiAT (71 IST-= Il,)/1jH ILAYi_-R = 110/1(,H IDEFLE = 110/

15H H = F.oVb/5H A = F1~,5/5H R = FI 0o5/6Ht ZZ = F1Oo5)
REAC(5,2 )NJJJ
NJ AND i4JJ ARE INPUTS TO THE SUBRCUTINE SCLVE. THEY H
NIFICANCE Tl THE PRESENT USE OF THAT StJPRCUTINE ANO AR
ARBITRAiY VALUES.
READ 5,1) DLTX,i0L XXK EA D ( 5,2"; r1 2 ,, N N

1 FORMIAT.(oF15:,,)
3344 FLJRMAT(415)

READ(5,3344ISNiNTNTEP,1ARB
WR IT ( 79N S . ) .S, N IN TH

7998 FORMAT(4X,' S = ',I I ;,' NMJNTH = ', )
R'EAD ( 5,70i) ( Ti ( I i ), I I= ,NTEMP)
, EAD(5,7 0) (T2(II ),II=1iNTEMP)
WRI T ( ,7 (6 . ( T ( 1 1), II= ,NTEMP)
WRITE (. b,7 2) ( T2( I I), I=1 ,N TEMP)

7 C4 FO RM AT(12F6, 2)
701 FURMAT(4-X,'LLEJR A-NTHLY TEMPEIRATURES = ',12F7 2)
702 FOlOR ATi4 XI,'UPPER i'ONTHLY TEMPERATURES = ',l2F7 0 2)

DO 797 KL=i,N
E1 ( KL) o
E2(. KL )=0, 0J

797 E3(KL)=~ 0.
DO 232 J=1,NS
C1(J , I )=,
C2(JJ, I i=
C.3( J, I )=:.o
P (J, I)=0.('
IDO .232 K= 1,
tEL 3 ( K, J , I.) =0. O

EL.3(K,J,I )=i,O

AVE NO SIG-
E GIVEN

MAIN0073
MAINO074
'MA I N0075
MAIN0076
MAIN0077
.MAINOO78

- MAIN0079
MAIN0080
MA I N0081
MA INO081
i'A1IN0083
MAIN0083
MA IN0085

MAI! NC.086

MAI N008
MAI NO089

MAINO090
MAIN0093

MAIN0092MAINO093
MA INOO4

MAINO095

MA I N0096
MAINO097
MAI N{O098
lvAINCO09
MAIN01OO
MAIN0101
MA I NU1C2
MAIN0103
MAI .N 104
MA I N0105
M AIN 106
VAINOIC7
MA INOIC8

C
C

C

o
0



EU1(KJ, I)=O,) MAIN0109
EU2 (K,Jt I ) =Jo MA INO110
EU3(K,J, I )=0: 0 AIN0111
EF ( K, J, ) MA IN0112
ES (K, J, I) =0oo MAIN0113

232 ET(K, J, J I)= f oI MAIN0114
KI L=NS"NM'NTH N MA i115K I L= N S ,"N 1 1 T f vN V A I NO 15

DO 901C1 LLL=1,KIL VAIN0116
EA iLLL)'=, . MAI N0117

F b( LL L) =J*. A INC118

90o1 EC(LLL)=.0: MAINOII19
READ( 5, 7u3) (YL(KL),KL=1,N) MAIN0120
READ(5,703) (YL2(KL),KL=1,N) MAIN0121

REAC( 5, 7u03) (YL3(KL),KL=1,N) MAI N0122

REAC(5, -)3) (YUi(KL),KL=1,N) MAINCli2.3
REA)(5,7 3 ) (YU2(KL),KL=1,N) MAINO 1 24

READ(5,703) (YU3(KL),KL=1,N) AINO 1 25
S703 F LMAT ( oF1,Jo') MAI N0126

READ( 5, 7.3)6 ) A , A2, A3 MA I N0127

7036 FORMAT(3F1I ,5) MAIN0128
WRITE (6,77)1 ,A2,A3 MA INO129

707 Fi0RM MAT(4X,' EXPDNE;. 1T JCF' MODULUS VS TEMPERATURE. CURVE = ' ,3F10.5) MAIN0130

REAO (5,1112 )TLIM MAIN0131

C TLIM IS THE VALUE iF THE TEMPELATURE AT WHICH THE INPUT CREEP MAINOl32

C FUNCTIONS OF THE DIFFERENT LAYERS ARE ORIGINALLY EVALUATED, MAINO133

1112 FORMAT(F7o2) MA INC134
REAC(5,5)) (DELTA( KL),KL=1,N) MAIN0135

5 .F A T ( Fl 5) MAI N0136

C DELTA(2) IS AN INPUT TO SUBROUTINE TIME, AND IC EXPLAINED THERE. MAINO137
REA C (5,9) D)NST MAIN0138

C TDNST IS A UMMY VAlRIABLE WHICH GIVES THE fOPTION FOR THE SHAPE OF MAINO139
C THE DENSITY FUNCTIOluj1 TO BE USED FCR R0TH THE CREEP FUNCTICNS OF MAIN014C0
C THE LAYLRS" A4D THE TEMPEIRATURE CR EiVIR NlENTAL FUNCTI.ONO IF THE MAIN0141

C VALUE UF THIS VA!RTIAtLE IS ZERO, THEN THE CDENSITY FUNCTIJNS ARE MAIN0142
C :NCRMALLY DISFRII3UTEUI OT-ERWISE, THE DENSITY FUCTIONS ARE UNIFUR-MAIN1O43
C I LY DISTRXl3JUTED( I E, kCTA.GULAR CISTRIBUTIQON). MAIN0144



IF( IONST)215,216,215
216 IZ=IARB

IZ IS AN OD) INTEGER BETWEEN ZERO AND 2-4t39. IT IS USED AS INPUT
TO L IRARY SUBROUTINE GALSS°
WRITE(6,1120)

1120 FORi4AT(4X,' THE DE-NSITY FUNCTIONS ARE NORMALLY DISTRIBUTED IN THE
1FOLLOWIING S I iULAT IUN' )
THE STEPS THROUGH 9791 ARE TO FINC THE MEAN AND STANDARD DEVIATIO

C OF NUR,~iALLY D)ISTIBUTED TEMPILRATURE OBSERVATICNS OVER [ONE YEARo
A A= (3
AB =00

DO 9790 I=1,NTEMr
AAAA+T1(1 )+T2( I)

9790 ABH= , +T1( .1) 2+T ( I): 2
YY= NT EM P: 2 :-1 ,0
AM1=AA/ (YY+1o)
S S =A B/YY- AM :A /YY

C SSi IS THL VARIANCE OF A NORMALLY DISTRIBUTED XX-OBSERVATIUONo
S 1 SS::' 0o5

C Sl IS THE STANDARD) DEVIATION OF THE NORMAL DISTRIBUTICN FOR THE
C TEMPERATURE, AND AMI IS THE MEAN. FOR THE SAME DISTRBUTION OVER
C A ONE-YlAR PERIOD TAKEN FRCM SEVERAL CBSERVATI, ONS OF THE WEATHER
C 5UREAUO THOSE VALUES OF THE TEMPERATURE, HJWEVER, SHOULD RE THE
C THE REAL TE'MPE'rkATURES IN THE LAYERS UF THE SYSTEM, WHERE THE
C VALUE ANI) THE DISTRbUFICN OF THE TEMPERATURE AND CTHER FACTORS
C ARE DIFFERJENT FOR EACH LAYERa

DE V=0 33-AM1
IF(S1-DEV )125,1125, 1126

1126 Sl=DEV

1125
215

C

THIS RESTRICTION IS IMPO
HOWEVER,IF THE DISTRIBUT
RESTRICTION SHOULD BE RE
GO TO 899
IY=IARY
IY IS SIMILAR TO IZo .IT
WRITE(6,113) )

SED BECAUSE OF THE TYPE OF DATA USEU
ION IS KNOWN AND THE CATA ARE REAL,
MOVED FRCM THE PROGRAMO

HER
THIS

E

IS USED AS AN INPUT TO SUBROUTINE RANDUS

C
C

C

MAIN0145
MAI N0146
MAIN0147
MAIN0148

MAINOlSO

IMAIN0150MAIN0151NMAIN0 152

MAINO156
MA IN0156

MAI NO 158
VA I N0159
MAINC160
MAIN0161
MA I N 0162
MA IN0163
MAINC 164
MAINO165
MA I NO 166
MAI N0167

MAINO168
MAIN.169
MAI NO.170
MAIN0171
MAIN0172
MAIN0173
SAtNOI174
MAIN0175
MAIN0176
VA I NO 177
MAIN0178
MAINO 179
MA I NO 180

H
0



.1130 FORMAT(4X,'THE DENSITY FUNCTIONS ARE UNIFCPMLY DISTRIBUTE
1FOLLOWING SIMULAT I N' )

3899 DC 222 J=1,NS
D0 222 I=1, 4MONT 
KKJ=1
I F ('DNST) 7'13 ,91 ', 70 1

708 I X= IY
CALL RANDU(IX, IY, DIN)
R.ANDU IS A SUBPRIJTINE WHICH GENERATES A SET 0
TED RANDCM NiJUMPBERSo,
P (J,l)=TI( 1)+lDINv(T2(I)-T1(I))
GO TO 717

919 CALL GAUSS(IZ,S1,AM1,P(JI))
GAUSS IS A SUBROUTINE WHICH GENERATES A SET O
UTED RANDO'1 VAPIAbLESo THIS SUBROUTINE IS CA
SYSTEM SCIENT IFIC SUBROPUTINE PACKAGE°

717 WRITE(6,713)P(J,I)
713 FORMAT(4X,'TEMPERATURE GENERATED IS = ',F7,2)

Cl (J, I)=-All (P( J, I )-TLIM)
C2(J, I)=-A2 (P(J, )-TLIM)
C3(JI)=-A3;:(P(Jrl)-TLIM)
DO 722 K=iN

I )=YL 1 (K) F'.EXP (I
I)=YL2(K) ,XP (
I )=YL3(K) ., EXP (
I )=YUJi(K) IXP(
I )=vU2(K) :'EXP(
.I )=YU3 (K ) EXP(

) , 9 1, 92 )
)=LL1(K, J, 1)+
).=EL2(K,J, I )D
)=EL3(K,J , ) +C

(J,
(J,
(J,
(J,
(J,
(J,

IN (EU 1 (K,J
IN ~(EU2(K, J
IN~(EU3(K, J

755 EL1(K,J,
EL2(K,J,
L3(K,J,

EUl (K,J,
EU2(K,J,
.EU3(K,J,
IF ( I NST

920 EF(KJ,1I
ES(K, J, I
ET(K, J,I

F UNIFCRMLY

F NORMALLY O
LLED FROM TH

,I )-EL1I(K,J, I))
,I)-EL2(K,J, I))
rI)-EL3(KJ, I))

GO. T 795"
921 AM2=0,5.J (L1,  L(K, J,1)+EUi(KJ, I))

S2=o 15:A M2
CALL GAUSS( IZ,S4,Ar2,EF(K,J,I))

D IN THE MAIN0181
MAIN0182
-MAIN0183
MAIN0184
* AIN0185
MA I NO 186
MAINO 187
MA I N 0)1'88

D, STRI BU-MAIN0189
MAI NC.190
.MAIN0191
MAINO'192
M AI NO1 93

ISTRIB- MAINC194
E I. BM/360MA!HiN195

MA !N196,
MA IN0197
MA IN0198
MA I N C99

MAINO201
MAIN02C

MAIN02O3
MAINO2C04
MAIN0205

MAIN0206MA I N 02 c 7MA IN0208
MA IN0209
MAIN0210
MAINO2l1

MAI N0212
MAIN0213
MAIN0214
MAINO215
MAINO216

C
C

C
C
C

w



AM3=0o 50'- (EL2 ( K, J, I ) +EU2 (K, J,I )
S3= D. 15.AM3
CALL GAUSS(I ,S3,AM3,ES(K,J, I))
AM4= o50O. ; (EL3(K, J , I) +EU3 ( K,J,J ) )
S4=0 S, 15:4AM'4
CALL GAUSS(IZ,S4,A-4,ET(K,J,I))

795 II=K+(J- I) uo+( I-1) N',S
EA( II )=fEF(K1,J, I
B(II)=ES(K,J,I)

EC(II )=ET(K,J,I )
IF ( KKJ-N) 9834, 984, 987

G87 KKJ=1
964 E1(KKJ)=EA(

-2(KKJ)=EB3(
E3( KKJ)=EC(
KKJ=KKJ+.

722 CONTINUE
WR
W R

El
OF

721 FO
725 IF

I.)f
II)
I)

I TE (6,721 ) ( E1 ( KKJ ), KKJ=1,N
ITE(6,72i) (E2(KKJ),KKJ=1,N
I TE(6,721 )(E3(KJ),KKJ= ,N
( ), E2( ), E3( ) ARE THE
THE CREEf FUNCTICON FCR .TH

R M'AT(X 'CR\ EEP C! IEFFICIENTS
(IT EM)7, 7, 96

SELECTED SAM4PLES 'FOR
IS PARTICULAR SIMULAT

OF THE LAYERS: = ',6F

96 CALL VISCO
DO 83 65 L=lI,IiNNN

88,65 WRITE (65,9'3) T (L) ,W (L)
98 FOR,1AT(8H TIME = l15o8, 17h RAD)IAL STRAIN = E15.8)

GO T O 222
7 CALL VISCO

IF( IDEFL ) 1, 12, 11
1C IF(ITEM)±3,14,A
13 00 15 L.=1,NNN
,15 WRITE( 6, 97)T(L) ,W (L)
.97 FOPRAT(8H TIHE = E15,8,17H NORMAL STRAIN = E1.o8)

GO TO 222

MAINO217
MVAI N218
MAI NO2.19
MAIN0220
MAINO221.
MAIN0222
M AlI -N 0223
MAIN0224
MA IN0225
VAIN0226
MA INO227
.MAINO228
MAINC229
MAIN0230
MAIN0231
MAINO232
MA INC233
MAIN0234
MA I N0235
MAiN0236

THE COEFFI'CIENTS MAIN0237
ICN PROCESSO MAIN.2.38
lu.5) MAIN0239

MA I N0240

MAIN0241
VA I N0242
NAI N0243
MAI N244
MAIN0245
MAIN0246
.MAIN0247
MAIN0248
MAIN0249
YAIN0250
MAINC251
MAIN0252

0



'-
0~.J

14 DO 17 L=1,NNN
17 ARITE(6, 86)T(L),W
3o FORMAT(PH TIME =

GO TO 222
11 IF(IST-2)45,,46,46
45 0: 12 L=1,NNN

12 WR VITE(6,77)T(L),W
77 FORMAT(8H TIME =

GO TO 222
4b 00 121 L=1, NNN \

121 WRTE(G,9 5 )T(L),W
95 FOPAF1T(8H TiME =

GO TJ 222
12 F(1IST-2)44,43,42
44 DO 122 L=1,'NNN .

122 WRITE(6,.452)r(L),
452 FORMAT(SH TIME, =

GO TO 222
43 DO 231 L=l,,rNN
231 WRITE(6,355)T(L),
355 FORMAT(8!- TIME

GO TO 222
42 00 il! L=1,NNN
111 WRITE(6,777)T(L),
777 FORMAT(8H TIME =

9 FORMAT(15)
222 CutlT I NUE

STOP
END

CIRCUtMFERENTIAL STRAIN = E15.8)

NORMAL DEFLECTION

RADIAL DEFLECTION

=E15. 8)

= E!5.8)

(L)
E 15 3, 26H

(L)
E 15 o 8,21H

(L)
E15.8,21H

W(L)
E15o8 ,17H

W (L)
E15.8, 16H

W(L)
E15o8,17H

PAINN0253
MAIN0254
MAIN0255
MAINO256
MAIN0257
MAINO258
MA INr259
MAIN0260
MAIN0261
PAIN0262
MAIN0263
MAINO264
MAIN0265
MAIN O266
MAIN0267
MAIN0268
MA I N ,'269
MAIN0270
vA I N0271
MA I NG272
MA I NO273
MAIN0274
MAIN0275
PAIN0276
MAINn277
MAIN0278
MAIN0279
MAIN02b0
MAI N0281

NCRMAL STRESS = El508)

SHEAR STRESS = E15.8)

RADIAL STkESS = E158)



SUBROUTINE V
CO tMON /MANE /

1 N., JJ J, 1)EL
CCMMNI CC( ,
DIMENS10N E1
1 BT3( ,20)
2 EM( 13),S I
3 fMTX ( 3,3)

EQU 1V ALENCE(
EQUI VALENCE (

ISCU
IDX R, ITE ,N NIST, I EFLEG, F, A,RZZ,ILAYER,
XXOELTX
2) ,CC(8,20

,i1(8,21, t18
.(13,261),S
, TX ( 3 , 3)
G( i, ),E 1( I

( 1), (1i ) )

,FF( 8,20)
E3 (2 ) ,G(
,B2(8,2G,
I I(13,201
XS(3,3),W
),(G(1,2)
(B(i,1,1 ,

20,3 ) ,BT1 (8 ,2C )
18) ,B3(8 ,2 ), 18)
),MTX(2,2,3,3),( 2 2 )
(201)
,E2(1)),(G(1,3)
2) , 2(1) ) , (B (1,

,8T2(
,1(8,
IU(3,

8,20), -
20 ,18 ,3)
3),

,E3(1))
1,1,3),S3(1))

CATA MXS/1,2,2, 3,.,3,3, 3, 3/
C AT A EfI/ '-"1. 2 E o4 t *7 c,1. o2 ,3., 4 o 5 t 6* 7,, a a
DATA MTX/1I.J,7,-,3,i ,8:: ,8,),4,2,9,C,6,5 1
CATA 10 /1.,5,3,,3 b ,O 2, , /
DATA Mf XN/ -,U,u, I, ,1,2,2/, TXM/ , ,2, ,2, 1,1,2,

REAL J[B
O'IMENSION B ES(91), ESS(GI)
ITYP=3
IF(IDEFLEoEQ~0) "ITYP=1
IF(ICEFLEEQol) ITYP=2

IF ( ST ,EQol) GU TO 1
I IDEN=2
IF( ISTEQ.o2,aANDolDEFLEoEC.,,O) IDEN=3
I F ( ISToEQ ,2 ANDE.i)LFLE EQ.-l,,ANDo ITEM.EQ.O) ICEN= 3

1 CCONTI NUE
C-----CALCULATF TIM-ES FOR WHICH A SOLUTION IS DESIRED

E X o E L XX
T( )=C.
T( 2)= 1 ; : ( I)ELTX +DELXX)

O0 7 K=3, NN! .
7 T( K )=T( K- ) -EX

I CWA= 1O ( ITYP, ID) E )L
C-----CALCULAT-. CNVOLUTICIN INTEGRALS

00 2i I1=1,2
DO 1(, I= 1, N

,T(201),DELTA(20)

VISCO00Q
VISCOr02
VISC003

VISCO005

V IS C000.6
VISCOOC7

VISCOJ08
VISC0009
V I SCO010
VISCl011

VI SC0012
VISCO013
VI SCO. 14

VISC0 15
VISCO0C16
VI SCO017
VISCO017
VISCO018
VISCC019
VI SC O20
VISCOO21
VISCO022
VISC0023
VISC(OC24
VISCO025
V I SC 0.026
VISC0027
VI SC0028
VISCCO29

VISCO030
VISCO031

V IS.C0032
VISCOU33
VISC0034
VISCO0.35
VI SC0036



.10 8T ( i I.)=G( I,11)
DO 20 12= 1_,2
CALL CNVINI'T(BT2,T1,G(1, !2),N,i)
00 20 13= 2,3
CALL CNV IJ T( T.3 ,BT2 , G(1, I3),N,2)
DO 20 .14=I3,3

20 CALL CNVINT(BL.(1, I,MTX( I 1, 2, I3, 14)),BT3,G( 1I4),N,3)
NT= 9 :MI N, (2, I LAYELR)
"N P= 4
NPP=4
IF(ILAYER.EQo1) GC TO 40
0( 30 I=i,10l,9

DO 30 J= ,9
30 CALL CNVINT(B2(1,1,J+I-1),B1(1,1 , J),G( ,3- VIN(2, I )),N,4)

NP=5
NPP=5

40 IF(ITYP.EQ,1) GO TO 60
DO 50 I=1i,NT

50 CALL CNVINT(B3(1,i,I ),B(1,1,I,NP-3),G(1,ILAY~ER),N,NP)
NPP=NPP+ I

60 DO 70 K=1,13
C----- DO F,)R 13 VALUES OF M°..o

CALL CNSTNT(P ( K),H, 7Z, ILAYERP,NT,NP,NPP,N,IOWA,B( ,1, 1,NP-3),

1 B(1 , ,1,MXS(ILAYER,ITYP)))
CALL SCLVE(SII CC,FF,K,IN,NP,NPP,NNN,NJJJ)
IF(ITYR, rNE IojKo0 ICNoNoE2) GO TO 7o.
CALL SjLVE( SI I ,I ),FF,K,N,NP,NPPF,NN,NJJJ)

70 .CO TI N U
C-----CALCULAlE'B .:SSEL (VULTIPLIERS

R J =
)00 75 J=1,9.1
BRiS ( J ) =JB ( I XN (I TYP, I DE ), RJ, R ). J B( .TXM ( ITYPt ID N ), , RJ )
I F( ID EN o E0 u 2 oa A I TYP.NE o 2) B ESS ( J ) =JB ( 2,FJ, R ) *J:J ( 2, A,RJ)

75 RJ=RJ+ol
C---- "FOP EACH VALUE UJ: TIME CCiPUTE INTEGRALS WoRkT, M

IF( I0ENoEO, 2oAN oITYPoNEe.2) GO TO 100

VISCOO037
VISC(03 8
VISC0039
VISCO040
VISCOO41
VISC0042
VISCOO43
VISC0044
VISCC0045
VISCO046
VISC0047
VISC0048
VISCO049
VISCO050
VISC0051
VISC0 152
VISCOU53
VISC0054
VISC0055
V I SCO)56
\lI SCO0 57
VISCOO58
VISC0059
VISCO060
VISCOO61
VISC0062
VISCOG63
VISCO064
VISCCOT65
VISCO066
V ISC0067
VISCO068
VISCO069
VISCO0O7
VISCO071
VISC0072

i



00 90 I=1 ,NNN
00 80 J=4,13

80 I F (S i I (J-1 , I ).*S I I ( J, I ) .LE.~0
90 W( I )=TER:PO ( SI I( 1, I ) ,H S) A

R ETURN
L00 DO 1 i' I= IN N N

, 1=TIERPU( S I ( 1, I), ES)
IF(ITYP oEO l) W2= TEkP(SI I(
IF( ITYP Eo i) W2=- TERPC (S I.I (

1 i0 1J ) .I = A. ( W 1 +WJ 2 A
RE TURN
END

SII(J, I)=Oo

VISCO!073
VISCCO74
VI SC0075
VISC0076
VISC0077
VISC0078
VISCO079
v I SC00.80
VISC0081
VISCOC82
VISC0083
VISCt084

I1,), BESS)
1 , I ) ,BESS)

)



C-----TH
C .A
C t3
C G.
C N.
C '4

SUBROUTINE CNVLNT(A ,B,G,N,M)
CALCULAT ES
THE RESULT
ThE i-A ,UJ'-IEN
THE C2 EEP F
THE LE - GTH
(DEGREE OF

A CCNVOLUT ION INTEGRAL EXACTLY

IT
LU N C T IO N
JF THE SERIES
POLYNCMIALS OF B)+1l

OIMENS ION (A ( ,2'j) , i( ,20), G(20)
COMMON CC ( ,2 ), D (8,20),FF(8,20) ,T(2

C-----EVALUATLt CP,~EP FUNCTICN .AT ZERO
Z7 ER = o
00 5 1=1,N

5 ZER=ZEiR+G(I)
MSUC=M+ 
DU 1:) L=1,1MSUC
DO i(J10 J=1,N

C----- CALCULATE A(L,J)
R ES= o
IF(LoNE.o) GU TO 25

SUBT=,.
D0 1) I=, N
IF (I.Q aJ) GO TO 10
DEIS=1./ ( DELTA(I)-oELTA(J )

DC 15 K=1, M
SUtBT=SUBT+B(K, I) :'DEL S

15 E LS=;)ELSK / (DELTA ( )-DELTA (J))
10 CONTINUE

RES=RES-SUtJT. G(J) *.DELTA(J)
GO TO 2.)

25 RES=RES-B( L-1 ,J) D::LLTA( J) 'G( J) /( L-1)
2C' I F ( Lo EQ,, SU.C) GO TOj 10C

SUBTI=C
IJ 40 I=1 ,N
IF(IoE O J) GO 10 4:0
SSUB=O.
DELS=1o/(l)ELTA(J)-DELTA(I))

01) ,DELT (20)

CNVI0001
CNVI0002
CNVI0003
CNV 10004
CNVIC00

CNVIOOV7

CNV 10008
C N V I O 09

CN V 10014

CNV10015CNVI0016
CNVIO017
C N V I 0 13

CNV 110018
CNVIO019
CNVI0020

CNVI021CNV 1002CNV I002

CNVI 002 1

CNV IG025CNVI0023CNV10024
C N V 100 25

CNVI0026

CNVI0028

CNVIO030

CNVIO031
CNVIC032
CNV I0033
C NVI 0034

CNVI0035
C N VIC 036



DC 3, K=L,M
SSU13=SSU3B+.,( K, J ) DELS

30 DEL S=0 ELS K / ( DELTA ( J )-DELTA( I) )
SUB T= S U3 T+ SS U3 G ( I )0DE LTA( I )

40 CONTINUE
RES=R S+ SUBT+ Z E:. ( L,J )

13 A(LJ)=RES S
R ETUR N
END

CNVI0037
CNVIO038
CNVI0O39

-' CNVIO 40
CNVI0041
CNVIC00Ol2
CNV 10043
CNVIO044
CNVI 045



SUBROUTINE CN STNT(Xi,
CCMMON CC(8,Z' ),DOC ,

D) qUBL E PRECIS IO S LIM
1014,3,18),Z,
2 14,B , 5 ,f B7,
3G11 , G'12, G.13,
3G 27, G28, G29,
4G43, G4 , G45,
5G59,Gou,G61i,

0D 4567 Ii=,1 4
00 4557 12=1,3
DO 4567 13=1,ld

4567 0 (11, 12 I.3)=-)o
EM=XM
H=H-H
Z'Z.= Z Z Z
S -= E M: N1H
Z=DEXP( EM)
ZI=DEXP(-EM)
Z2=DEXP(2o.: EM)
Z3=DEXP (-2,, EM )
G.=Z/2o
G2=ZIl/2o
G3=(-.1, +2 .: EM)/2.o
G4=-Z2/2,
G5=Z 3/2 o
G6= ( I o +2o E ) /2
G7=(GI+G2 )/2

;G8= ( G1-G2)/2o
G9=(G3+G5 ) /2,
GLJ=(G 63-(;5)/2o
Gi 1={ G4+G6)/ 2.
G12 =(G4-G.6) /2
G13=o 5- G.
14=. 5+ G5

HH ,7 ZZ, I LAYER, NT, N P NPPP N, 10W' , b ,B)
2i), FF( 8,2 ) ,T ( 201), CELTA(20
,it ( 8,2 ,18)
,H, ZZ,C(9),V(9),PHI(6,3, 18),ALAM(8,4),

Z1 t ,Z2,3,Z4, Z5 Z6,A1,2,A3,A4,A5,A6,A7,A8,B1,B2,B.3,
8, 03,C4,EZ I ,EZ2 ,G ,G2,G3,G4, G5, G6,G7, G8,G9 ,Gi ,
14, 215,16,G 17, , G 19,G2> G21, G 22,G23,G24,G25,G26,

G 3 G31,632 ,G33 ,G34 ,G35 , 36, G637, G3 , G39, G40 , G41, G42,
G46,G 47, ;48 ,G49, 5', G 5 1,G 52, G 3, G54,G55 ,G56,G57,G5b,
G62,G63,G6G65 ,G66 ,G67,G68,DEXP

CNSTOO01
CNSTOO2
CNSTO 0O3
CNST004
CNSTOOC 5
CNST0006
CNST0u07
CNSTO008
CNSTO009
CNST0010
CNST0011
-C N ST 0012
CNST0013
CNS T0 14
C N ST 0 015
CNSTO016
CNST0017
CNST0018
CNSTCO I0 S
CNSTO020
CNST0021
CNST0022
CNSTO023
CNSTC024
CNST0025
CNSTO.026
CNSTO027
CNSTOO28
C N S T 0 0 2 $
CNSTO030
CNST0031
CNST0032
CNST0033
CNST0034
CNST0035
CNST0036

'-



G15=. 5- Go
G16=-G15
G 17=.5+ G3
G18=-G17
Gi9=o5+ G4
G20= 5- G4
LZ4- 0 EX P ( 2 S )
G27=2 :74
G28=( 1 +2 ,.~ :H ) Z4
G21=G2771;G7-G28 'G2 +G i
G22 =(; 278+G2 7 + 28 t(;2 -i
G 23 = G 27 .-.G 9+ G28 ,:, G 13 +G 17
G24=G27 : G1. + (.2 8;i1 4+ G 18
G 2 5=G 2 7T 1 + G2 8lG I. 5-bG .9
G26= G27- ; G 1.2 + G28 C' G16+G 20
G35=( 1 a-2o ,:S )4- Z4
G36=-2o S , 7S.-: 4
G 29= G 35 37 G7-G3 G')
G 3 =G 35 : G- GUG 3 6 G2
G 1= G3 5 :G9+G9+G36 G 13
G 32 = G3 l, )- (3 41 + G 36 .'G 1 4
G33= ;35:: G 11 +G 1 +(33 G 5
G34=G35 G12-G12 +G 0360G 6
L
Z 5=DEXP(S)
Z6=-OEXP ( -S )
G53=Z5
(;, 54 =- Z
G55=S-- Z5
GF5 =- S-,:Z
C37=G;53
G38=G54
G3 c3.= 055

; .= G 5
3 G41= ; 37 G 7+ G3 8'-:G 7 -G39 "

G42=- (G3 8 G2 +G4 -G21 )

CNST0037
CNST0038
CNSTO039
CNSTO040
C N ST004.1
CNST0042
CNST0043
C.NST044
CNSTC045
CNST0046

SCNST0047
CNS T0048
CNST0049
CNS T C0 50
CNSTO051
CNSTOC52
CNST0053
C NS T0054
CNSTO055
CNST0056
CNST0057
CNSTO058
CNST0059
CNST0060
CNSTO061
CNST0062
CNST 0 063
CNST0064
CNST0065
CNST066
CNST0067
CNST0068
CNST0069
C N S T 007 0
CNSTOO70
CNST0071
CNST0072

G2+G4, *G1



G4 3 =G37.. G8-G3 8 G 8 + G39 .G2-G40 3 G1
G 44=- (G3 8' G3J +G4+ ; G22 )
G45=G378G9+G38 G9 G39'G13 G4.1)Gl7
G46=- (G3 8 G3 1+G4Y :'G23)

G47= G 37 - G0 - G33 .G1+G33 G 14+ G.40("~G 18
G4 8=- ( G38,: G32+G4';G24 )
G 4=G3 7= ! +11+;38 G 1 +G.39 :2G 15+ G/40 -G I9
G5= - G383 4: G 33 -G40;G 25
G 51= G 37 G 12- G38 + G 3 9 G 16 + G 40 G 20

G 5 2=  C-3 8 11,G34- O ; 2 .:
IF( L )1,1,2

I L=5
G57G41G 7 = 4 1
G58=G42
G 5 9:= G 4.3
G60=G44
G 61=G45
G62=G46
G63=G47
G6 4=G 4.3
G65=G49G 65 G 34 9

G67=G 51
G68=G52
G38=-G383
G39= ( l+S) Z 5
G40=- (I ,-S) Z6'
GOr, TU3

2 Al=G'45
A2=G46
A 364 7
A4=G4 S
AS=Go5
AS=G66
A7=G67
A8=G68

CNST0073
CNSTC074
CNST0075
CNSTC076
CNSTO077
CNST0078
.CNSTOT79
C N ST 0089CNST0080
CNSTUCP8
CNST0082
CNST0083
CNSTO084
C N ST 0 85
CNST0086
CNSTOC87
CNST C.088
CNSTC089
CNST0090
CNST 1o91
CNST0092
CNSTCC93
CNST0094
CNST0095
CNST0096CNSTOOS7
CNSTOO98

C NS T 009 9
CNST1O00
CNSTOIO1
CiNST0102
CNST0104

CNST0105
CNST0106
CNS T 10 7
CNSTC108

~_* ____ _II~__CC_



B!=G49
B 3'= G 51
B3=G5 I
B4=G52
i35=Gb
Sb=G6 2
17=Gb3

3 8=G64
8 C ( 1 )=A! A A 5-H ,B1 5'

C ( 2 ) =A2 A 5i :A6H-R ~ 25- i86
C ( 3 ) =A3 A 5+A 6A7- i 3P)25- 1IB7
C (4)=A4 A5+A3 lA+A2:A7+Al AS-B4B 5- 3 6-B2 7-B1 B 8
C ( 5 )=A2' A6-32' 13
C(6)= A.4At %A8-b4 S 6-B 2*4
C (7 ) =A3 A7-BP3 7
C( ) =A4"\'A 7+A3 :A 8-t34 4 B7- 83,*B8
C 9 ) = A4 .' A 8- 134 .
IF-(L)4,5,6

6 DO 7 i=1,9
THE V(I) TERT-IS ARE THE THETA(1) TERMS .IF THE TEXT

7 V(I)=C(I)
A1=G49
A2=GS )
A.3 G51
A4=G52
A5 =G5 7
A6=G E
A7=G59
A8=G60

12=G42
B3=G43
B4= G44
B 5=G65

6=G66
37=G67

CNSTO1.9
CNST 110
CNSTO111
CNST0112
CNSTOil3C N S TO 13
CNSTOL14
CNST0115
CNSTO 116

CNSTC117
CNSTC118

CNST 119
C N ST 01120
CNSTO120
CNSTO1ZI
CNST(122.
CNST0123
CNST0124
CNST0125
CNST0126
CNST0127
CNST0128
CNST0129
CNST0130
CNSTO13 1

CNSTC132
CNST0133
CNSTO.134
CNST 135
CNST0136
CNST0137
CNSTG138

CNST0139
CNST 140
CNST0141
CNST0 142
CNSTO143
CNST0144

CC



B8=G68
L=0
GO TO 8

5 L=-,5
D0' 9 I=1,9

9 Q(3,1,I)=C(I)
Al=G61
A2=G62
A3=G63
A4=G64
A5=G41
A6-G42.
A7=G: 3A 87= G -4
A8=G44 .
Bl=G45
B2=G46
83=G47
84=G48
3 5= G 57
B6=G58
87=G59
8=.G60

GO TO 8
4 DO I0 I=1,9

i0 Q(4,1,1)=C(I)
0 -11 I=1,9
43=Q(3,1,1)
04=0( 4,1 ,1)

Q(1,1, .)=V( I)
. (2, ,LI-)=V(I)
Q( ,2,1 )=V(I)
Q( t,2 ,I )=Q(i
Q(3,2, )=-V( I
Q() +,2, I)=- V( I
Q(4,3,I )= V( I
Q(2,3, I)=V( ) I

CNST0145
CNST0146
CNST0147.
CNST0148
CNST 149
CNST0150
CNSTO151
CNST0152
CNSTO153
CNST0154
CNSTC155
CNST0156
CNSTG157
CNST0158
CNST0159
CNSTC.1I60
CNST0161
CNST0162
CNSTO 163
CNSTO164
CNST6165
CNST0166
CNST0167
CNST0168
CNSTO 169
CNSTO170
CNST0171
CNST0172

Gi+G3.4Q3 +G4Q4 CNST0173
:G2+G05 3+G 6V Q4 * CNST0174

AG7+G9gQ3+G 11:Q4 CNST0175
2, I) CNST0176
) ; 2 +G 13"', C3+G 15 Q 4 CNST0177
) i + 1 7 Q 3+ G i1 ' 04 CNST0178
) ~: 21+G23Q3 +G25 04 CNST0179
: G2c +G 3 1i 33 Q4 CNSTO180



J=1+9
Q( I, 2,J )=V( I ). "G8+G1l O :Q3+G l2 Q4
Q (2,2 ,J)=-Q (1,2, J )
Q( 3, 2,J)= V( I ) G' 2Z+G14 3+G 16-.Q4
tQ(4,2,J)=-V(I) . G1+18 C Q3+G20*04

0(4,3,J)= V ( I )'G22+G24 .%C3+G26 "Q4
11 Q(2,3, J)=V( I ):,G3.(;32~Q3+G344Q4

E Z= EMV: Z Z
EZ1=D(XP(EZ)
EZ2=DEXP(-FZ) .
THL ALAM( I,J) TER.S ARE TFE LAVCA(I,J) S OF.TFE TEXT

ALAM( 1,1)=-CZ1
ALAM(1,;)=-EZ2
AL.AM(1,3)=-E -Z !71
ALA( 1,4I=-EZAEZ2
ALAM(2,1)=-ALAM (1,1)
ALArM( 2, 2)=ALAM.(, 2)
ALAM(2,3)=ALAM( 2,i)-ALAM( 1,3)
ALAi( 2,4) =-ALAM( 1 ,2 )+ALA (1, 4 )

ALAM( 3, !)=ALAM(2,1)
ALAM( 3,2)=-ALAM (2,2)
ALANM( 3,3)- -~2 ALA (3 , )-ALAM( 1,3)
ALAM( 3,4)=2.:AL A ( , )-ALA ( 1,4)
ALAtM( 4,1 ) =ALAM( 1
ALAM( 4,2 )=ALAM(1,2)
ALAM ( 4, 3 )=-,,LAP4 ( 2,3)
ALAM(4,4) =,ALAM24) .'
ALA (,I{ 5, 1 )=-lo 5 ,:EZ
AL A ( 5,2 ) =5 ~ 2
A I' fll! ,3 ) =- o 5 EZ E 7": Z1 I
AI AL 1 (5,4) =-lo 5: . ALAM( 1,4)
ALAN ( 6,1 ).=i .5-" "Z.

ALAM (6,2) =i.o Z2
ALAN( 6,3 )= .:, 5:AL Ai (2,3)
ALAM( 6,4)=-il 5"ALAM(2 ,4 )

ALA ( 8,1 )=- 5 (EM 11EZI

CNST0181
CNST0182
CNST0183
CNS T0184
CNST0185
CNST0186'
CNST0187
CNST0188
CNST0189
CNST0190
CNSTO 191
CNSTO 192
CNSTO193
CNST0194
CNSTO195
CNSTOU96
CNST0197
CNSTO 198
CNST 199
CNSTO200
CNSTO201I
CNST02n2
CNSTO203

CNSTO204

CNSTO206.
CNST02C7
CNST0208

CNST02C9
CNSTO210
CNSTO211
CNST0212
CNST0213
CNSTO214

CNSTQ215
CNST0216

C

...



ALPM( 8,2 ) =-l o5:: 4EZ2
ALAI,( E,3)=ALAMA(8: )I.(1 ,+EZ)
ALAM (8,4 )=-AL.AM (8,2); (1- EZ)
DC 910 L=1,NPP
DO 910 J=1,N
CC ( L,J)=
00(L,J)=0.o
-F( L, J ).=0
IF(LoGTNP) GO TO 899
00 920 I=1,9

920 FF(L,J)=FF(L,J)+V(I)48 (L,J,I)
890 DO 910 .I=1 ,NT

P 1=0
P2=0
00 900 M=1,4
P1=Pl+0 ( ~, ILAYER, I) ALAM ( IOWA,M)

900 P2=P2+Q (M, I LAYER, ) ;ALAM(4,M)
CC(L,J)=CC(L,J)+B B(L,Jt I )*PI

910 DO( L,J) L, J)=D LJ) +'B (IL, J I ) P2
RETURN
END

CNSTO217
CNST0218
CNST0219
CNST0220
CNST0221
CNST222
CNST0223
CNSTC224
CNST0225
CNSTC226
C NSTO227
CNSTC228
CNST0229
CNST0230

CNST C232CNST0231

CNST0234
CNSTO235
CNSTG236
CNST0237



SUBROUTINE SOLVE(SI, B,,KK,N\,MtM,NNN,NJJJ)
C------THIS CALCULATES THE SLUTIN OF THE INTEGRAL ECUATION
C SI(KK,1ioo.NNN) IS THE SCLUTICN
C ,R( ,sMM,1 fjN),B(1l .,M,1.ooN) ARE THE FUNCTIUNS (8
C NJJJ IS THCe 4. OF INTE'RVALS USED

COMMON CC(8,23 ), D{U( ,20),FF(H,20),T(201),CELT.(20)
DIME NSION SI (13,2 1i) ,B( 8,2)),BB{8,2;) ,BET(3)

C-----CALCULATE SOLUTICN AT T=Co
BETA=0
ARG=, 

DO 10 I=1,N
BETA=BETA+B(1, I)

10 AkG=ARG+ E (1,I)
SI (KK,1)=ARG/BETA
DO 70 K=2,NNNN

C-----CALCULATE SOLUTION AT T=T(K)

A R G =0 

O3 BET( 3 )-= f
DO 30 L=1,N
SSUMA=0.
SSUMB=I

uD 15 J=1, PM

SSUMA=BB ( MM-J41 , L) + T ( K) :vSSLMA
)3 2) J=ltM
S SUMB= B (M- J+1, L)+T (K), %SSUM B

EX=EXP (-T(K) K DE LTA ( L) )
I F ( X. LT,, 1E-1! ") EX=Jo
ARG=ARG+SSUMA- EX
BET(3)= ET( 3)+SSU iMB EX

PS I.= O
SI(KKK)=J
M IN=MAXO (K-NJJJ ,2 )

DD 6t  .J=,,IN,K
ISN=- I SN
BET( 2+ ISN )=Jo

SOLV001
SGLVOO02
SOLV0003

THE KERNAL) SCLVO004
SO LVO005
SOLV0006
SOLVOUC7
SOLVCOC8
SCLVO009
SOLVO010
SOLVO11
SOLV0012
SOLV0013
SOLVO014
SOLVO015
SOLV0016
SOLVO,17
SOLVO018
SULV0019
SOLV0020
SOLVO021
SOLV0022
SOLV0023
SOLVC024
SCLV0025
SOLV0026
SOLVO027
SOLVOL28
SOLVO029
SOLV0030
SOLV0031

SOLV0032
SOLVO033
SOLVO034
SCLV0035
SOLVO036
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20)

30



DO 50 L=i,N
SSUM=O0

00 40 LL=1,M
SSUM=B(M,-LL+1,L)+(T(K)-T(J))*SSUM

EX=EXP(-(T(K)-T(J))4DELTA(L))
IF(EX.LTo &-1C) EX=Co
BET (2+SN =BET (2+ SN)+SSUtEX

JJ=J-i
IF(J EQoM IN) JJ-=
PSI=PSI-(SI(KK,J)+SI(KK,JJ

SI ( KK,K)= (2. : A G+PSI) /( ET(1)
RETURNi
END

SCLVQ037
SOLVO038
SOLV0039
SCLV0040
SOLVO041
SOLVO042
SOLV0043
SOLV044
SOLVO045
SOLVO046
SOLVO047
SCLVO048
SOLVO049

)),(PET( I)-BET(3)) ISN
+BET (3) )

'- ~0



FUNCTION TERPO{SS,3ES)
C-----THIS CIMPUTS T1.HE INTEGRIAL WaRoTo M
C S(i 0o,13) CONTAINS PSI AT OIFFERENT M'S
C BES(lo,o91) CONTAINS THE eESSEL NULTIPLIES

DIMENSI2N S(13) ,fUN(91),BES(91)
C---- INTER<PLATE 91 V.~LUES OF S

A= (S (1)-2o-S(2)+54(3) )V'12.5
V=bAo 2+( S(2)-S(1)) 5.
FUN( i )=S(I)
F UN ( ) = A 1- V. + S ( 2 )
FUNi(3)=S(2)
F U 4 ) = A. i V o 1 S ( 2 )
FUN(5)=S(3)
= (S(3 -2 oS (4)+S (5 )/ 18

V=A:i-o3 ( S (4)-S(3) )/,3
FUN (6)= i , 4-V :o . 2 +S( 4
F U (7 ) =A4 - V 14 S ( 4 )
FUN(8)=S(4)
F UN ( 9 ) = o 1 + V o 1+S ( )
FUN ( 1 ) = A , Jo 4 + V;,, 2 + S (4)
KK= 10

DO t) K=5,11,2
A= (S(K)-20o'S (K+1) 4S(K+2))4o5
V=A+S(K+1)-S(K)

DO 1K !i=1,20

TERPOOO

TERPOOO3
TERP002.4T ER Po0I5
TERP045
TERP006

TERPO007
TERP0008
TERP0098
TERP0010TERPOOAI
TERPOOII
TERP012
TERP0013
TERP0014
TERP0015
TERP00 16
TERPOi17
TERP0018
TERPOO19
TERP1020
TERPn021
TERPO022
TERP0023
TERP0024
TERP0025
T ERP002.6
TERPC O27
TERP0028
TERP0029
TERP0030
TERP0031
TERPO032
TERPOO33
TEPP0034
TERPOU35
TERPO036

KK=KK+1
10 FUN(KK)=A- ( [-1i) :-v24oo i l+V: ( I-i ')**1o +S ( K+1 )

.FUN(91)=S(13)
C-----USE SIMfPS)N'S RULE FOP. THE INTEGRATICN

7 WI=0.
DC 7,0 J=2,8.3,2

70 WI=WI+4o-IBlES( J) rF-UN( J )+2o BES(J+l )FUN(J+1 )
W I=W I + BES( I ) 'FUN( 1 )+4 BES ( 9 ):F UN(90)+ ES(91 F( N( 1 )
TERP= WI i/3.
RETURN
END

1-
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REAL FUNCTION JR(N,A,B)
C----- JE.( , A, 8) =JO ( A ' 8 )
C JB(1,A,B)-=J1(A B)
C J B(2, A; B )=J1( A,:B )/B
C FCR A"B>12 A ASYNITOTIC APPROX IS USED

J=M.I NO( ,N)
S= A" B3
IF(SoLEol2o) GO TO 10)

PHI=S-o7854
IF(JoEQoI) PHI=S-2.3562
JB= ( 2./3o 14159/S ) :v5 )COS PH I)
IF(NoGT41) JB=JP,/B
RETURN

10 TERM=1.~
IF(IE 4 2 ) T ERM=A- o
IF(NOEQ1 ) TERM=.S~.5
J B.= T E RM
IDC 21 I=1,22
T E R =- S S ( . ( I + J ) )T E
IF (ABS( TERM)L Too;)u1) RETURN

20 JB=JB+TERM
RE TURN
Er ,

JB 0001
JB O C2

JR 000C
JR 00067

JB 0010JB O0011

JB 0012
JB 0013
J8 0014
JB 0015
JB 0016
JB3 0017
JB 0018
JB 0019
JR 020
JB 0021
JB 0022
JB 0023


