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Abstract

I'he earth is often modeled as a series of simple homogeneous layers. Such an ap-

proach can lead to synthetic seismograms which match the dominant arrivals in the

field data very well, but lack the random travel time and amplitude fluctuations

and signal generated noise commonly observed on seismic recordings. These sec-

ondary features are often due to scattering from small-scale variations in the earth.

The small-scale variations are too numerous and distributed too irregularly to allow

deterministic characterization, so these features are often characterized by their sta-

tistical distribution. This thesis is concerned with modeling elastic waves in randomly

deterogeneous media

We first explore the general principles and assumptions concerning statistical char-

acterization and introduce several commonly used statistical models. Both analyt-

ical and numerical techniques have been applied to this problem. Most analytical

techniques assume scattering is weak and use the Born or Rytov approximation to

generate relatively simple closed form solutions. These solutions can be limiting is

some applications because they neglect the effects of multiple scattering, and assume

the incident wave travels though a smooth background medium. In the random me-

dia studied here, it is shown that these assumptions can cause serious errors in the

amplitude and phase of the scattered wavefield. In order to investigate these errors, a

new numerical technique is developed. The technique starts with the elastodynamic

equation of motion. Using the Born approximation and perturbation analysis, the

elastic wave equation is reduced to a single scattering wave equation which can be

solved with finite differences. The utility of the new technique is that both the single

and multiple scattering (as calculated by conventional finite difference techniques)
solutions can be generated for the same complex velocity model. In Chapter 3, this is

done for two different random media. The first is an impedance scattering medium;

a medium which has impedance variations, but no velocity variations. In such a

medium, the dominant scattering mechanism is back scattering and the efficiency

which energy is scattered varies inversely with the size of the heterogeneity. In this
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medium, the two solutions (single and multiple scattering) agreed well, except around

the first arrival. Near the first arrival, the amplitude of the single scattering solution

is consistently greater than the multiple scattering solution. This is a consequence

of the Born approximation, which does not account for the removal of energy in the

incident wave due to scattering. The general shape and arrival time of the scattered

field is consistent with the multiple scattering solution.

In the second model, the material properties were chosen so that the medium con-

tained significant velocity anomalies, but almost no impedance anomalies. Because

scattering is stronger in this medium, agreement between the two solutions is not as

good as the previous case. Again, the single scattering solution had too much energy

in the first arrival, which in turn lead to an overestimated scattered field. Unlike the

previous example, the velocity anomalies also created significant travel time differ-

ences between the two solutions. These errors were present in both the scattered and

incident waves and occurred because the Born approximation assumes the incident

wave travels in the background field (which is often assumed to be homogeneous).

It is generally agreed that the Earth’s crust and lithosphere have heterogeneities.

However, the distribution and exact nature of these heterogeneities have not yet been

resolved. Using the techniques presented in this thesis and data from the NORSAR

and NORESS arrays we develop a model for the statistical heterogeneities present

ander Fennoscandia. In the course of choosing the final model, we investigated many

randomly heterogeneous models. We began with a simple, single layered model with

a Gaussian autocorrelation function. We also considered other single layered mod-

els with more roughness, like that proposed by Frankel and Clayton (1986), as well

as multi-layered models like that proposed by Flatté and Wu (1988). Based on co-

herency measurements and travel time and amplitude fluctuations, we propose that

‘he random velocity variations in the lithosphere can be modeled by as a three lay-

ered random medium. Satisfactory results were obtained when the power spectrum of

the fluctuations in the uppermost layer (0-3 km) was a bandlimited white spectrum

(0.05 km™ &lt; |k| &gt; 1.1 km™', where k is the wavenumber vector) and the rms veloc-

ity variation was 2%. The middle layer was meant to simulate the remaining portion

of the crust (3-35 km) and the fluctuations in this layer were described by the Oth

order von Karman function. The correlation length of the von Karman function was

10 km and there was 3% rms variation in velocity. The third layer extended from

the base of the crust to a depth of 250 km and was characterized by an anisotropic

Gaussian correlation function. The horizontal and vertical correlation lengths in this

~egion were 20 km and 5 km, respectively and there was 2% rms variation in velocity.

Thesis Supervisor: M. Nafi Toksoz

Title: Director, Earth Resources Laboratory

?



Acknowledgments

This thesis directly and indirectly reflects the work of many authors. I say this not to

share the blame for its weaknesses, but instead to acknowledge the people who helped

me to develop, test, and clarify the ideas presented here. In particular I would like

to thank Chris Bradley, Richard Coates, Vern Cormier, Anton Dainty, Joe Matarese,

Jeff Meredith, Mike Prange, Bill Rodi, Arcangelo Sena and most of all my advisor

Nafi Toksoz.

Much of the work done in this thesis was computationally intensive. For this

reason, I would like to thank the nCUBE Corporation for providing the generous

educational discount which allowed ERL to buy one of their 128 node parallel com-

puters. The speed and flexibility of the nCUBE allowed me to use the finite difference

technique to simulate long-range wave propagation in the lithosphere, something I

couldn’t have done with our VAX 8800.

It is easy to forget (I know I sometimes did) that there is more to life than reading

articles, writing papers, and programming computers. I would like to thank my wife,

Annie, for doing her best to provide balance in my life. I know it wasn’t easy. I

would also like to thank my parents. You watched me get in lots of tight spots, but

you seemed to know when to step in and when to let me dig myself out. I benefitted

greatly from learning how to do my own “spin control” and even more by knowing you

were always there. I hope Annie and I can create the same environment for Freddy,

and I hope we make all the right calls, too.

Lastly, I would like to thank my maternal grandfather, who lived with my family

during most of my childhood and had a profound effect on by life. Among other

things, he taught me how to combine a pile a unrelated components into a serviceable

widget. Whether the widget is a leaky garden hose or a complex computer program.

‘he trick is to understand how the parts work. I think he would have been proud to

see how far his teachings have gotten me.



Contents

Introduction

1.1 Thesis Objectives . . . . .

1.2 Large-Scale Variations . .

[.3 Characterization of Small-Scale Variations . . . . . .

Characterization of the Scattered Field . .

Wave Propagation in Random Media

1.5.1 Statistical Modeling . . .

1.5.2 Deterministic Modeling

1.6 Thesis Plan .

2 Seismic Velocities as Random Fields

2.1 Introduction . .. ......

2.2 Seismic Velocities as Random Fields . .

2.2.1 Decomposition of the Velocity Field .

2.2.2 General properties of a Random Field .

2.3 Commonly Used Autocorrelation Functions. . .

2.4 Conclusions . . .

&gt;

2 Scattering in Random Media

3.1 Introduction . . .

3.2 Single Scattering

 -~
A

 rd

9

10

11

12

12

14

14

18

18

19

19

20

24

26

34

34

36

ve



3.2.1

3.2.2

3.2.3

Theory. . . . ..

Limitations of the Born Approximation . . . .

Numerical Implementation . . . . .

3.2.4 Validation of the Single Scattering Solution

3.3 Single vs Multiple Scattering: A Case Study

3.3.1 Attenuation and Coda . . .. ..

3.4 Overview of the Scattering Process

3.5 FK Analysis . . ......

3.6 Conclusions . .

4 Elastic Wave Scattering Below NORSAR

4.1 Introduction . .. . ..

4.2 Scattering Beneath NORSAR

4.2.1 Tectonic and Geophysical Setting

Scattering at NORSAR. . . . . ..

4.3.1 Travel time and Amplitude Variations

4.3.2 Transverse Coherency (NORSAR)

The Coda . ........

Forward Modeling in Random Media

4.5.1 Finite Difference Simulations .

1.6 An Improved Random Lithospheric Model

1.7 Conclusions

5 Summary and Conclusions

5.1 overview . .

5.2 Summary

A Born Scattering

A.l1 Introduction

A.2 The Born Approximation and Single Scattering - -

+ » .

36

38

39

42

44

49

52

53

54

88

88

90

91

g9

0)

94

98

99

101

109

112

154

154

156

170

170

171



A.2.1 Plane P-Wave Source .

A.2.2 Plane S-Wave Source .

A.3 Mie Scattering in a Weakly Heterogeneous Media

A.3.1 Mie Scattering from a Gaussian Inclusion

A.3.2 Gaussian Parameter Function . . .

A.3.3 Exponential Parameter Function

»

”

B Finite Difference Modeling

B.1 Introduction . .. . ...

B.2 2-D Finite Difference Modeling

B.2.1 Numerical Dispersion .

B.2.2 Sources and Boundary Conditions . . . . . . .

B.3 A Point Diffractor. . . . .

173

177

179

183

183

184

206

206

208

210

212

213



Chapter 1

Introduction

1.1 Thesis Objectives

Most wave propagation studies concentrate on identifying the coherent features in

seismic data. These features are often indicative of major structural trends, and are

of great interest in many branches of geophysics. The small incoherent arrivals which

occur between the major reflections and refractions also contain information about

the earth, yet these features are often dismissed as noise, or classified as coda. In

fact, numerous techniques, such as stacking, beamforming, etc have been developed

to suppress these arrivals.

The primary objective of this thesis is to investigate the attributes of seismic waves

which have propagated through a highly heterogeneous medium. This is accomplished

using two different finite difference modeling techniques. One of the techniques is

a conventional second order finite difference technique (Alford et al., 1974; Kelly

et al., 1976), which provides a full, iterative solution to the elastic wave equation.

The second is a new technique which is based on the elastic wave equation and

the Born approximation. The Born approximation has received great attention for

both forward and inverse modeling, because it serves to linearize the elastodynamic

equations of motion (e.g., Nayfeh, 1973; Beydoun and Tarantola, 1988). Although



this approximation has been commonly used to study scattering, there is reason to

question the validity of this approach. The Born approximation assumes scattering

is weak, and as a result three important assumptions arise. First, it is assumed the

incident wavefield passes through the heterogeneous region undisturbed. Second, the

only source of scattering is the interaction of the incident wave with the perturbations

in the medium. As a result secondary scattering is ignored. Third, the total field is

the sum of the incident and scattered fields. Together, these assumptions violate the

law of energy conservation.

The final and most important objective of this thesis is to apply what is learned

from the forward modeling to actual field data. To do this, waveforms from an under-

ground nuclear explosion were analyzed. These data were also compared to synthetic

waveforms generated for a variety of previously published random lithospheric mod-

els (e.g., Aki, 1973; Frankel and Clayton, 1986; Flatté and Wu, 1988). Using travel

time and amplitude fluctuations, coherency measurements and coda generation to

constrain the modeling, we propose that the lithosphere below NORSAR is best

modeled as the three layered model described below.

1.2 Large-Scale Variations

[n whole earth seismology, the earth’s velocity field is often approximated by a series

of radially symmetric shells. Similarly, in exploration seismology the velocity field is

often simplified to constant velocity layers. Data from these simplified models lacks

the high degree of variability often seen on field data. Between the major reflec-

tions and refractions, field observations have small incoherent arrivals that cannot be

accounted for by the model.

Instead of attempting to understand these arrivals, they are routinely dismissed as

‘noise”. As a result, geophysical efforts have been directed towards data processing

techniques to enhance the impact of the coherent arrivals and diminish the incoherent
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arrivals (Robinson, 1957; Mayne, 1962). This limited use of seismic data has identified

many major features within the earth and has established seismic imaging as a major

tool for oil and gas exploration. These successes in both whole earth and exploration

seismology, occurred because the “signal” was used to identify major changes in

lithology and/or structure. In fact, that is the only information the “signal” carries.

It can tell us little of what lies between the interfaces.

It is sometimes the case that the material between major lithographic boundaries

is more important than the boundaries themselves. Of particular interest are the

small-scale velocity anomalies in the crust. These features are often smaller than the

shortest recorded wavelength and can be indicative of changes in lithology, porosity,

pore pressure, fracture density or permeability. The two key features of these vari-

ations are their small size and large number. Both factors coalesce to produce an

incoherent scattered field which cannot be explained by a simple layered model.

1.3 Characterization of Small-Scale Variations

Due to the large number and random distribution of small-scale variations, these

features are often characterized by their statistics (e.g., Chernov, 1960; Hudson and

Heritage, 1981). The advantage of statistical characterization is that it allows some

aspects of the velocity field to be described by only a few parameters. Much like

a horizontal formation in reflection seismology might be characterized by its depth,

thickness and velocity, highly heterogeneous media can be characterized by their

spatial autocorrelation function, correlation length, perturbation index, and average

velocity.

In scattering theory, it is common to normalize both the wavelength A of the

incident wave and the extent L of the heterogeneous region by the scale length of the

scatterers a (e.g., Chernov, 1960; Wu and Aki, 1985c). The product ka = 2ra/) is

the normalized wavenumber, and L/a is the normalized propagation length
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These normalized parameters define different scattering regimes. When ka &lt; .01,

the heterogeneities are too small to individually affect the passage of seismic energy,

thus the spatially varying properties of the medium can be replaced by some effective

bulk properties. For .01 &lt; ka &lt; 1, the low frequency approximation (i.e., Rayleigh

scattering) is valid and the power of the scattered wave is proportional to k*. When

ka ~ 1, the size of the scatterers is comparable to a wavelength. This is often called

the Mie scattering regime, and is dominated by isotropic scattering, with some pref-

erence to the forward direction. When ka &gt; 1, scattering is strongly concentrated in

the forward direction. In this regime, mode conversion and backscattering are small,

so parabolic approximations to the wave equation can provide accurate solutions. For

relatively short propagation paths, L/a &lt; 100, ray theory can be successfully used,

but for longer propagation paths analytical techniques are usually used (Wu and Aki,

1990).

A third parameter is commonly used to quantify the strength of a scatterer. The

perturbation index ¥ is defined as the rms deviation in velocity v (or Lame’s param-

eters, density, etc).

(1.1)

where vy is the average velocity of the medium. If ¥ &lt; .1 the scattered field will

be small compared to the incident field and the Born approximation may give good

_ (2)v= | —

Yo r™r™Ns

results. Stronger variations lead to strong multiple scattering, thus invalidating the

Born approximation.

1.4 Characterization of the Scattered Field

The amplitude and travel time of seismic waves are affected by propagation through

a random medium. If the correlation length of the medium is small, the incident

wave will be strongly scattered by the medium. If the correlation length is large, the

wavefront will alternately be focused and defocused by the medium, creating large



variations in both amplitude and travel time but little scattering. In either case, the

statistics of the wavefield may contain information relating to the statistics of the

medium.

One technique commonly used to estimate the statistics of the wave field is the

coherency. Coherency is a measure of similarity between a pair of time series. The

technique has been used to study spatial and temporal trends in both strong ground

motion (Harichandran and Vanmarcke, 1984) and regional (Dainty and Toksoz, 1990)

studies and is a frequency domain equivalent of the correlation function used by

Bungum et al. (1985) and Ingate et al. (1985). The coherency function is useful in

practice because it provides a dimensionless measure of similarity between two traces.

Due to the variability in traces which have propagated through a random medium,

coherency studies of this kind are often done on arrays of seismic data.

1.5 Wave Propagation in Random Media

Seismic wave propagation through random media can be approached either statisti-

cally or deterministicly.

1.5.1 Statistical Modeling

Most studies of wave scattering in random media use the statistical approach. The

typical methodology is to first assume a spectral model for the random medium, then

attempt through analytical means to predict the statistical behavior of the propa-

gating wave field. This course of action has the advantage that if successful, the

statistical variations in the observed wave field can be directly related to those in the

medium.

In general, there is no exact closed form solution for elastic wave propagation in an

highly heterogeneous medium. Several approximate solutions have been presented,

however. If scattering is very strong, the transportation of energy can be modeled

19



with the diffusion equation. The diffusion models presented by Aki and Chouet (1975)

and Dainty and Toks6z (1975) use energy conservation to derive seismic envelopes for

strong scattering media. These techniques are valid only when all of the energy in the

medium is multiply scattered and no direct energy remains. Thus, these techniques

are of limited use when intrinsic attenuation is strong, or scattering is weak.

When scattering is weak, the single scattering model may provide an accurate

solution (e.g., Aki, 1969; Aki, 1973; Sato, 1977a). These theories have the advantage

that they are well suited to perturbation analyses, where the medium and the wave

field are decomposed into a background part plus a perturbative part. This decom-

position leads naturally to the Born approximation. Chernov (1960) investigated the

applicability of the Born approximation for scattering in random acoustic media. The

generality of his analysis lead to an overly strict validity criterion. Kennett (1972b),

was the first one to extend Chernov’s analysis to the elastodynamic case. His analysis

was limited to two-dimensions and aimed at the problem of a horizontally stratified

perturbation in a layered structure. For this geometry, he found the following validity

condition.

HW
= ran &lt; 1,
Bq T

(1.2)

where w is the radial frequency, fy is the background shear wave velocity, k,. is the

largest wavenumber contributing to the solution, and H, W and © are the the height.

width and strength the scatterer. The strength of the scatterer is measured often

defined in terms of the perturbation index, which is equal to the rms variation nor-

malized by its mean (where the variations may defined in terms of Lamé’s parameters,

density, or velocity). Hudson and Heritage (1981) investigated the accuracy of the

Born approximation for the 3-D elastic case. They present several inequalities which

give the range of validity of the Born approximation and show that in all cases, these

criteria are violated by typical teleseismic frequencies and scatterer sizes. They argue

that to satisfy the validity criteria, observations would have to be made at periods

on the order of 100 seconds, or greater.
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1.5.2 Deterministic Modeling

One way to minimize the uncertainties and errors associated with statistical modeling

is to approach the problem deterministically, that is, construct a “random” medium

with known statistical parameters and investigate that model. This is the approach

taken here.

In this thesis, numerical (finite difference) modeling is used to propagate energy

in a variety of random media. The finite difference technique was chosen because

it can produce a full solution to the elastodynamic equation of motion, and unlike

high frequency approximations (such as raytracing), the technique is valid over a

wide range of scatterer to wavelength ratios. Another advantage of the technique

is the ability to make synthetic seismograms and snapshot pictures of the vector

displacement field at any point in time.

This is not the first time the finite difference technique has been used to study

scattering in random media. Frankel and Clayton (1986) used the technique to assess

the accuracy of Chernov (1960) scattering theory. They also found that the travel

time and amplitude variations in teleseismic arrivals at NORSAR and LASA could

be explained by random heterogeneities having a von Karman distribution and length

scales less than 50 km (a &gt; 10 km). Dougherty and Stephens (1988) used the tech-

nique to study scattering in the ocean crust and found that much of the seafloor

“noise” could be traced to scattering of the primary wave into both scattered body

and Stoneley modes. In this thesis, the finite difference technique is used both to

model single and multiple scattering.

1.6 Thesis Plan

In the scattering literature, highly heterogeneous media are often approximated by

random fields. The advantage of this approach is that a complex, multi-dimensional

velocity function can be expressed in terms of a few simple statistical parameters. The
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conditions under which statistical characterization is justified are outlined in Chap-

ter 2. One statistical parameter which can be used to describe the variability of a

velocity field is the autocorrelation function. The properties of three commonly used

autocorrelation functions, the Gaussian, exponential, and von Karman functions are

investigated, and their likely applicability to the earth is discussed. All three spectra

are nearly flat at low wavenumbers, but at higher wavenumbers the Gaussian falls off

exponentially, while the exponential and von Karman fall off with a power law depen-

dence. The fall off rate controls the roughness of the medium. Those characterized

by the Gaussian autocorrelation are smoothly varying, while the exponential and von

Karman functions are more highly textured. Although not directly related to wave

scattering, the ideas presented in Chapter 2 are important to the developments in the

later chapters.

In Chapter 3, a new semi-analytical technique is introduced to calculate the single-

scattered field. The technique is based on the Born approximation and makes use

of the full elastic wave equation. In this technique, an incident wave is either an-

alytically or numerically propagated in a background medium. When the incident

wave interacts with the perturbations in the medium, body forces are generated and

introduced into a separate finite difference calculation. Unlike similar analytical tech-

niques (Appendix B), the body forces are calculated numerically making the technique

applicable to arbitrarily complex velocity models. The ability to produce synthetic

seismograms based on the single scattering approximation in arbitrarily complex me-

dia is unique and of great interest because these traces can then be compared one to

one with traces from the multiple scattering solution. These comparisons are made

in Chapter 3. In addition, the effect of the single scattering approximation on coda

and coherency statistics is investigated.

[n Chapter 4, numerical simulations and data collected at the NORSAR and

NORESS arrays are used to evaluate several different lithospheric models. We begin

the study with the simple single layer models proposed by Aki (1973), Capon (1974)

15



and others. These models matched the variations in travel times and amplitude

well, but could not generate the same amount of coda observed in short-period data.

The overlapping two-layered model proposed by Flatté and Wu (1988) also matched

the observed variations in travel times and amplitude and produced more coda, but

the wavefield produced by this model was considerably more coherent than the field

data. After experimenting with numerous statistical models of the lithosphere, we

found a three-layered model which matched the variations observed at NORSAR

better than any previously proposed models. The autocorrelation of the fluctuations

in the top layer (0-3 km) is a bandlimited white spectrum with 2% rms velocity

variations. We found this layer necessary in order to match the observed variations

across small array such as NORESS. The middle layer (3-35 km) is characterized

by the Oth von Karmén function and has larger (3%) velocity variations. This layer

contributes to both the generation of the coda, and to the travel time and amplitude

variations observed at the surface. The bottom layer (35-250 km) is characterized

by a Gaussian autocorrelation and 2% rms velocity variations. We found the best

results when this layer was made to have a 20 km correlation length in the horizontal

direct and a 5 km vertical correlation length. Evidence from seismic profiles near

NORSAR (e.g., Cassell and Fuchs, 1979) and coupled-mode inversions (e.g., Kennett

and Nolet, 1990; Kennett and Bowman, 1990) also suggest that heterogeneities in

the upper mantle might have different scale lengths in the horizontal and vertical

directions. In particular, Kennett and Bowman (1990) analyzed data from seismic

arrays with apertures between 100 to 1000 km and suggested that the heterogeneities

in the upper mantle have horizontal scale lengths on the order of 300-400 km, but

a vertical scale length of about 100 km at a depth of 200 km. They also suggest

the vertical scale length might increase with depth. These studies used surface wave

data with frequencies on the order of 0.02 Hz and body waves with frequencies on the

order of 0.04 Hz, which might explain the larger scale sizes observed in these studies.

Chapter 5 contains the conclusions which can be formed from the material pre-

16



sented in this thesis. In this chapter, there is a review of the technique used to

generate the single scattered field, as well as a summary of some of the differences

between the single and multiple scattering solutions. Limitations in single scattering

theory lead us to use finite difference modeling to calculate the multiple scattering

solutions presented in Chapter 4. These data are reviewed in Chapter 5, as 1s a

model for the random heterogeneities thought to exist in the lithosphere beneath the

NORSAR array.

17



Chapter 2

Seismic Velocities as Random

Fields

2.1 Introduction

Velocity variations in the earth can be separated into two broad classes; those which

are “organized” enough to be treated discretely and those which are not. Large scale

lithographic boundaries and small isolated objects fall into the first category, which

we will refer to as deterministic variations (or deterministic scatterers). The second

category is characterized by small-scale features such as subtle velocity variations,

or localized changes in composition, saturation, pore pressure, etc. These variations

are often irregularly distributed and so numerous and small that they can only be

treated effectively with statistical techniques; hence the name stochastic or random

variations.

Waves scattered by discrete scatterers tend to produce strongly coherent arrivals.

The coherency of the scattered waves makes them clearly visible across neighboring

seismometers, thus these were the first waves to be studied by seismologists. The

scattered field due to stochastic variations lacks coherency. These waves are thought

to be the cause of the significant travel time and amplitude anomalies which are of-

IR



ten observed, even between elements of tightly spaced arrays (Aki, 1973; Wu, 1982a;

Ringdal and Husebye, 1982; Frankel and Clayton, 1986; Flatté and Wu, 1988). Be-

cause of their small amplitudes, uncorrelated nature and erratic arrival time, these

waves have historically been treated as noise. Only recently has their importance

in crustal studies (e.g., Aki, 1973; Aki and Chouet, 1975; Wu, 1985; Frankel and

Clayton, 1986), upper mantle studies (e.g., Berteussen et al., 1975b; Mereu and Ojo,

1981; Ojo and Mereu, 1986), core-mantle boundary studies (Haddon and Cleary, 1974;

Bataille et al., 1990) and reservoir characterization (Greaves and Fulp, 1987) been

realized.

2.2 Seismic Velocities as Random Fields

In the scattering literature, highly heterogeneous media are often represented by

random fields (e.g., Capon, 1974; Sato, 1978; Macaskill and Ewart, 1984; Wu and

Aki, 1990). The justification for such an approach hinges on the assumption that the

scale length of the heterogeneities is much smaller than the extent of the study area.

When satisfied, the complex, multi-dimensional velocity function can be expressed

in terms of a few simple statistical parameters. Due to practical considerations, the

most commonly used statistical parameters are the low order statistical moments (the

mean, variance, and correlation function).

2.2.1 Decomposition of the Velocity Field

With the above discussion in mind, consider the velocity function v(z) which may

vary with position z over some region of the earth ®. The velocity function can be

decomposed into two parts; a deterministic part v,(z) and a stochastic part ov(z),

v(z) = vo(z) + év(z) z € RN. (2.1)

It should be pointed out that the two different types of heterogeneities, deterministic

and stochastic, are not inherent properties of the medium. This decomposition is

10



arbitrary and done simply as a modeling approach. With this in mind, we will assume

that the deterministic (or background) part of the velocity field contains all large-

scale velocity variations. Such variations might arise from gross changes in lithology;

where a shale meets a limestone, for instance.

Although interesting, scattering from discrete variations is well understood, and

numerous techniques have been developed (e.g., travel time analysis, migration, 7-

p methods, etc.) which are capable of estimating that portion of the velocity field

(e.g., Aki and Richards, 1980; Claerbout, 1985). In this thesis, the focus will be

on scattering from the small-scale features of the velocity field. Most materials in

nature contain stochastic variations, yet the distribution of these features is poorly

understood.

Stochastic variations are capable of affecting the passage of seismic energy, al-

though usually to a lesser extent than deterministic variations. Three mechanisms

are commonly attributed to scattering from stochastic variations. One is the genera-

tion of coda; scattered energy arriving at the receiver after the direct arrival (Aki and

Chouet, 1975; Herrmann, 1980). A second is attenuation due to scattering; energy

which is scattered by the medium and never arrives at the receiver (Dainty, 1981;

Wu, 1982b; Dainty, 1984). A third is through travel time fluctuations; changes in

arrival time of the initial pulse due to fluctuations in the medium (Aki, 1973; Ojo and

Mereu, 1986; Flatté and Wu, 1988). The first two mechanisms are interrelated and

have been shown to be controlled by backscattering. Travel time fluctuations arise

from scattering within a narrowly defined cone about the propagation direction, and

are thus controlled by forward scattering. These three mechanisms contribute to the

complexity of most seismograms observed in the earth.

2.2.2 General properties of a Random Field

A random field provides a probabilistic description of a physical phenomenon which

varies spatially according to the laws of probability. For statistical reasons. it is often
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necessary to treat a random field as one element randomly selected from an infinite

population or ensemble of fields. Each member of the ensemble shares the same

statistical properties, but is a unique realization of that ensemble. In this context,

the earth’s velocity field is but one realization of an infinite ensemble of functions

which might have been observed.

The statistical description is achieved by associating each point in space z with

a random variable V(z ). It is assumed that the range of z and sample space of the

random variable are infinite,

0&gt; J|z| &lt;o0

-00 &lt; V(z) &lt; oo, (2.1
- J

and the probability density function (pdyf) and all the joint pdfs are known . When

this is true, a field can be described by an ordered set of random variables V(z).

At any point in space, the univariate moments of the random field can be written

in terms of its pdf fy (z)(6v),

EV(@)™) = [ (60) fue(dv)d(6v). 2.3)

where m is the order of the statistical moment and E denotes the expectation opera-

tor. Since little is known about the statistical distribution of scatterers in the crust.

it is commonly assumed in the scattering literature that velocities are Gaussian dis-

tributed. Then, the pdf of the velocity field can be completely described by its mean

(first statistical moment) and variance (second statistical moment).

Similarly, the bivariate moments of the random field can be written in terms of

its joint probability density function (jpdf),

E[V(z1)™V(zs)"] = /- / (600) (692)" f(a) (za) (B01, Su2)d(801)d(6v3). (2.4)

The multivariate moments describe the dependence between values of the velocity

field at two points in space.
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The simplest, and in practice most important, of the bivariate moments is the

covariance. We define the autocovariance function (acuvf) by,

wv(zi,z2) = E[(V(z1) — E(z1))(V(z2) — E(z2))] = Cov[V(z1),V(z2)], (2.5)

where Cov denotes the covariance between two random variables. Since the acvf

depends on the variance of the distribution, a normalized form of the acvf is often

used to describe random fields. The normalized acvf, or autocorrelation function

(acf), is given by,

Cov[V(z,),V(zpyv(zi,z,) =CovlV(zy),Viga)]
VVar[z1]Var[z,]

where Var is the variance of a random variable. From these two relations, it is clear

that

wv(Zi, 22) :

pvv(z1,z2) = Troi rmriznis) (2.7)

If the acvf depends only on the spatial separation, the random field is said to be

stationary (Tatarski, 1961). Then, the acvf and the acf can be simplified to

ywv(zi,z22) = Vyv(za — 21). 2.8)

and

Uyy(zo —z1)
pvv(Zi,Z2) = TT Uyu(0) (2.9)

Stationarity is almost always assumed in seismic scattering studies, in part because

it simplifies most analytical approaches.

One can imagine regions in the lithosphere where the fluctuations in the velocity

field have a preferred orientation. One example might be the deposition of overlapping

lenses with different lithologies. The lens shape suggests that the correlation length

of these features might be different in the horizontal and vertical direction. Although

each lens may have isotropic elastic moduli, the composite medium may display an

“effective” or “apparent” anisotropy. The preferred orientation of the fluctuations

should be reflected in the acvf. For simplicity, it will be assumed that all azimuthal
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variation in the acf can be explained through the dimensionless ellipsoidal norm,

1/2

U(zy—z,)=@ (22 -20)7Q a: —z1)) J, (2.10)

where () is a symmetric, positive-definite matrix. The eigenvectors &amp;;,¢ =1,2,3 of Q

point along the axes of the ellipsoid, and the eigenvalues ); are inversely proportional

to the square of the correlation length along that axis, such that

3

Q =) Niéé]
- 1=1

f the fluctuations have no preferred orientation, Equation 2.11 reduces to

Q =A,

(2.11)

(2.12)

where [ is the identity matrix. Then for a stationary, isotropic random field, the acvf

and the acf depend only on the spatial separation r =| z, — 2 |.

Yvv(Z1,Z2) = Uyy(r), 2.13)

and

Yvv(r)
ovv(z1,22) =Tv(0) (2.14)

Under these assumptions, the autocovariance and autocorrelation functions have sev-

eral useful properties.

l. The zero lag value of the acvfis equal to the variance of the distribution. Then,

from Equation 2.7, the zero lag of the acf is unity, pyv(0) = 1. This property

makes it possible to normalize different distributions based on their total vari-

ance (zero lag value of the acf). It can also be shown that | pvv(r) |£1 for all

yo

2. If the random field is continuous, then pyv(r) must be a continuous function of

the lag r (Jenkins and Watts, 1968).

3. Lastly, the power spectrum of a random field is the Fourier transform of its

correlation function (Tatarski, 1961). This property is central to the technique

ased to construct the realizations presented in the later chapters.
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2.3 Commonly Used Autocorrelation Functions

I'he autocorrelation function is commonly used to characterize random fields and

is a measure for quantifying the similarity between neighboring points in a random

medium. It has the property that it is the Fourier transform of the power spectrum

(Tatarski, 1961). This relationship allows us to build realizations from a desired

correlation function in the wavenumber domain. Throughout this thesis, realizations

were constructed by convolving the square root of the power spectrum with a phase

term of the form e*, where 0 is a random number drawn from a uniform distribution

over the range 0 &lt; 6 &lt; 2x. Since the norm of the phase term is one, the shape of the

power spectrum and the total power within that spectrum are unchanged.

Although the statistical derivation outlined above was carried out for the con-

tinuum case, all computations were performed on a digital computer. As a result,

it was necessary to convert the continuum equations to their discrete counterparts.

The conversion is known to be inaccurate if the discrete medium is not well sampled

(e.g., Jenkins and Watts, 1968; Bracewell, 1978). To minimize these errors, special

care was taken to ensure that the power at the Nyquist frequency was small. This

was necessary because truncation of the power spectrum at the spatial Nyquist is

equivalent to convolution with a rectangular window function. Prange (1989) showed

that when this occurs, oscillations are introduced into the acf.

Three correlation functions have received a great deal of attention in the scat

tering literature; the Gaussian, the exponential and the von Karman functions (e.g.,

Chernov, 1960; Tatarski, 1961; Dainty, 1984; Frankel and Clayton, 1986; Wu and

Aki, 1990). The commonly used form of these functions and their power spectra are

given in Table 1, and shown graphically in Figure 2-1.

In both the Gaussian and exponential functions, the correlation length a marks the

lag where the correlation function has the value e~! (Figure 2-1). In the wavenumber

domain, both spectra are flat out to a corner wavenumber which is approximately

equal to 1/a. The difference between the two spectra is most noticeable at higher

24



wavenumbers, where the Gaussian falls off exponentially, and the exponential falls

off as k~(N+1) where N is the number of space dimensions. The fall off rate of the

spectra controls the amount of roughness in the realization. Spectra with more energy

at high wavenumbers are expected to show more roughness (Figure 2-3) than those

which are localized near zero wavenumber (Figure 2-2).

The von Karman function was first introduced to characterize the random velocity

field of a turbulent medium (von Karman, 1948). In the spatial domain, the von

Karman function is peaked about the origin. The peak is especially severe when

v = 0, since then the modified Bessel function K, goes to infinity as r/a goes to zero.

Although the parameter v can take on any value in the range 0 to 1, is has some

special properties at 0, 0.3, 0.5 and 1. When v = 0 the spectrum defines a multi-

dimensional Markov field (Goff and Jordan, 1988) v = 0.3 defines Kolmogorov’s

turbulence (Wu and Aki, 1990), while for » = 0.5 the von Kirman function simplifies

to an exponential and when » = 1.0 to an autoregressive field.

In this thesis we will be most interested in the von Karman function where v =

0. Our reason for choosing this parameterization is two-fold. Earlier studies have

shown that it might best describe the random heterogeneities which exist in the

crust, (Frankel and Clayton, 1986; Goff and Jordan, 1988; Toksoz et al., 1988). In

addition, the Oth order (v = 0) von Karmdn function is least similar to the Gaussian

and thus will offer us a suitable comparison to that function.

The peakedness of the correlation function leads to a wide spectral representation,

indicating that media characterized by the von Karman function contain a significant

amount of roughness (Figure 2-4). As in the Gaussian and exponential functions,

the power spectrum of the von Karman function is flat up to a corner wavenumber

roughly equal to 1/a. The difference is that at higher wavenumbers the spectrum falls

off as k=(M+2)|considerably slower than the Gaussian or exponential functions. Thus

for the von Karman (and exponential) function, 1/a defines a corner wavenumber and

the parameter » controls the rate of decay of the power spectrum (Figure 2-1).
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The von Karman function has an additional property that its slope is discontinuous

at zero lag. This property qualifies the von Karman function as a fractal (Mandelbrot,

1977). Fractals are unique and of interest because they contain variations on all

wavelengths. Since many physical characteristics in the crust also display variation

on a wide variety of length scales, this autocorrelation function may be well suited

to crustal applications. The self-similar nature of fractals can be easily seen by

examining the variance as a function of wavenumber. Figure 2-5 shows a series of

1-D realizations taken from the three acf described above. All three realizations have

the same correlation length (a = 20 m) and were generated by the same random

seed. At low wavenumbers there is little variation in shape and variance between the

traces. This is consistent with the power spectra (Figure 2-1), which are flat at low

wavenumber for all three functions. At high wavenumbers, there is no variance in the

Gaussian trace, and the variance in the exponential trace is smaller than it was at

low wavenumber. Thus, for these media, the variance over equal logarithmic intervals

of wavelength decreases as the wavelength decreases (Frankel, 1989). This is not so

for the Oth order von Karman function. The variance for that function is roughly

constant over length scales smaller than 27a (Figure 2-5).

At this point it is worth restating a subtle distinction. Three acf are commonly

ased in scattering literature to represent spatial velocity fluctuations in the earth;

she exponential function, the von Karman function, and the Gaussian function. It is

important not to confuse the Gaussian acf with the Gaussian statistics of the medium.

The former describes the spatial dependence of the medium, while the later describes

the pdf of the random variable.

2.4 Conclusions

[n this chapter we have outlined the statistical background necessary to generalize

the complex velocity fluctuations in the earth to a random field. Statistical charac-
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terization is considered reasonable because changes in lithology, fracture density, pore

pressure, regional stresses, etc, all cause seismic velocities in the earth’s crust to vary

irregularly with position. Many of these features are too small and too numerous to

define deterministically, thus we have little recourse but to treat them stochastically.

Although all the features mentioned above can affect seismic velocities, their spa-

tial extent may vary by many orders of magnitude. Contrast a typical micro-crack

which may be only a few microns wide and a fault zone which may be a kilometer

wide; the range of length scales is 10 orders of magnitude. This wide range of length

scales presents a problem when numerical techniques are used to model wave propa-

gation in the earth. Most often only the large-scale variations (i.e. variations larger

than a seismic wavelength) are included in the velocity model. As a result, synthetic

seismograms generated from these models often lack the “background noise” observed

in real-earth seismograms. By including these small-scale random features, we are

able to achieve a better match between the synthetic seismograms and those recorded

in the earth. We do this not only to better model wave propagation in the earth, but

also in an attempt to understand the velocity distributions within the earth. These

distributions are capable of describing a little known and poorly understood aspect of

the earth and may hold great potential in reservoir characterization, fracture density

studies, seismic anisotropy, mantle studies (with respect to convection), etc.

In this chapter we also introduced the autocovariance functions most commonly

cited in the scattering literature. We will use these functions in the chapter on forward

modeling in stochastic media. It was shown that random processes with Gaussian

autocorrelation functions give rise to smoothly varying realizations, while random

processes with von Karman autocorrelation functions produce realizations with a

strongly textured appearance.
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TABLE 1

Correlation Functions and Their Spectra

Gaussian Exponential von Karman

Correlation Function

{-D Power Spectrum

2-D Power Spectrum

3-D Power Spectrum

i5

"I

nl

avme—krat/4

2 2.2

1 —kra®/4
9

(ay/m)le—kra®/4

1 r1Y

FI) K,(r/a)

2a I'(v + 1/2) 2712,

| + kZa? T(r) (14 k2a2)v+1/2

a’ I'(v+1) dra?
‘1 + k2a2)3/2 T(r) (1+ k2a2)+!

8ral T(v + 3/2) 813/243

(14+ k2a?)? T(v) (1+ k2q2)v+3/2

IR



2.0 BE
Sm

Autocovariance Functions

Tth Order von £arman

_

 [| 0

) §

00

\

_~ Gaussian

_- Exponential

AN
admiam—

Normalized Lag (lag/a)
 Zz

| D Power Spectra

 500

re

ny

N

|
3

x

AN Oth Order von Karman
N =

Exponential

Gaussian AN

LY

‘

x

 N\

aad

)) 100
la
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Chapter 3

Scattering in Random Media

3.1 Introduction

Seismic wave scattering is a complex phenomenon which depends on the size, dis-

tribution and magnitude of the heterogeneities in the earth. In general, the exact

distribution of these heterogeneities is unknown, and we have no recourse but to use

some simplified model. Historically, the earth has often been modeled as a simple

stratified medium, each of the strata having constant velocity and density. Seismo-

grams from these models tend to match the gross features recorded in field data, but

lack the variations in amplitude and travel time and the incoherent energy which is

often observed after the major arrivals. Both of these features are symptomatic of

scattering from small-scale changes in velocity or density.

The scattering problem is difficult to solve exactly, in part because the problem

is recursive. That is, a wave scattered from a particular heterogeneity is further

influenced by other heterogeneities in the medium. When scattering is weak, it is

common to consider only the incident wave and the first scattered wave. This is the

single scattering solution (e.g., Aki, 1969; Aki and Chouet, 1975; Sato, 1977a; Sato,

1977b; Aki, 1980; Wu and Aki, 1985¢c; Chouet, 1990). The problem is often further

simplified by invoking the first Born approximation, which will be referred to as simply
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the Born approximation. In the Born approximation, it is assumed that the incident

wave is unchanged during propagation through the heterogeneous region. As a result,

energy scattered from the incident wave is not subtracted from the background field

and the total energy in the medium increases with time. Although this limitation is

clearly stated in much of the scattering literature, the Born approximation continues

to be used for both forward and inverse modeling of random continua.

Whereas most analytic solutions for scattered waves are valid only when scattering

is weak, it may be possible to solve the problem exactly via numerical methods.

The first numerical simulations of seismic wave propagation in stochastic media were

accomplished using a two-dimensional ray tracing technique (Mereu and Ojo, 1981).

In that study it was found that the variations in travel time and amplitude of the

incident wave are controlled mainly by the long wavelength variations in the medium.

Frankel and Clayton (1984) used the finite difference technique to model acoustic

waves in random media and were able to produce coda waves and study apparent

attenuation. For the three random media they studied (characterized by the Gaussian,

exponential, and von Karman autocorrelation functions), they found that apparent

attenuation increased with frequency until the correlation length of the scatterers

was comparable to a wavelength. At higher frequencies, there was no decrease in

apparent attenuation in the exponential and von Karman media, but there was a

noticeable decrease in the Gaussian media. These results agree well with analytic

solution (Dainty, 1984). Finite difference modeling has also been applied to the

elastic wave equation; both to study the relationship between the medium and the

observed scattered field (Frankel and Clayton, 1986; McLaughlin and Anderson, 1987;

Dougherty and Stephens, 1988) and to study the response of typical seismic processing

streams used on data collected in highly heterogeneous regions (Gibson and Levander,

1988).

In this chapter, the focus is on the differences between the single and multiple scat-

bering solution. To accomplish that end, a new semi-analytical technique to calculate
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the single scattering solution is developed. The technique uses single scattering theory

and the Born approximation to calculate the equivalent body forces in the medium

due to the interaction between the incident field and the heterogeneities. These equiv-

alent sources are then propagated in the background medium via the finite difference

technique. The most important advantage of this new technique is that it can be used

to generate the single scattering solution for any particular velocity model. This will

allow us to compare the single scattering solution to the multiple scattering solution,

as calculated by a conventional finite difference technique, for a variety of random

media. It is important to point out that both techniques make use of finite difference

modeling, but in one case (the single scattering solution) special steps are taken to

include only single scattered waves in the solution.

3.2 Single Scattering

3.2.1 Theory

Consider an isotropic, elastic medium which is homogeneous except for some small

region RX. Outside the region R, let A, uo, and py be Lamé’s parameters and density.

[nside R, the material properties can be written as the sum of the homogeneous

parameters plus a spatially varying perturbative term,

Mz) = d+6Mz) A=0 z2¢R

mz) = po+éu(z) bu=0 z¢R

p(z) = po+ép(z) bp=0 z¢R. (3.1)

Both inside and outside R, particle displacements can be described by the general

elastodvnamic equation of motion (Aki and Richards, 1980)

ot; — (AV wu); — [p(wj + uj], = Si, (3.2)

where u = u(z,t) is the displacement vector, and S = S (z,t) is the body force

vector.
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Outside R, the material properties are spatially invariant and Equation 3.2 can

be simplified to

pot; — (Ao + po)(V 1); — poV3u; = S,. 7)I.

‘inside R Equation 3.1 can be inserted into Equation 3.2.

potti — (Ao + po)(V + 1): — po Vu; = S; + Qs, [3.4
 &gt;

whe: =

Qi = —6pit; + (SA + 6p) (Vw)i+ 6uV2u; + (6X);V- uw + (8) ;(wi; + uji). (3.5)

Notice that Equation 3.4 is similar to Equation 3.3, with terms involving the hetero-

geneities appearing as a body force term.

If the scattered field is small compared to the incident field, the problem can be

simplified by introducing the first Born approximation. Under that assumption, the

displacement field can be decomposed into two parts; the incident field «© and the

scattered field u!,

u=u’+u'

lu? &gt;] uw!

3.6)

(3.7)

[t is assumed that scattering is weak enough that the perturbations in the medium

have no effect on the incident wave and all scattering is due to the interactions between

the incident wave and the perturbations in the medium (i.e. secondary scattering is

ignored).

Inserting Equation 3.6 into Equations 3.4 and 3.5 and neglecting terms involving

the interaction between the scattered field and the perturbations in the medium yields,

potty — (Mot 10) (V1.2) i — po V2 ud + poit — (Mo + po) (Vu!) i— po V2ul = S;4+Q2, (3.8)

wher Tr

Q7 = =p + (8A + 8u)(V- 1%); + 6uV2ul + (61),V- 1° + (6p) 5(ug; + ud). (3.9)
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The first three terms in Equation 3.8 account for the displacements of the inci-

dent field in the homogeneous background. From Equation 3.2 these terms can be

subtracted, leaving an equation of motion for the scattered field,

poi; (Ao + Io)(V . ul }. —poViu
1

Q} (2.10)

Under the Born approximations then, both the incident and scattered fields travel in

the background medium. As a result, the incident wave is not affected by the pertur-

bations in the medium, and the scattered field is generated only by the interaction

oetween the incident field «° and the perturbations.

3.2.2 Limitations of the Born Approximation

Although the Born approximation in commonly used in both forward and inverse

modeling, surprisingly few studies have been published which explore the range of

validity of the technique (e.g., Chernov, 1960; Hudson and Heritage, 1981).

Chernov (1960) showed that it was possible to estimate the power carried by

the scattered field in a random acoustic medium. In that derivation, gradients in

the material properties were neglected (i.e. smooth perturbations only) and it was

assumed that the receiver point was far from the heterogeneous region. Then, for a

medium with a Gaussian correlation function, the ratio of the power in the scattered

field to the power in the incident field is given by

Al 2 2

= = VrikaL(l — eH) (3.11)

where 7 is the rms deviation in the refractive index, k is the wavenumber of the

incident wave, a is the correlation length of the medium and L is the propagation

length within the heterogeneous region.

From Equations 3.11 and 3.7, the range of validity for the Born approximation in

an acoustic medium is given by

Jrika)L &lt; 1, for ka
a

[a
/

cn2)
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Stars &lt;1, for otherwise.
a

L
‘1

13)

When ka is small, the wavelength is much larger than the scatterer, and the scattered

field has the characteristic Rayleigh scattering k* dependence. When ka is large, the

scattering coefficient increases as the square of the ka. In either case, it is clear that

the Born approximation is probably not adequate when the propagation path is long

compared to the correlation length of the medium. This is precisely the case in a

random continuum studied here.

Hudson and Heritage (1981) carried out a similar analysis for the elastic wave case.

Using several simplifying assumptions, they were able to define a range of validity for

the Born approximation,

(2 a max(A,fi)&lt; 1 (3.14)

where is the maximum angular frequency, f is the background shear wave velocity,

d is the size of the region bounded at each instant of time by the scattering centers

corresponding to scattering from the incident wavefront to the observer by the least

time path and X, 7 and p are the normalized rms deviations in Lamé’s parameters

and density. In that study, the authors warn that Equation 3.14 is extremely strict

and the Born approximation will work well in many media which violate this limit.

These studies suggest that although the Born approximation has been shown to

produce excellent agreement with other analytical solutions when the scatterer is a

discrete, isolated feature (e.g., Wu and Aki, 1985c¢), the technique may not be valid

for random continuous media

3.2.3 Numerical Implementation

[n Appendix A, the single scattering and Born approximations are used to generate

closed form solutions to a variety of scattering problems. In all cases, the inhomoge-

neous region is assumed to be a single, discrete, isolated anomaly. These solutions are
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useful for gaining insight into the nature of scattering, but they may not be adequate

to study scattering in the earth. An alternative to these analytical solutions is to

solve solve the problem numerically. The advantage of numerical solutions is that

they can be used to study scattering in media which may be too complex to study

with known analytic techniques.

Many numerical techniques exist which can be used to compute synthetic seismo-

grams in laterally heterogeneous media. High frequency techniques such as raytracing

are valid only when the size of the scatterer is large compared to a wavelength (e.g.,

ka &gt; 10) (Cerveny et al., 1982). Methods based on Kirchoff-Helmholtz integration are

very accurate for sharp interfaces, but these techniques ignore the effects of multiple

scattering and are invalid in smoothly varying media where the size of the scatterer is

similar to that of a wavelength (Scott and Helmberger, 1983). Perturbation methods

consider only scattering of the incident wave, thus cannot be used to study media in

which multiple scattering may be important (Kennett, 1972a; Prange, 1989). Finite

difference modeling overcomes many of these shortcomings and has been used success-

fully in a number of scattering studies (e.g., Flatté and Tappert, 1975; Macaskill and

Ewart, 1984; Frankel and Clayton, 1984; McLaughlin et al., 1985; Frankel and Clay-

ton, 1986; McLaughlin and Anderson, 1987; Dougherty and Stephens, 1988; Tokso6z

et al., 1990a).

The chief advantage of the finite difference technique is that it is capable of prop-

agating the complete wavefield through an arbitrarily complex model. The technique

is accurate over a wide range of scattering regimes (0.1 &lt; ka &lt; 1000), and all wave

types (direct, reflected, diffracted, and guided modes) are included in the solution.

[n addition, seismograms can be calculated at any point in the medium and “snap-

shot” pictures of the displacement field can be generated over the whole extent of

the model. The snapshot pictures have proven to be extremely useful as they provide

an excellent opportunity to view both mode conversion and coda generation. The

main disadvantage of finite difference modeling is its computational burden. This has
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proved to be the limiting constraint in extending the technique to three dimensions.

The finite difference scheme used throughout this study is presented in Appendix B.

It is an explicit, second-order scheme in which displacements are propagated on a dis-

crete grid. The material properties of the medium, A, px, and p are allowed to vary

freely as a function of position and are discretized at the same spatial position as the

wavefield. The second-order scheme was chosen because it was easy to implement

and it allowed the two components of the displacement vector to be calculated at the

same spatial position (unlike a staggered scheme, where displacements and stresses

are calculated at different points in space). Also, the non-staggered scheme technique

works well with published free surface and absorbing boundary conditions. The cost

of these simplifications is a loss of accuracy, which we will show can cause observable

errors in the wavefield.

The algorithm to numerically compute the single scattering solution is straight-

forward. First, the incident field is propagated one time step on a finite difference

grid. The Born approximation states that the incident field is unaffected by the

perturbations in the medium, therefore the velocity field for this simulation is the

background field. Next, the source term arising from the interactions between the in-

cident wave and the scatterers is calculated from Equation 3.9. This body force is then

introduced into a second finite difference simulation which has the same background

velocity model (Equation 3.10). The second finite difference simulation is updated

one iteration and the process is repeated. If desired, the background (displacement)

field may also be simultaneously propagated on the second finite difference grid, thus

providing the total (single scattered) field.

It is important to note that the new technique is not meant to replace conventional

finite difference techniques. It is simply a technique which can be used to obtain

the single scattered solution for any complex velocity model. Therefore, this new

technique and conventional finite difference modeling are complimentary, and for the

case of an isolated point scatterer should converge to the same solution. In the next
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section, we will exploit this, and use the conventional finite difference technique to

assess the accuracy of the numerically derived single scattering solution.

3.2.4 Validation of the Single Scattering Solution

In this section, the scattered field due to a plane P-wave incident on a point diffractor

is calculated using both the single and multiple scattering finite difference techniques.

The incident wave was a Ricker wavelet with a center frequency of 60 Hz and the

scatterer was a point diffractor with a 33% perturbation in yu. The resulting displace-

ments were recorded by a circular array of receivers centered about the diffractor with

a radius of 100 m (Figure 3-1).

To limit errors due to inaccuracies in the finite difference technique, the dominant

wavelength of the source was sampled at 60 points per wavelength (PPW). Since

the frequency band of the source extends to three times the center frequency and

the medium was a Poisson solid, the highest frequency shear waves (waves with the

shortest wavelengths) were sampled at a rate of greater than 10 PPW. At these

sampling rates, the maximum errors due to the finite difference technique should be

less than 5%, and at the center frequency errors should be less than 2% (Appendix B).

Figures 3-2 and 3-3 show the radiation patterns for P-P and P-S scattering for both

the single and multiple scattering solutions. The radiation patterns were calculated

by first converting the horizontal and vertical components of the displacement field

to radial and transverse motion relative to the position of the scatterer. Then the

traces were enveloped and the maximum displacement on the radial components was

taken to be the P-wave radiation and the maximum displacement on the transverse

component was taken to be the S-wave radiation.

From Figure 3-2 it is clear that the single scattering solution underestimates the

scattered field in the forward direction, but overestimates the scattered field in the

backward direction. There are two causes for this disagreement. First, the two tech-

niques use different finite difference operators to find the gradient of the perturbation.
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The conventional finite difference technique (multiple scattering) uses a more accu-

rate half-step finite difference. Second, errors in the finite differences arise due to the

sharp gradients in the velocity model. These gradients cause the equivalent sources

in the single scattering solution to be injected into the finite difference simulation

without any spatial smoothing. The lack of smoothing introduced high wavenumbers

into the displacement field, which are known to cause large errors in the solution (Ap-

pendix B). This problem could be minimized either by adopting a staggered finite

difference formulation (Virieux, 1986), or by smoothing the velocity model slightly

(Fornberg, 1987). The same general trends observed in the P-wave radiation are also

visible in the S-wave radiation (Figure 3-3).

To isolate the errors caused by sharp gradients in the medium, the previous

experiment was repeated for a slightly smoothed point diffractor. The smoothed

point diffractor was constructed so that the velocity models had the shape of a two-

dimensional Gaussian function (0?=1 grid spacing). The Gaussian shape was cho-

sen because in wavenumber domain, the power spectrum is dominated by the low

wavenumber components. As can be seen in Figures 3-4 and 3-5 the elimination

of high wavenumbers in the model increased the accuracy of the solution. Notice

that the overall shape of the radiation pattern is consistent with the previous point

diffractor, but the amplitude of the scattered field is roughly three times greater. The

increased amplitude is predicted from the analytical solutions, which shows that in

the Rayleigh scattering regime the amplitude of the scattered field is proportional to

the size of the scatterer (Appendix A).

This simple experiment demonstrates that there is sufficient agreement between

the numerically calculated single and multiple scattering solution to warrant the use

of our finite difference technique for calculating the single scattering solution. It was

also shown that the accuracy of the single scattered solution is improved if the tech-

nique is limited to sufficiently smooth models. It is possible that adopting a staggered

finite difference formulation would further improve the accuracy of the single scatter-
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ing solution, since that technique is more accurate in media with sharp discontinuities

(e.g., Virieux, 1986; Stephen, 1988). For these reasons, the single scattering formu-

lation will be used only on fairly smooth random media (such as those characterized

by the Gaussian correlation function). Solutions for more textured random media

(such as those characterized by the exponential or von Karman correlation functions)

will be postponed until the technique can be implemented using a staggered finite

difference approach.

3.3 Single vs Multiple Scattering: A Case Study

Having established the validity and limitations of the finite difference technique for

calculating the single scattering field, we can now compare the single scattering solu-

tion to the full, multiple scattering solution for two randomly heterogeneous media.

Both velocity models (VEL and IMP) were generated from the same random real-

ization for Lamé’s parameter A (Figure 3-6). The realization had Gaussian statistics

with a mean of unity and 10% rms deviation. The spatial distribution of A had

a Gaussian correlation function, where the correlation length a of the medium was

equivalent to the dominant wavelength of the source (29 m).

In one of the random media (VEL), the perturbations in the medium obeyed the

‘ollowing relationships,

OA bp bp
Ao - Ho - Po (3.15)

This combination of parameters produced random variations in both the shear and

compressional wave velocities, but little variation in impedance (Figure 3-7). As a

result, the majority of the scattering in this model is due to the velocity perturbations.

(n Appendix A this situation was referred to as velocity scattering and the scattered

field from an isolated scatterer was shown to dominated by forward scattering.

In the second model (IMP) the relationships between Lamé’s parameters and
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density are given by,

6X bpbp
Xo Ho po (3.16)

A medium with this combination of parameters has no velocity variations, only

impedance variations (Figure 3-8). In Appendix A it was shown that in these media

P to P scattering is strongest in the backward direction. In addition, it was also

shown that the magnitude of the backscattered field is inversely related to the size

of the scattering body. Therefore, in this medium scattering should be strongest for

low frequency waves.

In both media, the single scattering solution was obtained using the finite dif-

ference approach outlined above, and the multiple scattering solution was generated

using a conventional finite difference formulation (Appendix B). The source was a

plane P-wave which was introduced near the top of the grid. The source time func-

tion was a Ricker wavelet centered at 60 Hz, and the area around the source region

was assumed to be homogeneous. In addition, the transition between the homoge-

neous and heterogeneous regions was smoothed to prevent reflections. To prevent

contamination from the sides of the finite difference grid, the models were assumed

to be horizontally periodic and absorbing boundary conditions were used on the top

and bottom of the grids (Clayton and Engquist, 1977). Both models were 256 nodes

wide and 2100 nodes long. The spatial grid spacing was dz = 0.5m (60 points per

wavelength (PPW) at 60 Hz). This resulted in a model which was 0.128 km (4.5

wavelengths) x 1.05 km (x40 wavelengths).

To compare the single and multiple scattering solutions, four separate simulations

were made. The single scattering solution in the medium with velocity variations

is denoted by SS_VEL, while that in the medium with only impedance variations is

denoted by SS_IMP. Similarly, the multiple scattering solutions are labeled MS_VEL

and MS_IMP. Synthetic seismograms (vertical component of the displacement vector)

from the four simulations are shown in Figures 3-9 — 3-12. The individual seismograms

within each plot have constant gain and since scattering in the impedance scattering
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model was less than that in the velocity scattering model, seismograms from the

impedance scattering model are shown at twice the scale. The detectable up-going

wave in the seismograms from the impedance scattering models is a reflect from the

bottom of the finite difference grid.

In the multiple scattering solution for the impedance scattering medium (MS_IMP),

the most obvious feature is the relative lack of scattering. The incident wave travels

through the medium with only minor fluctuations in amplitude and no travel time

fluctuations (Figure 3-9). The amount of energy scattered from the incident wave is

small and seems to emanate from only a few points in the medium. The scattered

arrivals undergo little subsequent scattering and therefore appear as coherent arrivals

across many neighboring receivers. Both from the particle motion (Figure 3-13) and

from the moveout across the array, it is clear that the majority of the backscattered

energy is P-wave energy.

The low magnitude of the scattered field is a consequence of the material param-

eters and the relatively large size and smoothness of the scatterers. The relationship

between the perturbations favors backward scattering (Equation 3.16), but the size of

the scatterers is large enough to effectively reduce backward scattering (Appendix A).

With these two factors in mind, it is clear that low frequencies should dominate the

scattered field. A plot of the power in the scattered field (where the scattered field

is defined as the total multiple scattered field less the same incident wave traveling

through a similar homogeneous medium) shows this to be the case (Figure 3-14a).

When normalized to the power contained in the source pulse. this observation is made

even more evident (Figure 3-14b).

Seismograms from the single scattering solution (Figure 3-10) look much like those

from the multiple scattering, except for the concentration of energy around the first

arrival. The excess energy is due to the accumulation of errors in the scattered field.

These errors only affect the solution immediately following the incident wave and

result because errors in the finite difference operator add in phase in the forward

16



direction. It is important to stress however that these errors in no way affect the

accuracy of the backscattered waves. Although the gain used in Figure 3-10 make the

errors in the single scattering solution look extremely large, it should also be noted

that even at the furthest offsets the amplitude of these errors are less than 10% of

the amplitude of the incident wave. The latter part of the scattered field is generally

overestimated under the Born approximation and the disparity between the single

and multiple scattering solutions should be expected to increase with propagation

distance. Enlarging and comparing some of the traces in Figures 3-9 and 3-10, it can

be seen that except for the region around the first arrival, the two solutions agree very

well (Figure 3-15). As expected, at far offsets the size of the scattered field is generally

overestimated, but the general character of the late arrivals is still remarkably similar.

When the dominant form of scattering is velocity scattering, the difference be-

tween the multiple scattering and single scatter solutions is more obvious. Unlike the

previous example, the multiple scattering solution to the velocity scattering model

can contain significant travel time and amplitude variations in the first arrival, as

well as significant amounts of energy late in the seismogram (Figure 3-11). Note the

lack of coherent arrivals in the coda, as well as the frequency content of the coda.

Compared to the impedance scattering medium, the coda has a wider frequency range

(Figure 3-16), and it appears from these results that the maximum scattering in this

medium occurs near the center frequency. These observations are consistent with

earlier observations in both acoustic and elastic media (e.g., Chernov, 1960; Frankel

and Clayton, 1986).

The most obvious difference between the single and multiple scattering solutions

in the velocity scattering medium is the lack of late arrivals in the single scattering

solution. This effect is most noticeable at near offsets (Figure 3-18. Also notice

that in the single scattering solution, several scattered waves form coherent arrivals

across neighboring receivers. This occurs because there is no secondary scattering of

these waves. FK analysis of the coda reveals that most of the early arrivals result
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from P to P scattering, while the later arrivals were dominated by P to S scattering.

These observations were confirmed by particle motion analysis (Figure 3-17). Another

important difference between the two solutions is the lack of travel time variations in

the single scattering solution. This occurs because in the single scattering solution,

the incident wave travels in the homogeneous background medium.

As was true for the previous random medium, the magnitude of the scattered wave

increases with propagation distance in the single scattering solution, but decreases in

the multiple scattering solution. Since the majority of the scattering in this medium

1s forward directed (Appendix A), there should be less frequency dependence in the

coda. This is confirmed by Figure 3-16 which shows that there is little frequency

dependence in the coda, except for possibly a slight peak near the center frequency.

Plotting several of the seismograms in Figures 3-11 and 3-12 side by side shows that

there is little agreement between the two solutions and highlights the lack of coda in

the single scattering solution (Figure 3-12).

Power in the coda of the single scattering solution is significantly different than

that in the multiple scattering solution (Figure 3-19a). Although there is power at

low frequencies, the dominant feature in the data is the linear increase in power with

frequency. When normalized to the source spectrum, it would appear that all of the

high frequency energy in the source has been redistributed to the coda (Figure 3-

19b). This is not a real effect, but an error due to the Born approximation. Beydoun

and Tarantola (1988) found similar results for an acoustic medium and were able

to show that the errors in amplitude of the transmitted wave increase linearly as a

function of wl, where w is the angular frequency, and L is the propagation distance.

Although the presentation here is based on forward modeling, the results are also

consistent with Snieder (1990) who showed that inversion techniques based on the

Born approximation are only capable of reconstructing the low wavenumber parts

of the model. This occurs because upon inverse (Born) modeling, the wavefield is

damped by a factor which is inversely proportional to frequency (or wavenumber).
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3.3.1 Attenuation and Coda

One way to quantify the loss of energy due to scattering is through the dimensionless

attenuation parameter (J. A variety of different techniques have been introduced to

measure (). One formulation relates the log decrement in amplitude of the transmitted

wave to the propagation distance,

Alw,z) = Age w2/ (20s) iT)

where the incident wave is assumed to be a plane wave, Ag is the initial amplitude of

the transmitted pulse, w is the angular frequency, z is distance, and v is velocity. This

relation has been used to quantify the attenuation due to scattering (i.e. Q = @Q,)

(e.g., Frankel and Clayton, 1986; Toksoz et al., 1988), as well as to describe the loss

due to intrinsic attenuation (i.e. @Q = @;) (e.g., Aki and Richards, 1980). As a result,

this @) is often termed the scattering or transmission Q. The fact both processes can

be explained by the same equation suggesting that it might be difficult to discriminate

between attenuation due to scattering and intrinsic attenuation. This lead Aki (1980)

to combine both type of attenuation when he studied scattering and attenuation of

shear waves in the lithosphere.

Other measures of () also exist. Aki (1969) suggested that seismic coda waves from

local earthquakes are composed primarily of backscattered waves. He speculated the

backscatter was caused by small-scale variations in the Earth’s crust. Due to the

large number and random distribution of these scatterers, he suggested treating the

heterogeneities statistically. Aki and Chouet (1975) expanded on Aki’s original work

and presented a single scattering model in which the coda amplitude A(w, t) is given

hy

Aw, t) ( =) v —ae—wt/(2Qc) (3.18)

where v is velocity, a is a constant which depends on the geometrical spreading, Q),

is the “scattering Q” and Q. is the “coda Q”. The term under the radical is often

referred to as the turbidity of the medium and is proportional to the energy scattered
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per unit distance traveled. Aki (1980) showed that in a medium without intrinsic

attenuation the scattering () is equivalent to the coda ). Equation 3.18 was derived

for either a point or line source, and thus not directly applicable for the geometry

studied here.

Equations 3.18 and 3.17 represent two different measures for describing the rate

energy is scattered by the medium. Q. is derived from the coda of the seismogram,

while Q, is derived from the first arrival. Hudson and Heritage (1981) suggest that

if the scattering region is strong, the Born approximation will be violated after some

length of time because scattering from far away will be diminished by multiple scat-

tering. They stress that the early scattering process is dominated by single scattering,

but as the effective scattering region (i.e. the region between the source point and

the incident wavefront) increases multiple scattering should becomes more important.

This suggests that the rate of coda decay will be different between the two solutions

at sufficiently long times.

To calculate the scattering Q), 955 seismograms from each of multiple scattering

models were first bandpass filtered (+5 Hz) around a series of frequencies (5, 15.

25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 165 and 175 Hz), then

enveloped. The natural log of the maximum value of the envelope was then plotted

against distance and fit with a straight line (Figure 3-20). The slope of the line was

then used to calculate @, as a function of frequency,

] —wz

Qs = | 2a In [A(w, z)/ Ao] |

1

» (3.19)

This is the same procedure used by Frankel and Clayton (1986), except no correction

for geometric spreading was necessary since the source was a plane wave. For all

frequencies, the fall-off was roughly linear with distance. This suggests that the

attenuation model presented in Equation 3.17 is capable of accurately explaining

attenuation due to scattering in these media. Since this method uses the decrease

in amplitude of the transmitted wave to calculate Q, it is not appropriate for the

single scattering solutions, in which the amplitude of the total field increases with
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propagation distance.

The calculated attenuation curves for the two models are shown in Figure 3-21.

As expected, attenuation is greatest at low frequencies in the impedance scattering

medium. At higher frequencies the attenuation curve falls off quickly, = (ka)~*. The

attenuation curve for the velocity scattering medium was clearly different. Atten-

aation increases with frequency until ka =~ 1, then at higher frequencies decreases

slowly. This behavior has been observed in both elastic (Frankel and Clayton, 1986)

and acoustic (Chernov, 1960) media which are characterized by the Gaussian correla-

tion function. The attenuation curves confirm what was evident on the seismograms;

the velocity scattering medium scatters more energy from the incident wave than the

impedance scattering medium. Since the medium is assumed to be perfectly elastic,

energy scattered from the primary wave must eventually be recorded as coda by an-

other receiver. At low frequencies (25 Hz), the two media show comparable amounts

of coda and similar coda decay rates (Figures 3-22). At higher frequencies, the veloc-

ity scattering medium has more coda, but still has roughly the same coda decay rate,

indicating this coda decay rates by themselves cannot be used to distinguish between

velocity and impedance scattering (Figures 3-23 — 3-24).

As was mentioned earlier, another measure of attenuation is the rate at which

the code decays. Figures 3-22 — 3-24 show the rate of coda decay in the single and

multiple scattering solutions for both random media. The data used in these figures

are taken from the 40 second window shown in Figures 3-9 — 3-12. The raw time series

was first bandpass filtered, enveloped, and then plotted in semi-log format. Several

interesting features emerge from the data. At low frequencies (25 Hz), the coda in

the impedance scattering medium is nearly flat and there is little difference between

the single and multiple solutions (Figure 3-22). The agreement is not as good in the

velocity scattering medium, but the rate of coda decay is still consistent between the

two solutions. Near the center frequency (Figure 3-23), there is more slope to the

coda curves and in both media the two solutions are no longer similar. The same
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trends persists at the highest frequency (Figure 3-24), where the single scattering

solution clearly decays faster than the multiple scattering solution. This is the most

familiar distinction between the single and multiple scattering solutions. Reasoning

along these lines, one must conclude that any attempt to use single scattering theory

to estimate coda () in a medium with significant multiple scattering will tend to

underestimate the true Q of the medium.

3.4 Overview of the Scattering Process

In scattering studies, the divergence and curl of the displacement field are often calcu-

lated as a means of estimating the relative amounts of P-waves and S-waves. Strictly

speaking this is only valid when the medium is homogeneous. If the medium contains

perturbations, the gradient of the perturbations also contribute to the divergence and

curl of the wavefield and as a result, the two modes (P-waves and S-waves) are not

completely decoupled. With these limitations in mind, the divergence and curl of the

displacement field are shown for the four simulations discussed above (Figures 3-25

3-28).

The divergence snapshots from the impedance scattering model show a clear differ-

ence between the multiple (Figure 3-25) and single (Figure 3-26) scattering solutions.

Since there are no velocity variations, travel time variations in the direct P-wave are

small for the multiple scattering solution. This is contrary to the single scattering

solution, which contains both amplitude and travel time variations. These varia-

tions are due to transmission errors inherent in the Born approximation (Beydoun

and Tarantola, 1988) and are even more pronounced in the velocity scattering model

(Figure 3-28). The agreement between the single and multiple scattering solutions is

much better in the curl snapshots (Figures 3-25 and 3-26). Here, the snapshots are

nearly identical.

I'he wider range of frequencies in the scattered energy is clearly visible in the
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results from the velocity scattering models (Figures 3-27 and 3-28). Note the complete

loss of a coherent direct arrival in the multiple scattering solution. Also interesting, is

the ratio in the peak divergence to peak curl. Note that unlike the previous example,

the curl snapshot is quiescent near the first arrival and and strongest late in the coda.

This implies that multiple scattering may be important in the generation of S-waves.

The divergence snapshot from the velocity scattering medium (Figure 3-28) is

very similar to that from the impedance scattering medium (Figure 3-26). The cause

of this seems to be the accumulation of errors in the Born approximation. The

curl of the single scattered field shows the importance of multiple scattering in this

medium. Unlike the snapshot from the multiple scattering solution, there is evidence

of significant P to S wave scattering near the first arrival. These arrivals are clearly

visible across the model, were as in the multiple scattering solution they are not.

3.5 FK Analysis

One of the advantages of the finite difference technique is that seismograms can be

calculated for the divergence and curl, as well as displacements. We use that ability in

this section to Fourier transform those data and form frequency-wavenumber (F-K)

plots of the the divergence (dominated by P-waves) and curl (dominated by S-waves).

F-K analysis is a useful technique to illustrate the magnitude and direction of the

scattered field.

The time window used for these analysis was the whole seismogram. Therefore,

in the impedance scattering media the dominant feature in the F-K plots of the

divergence is the direct P-wave (Figures 3-29 and 3-30). The P-wave in the multiple

scattering solution shows no variation in propagation direction, while in the single

scattering solution the P-wave is less well constrained. The S-wave plots show the

S-wave is strongly side scattered and in the single scattering solution there is some

backscattering of S-waves. Except for this backscattering, the F-K contours agree
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well for the S-waves.

Data from the velocity scattering media show that in the multiple scattering so-

lution, both P and S waves are scattered over a broader range of angles (Figure 3-

29). This is consistent with earlier findings that multiple scattering is important in

this medium. The single scattering solution in this medium lacks the wide range of

scattering angles observed in the multiple scattering solution (Figure 3-30). It is also

interesting to note that the F-K plots for both the divergence and curl are nearly iden-

tical to those for the single scattering solution in the impedance scattering medium.

The only difference is a slight forward shift in the S-wave energy and slightly more

forward scattering of P-waves.

3.6 Conclusions

In this chapter, a new technique was developed which is capable of calculating the

single scattering solution in an arbitrarily complex medium. First, the technique

was validated by comparing the single and multiple scattering solutions for a simple

isolated point scatterer. In the limit of an infinitely small scatterer, the two solutions

should converge. The results obtained from this test showed some disagreement, but

it appears that these errors are due to the choice of finite difference used here. Had

a staggered grid formulation been used, the errors would most likely have been much

smaller.

The bulk of the chapter was concerned with comparing the single and multiple

scattering solutions for two randomly heterogeneous media. Both media were char-

acterized by a Gaussian correlation function and had 10% rms deviation in A, pu and

p. In one of the models, the perturbations were chosen so that there were no ve-

locity anomalies, only impedance anomalies. In the other, there were no impedance

anomalies, only velocity anomalies. The former was shown to be dominated by low

frequency backscattering, while in the latter scattering was forward directed overa
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wide frequency band.

In the impedance scattering medium, the shape of the single and multiple scat-

tering solutions were in good agreement away from the direct arrival. In general, the

magnitude of the singlely scattered arrivals was larger than the multiplely scatter

scattered arrivals. This behavior can be directly traced to the fact that under the

Born approximation, the direct arrival travels through the medium unaffected by the

perturbations. The agreement between the two solutions in this medium suggests

that single scattering theories should work well.

Agreement between the two solutions was much worse in the velocity scattering

medium. The discrepancy arose because multiple scattering was important in this

medium. This was confirmed by both the F-K analysis and the snapshot pictures of

the divergence and curl. In this medium there were enough scatterers that significant

amounts of energy was scattered from the incident wave. This causes attenuation

due to scattering, and in the multiple scattering solutions diminishes the amplitude

of the incident wave. This is not accounted for under the Born approximation and

caused an accumulation of error which was proportional to the propagation length,

the strength of the perturbations, and frequency.

Also important in the velocity scattering medium was the lack of late arrivals at

near offsets in the single scattering solution. (Figure 3-18 and is indicative of the

importance of multiple scattering in this medium. The lack of secondary scattering

also tends to increase the coherency of scattered arrivals across neighboring receivers.

This effect may be important and deserves further quantification.
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of the scattered P-wave as a function of angle.
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Figure 3-4: Same as Figure 3-2, but for the smoothed point diffractor. Notice the

improvement in the equivalent source solution. The increase in size of the smoothed

point diffractor is manifest in larger peak amplitude values in the scattered field

(Appendix A).
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Velocity Scattering
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Figure 3-13: Hodogram (particle motion plots) from a receiver located at the center

of the impedance scattering model. The hodogram is constructed from the multiple

scattering solution and clearly demonstrates that the majority of the backscattered

energy is due to P-wave to P-wave scattering.
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agreement near the first arrival is a consequence of the Born approximation.
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Figure 3-17: Hodogram (particle motion plots) from a receiver located at the center

of the velocity scattering model. The hodogram is constructed from the multiple scat-

tering solution. It was found from these hodograms that the early coda is dominated

oy P to P scattering and the later coda by P to S scattering.

79



Velocity Scattering Model

|
"

.

ANNANANA,

 ~~ A

J

£
D

i

—

A
Aedes

|
)

AF

—EE——————

)

A
nA 0.8

md

1.20
Is

04 1.)

Time (s)
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Chapter 4

Elastic Wave Scattering Below

NORSAR

4.1 Introduction

Seismic data recorded at NORSAR show variations in amplitude and travel time

which cannot be explained by a simple layered model. The magnitude and spatial

variability of these features suggests that they are created by lateral heterogeneities

in the crust and upper mantle. There is currently much debate as to what causes

these variations, but they are likely to be due at least in part to changes in lithology,

fracture density, fracture orientation, or temperature. Even with our limited under-

standing of the subsurface, it would seem likely that those anomalies in the near

surface would tend to be dominated by ongoing geologic processes, and therefore re-

gionally dependent. Similarly, variations in the lower crust may also reflect current

geophysical processes, but in addition might contain remnant information from past

geologic events. The motivation then is to understand the variations in crustal and

lithospheric velocities so that we might be able to infer information concerning the

geology of the region.

To accomplish this, we use full waveform data collected from the NORSAR and
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NORESS arrays and forward modeling to propose a lithospheric model which is consis-

tent with both the observed seismic data and current tectonic theories in Fennoscan-

dia. We approach the problem from a deterministic point of view in that we in-

vestigate a series of specific realizations with known statistical properties. In order

to construct a reasonable starting model, finite difference simulations are performed

using several of the random lithospheric models proposed in the scattering literature.

These simulations served to acquaint us with the sensitivity of the results to differ-

ent models and to identify the influence of different types of heterogeneities. Once

the starting model was chosen, a finite difference simulation was performed and the

resulting seismograms compared to field data from the NORSAR and NORESS ar-

rays. After examining the results, the model was updated and the process repeated.

Throughout the process, each modification of the model was undertaken with full

consideration of the known tectonic features of region.

The methodology pursued here is different than previous attempts to specify the

lithospheric model below NORSAR. Early studies used Chernov (1960) scattering

theory to relate the amplitude and phase fluctuations in the wavefield to slowness

Huctuations in the medium (e.g., Aki, 1973; Berteussen et al., 1975a). These studies

were shown to be accurate only for low frequencies (f &lt; 0.6 Hz) (Aki, 1973) and

completely neglected multiple scattering, as well as mode conversion. In addition,

they required that the autocorrelation function of the medium is known a priori and

easily manipulated mathematically. Flatté and Wu (1988) devised a less restrictive

formalism which over came some of these limitations, though it too neglected mode

conversion and multiple scattering and used only the arrival and log amplitude in-

formation from the recorded wavefield. In this chapter, we continue the work of

Frankel and Clayton (1986) and use the finite difference technique to model elastic

wave propagation in the crust. We then extract several important parameters from

the synthetic data and compare these values to similar parameters taken from nu-

clear explosions recorded at NORSAR and NORESS. The field data then serves to
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constrain subsequent finite difference models. The most important parameter used

in this study is the coherency statistic. It is advantageous because it represents the

average coherency (or similarity) of the wavefield and is therefore directly tied to

ensemble average. The advantage of this study over earlier studies is that we use

a realistic background earth model (to insure the correct wavelength scaling with

depth), we consider the full elastic solution (to account for scattering due to mode

conversion and multiple scattering) and we use the full waveform to compute the

coherency statistics (as opposed to ensemble averages of the travel time and log am-

plitude measurements).

4.2 Scattering Beneath NORSAR

NORSAR is a large-aperture seismic array (= 125 km in diameter), located in Norway,

which was designed to monitor teleseismic events. The array consists of 22 subarrays,

each having as many as 6 short-period vertical component seismometers (Figure 4-

1). In this study, we used only data from the 01A, 01B, 02B, 03C, 04C and 06C

subarrays, which had a minimum and maximum receiver separation of approximately

3 km and 70 km respectively. This range of distances should allow us to identify the

moderate wavelength velocity variations in the lithosphere. In addition, we also used

short-period data from the NORESS array. The NORESS array is centered about

the center element of the 06C subarray of NORSAR, but is a completely separate

array in terms of its seismometers, electronics and transmission facilities. NORESS

consists of 25 concentrically located receivers all within a 3 km circle (Figure 4-

2). These data should help us to constrain the more rapidly varying fluctuations

in the velocity field. NORESS was designed as an experimental array for regional

monitoring. Like NORSAR, its receivers are deployed in vaults on piers set directly

in crystalline bedrock, thus generate generate good quality data. It should be noted,

however, that the data from NORESS generally have higher signal to noise ratios and
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contain more dynamic range.

The events investigated here are recordings from underground nuclear explosions

at the Semipalatinsk test site (USSR) (49.93° N, 78.82° E). The larger of the two

blasts (my = 6.1) occurred on December 4, 1987 and produced exceptionally clean

recordings on the NORESS stations (Figure 4-3). Due to the limited dynamic range

at NORSAR, this event was clipped on many of those stations. The smaller event

(mp = 5.1) which occurred on July 25, 1985 was well recorded at NORSAR (Figure 4-

4). Data from nuclear blasts are often used to study scattering because the source

function for these events is simple and well understood. In particular, data from

the Semipalatinsk test area was preferred for this study because the source area is

far enough from Norway (A = 38°~ 4200 km) that the primary P-wave was nearly

vertically incident (incidence angle = 76°), and the curvature of the wavefront was

small. These two factors allow the incident wave to be approximated by a plane wave.

4.2.1 Tectonic and Geophysical Setting

Large-scale Structure near NORSAR

The entire region surrounding NORSAR is part of the stable Baltic Shield, which

is characterized by the predominance of Precambrian rocks (Sellevoll and Warrick,

1971). The Olso graben, which is located slightly southeast of NORSAR, separates

the Precambrian rocks into two parts. North of the graben, Precambrian rocks of

southern Norway dip below the highly metamorphosed rocks of the Caledonian oro-

genic zone (Figure 4-5). The Scandinavian Caledonides consist of geosynclinal sedi-

mentary and volcanic rock. An increasing degree of metamorphism with granitization

and intrusions are evident from the Oslo graben to the northwest. It is in this region

that the deep-seated orogenic processes have been especially active. This has resulted

in the fusion of previous Precambrian basement and Cambrian-Silurian sedimentary

rocks.

Much of the geology described above was mapped using seismic techniques. Knopoff
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(1983) and Tanimoto and Anderson (1985) used surface wave dispersion to mapped

the large-scale velocity variations in the Fennoscandian lithosphere. The lateral ex-

tent of these features are too large to be resolved by our study and any effects would

appear as constant travel time and amplitude shifts over our whole study area. For

this reason, we look to more detailed studies which might identify features smaller

than the width of our array (=~ 50 km). Tomographic imaging of the subsurface is

capable of resolving features having dimensions on the order of 10 km and has been

used extensively in Fennoscandia (e.g., Thomson and Gubbins, 1982; Husebye et al.,

1986). This resolution has been sufficient to identify the seismic signature of most of

the major tectonic provinces in southern Scandinavia, but smaller features such as

the Oslo Rift have escaped detection. In an attempt to increase resolution, several

reflection and refraction surveys have been performed near NORSAR (e.g., Sellevoll

and Warrick, 1971; Mykkeltveit, 1980; Cassell et al., 1983). While most of these stud-

ies have concentrated on mapping the depth of the Moho and other discontinuities,

several have suggested the existence of an alternating series of positive and negative

velocity anomalies below the Moho. These studies suggest that the velocity anomalies

are thin tabular features which have a lateral extent not greater than 100 km.

4.3 Scattering at NORSAR

4.3.1 Travel time and Amplitude Variations

The techniques described above are oriented towards identifying the long-wavelength

variations in the velocity field. Synthetic data generated from these models may fit the

average travel times observed at large aperture arrays, such as NORSAR, but cannot

explain all the variations seen on the field data. The degree of mismatch is greater

than expected from measurement errors (Berteussen, 1974) and usually attributed

to heterogeneous structures in the Earth’s crust and/or mantle. The purpose of this

section is to display the nature of these variations so that they can be compared to
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similar quantities measured from the synthetic models discussed below.

The data collected at NORSAR contained several dead traces (Figure 4-4) and

significant amounts of low frequency noise (Figure 4-6). The low frequency noise

was removed by highpass filtering above 1 Hz and the dead traces were removed

before subsequent processing (Figure 4-7). After the preprocessing step, the data

were bandpass filtered around 2 Hz, the peak frequency of the P-wave (Figure 4-6),

so that reliable arrival times could be measured using a simple first break algorithm.

These data were then fit (least squares criterion) with a plane, leaving the residuals as

the travel time fluctuations. The same procedure was used to calculate the travel time

fluctuations in the NORESS data, although the preprocessing step was unnecessary

since that data contained very little background noise and no dead traces (Figure 4-8).

The linear regressions on the two datasets were consistent and yielded a backaz-

imuth direction ~8 north of east. Projecting the travel time residuals for the NOR-

SAR data along the a line parallel to that direction (Figure 4-9) shows the residuals

are generally on the order of .1 s and distributed evenly about zero. The total rms

travel time variation observed for these data was about 0.06 s, considerably less than

0.2 s figure usually observed at large seismic arrays (e.g., Berteussen et al., 1975a;

Powell and Meltzer, 1984). The reason for the discrepancy might be related to the

fact that only data from six closely spaced subarrays was used in the calculations.

Similarly, the travel time residuals for the NORESS data were calculated, but the

rms variation in travel time was found to be less than the temporal sampling rate

(1/40th s), which implies these variations are insignificant.

For both sets of data, the variations in log amplitude are considerably greater

than the travel time variations. Log amplitude fluctuations in the NORSAR. data

showed as much as 0.75 rms variation across the array (Figure 4-10). The data show

a definite linear trend; amplitudes are highest in the east. If these variations are

due to changes in local surface geology, the effects can be adequately modeled by the

finite difference modeling performed here. However, it is also possible that the dip of
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the Moho is also a factor. Figure 4-5 suggests that the depth to the Moho decreases

steadily to the east, consistent with the trend in increased amplitude. Since all the

modeling done in this study assumed a flat Moho, it is tempting to remove the linear

trend before calculating the rms variation in amplitude. When this is done, the rms

variation drops from 0.75 to 0.35. Similar findings were made for data from NORESS.

but due to the lesser spatial extent of the array the rms variation in log amplitude

was only 0.06 (Figure 4-11). The proximity of the receivers at NORESS allowed

us to contour the amplitude fluctuations (Figure 4-12), something which was not

possible with the NORSAR data. The contours are generally smooth, which is due in

part to the contouring algorithm, but they also display variations as small as 200 m.

The existence of these variations over distances as small as the width of NORESS is

strong evidence for including a highly heterogeneous layer in the very near surface.

In addition, by examining these features in the data, we have established one of

the criteria which will help to constrain the lithospheric models which are presented

below. Removal of the linear trend had little effect on the coherency calculations since

that statistic is known to be affected only weakly by amplitude variations (Dainty

and Toksoz. 1990).

4.3.2 Transverse Coherency (NORSAR)

For densely spaced receivers, the spatial trends in the amplitude and travel time may

provide information about the scale-lengths of the scatterers. If the receiver coverage

is too sparse, simple techniques such " contouring may be of little value. One measure

which has proven useful in these circumstances is the transverse coherency function

(Harichandran and Vanmarcke, 1984; Dainty and Tokso6z, 1990; Menke et al., 1990).

The coherency statistic has been used in both strong ground motion (Harichandran

and Vanmarcke, 1984) and regional (Toksoz et al., 1990b; Dainty and Toksoz, 1990)

studies and is a frequency domain equivalent of the correlation function used by

Bungum et al. (1985) and Ingate et al. (1985). The coherency function is useful in
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practice because it provides a dimensionless measure of similarity between two traces.

Before calculating the coherency, Jenkins and Watts (1968) and Harichandran and

Vanmarcke (1984) suggest removing any gross travel time delays in the data. In the

synthetic examples presented here, no time shifting was necessary since the source

was normally incident on the receiver array. The field data was time shifted in the

same manner as described above. After correcting for the normal moveout (which

roughly aligns the traces), the seismograms were windowed and the crosscorrelation

and autocorrelation between each receiver pair was calculated. These correlations

were then further windowed with a Bartlett window. The purpose of the Bartlett

window was to provide frequency smoothing of the correlation spectra and minimize

bias at low coherencies (Jenkins and Watts, 1968). The smoothing makes the spectral

estimates more reliable, but diminishes resolution. This problem is discussed in detail

by Harichandran and Vanmarcke (1984). They show that to obtain optimal results,

the width of the Bartlett window should be approximately 1/5 the width of the

original data window. The coherency between each receiver pair can be calculated by

Claw) = —i2e)
[Sii(w)Sjj(w)]

where z = |g; — z | is the spatial separation between receivers i and j, w is angular

frequency, Sj; is the crosscorrelation spectrum between seismograms and S;; and S7

are the autocorrelation spectra.

Since the coherency values calculated from seismic data depend on the data win-

dow, they are only estimates of the true coherency. Better estimates can be obtained

by averaging over the ensemble. This is accomplished by grouping the calculated

coherencies into bins of approximately equal receiver distance and averaging. The

magnitude of the coherency (here after called simply the coherency) is limited to the

range between zero and one and the distribution of values is more log-normal than

normal (Jenkins and Watts, 1968; Dainty and Toksoz, 1990). Accordingly, uncertain-

ties in the coherency are found using the Fisher Z-transform. Errors associated with

phase of the coherency function are not limited to any fixed range of values and seem
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to be better described by the Gaussian distribution. Therefore, uncertainties in the

phase values are estimated using the Gaussian normal distribution.

Coherency of Waveforms at NORSAR and NORESS

The coherency is one of the measures we will use to evaluate the similarity of the

variations in the synthetic data to those in the field data. It is important then that

we outline the key features in the coherency function which is observed at NORSAR

and NORESS. Beginning with the NORSAR data, the coherency was calculated over

a 4 s window which began =~ 1 s before the onset of the direct arrival. The stacked (25

fold) power spectrum for this time window is shown in Figure 4-6. Note the strong

peak at 2 Hz and the numerous notches in the spectrum. The lack of power at low

frequencies is due to the high-pass filtering which was done prior to processing. The

other depressions in the spectrum might be due to interference effects which arise

because of scattering. Although the windowing of the correlation spectra helped to

minimize the effects of these features, some care was necessary in order to calculate

coherencies only for frequencies with good signal to noise ratios. After some exper-

imentation, we found that we could get good coherency measurements at 1.5 Hz,

2.5 Hz and 3.5 Hz. The frequency separation between these frequencies is greater

than the width of the smoothing window, thus yields independent results, and avoids

the major notches in power spectrum.

Figures 4-13 — 4-15 show the spatial coherency and phase lag as a function of

receiver separation for the NORSAR data. Each “x” on the coherency plots represents

a single coherency measurement between two specific receivers. The darkened circles

and associated error bars show the mean coherency value and its uncertainty as

described above. Similarly, each “x” on the phase lag plots shows the relative time

shift between a given pair of receivers. For the reasons described above, average phase

lag values near zero are desirable. Lastly, the gap in the coherency data near 15 km

is due to no receiver pairs having that spatial separation.
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The coherency of the NORSAR data at 1.5 Hz (Figure 4-13) shows very little

falloff with distance out to the largest receiver separations (60 km). The significance of

these values is supported by the relatively small variation in the individual coherency

measurements and the small average phase lag values. The trend in the average

coherency values at 2.5 Hz are similar to what was observed at 1.5 Hz, although

in general the values are slightly lower. There is also more variation in individual

coherency and phase lag measurements at this frequency. The coherency at 3.5 Hz

is clearly different than was observed at the lower frequencies. There is considerable

variation in both the individual coherency and phase lag values as well as a strong

decrease in coherency with separation. It is tempting to explain the lower coherencies

observed at this frequency on a decrease in the signal to noise ratio, however the power

spectra (Figure 4-6) do not support this interpretation. An alternative explanation

is that this frequency is simply more strongly scattered than the lower frequencies.

Due to the lack of closely spaced receivers in the NORSAR array, we turn to the

NORESS data for insight into the small-scale crustal heterogeneities. Due to the

distinct notches in the power spectra at 2 Hz and 3 Hz, the coherency was calculated

at 1.5 Hz, 2.5 Hz and 3.5 Hz. All frequencies showed high coherency over the receiver

separations at NORESS (3 km) and very little scatter in individual coherency and

phase lag measurements, so data from the three frequencies were combined and dis-

played in Figure 4-16. The most important feature in these data is the existence of

variations over distances as small as 3 km. The existence of these variations is espe-

cially interesting, given the lack of observable travel time anomalies. Charrette and

Toks6z (1989) showed that highly heterogeneous media (such as those characterized

by the von Karman autocorrelation function) are capable of producing considerable

waveform variations with little effect on travel times. One way to reconcile the ob-

servations at NORESS then is to include a highly heterogeneous near-surface layer.
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4.4 The Coda

One of the most obvious features on high-frequency (&gt; 1 Hz) teleseismic recordings

is the coda that appears behind the direct P-wave and S-wave arrivals. Consider

the NORSAR data used here; the source was a nuclear explosion which lasted only a

fraction of a second yet the P-wave envelope stretches over several seconds. The same

effect can be seen in data from local microearthquakes, which can have an S-wave

coda lasting hundreds of seconds (Frankel and Wennerberg, 1987). Coda waves can be

formed by a variety of mechanisms; reverberations in horizontally layered structure

under the receiver (site response), reverberations in layered structure between the

source and receiver, surface waves scattered by lateral heterogeneities, the conversion

of body waves at depth or at the surface, and by anelastic effects. In this study, we

assume that all the coda is produced by the scattering of body waves from velocity

fluctuations in the lithosphere. Furthermore, when examining the synthetic data,

we are limited by the modeling technique to two dimensional geometries and we can

consider only scattering in the lithosphere under the receiver.

The significance of near source scattering can be measured by transforming the

data to wavenumber domain. Each point in wavenumber domain maps to a plane

wave, where the direction of the wavenumber vector is the backazimuth and the norm

of the wavenumber vector is inversely proportional to the apparent velocity of the

plane wave across the array. Figure 4-17 shows four FK plots, each over a 5 second

window of the NORESS data (2 Hz). The first 5 second window is dominated by

the incident P-wave, which is manifest as a well localized peak. In the second frame

of Figure 4-17, the broadening of the peak indicate that energy is incident on the

array from a wider range of angles. This is indicative of of either P-wave scattering

and/or S-wave scattering below the receiver array, or P-wave scattering below the

source array. We favor the former explanation. In the third time window, the FK

plot shows energy in both the first and third quadrants, indicating that some energy

is being backscattered from the incident P-wave after if has reflected off the free
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surface. The apparent velocity of the backscattered energy suggests that this energy

may be dominated by S-waves. The last time window, which begins x15 s after

the first arrival, shows that a significant amount of the energy in this time window

is due to backscattering. In summary then, the first few cycles of the incident wave

appear to be dominated by energy coming directly from the source region. Later in the

seismograms, the range of angles from which energy is incident on the array increases.

Lastly, the existence of the secondary peak in the third and fourth quadrants suggest

that backscattering is an important component of coda generation.

4.5 Forward Modeling in Random Media

Small-scale Structure in the Lithosphere

[t is now well established that the amplitude and travel time anomalies observed at

NORSAR and NORESS are due to small-scale velocity anomalies in the lithosphere

(e.g., Aki, 1973; Frankel and Clayton, 1986; Flatté and Wu, 1988). Aki (1973) as-

sumed the crust under LASA (an array similar in size to NORSAR) could be modeled

as a random medium. Aki (1973) used Chernov (1960) scattering theory (based on

the Born and Fresnel approximations) to relate amplitude and travel time variations

to slowness fluctuations in the medium. If the slowness fluctuations in the medium

were assumed to be Gaussian distributed and have a Gaussian autocorrelation, Aki

(1973) found the crust could be modeled as a 60 km thick random medium with a

correlation length of 10 km and 4% rms variation in velocity. An equally important

finding in his study was that data up to 0.6 Hz were fit well by this model, but higher

frequencies were not. The conclusion made in that study was the misfit occurred

because the Born approximation had been violated. Capon (1974) used a slightly

different implementation of the same theory (Chernov (1960) scattering theory) and

found optimal results when the random heterogeneities extended to a depth of 136 km

and the rms deviation in velocity was 1.9%. Like Aki (1973), it was assumed that
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the random fluctuations had a Gaussian autocorrelation function. Berteussen et al.

(1975a) gives an excellent review of Chernov scattering theory as applied to the earth

and discusses several key issues, such as the lack of resolution between the rms de-

viation in slowness and the thickness of the random medium. They then investigate

NORSAR data and found that 50 — 60% of the variance in amplitudes and travel

times could be explained by the existence of a 50 km thick layer with random fluctu-

ations having a Gaussian autocorrelation function. They found the best results with

a correlation length of 15 km and 3% rms variation in slowness.

These studies are similar in that they are all restricted to the acoustic case and as-

sume Chernov scattering, and therefore the Born approximation, is valid. As a result

they neglect multiple scattering and mode conversion, both of which are important

if the size of the scatterers is small compared to a wavelength. In addition, they

all assume that the fluctuations in the lithosphere can be adequately described by

the Gaussian autocorrelation function. Although, this function is desirable because

it is easily manipulated mathematically, it is now generally believed that the earth’s

lithosphere contains more roughness (e.g., Wu and Aki, 1985a; Wu and Aki, 1985b).

The studies are also limited in that they use only a very small portion wavefield,

only the travel time residuals and the log amplitude of the P-wave. Lastly, all these

studies assume a constant velocity background model, thus they neglect the effect of

the background velocity on the wavelength of the incident wave.

Flatté and Wu (1988) used the acoustic parabolic approximation and weak scat-

tering theory to derived the angular and transverse coherence functions in a general

random medium. When they applied these techniques to data from NORSAR, they

found the best-fitting lithospheric model was an overlapping two layered model. The

top layer extended from the surface to a depth of 200 km and was characterized by

a simple band-limited white spectrum. The second layer, superimposed on the first.

extended from 15 km to 250 km and had fluctuations which obeyed a power spec-

trum of the form W(k) = Alk|™*, where k is the wavenumber vector and A is a
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normalization constant. Although fairly simple, this is generally believed to be the

best available random lithospheric model.

Frankel and Clayton (1986) overcame many of the problems inherent in the earlier

scattering studies. They used the finite difference technique to model elastic wave

propagation in random media and examined many aspects of the scattering problem.

Based on the frequency dependence of the scattering Q in short-period data (15 -

30 Hz), they speculated that the crust (35 km thick) could be characterized by a

random medium with a Oth order von Karman autocorrelation function, a correlation

length &gt;10 km and standard deviation in velocity of 5%. They also neglected to

include the effect of the background model as well as the effect of scattering below

the source.

4.5.1 Finite Difference Simulations

To avoid many of the assumptions and limitations common to analytic scattering

studies, we also chose to use the finite difference technique to generate the scattered

field. Unlike earlier studies (e.g., McLaughlin et al., 1985; Frankel and Clayton,

1986) we includea realistic background earth model and use a full waveform method

to compare synthetic seismograms to field data from NORSAR and NORESS. The

finite difference scheme used in this thesis is a simple explicit second-order scheme

to solve the elastic wave equation (Appendix B). Although computationally very ex-

pensive, we favor this technique because it is accurate for a wide range of wavelength

to scatterer ratios, and it provides a complete solution to the elastodynamic equa-

tions of motion (e.g., Frankel and Clayton, 1984; McLaughlin et al., 1985; Frankel

and Clayton, 1986). As a result, P-wave and S-wave mode conversions are accurately

modeled for both forward and backward scattering. This is especially important be-

cause thus far most analytic scattering theories neglect shear waves completely and

often consider only forward scattering (parabolic approximation). The trade-off for

the increased accuracy is a significant increase in computational effort, which cur-
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rently limits our study to only two-dimensional models. Frankel and Clayton (1986)

also used two-dimensional finite difference modeling to investigate the effects of scat-

tering. They suggested that the effect on travel time and amplitude variations would

be very small. Furthermore, they also derived a two-dimensional equivalent to one of

the analytical results presented by Chernov (1960) and showed that at low frequen-

cies attenuation due to scattering was proportional to (ka)? in a three-dimensional

medium and (ka)? in a two-dimensional medium. Using the same equation, they

showed that in the high frequency limit the two solutions converged.

As was stated above, the synthetic models were made as realistic as possible by

including the Parametric Earth Model (PEM) for continental structure (Dzienwonski

et al., 1975), as the background velocity model. Inclusion of a realistic background

model is necessary to account for the fact that the wavelength of the incident wave

varies inversely with velocity, and therefore generally increases with depth. The

models also included zero stress boundary conditions at the top of the finite difference

grid and absorbing boundary conditions at the bottom. To avoid unwanted reflections

{rom the sides of the grid, the model was assumed to be horizontally periodic. The

simulation was carried out for 18000 time steps (thus producing 90 s of synthetic

data) on a large finite difference grid (512 nodes by 2750 nodes) which simulated a

51.2 km by 275 km region of the lithosphere.

In all the simulations the incident wave was a plane P-wave, which entered the

bottom of the grid as a Ricker wavelet centered at 1.65 Hz. Since the independent

variable in the finite difference calculations was displacement, the resulting synthetic

seismograms were differentiated with respect to time to produce seismograms of par-

ticle velocity, like those recorded at NORSAR and NORESS. Upon differentiation.

the center frequency of data became 2 Hz, consistent with that of the field data

(Figures 4-6 and 4-8).

The plane wave source used in this study is a good approximation of the true

incident wave if the source is located far from the receiver array (as is the case with
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the field data used here). Furthermore, it is likely that the incident wave would

show little variation over a region the size studied here. This occurs because of the

small range of takeoff angles (from the source) which constitute this portion of the

wavefront. It is true however that we have neglected the effects of forward scattering

(P-wave to P-wave scattering) in the source region, which would be constant across

the spatial extent studied here. The effect of this type of scattering would an overall

increase in complexity and coda along the incident wave.

Since in the field data the source was located close to the surface, the wave-

field observed at NORSAR traveled through the lithosphere twice; once beneath the

source and once beneath the receiver array. Numerical limitations prevent us from

modeling the full propagation path, so we must devise some way of estimating the

coda produced in the source region. After investigating several different approaches,

we chose an approximate technique based on a simple one-dimensional convolutional

model (Dainty et al., 1973). The technique makes use of the fact that energy which

has propagated through the lithosphere is the convolution of the transfer function of

the lithosphere with the source wavelet. Since the source function is known for the

synthetic data, it can be deconvolved from the synthetic seismograms, leaving only

the transfer function. Convolving the transfer function with the seismogram results

in a new seismogram which contains some of the features which would be observed in

seismogram of energy which had propagated through the medium twice. It must be

pointed out that this is not an exact solution, but it does allow us a simple mechanism

to include the first order effects of propagation through two lithospheric layers.

Simple Gaussian Models

As was mentioned above, it is generally believed that the lithosphere can not be

adequately described by a Gaussian random medium like those presented in the early

literature (e.g., Aki, 1973; Capon, 1974; Berteussen et al., 1975a). Still, it is worth

investigating one such model so that these data can be compared to data from more
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contemporary lithospheric models. For this purpose, we chose the model proposed by

Aki (1973) (Table 1). Although the original analysis was based on the acoustic wave

equation, we will extended the random velocity perturbations to the S-wave velocity

field and include the PEM background velocity field to account for the change in

wavelength with depth.

Before beginning a quantitative analysis of the data, it is often useful to observe

the general trends in the scattered field. For this purpose snapshot pictures of the

divergence and curl of the wavefield were output at 7 s increments and are shown in

Figures 4-18 and 4-19. The medium is a two-dimensional realization of the lithospheric

model proposed by Aki (1973). Snapshot pictures from any of the other simulations

would contain many similar features. In an homogeneous medium, the divergence and

curl exactly decompose the wavefield into its P-wave and S-wave components. This is

not true in an heterogeneous medium, where the gradients of the material properties

are not zero and therefore contribute to both the divergence and curl. Although if

the medium is sufficiently smooth, the divergence is dominated by P-wave energy and

the curl by S-wave energy.

The first snapshot picture of the divergence shows the incident P-wave shortly after

it has entered the bottom of the heterogeneous zone (Figure 4-18). At this point, there

is only a slight disturbance on the curl snapshot, which is due to the partial conversion

of the P-wave to an S-wave as it enters the heterogeneous region (Figure 4-19). When

the P-wave interacts with the free surface (the second frame), a strong S-wave is

created, which is subsequently scattered is it travels downward behind the reflected

P-wave. Note that in the subsequent frames the dominant scattering mechanism is

common mode (P-wave to P-wave and S-wave to S-wave) forward scattering. This

type of scattering tends to distort the incident wave and create strong diffractions

with very little backscattering and little P-wave to S-wave scattering. As a result,

the direct arrival is no longer a simple planar wavefront and distinct travel time and

amplitude anomalies are visible along the wavefront.
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Synthetic seismograms generated at 3.2 km intervals along the free surface are

shown in Figure 4-20. The data have already been differentiated, to produce velocity

data like that recorded at NORSAR, and only the time window between 25 s and

45 s is shown. The most striking feature in the data is the strong first arrival and

lack of coda. The travel time fluctuations of the P-wave (Figure 4-21), show two

large anomalies with a spatial separation of ~25 km. Comparing Figures 4-21 and 4-

22, note the correspondence between the amplitude and travel time fluctuations. The

strong correlation between these two parameters is indicative of scattering in smoothly

varying media dominated by large scatterers and was predicted by Chernov (1960)

and Aki (1973). The periodicity in both these figures is a direct consequence of the

periodicity in the velocity model and the source wave. Lastly, it should be pointed out

that the discrete steps in the plot of the travel time variations (Figure 4-22) are due

to the discrete sampling interval of the finite difference simulation. The large size of

the simulation and the large number of timesteps, forced us to decimate the synthetic

seismograms as they were computed. After decimation, the sampling interval was

0.05 s. The rms variation in travel time (0.08 s) and amplitude (0.46) in the data

from this model were generally consistent with what was observed at NORSAR.

Another way to compare the synthetic data to field data is to calculate the co-

herency of the waveforms over distances similar to those at NORSAR and NORESS.

This was done by first windowing the synthetic data over a 6 s window surrounding

the first arrival. Then, the coherencies were calculated for two sets of 25 receivers. In

the first set, the 25 receivers were each separated by .1 km, resulting in maximum and

minimum separations of .1 km and 2.4 km; roughly equivalent to receiver separations

at NORESS. Variations over these length scales will help to identify the prevalence of

small-scale scatterers. In addition, a second set of receivers, each separated by 1 km,

were investigated. The second data set spans distances more like that of NORSAR,

and can therefore be compared to coherencies calculated for teleseismic arrays such

as NORSAR. The latter data set will help to identify the large scale features in the
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lithosphere.

Comparing the coherencies calculated from the synthetic data to that from the

NORESS data highlights several important issues. At low frequencies (1 &amp; 2 Hz), both

data sets display high spatial coherency over the full range of distances (0 - 2.5 km).

At higher frequencies (3 &amp; 4 Hz), the fall-off rate of the coherency in the field data is

considerably higher than that in the synthetic data. One explanation for this might

be that the earth has more small (relative to the wavelength) scatterers, which would

be consistent with the P-wave fluctuations discussed above. The difference between

the two data sets becomes even more clear when the coherency is calculated for larger

offsets. When measured over distances similar to those at NORSAR, the fall-off of

the coherency with distance is far slower than is observed at NORSAR. Together, all

the data suggests that this model is too smooth to represent the velocity fluctuations

in the earth. The lack of roughness limits the amount of coda which is generated.

Simple single layer lithospheric models based on the Gaussian autocorrelation

function have been proposed by several other authors (e.g., Capon, 1974; Berteussen

et al, 1975a). All are similar to the one investigated above (Aki, 1973), although exact

details concerning the thickness of the random layer, the intensity of the perturbations

and the correlation length vary between studies (Table 1). Several of these models

were investigated and each proved to have the same general characteristics described

above. Namely, these models produced coherency measurements which were too large

and they were not capable of reproducing the amount of coda, generally observed at

NORSAR and NORESS. It has been speculated that they all failed because they

did not contain enough roughness. Frankel and Clayton (1986) recognized this and

proposed modeling the lithosphere as a 35 km thick layer described by the Oth order

von Karman function. We investigated this model as well, and found it was desirable

in that it produced more coda and therefore less coherent seismograms, however, the

fall-off rate of the coherency as a function of distance was still significantly more than

what is observed at NORSAR.
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Multiple layered Models

Although the random models discussed above are capable of explaining some of the

observed travel time and amplitude variations, they are probably too simple to de-

scribe the velocity field in the lithosphere. More realistic is the overlapping two

layered model proposed by Flatté and Wu (1988). In that model, the heterogeneities

obey a simple power law relation of the form,

W(k)=A|k|? 42)
3

where W(k) is the power spectrum of the fluctuations, k is the wavenumber vector,

A is the normalization constant and p is the power law index. Flatté and Wu (1988)

found the best agreement when the power law index was zero (p = 0) in the upper layer

and four (p = 4) in the lower layer. In addition, to compensate for the limited aperture

of the array and the frequency content of the source, the spectra were bandlimited

so that there were no fluctuations with wavenumbers less than 0.05 km~! and none

greater than 1.1 km™' (Figure 4-23). Flatté and Wu (1988) found best results when

the rms deviation in velocity was .9 — 2.2% in the upper layer and .5 — 1.3% in the

lower layer, although they acknowledge that resolution in this parameter is poor.

Snapshot pictures of the divergence of the wavefield are shown in Figure 4-24.

By the time the incident wave has reached the depth shown in the first frame, it

has already traversed the long wavelength heterogeneities near the bottom of the

model and is about to enter the more heterogeneous crustal layer. The influence of

these long wavelength features is to distort the incident wave and cause the numerous

diffractions evident behind the incident wave. Although the dominant scattering

mechanism is forward scattering, far more energy is side and back scattered relative

to the Gaussian model described above. When the incident wave interacts with the

free surface (second frame) it is partially converted to an S-wave (visible in the latter

frames of Figure 4-25). The S-wave travels more slowly that the P-wave and therefore

has a shorter wavelength.
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Synthetic seismograms generated along the top of this model show considerable

variation (Figure 4-26). Note the variability of the first arrival, as well as the variation

in the strength of the multiply reflected arrivals at 12 s and 18 s. The general character

of these waveforms is more consistent with the field, which suggests that this model

may be more similar to the lithosphere than the smooth Gaussian model. The rms

travel time residuals measured from this model were 0.06 s and the rms log amplitude

fluctuations were 0.21198, both are consistent with what was observed at NORSAR,

although the amount of amplitude variation might be slightly low. The variation in

travel time (Figure 4-27) shows a single strong peak, corresponding to the longest

wavelength anomaly which can be supported on the grid (51.2 km). This is further

evidence that the long wavelength features have a large effect on travel times. The

amplitude fluctuations (Figure 4-28) show more short wavelength variation than the

travel time fluctuations, but still have a strong peak in the center of the model. The

correspondence between the two type of fluctuations is not as striking as that observed

in the Gaussian model, but it is still very evident.

In order to compare the variation in synthetic waveforms to the variation observed

at NORSAR, the coherency was calculated from the data in Figure 4-26. Due to the

periodicity in the velocity model, the aperture of the synthetic array was limited to

the half-width of the grid. Thus, the maximum receiver separation in these coherency

calculations is 25.6 km, approximately half the distance calculated for the NORSAR,

data. At the lowest frequency, 1.5 Hz, the coherency of the synthetic data (Figure 4-

29) falls of slightly more slowly that is observed at NORSAR (Figure 4-13). There is

also less scatter in the individual measurements, possibly suggesting that the litho-

sphere has more roughness than is present in this model. The same general trend is

observed in the coherency of the higher frequencies (Figures 4-30 and 4-31).

It is interesting that although the model proposed by Flatté and Wu (1988)

matches the observed travel time residuals and log amplitude fluctuations well, it

does not match the falloff rates in the coherency function nor the general variability
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in these measurements. We attribute this to the lack of a highly variable near surface

layer.

4.6 An Improved Random Lithospheric Model

None of the random models discussed above was capable of matching all of the trends

observed in field data. The simple single layered models based on the Gaussian

autocorrelation function appear to be too smooth and are not capable of exciting

enough coda energy. The single layered model presented by Frankel and Clayton

(1986) contain more short wavelength variation and therefore excite more coda. Still,

the resulting waveforms from these model do not display a fall-off rate of the coherency

function which is comparable to what is observed at NORSAR. Of the lithospheric

models discussed above, the one proposed by Flatté and Wu (1988) is most consistent

with the trends observed in the field data. It matches the total rms variation in

travel time and log amplitude well, and coherencies calculated from these data match

observed seismograms better than any of the previous models.

Working from the models presented above, we now propose a new crustal model

which is consistent with reflection data from a nearby seismic experiment and bet-

ter explains the travel time and amplitude fluctuations observed at NORSAR and

NORESS. After running several simulations, we have found that a three layered

model with varying degrees of roughness is appropriate. In our final model the up-

permost layer extends from the surface to a depth of 3 km and is characterized by a

bandlimited white spectrum. For reasons consistent with those presented by Flatté

and Wu (1988), we chose the same wavenumber window for this layer. Below the

highly heterogeneous near surface layer, we propose the remaining portion of the

crust (down to 35 km) can be modeled as a Oth order von KaArmén medium. This is

consistent with the work presented by Frankel and Clayton (1986) and should gener-

ate an amount of coda consistent with that observed at NORSAR. Lastly, we model
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the upper mantle as a random medium with an anisotropic Gaussian autocorrelation

function. By anisotropic, we mean that the horizontal correlation length is different

than the vertical correlation length. The correlation lengths which gave us the best

results were 20 km in the horizontal direction and 5 km in the vertical direction. We

obtained best results when the velocity perturbations in the upper and lower layers

had 2% rms variation and those in the middle layer 3%.

The possibility of an anisotropic upper mantle is interesting and consistent with

several studies based on the inversion of shear waves. Kennett and Nolet (1990) ana-

lyzed data from seismic arrays having apertures between 25 — 1000 km and suggested

a heterogeneity model with a horizontal scale length of 300 — 400 km and a vertical

scale length of 70 km in the uppermost mantle. They also speculated that the ver-

tical scale length increased with depth. Based on the existence of partially coherent

arrivals across the arrays and the extended coda is was also suggested there was sub-

stantial evidence for small-scale scatterers in the upper 200 km. Similar results were

reported by Kennett and Bowman (1990), who used shear wave data and a coupled

mode approach. The scale lengths reported in these studies are considerably larger

than what was observed here. The explanation for this lies in the frequency of the

input data. Those studies used 0.02 Hz surface wave data and 0.04 Hz body wave

data, two orders of magnitude lower than was used here. The lower frequencies limit

resolution to features larger than the width of NORSAR.

It is interesting to compare snapshot pictures of the divergence and curl in this

model (Figures 4-32 and 4-33) to those from the simple one layer model proposed by

Aki (1973) (Figures 4-18 and 4-19). Whereas the plane wave travels undisturbed up

to the base of the crust in the model proposed by Aki (1973), in this model there

are significant variations in the wavefront at that depth. The increased complexity

in both the P-wave (divergence) and S-wave (curl) are clearly visible in the later

snapshots. Note also the increased amount of side scattered energy in the model

proposed here.
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Figure 4-34 shows 25 synthetic seismograms recorded along a 25 km section of the

free surface. Note the variation of the seismograms with offset. The data have 0.08 s

rms deviation in travel time (Figure 4-35), and 0.48 rms variation in log amplitude

(Figure 4-36). These values are consistent to what was observed in the field data.

As compared to the field data, the synthetic data (Figure 4-34) appear to have

less coda. This was to be expected and is discussed above. Therefore, to evaluate

the ability of the model to match the coda observed at NORSAR, we should com-

pare seismograms from the bottom of the random medium, where the incident wave

has passed through the random medium twice (Figure 4-37). In terms of the en-

ergy behind the first arrival, these synthetic seismograms have amplitudes and coda

signatures which compare favorably to the field data.

The coherency of the synthetic seismograms was calculated for both the small

aperture (2.5 km) and large aperture (25 km) synthetic arrays, although only the

large aperture results will be shown here. Using the same procedure outlined above,

coherencies were calculated for the seismograms shown in Figure 4-34. Like the field

data, the individual coherency values varied considerably between different receiver

pairs (Figures 4-38 — 4-40). This was not true for most of the synthetic data dis-

cussed above and suggests that we are converging on the right type of variations our

model. Also like the field data, the coherency is highest for the lower frequencies and

diminishes with increasing frequency. The phase lags of the receiver pairs is also rem-

iniscent of the field data, both in its average value and its variation. To insure that

the periodic nature of the model was not biasing the coherency results, we performed

a single simulated on a model eight times wider (~400 km) than the previous models.

The results were consistent, suggesting that the time window under study did not

contain significant contamination due to periodicity of the velocity model.
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4.7 Conclusions

In this chapter we have shown that even in a the study of random media, a deter-

ministic technique such as finite difference modeling can be useful. The main utility

is that it allows one to study a particular aspect of the data in a controlled manner.

This is often not possible in field studies where the earth, the source, and the receivers

all introduce uncertainties into the investigation. Eventually, of course, the modeling

must answer to the data. This is undertaken here by comparing several character-

istics of the synthetic seismograms to field data from the NORSAR and NORESS

arrays. The field data were from two nuclear blasts at the Semipalatinsk test site.

The nuclear blasts are known to emit strong P-waves with a known source signature.

With such strongly emergent data, we can be fairly sure all variations in the wavefield

between receivers are due to heterogeneities below the receiver array. Furthermore,

due to the large source-receiver distance, we can neglect the effect of scattering in

the source region for all aspects of this study except coda generation. The reason for

this lies in the observation that all energy arriving at the receiver emanated from a

narrow range of take-off angles, implying the source effects are common to all energy

arriving at the receiver.

After testing numerous random models, we found a three layered random model

which both matched the observed travel time and amplitude variations observed at

NORSAR and is consistent with seismic reflection data. The model, we propose has

three random layers. The top layer is 3 km thick and described by a bandlimited

white spectrum. The second layer extends from 3 km to the bottom of the crust

(35 km) and can be described by the 0th order von Karman autocorrelation function.

Velocity fluctuations in this layer are fairly strong (3% rms variation), while in the

top layer the fluctuations were only 2%. The third layer extends from the base of

the crust to a depth of 250 km and was determined to have an anisotropic Gaussian

correlation function. We found the best results when we specified the horizontal

correlation length in the bottom layer to be 20 km and the vertical correlation length
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to be 5 km.

The method used here has several important advantages over previous studies of

scattering at NORSAR. First, it includes a realistic background model. This is im-

portant because in general velocity and therefore the wavelength of the incident wave,

increases with depth. Secondly, we used several criteria to evaluate the suitability of

each random lithospheric model. We used the total rms variation in travel time and

log amplitude as first cut methods and the coherency statistic as the final descrim-

inator. Unlike other studies which use only the P-wave travel time and amplitude

to calculate the coherency (e.g., Flatté and Wu, 1988), we use full waveform data.

By calculating the coherency between many pairs of receivers we are able to get the

average properties of the wavefield from only a single event. Lastly, it should be noted

that we included the effects of P-wave to S-wave scattering and multiple scattering

in our analysis. These effects are often ignored in analytical studies, yet they proven

to be important in the frequency range studied here (Aki, 1973).
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TI'able 1. Proposed Crustal Models

Autocorrelation Correlation

Length

ITS Thickness

function Deviation

Aki (1973) 10 km

Capon (1974a) 12 km

Berteussen (1975b) 15 km

Frankel &amp; Clayton (1986) Oth order von Karman &gt;10 km

Flatte &amp; Wu (1988) Two layered model k™ n=0,4

4% 60 km

136 km

50 km

1.9%

3%

597 35 km

(0.9-2.2%)/(0.5-1.3%) (0-200 km)/(15-250 km)
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Figure 4-9: Travel time residuals projected along the great circle path between the

source and the center of the NORSAR array. The rms deviation for these data was

~0.07 s.
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Amplitude Fluctuations
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Figure 4-11: Fluctuations in log amplitude projected along the great circle path

between the source and the center of the NORESS array. The rms deviation for these

data was very small (0.06), even before removing the linear trend.
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Log Amplitude Fluctuations at NORESS
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Figure 4-12: Contour of peak amplitude values observed at NORESS.
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Figure 4-13: Coherency as a function of spatial separation for the direct arrival and

early coda of the NORSAR data around 1.5 Hz. Each cross represents the coherency
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error bars are the mean values and their uncertainties.
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Figure 4-14: Coherency as a function of spatial separation for the direct arrival and

early coda of the NORSAR data around 2.5 Hz. Each cross represents the coherency
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error bars are the mean values and their uncertainties.
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Aki Model
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Figure 4-18: Snapshot pictures of the divergence of the wavefield at 7 s intervals. The

random portion of the velocity model is like that proposed by Aki (1973), and the

deterministic velocity structure is a simple reference earth model.
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Aki (1973) Model
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Figure 4-20: Synthetic seismograms resulting from the finite difference simulation of

a plane wave propagating in a random medium like that proposed by Aki (1973).
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Travel Time Fluctuations
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Figure 4-21: Travel time residuals which resulted from the Aki (1973) model. The

rms variation for this parameter was ~0.08 s.
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Figure 4-22: Fluctuations in log amplitude which resulted from the Aki (1973) model.

The rms variation for this parameter was 0.459.
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Power Spectra for the Two Layer

Lithospheric Model
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Figure 4-23: The lithospheric model proposed by Flatté and Wu (1988) was an over-

lapping two layer model. The upper layer had a bandlimited white spectrum and the

lower a bandlimited power law spectrum which was proportional to k*.
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Flatte &amp; Wu Model
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Figure 4-24: Snapshot pictures of the divergence of the wavefield at 7 s intervals. The

random portion of the velocity model is like that proposed by Flatté and Wu (1988),

and the deterministic velocity structure is a simple reference earth model.
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Flatte &amp; Wu Model
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Figure 4-25: Same as Figure 4-24, but shows the curl of the wavefield.
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Flatte &amp; Wu (1988) Model
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Figure 4-26: Synthetic data from a model like that proposed by Flatté and Wu (1988).

The trace separation is 1 km.
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Iravel Time Fluctuations

(Flatte &amp; Wu Model)
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Figure 4-27: Travel time residuals which resulted from the Flatté and Wu (1988)

model. The rms variation for this parameter was ~0.06 s.
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Amplitude Fluctuations

(Flatte Model)
N.60

J
ot

tl,

0.40

L

2
£ 000
=

0.20

0.20

.0 40 Aebevybwgabog

20 30 40 50 60

Distance (km)

)

Figure 4-28: Fluctuations in log amplitude which resulted from the Flatté and Wu

1988) model. The rms variation for this parameter was 0.2.
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Coherency 1.5 Hz
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Figure 4-29: Coherency at 1.5 Hz as a function of spatial separation for the direct

arrival and early coda of the data in Figure 4-26.
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Coherency 2.5 Hz
(Flatte &amp; Wu Model)

1.0 1 ey ISSUEVE=x :HE
N.8

&gt; 0.6

=
gL
=

Q
) 04

N.2

10 15

Distance (km)

20 25

w/2

x XA XK XX x cir

3 y x48 SEE LieXXxx
g 0 : il tal: HIER2 Xe 2

™/2

‘+J 20 25iu

Distance (km)

Figure 4-30: Coherency at 2.5 Hz as a function of spatial separation for the direct

arrival and early coda of the data in Figure 4-26.
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Figure 4-31: Coherency at 3.5 Hz as a function of spatial separation for the direct

arrival and early coda of the data in Figure 4-26.
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Figure 4-32: Snapshot pictures of the divergence of the wavefield at 7 s intervals. The

velocity model is the three layer model proposed here.
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Figure 4-34: Synthetic data from the model proposed in this study. The trace sepa-

ration 1s 1 km.

147



Travel Time Fluctuations

(This Study)
210°!

110°!

2
Lv

~

v
~

—
—

L

—
b
—

51072

010

-510?

-1101

r

=

110!
hdr,

210!

310!
J

aaabeebeaaa a

‘0 20 30 40

Distance (km)

50 60)

Figure 4-35: Travel time residuals which resulted from the three layered model pro-

posed here. The rms variation for this parameter was ~0.08s.
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Figure 4-36: Fluctuations in log amplitude which resulted from the three layered

model. The rms variation in this parameter is 0.48.
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This Study
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Figure 4-37: Synthetic data from the model proposed in this study. The trace sepa-

ration is 1 km. What is shown are the traces in Figure 4-37 after they were convolved

with the transfer function of the medium in an attempt to account for both litho-

spheric legs of the propagation path.
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Figure 4-38: Coherency at 1.5 Hz as a function of spatial separation for the direct

arrival and early coda of the data in Figure 4-34.
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Figure 4-39: Coherency at 2.5 Hz as a function of spatial separation for the direct

arrival and early coda of the data in Figure 4-34.
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Figure 4-40: Coherency at 3.5 Hz as a function of spatial separation for the direct

arrival and early coda of the data in Figure 4-34.
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Chapter 5

Summary and Conclusions

5.1 overview

For the purpose of studying scattering, the velocity field in the earth can be divided

into two parts. A deterministic background part, and a more variable “random” part.

The background part of the velocity field represents the average or “bulk” properties of

the medium, while the random fluctuations are the small-scale fluctuations away from

the background value. A great deal of seismic research has been focused on delineating

the background part of the velocity field. This seems natural, since chemical, thermal

and structural boundaries are often continuous over large spatial extents and can

produce strong coherent arrivals across neighboring seismometers. Knowledge gained

from these studies is important and has led to highly successful models of the Earth’s

interior, both in exploration and whole earth seismology.

In this thesis, the goal is to understand the effects of the second type of velocity

fluctuations; the random fluctuations. Since these fluctuations are too numerous to

be identified uniquely, they are usually described statistically. The distribution of

scatterers is commonly identified by some scale length, a correlation function and

some measure of the magnitude of the average perturbation. In Chapter 2, these

ideas are developed and the terminology used throughout the thesis is presented.
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Perhaps the single most important feature in that chapter is the concept that a

random medium can be characterized by its correlation function. The correlation

function is a measure of the amount of variability in the medium. The three most

commonly used correlation functions for earth studies are the Gaussian, exponential

and von Karman functions. The Gaussian correlation function is indicative of media

which are very smooth, that is they have very little power at high wavenumbers. The

exponential and von Karman correlation functions typically characterize media which

have more power at high wavenumber, and therefore have more rapid variations.

Most of the early studies which treated the lithosphere as a random medium made

use of Chernov (1960) scattering theory. Although originally derived for acoustic

media, Chernov scattering theory has been commonly used to study scattering in the

earth. In this application, Chernov scattering theory suffers from four fundamental

shortcomings. First, since the theories are based on the acoustic wave equation,

they are only valid when P to S scattering is small (i.e. ka &gt; 1). Second, the

theories make no attempt to include the effects of multiple scattering, which may be

important, especially in the upper lithosphere. Third, implicit in the assumption of

stationarity is the limitation that the statistics of the random medium are constant

along the entire propagation path. This assumption may not be valid since it is

generally believed that the upper lithosphere is most heterogeneous region of the

earth. Fourth, the theory assumes the analytic form of the autocorrelation function

is known. Since the theory requires extensive manipulation of the autocorrelation

function, most early researchers used well behaved functions such as the Gaussian or

exponential functions.

Several studies (e.g., Frankel and Clayton, 1986; Flatté and Wu, 1988) as well as

the work in this thesis suggest that the Gaussian correlation function is too smooth to

adequately describe the velocity anomalies in the crust. Current research is directed

toward media which exhibit a high degree of variability. Furthermore, it is anticipated

that in the future more complex models like the overlapping two-layer model proposed
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by Flatté and Wu (1988) or the three layer anisotropic model presented here will better

explain the variation is waveforms observed at seismic arrays.

5.2 Summ “H"
1

¢

a

1%

The purpose of this thesis was to study the effects of small-scale heterogeneities on the

passage of seismic waves. To this end, a new technique was developed to obtain the

single scattering solution in a particular random velocity model. The chief advantage

of the technique is that it can be used on any arbitrarily complex velocity model.

As a result, both the single and multiple scattering solutions can be obtained for the

same velocity model. Comparing the synthetic seismograms for two representative

random media allowed us to show several important conclusions.

When the medium is dominated by impedance scattering (i.e. the perturbations

in Lamé’s parameters and density are of the same sign and relative magnitude), there

are no variations in velocity only variations in impedance. Then

» the Born approximation provides a reasonable estimate of the true scattered

field. It is true that the amplitude of the single scattering solution is overes-

timated near the direct arrival and the error becomes larger with propagation

distance, but the overall shape and arrival time of the scattered field agrees

fairly well with the multiple scattering solution. As a result, coda decay rates

for the single scattering solution are greater than corresponding rates for the

multiple scattering solution. |

the scattered field is frequency dependent and dominated by backscattering.

As predicted by analytical solutions, low frequency energy is more effectively

backscattered than high frequency energy. This is a geometric effect which

occurs because waves scattered from an elemental part of the scatterer add

destructively in the backward direction, but constructively in the forward di-

rection.
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» As a result of the frequency dependent backscattering, the attenuation param-

eter @Q~! is peaked at low frequencies, then falls off quickly with frequency.

The implication of the work in Chapter 3 is that the single scattering theory is

probably insufficient to accurately describe scattering in the earth. If this is true,

it calls into question nearly all analytical studies of wave propagation in random

earth models, since they generally rely on the single scattering approximation. In

order to avoid any inaccuracies which might be introduced by the single scattering

approximation, we make use of the finite difference technique for all the modeling

done in Chapter 4. Finite difference modeling is particularly well suited to modeling

wave propagation in heterogeneous media because it solves the full elastodynamic

equation of motion directly.

The primary goal in Chapter 4 was to construct a random lithospheric model which

was representative of the region below NORSAR. Several studies have suggested that

the travel time and amplitude fluctuations observed at NORSAR are manifestations

of scattering from small-scale structure beneath the array (e.g., Berteussen et al.,

1975b; Aki, 1973; Flatté and Wu, 1988). It is generally agreed that the magnitude of

the velocity anomalies are on the order of 1-4%, but there is no general consensus on

the spatial correlation of the anomalies. Early studies suggested that the Gaussian

correlation function was capable of explaining the observed amplitude and travel time

Huctuations at LASA and NORSAR (Aki, 1973). Using a different statistical theory,

Wu and Aki (1985a) modified that conclusion and suggested that there is probably

more variability in the lithosphere and therefore a more textured model like the von

Karman function was in order. Evidence from forward modeling seems to corrobo-

rate this hypothesis (Frankel and Clayton, 1986). All of these studies assumed the

lithosphere could be modeled by a randomly heterogeneous region which had constant

statistical properties (i.e., the random medium was assumed to be stationary). Flatté

and Wu (1988) developed a set of equations which allowed them to invert for the sta-

tistical properties of a non-stationary medium. Using this technique, they found that
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the variability between waveforms observed at NORSAR could be explained by a

two-layer random model.

In Chapter 4, we use finite difference modeling to test the suitability of several

random models. As a result, we were able to produce a three layered lithospheric

model which both matched the observed travel time and amplitude variations ob-

served at NORSAR and is consistent with seismic reflection data. The model, we

propose has three random layers. The top ayer is 3 km thick and described by a

bandlimited white spectrum. The second layer extends from 3 km to the bottom of

the crust (35 km) and can be described by the 0th order von Karman autocorrelation

function. Velocity fluctuations in this layer are fairly strong (3% rms variation) and

span a wide range of length scales. The third layer extends from the base of the crust

to a depth of 250 km and was determined to have an anisotropic Gaussian correla-

tion function. We found the best results when we specified the horizontal correlation

length to be 20 km and the vertical correlation length to be 5 km. Best results were

found when both the bottom and top layers had 2% velocity variations.

The white spectrum in the uppermost layer produced localized variations in the

waveforms. During the course of this investigation, we found that the modeling was

not very sensitive to the thickness of this layer, nor the magnitude of the velocity

fluctuations in this layer. However without it, we could not explain the falloff in

coherency which was observed at NORESS. The middle layer represents the bulk of

the crust. After experimenting with several autocorrelation functions and numerous

correlation lengths, we found the von Kdrman function best suited to explain the vari.

ations in the crust. Media described by this function effectively generate coda, but

have a relatively small effect on the time and amplitude of the incident wave Frankel

and Clayton (1986). Together, these two layers generated reasonable amounts of coda

and localized variations in the wavefield, but did not duplicate the travel time and

amplitude variations observed at NORSAR. In order to explain these features, it was

necessary to include a third layer which was capable of producing travel time and
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amplitude fluctuations, but did not contribute greatly to the amount of coda in the

wavefield. Numerous studies have shown that a Gaussian medium has these prop-

erties. After much experimenting, we found that a model with different correlation

lengths in the horizontal and vertical directions was able to match the observed data

well.

It is important to state that since this model is based on forward modeling only, we

cannot guarantee its uniqueness. However, it fits the observed travel time and ampli-

tude variations, waveform coherency and coda better than any previously published

models. No formal attempt was made to determine the sensitivity of the modeling to

slightly different velocity model. The reason for this was twofold. First, each different

realization of the same random model produced some differences, thus complicating

the notion of sensitivity. Second, for computational reasons, it was not possible to

run and store the results from numerous simulations. We did however examine three

different realizations of the final model to insure that the results were consistent.

159



References

Aki, K., Analysis of seismic coda of local earthquakes as scattered waves, J. Geophys.

Res., 74, 615-631, 1969.

Aki, K., Scattering of P waves under the Montana LASA, J. Geophys. Res., 78,

1334-1346, 1973.

Aki, K., Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25

Hz, Phys. Earth Planet. Inter., 21, 50-60, 1980.

Aki, K. and B. Chouet, Origin of coda wave: Source, attenuation and

effects, J. Geophys. Res., 80, 3322-3342, 1975.

scattering

Aki, K. and P. Richards, Quantitative Seismology — Theory and Methods, W. H.

Freeman, San Francisco, 1980.

Aki, K., A. Christofferson, and E. S. Husebye, Determination of the three-dimensional

seismic structure of the lithosphere, J. Geophys. Res., 82, 277-296, 1977.

Alford, R. M., K. R. Kelly, and D. M. Boore, Accuracy of finite-difference modeling

of the acoustic wave equation, Geophysics, 39, 834-842, 1974.

Bataille, K., R. S. Wu, and S. M. Flatté, Inhomogeneities near the core-mantle bound-

ary evidenced from seismic wave scattering-A review, Pure Appl. Geophys., 132,

151-174, 1990.

Berteussen, K. A., NORSAR location calibrations and time delay corrections, NOR-

SAR Sci Rep. 2-73/74, National Technical Information Service, Springfield, VA,

1974.

Berteussen, K. A., A. Christoffersson, E. S. Husebye, and A. Dahle, Wave scattering

theory in analysis of P wave anomalies at NORSAR and LASA, Geophys. J. R.

astr. Soc., 42, 403-417, 1975a.

160



Berteussen, K. A., E. S. Husebye, R. F. Mereu, and A. Ram, Quantitative assessment

of the crust-upper mantle heterogeneities beneath the Gauribidnaur seismic array

in southern India, Farth Planet. Sci. Lett., 37, 326-332, 1975b.

Beydoun, W. B. and A. Tarantola, First Born and Rytov approximations: Modeling

and inversion conditions in a caninicak example, J. Acoust. Soc. Am., 83, 1045-

1055, 1988.

Bickley, W. G., Formulae for numerical differentiation, Math. Gaz., 25, 19-27, 1941.

Bracewell, R. N., The Fourier Transform and its Applications, McGraw-Hill, New

York, 1978.

Bungum, H., S. Mykkeltveit., and T. Kvarna, Seismic noise in fennoscandia, with

emphasis on high frequencies, Bull. Seismol. Soc. Am., 75, 1489-1513, 1985.

Capon, J., Characterization of the crust and upper mantle structure under LASA as

a random medium, Bull. Seismol. Soc. Am., 64, 235-266, 1974.

Cassell, B. R. and K. Fuchs, Seismic investigations of the subcrustal lithosphere

beneath Fennoscandia, J. Geophys., 46, 369-384, 1979.

Cassell, B. R., Mykkeltveit, R. Kanestrom, and E. S. Husebye, A North Sea - southern

Norway seismic crustal profile, Geophys. J. R. astr. Soc., 72, 733-753, 1983.

Charrette, E. E. and M. N. Toksoz, Effects of stochastic heterogeneities on cross-

well imaging, in Erpanded Abtracts of the 1989 SEG Meeting, pp. 898-900, Soc.

Explor. Geophys., 1989.

Chernov, L. A., Wave Propagation in a random medium, McGraw-Hill, New York,

1960.

Chouet, B., Effects of anelastic and scattering structures of the lithosphere on the

shape of local earthquake coda, Pure Appl. Geophys., 132, 289-310. 1990.

Claerbout, J. F., Imaging the Earth’s Interior, Blackwell Scientific Publications.

Boston. 1985.

161



Clayton, R. and B. Engquist, Absorbing boundary conditions for acoustic and elastic

wave equations, Bull. Seismol. Soc. Am., 67, 1529-1540, 1977.

Dainty, A. M., A scattering model to explain seismic QQ observations in the lithosphere,

Geophys. Res. Lett., 8, 1126-1128, 1981.

Dainty, A. M., High-frequency acoustic backscattering and seismic attenuation, J.

Geophys. Res., 89, 3172-3176, 1984. -

Dainty, A. M. and M. N. Toksoz, Elastic wave propagation in highly scattering

medium, a diffusion approach, J. Geophys., 43, 375-388, 1975.

Dainty, A. M. and M. N. Toksoz, Array analysis of seismic scattering, In press, 1990.

Dainty, A. M., M. N. Tokséz, K. R. Anderson, P. J. pines, Y. Nakamura, and

G. Latham, Seismic scattering and shallow structure of the moon in Oceanus

Procellarum, The Moon, 9, 11-29, 1973.

Daudt, C. R., L. W. Braile, R. L. Nowack, and C. S. Chiang, A comparison of finite-

difference methods, Bull. Seismol. Soc. Am., 79, 1210-1230, 1989.

Dougherty, M. E. and R. A. Stephens, Seismic energy partitioning and scattering in

laterally heterogeneous ocean crust, Pure Appl. Geophys., 128, 195-230, 1988.

Dzienwonski, A. M., A. L. Hales, and E. R. Lapwood, Parametrically simple earth

models consistent with geophysical data, Phys. Earth Planet. Inter., 10, 12, 1975.

Eispruch, N. G., E. J. Witterholt, and R. Trull, Scattering of a plane transverse wave

by a spherical obstacle in an elastic medium, J. Appl. Phys., 31, 806-818, 1960.

Flatté, S. M. and F. D. Tappert, Calculation of the effect of internal waves on oceanic

sound transmission, J. Acoust. Soc. Am., 58, 1151-1159, 1975.

Flatté, S. M. and R. S. Wu, Small scale structure in the lithosphere and asthenosphere

deduced from arrival time and amplitude fluctuations at NORSAR, J. Geophys.

Res., 93, 6601-6614, 1988.

162



Fornberg, B., The pseudospectral method: Comparisons with finite differences for the

elastic wave equation, Geophysics, 52, 483-501, 1987.

Frankel, A., A review of numerical experiments on seismic wave scattering, Pure Appl.

Geophys., 131, 639-685, 1989.

i'rankel, A. and R. Clayton, Finite difference simulations of wave propagation in two

dimensional random media, Bull. Seismol. Soc. Am., 74, 2167-2186, 1984.

Frankel, A. and R. Clayton, Finite difference simulations of seismic scattering: impli-

cations for the propagation of short-period seismic waves in the crust and models

of crustal heterogeneity, J. Geophys. Res., 91, 6465-6489, 1986.

Frankel, A. and L. Wennerberg, Energy-flux model of seismic coda: separation on

scattering and intrinsic attenuation, Bull. Seismol. Soc. Am., 77, 1223-1251,

1987.

Gibson, B. S. and A. R. Levander, Modeling and processing of scattered waves in

seismic reflection surveys, Geophysics, 53, 453-478, 1988.

Goff, J. A. and T. H. Jordan, Stochastic modeling of seafloor morphology: inversion

of sea beam data for second order statistics, J. Geophys. Res., 93, 13589-13608,

1988.

Greaves, R. J. and T. J. Fulp, Three dimensional seismic monitoring of an enhanced

oil recovery process, Geophysics, 52, 175-187, 1987.

Gubernatis, J. E., E. Domany, and.J. A. Krumhansl, The Born approximation in

the theory of scattering of elastic waves by flows, J. Appl. Phys., 48, 2812-2819,

1977a.

Gubernatis, J. E., E. Domany, and J. A. Krumhansl, Formal aspects of the theory of

scattering of ultrasound by flows in elastic materials, J. Appl. Phys., 48, 2804—

2811. 1977b.

163



Haddon, R. A. W. and J. R. Cleary, Evidence for scattering of seismic PKP waves

near the mantle-core boundary, Phys. Earth Planet. Inter., 8, 211-234, 1974.

Harichandran, R. S. and E. H. Vanmarcke, Space-time variation of earthquake ground

motion, Technical Report Res. Rept. R84-12, Dept. of Civil Engineering, Mas-

sachusetts Institute of Technology, Cambridge, MA, 1984.

Herrmann, R. B., Q estimates using the coda of local earthquakes. Bull. Seismol. Soc.

Am., 70, 447-468, 1980.

Hudson, J. A. and J. R. Heritage, The use of the Born approximation in seismic

scattering problems, Geophys. J. R. astr. Soc., 66, 221-240, 1981.

Husebye, E. S., J. Hovland, A. Christoffersson, K. Astrom, R. Slunga, and C. Lund,

Tomographical mapping of the lithosphere and asthenosphere beneath southern

Scandinavia and adjacent areas, Tectonphys., 128, 229-250, 1986.

Ingate, S. F., E. S. Husebye, and A. Christoffersson, Regional arrays and processing

schemes, Bull. Seismol. Soc. Am., 75, 1155-1177, 1985.

Jenkins, G. M. and D. G. Watts, Spectral Analysis and its Applications, Holden-Day,

Inc., San Francisco, 1968.

Kelly, K. R., R. W. Ward, S. Treitel, and R. M. Alford, Synthetic seismograms: A

finite-difference approach, Geophysics, 41, 2-27, 1976.

Kennett, B. L. N., Seismic wave scattering by obstacles on interfaces.

astr. Soc., 28, 249-266, 1972a.

Geovnhys. J. R.

Kennett, B. L. N., Seismic waves in laterally inhomogeneous media, Geophys. J. R.

astr. Soc., 27, 301-336, 1972b.

Kennett, B. L. N. and J. R. Bowman, The velocity structure and heterogeneity of the

upper mantle, Phys. Earth Planet. Inter., in press, 1990.

Kennett, B. L. N. and G. Nolet, The interaction of the s-wavefield with upper mantle

heterogeneities, Geophys. J. R. astr. Soc., 101, 751-762, 1990.

164



Knopoff, L., The thickness of the lithosphere from dispersion of surface waves, Geo-

phys. J. R. astr. Soc., 74, 55-81, 1983.

Macaskill, C. and T. E. Ewart, Computer simulation of two-dimensional random wave

propagation, IMA J. Appl. Math., 33, 1-15, 1984.

Mandelbrot, B. B., Fractals, W. H. Freeman, San Francisco, 1977.

Mayne, W. H., Common reflection point horizontal data stacking techniques, Geo-

physics, 27, 927-938, 1962.

McLaughlin, K. L. and L. M. Anderson, Stochastic dispersion of short period P-waves

due to scattering and multipathing, Geophys. J. R. astr. Soc., 89, 795-821, 1987.

McLaughlin, K. L., L. M. Anderson, and Z. A. Der, Investigation of seismic waves

using 2-dimensional finite difference calculations, in Multiple scattering of waves

in random media and random surfaces, pp. 795-821, The Pennsylvania State

University, 1985.

Menke, W., A. L. Lerner-Lam, B. Dubendorff, and J. Pacheco, Polarization and

coherence of 5 to 30 hz seismic wave fields at a hard-rock site and the relevance

to velocity heterogeneities in the crust, Bull. Seismol. Soc. Am., 80, 430-449,

1990.

Mereu, R. F. and S. B. Ojo, The scattering of seismic wave through a crust and upper

mantle with random lateral and vertical inhomogeneities, Phys. Earth Planet.

Inter., 26, 233-240, 1981.

Miles, J. W., Scattering of elastic waves by small inhomogeneities, Geophysics, 25,

642-648, 1960.

Munasinghe, M. and G. W. Farnell, Finite difference analysis of Rayleigh wave scat-

tering at vertical discontinuities, J. Geophys. Res., 78, 2454-2466, 1973.

Mykkeltveit, S., A seismic profile in southern Norway, Pure Appl. Geophys., 118,

1310-1325. 1980.

165



Nayfeh, A., Perturbation Methods, Wiley, New York, 1973.

Ojo, S. B. and R. F. Mereu, The effect of random velocity functions on the travel

times and amplitudes of seismic waves, Geophys. J. R. astr. Soc., 84, 607-618,

1986.

Pao, Y. and C. Mow, Diffraction of Elastic Waves and Dynamic Stress Concentration,

Crane, Russak &amp; Co. Inc., New York, 1973.

Powell, C. A. and A. S. Meltzer, Scattering of P-waves beneath SCARLET in southern

California, Geophys. Res. Lett., 11, 481-484, 1984.

Prange, M. D., Seismic Wave Scattering from Rough Interfaces, PhD thesis, Mas-

sachusetts Institute of Technology, Cambridge, MA, 1989.

Rayleigh, J. W. S., On the light from the sky, Phil Mag, 41, 107, 1871.

Rayleigh, J. W. S., The Theory of Sound, V. II, Dover Publications, Inc, New York,

1896, (1945 edition).

Ricker, N. H., Transient Waves in Visco-elastic Media, Elsevier Scientific Publishing

Co., New York, 1977.

Ringdal, F. and E. S. Husebye, Application of arrays in the detection, location, and

identification of seismic events, Bull. Seismol. Soc. Am., 72, S201-S224, 1982.

Robinson. E. A., Predictive decomposition of seismic traces, Geophysics, 22, 767-778.

1937

Sato, H., Energy propagation including scattering effects. Single isotropic scattering

approximation, J. Phys. Earth, 25, 27-41, 1977a.

Sato, H., Single isotropic scattering model including wave conversions. Scattering

approximation, J. Phys. Earth, 25, 163-176, 1977b.

Sato, H., Coda wave excitation due to nonisotropic scattering and nonspherical source

radiation, J. Geophys. Res., 87, 8665-8676, 1978.

166



Scott, P. and D. V. Helmberger, Applications of the Kirchhoff-Helmholz integral to

problems in seismology, Geophys. J. R. astr. Soc., 72, 747-768, 1983.

Sellevoll, M. A. and R. E. Warrick, A refraction study of the crustal structure in

southern Norway, Bull. Seismol. Soc. Am., 61, 457-471, 1971.

Skolnik, M. I., Radar Handbook, McGraw-Hill Book Co., New York, 1970.

Snieder, R., A perturbative analysis of non-linear inversion, Geophys. J. Int., 101,

545-556, 1990.

Stephen, R. A., A review of finite difference meathods for seismo-acoustics ploblems

at the seafloor, Review of Geophysics, 26, 445-458, 1988.

Tanimoto, T. and D. L. Anderson, Lateral heterogeneity and azimuthal anisotropy

of the upper mantle: Love and Rayleigh waves 100-250 s, J. Geophys. Res., 90,

1842-1858, 1985.

Tatarski, V. I., Wave Propagation in a Turbulent Medium, McGraw-Hill, New York,

1961

Thomson, C. J. and D. Gubbins, Three-dimensional lithospheric modelling at NOR-

SAR: linearity of the method and amplitude variations from the anomalies, Geo-

phys. J. R. astr. Soc., 71, 1-36, 1982.

Toksoz, M. N., A. M. Dainty, E. Reiter, and R. S. Wu, A model for attenuation in

the earth’s crust, Pure Appl. Geophys., 128, 81-100, 1988.

Toksoz, M. N., A. M. Dainty, and E. E. Charrette, Coherency of ground at regional

distances and scattering, Phys. Earth Planet. Inter., In press, 1990a.

Toksoz, M. N., A. M. Dainty, and E. E. Charrette, Spatial variation of ground motion

due to lateral heterogeneity, Structural Safety, In press, 1990b.

Trefethen, L. N., Group velocity in finite difference schemes, SIAM Review, 24, 113-

136. 1982.

167



Cerveny, V., M. M. Popov, and I. Psencik, Computation of wave fields in inhomogee-

nous media-Gaussian beam approach, Geophys. J. R. astr. Soc., 70, 109-293,

1982.

Vidale, J. E., Comment on "A comparison of finite-difference and Fourier method

calculations of synthetic seismograms by C. R. Daudt et al.”, Bull. Seismol. Soc.

Am., 80, 493-495, 1990.

Virieux, J., P-SV wave propagation in heterogeneous media: velocity-stress finite

-difference method, Geophysics, 51, 889-901, 1986.

von Karman, T., Progress in the statistical theory of turbulence, J. Mar. Res., 7,

252-264, 1948.

Witte, D., The Pseudospectral Method for Simulating Wave Propagation, PhD thesis,

Columbia University, Palisades, NY, 1989.

Wu, R. S., Attenuation of short period seismic waves due to scattering, Geophys. Res.

Lett., 9, 9-12, 1982a.

Wu, R. S., Mean field attenuation and amplitude attenuation due to scattering,

Motion, 4, 305-316, 1982b.

Wave

Wu, R. S., Multiple scattering and energy transfer of seismic waves—Separation of

scattering effect from intrinsic attenuation, Geophys. J. R. astr. Soc., 82, 57-80,

1985.

Wu, R. S. and K. Aki, Elastic wave scattering by random medium and small scale

inhomogeneities in the lithosphere, J. Geophys. Res., 90, 10261-10273, 1985a.

Wu, R. S. and K. Aki, The fractal nature of the inhomogeneities in the lithosphere ev-

idenced from seismic wave scattering, Pure Appl. Geophys., 128, 805-818, 1985b.

Wu, R. S. and K. Aki, Scattering characteristics of elastic waves by an elastic hetero-

geneity, Geophysics, 50, 582-595, 1985¢.

168



Wu, R. S. and K. Aki, The perturbation method in elastic wave scattering, Pure

Appl. Geophys., 131, 605-637, 1990.

Yamakawa, N., Investigation of the disturbance produced by spherical obstacles on

elastic waves (I), Quart. Jour. Seismology, 21, 1-12, 1956.

Ying, C. F. and R. Truell, Scattering of a plane longitudinal wave by a spherical

obstacle in an isotropic elastic solid, J. Appl. Phys., 27, 1087-1097, 1956.

160



Appendix A

Born Scattering

A.1 Introduction

Rayleigh (1871) used dimensional analysis to show that when the size of a scatterer

is small compared to a wavelength, the scattered field is proportional to Vr=1k2,

where V' is the volume of the scatterer, r is the distance to the observation point

and k(= 2m /wavelength) is the wavenumber of the incident wave. He later solved

the acoustical (longitudinal waves only) and optical (transverse waves only) problems

exactly (Rayleigh, 1896). Through his analysis, Rayleigh was able to show that

variations in compressibility act as simple isotropic point sources, while variations

in density act as dipole sources. Central to Rayleigh’s solution was the limitation

that the amplitude and phase of the incident wave (i.e. the Green’s function of the

background wave) is constant over the entire extent of the scatterer. This is accurate

only when the spatial extent of the scatterer is small compared to a wavelength

(Skolnik, 1970). For larger scatterers, amplitude and phase variations in the incident

wave cause the radiation pattern of the scattered waves to be more complex.

Several techniques have been introduced to solve the problem of scattering from a

sphere which is similar in size to a wavelength. An exact solution has been presented

for both the case of an incident P-wave (Ying and Truell, 1956; Yamakawa, 1956) and
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an incident S-wave (Eispruch et al., 1960). The exact solution is obtained by formu-

lating the problem in spherical coordinates and matching the boundary conditions at

the surface of the sphere. Solutions derived by this technique are slowly converging

infinite series which cannot be expressed simply, except in the low frequency limit

(i.e. Rayleigh scattering limit). Besides giving extremely cumbersome results, the

technique is limited to only spherical or cylindrical heterogeneities (Pao and Mow,

1973).

A second technique uses the elastodynamic equation of motion and the Born ap-

proximation to calculate the equivalent body force due to the heterogeneity. Once

the body force is available, it can be convolved with the Green’s function and inte-

grated to obtain the scattered field. The same technique can be used to solve both

the Rayleigh and Mie scattering problems, depending on the assumptions made con-

cerning the incident field. In Rayleigh scattering the incident field is assumed to be

constant across the scatterer, where as in Mie scattering that restriction is lifted. In

this appendix, we will closely follow the work of Wu and Aki (1985¢) which itself was

based on the pioneering work of Miles (1960) and Gubernatis et al. (1977b). The

goal then is to use this perturbative technique to obtain simple closed form solutions

to the general Rayleigh scattering problem, as well as scattering from from obstacles

with Gaussian, and exponential distributions.

A.2 The Born Approximation and Single Scat-

terin -&gt;

(t was shown in Chapter 3 that if the heterogeneities are weak, the scattered field

obeys an homogeneous wave equation

vo |

Oot.
1 — .

— (Ao + wo l(V ul); — 1woV2u! = ();, ( fs
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Lf here

Qi = —bpt) + (6A + 6p) (Vu); + 6uViud + (61), Vu + (6p) 5(us; + ud). (A.2)

The far-field displacements due to the body force Q; can be obtained by integrating

the body force over its volume,

wz) = [ Qi(€) *Giilz, £)dV(€) ‘A.3)

Here G is the homogeneous Green’s function, z is the receiver location, § is the

position within the heterogeneity, and “*” is the convolutional operator. Substituting

Equation A.2 into Equation A.3 and integrating by parts yields,

iz) = = [ 8p()iE) x Giz, £)dV(¢)

= | [EME + 22(6)) + 8) (uu(E) +ul 4(£))]

«Gik(z, £)dV(¢).

The first integrand is a simple point force convolved with the Green’s function. The

force is oriented in the particle motion direction of the incident wave and depen-

dent on the the density perturbation of the medium. The second integrand is more

complex, but can be shown to represent the equivalent force moment tensor for the

the elementary volume dV/({). Convolved with the Green’s function, it represents

the portion of the scattered field due to the perturbations in A and pt. Thus, Equa-

tion A.4 is the integrated field due to the interaction of the incident wave with the

heterogeneity.

[f the volume V is sufficiently small, the incident wave and the Green’s function

can be considered constant across the scatterer. Ignoring the positional dependence

on these parameters, the total uni-directional body force F can be calculated by

integrating the first term in Equation A.4. Assuming the incident field has a simple

harmonic time dependence.

|  | 6p(€)E(E)aV(E) = wulBRV, i* 3)
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where 6p is the average density perturbation over the heterogeneity. Similarly, the

force moment tensor can be written as,

My = — / [8x6AE)(V + w°(8)) + 61(E) (uk (€) + ul 5(8))]

= —5uBAV(V1°)—FV[ud,+ud]. (A.6)

I'hen the far-field displacements are given by (Aki and Richards, 1980),

ut ol F; * Gj + My * Gijk

1
— iy F(t —
dm poar | 7; F5(t — r/ao)

1

ete yi: = 815) 5 (E —
Trpofir Hi i) F(t —r/Bo)

1 .

_ Yi M. t —

Tr poor TE ik(t — 1/0)
1 .

————— (77; — bi) eMk(t — , AT
teen Vs I)NM (t —r/Bo) (AT)

where r is the distance from the center of the scatterer, and 4; are the directional

cosines between the ray to the observer and the 7 axis. The first and third terms in

Equation A.7 are the displacements arising from P-waves and the second and fourth

terms are associated with S-waves.

The effects of the three anomalies 6p, §X, and yu are completely separated in Equa-

tions A.5 and A.6. The three orthogonal forces associated with perturbations in A are

of equal strength and affect only the diagonal elements of the force moment tensor,

therefore this source can be interpreted as an isotropic point source. Perturbations

in pu can produce both on and off diagonal elements in the force moment tensor. The

on-diagonal elements correspond to on-line force couples and the off-diagonal pairs

(which must be equal, due to the symmetry of the force moment tensor) correspond

to double couple sources.

A.2.1 Plane P-Wave Source

[n this section we will investigate the far-field displacements which are generated when

a plane P-wave interacts with the heterogeneity in the medium. The displacements
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due to a plane P-wave traveling in the +z; direction is written as,

0
UA _ 61.e— w(t — z1/ ag) (A.8)

The equivalent body force can be calculated by inserting Equation A.8 into Equa-

tion A.2,

2;
— 6X+ 26p)w?

[51,82 — CAEZBNT 55)+ 26M, e~ w(t —a1/a0) (4.9)
. ag Qo Qo

From Equations A.5 and A.6, the equivalent force and moments are given by,

F

mM

§iwpVe Wi

SX+26p 0 0

0 dX 0

0 &amp;\

~ iwVe wt

Qo

(A.10)

(A.11)

and the far-field radiation pattern by,

1
'

U;
50 x 28% \ WVe—w(t—r/ag)
—IN = TNT Th

_Po Ao + 210 Ao -+ 2u0 drrag
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The far-field scattered waves depend on both the distance from the perturbation and

the angular arc between the ray to the receiver and the particle motion direction of

the incident wave. This suggests that Equation A.12 can be simplified by changing to

polar coordinates. Choosing the coordinates such that the polar axis is in the particle

motion direction of the incident wave (Figure A-1), and separating the P and S waves

in Equation A.12 yields,

wo cos § — a — _2p cos? gVere — feo)—r/eo)(A.13)
Dn A+ 2u0 Ao 2ug 4rrod
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PuS = 6-2 ging _ Bobi gp Vete elt —r/bo)_160)
Po Qolo mrs

where Pu” are the displacements due to P-wave to P-wave scattering and Pu® are

displacements due to P-wave to S-wavescattering. It is clear from these equations that

regardless of the nature of the anomaly, the particle motion of the scattered P-wave

is always in the radial direction, and that of the scattered S-wave is always in the §

direction. Furthermore, the cosine dependence of the scattered P-wave indicates that

P-wave scattering is most intense in the forward and backward directions, and is zero

in the plane orthogonal to the incident particle motion direction. Conversely, the sine

dependence in the S-wave terms indicates that the scattered S-wave is strongest in the

plane perpendicular to the scattered P-wave lobes and is zero in the incident particle

motion direction. It is interesting to note that for most materials (i.e., A ~ 8g) the

scattered S-wave is larger than the scattered P-wave.

The exact form of the total scattered field will depend on the magnitude and

polarity of the various perturbations. We will discuss only a few of the infinite number

of possibilities here.

When 8X, 64, and 8p all have the same algebraic sign, (i.e. the inclusion is harder

and heavier, or softer and lighter, than the background medium) P-wave scattering is

greatest in the backwards direction. This occurs because at § = 7 the three terms in

Equation A.13 all have the same sign and therefore are in phase. As a special case,

consider a heterogeneity in which

X_%_T
Ao - Ho Po (A.15)

The velocity within the anomaly can be written as.

~2 _ Ao+8A+2(po+ 6p) (Mo + 2p0)(1 + 6p/po) =a?
- po + bp po(l + ép/po) (A.16)

and the impedance by.

pa = (po + 6p)ag # poco. (Ai7)
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This combination of perturbations results in only an impedance contrast across the

inclusion. Any scattering which takes place is then due to the impedance mismatch

of the inclusion, hence the name “impedance scattering”. The scattered field from

the perturbations in A, p and p are shown individually in Figure A-2 and the to-

tal scattered field is shown in Figure A-3. Notice that for this particular choice of

parameters, the total scattered P-wave is confined to the back-scattered direction.

The scattered S-wave is considerably larger than the P-wave and is strongest in the

side scattered direction. Notice, too, that no scattered S-wave is generated in the

forward-backward direction and no P-wave is side-scattered.

Also of interest is the case when the inclusion is lighter and harder or heavier and

softer than the surrounding material. Consider the special case when

 BD _H_%
Ao Ho Po

'A.18)

[t is easy to show that there is no impedance change across the inclusion, only a veloc-

ity perturbation. This situation is often termed “velocity scattering”. The radiation

pattern due to velocity scattering is identical to that for impedance scattering, but

rotated 180°(Figure A-4).

Velocity scattering is characterized by strong forward P-wave scattering, while

impedance scattering gives rise to strong back-scattering of P-waves. In both cases,

there is no scattered S-wave in either the forward or backward directions. The S-wave

displacements are concentrated in the side-scattered directions, and are considerably

larger than the scattered P-waves. The larger amplitude of the scattered S-wave

should make it more visible/ useful in some experiments, but its radiation pattern will

make it difficult to observe in limited aperture transmission and reflection geometries.

Similarly, the strong back-scattering characteristics of impedance scattering will make

these anomalies difficult to quantify in most transmission experiments, and more

casily quantified in reflection experiments.
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A.2.2 Plane S-Wave Source

The same analysis can be applied for the case of an incident S-wave. Consider an

S-wave propagating in the +z; direction, with particle motion in the x, direction,

u? st Spe W(t — z1/ Bo) | (A.19)

Again, we can solve for the body force vector ®@ by inserting Equation A.19 into

Equation A.2,

2 .

Q: = |62(Fpw? - Tg + 62:81) + ui e~ w(t = 21/60)
0 0

Then the forces are.

F; = Siaw?bpVe™ wt (A.21)

—wwV
M=—

Bo

0 bu0

Sp 0 0
o — Ww

0 0 0

(+ 22)

and the far-field displacements are given by,

 128 . . . . .

 OPV 3% —iwo(t = v/a) _ (392 = 82)—iw(t — rf)
dmpor | af Bs J

RIN 2M —iw(t — r/ag) | (20imre = Save — 82m) _iu(t — r/Bo)’

podmr ad 63

Switching to spherical coordinates (Figure A-5), with the polar axis pointing in the

direction of the incident particle motion yields,

Vw? [6p ouSuf = pF 2 cosh - Poot sin 26 sin 5) e~ w(t —r/ao)
drrad | po Qollo

» Vw? [6 Sp 1 —;

d— o sin +Pl cos 20 sin o| e— w(t — 7/5)
drrB5 | po Ho

» Vw? [bu :

922 sf cos 9] eit = 7/0)
4rrFe Ho

(A.23)
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Interestingly, both the scattered P-wave and scattered S-wave are independent of

perturbations in A. The scattered P-wave results from variations in density and shear

modulus. The equivalent force due to the variations in density point in the particle

motion direction of the incident wave. This force creates a radiation pattern which

has a simple cosine dependence for P-waves and sine dependence for S-waves.

The scattering pattern due to variations in yu are more complex. These pertur-

bations create a double couple source in the z;~z, plane. The double couple source

causes the S-wave to have displacements in two directions, § and ¢. The double cou-

ple force can be decomposed into two single couple forces by rotating the coordinate

system, so that the polar axis is parallel to the force direction. Then, the S-wave

displacements for each force couple can be calculated separately. Consider the dis-

placements due to the element M;,. The displacements in the new coordinate system

are given by,
2 —_—

Su = _ WV (Or)
u; = Amrpo 52 (2) (vim i1)72

or in polar coordinates about the new polar axis by,

A 2 du

“0S = Oy, — VY (2) sin? 6 cos @.
drrpofBs \ to

(A.26)

(A.27)

Similar results can be found for the other force couple Ms; and the total scattered

field from the variations in gx is given by the vector sum of the two single couple forces

(Figure A-7).

I'he terminology introduced for P-wave scattering can also be used in S-wave

scattering. When

5 _ Bu

Po Uo
(A.28)

there is no discontinuity in velocity and only impedance scattering. In impedance

scattering, S-wave to P-wave conversion is strongest in the back-scattered direction.

S-wave to S-wave scattering is more complex and has three main lobes. The largest

lobe is in the backward direction and the two smaller lobes are in the side-scattered

direction (Figure A-T).
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As was the case for P-wave scattering, the scattering pattern due to velocity scat-

tering is opposite that for impedance scattering, Figure A-8. The large forward scat-

tered S-wave suggests that these anomalies will be easiest to identify in transmission

experiments, such as cross-well or VSP geometries.

A.3 Mie Scattering

Nleadi:1

in a Weakly Heterogeneous

[n the last section, a series of simple closed form solutions were obtained for elastic

wave scattering from a small isolated heterogeneity. The metric used to define small

was the wavelength. If the scatterer is small enough that the phase of the incident

wave 1s nearly constant across the scatterer, the scattered field can be adequately

described by Rayleigh scattering. However, when the size of the scatterer approaches

that of a wavelength, the incident field will have significantly different phase at dif-

ferent points in the scatterer, resulting in a more complex scattering pattern.

Using the results from the previous section, the Born approximation can be used

io calculate the scattered field for a general elastic heterogeneity,

uz) = [ Qi) + Gislz, £)dV(¢). (A.29)

[f the size of the scatterer is on the order of a wavelength, the incident wave and

Green’s function can no longer be considered constant about the scatterer. Equa-

tion A.29 can be solved approximately using the Fraunhofer approximation to the

Green’s function. Then.

= uw +

we tw(t — r/ao) 8p(€) .

1agdA(£) oo tabu) N 5 0

00+200) u(£)) + oO +2g) TT (k(E) Ka 2,0)

c—w(€ rz) ogy (e)

iJ

(A 30)
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wie— w(t —1/Bo) 5

ul (z) = ~~, 2s, — vii) uw; (€)

1306

POE5=(4546)+ 18,4(0))

w(€ : z)/Bogy(¢).2 (A.31)

When the incident wave is a plane P-wave (Equation A.8), these equations can

be simplified to,

PP
wie w(t —r/ag)

- Arral

6p(¢) 8A(¢) 2608) | dw(l—1-8)/eI po = SA ee LEI

We w(t — r/o)

dr5?

/, es, — 7m) - 22, nm eléa/a0 = (&amp; )/Bo)gy(¢

(A.22)

i. _
(A.33)

|

For an incident S-wave,

pr wre w(t — r/ag)

: drrad

J Es, — AE am] Jw(é/Bo — (z E)eo)gy(¢ )
Vv Po Golo -

wie w(t — r/o)

dr32

J, 26 — Viv?) — (5a + dim — SY lafBo=(2: Faye).

(A.34)

Now, suppose all three parameters A, x and p share the same parameter distribu-

tion function P({) such that,

SME) = 8XoP(£)

6u(€) = SuoP(¢)

8p(€) = 6poP(£),

(A.36)

(A.37)

(A.38)
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where 8), Spo, and po are the parameter values at the center of the inhomogeneity

af7

5 Xo [ P(£)dV(£) = BV

so | P(€)dV(€) = Fav

po | P(£)aV(E) = TaV.

(A.39)

(A.40)

(A.41)

Using these definitions, the scattered field for an incident P-wave can be written as,

 &gt; J

r
"po 8Xo 260 o w2e—tw(t — r/ag)
—co8f — ——— — ———— cos | —— —

L Po Ao +210 Ao + 2u0 drrad

w(é — 2 £)/eo[ P(&amp;)e dv (¢)

x 8

PS
_ _bpo . _ Bod to . Se tw(t - r/Bo)

= | Ho Bs ~ Coin20) Ir Be

[ P(g) bi/ao —(Z- £)/Bo) av (¢)

(A.42)

(A.43)

and those for an incident S-wave as,

L-

1

 YS ~
u

. Ww?

r—— Spo —_—drrad | Po cosd = El

[ ple)eietéilo- Gog or
£)

i [#222sino + 20 cos 20sin +6 122 costoss|4rrps Po Ho LHo

,—w(t —r/B) / p(£)ew( — {B - EN Pogy (e)

A 24)

(A.45)

(A.46)

These equations are similar in form to the equations for Rayleigh scattering. The only

difference is the volume V in those solutions has been replaced by a volume integral
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of the form

ule) = [ PO) 822aV(g), (A.47)

This term has been identified as a shape (Gubernatis et al., 1977a), or volume (Wu and

Aki, 1985c) factor. The volume factor modulates the Rayleigh solution. It accounts

for the fact that the total scattered field is an integrated sum of scattered waves

from all parts of the heterogeneity. Since the incident wave may not have constant

phase across the heterogeneity, the total scattered field will be a superposition of

waves which have different phase delays. As a result, this method of calculating the

scattered field will always produce a smaller scattered wave than the Rayleigh solution

(for similar sized scatterers). For common-mode scattering the volume factor is largest

in the forward direction and smallest in the backward direction. This occurs because

in common-mode scattering, the incident and scattered waves travel with the same

slowness, and therefore always add constructively in the direction of propagation.

In Equation A.47, the term §, is the exchange slowness vector. Irom Equa-

tions A.42 - A.45 the slowness vectors are given by,

S, = — [fh —4]
Qo

Sy = [21/00 — Z/ Bo]

S3 = [21/80 — Z/ xo]

S. = = l= dl.

(A.48)

(A.49)

(A.50)

(A.51)

The form of Equation A.47 is similar to that of a spatial Fourier integral, where

the wavenumber vector k equals wS ,. Then, for a specified scattering angle 0, the

volume factor 8, is equal to the spatial Fourier component of the parameter variation.

When the spatial variation is spherically symmetric, the volume factor can be written

in terms of a 1D Fourier transform,

2r 0»

0n(0) = = —o=m—ay P(wSh), (A.52)

where P is the Fourier transform of the material perturbations and S, is the norm

of the vector S., .
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A.3.1 Mie Scattering from a Gaussian Inclusion

Several statistical models have been put forth to describe the statistical distribution

of scatterers in the lithosphere, (Aki et al., 1977; Aki, 1980; Ringdal and Husebye,

1982; Wu, 1982a; Frankel and Clayton, 1984; Frankel and Clayton, 1986; Charrette

and Toksoz, 1989; Toksoz et al., 1990a). In crystalline rocks, the heterogeneities

are probably broad smoothly varying features. It is speculated that these hetero-

geneities can be described by a Gaussian autocorrelation function. In sedimentary

rocks, however, the heterogeneities might be more “rough” and better described by

the exponential function. In this section we derive the volume factors for both the

Gaussian and exponential functions and show their effects on the scattered waves.

A.3.2 (Gaussian Parameter Function

For a spherical inclusion, the Gaussian parameter variation function 1s given by,

P(r) = erlat (A.53)

where a is the correlation length of the heterogeneity (Figure A-9). The one-dimensional

Fourier transform of the parameter function is.

and

Pk.) = Jrae— ka’ [4

the volume factors are given hy

9, = (Vra)le—(wSna)’/4

(A 54)

(A.55)

At low frequencies (i.e. when the wavelength is large compared to the size of the

scatterer) the volume factor is nearly isotropic and the Mie solution is much like the

Rayleigh solution (Figure A-10). As the frequency of the incident wave increases, the

scattering pattern becomes more forward directed, until no energy is backscattered

at all. The volume factor for an incident S-wave is similar to that for an incident

P-wave (Figure A-11). In both cases, the volume factor has only one main lobe. The
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main lobe is oriented in the forward scattered direction and varies smoothly with

scattering angle. Other parameter functions, especially those with sharper space

domain features (e.g., a spherical boxcar function) have been shown to produce much

more complex volume factors (Gubernatis et al., 1977a; Wu and Aki, 1985¢).

In the back-scattered direction, the volume factor decreases as the size of the

heterogeneity increases (Figure A-10). This has the effect of severely reducing the

amplitude of both the scattered P (Figure A-12) and scattered S waves, (Figure A-13).

The effect of the volume factor on velocity scattering is similar for S-waves (Fig-

ure A-15), but quite different for P-waves (Figure A-14). Since in velocity scattering

the P-wave is strongly forward scattered the effect of the volume factor is small. In

both impedance and velocity scattering the Mie solution approaches the Rayleigh

solution as the size of the scatterer decreases.

A.3.3 Exponential Parameter Function

['he exponential function.

P(r) = e/a (A.56)

is similar to the Gaussian, but is not as well localized in the space (or wavenumber)

domain (Figure A-9). The one-dimensional Fourier transform of the exponential is,

P(k,) = 2a/(1 + k2a?). (A.57)

and the volume factors are given by,

0 — 87al

"14 w2S82a2)
(A.58)

The volume factors for incident P and S waves are shown graphically in Figure A-

16 and Figure A-17 respectively. The scattering patterns from an inclusion with an

exponential parameter function (Figures A-18 - A-21), are much like those from an

inclusion with a Gaussian parameter function. For velocity scattering, the scattered

P-wave is noticeably more forward directed, but otherwise it is very similar to the

(Gaussian case.
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Figure A-2: Rayleigh impedance scattering due to variations in A, x and p. The

incident wave was a P-wave traveling in the +x direction and §A\/Ao = du/po =

6p/po. Notice P-waves are displayed at 2X the S-waves.
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Figure A-3: The total scattered field from Figure A-2. In impedance scattering

the P-wave is directed backwards, and the S-wave is strongest in the side-scattered

direction.
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Figure A-4: Rayleigh velocity scattering of a P-wave results in a fore-scattered P-wave

and a strong side-scattered S-wave. This scattering pattern is identical to Figure A-3,

but rotated 180°.
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Figure A-7: The total scattered field from Figure A-6. Notice the strong back-
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Figure A-8: Rayleigh velocity scattering of a S-wave results in a side-scattered P-wave

and a strong fore-scattered S-wave. This scattering pattern is identical to Figure A-7,

but rotated 180°
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Figure A-10: The volume factors for a P-wave incident on a spherical inclusion with a

Gaussian parameter function. The upper half of the diagram is for P to P scattering

and the forward scattering direction is to the right. The volume factor varies smoothly

with angle and strongly favors forward scattering of both P and S waves.
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Figure A-11: The volume factors for an S-wave incident on a spherical inclusion with

a Gaussian parameter function. The upper half of the diagram is for S to S scattering

and the forward scattering direction is to the right. As for an incident P-wave, the

volume factor varies smoothly with angle and strongly favors forward scattering of
both P and S waves.
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Figure A-12: Mie scattering includes the effects due to the finite shape of the scat-

terer. Shown are P to P impedance scattering patterns (magnified 4X) which result

from two different sized inclusions with Gaussian parameter functions. Note the

strong reduction is the amount of back-scattered energy as the size of the inclusion

is increased. For infinitely long wavelengths, this solution reduces to Figure A-3.
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Figure A-13: P to S impedance (Mie) scattering patterns (magnified 2X) which result
from two different sized inclusions with Gaussian parameter functions. Note the near

extinction of the scattered S-wave when the size of the inclusion is larger than 1/6 of

a wavelength. For infinitely long wavelengths, this solution reduces to Figure A-3.
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Figure A-14: P to P velocity (Mie) scattering patterns (magnified 4X) which result
from two different sized inclusions with Gaussian parameter functions. Unlike the

impedance scattering case, the size of the scattered wave is not greatly affected by

the size of the scatterer. For infinitely long wavelengths. this solution reduces to

Figure A-4.
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Figure A-15: P to S velocity (Mie) scattering patterns (magnified 2X) which result

from two different sized inclusions with Gaussian parameter functions. Again, note

the near extinction of the scattered S-wave when the size of the inclusion is larger

than 1/6 of a wavelength. For infinitely long wavelengths. this solution reduces to

Figure A-4.
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Figure A-16: The volume factors for a P-wave incident on a spherical inclusion with

an exponential parameter function. The upper half of the diagram is for P to P

scattering and the forward scattering direction is to the right. The volume factor

varies smoothly with angle and strongly favors forward scattering of both P and S
waves.
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Figure A-17: The volume factors for an S-wave incident on a spherical inclusion with

an exponential parameter function. The upper half of the diagram is for S to S

scattering and the forward scattering direction is to the right. As for an incident

P-wave, the volume factor varies smoothly with angle and strongly favors forward

scattering of both P and S waves.
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Figure A-18: P to P impedance (Mie) scattering patterns (magnified 4X) which result

from two different sized inclusions with exponential parameter functions. Note the

strong reduction is the amount of back-scattered energy as the size of the inclusion

is increased. The scattering pattern is similar to Figure A-12.
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Figure A-19: P to S impedance (Mie) scattering patterns (magnified 2X) which result
from two different sized inclusions with exponential parameter functions. Note the

near extinction of the scattered S-wave when the size of the inclusion is larger than

1/6 of a wavelength. The scattering pattern is similar to Figure A-13.

203



P -&gt; P Scattering

or]

y

ar

 BE

==,

=r v5

aw/o = 0.5

si"
oo

aw/o = 2.0

Figure A-20: P to P velocity (Mie) scattering patterns (magnified 4X) which result
from two different sized inclusions with exponential parameter functions. Unlike the

impedance scattering case, the size of the scattered wave is not greatly affected by

the size of the scatterer. The scattering pattern is similar to Figure A-12, but slightly
more concentrated in the forward direction.
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Figure A-21: P to S velocity (Mie) scattering patterns (magnified 2X) which result

from two different sized inclusions with exponential parameter functions. Again, note

the near extinction of the scattered S-wave when the size of the inclusion is larger

than 1/6 of a wavelength.

205



Appendix B

Finite Difference Modeling

B.1 Introduction

Finite difference modeling has proven to be an effective technique for numerically

simulating wave propagation in the earth. The popularity of the technique stems from

its ability to generate a complete solution to the elastic wave equation. Thus direct,

reflected, diffracted, and guided modes are all accurately modeled. The technique

is also easy to implement and accurate over a wide range of wavelength to scatterer

ratios. The latter is not true of high frequency techniques, such as raytracing. The

chief disadvantage of the finite difference technique is its computational intensity. As

a result, large scale three dimensional simulations can be done only on state of the

art supercomputers and require prohibitive amounts of CPU time.

A great number of finite difference schemes have been introduced in the literature.

These schemes are generally divided into two broad classes; explicit schemes and

implicit schemes. Both iteratively solve the wave equation, but in explicit schemes it

is possible to calculate displacements at a later time from only earlier displacement

values. This leads to easier implementation and may explain their widespread use in

geophysical problems. Implicit schemes use both future and past time steps to provide

unconditional stability. However, seismic wave simulation is bound by dispersion
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error, not by stability, so the increased complexity of implicit schemes has not been

justified.

Finite difference schemes can be further categorized by their order of accuracy.

Since the value of a continuous function sampled on a discrete grid is known only

at the node points, the usual method of deriving finite difference operators is to

assume an interpolating function then exactly differentiate that function. The most

commonly used interpolant is the Lagrange polynomial. Bickley (1941) gives the

general form of the differentiated Lagrange polynomial as

k m k+1

HO |e Sade +E (en E20) (B.1)
where k is the order of differentiation, m is the order of accuracy, and h is the sample

spacing. It is clear from Equation B.1 that the size of the error term FE decreases

as the order of the interpolant increases. It is also clear that as the order of the

interpolant increases, the number of computations increases.

All forward modeling presented in this thesis made use of an explicit second-order

finite difference technique on a non-staggered grid. This approach allows both com-

ponents of the displacement vector to be specified at the same point in space, making

the implementation of boundary conditions and subsequent processing considerably

easier. The cost of this simplification is a slight loss in accuracy, especially in areas

with sharp spatial gradients in material properties (Virieux, 1986). A second reason

for choosing this formulation is that both absorbing and free surface boundary con-

ditions are far easier to incorporate into low order finite difference schemes. Lastly,

in order to accurately describe some of the random media, it was necessary to sample

the medium at a very high spatial sampling rate. In light of the high sampling rate,

low order schemes were more efficient than high order schemes.

Other schemes are also commonly used in seismic applications. Currently, the

most popular schemes seem to be fourth-order explicit schemes (e.g., Frankel and

Clayton, 1984; Frankel and Clayton, 1986; Gibson and Levander, 1988). The popu-

larity of these schemes stems from the fact that they provide sufficient accuracy with

207



a larger step size. The pseudo-spectral method, the high order end member in the

family of finite difference schemes, has also generated some interest in the seismic

literature (e.g., Fornberg, 1987; Witte, 1989). This method uses a Fourier series as

the interpolation function. The Fourier transform is efficiently calculated using the

Fast Fourier transform. The derivative of the interpolant is simply its Fourier spec-

trum times tk, where k is the wavenumber. The pseudo-spectral technique has the

advantage that it exactly differences any spatial frequency which is not aliased, but it

has the disadvantage that it implicitly assumes periodicity, thus making free surface

and absorbing boundaries difficult to implement.

The trade-off between high and low order finite difference schemes has been in-

vestigated in the seismic literature (Fornberg, 1987; Daudt et al., 1989; Vidale, 1990)

but it appears the optimal choice for the order of accuracy may be application as

well as machine dependent. The latter point has important implications for three-

dimensional finite difference work, where parallel computers will likely dominate. On

most parallel computers, individual nodes can perform local calculations orders of

magnitudes faster than they can access data from neighboring processors. In light

of this, it seems low order finite difference schemes might be more efficient on these

machines. Conversely, machines with high speed vector processors and fast RAM

(memory) can compute and access memory at high speed and may favor higher order

schemes.

B.2 2-D Finite Difference Modeling

Che wave equation for a linearly elastic, isotropic, heterogeneous medium can be

written as (Aki and Richards. 1980)

pi; — (AV - uw) — [p(ui; + u;)];= 0, (8.2)

where u = u(z,t) is the displacement vector, A and pu are the Lamé’s parameters,

and p is density.
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Most features in the Earth’s crust are fully three dimensional in nature. How-

ever, due to computational limitations we were only able to model two-dimensional

geometries. We have chosen to use the two-dimensional plane stress equations in a

Cartesian coordinate system. All stresses are assumed to be invariant in the y direc-

tion. It should be noted that the Green’s function for a two-dimensional system is

scaled by 1/+/7, as opposed to 1/r for a three-dimensional medium. As a result, some

care must be exercised when comparing synthetic 2-D results to actual field data.

We follow the coordinate system commonly used in seismology; z is the horizontal

offset and z is depth. Expanding Equation B.2 and setting displacements and stresses

in the y direction equal to zero gives

popu = O(N + 21)0u + AF,w]+0,[p(0,u+ O,w)]

pOyw = 8:((A + 2u)0:w + Aru] + 0:[u(0;u + Osw)),

a3

where u and w are the horizontal and vertical components of the displacement vec-

tor. These equations fully describe the motion of compressional (P) and vertically

polarized shear (SV) waves within the medium. There is no need to consider the

horizontally polarized shear (SH) waves since that motion is completely decoupled in

two-dimensional systems and will not be excited by our source.

All finite difference modeling in Cartesian coordinates was done using the explicit

second order scheme introduced by Kelly et al. (1976). In that scheme, displace-

ments, stresses, and the material properties are all specified on the same grid. The

scheme uses midpoint finite difference operators to approximate second order partial

derivatives with only one independent variable,

J: Az, 2)0u(z,2,t) =~ Dy\z,z)D.u(z,z,1)

- Mz + dz/2,2z)(u(z + dz, 2, t) — u(z, 2,t))

Mz —dz/2,2)[u(z,z,t) — u(z —dz,2, t)], (B.5)

but a less accurate full step stencil to approximate mixed derivatives

Ocp(z,2)0u(z,2,t) =~ Dyu(z,2)D,u(z,z,1) ‘Ro )
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~~
~ To; [He + dz, 2)(u(z + do, 2 + dz, 1) — u(2 + dz,2— dz, 1))

w(x — dz, z)(u(z — dz, z + dz, t) — u(z — dz, z — dz, t))]. (B.7)

Inserting the finite differences into Equation B.3 yields

pDyu = [Dz(A+2u)Du+ DAD,w

D,uD,u+ D,uD w]

oDyw = [D(A +2u)D,w+ D, AD,u

D.uD, w+ D.uD,ul

(B.8

(b..

7

B.2.1 Numerical Dispersion

Trefethen (1982) showed that finite difference approximations to the elastic equation

of motion produce a medium which is both dispersive and anisotropic. That analy-

sis was presented for the acoustic wave equation, but used a finite difference scheme

similar to that used here. Prange (1989) followed that procedure and obtained sim-

ple closed form expressions for both the phase and group velocity of elastic waves

traveling on a staggered finite difference grid. He was able to obtain simple closed

form expressions because the second differences in his equations were obtained by

recursively applying the first difference equations. The finite difference scheme used

here does not have that property, thus its dispersion relation is more complex.

Numerical analysis of the dispersion equation for the inhomogeneous wave equa-

tion is extremely complex. Therefore, most studies concentrate on the homogeneous

form of the isotropic elastic wave equation

Oy
u _ a?0py + 5%0,, (a? - 6%)0,,

lw] | (@®=$8.. 0%, +50,

|

| w |
(B.10)

The dispersion relation for the homogeneous elastic wave equation can be found by

inserting a trial solution of the form e£'2=%? into Equation B.10. After simplification,
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it can be shown that the eigenvalues are given by

w= —a?(k -k)

w= —p%k -k)

(B.11)

(B.12)

where w is the angular frequency and k is the wavenumber vector. Notice that in a

purely elastic medium, the phase velocity is independent of frequency and therefore

equivalent to the group velocity. Also notice that the dispersion curve is a circle,

indicating the medium is isotropic. Since Equation B.10 is Hermitian, its eigenvectors

are orthogonal. The first eigenvector points in the direction of k (i.e. P-wave motion

is longitudinal) and the second is orthogonal to k (i.e. S-wave motion is transverse).

The eigenvalues for the finite difference equations can be found by inserting the

finite difference approximations (Equations B.4 and B.6) into Equation B.10. Taking

the limit as At — 0 and using the same trial solution results in extremely complicated

analytic forms for the eigenvalues and eigenvectors. Due to the complexity of those

equations, the error in phase velocities for the compressional and shear modes are

displayed graphically in Figures B-1 and B-2. The phase velocities of the medium

depend on the eigenvalues, and are given by C(k) = w/|k|. In the analytic form

of the elastic wave equation, the phase velocities are constant. Figures B-1 and B-2

show this is not the case for the finite difference wave equation. In the wavenumber

domain, the error in phase velocities is shown to be a function of the finite difference

grid spacing. At small spacings, the error in phase velocity is small for both P and

S waves. At larger step sizes, the error contours for the compressional phase velocity

slowly become less circular. This is numerically induced anisotropy. The shear phase

velocity 1s even more anisotropic. Along the axes of the grid, the shear wave can be

seen to travel too slowly, while at 45°to the axes, the shear wave velocity is too fast.

The group velocity vector is defined as

Uk) =Viw B.13)

For an elastic, homogeneous, isotropic medium, the group velocity vector is inde-
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pendent of frequency and direction. These properties are only observed in the finite

difference equations when the spatial step size is very small (Figures B-3 and B-4).

At larger step sizes, the magnitude of the group velocity vector is generally underes-

timated for both P and S waves. These errors are shown graphically in Figures B-

5 and B-6. In addition, there is a consistent error in the direction of the group velocity

vector. Only in a few directions (0°, 45°, and 90°) are the group velocity vectors ori-

ented correctly. Energy traveling in other directions will tend to be focused towards

the diagonals of the grid. As a result, there may be too much energy traveling in

these directions

Both these errors can be minimized by maintaining a sufficiently high sampling

rate. Throughout this thesis, we sustained a sampling rate of at least 10 points per

wavelength (PPW) for the shortest wavelengths on the grid (i.e. k = #/5). For

P-waves, this resulted in phase velocity errors of less than 1.5% and group velocity

errors of less than 5.0% (Figures B-1 and B-6). Errors were much smaller at the

center frequency of the source wavelet.

B.2.2 Sources and Boundary Conditions

Energy can be introduced into a finite difference simulation in two ways, either by

specifying the initial conditions (i.e. the displacement and the time derivative of dis-

placement) over the whole grid, or driving one or more nodes with a time varying

displacement function. In general, we use the first technique when modeling phe-

nomena in which the source is a plane wave. The second technique is reserved for

situations when the desired source is a line source (2-D equivalent of a point source).

The source function most commonly used is the Ricker wavelet (Ricker, 1977), since

it is well localized in both the spatial and Fourier domains (Figure B-7).

To minimize computational time and storage, artificial boundaries must be intro-

duced along the “edges” of the grid. Throughout this thesis we use a second-order

paraxial elastic wave equation at all boundaries from which we desire no reflections
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(Clayton and Engquist, 1977). To mimic a free surface, we make use of a row of

pseudo-nodes above the grid and solve the zero stress equations,

0 = O,u+ ow

0 = Adu+ (A+ 2u)d,w,

(B.14)

(B.15)

at the free surface (Munasinghe and Farnell, 1973)

B.3 A Point Diffractor

To investigate the accuracy of the finite difference technique a series of simulations

were made to study the scattering from a point diffractor. Sharp contrasts are known

to lead to inaccuracies in most finite difference algorithms. These errors are due to

spatial aliasing of the high wavenumbers, which are folded into the low wavenumber

components (Witte, 1989). A point diffractor on a discrete grid is an extreme example

of this phenomenon, since in the Fourier domain the spectrum of the medium is

constant out to the spatial Nyquist frequency.

In all three simulations a plane P-wave was incident on a point diffractor which

had no perturbation in A or p, but a 33% perturbation in yu. The source-time function

of the P-wave was a Ricker wavelet (Figure B-7) which was sampled at 25, 50 or 100

points per wavelength (PPW) at the center frequency. Figures B-8 and B-9 show the

radiation patterns for P-P and P-S scattering. At coarse sampling rates, the solutions

differ considerably from the analytical solutions. Note the large errors at 45°in the

S-wave solution. These secondary lobes occur because the higher frequencies in the

S-wave were under-sampled. For these frequencies, the group velocity vector is biased

away from the axes of the grid. As the sampling rate is increased, the solution is seen

to converge towards the analytic solution.
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Figure B-1: In wavenumber space, the dispersive and anisotropic nature of the finite

difference grid is clear. This plot contours the errors in compressional phase velocity

as a function of wavenumber. In all modeling the spatial step size h was chosen so

that no frequencies had phase velocity errors greater than 1%.
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Error in Phase Velocity
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Figure B-2: Similar to Figure B-1, but for the shear wave. Notice the highly

anisotropic nature of the finite difference grid. Also notice that shear waves tend

to travel fastest at 45°and slowest along the axes of the grid.

15



Group Velocity Vector
(Compressional Waves)

Horizontal Wavenumber

t1/h -pi/2h 0.0 pi/2h pi/h
pi/h

:

~ NO *

CassavaavsLay
TA AN LALA NANNY LLY

Conan aaLLAN Tyr

CoeSNNNAANLVAAC

LAN SNLNNAAA Ye

SAN AA NANAAAN

ens ANANANAAAYNY

NAN NNNANNAY

SNSNANNN NANA
La ASSN ANANNLTY
Eh

SAANANANN ANY
amma aN NT

Ammaaa a *

mma a a

oe fy ny ee, ae, Ba hn, B, - *
 a ————— ANA

———amtn~© eyN

———————————a
a

 ee et reter age,
"I NR EA A am yr og? ro
Cerro
errrrrrrr,
TCCrrrrrrrss,

 err Cerri

Cerrrrrsri try.
rere rrrrrs ys,

Ceres rly,

Te LLL SL,

4 sss

Bard

y

pi/2h
&lt;
-

-.

TSAI Bt atin

feetrm-—
 tt ttt ot te mm =

 ee etebttmee.no

tttcoottbem=ma
Ntsamtamt=a+=a
ATT Se Ne Ye Tm ae me ms = mw

ST MTRTTRteTeeetehwwwow

 edtSESEE
A SE EE NTE RY
SANDS NNNNNNSSNSSn.
NANSNNNNSSANNSS.
SUNN NANSNNSSSSSSs

NANNSNNNSSNSNSNSSL
ANNARNNNNSNSNSNNY

*NANNNNNNSNNNSNS
SUNTUNNNSNSNA

MAN ANNAN

TAT NNN SNS

YUONNNNNNNYS
RI

ERIE

ves

Nas

Noh

=
3

3

0.0
 !

3
&gt;
JV
-
gE

3
2

 my 5
-p1/2h

ra

be
‘ r

Lr

I
i

Ly
fn
HE
[a

+.

pi/h

Figure B-3: For an isotropic medium, the magnitude of the group velocity vector is

independent of frequency and points radially away from the origin. Here, only at 0°,

45°, and 90° do the group velocity vectors point in the radial directions. Along all

other propagation directions, the group velocity vectors are biased towards 45°
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Figure B-4: For a non-dispersive isotropic medium, the shear wave group velocity

vector points radially away from the origin and has constant length. Note that only

at 0°, 45°, and 90°do the group velocity vectors point in the radial direction. Along

all other propagation directions, the group velocity vectors are biased towards 45°.
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Figure B-5: The errors in group velocity are frequency and azimuthally dependent.

In general, errors are largest for P-waves traveling along the axes of the grid and

smallest for those traveling at 45°.
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Figure B-8: Comparison of the finite difference solutions at 3 different grid spacings,

25 PPW, 50 PPW, and 100 PPW. Shown is the scattered field resulting from a plane

P-wave incident on a point diffractor (33% variation in x). The scattered field was

generated by subtracting the incident field from the total scattered field.
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Figure B-9: The scattered S-wave for a plane P-wave incident on a point diffractor

(33% variation in p). The scattered field was generated by subtracting the incident

held from the total scattered field.
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