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ABSTRACT
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scribed and applied to V4 -scalar field theory,and as a extension,the time independent
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CHAPTER-I

INTRODUCTION

Since K. Symanzik published his paper [14] on the renormalization there has

been a renewed interest in the application of Shr6dinger representation to the field

theories. Formalism for both boson and fermions has been set up.Publications of

Jackiw [28] and Floreanini [21] gives a complete picture of the formalism.

Most of the applications deal with scalar fields and to some extend the gauge

fields [1,9]. Many people have studied Ap4-scalar field theory in the Shcr6dinger

representation [5,6,8,10,11]. To my knowledge no one has ever published any work

related to the space dependence of the variational parameters. Space dependence

is necessary if we want to include a source term since it couples to the mean value

of the field.

Stevenson [4] has approached the problem using plane waves as the basis to

expand the field operator. He takes the expectation value of the field operator to be

constant and treats the mass term in the frequency as variationally. It is inherent to

his approach that there is no way of extending the variational parameters to include

space-time dependence. This a restriction on the calculation even though it may

initially look covariant, In contrast to our result his calculation does not restrict

the bare coupling constant to be negative .

Bardeen [22], in his approach to gauge field ,has formulated the wave functional

as an extension of that of the QED ground state wave functional. Even though it
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is gauge invariant it does not allow any analytical calculations since it involves

an exponential of a quartic function of the fields. Numerical evaluation require a

continuum gauge field measure,that is itself a major difficulty in these calculations.

We are motivated to study the singularities of the W4-scalar field theory due

to the similarities it has with Yang-Mills gauge field; both of them are quartic

in the fields.We tried to find out what we can learn about the structure of the

singularities,that will be useful in the study of the Yang-Mills fields.Even though

Yang-Mills theory is more complicated due to the gauge invariance and color de-

grees of freedom,their singularities display similar structure;quadratic and logarith-

mic.Elimination of the zero mode from the variational parameter corresponding to

propogator removes the cubic singularity.Removal of it is essential for the renor-

malization of the terms appearing in the effective potential.

In the renormalization of p4 ground state effective potential the renormalization

is introduced in the differential equations for variational parameters.Since differen-

tial equations are obtained variationally from the effective potential it is expected

that the effective potential will be finite with the same renormalization.This way of

introducing renormalization simplifies the algebra a lot.The main idea is to switch

to another variational parameter in a way that that defining expression for the new

variational parameter will be finite.After renormalizing the effective potential we

can verify it variationally. When there is a space dependence in the variational pa-

rameter, assuming that the space dependence does not modify the singularities we

can generate a formal expansion of the variational parameter around the constant

value of the new variational parameter up to an order in which all singular terms are

6
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included.In a scalar theory , singular terms appear as the coefficients of the powers

of the new variational parameter. This fact allows us to absorb them in the free

parameter of the theory.What makes Yang-Mills theory difficult in the presence of

the mean field is the spin and the color dependence of the singular coefficients.Even

though they are diagonal in a particular representation since they will be absorbed

by the free parameters of the theory ,which are just the ordinary c-numbers, it is

necessary to kill their spin and color dependence.

The time dependent case is simple enough to tackle if the conanical variables

commutes with each other. In that case the kinetic term can be evaluated to see

that it is finite if we switch to proper new variable that will renormalize the effective

potential.
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CHAPTER-II

VARIATIONAL CALCULATIONS IN QFT

II.1 SCHRODINGER REPRESENTATION FOR QFT

QFT can be viewed as QM with infinite degrees of freedom. Since the degrees

of freedom involved are the values of the fields {qa(x)} at each space point Y,

it is necessary to explain what functional, functional differential, and functional

integrations, etc., are.

Functional: It is a mapping of the space of sufficiently smooth functions {f(X)}

into the Real or Complex numbers

F: f -- f[f] (2.1)

e.g.

F[f] = Jv d KF(F)f(') (2.2)

KF(') is called a kernel. The value assigned to F[f] depends on the function itself

rather than it's value at a given point { } if we discreetize the integral by dividing

the space of X into N-cells and let the 'i lie on each cell and fi = f(xi). We can

rewrite it as

N

F[f] = lim FN (fl, f2, .. fN) = lim AKF(i)fi (2.3)
N--+oo N-oo_

in this sense it is clear that a functional is a generalization of an ordinary function to

accommodate the continuous index labeling the variables ft . Note that F[f, g,...]

need not be linear in f(x), g(x),..., etc.



A Taylor series expansion of a function may also be generalized to functionals

S1

F2[f] = n!
n=o

where KN (...(. . .... .. . ..) symmetric under the exchange of

two of its arguments.

(2.4)

Functional Derivative: Defined as

F[f] _ F[f + eS] - F[f]

65f(') E--O f
(2.5)

where

(2.6)

To see that it is a generalization of the ordinary derivative of a function,using

discretized version of f['] and F[f], we should write eq.(2.5) as

fi = f(Yi)
(2.7)

F[fl... f ,...]
fi

Sli F(f ... fi + e,...) - F(f ... fi...)
E--O

e.g.

(2.8)F[f] = J

Using

6 f() - y)
6 f(4)

we obtain
SF[f] -)=F[f] dKf ()6( - )

F[ KF()
(2.9)

Functional derivative of expressions that do not involve integrals are found by re-

expressing them as integrals,

~__- r--., I
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d Bb()
dya Y 6Ba(4) /

d- 6 (b (- z) B(-)bc
dya

(2.10)
d SB -6bc(z)

C

using

6Bc(Z-) - -4 -,

6Ba() = 6 6(y - z)
SB"(\

we obtain

SB() d '(-)
Ba (--) dyY

b b(- -dy)
a dya

Functional Integration : Defined as

SD(f)F[f] -= J f df(I)F[f]

- lim df ... dfNFN(f ... fN)
N--+oo f-0

and it is nothing more than infinite dimensional integration. Note that the range

of integration for the variables, fi, is all the allowed values.

Functionality: It is a rule that assigns a (Real or Complex) number to a (Real

or Complex) functional

e.g. energy functionality defined as

E = E{} =
f 1[]12D(p)

(2.13)

H is some operator acting on the functional O [W]. Note that in our notation brackets

( ), [ ], and { } are used around the argument to indicate a function , functional,and

functionality,respectively.

e.g.

S

SBa(-)

(2.11)

(2.12)
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e.g

( ) indicates a function , f(Y)

[ ]indicates a functional , F[f]

{ } indicates a functionality , E{ }

Generalization of the Functional Differentiation to Functionality:

A functionality E = E { } is differentiable at the functional 0 [W] if

a E{ + z} Iz=o = (DE/D,))QD(p)

exists as a linear functionality in Q for certain suitable dense of functionals, Q =

[p]. As a variational principle DE/DVb = 0 leads to a Schrodinger functional

differential equation

HB[p] = Eo[p] (2.15)

where [ p] are the stationary functional states. If b[W; f] is prescribed in a func-

tional form but with a function f(x) as a free "parameter" then when the energy

functionality (2.13) is evaluated we are left with a functional E[f].

f( ) can be determined by solving the relatively simple Rayleigh-Ritz partial-

differential equation

SE[f]6 = 0 (2.16)

to find stationary value of E[f] with respect to the function f(5).Ref[29,39]

(2.14)

_ ___.



Application to Scalar Field Theory

Let O(x) be a real scalar field and L(t) = f dI (9, )2 - V(¢)

associated Lagrangian of the theory and the conical field to O(x) defines as

6L
S6(x) ()

= q'(x)

at (2.17)

and the Hamiltonian form

L = J dxr(x) (x) - H[, 4]
(2.18)

12

by promoting the fields r(x), O(x) into operaters we introduce the quantization as

r(Now the problem is to -i(find eigenstates - ) (2.19)

Now the problem is to find eigenstates and eigenvalues of the Hamiltonian

operator H

HJ
1 d
(2 t)

2 + ( )2

2 (2.20)

H10) = E10).
In the functional Schr6dinger representation we have the following correspondence

b) x- ¢()

0 x - x

(2.21)1 6
i &€()

ft c[~

and

O[W] = E¢[W](iHq()'

be the

H(w, ) = J

_XI~~

1 2 ) 2

2

+ v( )



that is

d - )2 +  ( )) + V (( )) 0[0] = EO[ ] (2.22)

with the norm (/1) defined as f D(€),* [€]b[€] Ref.[3]

Since the exact solution of this problem is not possible, in the next section

we will develop a variational approach to obtain some results for the ground state

energy.

11.2 VARIATIONAL METHOD

11.2.1 Time-Independent (Rayleigh-Ritz)

If we multiply Eq. (2.22) from the left with 0*[0] and integrate over the 4(Y)

field we obtain an energy functionality

f D(0)0* [p]I^I Se(t), (o) f[9]
E{b} ]=2  (2.23)

f D[(p]| [(p]j2

It is known from QM that any trial wave function that approximates ground state

wave function gives an upper bound for the ground state energy. Similarly, any trial

wave functional 0[0] that approximates the ground state wave functional gives an

upper bound for the ground state energy of the theory.

If some undetermined parameters are introduced in the wave function, it is

possible to improve the upper bound value by extremizing ground state energy

with respect to the parameters. Similarly, in the following we choose a trial wave

functional with a function f(Y) as a free "parameter" [ o; f]. It allows us to obtain

energy functionality as a functional E[f]. Extremizing it leads to

sE[f] /6 f() = 0 (2.24)

11__*1_



a relatively simple "Rayleigh-Ritz partial differential equation for f(Y); solutions

minimize the energy.

The above procedure describes the time-independent Rayleigh-Ritz variational

method for functionals.Ref.[16]

11.2.2 Time-Dependent Variational Method for Functionals

It is a generalization of Dirac's less known time-dependent variational proce-

dure. We start by defining functionality as

L {} d= JdK (t) i - ?() (-H^) (2.25)

a variation of L {} with respect to the functional [/{p; t] leads to

i 10(t)) = H|b(t)) (2.26)

time-dependent functional Schr6dinger equation. If the operator Ht is time-

independent then the time-dependence of the state functional will be nothing more

than a phase factor e-itE multiplying the state (E constant).Ref.[23,24,30,41]

Let us choose a trial wave functional with an even number of parameters that

depends on time. That is, the time-dependence of the wave functional is through

that of parameters 0[op(x); f(t, ),g(t, X),.. .].

After evaluating the functionality with respect to the field c(2) we are left

with a functional of the parameters. If the parameters are introduced in the wave

functional in a way that they can be read off as canonical in a[f, g,...] then it is

_I __



possible to identify the effective Hamiltonian functional from now on what we will

call an effective Lagrange functional.

L[f, g] = / dt f - [f, g] (2.27)

Equations that determine the parameters are the Hamilton equations

-61[f, g]
-f(x,t) =

=(2.28)
SX [f, g]
7=f(, t)

which are time-dependent partial differential equations. Note that when the param-

eters are time-independent they are reduced to Rayleigh-Ritz variational equations

for the functionals

sb[f, g] 0 6[f, g] 0 (2.29)
=0 = 0 . (2.29)

bg(') sf()

In this way it is possible, by keeping all quantum effects, to reduce quantum me-

chanics (QM) into classical mechanics (CM) and quantum field theory (QFT) into

classical field theory (CFT).

The above time-dependent partial-differential equations should be supplied

with some boundary conditions at a given time t.

11.3 RENORMALIZATION TECHNIQUE

Since QFT is plagued with infinities it is necessary, even after reducing it to

CFT over parameters, to introduce a technique to render the physical quantities

finite.

As will be seen in Chapter II, Section B, when the parameter is a function

of more than one argument, G(5, '), the diagonal elements, G(2, X) turn out to be

1__1___1



infinite and partial differential equations that contain diagonal elements are not well

defined, too. We introduce a cut-off, A, in the upper-bound of the Fourier integral

of the parameter. G(2, 2) is obtained as

G(2, X) = lim GA(', X) = finite terms
A-+o 

(2.30)

+ divergent terms + vanishing terms

Finite terms are the ones independent of a cut-off, A divergent terms are the ones

which go to infinity as A -+ oo and vanishing terms are the ones which go to zero

as the cut-off, A, goes to infinity.

The vanishing terms are ignored and the divergent terms are combined with the

bare mass and coupling constants of the theory to define finite (or renormalized)

values of the mass and coupling constant. In other words, the bare mass and

coupling constant is chosen as the cut-off, A, dependent in a way they will cancel the

divergent terms. In this way, the differential equations are well defined. Since the

differential equations are variationally obtained from the effective Hamiltonian.We

expect that it is finite up to a constant with respect to variational parameters. That

constant could be infinite in the limit A -- oo (indeed it is). Since the Hamiltonian

(or energy) is determined up to a constant, it has no relevance. In fact we will

choose to scale the energy with respect to that of the free field theory (renormalized

coupling constant = 0). (In- the application of variational procedure to 04 -scalar

field theory the technique described above will become more clear.)

I_ 1~_1 I



CHAPTER-III

APPLICATIONS OF VARIATIONAL METHOD

As an application of the variational method we start with the non-linear oscil-

lator problem to make our way out from simple to more complicated ones.

A. Non-Linear Oscillator Problem

Non-linear oscillator problem can be regarded zero dimensional field theory.It

serves an introduction to the 4 -scalar field theory.

A.1 Time-Independent

Let

L(q, q) = ~- V(q) (3.1)

where

1 b
V(q) aq2+ 4 (3.2)

2 24

be the Lagrangian of a particle, of unit mass, moving in a potential V(q). It also

corresponds to zero dimensional field theory. Defining the Hamiltonian as

H(p, q) = 2p2(t) + V(q(t)) (3.3)

where

62L
p(t) 6 and H(p, q) = p4 - L(4, q) (3.4)

S(t)

and introducing quantization

[(), q(t)] = -ilk

1 (3.5)

H(, q) = 2 (t) + V (4(t))

17



we write the eigenvalue problem as

H (f, q) 1) = E10) (3.6)

or, in the coordinate representation

1) - 4(q)

h dP5(t)I10) hd (q )

(3.7)
) q(q)

2  dq2 + V(q) (q) = EO(q)

multiplying (3.7) from the left with ?k*(q) and integrating over q we obtain

f4 dqO*(q) [-t2 dQ + V(q)] O(q)
E f (3.8)f dq| (q) 2

Let us choose

Oo(q) = N exp - (q - qo)g-(g - go) (3.9)

Where g > 0, as a trial wave function with undetermined parameters (qo, g) to have

an approximate value of the ground state energy.

After evaluating the integration (Appendix A ) we are left with the ground

state energy as a function of the parameters

E(qo,g) = V(qo) + g-1 + (a + bq2 g + kg2 (3.10)

The first term in eq.(3.10) is the classical contribution and the rest are the quantum

contributions.Rayliegh-ritz variation of E(qo, g)

OE OE-E 0 and - 0
9g 89qo

gives the following two equations for the the values of (qo, g) extremizing eq.(3.10)



b b
(a + g+ q )qo = 0 (3.11a)

2 8

and

g + ( + 2- = 0 (3.11b)

to be the sure that the possible solutions will give the minimum of the energy we

demand that they should satisfy the stability conditions

02 E a 2 E

> 0 and > 0 (3.12)
9q2 g2 -

and they are

3b b
a+ q2 + g > 0 (3.13a)8 2

and

T2  bg- + - > 0 (3.13b)
4 4

We have one more condition on g that is,g > 0. Let us plot the potential, V(q),

before trying to solve these algebraic equations.

V(q) = 1aq2 + b (3.14)
2 24

The potentials in Figs. 1 and 2, classically, will lead to stable periodic solutions

and quantum mechanically to stable ground states. In Fig. 3, classically may lead

to stable periodic solutions and quantum mechanically to unstable ground states.

Figure 4 does not support any classical and quantum solutions.
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Now, lets investigate the possible solutions for g and q,from eq.(3.11a-b) we

find one set of solutions as

I. When qgo = 0,and g = g, where

2a1+2cos +1200
3b [ (3.15a)

and € is given by

cos = 1
D

a3
(3.15b)

Where

1
D-

2
(3 \3

2
h2 b2 > 0 (3.16)

and

-1

+1

The requirement g* > 0 implies the following conditions

-1 + 2cos 4 -

cos + 1200k)

0 < + 120 0 k < 6
3

- 1200k) > 0

1
> - = cos 60 0

2

0 k = 0,1,2

==-k=0 and 0 <180

g = g*
0 a

2a /
3b -1 + 2cos 3

and its range is 0 < g I 2 I

The fact that I cos l < 1 implies a > 0 and 1- > 1. Therefore this solution

can be valid only for figure 1 and 2. It makes sense since the wave function will be

centered around the minimum of the potential to minimize its energy.



The stability conditions (3.13a-b), when q = 0,

bg > -2a

and

1> -g3
2&

restricts the possible values of (a, b) for a minimum. For b > 0 all values of a > 0

and b > o are allowed this corresponds to figure 1. As for the figure 2, since b < o

the first stability condition is fulfilled by b < 0 and a > 0 but the second condition

puts the following restriction on the values of a and b

(33h2 a
3

2 b2

this condition is the outcome of the fact that the potential well should be large

enough to support a quantum solution.

II. = q ,g = g*

* + 2a+ q2 *2 - = 0 (3.17a)

and

b b
a +-* -q2 = 0 (3.17b)

eliminating q* we easily obtain

2a fi2

*3 + *2 + = 0 (3.18)b 3b

22



The solution of this equation can be obtained from gk by substituting

S= 9 (h

The effect of the substitution is to change the sign in eq.(3.18)

cos$ = 9 1+

.1 + 2cos )
3

D

a3

The change of sign in the cos q implies that a < 0. Therefore this solution is

valid only for the figure 3.

Note that
8a

4 = T b + 4g*

S6a 2a
= - + 4g * -

Vb b

(3.20)

the wave function centered 4g*+ 1 I amount away from the minima of the potential

to the right or left.

A.2 Time-Dependent

The effective Lagrangian

I = dt L(t)

L(= t
(3.21)

- 10(t)) / (01 )

The trial wave function we choose in a way that

0o(q, t) = exp (i [q(t) - qo(t)] 7ro)

(3.22)
(q - qo) [Q- 2 (t) + 2iQ-'(t)P(t)] (q - qo)(t)

where

2a
gb b

(3.19a)

(3.19b)

2 3

x exp -



(qo, 7ro) and (Q, P) will be pairs of canonical parameters in the effective lagrangian

Oo(q, t) = exp (i (q - qo(t)) ro(t))

(3.23)
- qo(t)) 2 [Q- 2(t) - 2iQ-'(t)P(t)]

where

1 02
'H(p, q) = 2 q2 + V ( q )

L(t) = 00()
i0

o(t)) / (olo0) - Ko(t)lnIoo(t) / (o 0o)

After integrating over variable q we obtain the effective lagrangian as (Appendix-C)

SQ2 0
4 2 (Q-2 - 2iQ-1P)

1- 2 Q-2 + P2 + V (a +2 70 +-(1Q- )- +V(qo) +-2
b 2)

a qO)
Q2 + Q4

we rewrite the above expression as

40o + P +
1-QP
2

- 7(7o, qo, P, Q)

N = j +p2
20 2

12
1Q-28

+ V(qo) + (a+

Ignoring the total time derivative we infer that (ro, qo) and P, Q) are canonical pairs

of variables. Therefore, 7 can be identified as Hamiltonian and the dynamics will

be determined from Hamilton-Jocabi equations. They are

-iro(t) qo(t)
N)o(t)

-P(t)_
8Q(t)

o= ro(t)

Q(t) = (t)8(t)

(3.24)

L(t) = {roqo -

(3.25)

where

(3.26a)

bqo) Q2 + bQ4
(3.26b)

d (IlnQ-
dt 22n

S ( 1

x 4-

L(t) = 7o



The first two eq. gives

&V b
lro = + -2q0

40 = 7TO

and the others
-P() Q-

b b 2= ago + q0 + qoQ216 2

a + bQ2 (t) qo(t) + bq3(t)

+ (a+ q) Q +Q3

+b 2  b2 (] QQ-3
+ b Q2(t) + bqo(t) Q -

2)2)

Q=P

-Q = [

define wa(t) = a + (q2 + Q2(t

4o = -w 2 (t)qo(t) + 3 (t)3

Q(t) = -w 2 (t)Q(t) + 1Q-(t)

Ref. [4]

B. o4 SCALAR FIELD THEORY

B.1 Time Independent

As a next step,we choose p4 -Field Theory to apply the variational proce-

dure described since it is a generalization of the non-linear oscillator problem to

4-dimensional field theory and serves an introduction to the application of the vari-

ational procedure to the gauge field theories. Particularly,Yang-Mills SU(3) gauge

fields.Both of them are quartic in fields.

Now,the problem is to calculate the expectation value of the 4-scalar field

theory hamiltonian for a given trial wave functional and make sense out of it by the

renormalization technique described. Ref.[5,22,26,27]
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The hamiltonian of concern is given by (1.20) where the potential is

1 b2() +
V(p) a + a p4( ) (3.27)

a and b are the bare mass and the bare coupling constants,respectively. Due

to renormalization they will be chosen as cut-off dependent

As for the trial wave functional it will be the generalization of the one we

used in the non-linear oscillator problem.Quadratic exponentials are the only ones

with which we can,analytically, evaluate functional integrals,therefore we choose the

following form as our trial wave functional,

{}= Nexp {1ii d~dg[p(2) - o()]G- ( )[() - 1o()] (3.28)

If we calculate the mean-value of the field operator for a given X we obtain

(' 1(, t)) |) = So() ( 1) (3.29)

Where po(2) can be identified as the mean-field. It is a measure of the local-

ization of the field operator for a given 7. As for the two point function

(01()s()1- = [o(7)po() + G(, )] < 1 > (3.30)

G(7, y') can be identified as the propogator in the presence of the mean-

field.Its determinant has to be positive for the convergence of the wave functional as

p(7) - oc and it is symmetric under exchange of its arguments. G(7, Y) = G(', 7)
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From QM point of view po(2) indicates the localization of the wave functional

for a given variable and G(2, y) stands for the width of the gaussian.Both po()

and G(3, y) are undetermined parameters whose values will be found variationally

from the energy functionality.

Calculation of the energy functionality:Expectation value of the hamilton

operator is given as

E [ 0,G] =< 1HIII > / < 010 > (3.31)

Where

< 1HI1k >= dX D()* [V] 2 6 2  _ (V) 2 + V(V) [2[] (3.32)

and O[V] is given by eq(3.28) to simplify notation lets define () = (') - o( )

and ( , G-'1 ) as the exponent appearing in the wave functional. If we rewrite

< 1IHI| > after we shift the field variable we obtain

< ll^ >= dx D() exp 4 [ ((, G-') x (3.33)

2  62( ) (V+ Vo)2 + V( + o) exp (, G-

where

1 b b
V( + po) = V(po) + ( 2-a + 4 0) 2 4 + terms linear and quadratic in

Since the exponent is quadratic in we will ignore the odd powers of multiplying

the exponential term in the integrand.The result is

< IH^ 0 >= < 10 b> Ecl + JdxJD( ) exp[( 4 , G- s)] x

-1 62 2 1 b b -1

2 S2(-) 2 2 2 24 4
(3.34)



where

Ect Jd ( o)2 + V(o)}

Ect is the classical energy.Let's have a close look to each term separately.The action

of the functional derivative on our wave functional brings down -' (G-'(#, -), 0o)

term in front of the wave functional.Second application generates the following

two terms [ (G-'1(, ) + - (G-(X, .), 9G-'1(, -))] in front of the wave func-

tional.Functional integration over 3(2) converts the two into G therefore the over

all contribution from the functional derivative is 1TR(G- 1) < 010 >.similarly,the

second and third terms generate 1TR(GK) < i >.- The fourth term requires spe-

cial attention (details will be given in appendix E).It is bTR TR(GG) < 010 >.The

over all result is

1 1  b
E[o, G] = E + 1TR(G- 1) + TR(KG) + TR TR(GG) (3.35)

where

K(, 2) = -V + [a + bp2() ~ - ) (3.36)

and TR TR stands for double trace. Note the following relation

62 Ec1
K(', . ) = (3.36a)

The values of co(X) and G(, y') are found by

SE[~o, G] SE[po, G]
= 0 and =) 0 (3.37)

and they are

b b
-VXo(Y) + a o(.) + 0()+ 2 o(E)G(, X) = 0 (3.37a)
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and

G-2 2 + a +

(see Appendix F)

Define

m2(X) .- a-

and

2by rewriting the equations we obtain

by rewriting the equations we obtain

p~(2 ) +

b
2 ( + G(, ))

1 )
(, z

(-2(,y) =

we also cast the second equation into operator form by defining

G I)

and

16-2 A2  2

4

1

2 + r2

(3.37b)

(3.38)

-P2=----V

and

b
3 o( ) o(2)= 0 (3.39a)

(3.39b)

(3.40)

bG(, 2 ) ( - y)2 X (---

G(X-4 Y) (X

2(-)6(- _ -) =- I ^ 21 -)M

2 (E) 6(1- )



in explicit form

2 2 + 2

G(2, Y) is finite if X Z y and infinite when X = '. It can be easily seen by taking

S2
m2 (1) to be constant and going into momentum representation for the operator p

G(', )= 7 1 >
2

- eio+ m2

(27)3 2 2 + 2

S+00 d3  1 4(2r d 1

J-oo (2r) 3 2 /2 2  (2) 3 o0 2 p2 +m 2

-0" p 2 dp 0 dp d~ P21I00
P--Jo P J

G(#, X) has at the first order quadratic and to the second order a logarithmic di-

vergence.

Since G(2, 2) appears in m 2 (2) and its trace in the energy expression a renor-

malization scheme is necessary to make sense out of all these terms plagued with

infinity. The renormalization method is applied , as explained earlier,by introduc-

ing a cut-off A in the range of the momentum integral and to choose the mass,

a = a(A), and the coupling constant, b = b(A) to be cut-off dependent in a way

that they will absorb the infinity that appear in the m 2 ( ) term. Through this

procedure the variationally obtained equations will be well-defined and in turn, the

energy expression will be finite up to a infinite constant. This infinite constant will

be eliminated by scaling energy with respect to that of the non-interacting free field

theory.



B.1.1 m2=constant For a homogeneous and isotropic vacuum

(X1 ) = G(' - ')

and

o(') = Wo constant

It implies m 2(i) = m2 constant (independent of '). Therefore

1 +m 2

S d3- eiO

(2) 3 2 ~V'2 + m 2

4 ) (2)3 0
G(5,52)- 2( )

1
p dp

A is our regulator (cut-off) that will be taken to infinity later. (See appendix G).

The result of integration is

4G( ) =7(YXX) - 2(2w)3 {p p2 1 22mI + p2 +M2

A A2 +m 2 - 1M2 (A + 2 +m 2 )

+1 2

we expand it into powers of m/A and keep only the constant and the divergent

terms, using the following expansion

VA 2 + 2 - A 1 + m 2/A 2 = A (1

we obtain

1
G(, ) = 8r2 + (34

(3.41)

(3.42)

(A -, oo)

2(2r) 3 2
(3.43)

+ 22

2A 2

A +
1 2m
2

m4
8A 4 ...

m2n
In m

aA22
(3.44)



where In a = 2 In 2-1 a > 0. As expected G(2, X) has quadratic and logarithmic

divergences as A goes to oo.

In a similar way G-1(X, X) is found as

G () A 4 + A 2m2 +M4 In (3.45)G-1(5, )- 47r2 m4 P-

where In / = 21n 2- . Now, we can evaluate the algebraic equation for m 2 explicitly

m2

or

2 b 2 b/2 21 m2
= a + 2+ 2  A2 + -m2 n

2 8+ 2  2 aA2

by rewriting
2  2  2

m m 2gIn - In + In
aA2  P 2R a2

we are allowed to regroup A2 dependent terms as

2 2 9R (2 1 2 m 2
2 R+ 2 + 2 16

x2  2 In- 2  (3.46)

where

bA2

2 a+ 16r 2  (3.47a)

1- b In 14
327r2 caA 2

and

b
gR -2 (3.47b)

1- b In 2
32r2 aA 2

2 nd n aa
P2 and gR can be regarded as renormalized mass and coupling constants if p2R

and gR have a fixed value as A goes to infinity then we have well-defined algebraic

equations for m 2 which can be regarded as new variational parameters. Conversely,

32



we will have a well-defined ground state energy up to an infinite constant. At this

point we introduce renormalization. Instead of choosing bare mass, a, and bare

coupling, b, as constants we choose them to be cut-off dependent for a fixed y 2 and

gR. Their form can be obtained by inverting the above equations, that is

Now we can let the A go

gR
b(A) = 1

a(A)= R - 167r2

eAR1 - a_ In -

32to infinity for a fixed g andto infinity for a fixed gR and yF

b(A) - 0- for a finite gR
A---co

(for further analysis look at K. Huang's paper about triviality of 0p4 theory).Ref.[7]

Now, we can turn our attention to calculating ground state energy explicitly

1 1 b
E[pc, G] = Eci + - Tr G + TR (GK) + - TR TR (GG)

8 2 8

where

4-2 = I + GI
4 2 (3.49)

if I substitute K in the above equation

1 1 1-2
E[, G] = El + - TRG- + - TR G

8 2 4
1 b

= Ecl + - TR(G - 1 ) - b TR TR (GG)
4 8

b b
- GI)] + TR TR(GG)

(3.50)

G(2, Y) can also be eliminated in favor or m 2( ) using

b bm2() + 2 bG(, 2,)

(3.48a)

(3.48b)



2
G(, ) = ~ (m2 - a) - W0 (3.51)

substituting it in E[$, G] gives, for the time being ignoring the trace

E = Ecl+ G-1 - 8 b(2 2
a ) - 2

1 2 b 4+1G-1 b 4 (m 2 a)2  1
ac P~2 - + (m2  - a)2 + 24 4 8 2b 2 2

1 2 2 b 1 G _ (m 2 - a)2

2 12 4  2b

when we remove the cut-off (A -- oo) we have seen that b - 0- therefore -- W 4

term goes to zero. Henceforth, we will ignore it.

The overall result

1 2 (m2 _- a)2

E 2= + G- - ( m 2  a)2  traced over (3.53)

The term (2 a)2 implies that ground state energy can not be obtained perturba-

tively.

Let's define

A 1 - 3 In a A2 (3.54)
32 r2 2

Then
b = gR/A

gRA) /A167r2 )/

Now if we substitute G- 1, a and b in E

1
+ (4i)2 A4

+ A2m 2 +
1 4

4

+ (a R 2 /A 2
YR -167r2 /

gR

12
E m2 2
2

2 ( m 4

m2

w

a =
a = (PR



ignoring any term which does not have either po or m 2 we are

since all other terms are constant with respect to variation

E = 1 2 2

2 WO

allowed to do this

1 A2m2 + m 4 n
(4r)2 4(47r)2) nA 2

4 m 2 (1,2 -
A m m2 - 16 r 2

-+
2 gR

+ ignored terms

gR

12 1
= m2 2 + 2 A2m2

2 0 (47) 2

m 4

2 g9R

2 2

1 22
E = m2 

m4 Xm
+ 4In 

64+7r2 2R

1 4
642

1 m 2

+(4 m 4 n2
4(4w)2 32

2m2 /1 2R
+ 2 R

2gR
S

2  + 2
m22/16r2 + R

2gR

En m 2  aA 2

m2
In2 

2R I

m2 .. 2
S i + (infinite constant)

2gnR

Since 0po and m 2 are constants, the trace reduces to a volume integral.

V = f d' we get the overall result as

1 2 1
E/V = e(m2 , 0o)= m + 64 2  4

'Po + 4

Defining

m 2In 2
2

PR~-l

(m2 2 Z 4
_ ~Y + ___ 

R

2gR 1287 2

(3.55)

we added a constant p4 /128w 2 term to scale the energy with respect to that of

non-interacting free scalar field theory, that is

E (m2 = P, 0 ) = 0) = (3.56)

chosen to be zero where

2 2 ~R (2
in -~+7 ~o

1 2 nm2
16 2

167~2 MY

_ 2 _ 2 2

2gR

(3.57)
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when gR = 0 m 2 = P2 is a solution.

To check the consistency of our solution we take the variation of energy density

e(m 2 , p) with respect to m 2

6m2

1 2 1 2
o + 3 2 22 32n2

m2 = P2R+ 2 P22

(In
m2 1)

7 2
641 2
6472

1 2 m2

16 2  [27r PR

consistent with the defining equation for m2

Analyses of m2:

Let us set p2 = 0 and define x - m2 //R , 0 < < 00, then the transcendental

equation (3.46) is

x=+ gRS= 1 + )2 In x
2(4)2

(3.58)

One of the solutions is x = 1 for a given gR (-oo > gR < 00). x = 1 ==# m2(gR) =

2 for all values of gR. To find out if it leads to a minimum for energy density we

investigate the stability condition note (m2, I) = ~(X)

02 ~2 > 0 (3.59)
6X 2 -

nx1 - 2 )0
1

(x) = 64 2 x
2

6472

(x - 1)2  1

2gR 1287 2

(3.60)
a2 6 1 n

Inx -4X2 32r 2
1)

2

1 1
327 2 64w2

1

gR

_ ( = 0

gR

where

C"-



the stability condition is

1 1 1
nx + - >0

327r2  327 2  gR

In x 2(4) 2  1
gR

The x = 1 solution puts the following constraint on gR to be a the minimum of the

energy density

0 > 2(4r)2

gR

if gR > 0 then gR > 2(47r) 2

(3.61)

if gR < 0 then gR < 2(41r) 2

So we can conclude that the values of gR between 0 < gR < 2(47r) 2 do not lead to

a stable minimum. The corresponding energy density is

e(x = 1) = 0 (3.62)

If we try to expand x(gR) into powers of gR we realize that the transcendental

equation leads to

dnx(gR)

dgR g=O

= 0 (3.63)

for every n (n = 0,1,2,...). Similarly there is no way of expanding the energy

density e(x) to the powers of gn. Simply, it is non-perturbative. If we closely

examine Eq.(3.58) we see that it has another solution. By writing it in the following

way
S= 1 + gxln x where g = gR/32r2

0=1 +gxln(e- gx) .
(3.64)

and defining v(g) = x(g)e - 1/9 we obtain

e-11g

v ln9 = - -7(g)
g

(3.65)



Since ,(g) (0 < 77(g) e- 1) for 0 < g < oo00 we can use it as an expansion parameter

to expand v(g) = v(r(g)) around the 7 = 0 using eq.(3.65) The result is

e - 1/g 1 e-2/g 4 e - 3/  9 e - 4 / g

v(g)=1 --- + 2 + .. (3.66)
g 2 g2  3! g3  4! g3

and in terms of x(g)

(e)=
- 1 / g  e - 2 / g  2 e - 3 /9 3 e - 4 / g (3.67)

x(g) = e + 2g2  3 g2  8 g4  +" (

where g = gR/327r2 . The solution x(g) is singular at g = 0 as g -+

oo,and x(g - oc) --+ 1. To see the variation of x as an a function of g we plot

a = 1 + gxlnx (3.68)

g dependence of x is trivial

Graphically,the dependence of E(x) on fx for a given values of g is shown in

fig-6.

1 - 1)2 (3.69)
E(x) = x2(ln x - - (3.69)

2 g 2

Looking at fig-6a ,we clearly,see that e(x) has two stationary values ,at x = 0

and x = 1 the true minimum is at the x = 1.As g goes to minus infinity the true

minimum still is at x = 1.

Looking at fig-6b , we see that it has two minima depending on the value of

the g one of them becomes the true minimum of the system.

Since the presence of z shifts the position of the singularities we investigate x

as a function of z and g.

x = 1 + gz + gx In x (3.70)
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fig-5
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If z is greater than e- 1 there is no singularity but for 0 < z < e - 1 at the value of

xo,(xo In x0 + z = 0) a double singularity developes.

Finally,we write e(x, z) in terms of x and z

1
e(z, x) = zx + x2 (lnx - )

z = 167 2 2/, g

(x - 1)2

g

1+ (3.71)

= gR/327r
2

Where

(3.72)



fig-6a
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As for the stability of the second solution ,stability condition (3.59) requires

1
In x > - - 1

Eliminating x in favor of g gives

2 - g < x (3.74)
x(g)

this equation determines the range of g in which the E(x) has a stable minimum.

B.1.2 m 2 $constant

(3.73)



fig-6b
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After gaining insight into the calculation by assuming m 2 and po are constant.

Now, we want to find out how the result will be modified if m 2 (7) and oo(2) are

x-dependent.

Our calculations up to equations (3.40) were general

m2) = a + [PO () + G(2, )] (3.74a)

and

G(, X)1 (3.74b)

2 41
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-%2

Since the p2 operator does not commute ~ 2, we cannot work in momentum space

to evaluate the matrix element.

Our goal is to identify the finite and divergent part of the operator. To achieve

it we make a formal expansion of the operator around 2 = "I up to an order

in which the terms of expansion is divergent. We separate these divergent terms

from the rest of the finite ones. In this way we obtain the finite part as the matrix

element of a finite operator and divergent parts explicitly.

Let

G- (X,- ) = 2 2+ 2

we will first obtain finite and divergent parts of G- 1(1, 1) and afterwards determine

G(2, X) from the following relationship

1 6
G(, ) 2 G-  , ) (3.75)2 S2

Expand + ri 2 formally around r^2 =2. 2 up to second order.

2 2 in 2 2 + P2 ] - 1/ 2

(3.76)

(2 _ 2)2 [2 + 2] -3/2 1G F

by taking the matrix elements we obtain the following expression

+ (m2 ) ) [ + 2 -1/2 (3.77)

- 1 )2 [p2 + -3/2



where

G (,. ) = { 22p 1, ) [p2 +- 1, r~2 1/2
1 p2+-3/2(3.78)

+ (r2 _22 2 + - 3/2 )

As you may have noticed in the expansion we have chosen a particular ordering

of the operators in divergent terms. Later we will see in a formal solution of the

problem that the divergent terms are linear and quadratic in m2 ( ).

We ignore 2 V + R ) in G-(, ) since its contribution to energy will

be nothing more than an infinite constant. We evaluate ( + 2 -1/2 ) using

the result of Eq. (3.44)

2 R xA 2 + In M (3.79)

and

_ -3/2 = 2-2 [42 ] -1/2 (3.79a)

X 1 + [2R = 2 (3.79a)

1 1 14? 11
In + -+

1 +ln= - -4-in
472  aA 2 f

The overall result is

G-X(1, )A = G+ 1A2m2 2 2 . 2 In R (3.80a)

S2
±(- [m 1 X ) 2/R ) +1 1 n R

(4r)2 (m2 2 aA 2

and

G(#, ) =+ G(2, 2 + 2 21 P (3.80b)G(r-n (3.8b)

+ (47r)2 (m( )-t) 1 + In aA2

where



({ 1 [ 2 + 2] -1/2GF(x', ) = x - 2 +m2]
2

+ ( m 2

I2

2 ] [p + 2 ] -3/2

(3.81a)2+ -1/2

x ))

= G(- 1a(xx =(47r2)I'
A2  1 (
87r2 + (4r)2 m2 ()

To renormalize the defining relation for m 2(x) we insert G(5, X) into Eq. (3.74a)

and group divergences by inserting (3.47) for y2 and gR we obtain

1m2(-) = /2 + gR

2

where

0 )+ GF(Y, #)]

1
GF(X, Y) = GF(, ) + 16 (m() - U)

Ground state energy from Eq. (3.49) is

(3.82)

(3.83)

E [o0, G] = 1
2

1 bS2
(V(PO) 2 + 1a 02 + bP42 024

1 1
+ TR(G - ) + 1 TR (GK)
8 2

b
+ - TR TR (GG)

8

where

1 b
G-2 = K + -GI

4 2

We rewrite the energy density e($) as

12 b4
+ 2a + 024±

using
b

m2()= a + ( + G(x, x))

G(x, x) = + b (m2( - a)

InPRR+ l aA (3.81b)

(3.84)

1=
e(£) = 2 (V o)2

G-1
4

b
b GG
8

(3.85)

r'"-



1
(V o) + ap o

2 1
(Vpo)2 + - a( 2

2

+ 1 G-1'
4 8

+ 1 G - - (m2a) 2

4 2b
1+

+-(m2 -a)2

1
e(x) =

(m 2 - a) 2

2b
(3.86)

We can ignore iL0, b will go to zero as we remove the cut-off, over all terms which

have the divergences are

- G- 1 (m2 a)

G-( ) = G- ) + -M2 2
47r

1 4
+ 1m

4

n - }
ln

aA22

- (m2()_ ,2 )2G6 1 (X- ) = G (, ~) + (4-x)2 ( R

if we substitute a, b and G-1 into e(x)

1 1 2 2((x) = (V o) + r(pO0

1 2
+ 1 m4 In

4(47)2 a4 A 2

SG-1(,, ) + m2A2
2 g (4 r) 2

2[m2 a 22/A]2
2gR/A

where
2

gR PR
A = 1 + In

32r 2  aA2

After some calculations we obtain finite ground state energy density as

(V o(X)) 2 + m 2 (() 2(p)+ d-(, #)2 o x 4 F'X

1
- (M 2 -)2 gR

2 )2 (3.90)

E [c0, m 2 (-)] = J -d36(-)

where m 2(1) is giving by (3.88) in case m 2 (5) = constant F and GF1 are equivalent

to the relations (3.43)-(3.45), respectively.

1

2

where

(3.87)

(3.88)

(3.88a)

(3.89)

1
E(X) = 2

2

21 b 1G
(V o)2 + 1 2 _ 4 -1

2 12 4

(m - a) - 02



B.2 Time-Dependent Variational Calculation

Using Dirac's procedure we define an effective Lagrangian and effective action

(3.91)

I= Jdti(t)

where 'H Hamiltonian of the theory and Ib) is our trial wave functional with unde-

termined parameters.

The overall idea is to introduce the parameters in pairs in a way that, after we

evaluate the effective Lagrangian, they will turn out to be canonical to each other.

This procedure reduces the Quantum Field Theory to the Classical Field Theory

over parameters by retaining quantum corrections.

Equations governing time-development of parameters are obtained by setting

the variation of the effective action with respect to parameters to zero. Setting

6I = 0 end-points are fixed

These are nothing more than classical Hamilton-Jacobi equations. The canonical

nature of the parameters allows us to identify the effective Hamiltonian.

Time-dependence of the state wave functional is introduced through the pa-

rameters and the trial wave functional is parameterized by two pairs of conical

parameters (Wpo(, t), Ho(Y, t)) and (Q(2, 9, t), P(', ', t)).

By construction o0(X, t) is the expectation of the field operator W(7, t)

(3.92)(4 I(, t)l = Po(, t) (1I )
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and Q2(, Y', t) is the propagator related to the expectation value of (, t)O(y, t)

operator in the presence of po(X, t)

(3.93)

where

G(, y; t) d Q(, ; t)Q(, ; t)

Our trial wave functional is

|b) -4 [IHo,po,P, Q] = Nexp{iJd Ilo(,t)[p(') - p0 (,t)]

1 dI (p () - o(. t)) Q-(,; t)- d (, - t)P(A, , t)

(P(i) - o(, 0)}
(3.94)

and the Hamiltonian is given by (1.20)

The canonical momenta for 0po and Q is introduced through the phase factor of

the wave functional so that when we evaluate ( I a I ) term in effective Lagrangian

will reveal the canonical nature of the parameters.

K t = JD(p) |,2. (3.95)

X ille(o - ,co) - J( [Q2 - 2iQ- 'P] ( - c)}

= D-= ) dx IIc ( , t) o(, t) + - d -d t(1

x ((q-2 - 2i Q -'P) f D(p) 10  (,(2) - ,o(2, t)) (,() - Vo(, t)))

= (4) dIc(X, t)c(,t) + -- d dK (Q-2 -2iQ- 1 P) )

x (- Q2}

(0 1 (-, t) (y, t) ) = [ o(XI t)vo('; t) + G(2, y, t)] (01¢)



The last term in Eq. (3.95)

_ /i_ ( d (-2p) ) - Q21 Q

can be written as

__ Q dT (Q-1p))

using

d Q- (t) = -Q-(t)(t)Q-l(t)

-1 TR (QP - Q Q-P
2

ignoring the total time derivative

TR (PQ) + 1 TR (QQ Q-1 P - QP) (3.92)

in general Q(t) does not commute with Q; therefore, the second term of (3.99) is a

contribution to the Hamiltonian. In the case Q(t) and Q(t) commute it is zero in

what follows that is what we will assume.

Ignoring the total time derivatives of the terms final result is

K = -dII c(-c(, t) + dx (- P - ( 1) (3.97)

we used the following properties

Q(-, ; -. ) = Q(, ; t)

and

TR (Q- dQ) = TR (In Q)
( dt dt



After similar calculations done in section B.1

/ ( ) = EI+ TR 1 P2 + 1 G-1

where

Eci = J

and

d{ 2 I0 t)

= Q2

1
+2

..2 b
S=p +a+ -

The effective Lagrangian is

(± + d)

,) + (, t) + 4 (, t)

Gd = (xIGIx) I

1(t) = Jd (loo + (iPQ)) -1(1)o, o,R, Q)

where the effective Hamiltonian is

H7-(Ilo, o, P, Q) = Ecl + TR 1 2 +
1
8

+ GK +
2

GG)

(3.99)

(3.99a)

Using the Hamilton-Jacobi equations we do arrive at the following equations of

motion for the mean field po

UIL

o(, t) = 6Ho(p, t)

So(4, t) = Io(, t)
. e.

-~Io( , t)

-1o(P, t) = + 6Ect
S~o(0,t)

=6 o(, Ot)

b
+ (, 2 0;t)o(,t)2

b

2G( , o( ,t-0(2,t) =
b

-V 2po( x,t)+ a o(, t) + 8-o( t) 

+ 8G (3.98)

(3.98a)

1 K
+ 2 G



defining

b 2-.
S(,t) = a + b [W(,t)+G(x4X; t)

-2 + m2 (, t)- (,t) bo(,t) = 0 (3.100)

This differential equation governs time development of the mean field po(., t) from

given a initial p;(-, ti) field at given time.

The other equation for Q(2, Y; t) is obtained from

bP(, Y; t)

bQ(X, Y; t)
as

2 2 , t2 1
Q(t) = p + i(t) (t) -3(t) . (3.101)

Equation (3.101) does not give us any insight into the form of the solution. There-

fore, we cannot map G(5, Y; t) into another variable in a way that we can isolate

the divergences of G.

Physical considerations regarding to the form of the propagator, G, suggest

that it should have the following form

1
G(t) = + ( (3.102)

That is, the time-dependence of the propagator, G, comes solely from the mass

term, Mr2(t) while it preserves its form as indicated above.

This expected form for G leads to inconsistencies with what is expected from

variationally obtained Eq. (3.101) if we put G = Q2 into Eq. (3.101) it requires that

Q(t) = 0

which is not acceptable therefore we treat rh(t) as out variational parameter in what

follows.Ref. [20,25]



B.2.1. m 2(, t) = m 2(t) (Independent of i)

Let us insert G(t) given by Eq. (3.102) with a m2 (t) term independent of 2

into the Lagrangian given by Eq. (3.99) where P(t) is equal to Q(t)

£(t) = TR 2(t) + di rcc(
2(3.103)

E- E+ G - 1 +- GK+ -GG
8 2 8

using the results of Section B.1.1 we can re-express the terms within curly brackets

as in Eq. (3.55) where m 2 is replaced with m 2(t). In respect to terms in curly

brackets t-dependence of m 2 is parametric and it does not effect the manipulations.

The first term of the Lagrangian is

2 TR Q (t) = 1 d2 x 2 + [ 2]

1 V " p2 t 2

64 27r2 [p2 2(t)5/2(3104)

the integral over p converges as p goes to infinity so the term is finite

1 1 1 1 V [r(t)] 2

2 64 2r 2 3 m 2(t)

to eliminate 1/m 2(t) in front of (r2)2 we will switch to m(t) from m 2 (t) as a

variational parameter. Then we obtain the effective Lagrangian with respect to

m(t) as

£:(t) [r()]2 - (m 2 (t)) (3.105)
V 2

where e(m 2 (t)) is given by Eq. (3.55) and

1

327r2 x 3

51



Euler's equation for the dynamics of m(t) is

_ (CIV)
Sm(t)

it is

arh(t) = -2m(t)
8m2(t)

1 n
32t 2 2 (

m 2 (t)
2

P1R

1
2 0(t) -

(m2(t),- /) }

in the case (t) = 0 by scaling gR as g = 3 gR we can rewrite Eq. (3.106) as

= 2m(t)
m 2 (t)n m 2 (t) (m 2(t) -_

MR g

futhermore, by defining x(t) = m(t)/Pl > 0

1 .. 2
- x- = 2x x 2 lx

3

x2 - 1}
g9 (3.107)

since it is a second order differential equation it requires not only x(to) but also

.(to) as initial conditions.

B.3.2 m2 = m 2 (,t) (dependent on 5)

With the purpose of avoiding the ordering problem in the wave functional we

choose our variational parameters in the following way

00o exp 4 -1 I (G - 1 - 4iE)

The effective lagrangian is obtained as

L(t) = TR(EG) - 7(E, G)

6(=/V)= 2m(t) )Em2(t)

-ar;r(t) = 2m(t)
(3.106)

} (3.108)

(3.109)

d (bt(td /V) "
dt 6rh(t)



Where

H = 2 TR (EGE) + TR (V(G)) (3.110)

V(G) is given by eq.(3.35). We have ignored the p dependence of the wave functional

for the time being since it has no effect on the present calculations and it can be

added later on.The conanical nature of the E and G is very clear from the formalism

therefore application of the Hamilton equations gives us

( ;(x, Y; t)
G= 2 E + (3.111)

and

- = 2Z 2 + Y + (3.112)
SG(2, ;t)

Using eq.(3.112) we can show that

TR(EG) = 4 TR(E GE) (3.113)

With the help of eq.(3.113) we can write the effective lagrangian as

LC(t) = 2 TR(EG) - TR (V(G)) (3.114)

Where E = E(G, G)

The solution of the operator eq.(3.111) is

2E = dp exp{-flG}Gexp{-PG} (3.114a)
0/OO"



We can eliminate the E term from the lagrangian using eq.(3.114a) and write it in

terms of G and G as

£(t) = 1 J d# TR (expf{-OG}Gexp -LG}G) - TR (V(G)) (3.115)

If we pick up the form of the G as

1G2(t) = 1 2 2(t)
AGM 

+

The form of the G is given by

G = -4 d a exp{{-aG}-aG} (3.116)

Eq.(3.116) allows us to write the lagrangian in terms of rh and m The over all result

is

1
2(t) = dx dy - TR(V) (3.117)

Where

M(O, Y;m) = 32 I 00
0

dp 2 [(lIG2 exp{-G}G2 I) 2 m(x, t)m(y, t) (3.117a)

details of this formal manipulations will be left as a future study.

B.3 Formal Solution of the Problem

Let's write the effective Hamiltonian as

1
E - TR (G-1 ) + TR(GK) + 1g2 TR(GG)

2 4

where

(3.118)

rh(', t)M (, 9; )m()rh(, t)



[Band the last trace is a double trace. Varying E with respect to G gives

SE 1
= = > + g2 dG 4

define

(3.120)

and eliminate I from E in favor of r72

1
E=

8
1
4

TR(G-') +

TR(G - 1 ) -

1-TR
2 G

1 G-2

TR (G m(2

- (2 2)))
1g2D TR(GG)
4

S))+ TR(G (2 _ y2f)

and eliminating g2Gd in favor of mr2 we obtain the following result

1
E=4

4
TR [G-1 - G (m2 - 2i) ]

where
1

G=
2 V/2 +r2

mr2 = 2 + g 2ed

Further we can eliminate G in favor of mh2

SGd (= )
92

Substituting this form of G in Eq. (3.121) we can rewrite it as

1
E= 1TR

4 (G-1
(m

2 -I 2)2
2

g2

Let us assume the divergent part of G-1 (, X) is at most quadratic in rh2.

That is

G-1(, ) = GFi(X, ) + G 2(A)m 2 ( )m 2 () + 2Gi(A)m2 ( ) + Go(A)

(3.119)

(3.121)

(3.122)

(3.123)



and G(X, X) is obtained by

1
G G- 1

2 m~52 (3.124)

G(, 2X) = GF('i, ) + G2 (A)m(2) + G1 (A)

Go(A) =, Gi(A) and G2 (A) singular coefficients as cut-off A goes to infinity and

GF is the finite part of G. To renormalize the rih2 and E we do not need to know

the forms of G(A). It is enough to know that the divergent part of G(S, X) is linear

in m 2 ( ). In fact the form of G admits divergence terms up to the first order in

m2(0)

Substituting G(2, X) in m 2 ( )

m2() = ~ 2 (GF(X, _) + GI(A) + G2 (A)m 2 ())

and combining m 2 ( ) terms

2( P2 + g2 G (A) + g2
1 - g2G2 (A) 1 - g2G 2 (A) GF(

and defining
2 22 Gi (A)

1- g2G2)='R 1 - g 2G2 (A) (3.125a)
2 9

gR =1 - g2G 2(A)

we can rewrite m 2 ( ) as

m2 = + 2 g F(, ) (3,125)

we also obtain mu 2 (A) and g2 (A) for a fixed /.1 and g2 by inverting Eq. (3.125) as

2
2 = gR
g 1 + gG 2(A)1 g (A) R (3.126)

2 - giGI(A)
1 +1 G2(A)



note as A --+ oo, g2 -+ 0.

Now to renormalize the energy, E we insert G, p2 (A) and g2(A) into Eq. (3.122)

1 2
E = TR GF ' + Go(A) + 2G,(A)m + 2 2

(2, - [pt - g2Gi(A)] /A) 2
- g2 A

gR

where A 1 + G2(A).

Singular terms linear and quadratic in rh2 cancels and ignoring singular terms

constant with respect to variation we obtain the energy, E as

1 ( (G- 2 - )2 )2
E = TR GF 1 - 2 (3.127)

4 /R

or

S(m2- M2 2
E(m 2 ) = I d2 G (2 ) - C2 (3.128)

Note E (m 2 () - ) = 0 due to GF(', ) m2= = 0. Since G(£, 5) is expanded

to the powers of m 2 () around t2.

In case G(5, 5) has extra discrete variables such as color and spin indices,

G (X', 5), due to appearance of a matrix in g2 TR(MGG) as in Yang-Mills gauge

field theory, renormalization of 2ab becomes more complicated unless we choose

spin and color dependences of G in a way that the M matrix contracted with GG

can be made a number. We will follow this procedure when we are dealing with

Yang-Mills field theory in Chapter IV.



CHAPTER IV

EXTENSION TO GAUGE FIELDS

A. Yang-Mills Field - SU(3)

The ideas developed in the preceeding chapters need to be applied on a realistic

field theoretic model. There is a resemblance between p4 -scalar field theory and

Yang-Mills SU(3) gauge field theory. Both of them are quartic in fields therefore

we expect that the application of what we have developed so far into gauge fields

will be straightforward up to a point.

We do prefer to work in temporal gauge (Ao (2) = 0) even though it does'nt't

fix the gauge arbitrariness completely. Our strategy is to quantize the gauge Hamil-

tonian
3-1 - -a -a a

74 = Jd"M Ea()Ea(-) +B (X)B (2)+ 2Aa()a() (4.1)

where the color-electric field E(2) is canonical to Aq(£) and the color magnetic

field is

1EiJk& A(X) + -)kfabC (4.2)B( = Eij 26ijk abc ( )Ac( ) (4.2)
i P2

as if there is no extra-degrees of freedom and impose the gauge constraint on the

trial wave functional.

In functional Schr6dinger representation, the canonical variable -E(2) is

A more detailed introduction to what follows can be found in Ref. [2]. We

choose our trial wave functional as

1|) --+ {Aa(x)} jc exp {- (A - A)G(A - A) (4.3)
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f stands for sum over discrete and integral over continuous variables. G is Gab(2, '),

Aq() is dynamical variable and Aq(2) is a parameter-function and it corresponds

to

(0 1 (X)1 1) / ( AIk = x (4.4)

mean field value of A(£) when the system described by the state I4).

Our variational parameters are G(x) and A(x). (Note I use x to stand for

(x, a, i).) We form the effective potential or the ground state energy as

E{ o} = (lltI) / (010) (4.5)

where 7H is given by Eq. (4.1), I|) is given by Eq. (4.3) and E(x) is the functional

derivative with respect to .A(x). After calculations similar to Chapter II we obtain

the following result for the effective potential

1 1
E[G,A] = Ec1 + - TR(G - 1 ) + TR(GK) (4.6)

18 2

+ 1g2 TR (GMG)

where

B()= _ijka (-) + lgfabCA()A(,)

SX 2 Ec

rb = a62 Ec(

K - (S D) 2 - gS-B + 2 1 (4.7)

(Sk)i = Mijk

Aabc = _ fabcA z3



(4.6)D = IPi - gAi

- iAaA(-)

Bi X= AaB(= )

[Si, Si] = ^2ijkS)k

[A, )] = fabc A

and

M c;de = EijkEilmfabcfade + 2ei e imkfabdfaec

The way the indices are contracted with G is

G ( k)Mbc;deGde( ,-)

and it also can be written in terms of Si, A as

TR (S'AaG) TR (S'AaG) + 2TR(GS'A"GS'Aa)

Trace is over all spin and color indices and over the continuous index X is a double

trace.

The gauge constraint is D. - = 0. After quantization it becomes an operator

that commutes with the Hamiltonian [, D - E] = 0. We incorporate it into the

formalism by its action on the state

D . El) = 0 (4.12)

Since the state is a trial one when Aq(£) is different than zero it is satisfied only on

the average

(4.13)

(4.9)

(4.10)

(4.11)

D0 = 0



when A(') is zero, the condition (4.12)can be satisfied by a special form G (X, y).

The variational principle for G

SE[G, A]
S(PA _# 0

leads to

G2= K+g 2 [Sia TR(SiAa d)+ S'A adSIa]

The trace is only over color and spin induced. By defining

=2 = p2- g(S . B) + g2S'Aa TR (Si a d) + 2g 2(Si a dSiA a)

(4.14)

(4.15)

it can be written as
1 - 2 = (S D)2 + 2

(4.16)

(S -D) 2 + r 2

The variational principle for A

SE

leads to

D b(x)Fj(X) +
1 S

2a 2 (A (Y)
TR(GK) = 0

Fi(') = ijkBk- () (4.18)

These equations (4.16) - (4.17) are intractable in their most general form since it

is not possible to isolate and eliminate the divergences. Even though the non-zero

value of A.4q() is necessary for the inclusion of the external source terms. Leaving

where

(4.17)



it for future study, we will focus our attention in the case of A'(2) is zero. If we let

Aq(2) = 0 then

1 1 1
E = TR(G - 1) + TR(GK) + 2 TR(GMG) (4.19)

8 2 4

where

K= (;.) 2 (4.20)

To fulfill the gauge condition we pick up the form of G as

G (, ) =a)b j + Pij() Go( , ) (4.21)

where Qij and Pij are transverse orthogonal operators defined as

Qjj Ibij ^2

p (4.22)

ij=
P2

They obey the following relations

E Oii = 2i ) Pii = I
i i

QijQjk = ik PijPjk = Pik (4.23)

Qij + Pij = 6iji QijPjk = PiiQjk = 0

We also introduced a parameter e that will be taken to zero at the end of the

calculations. Since without e, Gi (7, Y) is not invertible in spin indices and it has a

zero eigenvalue in the representation in which it is diagonal, that causes the Gaussian

integrals to diverge. This trick allows us to go on with our calculations without any

inconsistency. With this form for G our variational parameter is Go(7, y') since we

can integrate out over color and spin indices.
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The inverse of G can be written in operator form as

G-1 = - 1 (Q

The first two terms of Eq. (4.11) can be evaluated easily to yield

1
1 TR(G- 1)
8
1
- TR (GK)
2

8 N(2 + e) TR (co1 )

= N TR (Gol 0o)

Ko =P +
1 + 2e

222e /

N = Ea "aa color degrees of freedom which is N = 8 for SU(3). The last term

1 1
g TR(GMG)= -g2 TR(GS'AaGSAa)4 2

the first term of (4.11) drops since TR(Aa ) = 0

Sg2NC
1 TR(GSiGSi )

2

where NC, = TR(A"a) = fabc abc

21 22
2-92 NC, TR(S ) TR (Goo) +2

( 1
±-!- --

TR ((PGo)Si(PGo)Si ) = TR(GoSPS'Go) + surface terms (ignored)

1)2
- 1) TR (Go(S'PS'Go))

1 g2NC2)TR(GoGo)

2 ,1NC, TRS )TR (Go Go) +
-1)TR (Go(SiPSiGo))}

TR(S'PSi ) = 2i traced over only spin indices TR(S 2) = 6

+ TR (GoGo)

(4.24)

where

(4.25)

TR ((PGo)Si(PGo)Si)

+ e) C

= g2 NC1 (2 (4.26)



the overall result is

E 1E 1(2 + e)TR(Gol) +N 8

the variational principle for Go

TR(GoK o ) + g2C1 + 1) TR(GoGo)

SE
6Go(X, ) -

leads to

1(2
4

+ e)GO2 = 2Ko + 4 2+ 1 Odc, G
12

1 + 2e 2

(2 + e)2
1 + 2e2

(2 + e)62

2 1 +2e 2

(2 + E)2e
1+2e2

+ 4C 1 + 2g 2 od
(2 + e)62

1 -2 2 2

Go

2 2 +M2

Note in the limit e goes to zero 2 goes to 1 if we scale g and y2 as

902 = 2g 2 c 1 2 +

2 1+26 2
Po 44e

(4.27)

1 o
G-2

4 0

2 -2

2+ep

defining

(4.28)

write

(4.29)

(4.30)

1

e2J
(4.31)



we can rewrite Eq. (4.27) - (4.29) in a familiar form

1 ^
=-Go +
-~ 4

2

m2 2
2+e (O

+1GGGo Ko + g2 GoGo

2 Od

+ go God)
-2 2 2 Am = po+g 0+ od

by eliminating Ko in favor of m 2

E1 TR (6oN 2 - o( 2 - 2))

E 1
- TR

N 2
Go - g7nn _ g)2)

2
go

This relation is equivalent to the one given in Eq. (3.122). Therefore it can be

written in a finite form as

E

N

1
STR
2

G -OF

(~2 - )2

g )

Its structure is similar to that of <p4 -scalar field theory up to some constants and

its non-perturbative nature is very clear.For a further reading on the subject check

Ref. [12,15,17,18,19,31-37].

(4.32)

(4.33)

(4.34)

and

(4.35)

m2( ) = PI + g9GOF(7, 1) (4.36)



CONCLUSIONS

So far we have succeeded in obtaining a finite expression for the ground state

energy of <p4 -scalar field theory;both time-independent and time-dependent.We have

seen that the relevant singular terms have both quadratic and logarithmic diver-

gence, and they have the same form when we deal with non-abelian gauge fields if

we define Gij to be transverse in spin indices.In case of zero mean field we achieved

this with the help of Qij,Eq.(4.22).We have seen that for the renormalization pur-

poses , the elimination of the longitudinal part of the Gij is essential to remove the

cubic singularity.

The results of the chapter III and IV are very promising for the application of

variational method to the gauge fields in the presence of the mean gauge field,even

though we have some difficulties in the isolation and the elimination of the zero

and the negative modes of the propagator in the presence of the mean gauge field

(backgroud gauge field).We have seen that negative modes can be made to cancel

by guessing the form of the mass parameter in (4.15).We are hoping that we would

be able to eliminate the zero mode by defining the proper transverse operator.The

generalization of the (4.22), that is, 1i is replaced by Di, does not obey the first two

relation of (4.23).Therefore we need to define another operator, when it is contracted

with K of (4.4), will eliminate the zero mode.We will continue the research on these

lines in the future to prove the confinement with the inclusion of the source terms

thru (4.12)

_ __ _



APPENDIX A

r(x) = 0 dt t -le- t Gamma function

r(x + 1) = xr(x) (A.1)

r(n + 1) = n!

r(x) = 2,x dy y2x-1 e-Oy (A.2)

Calculation of E(qo, g)

/+oo-00O

dq *(q)

O(q) = N exp

h
2

+ V(q)] (q)

- (- o)/g

(A.3)

(A.4)

and IN 2 is given as

1
INI2 =

r(1/2)v/

to have the unit normalization

r(1/2)ooE(qo, g) =

dq I412 = 1

dqe- (q-qo)
2/g

2 r00- 2 2
2 1_ 2

=- 9dq- qe
2r(1/2)/ -o e dq2

1 +00
SF(1/2)\- 1-00

dq V(q)e - ( q- qo)2 /2 g

d -e = e 2/4g(-q/2g)

dq
d2 e-q/4g = e-q2/e'9(-q/2g)2

dq2

E(qo, g) =

where

+ V(q)

e-q2 /4g

2g

i



Inserting it in E(qo,g)

2 2 (1)2r(1/2)Vg fo

2r(1/2),V-

1

4g2

1) e-q/2 g + I
2gS4g2

r(3/2)

(1/2g) 3 /2

1

2g

r(1/2) +
(1/2g)1 /2 +1

= -h2  1/2r(1/2)
2r(1/2)4g2

= 2{1 - 91

E(qo, g)= + II
8g

Where

II = (l)vJ
r (1 /2) V2g -0

dq V(q + qo)e - q 2/ 2 g

V(q + qgo) = V(qo) +q 2 (. + bq2) + q3 () +
4 -

the odd powers of q do not give any contributions due to symmetry of the the

integrand.

II = V(qo) +

II = V(qo) +

1
7(1/2)v/

( +

over all result is

h-1
8

1

2 g + g2 +V(qo)8

V(q + qo) = V(qo) + q aqo + 8q

+q 3 (b o) + bq4

1
-a
2

r(3/2)
1

(2g) 3 /-2

1
+(1/2)V

q g + bg2

r(5/2)

(1/2g)51/2

E(qo, g) =

Ref. [41]

(A.5)

1 +
4g II

+q2 (a bq2)
2 4

+ aqo + 8 qq



A

The calculation of the roots of

2a 2
p - + 0 q

g3 + pg2 + r = 0

Define x = g + R3

x3 +cx+d= O c = -p 2 /3 ,
1

d = (2p 3 + 27r)
27

if d + < 0.4 27 The real roots are

Xk = 2 - cos
rr=2J3

( + 1200k)

and

d2/4
cos = T -/

c/27

if T + p > 0 and (c > 0) the real root is

x = 2 - cot 2

where € and b

S d2 /4
cot2 = T C3 /2 7 and tan = [tank]/3

PPENDIX B

+q 2 g 2

+ Qo)

Let

then

(B.1)

k = 0,1, 2 (B.2)

- d>O

+ d<0

+ b>0

- b<0

S+ (2a
b

h2

1 =br
b



if +  = 0 the roots are

x = 2 ::- d>0
-ce -c -Ce

3 3 -~-

1
C = -p 2

3

1- a<u

2

<0

d =-1(2p3 + 27r) =33 2 a27 33(

let us calculate

2(
-- + 27 -33 b b 0

d2  C3  h4  h2 2a
4 27 4b2 33 b b

2 4

4V2
1

36

2a + 2) 6

b

2a )

calculate

27h 2 /b
= 1 q

( 4 2)

36h4/4b2

+ >0( +qo")°

since c < 0 for all values of a and b the possible roots are

2 2 q\ (s)l q 0Xk = +q cos + 120 k)
3 \b/0

and

cos = 1- (h2)+ (h4 ) +d>0-d<0

gk = 1 - +

9k 1 2a+ q2

q
0) E-1 + 2 cos

+ 2 cos

( + 1200ki

+ 1200 k) k = 0, 1,2,

The limit h -- 0 corresponds to € = 180, k = 1

gk(h -+ 0) 2ab

Ref. [43]

c 3

27

1
27

d2 /4
-c 3 /27

k =0,1,2 (B.3)

(B.4)

+ q)

=-1 2a

3 b

+q 0



APPENDIX C

Evaluation of £(t)

c(t) = ( o(t) .0Ot

where I is given by

4o(q, t) = exp [i (q - qo(t)) iro(t)] exp -r(q - qo) 2 (Q- 2 - 2iQP)

o (t) =0o (t) iat Idq I(q, t) 2

x { i(q - qo)7ro qo) 2 (Q- 2 - 2iQ- 1 P)

Sdq (q - qo) I(q, t) 2 = 0

we can evaluate it as

S dq 1,(q, t)12 {r0 o - qo) 2 i2(q,t)l
2 0(-2 - 2iQ- 1P)

(t) / (o 1ko) = 7ogo - i4t (Q-2 - 2iQ-'P)

(q - qo) 2 I(q,t)12

f dq(q - qo2 I 2(q, t)12

f dqO(q, t)12
r(3/2) (Q-1/2) - 3/ 2

1= Q2
J r(1/2)Q

" o o(t) /(o 10o0) =at I -\I -2 I 2iQ-tP)

=7ro4o - Q2I (-2 - 2iQ-1 P)4 at

o(t)) / (o0 100) = 00 o(t)
02

20q2 o (t)) / (0 1o)

+ (0o(t) IV(q)I o (t)) / (Oo Io)

0o(t)> / (oto)
(C.1)

.9a

using

(C.2)

K 0o(t) at

and

00 (t)

and

K o (t)

f dq|(q, t)I2

---- -- -- -- --

-1 (i - )q

- (q-
4

2
(44



1( b2 Q2
(io(t) IV(q)l o(t)) / (¢o1o) = V(qo) + a + -qo 2 +

(see Appendix B)

1
2 1q2 0~(t))

1 ( )(Q_- 2(q - qo) -2 - 2i ) } o(q,t)
Q/i"~)"

= dq li*(q, t) 2( 1) [2 7-
11 (q- qo) (Q-2 2i2 Q )l

= (o 10o) ( 1) - 7r

(t)) / (00 10o)
2 + Q-2 + P2

2 8 2

( K0

b Q4

= dqo(q,t)2- {i r

1
(Q-2

( (

i2

1
2 19q2 0o

2i P)2
Q Q2

~----------i-~;-L--r- __-- ==F=L_--~-iL - ----

2i 1 Q-2
4 +



APPENDIX D

Show that

0) = q0 (x) (0 |) (D.1)

J d dy' [)5) - o0(X)] G-'( - ) [() - 00()] -

x exp - didy) [q(2 - o0(£)] G - 1(,') [0() - o(Y)]

The best way to deal with it is to discreetize the variable X and take the limit at

the end of the calculation.

Let Y = aA where a = {aa2, 3} stand for 3-tuple integers.

Define q$ = (2 = aA) and Ga = G ( = aA, ' = #A)

(4' '~) 4')
-* - 1 200 t

O urn] ,

shift the variable , -+ , + €o (o: finite constant).

(4' (X) ' = o(5)(41'4) + limr d eG~e-p
7B~

Now, we only have to show that the second term is zero.

lim d ,
A-+

e O G- 1 p
G i

where

<(0

1) +-+ exp
1

Proof:

JD(0)0x-)(010(x) 1,0)



If we work in the representation in which Ga, is diagonal

Ga# = gcbap where ga > 0

= lim I do, OV eT 2a

=0

since the integrand is odd for v-variable.

Show that

0-(Y)0^() I = lim I d€,€.€#
A7-+O

e " )G- 1 -22 0)

shift , --- , + 0,

= lim d + o)(# + o)~e-
A---,0

= O() (01()(kI'k) + lim I
X exp {- € vGO2Vv 2 }2 V1 V 2

V

II d [(0o0, + qaq$) + €c€a]
7

Since we have shown above that the integral of odd powers of 0, multiplying expo-

nential is zero we are left only with a quadratic term.

- o()o(0) 'zb) + lim d __-Y 
,A2p 

G-1
doyc06e_2_OjGV 2O'

Let A,,,,2 diagonalize G, 1 2

GV , = AT ogaAac, 2 (ATA = I)

G-1 =AT - 'A

(A pv Tg) 1 (Ap 2
, )

KV) (D.2)

€ , G- 1 €
V1 V2 V



define

0' = ApV 2

V2 = A '

Note

fldo, = J (V) do
7 7

where

J = det(A) = 1

since ATA = I. Inserting all these definitions in the integrand

r m d' AT AT A2 L2 --I
A-- ly C a PP2 /P 1 P 2

after isolating the integrals over Op, and OP2 we are left with

+AT A S lim+Aap 1 42 P1P2 l-+ o

using the formula in Appendix A.

+ 6P2AT AT limPl P2 OP1 #P2 A- o

(f A2,--2 -1

f 2)(,e- 2 P1)P1I

r(3/2)/ (A2g -1/2)3/2(
(r(1/2)/ (A2g-1/2)1

gp (PP2) AP2 ( )

using the continuum version of by = AS(£ - ') over all result is

( ( b) = [Oo(2)qOo(') + G(i, )] (0b0)

(¢¢b)

(s Rb)+N'
/2

(D.3)

d 2 e- A22 9-d 2 2 1P1P

+6, gP Ag T )

+ A T eP1P



APPENDIX E

Show that

jD(O)O(X1j)0(2)'3) 4) (e-(,G-

= {G(xi,x 2 )G(xa,xs) + G(x,x 3 )G(x 2 , 4 ) +G(x,x 4 )G(x 2 , 3)} (I4E.1)

Let do it by discretizing the 5 variable

lim HdO7, 2 e 2

do a coordinate transformation that will diagonalize G-

P = Ap2, V2 or V2= AT ,

= AT AT AT AT limo I d 'q ''
ai1 ae212 Oe3f3 a4Ce4 1 2 JI# 013i4

x exp - A X' AT G-1 ApT o'

where
A T  G - 1 A T  - gp16pl

A1P V2 V2 A 1  Pl P2

=AT AT AT AT lim i2
A-r

The only combinations of (01, /2, 23, 34) yielding non-zero integral values are

P1=/32 , 3 = 4

01 = #3 , 02 = 04

/1 = /4 , /2 = P3

all the other values they can take yield odd integrand (note /1 = /2 = /3 = 04 is

included in the sum over the above combinations.)

= A T A T AT A T lim d$

7

6,#2634 22 3 #2,4 16 2 2 P- 2

utilizing the results of Appendix D we obtain

= {G( 1, 2 )G( 3,' 4) + G( 1, 3)G(' 2, 4 ) + G(£1 ,' 4 )G( 2,. 3 )} (b1) (E.2)



APPENDIX F

Show that

6E[o, G]

boo(,)

1
E[oo, G] = Eq + TR (G - 1 ) +

b b

2 2

TR(KG) +

( , ) (- - *)

bb DTR(GG)
8

where

(V40)2 2 + +

b 2 () 6(-- 0
2

S 1

- o(£) f 2 [Voo(-)]2 + +(5)+
2 o

if

= Jdy{ y Oo(-)] VyS(i - ~) + ao(-)6( - ) + 8go()( - )

+ y ddy {o (-)6(- - -)6(- - -)} G(, -)

and

(F.1)

SE[o, G]

5G(x, y)

where

(F.2)

Ecl =

K(X, ) = -V2 a

b 4
24

SE

Sqo(,)

1 +a-1G-2(-# -4 2 + a +
4 G

7

b
2 4 ( -)24 o

d - d-' K(Y#, -2)G(-2, #)

[02 b -(o + G(2 , )



by dropping the surface term which results from the first term of integrand and

integrating out over ' and ' variables we obtain

SE

S6o(P)
2 {V o()

= (-V2 +a

b
+ aoo(x-) + b0(a8 0

+ G( ,2

) + o()
(F.3)

d-Z G- (, -) +

using

SG(z, z2)
b(Xa-2 6-(X1 - Zl)6(y - 52) + b(x1 - '2)((,2 - '2)SG(,y)

and integrating over all delta functions, we obtain

SE) 6 1G( (G K(

SG(£,9) =SG(M,9) 8 ~ J+~,~

To calculate the derivative of G- 1 respect to G first we work in a

tation then differentiate the identity. That is,

_ S
G-1(z1, z2)__+ G-1

6G(X,9) Y G, "c
G-1 G ,

V1 2 V2V3 = 1 V3

Differentiating both sides with respect to Ga gives

discrete represen-

S S
S(G- 1) G 3 = - G V G

G= - (G ) V2 l V2 SGa )

=- (G-') vV1 2 (6OIW2 ,OV3 + 6CeV36,8V2)

SE

SG(,y )
J di d 2K(zi

b
2

- ob ()
8 0

, z2)G(2, '1)+

dz- G( -, -)G( -, -)



multiply with G - 1 from the right

S

'Gcr
(G-'1 ),, G,, ,G 1, = - (G-1),,2 (S(a 2S/v 3 + V3bvaSOV2)

S

SGB
= -G-1 G1G-1 G-1V1 Ci 'O V4 V1 CV4

Now if we take the trace and use G 1,, 2 = Gv , we obtain

SG TR(G-1) = -2 (G-l)cbGce#a

G TR(G - ) = -2G-2, )
6G(X, I)

The over all result is

SE b

6G(4, 4) 4 2

4 2 2

(F.4)

M..."



APPENDIX G

x
2

dx
a + (X 2 )

xu a
= 2 - In(x/ + u)2c 2c cc

c > 0 u = Va+c x 2

+ a = 3 1 2 ln(x + u)4d2  -axu - -8
4 8 8al~xu

where

u= Vx 2 +a

where

(G.1)

(G.2)
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