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ABSTRACT

STOCHASTIC APPROACH TO THE ANALYSIS OF HIGHWAY PAVEMENTS
by
HANI KHALIL FINDAKLY

Submitted to the Department of Civil Engineering on
January 22, 1971 in-partial fulfillment of the requirements
for the degree of Master of Science.

A probabilistic method of analysis is presented as an
integrated part of a rational approach to the analysis and
design of highway pavements.

The suggested approach 1s based on the Monte Carlo
simulation procedure. The pavement is represented by a
mathematical model based on "Layered Systems Theory". It
consists of three different layers with various mechanical
properties which are acted upon by vehicular loading and
environmental conditions.

The stochastic nature of the model is derived from the
changes in the environment and the variability and inhomo-
deniety of the materials properties. This results in unpre-
dictable behavior of the system associated with probabilities
of overloading or inadequate capacity of the system of some
components thereof to carry its stipulated functions.

The behavior of the system 1s characterized by its re-
sponsé to various excitations. This response may be in the
form of developed stresses, strains or deflections at any
point in the system, or 1t may, at later stages, take the
form of damage manlifested by cracks or excessive deformations.
Regardless of the nature of response, 1t is uncertain in
nature and should be characterized statlstlcally rather than
deterministically. : :

The stochastic approach for the analysis of pavement
systems, therefore, provides realistic and sufficilent infor-
mation about the behavior of the system in operational
environment.

This approach seems to be promising and can be pur-
sued further for a comprehen51ve study of the performance
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and failure of pavement systems under realistic operational
environment. However, it is suggested that obtaining closed
form probavilistic solutions may be more efficient at these
subsequent stages of performance evaluation and study, where
simulation has proved to be very costly.

Thesis Supervisor: Professor Fred Moavenzadeh

Title: ‘ Associate Professor of Civil Engineering
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I. INTRODUCTION

In recentryearsbthe behavior of materials and structures
have been’the subject of extensive studies. These studies
have embhasized the variability which occursAin the maghitudé
and distribution of the structural loadings, in the properties
of the matefial, in the surrounding operational environment,
and in the response of the structures and other engineering
systems fo such excitations (1)%.

In highway systems, the increasing use of unconventional
road structures emphésizes the need for a better understanding
of‘the contribution which each element of the ﬁavement struc-
ture and the surrounding environment'(including mechanical
loads), makes to the overall behavior of the whole system.

A highway pavement system is a jbint product of a com-
plex interaction of the pavement structure, vehiculaf loads,
and environmental conditions operating on the system. The
behavior and the performance of the system,_thefefore is
greatly influenced by these parameters. Any variabillity in
one or more of these parameters. implies é variability in
the response and the overall performance of the system.

This study presents a simulation procedure based bn
the "Mohte Carlo" method for the investigation of variability
in the response of_the pavément system. The method has been

used 1n a variety of'disciplines to study and predict the

¥ The numbers in the parenthesis refer to the list of referen-
ces. ' ‘ :
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behavior of both deterministic and Stochasticvphenomena.
Simplified stochastic models which yield both mean behavior
and deviations from the mean can be obtained using the pro-
posed simdlation procedure. |
A three-layer model representing a highway pavemént
system 1s analyzed, taking into consideration the variability
of certain parameters 1n the structure itself as well as inA
the surrounding environment operating on the system. Cumula-
tive distfibution funétions of the response of the system
under variable loads and environmental conditions are obtain-
ed. This study is only a demonstration of the effectiveness
of the method, and 1is not necessarily an exact evéluation of
the actual performance of the pavement system under real
operational environment.
This study 1is presented in five chapters. In Chapter
II, the principles of computer simulation techniques are
discussed, with the relevant justifications for the use of
these techniques. Also discussed in this chapter are théb
Monte Carlo method of analysis as a sampling technique and
its appiiéation to physical problems. Chapter I1III presents
a methodology forlthe‘application of the Monte Carlo method
to the analysis of a‘three—layer model répresenting a high-
way pavement system. A humerical example and results are
also presented in this chapter;
A summary and conclusions_are found in Chapter IV, while

Chapter V presents some recommendations for future work.

10



IT. COMPUTER SIMULATION TECHNIQUES

2.1 Definition and Scope

The word "simulation" has been used quite freely to refer
to a number of different things. Recognizing the inherent in—'
consistencies and ambiguities involved in the use of the term,
many definitions have emerged for simulation. Churchman~has

defined "simulation" as follows:

"x simulates y" 1s true if and only if:
a) x and y are formal systems
b) y is taken to be the real system, and

c) x is taken to be an approximétion to the real system (8)

Shubik's definition of simulation, however, appears to be
more appropriate because it'is typical of more popular definitions

(11), it states:

"A simulation of a system or an organism is the operation
of a model or simulétor which is a represéntation of the system
or Qfganism. The‘model is amenable to manipulations which would
be impossible, too expensivé,‘or impractical to perform on the
entityAit portrays. The operation of the model can be studied
and; from it, properties concerning the behavior of the actual
system or its subsystems can 5e inferred."

For the purpose of this study, however, a narrower defi-
| 11




nition of simulatioﬁ will be used, and it will be restricted
to experimentation on mathematical‘models. Also, our primary
interest lies in simulation experiments that are pérformed on
digital cémputers. In addition, we are concerned with experi-
ments which take place over extended.periods‘of time, under
stochastic or dynamic conditions, and which have solutions
that are not necessariiy deterministic by strictly analytical
means. |
With these constraints, the folloWing dgfinition, simi-
lar to that suggested by Naylor et al. (33), is used in this

study:

"Simulation is a numerical technique for conducting
experiments on a digital computer, which involves certain
types of logical and mathematical models.that describe the
behavior of a physical syctem (or some component thereof)

over extended periods of real time'".

2.2 Rational for Computer Simulation

It is recognized that in order to study and predict the
future behavior of any system, certain steps must be taken in

a systematic manner, these include:

1. Observation of the physical system.

2. Formulation of a hypothesis of a mathematical
model that attempts to explain the observa-
tions of the system.

3. Prediction of the behavior of the system on
the basis of the hypothesis by using the
mathematical or logical deduction, i.e., by
obtaining solutions to the mathematical model.

12



L, Performance of experiments to test the Vélidity

of the hypothesis or the mathematical model.

Generally, 1t may not be'plausible to follow all fhese
steps for’any particular problem, and some form of simulation
may be a satlisfactory substitute.

For example it may be either impossible or very costly
to make field bbservations on the real system. In highway
systems for instancé, it is almost impossible_to perform
experiments on t%e pavement structure where all combinqtions
of the factdrs affecting its performance, such as temperature,
moisture, loads, different combinations of materials proper-
ties for each layer can be used in such tests.

Furtﬁermore, the observed system may be so complex that
it is impossible to describe it in terms of mathematical
equatiéns for which analytic solutions that could be used to
predict the behavior of this system are possible to obtain.

An example of this is the 9omplex interaction between the
envirpnmental factors and the materials' properties in the
pavement sfructure, and the interaction between the environ-
mental factors and the response of the,structuré ifself.

These make it virtually impossible to describe the performance
of the System in én operational environmenf.in mathematical
.forms. -In such cases, simulation have proved to be én effeo—
vtive tool to describe and predict the future performance of the
“systems (33).

Although in some cases a mathematical model can be formu-

13



lated to describe the system, ic may not be possible, however,
to obtainka soluﬁion to it by ordinary analytical techniques.
Again, the complexity in the highway systems and other econontic
systems can well provide examples for this case. In such
cases it may be possible to use complicated mathematical
models to simulate the systehs under consideration. Although
‘this approach does not guarentee precise prediction of the
future performance or exact solutions to the model describing
fhe system; it is poesible to experimeﬁt with a variety of
alternative solutions and decision rules to determiﬁe which
solutions or decision rules are more realistic than others

in predicting the behavior of the system. Therefore, computer
simulation techniques such as the Monte Carlo method, which
has been employed in this study, are used as efficient tech-
niques of numerical analysis for solving complicated stochas-

tic models or systems. : .

The principal justification for computer simulation is
its ability to overcome the aforementioned difficulties in
implementing a scientific method to study and analyze
physical and other systems. There are,‘however.other reasons
for which computer simulation may be necessary. The follow-
ing are a few of theee additional reasons. They are not in-
tended to be mutually exclusive and are closely related to the
above discussion. |

1. The use of computer simulation permits the study
of systems with complex internal interaction

14



between their different components, by break-
ing down each system into subsystems, where it
may be possible to model these subsystems and
analyze them separately.

2. Detailed observations on the system being simula-
ted may lead to a better understanding of the
system and to suggestions for improving it,
which otherwise would not be possible. This may
include the study of the effects of certain in-
formational, environmental, or characteristic
changes on the behavior of the system. This is
achieved by making alterations in the model of
the system and observing the effects of these
alterations on the performance of the system.

3. Simulation can be used to foresee the impli-
cations of introducing new components into the
system. Also, it is very useful with new situa-
tions about which little or now knowledge is
available. In such cases simulation can serve
as a "preservice test" to try out new alternatives
for physical and geometric characteristics of
a system, before taking the risk of experimenting
it on the real system. Economy and safety, the

. main objectives in engineering design are, hence,
satisfied by the implementation of computer
simulation.

i, In certain stochastic problems, the sequence of
events may be of particular importance, where
information about expected values may not be
sufficient to describe the process. Monte Carlo
methods may be the only satisfactory way of
providing the information in such cases. The
sequence of occurence of certain environmental
and loading effects has a great importance on
the evaluation of the performance of a highway
pavement and the degree of damage that exists
at any period in the lifetime of the pavement.

2.3 Monte Carlo Methods '

The systematic development of the Monte Carlo methods

started in the early 1940's, in nuclear physics where attempts

15



were made to simulate the probabilistic problems concerned

with random neutron diffusion in fissile materials (19).

" In general, Monte Carlo methods comprise that branch
of experimental mathematics which is concerned with experi-
ments on random numbers. Thg simplest Monte Carlo approach to
probabilistic problems is to observe numbers whiéh are ran-—
domly chosen in such a manner that they simulate the physical
process being studied, and to infer the probable solution
for the behavior of the physical system from the behavior of

-these random numbers.

Problems handled by the Monte Carlo methods can be of
two types: probabilistic or deterministic depehding on whether
or not théy are directly ccncerned with the behavior and the

outcome of random processes (19).

The first group consists of those\probiems whichh involve
some kind 6f stochastic process. The second groﬁp are those
deterministic mathematical problems which cannot be solved by
strictly deterministic methods. It may however be possible
to obtain approximate solutions to the 1atter group of
problems by simulating a stochaétic proéess which has moments,
density functions, or cumulative distribution functions that
satisfy the fUHotional felationships or the solution require-
ments of the deterministic problem. Examples of this group
are solutions to highvorder di%ferenge equations and multiple

integral problems.
16



The greatest success of the Monte Carlo method has been
in those areas where the basic mathematical problem itself
‘consists of the investigation of some random process. There-
- fore, 1t seems obvious that this method can serve as a power-—
ful tool to solve a boundary-value problem with random input
parameters. This is one of the main reasons why this particu-
lar method has been chosen for th¢ analysis of the highway

pavement problem.

2.3.1 Monte Carlo Analysis

" In order to define the characteristics of the Monte Carlo.

. method, it is suitable to present a simple example on how the

‘method works for solution of mathematical problems.

.

The development of mathematical statistics played an
important role in the computétion of integrals. Since "proba-
bility" can always be regarded as a measufe, the problem of
determining the probabiliﬁy of some event or its mathematical
expectation can be reduced to a problem of computing some

integral, such as the following: - :

1
I, e(g)ag | (2.1)

Assume that the values of the function ¢(£) lie between o and
1, i.e., o(E)< 1 for a<g<b. Therefore the problem is to

find the area A of the region R, (Figure 1), bounded by the

17



curve n=¢(£), the £-axis, and the coordinates &=o and &=1.
Naturall&, the restrictions imposed on the function ¢(£) are
ot necessary, since there is a possibility of shifting and

scaling.

Now let a pdint (x,y) fall randomly in the square o<g<1,
o<n<il, With.independent coordinates which are uniformly dis-
tributed between a and b. Since o<x<l, and o<y<l, the proba-
bility (p) that the point (x,y) falls within the area under

the curve is equal to A, which is the required area.

Using any technique for finding independent uniformly
distributed variables as discussed in the following section,

say x and y, the following condition should be satisfied:
o(x) <y « (2.2)

in order to guarantee that the random point (x,y) lies within
the region R under the curvé. Therefore, N pairs of sampled
random‘vafiables are taken and a test is run on each to
determine whether they satisfy the inequality (2.2). If this
inequality holds for n pairs out of N, the ratio of n/N is
approximately equal to the probability that ény random point

(x,y) falls within the region R, so
To=op o= [ e (2.3)
It is clear then that the number of tests N will affect

the accuracy of the computation of such integrals and the

18




Figure 1. USE OF THE MONTE CARLO METHOD FOR COMPUTING INTEGRALS.
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associated error. Also it i1s interesting to notice that the |

- —restrictions that are usually required to evaluate ﬁhis in-
tegral such as the smoothness of the function need not be Im-
'posed in this method. All that is required is that the function

be bounded and measurable.

A more general case is that in which a modeled process
‘of the type discussed in the previous example, is used for
estimating the unknown mathematical expectation of some
random variable x. The same examp}e is used here; i.e;, it
is required to evaluate the integral‘fl d(&E)dE.
o

let (y) be a uniformly distributed variable over the

ranée (0,1). Then the mathematical expectation of the variable

x = ¢(y) is
l ' .
M, o= S e(E)dE (2.1)

It is necessary; therefore, to samp;e N independent
values of the variable Yys Yoeees Yy in order to evaluate the

integral. It is also necessary to compute the arithmetic mean:
- 1 N- S
X = 5 I ¢@y;) o (2.5)
i=1
This value of the arithmetic ¥ is approximately equal

to the value of the integral. The value of the errors in-

volved in computing some of the values of ¢(yi) will be

20



"smoothed out" if the value of N is large. This will guaran-

tee the stability of the method against any disturbances

arising from defect of randomness in the machine.

The process, then, invclves the estimation of the proba-
bility of some event A, or its mathematical expectation by
means of a modeled process. The following characteristic

features can be inferred from the above discussion:

1. Large number of computations of a uniform type
is performed, and

2. The error involved in the computation is "smoothed
out" for larger number of samples

3. It is also known that this method needs a compara-

: tively small amount of "memory for storage of
intermediate results which is well suited for
multi-dimensional problems" (8). This point is
extremely significant in very large and complex
problems where the storage problem becomes an
important issue in the computation process (8 19, 28)

The above discussion shows that the Monte Carlo method
is a modeling procedure where a random event A, occuring with

probability p, is modeled by means of the independent variable.

2.4 Random Numbers

The essential feature common to all Monte Carlo compu-
tations is that at some point a random value is substituted

for a COfresponding set of actual values with similar statistical

21



proverties. This random Value is called "random number", on
the basis that it could well have been produced by chance by
any suitable random process. However, the fact that random
numbers are not usually produced in a random way does not
influence their effectiveness in this method; the important
thing is the distribution of these numbers and not the sourcé

they come from..

In order to discuss the techniques for generating random
numbers, 1t is essential to define some terms that are closely
related to the properties and the ﬁsé of these numbers according '

to the way they are produced.

. First, it is important to define what is meant by a
"random event' and "probability". A random event is an event
which has a chance of héppening, and probability is the

numerical measure of that chance.

In Monte Carlo work, random numbers are classified into
three categories, according to the way they are produced and

used, random, pseudorandom, and quasirandom.

Random humbers, ¥, are the numbers thaf are produced by
chance and follow avstandardized rectanguiar distribution éf
the type shown in equation (2.6).

, 0, y<0
F(y) = {5“ A (2.6)

1, y>1

22



where F(y) is the cumulative frequency distribution of the

function y.

However, in practice these so-called "random numbers"
are substituted by some other numbers which are convenient
to produce and are equally effective from statistical point

of view.

For electronic digital computers it is most convenient
to calculate a sequence of numbers one at a time as required
by a specified rule. These numbers, however, are so devised
that usual statistical tests will detect any significant
departure from randomess. This sequence is called "oseudo-
random". One good advantage of the use of a specified rule
in producing random numbers is that the sequence is repro-

ducible for purposes of computational checking.

Pseudorandom numbers are generally used in all classes
of problems of the Monte Carlo type. However, in some cases
the violation of scme statistical tests of randomess may not
invalidate the results. In such cases non-random segquences
may deliberately be used, provided that this sequence have the
particular statistiéal problem. Such a séquence is calledr

"quasirandom" (19).

Several methods of generating sequences of random numbers

are available. Naturally, all the methods embody some

23



quasirandom physical process that generates sequences of
‘random numbers of a desired length and property (33). One
of the principle requirements of these sequences, as in any
other random sampling procedures, is statistical indepen-

dence (18).

Three alternative methods are used to generate sequences

of random numbers; they are:

1. Manual methods

2. Library methods

3. Computer methods

Manual methods include such slow procedures as coin
flipping, dice‘rolling, card shuffling, etc;, which are the

simplest but the least practicable methods.

A number of library tables for random numbers have been
published (37). These numbers are generated by one of the afore-
mentioned methods béfore being tabulated. The one advantage of
such tables is that they offer reproducible'sequences of
random numbers. HQwever, the method lacks the sbeed and, in
some cases, the sufficiency of the numbers contained in the tables
where it is not desirable to use the same "random data" for

solution of all the problems!

Computer methods include: analog computer methods, and

digital computer methods.
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Analog computer methods depend on some random physical
process (such as the behavior of an electric current), thus they

are fast, but the sequences they generate are again non-reproducible.

Three modes for providing random numbers on digital computers
have been suggested by Tocher (45): external provision, internal
generation by a random physical process, and internal generation

of sequences of digits by a recurrence relation.

In examining several methods for generating random numbers,
it seems that an acceptable method to be used for such purposes
“must provide sequences of random numbers having the following

properties:

1. They are uniformly distributed,
2. They should be statistically independent,
3. They can be reproducible, and

4, Through a desired length of a sequence, they should
be non-repeating.

Furthermore, for this method to be largely acceptable,
it must be capable of generating random numbers at high rates
of speed and with minimum amount of computer memory capacity -

(33,39).

2.5 Sampling of Random Events

The generation of simulated statistics (random variates)?

is entirely statistical in nature and is carried out by supplying

¥The term "variates" means a random variable having a certain
mathematical expectation or probability of occurrence.

25




pseudérandom numbers generated by one of the methods mentioned
in the previous section. These numbers are supplied into the
process or system under study (where the system is represented
by a probabilistic model), and then nunbers (random variates)
are obtained from it as the required solution. In general#
simulation involves replacing an actual statistical span of
elements by its, theoretical counferpart, i.e., a span described
by some assumed standard statistical or probability distribution
and then sampling from this theoretical population by means of
some type of random number generator (33). However, in some
cases it may not be possible to fiﬁd a standard theoretical
distribution that describes a particular stochastic process or
some of its components. >In chh cases, the stochastic process
can be reproduced or simulated only by sampling from empirical
distributions rather than from theoretical ones (This, naturally,

assumes the existence of empirical data.).

In-considering stochastic processes involving either
continuous or discrete random.variables; a function F(x),
known as the "cumulative distribution function" of x, denotes
the probability that a random variable X takes on the value of
x or less. If the random variable is discrete, then x takes
on specific values and F(x) is a step function. If F(x) ié
continuous over the domain of x, then the probability dénsity

function is f(x) = dF(x)/dx. The cumulative distribution

26



function can be stated mathematically as

. |
F(x) = P(X<x) = [ f{t)dt (2.7)

- CO

where F(x) is defined over the renge O0<F(x)<1, and £(t)
represents the value of the probability density function of

the random variable X.

Several methods for generaﬁing pseudorandum numbers or
uniformly distributed random variates over the interval (0,1)
vhave been developed-(33). Uniformly distributed random varlates

will be denoted by d, when 0<d<l, and F(d) = d.

There are fhree methods for generéting variates from
probability distributions -- the "inverse transformation"
method, the "rejeétion" method, and ther"composition" method.
These methods are discussed in references (33,41); however, a
brief description of the first method is presented here because
of its relation to the similation of the highway system under

consideration.

Inverse transformation method for generating stochastic

variates on a computer is done as follows (see'figure 2).

" If one wishes to generate random Variages xi’s from some
pafticular statistical population whose density function is
given by £(x), thé cumulativé distribution function F(x) first
must be obtained. Since F(x) is defined over the range 0 to 1,

one can generate uniformly distributed random numbers over the

27



same range andset F(x) = d. Therefére, for any particular' ‘ ;
value of‘d, say do, which has been generated by any of the
methods mentioned previously, it is possible to find the corres-
ponding value for x, which is in this case X, This is done by

Inversing the function ¥, if it is defined. So

FX(XO) - (2.8)

a =
(o]

x =P, % () | (2.9)
o X 0 ot

where Fx—l(d) is the inverse transformation of d on the unit
- interval into the domain of x. This can be summarized mathe-
matically by saying that if random numbers corresponding to a

glven F(x) are generated (equation 2.10),

X :
d = FX(X) =/ f(§) dar (2.10)

then
P(X<x) = F, (x) = PLAF(x)] = (R, (d)<x]  (2.11)
and consequently FX—l(d) is a variable that‘has a pfobability

density function f(x). This is equivalent to solving equation

for x in terms of d. Figure 2 is an illustration of this method.

2.6 Monte Carlo Simulation Models and Their Properties

The primary concern in this section is that with mathe-
matical models. Mathematical-models of systems in general

consist of four well-defined elements: components, variables,
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Figure 2. SAMPLING PROCEDURE BY THE INVERSE TRANSFORMATION METHOD.



parameters, and functional relationships (34).

Componehts of the mathematiéal models tend to vary widely
depending on the nature of the model being simulated and the
purpose of simulation. A highway pavement strucﬁure can be 3
component of highway transportation system. While the different
layers, the géometry,‘etc. can well serve as components of a
highway pavement structﬁre which is under consideration in

this study.

The variables that appear in the model are used to relate
one component to another and may be conveniently classified as

exogenous variables, status variables, and endogenous variables.

Exogenous variables are the input variables and are assumed
to have been predetermined independently of the model being
simulated. They may be regarded as acting on the system but

not being acted upon or influenced by the system (34,35).

The state of the system over a certain periocd of time is
described by the status variables. These variablés interact
with both the exogenous and endogenous variables according to

an existing functional relationship of the. elements of the system.

The output of the system is represented by the endogenous
variables. Clearly, these variables are generated from tne inter-
action of the input variables and the status variables according

to some existing functional relationships.
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Whether a particular variable should be classified és an
exogenous variéble, a staﬁus variable, or an endogenous vari;
able débends on the purpose of the research. For example,
vertical deflection may be regarded as an endogenous variable
in a study concerned with the pure analysis of load applica-
tion on a layered sy;tem, but may legitimately be tréated as
an exogenous variable in models concerned with predicting
cumulative damage and distress of highway pavements. Exogenous
variables may be used in two different ways in simulatibn
experiments. They may either be treated as given parameters
(determined by the environment, geometrical, and physiéal
factors associated with thelsystém), which of course have to
be estimated first, and read into the computer as input data,
or if they are stochastic variables, they may be generated in-
ternally by the computer by one of the methods mentioned in

Section 2.4,

In fhe language of experimental design, exogenous variableé
or parameters are categorized as "factors". In cdnducting computer
simuiation‘experiments on a given system, the main concern is
with the effects of thé different levels of the various facﬁors
on fhe endogenous variables of the system. This is to say that
a computer simulation experiment compromises a series of computer
runs in which the effects of alternative factor levels on the
endogenous variables are tested empirically (using simulation

data) (33).
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Thé funétional relationships describing the interaction
-of the vériables and components of a model are two-fold —-
identities and operating characﬁeristics. Both identities

. and operating characteristics are used to generate the be-
havior of the system. Identities may take the form of either
definitions or tautological statements about the components

of the model., For a pavement, the vertical deflection may be
‘defined as the difference between the vertical level before

a load was applied and that upon load application.v An operating
_ characteristic is a hypothesis, usually mathematical equation,
relating the syétem's endégenous and sﬁatus variables to its
exogenous variables (33). Compatibility equations and stress-
strain relatioﬁships for a layefed system are examples of the
operating characteristics of.the pavement system. Operating
characteristics for stochastic processes take the form of
probability density functions. Unlike componehts and variables,
which can be directly observed from the real system'thé para-
meters of operating characteristics can only be derived on the
basis of statistical inference. Naturally, the accuraéy of the
results of simulation depend on the accuracy of these estimates

of ‘the system's parameters.

In this study, the functional relationships describing the
interaction between the variables and the components of an

enginéering model are called "congruity relationships". The
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reason behind this is the -fact that these equations and
definitions relate the different variables and components

ahd describe their inter-compatibility and congruences.

2.7 Representation of the Elements of the Simulation Model in
" 'the Monte Carlo Analysis

To illustrate thé aforemehtioned system of classifying
eleménts of mathematical models, and to set forward the problem
under consideration, the elements chosen in this section repre- -
sents a typical'example of the problem being faced in the real

world for any engineering system.

The behavior of a mafterial in.a given operational environ-
ment can be represented by a~set of responses, Ri where the
subscript (i).is a number that varies in unit steps from 1 to
the number of responses desired, say N. The choice of the

“response terms depends on the particular aspects of the
material behavior under consideration. The set of_respbnse
terms Ri's constitutes the endogenous variables in the simulation

model.

The material is charactérized by a set of relevant properties
Pj’ énd the environment is described by a set of conditions Ck‘
The subscripts j and k take the values 1, 2, ;.., nand 1, 2, ...,Mm |
respectively, where n is the number of pertinent material properties,

and m is the nurber of prevailing environmental conditions considered.
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In general, material properties, environmental conditions

_and response terms are all expected to vary with time.

The three sets of quantities respectively can be regarded
as a vector of material properties, an environmental vector, and

a response vector.

In a deterministic approach, a functional relationship
between each response term and the assodiated matefial proper—
ties and environmental conditions is usually assumed to exist.
Material properties also vary systematically with the environ-
"ment. These relations are the ones referred to as the Congruity

Relationships in the previous section of this Chapter. So:

Ry =¥y [P, Pos eoes Biy eeny By Cpy Cos s Goeny €1 (2.12)
Py = B3 [Cps Cos vens Cps onvs G (2.13)

However, both material properties and environmental conditions
are subject to considerable random variability over fairly wide
ranges, even under well-controlled laboratofy tests. For brevity
the attention is focused in this section on the situation where
the environmental factors are not correlated. 'The modifications
which are required téraccount for the dorrelation‘of the environ-
mental factors are discussed in section (2.8) of this chapter.

Therefore, the C, vectors are treated as random variables with

k

probability density functions fc ' and associated cumulative
, ey
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distributions EC . When the environmental factors are cor-
K .

related®, their joint frequency distributions¥*¥ yield the
necessary statistical data. If the environmental factors are
not correlated, their independent frequency distribution

sufficiently describe the environment.

Materials properties are inherenfly variable. Even though
the obsérved variabilities can partly be imputed to the
variability in‘environmental conditions and to experimental
and measurement errors, material propcrties basically can vary
under idealized, constant environmental conditions andtidentical
test specimens. Therefore,lthe terms Pj are also considered to
be random variables with probability density functions fP. and

J
and cumulative distributions FP.’

J
In as much as the material properties are dependent on

the environment conditions, statistical correlation is implied
by equation (2.13). However, even under strict conditions of

stable environment, material properties can be inhérently cor-

P P.,...,P)

related (24). The joint density function
\ (PysPysees FTXEREL

rather than the density functions fP gives "complete" information
‘ J

% This correlation exists when there is an interaction be-
tween the environmental parameters. An example of this
is the interaction between moisture and temperature and
the effect of one on the other.

¥% This may be written as f(Cl,C2,,..,Cm).
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about the inherently correlated material properties.

Variability in material properties and environmental
conditions in any engineering system implies variability in
material behavior, i.e., in the response terms Ri' TQ any
system, in general, the basic inputs are the constituent
materials characterized by a set of relevant properties, and
environmental donditions surrounding the system and affecting
its operation. The enviromment is meant to include loads
(mechanical and thermal) as well. So the material properties
and the envirommental conditions are the basic inputs to the
model, i.e., the exogenous variables. The geometry of thé
layers and of the load enters the model through the congruity
relationships, and are also ihputs to the model. A set of

density functions fR or altefnatively cumulative distribution
i

functions FR represents the variability in material behavior
i

and response, i.e., the endogenous variables.

To evaluate fp , prerequisite data should be available
i

for the density functions fP and fC . Even if these density
J k ‘

functions are somehow evaluated, then considerable difficulty

can arise in determining fq by analytical methods. - Such
) e N
i

difficulties can be encountered if fP and fb are not normal
J k

and the congruity relationships are not linear. In these cases,
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a numerical solution can be obtained by the Monte Carlo

methodz

The simulatioh method for the evaluation of the cumulative

distribution function FR has been proposed in én algorithmic
i

fofm which is suitable for computer programming. The method 1is

probabilistic in its approach and is based on conditicnal proba-

bility of the form shown below.

Tnitially, we consider a situation in which the endogenous
variables (i.e., the response terms Ri) are related to m non-
correlated enVironmental‘variables Ck(k=1,2,..;,m) and n material
properties Pj(j=l,2,...,n).. The cumulative distribution functions

Iy and ¥
Ck Pj

that the congruity relationships of the form of equations (2.12)

are assumed to have been previously determined and

and (2.13) are at hard. The method comprises the following steps:

1. Draw the first set of values CK , k=1,2,...,m of the
_ Ky -
environmental factors CK from populatioris with cumulative

distributions F. .
/ CK
2. Obtain the conditional probability distribution function

of each material propertvaj for the values CK available from
step 1 above:

(P.<p.|C, =c, ), k=1,2,...,m (2.14)
J=J K kl .

o

JVK
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Whereas this equation takes the following form if the material

properties are not influenced by the environment:

k 3 : (2.143)

3. Using the distribution functions obtained from step 2,

&

draw the first set of values Py s j=1,2,...,n of the material
1 .

propérties Pj'
4, Compute the first set of endogenous variables, Ril,

using the congruity relationship (2.10). ‘
5. Repeat the prévious steps M times to obtain M sample.

values of the Ri‘ The summary for the conditional probability

used in this procedure 1s stated in equation (2.15) below:

FP.lC (ijpjlck = Ck )3 J=12,...,m (2-15)
gtk . 1
where Cj is any set of values of cj from populations with
1 4
cumulative distributions FC .
k

" In much the same algorithm, i.e.,

KW =T, (By) (2.16)

(Pj{ck) . FCk (C ;

, ijlck
the inherent interdépendenoe of material properties can be taken
into account. When the environmental factors are correlated, some
modifications have to be introduced in the above algorithm in a |

similar way (24).
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As a result of M simulations, histograms, means, variances,

and percentage points can be obtained. If the number M is

. sufficiently large, the histograms can accurately represent the
continuous distribution of the parent populations.

From the above discussion, it is clear that this method is
based upon, anq is only réliable as the technique used to obtain
a sample value x of a random variable x with a given distribution
Fx‘ Various techniques have been suggested for this purpose; in

fact there is_a considerable amount of literature devoted to this

subject (32,33). Most techniques (22,33,47) are based on the

generation of pseudorandom numbers which are uniformly distributed
in phe region betweeh Oband 1, which 1s discussed in Section (2.5)
above.
The "inverse transformation" method suggested in section (2.5) |
has been employed in this study to generate random variates from
certain probability distributions. However, care should be taken
in the selection of random.number generators as some are less"
efficient than others, depending on the nature of the problem, the
parameters involved in the simulation, and the statistical
pro@erties of these parametersf An approximafe normal deviate
generator has been used in case of normally distributed propefﬁies
in this study. The generator which is part of the IRVM/360 system,

and can be found under SUBROUTINE GAUSS, in the system's library,
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is baséd on the Central Limit theorem. It uses 12 uniform random
numbers to compute each normal deviate, which is done by calling
another generator (SUBROUTINE RANDU) twelve times. The latter has
been used when the material properties and envirommental conditions
ére assumed to be uniformly distributed. RANDU is based on the
"power residue" method to compute sets of randomly distributed
numbers (22). ‘Listings of both subroutines (i.e., RANDU and GAUSS)
are found in Reference (22). |

In the next chapter, application of the above method is
presented as applied to a mathematical model representing a highway
pavement structure taking into account the effect of the variability
in the material properties and envirormental conditions on the

behavior of the pavement under a static condition of load épplication.

2.8 Final Procedural Remarks on the Use of the Method

The simulation procedures suggested and diséussed'above is a
éhnple humerical method giving statistical answers to specific
problems which are not amenable to anal&tical procedures due to
thelr inherent complexity and interacting characteristics. The
method is approximate in nature, however, adeguate currency can be

attained if the number of simulations is “sufficiently" large,*

In this case, the decision as to how many samples are to be drawn

: *The-"Sufficiency" conditions here depend on the available and
~ the required statistical data. :
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out: should be preceded by.sensitivity analysis. The choice of
sample'size to be used for simulation experiments is one of the
most important decisions to be made in planning a simulation study.
It is completely inappropriate to select these sample sizes arbi-
trarily and then assume that the estimates thereby obtainzd are
sufficiently accurate to yield valid conclusions. Instead, it is
essential that'statietical analysis be conducted to determine the
required sample sizes. Hillier and Lieberman (21), Meier et al.
(29), Naylor et al. (33), and Wagner (15) suggest various techniques
for determining the size of simulation experiments; |

Several other techniques have been developed to reduce the
number ef simulation experiments. They are either regression type
of analyses or variance analyses (11,19,21,29,33,45). Variance
reducing techniques are aimed to increase the information in the
"interesting regions" of the distribution functions FR.’ and
consequently to decrease the information in the "non—i;teresting
regions or ranges".¥ For instance, most structures usually are |
designed with a very low probability of failure, so that the low

probability regions of the distribution functions of the variables

¥ Information on the entire cumulative distribution function of the
variables representing the material behavior is obtained by
statistically taking a sufficiently large number of values
simulated using the Monte Carlo method. However, only a small
portion of the distributions, referred to as the "interesting
region", may be of interest in design and safety considerations.
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contributing to such failure in the structure will be of prime
interest (46). Therefore, it can be concluded that a larger

number of simulations over the range of interest would simultaneously
yield fairly good estimates of the cumulative fréquency‘distributions
over than range, and a reduction of the computer time for'simulation.
This is achieved by conducting a sensitivity study on the system
urder consideration to determine the regions of most interest.

' The other factors which have an influence on the cumulative
frequency distribution of the endogenous variables are the proba-
bility density functions of the ekogenous parameters (i.e., the
environmental Variablés and the material properties), their
interaction and their correlations. In case of interacting
parameters, it is suggested that a joint density function of tﬁe
form shown in eqﬁaﬁionsA(2.l7) and (2.18) below, be used rather
than the single density functions. If these parameters are A
stochastically independent,‘then

f(cl,cz,...,c) =TI -

, k=1 , (2.17)
where the probability that the response R falls below a parficular
value r, will be |

m
m@) = Prer) = [ [ (2.18)
G k=1

The restriction R<r defines the region of interest G.
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The probability density functions of the different simuiated
‘parameters are either assumed or obtained by some statistical tests.
Sampling from the actual, statistically determined distribution is
superior to that obtained from assumed distribution. However,
when the sﬁatistical data for the density functions of the parameters
under consideratioﬁ are ndt avallable, special care should be
taken in assuming such density functions. This can bé done by‘

looking into the literature for statistical representation of the

same or similar parameters.
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IIT. THREE-LAYER HALF—SPACE‘VISCOELASTIC SYSTEM

3.1 Model for the Pavement System

A pavement system is repfesented by a three layer modelA
with two layers df a finite depth and the third layer being
" Infinitely deep. Horizontally, the layers are assumedlto
extend infinitely. The materials in the layers are linearly
elastic or viscoelastic, isotropic, with properties varying
in a certain statistical manner. The 1oad i1s assumed to be
a single load uniformly distributed over a circular area at
the surface of the top layer. The model isbshown schematic-
ally in Figure (3). The formulation of the problem for the
numerical solution of the stresses, strains, and deflections
for the model is that developed in References 13,1#, and 30.

The material properties that are pertinent here are the
compliance or the creep function, and the Poisson's ratio.
Geometric properties are represented by the heights of the
different layers. |

The exogenous variables of the model are: material prop-
erties, geometric factors, environmental conditions (inclu-
ding mechanical loads).

Poisson's ratio is assumed to be constant and doés not
vary with the environment. Therefore, the compliance or the
creep function is the only(pfoperty which is assumed to be
~influenced by the environment, and is also assumed to be

statistically distributed in a certain form.
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The environmental operating on a highway system is assumed
to be composedvof three camponents: the.traffic load, the |
temperature, and the humidity or moisture.

The traffic load is independent of the values of temper-
ature and moisture, but there is an unknown relationship
between temperature and moisture. Temperature is assumed to be a
random variable having a certain distribution‘in the range (Tl,Té),
where Tl and T2 are the extreme points of an assumed working range
of temperature.. The values for an average temperature values over
a one year period in the Boston area were obtained from tables of
the U.S. Weather Bureau in Boston. Then two distributions for tﬁe
temperature were assumed, having the extreme values reported by the
weather bureau:

a) Uniform (rectangular) distribution over the range between

Tl and T2

b) Normal (Gaussian) distribution over the same range, where
a statistical average and mean were calculated from the
values of temperature obtalned from the above tables.
Several investigations have been conducted tc study the effect
of temperature on the modulus of the asphalt and soil layers in pave-
ments (7,33,38). Figure (4) has been used in this study to establish
an empirical relationship between the temperature and the modulus

of the different layers. This has been based on a study conducted

by Dormon and Metcalf (7), which is derived from experimental obser-—
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vationsl The moduli of the materials constituting the layered
system are assumed to vary with the temperature in the follow-

ing_manner:'
i=1,2,3 (3.1)

where "A" and "a" are assumed to be constants for the layers,
and the sﬁbscript (1) refers to the layer of interest (Fig-

ure 4). 1Ideally, the two parameters (A and a) should also

be considered random variables with certain statistical dis-
tributions. "A" represents the value of the modulus at T = -C,

where C i1s the value of the temperature at which the creep

function or the modulus have been defermined, or some refer- i
ence temperaturé. At a given temperaturé f, which is a
random variéble distributed in the range (Tl’T2)’ the value
of the compliance D can vary between DR(T) and DU (T), where '
thé subscripts (&) and (u) refer to the lower and upper bound
values of the function. The position of (D) will greatly
depend on the moisture. No diréct rélationship was ascer-
tained to determine the coupled effect of the moisture and
temperature in evalﬁating the modulus or the creep properties
of the materia1 in the 1éyers of a pévement system. Further
work in this area is necessary.
Two curves are therefore arbitrarily drawn for the rep-

resentation of the functional relation that has been assumed

in equation (3.1) between the material properties and température.
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The upper-bound cﬁrVe is for the best condition of moisture,
which may be the driest, and the lower-bound curve is for
- moisture conditions approaching saturation. This is true when
the relation of equation (3.1) is for the modulus or the éreep
function ot the materials. In case of the compliance, the '
inverse of the relation exists, i.e.,
|
D, = —

14,
L4

e‘ai(T%C) (3.2)

The upper-bound curves discussed above become the lower-bound
curves for the compliance, and vice versa.

From the above discussion, 1t is clear that the effect of
the moisture has been implicitly 1ncorporated in the analysis,
although no direct and explicit relation has been established
between both the moisture content and the temperature on one
hand, and the material properties, on the other hand.‘

Figure (1) shows the relation between the temperature and
the modulus of the material with the assumption that:

a) The moduli and the temperature are uniformly

distributed between upper and lower bounds
defining best and worst moisture conditions.¥

¥ Note that both distributions assumed here have been arbitrarily
chosen for the sake of demonstration. Any realistic or
hypothetical type of probability density function can be used
in the model to represent the behavior of the elements of the
model.
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b) The modulus as well as the temperature,
are assumed to be normally dlstrlbuted
between the above 11m1ts

In the first case, the distributions are assumed to be

uniform (i.e., rectangular) of the following form:

=]
]

.
o
1

=Dy +d, (D, - Dy) | (3.4)

where "dl” and‘"d2" are pseudorandom numbers uniformly distri-
buted in the range (0< (dl,d2)il}f The above distribution
is shown in Figure (4).

The coefficient "a" in the assumed exponential relation-
ship between the temperature and the‘compliance, can also be
assumed to be a statistical variable with a certain distribu-

tion, as shown in equation (3.5) below:

where the term a is uniformly distributed®** in the range be-

¥ Note that both distributions assumed here have been arbi-
trarily chosen for the sake of demonstration.  Any reallis-
tic or hypothetical type of probability density function
can be used in the model to represent the behavior of the
elements of the model

. ¥¥ The same discussion in the above footnote is appllcable
to the variable a.

50



tween al and a2L This assumption 1s more realistic since it
satisfies the modulus-temperature superposition and.shiftk@
principles, but it will résult in a more complicated situation
and will'éonsiderably affect the computer time. In the pre-
éent analysis o is assumed to be a éonstant for eachllayer.

In the second case, 1.e., when the temperature and the
compliance are assumed to be normally distributed in an
assumed working range of Valués (Figure 4y, a standard normal
‘(Gaussian) distribution has been chosen using a random number
generator for normally distributed variables as illustrated
in section (2.7) of Chapter II.

The aboVe techniques and assumptions are employed using
avcomputer program that cdnsiders a three-layer system With
a Staticvload applied at the top of the surface layer (13,
lM;30). The program is a primary model for the study of the
behavior of pavement systems under traffic load. It calcu-
lates the stresses, deflections, and strains developed at
any point in the system. The program handles 1ihear elaétic,
linear viscoelastic, or partially viscoelastié,system. The
formulafion of the problem for analytical solution for the
stresées, strains, or displacements of the three—layef system
is found in Refereﬁces‘(l3,1u,39).

The effect of the variation in the environment aﬁd in
the material prbperties is taken into consideration in the

following manner. The compliance or the creep functions used

as input to the program are represented in the form‘of a
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series of exponentials, namely the Dirichlet Series, for math-

‘ematical‘conveniences (equation 3.v).
. n ' '
D, = I G,e i, j =1,2,3 (layer number) (3.6)

Therefore, for a given axle load, a radius "a" is determined
as the contact areé between the wheels and the pavement with
a certain load intensity, and, depending on the temperature
of the surroundings, the material property is randomly chosen
for each layer, i.e., the value of the compliance or the
creep function is selected from a given spectrum between

upper and lower bound values Dz and Du‘ D, and Du are used

2

as input to the program in the following manner:

n .
= . .
D§ = ‘Zluie tal, j=1,2,3 (3.7)
l:
. |
D? = .zle‘ile"t‘S s J = 1,2,3 (3.8)
i=

wheré the superscripts "2" and "u" on the coefficient of theA
exponential series (Gi) denote upper and lower values respec-
tively. The variation in the coefficients-(Gi) will even-
tually yield a variation in the creep or elastic compliances.
The aséumption made here for simplicity, is that only the.
instantaneous or the'elastic portion of fhe creep function

- varies statistically, by fixing the value of* the retardation

time (1/61). However, the whole curve may vary statistically
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in an unknoWn manner. More statistical tests can contribute
to the undcrstandihg of such variaiion. Future changes to
accomodate such variation can be made by changing the prob-
abiiity density function which has been arbitrarily assumed
in this study.

Selecting the value of the compliance or the creep func-
tion in this model fixes a value for the moisture content
which can easily be calculated, provided that the functional
relationship between the modulus or the compliance and the
moisture is given.

AThe above process is repeated a number of times for a
selected sample value of temperature. The number of itef;
ations mainly depends‘on the sensitivity of the material
properties to the variations ip the environmenﬁ and to the
statistical'charactéristics of the material properties as
has been discussed in section (2.8) of Chapter II. A flow
chart of the computer program describing this process is
shown in Appendix I, |

In order to make use of the data, the values of the
response terms are calculated for a given set of enwﬁbn-
mental variables by selecting a range of material properties
for a given monthly variation in the temperature depending
on the'surrounding moisture conditions. This requires the
determination of the‘monthiy; rather than daily, temperature
variation En each layer over a cycle of one year, for example.

The magnitude of stresses of‘strains is calculated on this
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basis for several times each month; and a most probable value
can be predicted; This procedure is repeatéd over the whole
year period. Assuming that the results are additiVe, if a
critical 5r intolerable value of stress is reached, then the
system is assumed to have partially failed.. The analysis.is
applicable to the case where the value of the defection is
limited and theref&re, the value of the compressive stress
or strain at the second interface* is limited. However, the
values of temperatures in this study were chosen randomly
between upper and lower limits over the wholé year and are
based on a monthly variation because the sequence of their
ooéurrence is not critical when the static load case ié
studied. When the.repeated loading case is stgdied, it 1is
important to emphasize on the significanée of the sequénce
of occurrenbe of events to account for accumulation of re-
sponse over extended periods of time.

In the next section, an illustrative example 1s presen-
ted where numerical values of the inputs and outputs ofvthe
model are also listed. Discussion of the results obtained
through the computer programs are also presented in this

section.

3.2 Numerical Example of Simulation of the Three-Layer
System C .

To illustrate the effectiveness of the techniques dis-

¥ The interface between the second layer and the subgrade.
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cussed above, and to glve typical results, a three-layer half
space viscoelastic system with the following geometry and material

- properties have been analyzed.

a =
e = 1.19
H= 2.0
h ¢ .
_ j -8,
uDi (t) ‘2 UGi e i
J=1 ’
6 .
D. _ J
£ lj (t) = jilgGi o tﬁi

where the values of _Gi, and 63 are given in Tables 1, and 2, and
the compliances are also shown in Figure (5) for materials used in

each layer.

3.3 Results and Discussion

Simulation of the data in this example was conducted by drawing
100 sample values of the input variables which were assumed to have
two different statistical properties:

1) Uniform distribution for the temperature and the viscoelastic
- creep compliances, and

2) Normal (Gaussian) distributionvfor the variables mentioned
above.

Figure (6)'shows typical response funbtions in terms of the
vertical strains (eéz) at the first interface under the center of

the loaded area, versus time. This figure shows that for a 15%
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TABLE 1

Extréme Values for the Coefficients of the Dirichlet Siries

Representation of the Creep Compliance I Gie

85«

First Layer

Second Layer

Third Layer

Upper Extremes

Upper Extremes

Upper Extremes

‘uG;.= ~0.5750
}

w1 =-0.0863

W1 =-0.0575

LGy =-0.0863

G1 ==0.0575

G = 0.5750

uGz =-1.1500
uGi =-0.1725
G» ==0.1150
uGZ~=-0.1725
ud: =0.1150

Gz = 1.1500

uG3 = 0.0
3 -

3 = 0.0
3

Gs = 0.0
y

Gs = 0.0

.5
uU’3 = 0.0

83 = 1.1500

Lower Extremes

Lower Extremes

Lower Extremes

GG =-0.4250
2 )

G =-0.0638
3

oG =-0.0425
N

G =-0.0638
5 .

oG =-0.0425
6

G = 0.4250

& =-0.8500
G ==0.1275
,G =-0.0850
G =-0.1275
QGS =-0.0850
,G = 0.8500

2? =-0.0
2
2G = 0.0
3
G = 0.0
1
§
oG =0.0 |
6
QG = 0.8500

¥ Al)l the G§ values are multiplied by 10
1

3

Wi for example is ( -0.0005750° ).
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,'so the actual value of
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TABLE 2

Exponents of the Coefficients of the Creep Compliance
' ' -t6;

An the Dirichlet Series Representation I Gie

10.00

3..162
1.00
0.316
0. 10

0.0

1
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variations in the input creep compliances a relatively wide scattef
results in the response function. This also shows that for each
value of the creep compliances of the different layers, any of the
response curves shown in Figure (6) has a chance of occurrerce.
This variation in the response is substantialbenough to Justify
the use of a probabilistic treatment.

The frequenoy‘distributions of the verticél strain at two '’
different polnts in time are plotted in Figures (7) through (10).
Figures (7) and (8) represent frequency distribution for the first
case, l.e., when the probability density functions of the input
variables are assumed to be uniform. While Figures (9) and (10)
répresent the correspbnding frequeﬁcy distributions of the vertiéal
strain for normally distributed input variables. Each histogram in
Figures (7) through (10) is in fact a cross—éection at that particular
point in time of Figure (6).

The trend in these hiétognmns appears to be toward that of the
corresponding distribution df the input Variables, although.there
are éome peaks or irregularities. The reason for these deviations
from the assumed distributions may be attributed to the fact that
the number of samples drawn for the simulation experiment was not
sufficiently large to be representétiva of' the parent populétiohs.

To validate and check these description‘of the histograms, it
is possible to conduct simple statistical tests called "Goodness-of-

rig" tests, to estimate the coincidence of the obtained results with
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»thdse from théoriés: A x? - test was; therefore, conducted on
the rdsults'of thé'above simulation; Both cases showed that they
fit theif corresponding théoretical distributions within a a
reasonable degree of accuracy.

Mbreover; to'confirm the fact that the lack of adequate
numbér of samples 1s responsible for the discrepancy between
theoretical distributions and those obtained by simulation, the
temperature distributions obtained from the IBMisystem/36O Random
Number Generator are plotted in Figures (11) and (12). Figure (11)
is a frequency distribution‘of uniformly distributed temperatures,
and Figure (12) is that of normally distributed temperatures.
These figures show a trend similar to the éorrespdnding
distributions of the response terms shown in Figures (7) through
(10). |

The cumulative distributions of the above histograms are
plotted in Figures (13) through (18).

The abdve results and their scatter show the importance of
the statistical nature of the materials properties and other
input Variables;thatiwill describe the resulting scatter in the
response of the pavement to load énd envifonment. In order to
~uée the results of such simulations is the analysis of response
of the pavement'systems, oné may uée first and second order
movements, i.e., the mean, the variance and the'cdefficient of

variation. From this, a summary of the simulation may be plotted
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as those in Figure; (19) and (20). Figure (19) describes the
mean, deviations, and extreme values for the time-dependent

| stfain shoﬁn invFigure (6), when the input properties were assumed
to have a uniform distributién. The corresponding values for the
normally distributed input variables are shown in Figure (20).

In the design process, it 1s more realistic to consider all
information similar to that shown in Figures (19) and (20). Using
averages and single values for the design may result in a very
conservative design, or else failure may be more eminent than
that predicted.

Finally, variations in the iééd function may result in a
cﬁange of the physical properties of the materials in the pavement
that would affect sigrﬁficantly its response. This type of
behavior is not being agoounted for if claésicalvaveraging
procedures are followed in the design. While it is obvious that
the extreme values of the response shown in.Figures (19) and (20)
may be due to this type of behavior, and therefore it allows the
designer to consider the uncertainty associated with their
occurence to account. for these properly in the design.

The next step to be taken in this type of analysis is to use
the results obtained from the simulatién of £he system under a
single stationary load and operational environmenf into a
repetitive load mode applied randomly to the system. From this,

the effect of load repetitions and varying environment on the.
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response and behavior of the system can be studied. Conseqﬁently
the aﬁalysis of the so called primary response behavior of the
three-layer system under fealistic load and envifonmental
excitations would be completed.

The response of the system to a repeated loading mode under
constant environhent has been studied deterministically, and can
be found in r;ferences (13) and (14).

It is clear that the study presented in this thesis is
essential for the study of damage and failure of pavement
systems. This stage of damage progression and failure may be
characterized as the secondary response stage as distinguished

from the primary response stage presented in this work.
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IV. CONCLUSIONS

It has been shown that simulation 1is a rather promising'
approach in dealing with problems that involve various
degrees'of uncertainty due to the variation in certain para-
meters in them. The highway pavement is a good example of
these problems, and‘simulation provides a systematic approach
for developing a meaningful probabilistic input-output
relationship. Another advantage associated with the use»of
the simulation procedure discussed above 1s that is can
handle any irregular shape of probability density function
of the input parameters.

However, it is clear that iﬁ order to obtain a usefui
and accurate probabilistic output, the number of simulation
experiments to be oonducteduhas to be very.large. A.sensi_
tivity study 1is needed to optimize the number of samples
required for a specific problem (21). This means that high
accuracy requires large compoter time, which can be a major
setback in'the use of the method for simulation of the model.

Therefore, it seems that if the probability density
functions of the input parameters have some standardized
forms, a more reallstic way to attack the problems will be‘
that of using a closed form probabilistic solutlon 'Thl$
closed form solution will provide very useful information
regarding probabilistic properties of the output, such as
-the mean, the variance, coeff1c1ent of Varlatlon, etc., which

are needed for purposes of de51gn or further ana1y51s. Since
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this apbroach has proved useful in many applicdtions in
engineering, it seems that even if the shapes of the prob-
ability density functions are not that of some standardized
forms, it dan be approximated to f;t a standardized
theoretical form. _The error involved here ié hardly
significant due to the high degree of uncertainty associ-
ated with the prdblém. Therefore, if the stochastic proper-
ties of the problems are known, an alternative formulation
and solution of the problems based on ﬁhe above technlques
will be considerably more economical.

However, in the present analysis of response of the
pavément system under static load conditions, it is not
feasible to use closed form probabilistic solutions. The
reason for this is due to thé fact that the response terms
are expresséd numerically as a function’of time.  This
means‘that the resulting response is not found in a single-
valued form. Therefore, simulation is thought to be a reason-

able approach in this analysis.
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V. RECOMMENDATION FOR FUTURE WORK

5.1 Primary Response Model

An immediate extension fbr this approach would seem to
study the system under realistic operatibnal ehvironment. Aséuming
that the system is linear, the classical input-output relation
for linear systems méy be expressed in‘the‘following form of a
convolution integral: |

t
y(t) =1 ht - 1) - x(1) dr | (5.1)

-

where y(t) represents the response of the system,
x(1) represents a history of the excitation function, and
h(t - 1) is a characterization function of the system, and

is usually called the "response function".

Equation (5.1) considers a linear system as a black box,
characterized by its response function h(t - 1), and is being
acted upon by a history of some excitations described by x(t),
as shown in figure (21).

This relation is a very useful one, and may be used as

described below to study the behavior of the system under realistic

operational envirorment.

Since the vehicular load is applied on the pavement in a
fepeated mode, it may be represented by some frequency wave such
as a half sinusoide, or haversine function, etc., to describe

the history of lQad. The response function h(t - i) can be
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- represented by the response of the cystem to a unit step load.
This reséonse is obtained using fhe method described in the
thesis. However, since the environment is an important factor
in the response of the system, equation (5.1) may be modified
to include another term ¢(s) describing an afbitrary history of

the environment (equation 5.2).

t t
y () = Lox(nlt -1, ¢ ()] ar  (5.2)
. S5=1

The excitation function x(t) may be tréated'as a random
variable, 1.e. with random amplitude and frequency of arrivals
of vehicles. The response function can also be treated as a
random variable with certain statistical properties and asso-
ciated means and variances. A simulationAstudy may then be con-
ducted to study the cumulative response under this type of |
random excitation and envirornmental history. Damage may then
be accumulated according to a certain damage rule, such as that
suggested by Miner:

RS = S
t Dy =1Ly 1 (5.3)
i it
Healing and recovery may also be accounted for by some time-

dependent processvcharacterizing the system.

Different mahifestatioﬁ,of damage can be predicted and
accumulated by the suggested model, each by satisfying a certain
criterion until an untolerable‘threshold is reached by one or

a combination of more than one type of damage. At this limit,
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the system is considered to have failed structurally.

Another alternative for simulation of this process, which
has proved to be costly, is that of using a closed form pro-

babilistic solution.

Equation (5.1) in fact describes a deterministic system.
A probabilistic description in the time domain of the process

may be written as:
Ry(T) = I I'h (a) h(B) R (tto-8) go aB (5.4)

If the statistical properties of the pattern of load appli-~
cation as well as that of the environment are known, and if the
statistical scatter of the material properties is also known, a
probébilistic solution may be developed to yield the probabilistic'

information that will be provided otherwise by simulation.

5.2 Performance Prediction Model

Highway pavements belong to a class of structures which are
identified as structure-sensitive systemé. Structures-sensitive
systems are those engﬁneering systems in which damage or failure
of a component results in a loss in the level of performance,
rather than the abrupt incidence of total failure. For these
systems, internal damage develops within the operational environ-
ment over a cerfain period of time, and failure is viewed as the

ultimate conditions which result from the loss of performance,
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Failure, therefore, is the extent of damage which has been accu-
mulated as a consequence'of structural deterioration over a
range of stress, strain, time, and environmental conditions in

an operational environment.

The performance level of pavement system, as a structure-
sensitive system, méy be defined as the degree to which the
Stipulated funcﬁ&ons of the system are executed within the en-
vironment. This level is, therefore, dependent on the history:
of the applied load and its distribution, on the quality of the
construction materials used and their spatial distribution, on
tﬁe history of the environment, and on the extent to which
proper maintenance practices are executed over the entire life

of tﬁe system.

Finally, damage in the structure may be defined as the
extent of structural deterioration resulting in a loss in the

performance of the system.

Figure (22) illustrates that the performance cf the system
diminishes in some way until an unacceptable level is attained.
This behavior results from the combined action of the load and

the environment during the operational life period of the system.

Therefore, performance, which is in this case the integrity
level of the system at any time is one minus the amount of damage

accunulated within that time.
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Pi(ti) =1 - Di(ti) (5.5)

Where Di is the amount of damage accumulated from'ys(t) in

equation (5.2).

Since damage 1s probabilistic in nature, the performance level
will be dependent on the temporal and spatial distribution of
damage at any time during the life period of the system. Damage
progression in highway pavements can be represented by a Markov

process model. A Markov process, is one with the following properties:

P[X(n+1) = x(ntl) | (X(1) = %) X@) =x) ...
(X(n) = x ) 1=PXn+) = x5 | X(n) = %] (5.6)

_This simply states that there is only one step dependence.
The future state depends only on the current state, and the
dependence of the future events on the past is of a particularly

simple nature,

The-trénsition of the state of the system may be fepre—
sented by birth and death processes with4the birth representing
more damage due to cumulative response and aging effects, and
death representing some level of maintenance introduced at that

stage.

Each stage in the Markov chain will represent a certain level
of damage, or otherwise performance level, accumUlating over a

pericd of time, in this case it may be a few months or one year,
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as the case may be. The ﬁransition probability matrix can then
be estaﬂlished on this basis. The rewarding matrix will express
the amount of damage or loss in performance that will 5e involved
in the transition from one state to another. The final stage'

is one where failure takes place at, and can be reached when.the
damage reaches some untolerable limit, or when the performance
‘reaches some unécceptable level, at which time the system 1is

considered to have failed.

This analysis provides very useful information that can be
used in design practices based on féliability criteria. A dis-
tribution of the life time of the system can be obtained by find-
ing the distribution of the time to reach the final state which,
in this case is a trapping state since the system is renderedv
unusable upon entering that state. The amount of maintenance
required throughout the life éf the system can also be predicﬁed
through the model, since maintenénce will be responsible for a
possible.transition from one state to a previous one (filling a

crack, a hole, etc.).

.Therefore, an important factor is achieved also in this
process, which is the introduction of maintenaﬁce prediction in
the design process based on quantitative and scheduling estima;
tion of the maintenance required throughout the life time of the
system. 'From an economics point of view, this will also‘be very

helpful in estimétion of the expected values of construction as
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well as operation of the highway system.

A ‘schematic representation of this process is presented in

figure (23).

5.3 Summary

Factors contributing to the iniﬁiation, propagation, and
propagation of démage can be divided into three categories:
(a) materials properties and pavement geometry, (b) load variables,
and (¢) climatic conditions. A sgbstantial variability is asso-
ciated with the measurement or prediction of each of thése
factors, thereby resulting in a stochastic nature of the response
and behavior of pavement systems. To account for these varia-
bilities, the damage model should be capable of yielding sta-
tistical estimates of the temporal and spatial distribution of
the different modes of structural deterioration resulting from
the action of load and environment fhroughout the service life
of the system. A pavement system 1is represented by a three—layer
Viscoélastic system describing its physical and geometrical
properties. The load application can be represented by a Poisson
procéss of random occurrence at a certain rate of arrival.
Temperature, moisture, and other environmental variables may be
assigned some statistical distribution of a standard type such

as normal distribution, uniform distribution, etc.

89.-



‘Damage is'éccumulated due to repeated load action within
the operational ehvironment. A Markov process model can bé
used to describe the progression of damage over some relativeiy
long periods of time. Each state in the Markov process defines
a certain 1evé1 of damage or performance. A transition matrix
will prQVide the probabilitieé of the transition of the different
states into others. The reward matrix will providé some quanti-
tative measure of da&age or loss in the performance level through
ﬁhe transition from ohe state to another. Maintenance practices
will cause the transition of a certain state to a pfevious one,
in other words, it will raise the level of performance or de-

crease the amount of damage in the system.

Failure is then the state of untolerable extent of damage

or unacceptable level of performance.

The above analysis provides a realistic study of the be-
havior and performance of’highway pavement systems based on
realistic inputs and outputs of the system.  The system.is also
characterized by a model which is based on a true representation
of the physical behavior of the sy$tem.as well as its geometrical

properties.

The fbllowing features designate the above method of approach
from the viewpoint of design practices:

1. Prediction of the distribution of the performance level of
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the system’at any period throughout its lifetime.
As a-consequence of (1) above, maintenance estimates

and scheduling will be based on more realistic grounds.

This will facilitate incorporating maintenance in the design

process as well-as the ecqnomical analysis of costs of con-
struction and operation of the system. |

Prediction of the distribution of the lifetime of the pave;
ment. This is very important in any design process as well
as economical analysis, since resurfacing is required after
this period.

All the above analyses are based on‘a probabilistic approach
which accounts for the ﬁnpredictive occurrences of events, an

approach which is more realistic and more reliable.
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APPENDIX I

COMPUTER PROGRAM

This Appendix Contains a Flow Chart and a Program Listing

of the Simulation Program for the Three-Layer Viscoelastic System.

9% -



Read Input Data

s

Print Input Data

!

NO

values for tem-
perature simulated

¥

Call subroutine "RANDU" or

"GAUSS" , -

Generate Random Numbers

!

Generate values for Temger-
ature between Specified
Upper & Lower Limits

!

Compute Corresponding
Extreme Values for
Modulus

Y

Generate Values for Modulus
between Specified Upper &
Lower Extremes

)

Load Program

Call Main Program - Stationary

Return from Main

Printed Computed Response
Terms

is number of
simulations the maximum
required




86 .-
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THIS IS THE MAIN PROGRAM FOR THE ANALYSIS UF A LINEAR VISCOFLASTICMAINOOOI
THREE-LAYER HALF=SPACE UNDER A UNIFORM CIRCULAR LGCAD, FOK THE CASEMAINCOCZ2

THAT TEHE MULTIPLES COWVJLUTI”N INTEGRALS ARE_EVALUATED EXACTLYe MAIRGON3
IN ADDITION TO THAT, THE PROGRAM USES THE MINTE CARLC SIMULATION MAINGCGS
PRICEDURE T2 GENERATE RANDCM NUMBERS AS REPRESENTATIVE SAMPLES MAINCQOS -

FUR THE VALUES UF THE RESPUNSE TERMS DESIREDs  THIS IS A STOCHAS— MAINQGOG

TIC APPROACH TJ PREDICT THE PROBABILITY THAT 2 DESIREC RESPONSE MAINQOCT

TERM(BE IT STRESS,y STRAIN, OR DEFLECTION) TAKES A CERTAIN VALUE., MAINODOS -
THz PROGRAM TAKeS INTU CUNSIDERATICN THE EFFECTS OF CFRE IMHERENT  MAINGOO9
VARTIATION IN THe PRUPERTIES UF THE MATERIAL(WEHICH IS IN THIS CASE MAINGO1D
THE CREEP CIMPLIANCE UF THE DIFFERENT LAYERS CONSTITUTING THE - MAINGOL11
SYSTeM)o IT ALSU TAKES INTU ACLCOUNT THi EFFECT OF THE CONSTANTLY MAINGOL12
VARY ING ENVIRUNMENTAL CONDITIONS(SUCH AS TEMPERATURE AND MUISTUREIMAINDQL3
O THE BEHAVIOR UF THE SYSTEM. MAINCCL4
THE NECESSARY SUsRUUTINES ARE VISCCs CNVIT,CNSTRNT,SOLVE,AND TERPULMAINOGLS

- ALSC NECESSARY IS THE REAL FUNCTICN SUBPROGRAN JB, : MAINGI16

FHE INPUT IS IDER, ILAYER, IDEFLE, H, Ly Ry Z2Zy ¢NJJJs DELTX, MAINOOLT
DELXXs My NNy NSy NMONTH, IARB, T1L )y T2( ), THE VECTORS YLI( ),MAINDO1S
YLz )y YL30 )y YULC )y YUZ( )y YU3( )yALl, A28 A3, AND DELTA( )o MAINOD1O
YL2C )9 YL3O )y YULU )y YUZ2( )y YUBL )yALy A2y A3, TLINMy DELTAL )oMAINUO20
IDER IS A DUMMY FOR THE STRAINS, IST IS A DUMMY WHICH, TOGETHER MAINUOZ21
WITH IDEFLE CETERMINES WHICH STRESS, STKAIN OR DEFLECTION IS DeSIRMAINGULZ22
IST IS 1-FUR NORMAL STRESS, NIRMAL STRAIN OR NIPMAL DEFLECTION, MATNQDZ23
[S-2 FOR SHEAR STRESS, RADIAL STRAIN DK RADIAL OEFLECTICN, AND IS MAINDD24
3 FOR RADIAL STRESSe H IS THE THICKNESS OF THE SECCNL LAYER(THE MAINGCG25
THICKNESS UF THE FIRST LAYEK IS ONE)oe A IS THE RADIUS QOF THE LOAD-MAINDOZ6
# 1S THE UFF-SET AT WHICH THE RESPONSE IS DESIREDs ZZ 1S THE DEPTHMAINUDZ27

AT WHICH THE SOLUTIUN IS DESIREDs, ILAYER IS THE LAYER CF INTERESTMAING(C28

(ly 25 JR 3)e IDEFLE IS PUSITIVE IF THE DEFLECTICN IS DESIRED, - MAINDD29
ZERU FOR THE STRESSFS, AND MEGATIVE IF THE STRAINS ARE DESIRED.  MAINOO3O

CNJJJ IS AN INPUT TU THE SUBRJUTINE SCLVE, AND IS EXPLAINED IN MAINDO31
CDETAIL THERc, DELTX AND BELXX ARE INPUTS Ti) THE SUBRCUTINE TIME MAINOD32

ANG ARE EXPLAINED IN DLETAIL THERE. N AND NNN ARE ALSC INPUTe. N MAINQU33
IS THE MUMBER OF TERMS IN THE DIRICHLET SERIES REPRFESENTATIONS OFMAINGG34

CTHE  INPUT CREEP FUNCTUNSe  NNN IS THE NUMBER CF PUINTS IN TIME AT MAINOO35

WP ICH THE SULUTION IS DeSIRED.  THE VECTORS YLIL )y YL2( )y YL3{ IMAINGO36
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ARE THE CONSTANTS FOR THE SERIES REPRESENTATICNS OF THE CREEP MAINCOB?i

FUNCTIONS CF THE ASSUMED LOWER BOUNLC FOR THE FIRST, SECGND AND MAINOO38

THIRD LAYERS RESPECTIVELYe WHILE THE VECTORS YULC )y YU2( )y AND MAINDO39
YU3( ), ARE THE SAME CUNSTANTS FCR AN ASSUMED UPPER LIMIT(PRUBABLYMAINQO4O
AT THE MOST FAVORATE MOISTURE COUNDITIONS)ee NS IS THE NUMBER UF MAINDO4] .
SAMPLES T2 8L DRaWN EACH MUONTHs,  NMUNTH IS THE HNUMBER CF MONTHS MAINQU42'
OVER WHICH THE STHULATION §S CONBUCTED, IARB IS AN ODD INTEGER NOTMAINQOD43
MORE THAN 7 CHARECTERS TU BE USCR AS INPUT TO THE RANDOM NUMBER MAINGD 44
GENRATIOM SUBROUTINE, IT IS HCWEVER ACVISED TC USE A VALUE OF MAINCO45
65549 FOR A BETTER STASTICAL DISTRIBUTION OF THE GENERATED RANDOM MAINDO46
MUMBERS. TLU )y AND T2( ) ARE VECTORS CORTAIMING RESPECTIVELY THE MAINGQO47
LOwER AND UPPER LIMITS OF TEMPERATURS FOR EACH MUONTH OF THE YEARJMAINCU48
TLIM IS THE INITIAL VALUE OF TEMPERATURE AT WHICH BIOTH THE. UPPER  MAINOO49.
AMD LOWER CREEP CURVES HAVE BEEN MEAGURED. NTEMP IS THE NUMBER OF MAINGOS5Q
TEMPERATURES USED IN CUMPUTATIGNS, Hi: RESULTS CF THE PROGRAM AREMAINGOS1

THE DESIRED, STRAIN OR DISPLACEMENT AT EACH OF THE NNN TIMES, - MAINOUQSZ
DIMENSION Gfl20,23) . MAINDOS3
DIMENSTON w(201) ' MAINCOS54

DIMENSION Cl{o)3E2(6)E3{(6),EA(360),EB(362),EC(360),CL020,12),C2( MAINOO55
120912V 3C3020,12) 9202001 2) 2 EL1{6H 427412 4ELZ2(64,20,12)4EL3{6420,12)y MAINQCUBS
2EUL06920412) 48Ul 645209 12) 9EU3(H120412) 4sEF16,2G412)sEST6+20912)ETINMAINGOST
36,2Uy12)9fl(12)9TZ(12)qYLl(ﬁ)yYLZ(é)yYL3(6),Ybl(é)yYUZ(é)yYUB(G! MAINLCUSS

COMMON CCUB920) 90018320 ) yFF{B,20) 3T(2C1) 4DELTA(20) MAINOOS59
COMMIN/MAME/ IDERy ITEMy NNy ISTy Wy IDEFLEsGoHyA9yR,ZZ s ILAYER, MAINOY 60
1 NeNJJJIy0eLXX,00LTX _ ’ - MAINCD61
EQUIVALENCE(GILy L), EL0 139 (60192),E2(1)),(60193),E3(1)) S MAINQDGE2
DO 222 11I=1,100 . MATNCO63
CTHE LUOP THROUGH 726 ALLCWS MULTIPLE SETS 0OF CATA TG BE RUN, " MAINGO64 -
REAL(5,9) IDER . : -MAINOOO65
WRITELS,88) IDER ' MAINQGES6
FORMATITH 1DZR = 110) ' MAINGO67
CITEM=TIBER MAINGH68

ITEM IS A DUMMY AND IS GIVEN THE VALUES OF -1, 7y 1 FOR THE NORMAMAINOG69
STRAINy, CIRCUMFERENTIAL STRAIN, AND RADIAL STRA[N RESPECTIVELY. MAINOQOT7Q
REAB(5,2:2) ILAYER,IDEFLE ‘ MAINOGTL
READIS5e52)I53TyH9AWRZIZ ‘ _ , MAINGOT2
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00t

29
52

219

3344

7998

TS
T3l
732

787

FORMAT(5I5)

FORMAT(IbL/5F10.5)

AN

NRITE(64210) ISTy ILAYER, IDEFLEsHyA9R 72

FURMATITH IST =

KEAC{5,23)NJJJ
NJ AND HJJ ARE

MIFICANCE TH THE
ARBITRARY VALUES,
DELTXyDZLLXX

READ{5y1)
READ( 54920 )iy NNN
FORMATIO6F1s5)
FURMAT(415)

I13/16H TLAYER =
1I5H H = Fldob/5H A

Flueb5/5H

INPUTS TG THE
PRESENT USE

SUBRCUTINE SCLVEs THEY HAVE MO SIG-
OF THAT SUBRCUTINE AND ARE GIVEN

READ(593344 )NSyNMUNTH,,NTEMP, 1 ARB
WRITE(6y 7GSE)INSyNHMUNTH

FORMAT (46X, TiS =

*ellu,?

NMINTH = v, 1%)

READ(S, 700 {T1(11),11=1,NTEMP)
READ{Sy 7UUI(T2( 1), I11=14NTEMP)
WRITE(G6, 728 ) (TLCIL), II=14yNTEMP)

ARITE (D
FORMAT(12F602)

FORMAT(4X 9" LUWER  ADNTHLY TEMPERATURES

FORMAT{4 X,y YUPPER MUNTHLY TEMPERATURES

DD 7357 KL=1,4N
EL(KL)=1e(}
E2(KL )=o)
E3(KL)=ua®

DO 232 J=1,4NS

CitdyI)=0.2
c2(Jy )

it

Tt

. C,g(\JQI)?‘:;}O"‘}

P{Jy [)=0,0

DD 232 K=l,n
ELLI{Kydy 1) =00

EL2{(KyJds I)=000

ELB(KyJ,I):UaO

SG2V{T2(TI 1) 4 11=14,NTEMP)

'

= I110/10H IDEFLE = 110/
R = FIQOS/QH ZZ = F1095)

1y 12F7.2)

‘912F702)

MAINOOT73
MAINGOT4

\

MAINDO75

MAINOO76
© MAINOOTT
MAINGOT78

MAINOQTO
MAINOOED
MAINCO8L

MAINQO82Z -

MAINQOB3

MAINCO84

MAINGOBS
MATINIQO86
MAINGCET
MAINGUEBE

MAINGOES

MAINGEID
MAINOOS1

MAINGGS2-

MAINCO93
MAINQGS4

MAINGOSS -

MAINDIO6
MAINGOST
MAINGOSS
MAINCOCSY
MAING1GO

CMAINDLIOL

MAINQLC2
MAINCLO3
MAINC1O4
MAINQLCS
MAINU1OGG
MAINGICT

MAINCLES

)
A




9001

10T

5 7 ‘3 3
736

797

1112

ES

ow

CCOOO0O

ES(K,J,1)=0

-REAC(SE
FURMATI(EFLOD)

EUL(K yJdy I
EU2(Kydol
EU3(KsJy I
CF(KydyI)=!

i
NI T [ I |
s o [\ I S ]

P J\,,‘e [ 1
[ S S

‘T(‘(,Jv[)"?
KIL—NS"NWJNTH”N

D0 9201 LLL—.qKIL
EACLLL)=D50

EBLLLL) =260

L_C(LLL)"'“QI

REAR(S,7u3) (YLl(KL)vKL=19N)
READ(5,7032) {YL2(KL)KL=1,yN)
REAC(S, 7U3) (YL3(KL)KL=1yN) ' ‘ '
REAC(55733) (YUL(KL) yKL=1,N) | o L
READ(5,7U3) {YU2(KL) KL=1yN) .

READ(S5,733) (YU3 (KL} KL=1,N)

FORMAT{HFLus4) '

READ( 5y 7I6)AL,AZ,A3

FORMAT(3F1lu.5)

WRITE(H,TCTIALZAZ 9 A3 : , :
FORMAT (44X, * EXPUNENT UF MCDULUS VS TEMPERATURE CURVE =
REAC(5,1112YTLIM :
TLIM IS THE VALUE
FUNCTIUNS COF THE
FORMAT(F7.2 .
y 5 {DEL TA{KL) 9y XKL=1yN)

'43F10e5)

AIF THE TEMPERATURE AT WHICH THE INPUT CREEP
DIFFERENT LAYERS ARE ORIGINALLY EVALUATED.

DELTACZ) IS AN INPUT T8 bUBkULTIN: TIMt, AND IC EXPLAINED THERES
REAC(5,9) IDNST :
TDNST IS5 A DUMMY VARIABLE WHICH

THE DENSITY FUNCTIuN Ta BE USED FCR BOTH THE CREEP FUNCTICNS CF
THE LAYTRS AND THE TEMPZRATURE ‘CR ENVIRCNMENTAL FUNCTION
VALUE DF THIS VARTABLE IS ZERJ, THEN THE DENSITY FUNCTIONS ARE

GIVES THE OPTION FUR THE SHAPE OF

IF THE

MAINC109

MAINOLILO
MAINOLL1
MAINO112

CMAINOL13
. MAINO114

MATNCLLS
MAINCL1S

MAINOLLT

MAINC118
MAINO119
MAINGL20
MAINOLZ21
MAING1Z2
MAINC123
MAINCLZ4
MAIND1ZS
MAING1Z6
MAINGL127

MAINO128 -

MAING1Z29
MAINOL2Q
MAINO131
MAING1I32
MAINDO133
MAING134
MAING135
MAING136
MAINO137
MAINCLZS
MAING139
MAINO140
MAINOL141

MAING142

MORMALLY DISTRIBUTED, OTHERWISE, THE DENSITY FUNCTIONS ARE UNIFOR=-MAINO143

MLY DISTRIBUTED(I»E, ReCTANGULAR ODISTRIBUTION). -

 MAINQLl44
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(@]

Q790

OOOOOOOO0

1126

— OO0

125
215

o,

1Y IS

IF(CIONST)2159216,424i5

YY=NTEMP:2 ¢ 0=10i) -
}«x.Ml':AA/ (YV+10 )
SS1=AB/YY-AMI=AA/YY
3581 IS THE VARIANCE
S1=SS1%:0e57 '

S1 IS THE STANDARD DEVIATIGON OF THE NORMAL DISTRIBUTICHN FOR THE
TEMPERATURED, ANC AMl 1S THE MeAN FOR THE SAME DISTRBUTIOMN UVER

A ONE=YEAR PZRION TAKEN FRCM SEVERAL CBSERVATIONS UF THE WEATHER
RUREAU. THOSE VALUES UF THe TEMPERATURE, HdWEVER, SHOULD BE THE
THE REAL TEMPERATURES IN THE LAYERS UF TrHE SYSTEM, WHERE THE
VALUE AND THE DISTRIBUTICN OF THE TEMPERATURE AND CTHER FACTOKS
ARE CIFFERENT FOR E£ACH LAYER, o
DEV=0,23%AM1

(JF A NORMALLY DISTRIBUTED XX-OBSERVATICON. °

IF(S1-DEV)LiZ25,1125,1126

Si=DcVv ‘
THIS RESTRICTIUGN IS IMPUSED BECAUSE OF THE TYFE OF DATA USEL HERE

- HOWEVER 9 IF THE DISTRIBUTION IS KNOWN AND THE CATA ARE REAL, THIS
RESTRICTION SHOULG BE REMCVED FRCM THKE PROGRAM.

GO Tg 899
IY=TARRE

SIMILAR TO
WRITE(6,1139)

I1Z. 1T IS USED AS AN INPUT TD SUBRUOUTINE RANDU.

MAINO145

1Z=1ARB , , MAINQ146
1Z IS AN ODD INTEGFER BETWEEN ZERGC AND 2#%%39, IT IS USEC AS INPUT MAING147
TU LIBRARY SUBRUUTINE GAUSSe MAINO148
WRITE(6,1120) - ' ‘ : MAING14G
FURMAT{4X, ' THE DENSITY FUNCTIGNS ARE NORMALLY DISTRIBUTED IN THE MAINULSO
TFOLLOWING STHMULAT IUNY) ' ' MAINO151
THE STEPS THROUGH G791 ARE TG FINC THE MEAN AND STANDARD DEVIATIONMAINCIS2
OF NURMALLY DISTHIBUTED TEMPERATURE CRBSERVATICNS CVER UNE YEAR, MAINO153
AA=Do 0 _ , : MAINGQl54
AB=io : A . MAINOLS5
DO G790 I=1,NTEMP MAINGL56
AASAA+TI(1)+T2( 1) MAINGL57T
AB=AB+TLLI ) w2+ T2( 1) xu2 MAING1S58

VAINGLS59
MAINC16O
MAINC161
MAINGL62
MAINC163
MAINCG164
MAINCL165

MAINDLoOE

MAINOLET
MAING 168
MAINC169 .
MAINGLTO
MAINOL71
MAINGL1T72

MAINO173

MAIND174
MAINOL75
MAINGLIT6
MAING177

- MAINQL78

MAING179
MAIND180




1139

899

919

717
713

€0T

755

920

g21

FORMAT(4X,'THE DENSITY FUNCTICNS ARE UNIFCRMLY DISTRIBUTEL IN THE MAINQIBI~

1FCLLOWING SIMULATIUN')

DC 222 J=1,NS

D0 222 I=1,MNMONT™

KKJ=1" ‘ ,

IFUIDNST) 763,919,788 o ‘
IX=1Y :

CALL RANDU{IX, IY,DIN)

MAINO182
MAINQ183
MAINOL1 84

- MAING1B5

MAINOL1BS
MAINO 18T
MAINDLES

RANDU IS A SUBROUTIMNE WHICH GENERATES A SET OF UNIFCRMLY DISTRIBU-MAING18Y

TED RANDCM NUMBERS, :
P(J,l)=T1(I)+DIN¢(T2(I)-Tl(I))
GO TO Ti7

CALL eAusS(lz,s s AMI 4 P(J 1))

GAUSS IS A SUBROUTINE WHICH GEMERATES A SET 0OF NORMALLY OISTPIB-
UTED RANDOM VARIABLES, THIS SUBROUTINE IS CALLED FROM

SYSTEM SCIENTIFIC 3UBRIUTINE PACKAGE.
WRITE(6,T12)P(Jy1) ,
FORMAT (4X s "TEMPERATURE GENERATED IS = '4F7s2)
ClUJyI)==ALe(PLUy[)-TLINM)
C2(J, I¥==A2 #(PLJ, 11=TLIM)
ﬁ3(J,I)—~A3 (P(J,I)-TLIM)
DO 722 K=1,

ELI(Kyd,I)= Yll(K) EXP(CLOJ.1))

ELZ(K,Jy )= YL2(K)#2XP(C2(Jy 1))

EL2(KyJds I )=YLI(K) =EXPIC3(Jy]))

EULIKJy I)=YUL(K) “EXP(CL{ISI )
EU2(Kyd sy I)=YUZ{K)*EXP(C2(J, 1))
EUB (K 3y DI=YUS(K)SEXPIC3LU,T))

IFLIONST) 92092415320

EF(KyJdy1)
ES(KyJdy IN=EL2(K I II+DIN2(EU2(Ky I ) =EL2(KyJy 1))
FT(K,J,I)erB(K,J,i)+DIR*(EU3(K;J71)-ELB(K,J,I))
GO TO 765 :
Ah“‘H.S;a(rLl(K,J,l)+cUL(K9J 1))

S2=0Uo L5#AM2 .
CALL GAUSS{IZySzyAM24EF(Kydy1))

ELL(KyJo 1) #0IN (EUL(KyaJyI)=ELLIK,Js 1))

MAING190
MAING191
MAING192
MAINO1G3
MAINC194

THE I18M/360MATNG1SS

MAINDLS6

MAINO197
MAINO198

MATING199
MAING2GO
MATNG201
MAING2G2
MAINOZ203
MAING2C4
MAINO205
MAINN2C6
MAINC2G7
NAINO20S
MAING2G9
MAINC210
MAIND211
MAIND212
MAINC213
MAINU214
MAING215
MAING216




795

Sa7
934

‘—J
Q 722

12
13
15
.97

FLIIKKJ)=EAL
(

AM2=Co SUFITL2({KyJ 2 I +EU2(KSI L1 )
S3=01o L5HAM3

CALL GAUSSU(IZ4S3,AM3,ES{KyJy 1))
AM4=0o500 (EL3IK s IV +EUB(KydyI))
S4=0,15%AM4

CALL GAUSS(IZ 484 4AM4ETUIKydy 1))
II=K+{J=-1)o+{I-1) =NSx6
EA{IINI=EF(K,d, 1)

EB(III=ES{K,Jdy 1)

ECIIT)=ET(KsJdy 1)
TF{KKJ=-N) 234,934,967
KKJ=1

c2KKJ)I=ER
E3(KKJ)=EC
KKJ=KKJ+1

CCNTINUE .
WRTITE(Sy 721V {EL(KKI ) yKKI=14N)
HARITE(H,T721L ) (E2(KKJ) yKKJI=1yN)
WRITE(6yT2L)(EZ(KKI) s KKJI=1yN)

1y
IT)
I

E1( )y E2( )y E31 ) ARE THE SELECTED SAMPLES 'FQ
OF THE CREEP FUNCTICN FCR .THIS PARTICULAR SIMULATICN PROCESS.
FORMAT(4X'CREEP CNEFFICIENTS OF THE LAYERS =

IFUITEM)T,7,56
CALL VISCU

DO 88BES L=1,yNMNN
WRITE(As93)T(L)4W(L)

FCRMAT(SH TIME = L15.8917h RADIAL STRALN

GC TC 222

CALL VISCD
IFUIDEFLF)YILN,12,11
IF(ITOEM)IL3 14,414

DO 15 L=1,NNN
WRITE(A,97)TIL) yW (L)

FORMATIEH TIME = EL568,17H NCRMAL STRAIN
GO TO 222 ‘ ' :

R THE CUOEFFICIENTS

'46F1lue5)

MAINO217

MAING218
MAINGZ19
MAING220
MAINO2Z1

MAINC222 7

MAING223 .
MAIND224
MAINO225

T MAINC226

MAINOQ227

MAINQR228

MAING229
MAINC23C
MAING231
MAIND232

MAINGZ233

MAINU234
MAINOZ235
MAIND2Z6
MAINOZ237
MAINGZ238
MAINO239
MAINO240Q
MAINOZ241

MAING242
MAIND243

MAINGZ44
MAINDZ4S
MAINGZ46

- O MAINQ247
-MAINOZ248

MAINO249
MATNO 250
MAINC251
MAIND252




11

45
12¢
77

46
121
55

12
44
o 122
S 452
43
231
355
42

111
777

222

DO 17 L=1,NNN
WRITE(A36)T(L)  w{L)
FORMAT(QH TIME = E15,8y26H
GO TO 222 o
IF(IST=2)45,46,46

D120 L=1, NNN
WRITE(67T)ITLL) oW (L)
FURMAT(8H TIME = E1508,21H
G0 TC 222

PO 121 L=1,NMNN
WRITE(L,9S)TLLI,WIL)
FURMATI(8H TIME = E1508,21H
G TJ 222
[FCIST=2)44+434942

DO 122 L=1,NNN
WRITE(6y452)T(LYyw{L)
FORMATI(SH TIME = £15.8,4,17H
GO TU 222

DD 231 L=1,HRN v
WRITE(H9355)T{L),w(L)
FORMAT(8H TIME = E1lb08,16H
Gu TQ 222 ' ‘
PO 111 L=1,NNN
WRITE{6,TTTITLL Yy 4HAL)
FORMAT(8H TIME = E15,8,17H
FORMAT(IS) '

CUMNT INUE

.STUP
END

CIRCUMFERENTIAL STRAIN = E15,8)

NORMAL DEFLECTICGN EL1558)

RADIAL DEFLECTION £1508)

NCRMAL STRESS = E1%,8)
E1568)

SHEAR STRESS =

RADIAL STRESS = Elf.8)

" MAINO253

MAINO254
MAING255
MAINO256
MAING25T

MAIND258°
‘MAINCZ59

MAING260
MAINOZ261
MAINQ262
MAINQ263
MAINGZ264
MAINCG265
MAINDZ266
MAINQ247
MATINQ2€8
MATNDZHO
MAINOZTO
MAIN(G271

MAINGRT2
TMAING2T3

MAINOZ T4
MAINO275
MAINO276
MAINR277
MAINO278
MAING279
MAING260
MAINO281

PP
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1

-

1

Pt
o3

SUBQWUTINP VISCU
COMMON/MANE/ IDERy ITEWM JNANSIST oWy ICEFLE, Gy b4, RyZZ 4 ILAYER,
Ny WJJJIs DL XX, 0ELTX

CCMMCH CC(8,20)3CC(8,22)sFF(8,20),T(201),DELTAL(2Y)

DIMENSIUN F1(20),82(22) 9E3(20)96(20+2),BT1{(8,20),8T72(8,427),
BT3(B420) 4810820, 18)9yB2084520418) 4B3{2,20,18)+8{8,20418,3),
EMUL3)Y3STIL1L34205L),SITI(13,20 l),MTX(2,29393)71U(313)1
AT XM 343) 3 MTXH (39.))91"’1‘(3(373)11’4(25

LQUIVALFNCi(b(iyL)ytl(’))1(6(172),[2(l)),(G(lyB)yE3(l))

"QUIVALLNCr(b(l)v51(1)?7(3(Lylv]92’782(1)),(Q(17191y33 BR3(1))

CATA MXS/lyéy?erJ’avuvij/

CATA '/./efo?chHa-l'vlc . o?J)oylﬁ'ovbooboyfovgoyg /

DATA MTX/1le-tu D93 9L 9809890 9492 994G 1695/

CATA 1'1/1799393’\4907?1 1y 6/

DATA WrXNI_I.,'ya.J,Uy 7117),11;,7/ NTX'V/:.’L h.?J.?Z?—fl’Z’Z/

REAL JB

JIMENSTJN BES(91),8ESSUSY)

ITYP=2

IF{ IDEFLESEQsN) 'ITYP

IF{ICEFLE-ERWa1l) ITYP

IDEN=1 _

IF{1ST-EQel) GU TO 1

IDEN=2 ,

IF{ISToEQa 2o ANDOIDEFLELEReC) IDEN= :

IF({ISToERe20 ANDe 1DEFLES ECo-l AN OoITEM EQoe 0) IDEN=3

CCNTINUE

CALCULATE TIMES FOR WHICH A SCLUTICN IS BESIRED

1
&
2

CEX=1Ue®#DELXX

T{1)=Coa A
T(2)=luo*J(DELTX*DELXX)

DO T K=3, NN
T(K)=T(K-1) % EX

- ——— -

IOWA=IO(ITY P, IDEN)
CALCULATE quVdLUTIFd INTEGRALS

DO 2% 1i=1

DU 10 I=17N

VISCOD01
VISC0002

VISCOOG3
VISCLu04
VISCO0G5

VISCOO06

VISCOQC7
VISCOJC8
VISCCDUS

VISCOUL1O
. VISCuo1ll

VISCGO12

© VISCOO13

VISCOC 14
VISCOO15
VISCOGL6

VISCOQ17

VISCOQO18
VISCCO1Y
VISCUL20
VISCGOZ21
vISCoo22
VISC00Z3
VISCGC24

VISCOU25°

VISCCO26
VISC0027
VISCL0Z8

VISCLO29
- VISCOU30

VISCCOZ21
VISCOQ32
VISCou33
VISC0U34

VISCO035
VISCOO36




210

LOT

BTi(1,1)=G(I,I1)

DO 20 12=11,2 '
T(RTZ quyG(ly[?)va.’
DO 20 13= 2,3

CALL CNVIN

s

CALL CNVINTI{OT3,872,6{(1, IB),N,Z)

DO 20 14=13,3
C CALL CNVINT(BL(1,1,MTX(I1,12,13414)),BT3

NT=9%MINT (2, ITLAYER)

NP=4
NPP=4

IF(ILAYERSERQ, l) GG TO

DO 39 I= lvlJ’l

DO 30

CALL CNVINT(BZ(Ls1,J+I- 1)9B1(1,1,J),G(1,3~ SVING(25 1)) 4 Ny4)

~NP=5
NPP =

IF(ITYP@Ein)
) I=1,NT
CALL CNVINT{B3{(14141),8(1, levﬁD’3)7G(191LAYCR)7N’NP)

DI 56

NPP=INPP+1

DO 79 K=1l,1%
DO FJIR 13 VALUES UF Moas
CALL CNSTNTUEMI(K) HyZZy TLAYER
BOlyl,1,MXSOILAYER,ITYP)))
CALL SCLVE(SII,CC
IF{ITYPoNEL10URLIC

Rd=0e

g).] 7) J L!')l
d:S(J)‘Jb(‘IXN(ITVPvIDLk)yRJyR)‘JE(MTXM(ITYP,IDCN),A,RJ)

GI TO 60

SSEL MULTIPLIERS

IF(ICENGENW2 ANDoITYP,

HJ—QJ+01

IP(IDEN EQQZ@AND ITYP NEe 2)

sNT g NP o NPP yNyIOWAB{1y1914NP=-3),

sFE Ky NgNP s NPPyNNNyNJJI)
SENoNEL2) (JQ TO 7(‘
CALL SULVE(SIIIsNDsFF KyNyNPyNPFSANN,NJJIJ)
COMTINUE

CALCULATE BE

HE Z)BﬁSS(J)—JB(ZyBJ,R)#JF(ZyﬂyRJ)

GU Tu 1’,

2 G{lyIa) 9Ny 3)

VISCOO3T

VISCO038

VISCO039
VISCGU40
VISCO041
VISCG042

VISCO043
VISCO044
VISCON45
VISCO046
VISCOO4T
VISCOO4S
VISGCGO49
VISCGO50
VISCO051
VISCOGS2
VISCOU53
VISCOUS4
VISCUUSS
VISCO056
VISCGO57
VISCCO58
VISCON59
VISCOU60
VISCO061
VISC0062
VISCOU63
VISCGO64
VISCCUES
VISCO066
VISCOO67
VISCLO68
VISCO069
VISCOO7G
VISCUO71
VISCOUT2
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NoNed

[olIrh

100

il{e

DD 90

- DO 36
TF(SII(J=1,1)=STI{Js1)slEbDo) SII(J I) =0»

I=1 ¢y NNN

J=4413

W{L)=TERPC(SIT(L,1),8ES)A

RETURN

U -liw
W1=TER

W) =p%

RETURN
END

I=1,0NNN

OCSIT(L,T1),BES)
IF(ITYPoEDs1) W2=TERPULSIII(L,1),BESS)
IF{ITYPoNES L)

W2
(Wl+wW2)

==TERPC(SII{1,1),BESS)

VISCOCC73

VISCCOT74
VISCO075
VISCOO76
VISCCO77
VISCO078
VISCGODTS
VISCD680

VISCOUEL

VISCCU82
vVISCog83
VISCGO84




sEsKaNaNalal
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SUBROUTINE CNVINTIA B sGeNeM)

THIS CALCULATES A CONVOLUTION INTEGRAL EXACTLY
A IS5 THE RESULT )

3 IS ThE ARGUHMENT

G. IS THE CREEP FUNLCTIO
"N-IS THE LENGTH UF THt SERIES

M 1S (DEGREE UF POLYNCMIALS OF 8)+1-

DIf =NSTION A(8420) s805,20),6(290)

COMMON CC(“,ZU),bD(B,ZH),FF(d,)p)9T(201)’DELTA(ZQ)
EVALUATE CREEP FUNCTICN AT ZERD

TER=3, &

N 5 I=1,i

LER=ZER+G(]I)

MSUC=M+1

DU 102 L=1,MSUC

DD 10O Jd=1sN

Co===—CALCULATE A(L,J)

RES=3,
IF(LoNEs2) GU TC 25
SUBT=9s

Dd 10 I=1,N

IF(I.EQed) GO TO LC

DELS=1o/(DELTA(I)}-DELTA(J))

DO 15 K=1,M

SUBT=SUBT+B8(K, [)*DELS

BELS=DELS K/(DELTA(I)-DELTA(J))
CONTINUE

RES=RES=-SUBTEG(J Y #DELTALI)

GO T 24
RES=RES=-8(L-1, N =0eLTA(I)AGUIN /LL-1)
TIF{LL.EQsMSUL) GO TJ 100

SUBT=i,

DU 40 I=1.N .
IF(loENLJ) GO T3 4D
SSuUB=0,
DELS=1o/{DELTA(JI-DELTA(I))

CNVIOOOL
CNVIQ002
CNVIGOO3
CNV 10004
CNVIOOGS
CNVIONGE

- CNVIQOUT

CNVICOCS
CNVIOUCY
CNVIODIO

- CNVIGOL1

CNVIQU12
CNVILQL3
CNVIUG14

CNVIUOLS

CNVIOG16
CNVIOOLY
CNVION1B
CNVIGOLS
CNV 10020
CNVIQOZ1
CNVIGQZ2
CNVIQ023
CNVIN024

CNVIDG25
-CNVINO26

CNVIQO2T
CNVIOUZ28
CNVICODZ2S

CNVIGOU30

CNVIGO31
CNVICO32
CNVIQO33
CNVIGO34
CNVIGCO35
CNVICO36




01T -

/+ C!

,—.
(]

i

06 30 K=L, |
 SSUR=SSUB4RB(Kyd) “DELS
DEL S=0ELS *K/ (DELTA(J)=DELTACI))
SUBT=5U3T+SSUBG( L) #0ELTALT)
 CONTINUE 4
RES=RES+SUBTHZERZR(L,d)
ALL,J)=RES o
RETURN

"END

CNVIOO37
CNVIvC38
CNVIOU39:
CNVIOU40
CNVIQO4L.
CNVILD42 »
CNVIQQ43
CNVIQO44
CNVIGQ45
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oy

4567

SUBROUTINE CHSTNT{XMyHH 37 27y ITLAYERZHNT yHNPyNPP Ny IOWA,B,RB)

CCMMON CCU8,29)9D0(8,2:0) 3 FFI8,20),T1201),CELTAL2Y) ‘

DIMENSION B, (8,25 318)4138(8920,18)

DOURLE PRECIS TON SeyEMyHyZZyC(9) 9y V{9) 4 PHILE,3, 15)1ALAM(374)7
100433 4318) 9297192240733 244925+0269A19A2 383 3A443A5,A63AT4A89B14B2yB3y
2”)4,(5.’3 Hs 11577(’)87&)')3(\.411_7y"‘717572)()ly\7¢v\13v641b y()ﬁ,()?ybb,agv(}lo
1pllyb;27bl179149(:*'5’(7}.()9(14.‘,kalJyGl 96.’2‘1 GZ21:G224G234G24 165254526,
2627, 8yG29,6302,4621,0632
43G554965696G57 G568
5659960“,661,602,563966%7665
DO 4567 Ii=1l,4

DO 4567 12=1,3

DO 4567 13=1,18
D(I11,12y13)=00

EM=XM

H=HH

7'7=17111
CS=FE M

L=DEXP(EM)

Ll= '_Xp(“Eﬂ)

L2=DEXP{2¢*EM)

=DEXP (=25 %EM)

Gl=l/20

Ge=11l/20

G3=(=1,42u3EM) /20
Gb=-1272,

G5=73/2
56=(La+2e%EM)/ 26
GT=(GL+G2) /2,

6G8={G1-G21/2»

G664GETHG684DEXP

G9=(63+65)/2,

GLu=(G3=6G5)/20
G11=(G4+66)/ 2,
G12=(Ca=56)/20
61320565

Ll4a=,5+ G5

205339534 463540364637 46G35 9(5397 GQ{J,G‘?]. 1y G429
L L343, (.3447(.74‘39 GabsGal, ‘r‘&ay'>47qa)ﬁ‘ylj“lycsﬁch:a’u

CNSTOLO1
CNSTOOE2 -
CNSTOOO3

CNSTOD04

CNSTOOCS
CNSTCO06
CNSTOOGY
CNSTOOUS
CNSTOQO9
CNSTOOLO0

. CNSTOQ11
CNSTEO12

CNSTOO013
CNSTUO 14
CNSTOO15
CNSTOO16
CNSTCO17
CNSTOO18
CNSTOCOLS
CNSTG020C
CNSTGO21
CNSTOO22
CNSTODZ23
CNSTLO24

CNSTOU25

CNSTO0D26
CNSTOGR27
CNSTOO28

CNSTOO2G .

CNSTO030
CNSTNN31
CNSTOC22
CNSTOO33
CNSTGG34
CNSTOD35

CNSTOU36 -
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W

Gl5=65- Go

Gl6=-G15

G1l7=05+ G3

G18=-G1l7

Gi9=,5+ G4

G2U=o 5~ G4
L4=DEXP{24#5)
G27=2 0% 74

G2&=(lo+2 o EMH)H14
6G21=6G27%G7=G28%G24G1
G2z2=G27+G8+G28752-61
G23=G27+GS+G28vG13+G17
G24=06G2T7=0Gla+028%514+G18
G25=027T*GLL+628%G15+519
GR6=0273G12+528%CL6+520
G35=(1o=205) 4124
G36==2e%5:254 74
529=63550T467-6364G2
530=6354G3-G8+G36+G2
G21=035%69+59+G356%G13
32=0635<6L)=-6l0+0364G14
$33=0G35=GLL+6L1+G30%615
G24=0G35%¥G12-5124G364616
L= '
75=DEXP(S) -

L6=DEXP(-5)

GE3=15

GB4=-76

G55=5%15

GS56=-5¢14

(37=653

633=G54

$536=(G55

G4u=G56 - -
Gal=G3T+0CT+538:6T-639x
G42==(G38¥G25+064.22521)

CNSTCO37
CNSTQO38
CNSTOQ39 |
CNSTOD4O
CNSTGO41

CNSTG042 °

CNSTOO43
CNSTCO44
CNSTCG4S
CNSTCD46

. CNSTOD47

CNSTOOC48

- CNSTO049
- CNSTCOSG

CNSTCOEY
CNSTOGS2
CNSTQG53
CNSTOND54
CNSTULCSES
CNSTCHSS

CNSTOOS57 -

CNSTOG58
CNSTOO59
CNSTLOAD
CNSTL0EL
CNSTEOA2
CNSTOG63

- CNSTQD64

CNSTOD6ES .
CNSTQOES

CNSTQO6T
CNSTQ068
CNSTOO69
CNSTOQTO
CNSTO071
CNSTCO72




ol

€IT

G43=G3T468-0384G8+639  £G2-G4L %G1 = ’ CNSTOO73

Ga44=={5384G3U+G433622) CNSTCOT74
G&5=0G3T4G9+G3B <GS+5394G134640%G17 ' ENSTOOTS
G4e=={G384631 +G41%523) , . CNSTCOT6
G4T=063T4610-06387G1u+6333%G 144 G40%G18 o . CNSTQO77 .
G4E=={G385G324047,4624 ) ‘ . CNSTQO078
549=637<611+6G38+GL1+6294615+4646%G619 : : CCNSTGO79
G50=-(G38+835=6437625 . o ‘ CNSTOO8Y
551=G37«G1l2-6384GL2+G59%516+G40%G 20 : A - CNSTUCRL
G52=- C2EHGR4=Gwd 626 . R CNSTOD82
TF(L)1y1,2 _ o ' ‘ CANSTODS83
L=5 ‘ ‘ o CNSTOOESL
G57=641 _ . ‘ - CNSTGU8S.
Gba=342 . o ' ' . CNSTO0ES
659=643 ‘ ' ~ o , CNSTOCET
GCo0=G44 _ , . . CNSTGGRE
G61l=G45 , : o CNSTCO89
GE2=G4a6 _ . CNSTO09)
G63=647 ' s - - CNSTCu91
Ge4=G43 , : o CNST2092
655=G49 : - CNSTCCS3
G66=G50 , . ‘ ‘ : : CNSTCOG4A
G67=651 , = CNSTOGSS
GbE=G52 ‘ ~ , ' CNSTOUS6
G35=-G38 ' CNSTGOST
639=(1e+S)%75 _ - - - CNSTO098
Gan==(1,-S)%26 ‘ _ CNSTOUSY9
GO TU 2 ‘ . - CNSTOl00
Al=G45 : , CNSTO101
A2=G406 . _ - CNSTC102
AZ=G4T : ‘ - CNSTO1C3
A4=G45 ' - ' o - CNSTO1G4
AS=Go 5 | , - : . CNSTC105
AL=C66 ' : : o . CNSTG106
AT=G67 " ‘ S - - CNSTOL1G7

AB=Gos - | | _ CNSTL108




B1=G49
R2=G50
B3=G51
B4=(52
B5=Gol

Be=GE2

B7=0G672
338=G¢4

C(1)=A1RA5-81=B5S
C{Z2)=A2%AB+ALHAL-B2¥B5~ Pl*Bb
C{3)=A32AS5+A 1 wAT-33%B5-8
Cl4)=A4t A5+A3Y A6+A>’A7+A1¥A8 BQ*BJ—bj”%é
C(5)"A4%Ab—u?”80
Clo)=A4% \‘+P2~Aﬂ-)4*80-82*88.

C{7)=A3=A7=-R3
C (8 )=A4H A7+A33A%

C(9)=A4=

IF(L)41596
DO 7 [=1,6
THE V(I) TERMS ARL THE ThETA(I) TERMS

V{I)=C(1)
Al=G49
AZ=G54)
A3=G51
A4=G52
AB=G57
AE=G5E

- A7=G59
"A8=G6T

81=G41
=G42

" B3=G43

34=044
B5=G65

SBE=GEHO

37=G67

m4w87—83nas

B2x8

1-81%B8

OF THE TEXT

CNSTC109
CNSTQ110 -
CNSTOLl11
CNSTOLLZ
CNSTOL113
CASTOL14 "
CNSTO115
CNSTOLl1le6

CCNSTC117

CNSTCLl1l8

. CNSTQ1l1l9

CNSTGL120
CNST(121
CNSTG122.
CNSTO123
CNSTO124

"CNSTR125

CNSTO126
CNSTO127
CNSTOL28
CNSTO129
CNSTC130
CNSTO121
CNSTC132
CNSTO133

~CNSTR134

CNSTG135
CNSTQ136

.CNSTO137

CNSTG138
CNSTO139
CNSTC140
CNSTD141
CNSTE142
CNSTQ145

CNSTCl44




sTT

€0

A2=G62
A3=GE3
A4=G64
AS5=G41
AE=G42.
AT=G43
AB=G44
B1=G45
Be=G46
83=G47
B4=0646
P5=G57
Be=G58
BR7=G59
38=0C60

G2 TQ 3

DO 10 I=1,9
Qi441,1=C{1)
00-11 I=1,9
Q3=Q(3,1,1)

CRE4G=QR( 491, 1)
Q{1,141 )=V{I)*GL+G34Q3+64%Q4
(2,1 I)=VII)eG246G5%Q34G6% Q4
QUL 92490 )=VIT)EGTHEY=03+G 1104
A W 2,11 =Q{1,2, I)
QE342,1)V==-V(]) E2+G13%C3+4G15404
R{a,2,1)= VI(I) THLH0LTEQ3+4G19%04
{44391 = VII)=G2L+6234Q54625%04
QU293 1)=VIT1)2620406313Q34G6G334Q4

CNSTO145
CNSTO146

CNSTQ147

- CNST2148
CNSTC 146

CNSTOL50"
CNSTOLS51
CNSTG152
CNST0153
CNSTOL154

- CNSTC155

CNSTO156
CNSTL157
CNSTG158
CNSTO159
CNSTC160

CNSTOL161

CNST162
CNSTC1le3
CNSTU164
CNSTG 165
CNSTO1l66
CNSTD167

 CNSTQl68
- CNSTO0169

CNSTO170
CNSTC171
CNSTO172

-CNSTO173

CNSTO1T4
CNSTOL75
CNSTQL76
CNSTO177
CNSTOL78

CNSTOQ179

CNSTC18D




91T

11

J=1+9 ’
QlLly2, J)~V(I)Wb8+bl”»Q5+612¥Q4
Q24249)==0(1492,4J)

Q(2,2,Jd)= V(I »G24G14%G3+4G167GQ4
R{442,3)==V{I1)  *G1+6187Q3+4G20%04
D{4y34d)1= VIII=622+4624%C3+G26%Q4
Q{2939d)=VIII#G3L+6324Q34634%Q4
cl=ENMxZZ

TEZ1=DeXP(EZ)
ELZZ=DEXP(-EZ) .
THE ALAM(I,J) TERMS ARL TrHE LANCA(I,J) S OF THE TEXT

ALAMUL,l)=-EZ1

CALAMU Ly 2)==E12

ALAM(1,3)==-E2%E71

ALAM{ 1y4)=-£2%EZ2

ALAME 2,1 )==ALAM(1,1)

ALAM( 2, 2)=ALANM{1L,+2) . ‘
ALAM(293)=ALAM{2,1)=ALAM{ 1,3)
ALAMEZ 94 ) ==ALAM{L1 ,2)+ALANM(L,4)
ALAM{3y1)=ALAM(2,1) .
ALAM(3,2)==ALAM{2,2)
ALAM{3,3) =0, ALAM(3,1)=ALAM(1,3)
ALAM(),@}—gefALAlii,/)—ALAF(l 4)
ALAM( 4,1 )=ALAM({L1,1) . a
ALAM{ 442 )=ALAM(1,2)

ALAM 4y 3)==aLAM(2,43)
ALAMU4,4)=aLAM(244)
ALAM(5,1)==105%EZ1
ALAM(H 42 ) =1o5+E72

ALANSy3) =-1o8 SELSELL e
AL (594) ==L, 5EALAMIL14) SR
ALAM(Gy 1) =1o5wE2)

AL«V(L??)-L05 =17
ALAM( 643 )=1,50% ;\L»\'4(213)_
ALAMU S 34 ) ==1 5% ALAM(2 44 )

ALAM{ By 1) ==1o50EMEEZ]L

CNSTO181
CNSTO182
CNSTC183
CNSTO184
CNSTO185
CNSTG186

T CNSTQ1eT

CNSTO188

- CNSTO189

CNSTU19¢
CNSTO191
CNSTOL192
CNSTO163
CNSTO154
CNSTGLS5
CNSTBLS6
CNSTO197

CNSTO1¢98

CNSTU1GS

CNSTQ200
CNSTQ2C1
CNSTO2R2
CNST0203
CNSTQ204
CNST(205

CCNSTG206.

CNSTO2CT -
CNST0208 -
CNSTL2G9
CNSTR2190

- CNSTOZ211
- CNST{212

CNSTQ0213
CNSTR214

- CNSTOD215

CNSTG216




229
€540

ALAMIB,2)==105 EM4EZ2
ALAM{Ey3)=ALAM{B, 1)=(1,4E2)
ALAM{ By 4)==aLAM(B,42)5 (1,=EZ)
DU 210 L=1,NPP

DO 910 J=1,yn

CClLyJ)=00

DD(L:J):C’o

EF(LyJd)=0,

IF({LoGTANP) GO TO 890

DO 920 1=1,9
FFILyJISFFILyJ)+VII)5B (LedyI)
DO QLU .I=1,NT :
Pl=ii,

CP2=9, ,
DY 920 M=1,4

PL=P14+0 (M, ILAYER, I} 2ALAMTOWA 4M)
P2=P2+0 (M, TLAYERy [)RALAM (4 4M)
CCAL,JI=CCUL,J)+8B(L,dy1)#PL

DO Ly J)=DDILyJ)+3R(L,Js 1) %P2
RETURN '
END

CNST0217

CNSTQ218

CNSTO219
CNSTQ220
CNSTG221
CNSTC222
CNSTQG223
CNSTO224
CNSTGZ225
CNSTC226

. CNST@227

CNSTC228
CNST(229

"CNST0239

CNSTH231
CNSTC232
CNST0233
CNSTO234
CNST0235
CNSTG23€
CNST0237




20

30

SUBROUT INE SOLVE(SI,HB,H,KKQN,M,NV,NNN,NJJJ)
THIS CALCULATES ThE SLUTIGN GF THE INTEGRAL EQUATION

5I(K‘<,Loom\i M) IS THE SCLUTICN

Rp(loooMl“floooN)vD(lvoaM,loosN) ARE THE FUNCTICONS

NJJJ IS THe & OF INTERVALS UsSEeED

COMMON CC (3,20 ) s DOL8, 20y FF{B,20) ,T{201) ,CELTAL20)
DIMENSI3N %I(liya;l),B(S 27),ER(d,Lu)yﬂtT(5)

CALCULATL SOLUTICN AT T=
BETA=
ARG-”
DO 1D I ioN )
BETA=BETA+8({1,1I)
ARG=ARG+HBE(L,1)
SI(KKs1L)=ARG/BETA
DO 70 K=2,NNN
CALCULATE SALUTION AT T= T(K)
ISh=1
ARG=,
BET{3)=
DU 2J L=14N
SSUMA=J,
SSUMB=J,
DC 15 J=1,MM
SSUMA=BB{MM=J+1,L)+T{K)=SSUMA
DO 23 J=1,.M
. SSUMB= B(M=- J+1,L)+T(K)&§SUN“
EX=EXP{=-T(K)=DELTA(L))
IF(EXoLTolE~-LL) EX=00
ARG= ARG+ SSUMAXEX
BET(2)=BET(3)+SSUMBHEX
PSI=0,

CST(KK,K)=0,

MIN=MAXO(K=-NJJJ2)
DI 66 J=MIN,K
ISN==1SN .
BET(2+ISN)=0,

{8 THE KERNAL)

SOLVOO01

SOLV30C2

SOLvoo03
SCLVEOO4
SOLVOOQCS

SOLVCO06’

SOLVOUCT
SOLVCOO8
SCLVOU09
SGLVQO10
SCLVOO11
SOULVOO012
SOLVOOL3
SCLVOUL4
SOLVOO15
SOLVOUL6
SOLVOO1T

sgLvgole

SGLVOI1S
sSaLvooee
SoLveoZ21

. SoLvQo22
- SOLVQ0Z3

SOLVED24
SCLVOG25
SOLvVEGO2¢é

SOLvEoo27 -

soLvoLZ28

. SQLvenegs

SCLVCO30
SULVCO 31
SCLVOU32
SCLVSO33
SOLVOU34
SCLVOQ35

SULVOG2




611

DO 59 L=1,N
SSUM=D,
DO 40 LL=1l,M
SSUM=BIM=LL+1,L)+{T(K)=-T{J))*SSUM
EX=EXP{=(TIK)=T(J)I=LELTA(L))
IF(EXeLTolE-10) EX=Co
BET(Z2+ISN)=BET{2+ISN)+SSUMMEX
Jd=Jd-1
IF(JaEQoMINY JJ=1 ‘ .
PSI=PSI-(ST (KK, ,J)+SI{KK,J IS (RET(1)-BET(2)})*ISN

STUKKK) =(2.7ARGHPST)/(BETI1)+BET(3))

RETURHN

" END

SCLV0OO37
SOLYOD38
SGLV003S
SCLVOG40
SOLVGD4l,
SOLVU042
SOLVO043
SOLVOG44
SOLVG045
SCLV0U46
SOLVOO47
SCLVOO4SB
SGLVODD49




FUNCTION TERPO{S,8ES) ‘

THIS CIMPUTES THE INTEGRAL WoeReTo M
S({loosol3) CUNTAIMS PSI AT NDIFFERENT M'S
3CS({lewo9l) CUNTAINS THE RESSEL MULTIPLIES
DIMENSICN S(13),FUM{SL),BES(91)

~INTERPILATE 91 VALUES OF S

\—(g(l)'uo'b(a)4 (3))%1265
VEiso 2+ (5(2)-S(1)) =5
FU!J(i) S{1)

FUN{2)=Amo 1=V L+5(2)

oct

FUNI3)=5(2)
FUN{4)=A2014V#o145(2)
FUM(5)=S(3) \ :
BA=(S(3)=2o=5(4)+S(5))/518
Vi o3+ (S{4)=-S(3))/63
FUv(é)‘A*oQ+~V*oZ+§(4)
FUMAT )=A3,u01=-V=,145(4)

CFUN(8)=51(4)

FUN(9)=A~oul+ViEel+S(4)
FUN(lﬁ)=A“oJ4+VwoZ+S(4)
KK=14 '
D3 1D K=5,11,2
A={5(K)- Zorb(K+l)+S(K+7))r95
V=A+S(K+1)-5(K)
DO 1 I=1,2C
KK=KK+] -
FUN(KK)=As( [=L1) vs2% o014V ( [~ l;)’ol+S(K+l)

FUNTSL)=5(13)

USE SIMPSON'S RULE FOR TRE INTEGRATICN

Wl=0o

NC 74 J=2,83,2
NI=WI+43-B‘S(J)“rUN(J)*Zo4BtS(J+1)WPUN(J+1)
HI:WI+B"S(1) FUK(1)+49%B[S(9J)”FUN(9')+PL5(91) FUN(GI)
TERPO=WIvel/3s

RETURN

END

TERPCOQ1
TERPODC2
TERPOUC3

" TERPGOC4
TERPOOOS

TERPOOO6
TERPODCO7
TERPOUDCS

TERPQOCO -

TERPOOLO
TERPOO11
TERPGOD1Z

" TERPQO13

TERPCU 14

-TERPCO1S5

TERPOO16
TERPCCLY
TERPOG18
TERPGOL9
TERKPUO20
TERPCO21
TERPOO22
TERPOO23
TERPOQ24
TERPG025

TERPOU26

TERPCU27
TERPNO28
TERPOO29
TERPQO3D

TERPGO3Y .

TERPQO32

TERPOU33

TERPODL34
TERPGU35
TERPQU36

Al




REAL FUNCTION JB(IN,A,8)

C—--—-JE(G,A;B}‘JJ(AWB)

C
C
- C

10

T¢t

29

JB{Y,AsB)=J1l{A=B)
JB(2,A,B)=Jd1(A%DB) /B
FCR A#B>12 Al ASYMTOTIC APPR”X ‘1S USED

JEMINO(L,N)
S=A%B

IF{SelLEol2e) GO TO 1D
PHI=S=-5,78%4%
IF(JoENRLLl) PHI=S=-2e3562
JB={(26/3:14156/5)*2,5)%COS{PHI)
ITFIN.GTs1 ) JB=JB/B
RETURN

TERM=1,

IF{NoERa2) TERM=A®,5

IF(NQ&QOI) TERIM= S ‘e 5

JB=TERM

DC 22 I=1,22

TERM==SuS/ (421X (1+J) )=TERN

IF(ABS{TEM) oL Too:2l) RETURN

JB=J2+TERM ‘

RETURN

END

JB

JB

JB

-J8
. JB

JB
Ja
JB
JB
JB
JB
JB
JB
JB
Jg
JB
JB
JB
JB
JB
JB

JB

JB

0QC1
0ac2
Goe3
0004
03¢5

ance
(tD 6N
Guls8

C0OC9

L0190
Coll
€012
Q013
G014
0015
016
0017
0018
0019
G20
0ozl
G022
0023




