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ABSTRACT

In this thesis I develop a thermodynamically self-consistent numerical model of

melting, melt migration and mantle flow beneath a mid-ocean ridge. The models I explore

consider sub-ridge mantle upwelling to have two components. The plate-spreading

divergence of the lithosphere results in an upwelling beneath the ridge axis. Melting-

induced density changes also result in a component of upwelling flow. The rate of plate

spreading and the nature of the flow field determine the first order temperature structure of

the mantle. At some depth, the adiabatically rising mantle crosses its solidus and begins to

melt. Loss of latent heat upon melting keeps the mantle temperature on its solidus

throughout the melting regime. Melt separates from its host rock and rises to the surface

under the influence of buoyancy forces and mantle flow-derived pressure gradients.

Advection of heat by the melt carries heat to shallower depths and can result in further

melting. Extraction of a basaltic melt from the mantle results in a reduction in the mantle

density. Lateral variations in the mantle density due to the finite size of the melting regime

result in enhance upwelling near the ridge axis. This enhanced upwelling results in further

melting due to the enhanced advection of thermal energy above the mantle solidus.

The mantle solidus used in this thesis is unique in that it depends not only upon

pressure but upon the mantle modal mineralogy and oxide composition as well. I assume

explicitly that the mantle mineralogy corresponds to that of a slightly depleted spinel

1herzolite defined by the assemblage olivine, orthopyroxene, clinopyroxene, and aluminous

spinel. Mantle composition is defined by concentrations of the following oxides: K20,



Na20, CaO, FeO, MgO, TiO2, SiO2, A1203. Melt compositions are also defined by these

same oxides. Melting is assumed to occur via a fractional mechanism. Melting begins at

the pressure where the mantle temperature intersects the solidus and melting ends at the

pressure where conductive cooling becomes important or clinopyroxene is lost as a mineral

phase. Mantle density is calculated from the proportions of the minerals present and their

Fe/Mg ratio.

The effects of heat transport by the melt and of varying the latent heat of melting are

isolated by fixing the mantle velocity field to be that due to solely to the spreading of the

lithospheric plates. The latent heat of melting causes the mantle temperature to lie along the

solidus in accordance with the requirements of thermodynamics. A zero latent heat of

melting would result in all of the mantle melting when it reaches a certain depth. A small

(250 J kg-1 *C-) but finite latent heat of melting results in large melt production rates and a

melting regime with a finite thickness and melting continues until clinopyroxene is lost as a

phase. A more reasonable latent heat (450 J kg- 1 *C- 1) yields much smaller latent heats of

melting because less melting is required for a given amount of energy. As a result, crustal

thicknesses are lower for a small latent heat (3.0 vs. 4.7 km) and melting ceases at the

pressure where conductive cooling becomes important. Advection of heat by the melt

causes melting rates to increase, perhaps substantially depending upon melting rates and the

degree to which melt is focussed towards the ridge.

The effects of varying the mantle viscosity, spreading rates and melting-induced

buoyancy forces are investigated. Increasing the half-spreading rate from 1 cm yr-1 to 8

cm yr- 1 results in a widening of the melt regime because the depth to which conductive

cooling is important becomes shallower. The width over which significant melting occurs,
however, is limited by the horizontal distance over which significant vertical mantle flow

occurs (-100 km). The flow field places an physical limit upon the crustal thickness as the
spreading rate increases. Again, the minimum depth of melting is defined by the depth at

which clinopyroxene is lost as a phase. Melt production rates are determined not only by

the advection of heat by the mantle and melt, but by changes in the solidus temperature and

its pressure derivative as well.

Melting-induced density changes in the mantle drive convection beneath the ridge.

This effect is not important when the half-spreading rate is faster than 4 cm yr-1 because

viscous stresses dominate the small lateral variations in mantle density. At slow spreading

rates (1 cm yr-1), lateral density variations are larger due to the smaller dimensions of the

melting regime. For a viscosity of 1019 Pa s, the density driven convection is weak

resulting in a marked dependence of crustal thickness upon spreading rate. For a viscosity
of 1018 Pa s, convection is more vigorous at the slowest spreading rate resulting in higher



melting rates. Convection narrows the melting regime at the slow spreading rates but this

does not proved an effective mechanism for focussing the melt to the ridge axis, especially

at the faster spreading rates where convection is limited. Downwelling in the mantle is

extremely limited due to the positive buoyancy of the residual mantle. At this viscosity, the

crustal thickness is a constant function of spreading rate. For both viscosities, mantle

flow-derived pressure gradients are nominal compared to melt buoyancy forces and the

melt rises vertically resulting in broad crustal accretion zones at the surface.

If the mantle viscosity depends upon temperature and pressure then mantle viscosities

are high (5x1020 Pa s) in the conductive lid overlying the melting regime and low (1018 Pa

s) within the melting regime itself. The low viscosities in the melting regime allows

convection to significantly reduce the spreading rate dependence of crustal thickness. The

high viscosity in the conductive lid magnifies pressure gradients in the mantle. It is shown,
however, that these enhanced pressure gradients are still an ineffective mechanism for

focussing melt to the ridge.

Several geophysical observables (thermal topography, gravity anomalies, seismic travel

time) are calculated for each model. For a fixed spreading rate, no detectable differences

exist between models with different mantle viscosity parameters. The mantle modal

mineralogy is equally homogeneous as is the oxide composition of the aggregate primary

melts. This indicates that some parameter other than spreading rate or mantle viscosity

structure is responsible for the observed variation in mid-ocean ridge basalt chemistry.

Finally, a model is presented wherein the permeability of the mantle is allowed to be

anisotropic. The argument is made that finite strain in the mantle affects the directional

permeability of the mantle. If this anisotropy tensor is proportional to the square of the

finite strain, then melt can be focussed to the ridge axis regardless of spreading rate.
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Chapter One
Introduction

It is my intent to beget a good understanding between the chymists and the mechanical philosophers who
have hithero been too little acquainted with one another's learning.

Robert Boyle
The Sceptical Chymist

The advent of the plate tectonic theory and the sea-floor spreading hypothesis ushered

in a new understanding of the importance of mid-ocean ridges in the development of the

Earth's vast ocean basins. These ridges are no longer viewed as curious, unexplained

features of the seafloor, but rather as the principal point of origin for the oceanic crust. The

rocks forming the crust is known to be igneous in nature. The first-order explanation for

how these rocks are formed is that the divergence of the lithosphere causes mantle rock to

upwell over some region beneath the ridge axis. As a volume of the mantle rises

adiabatically, the pressure exerted by the overlying rock begins to decrease. At some

depth, the volume crosses its solidus and begins to melt. This melt then separates from its

host rock and migrates to the surface where it cools to form the oceanic crust.

This rather simplistic model, however, does little to illuminate the complex

interrelationships between the generation of melt and flow in the mantle. For example,

mantle flow determines the temperature structure beneath the ridge. The temperature

structure, in conjunction with the mantle solidus, defines the region of melt production and

the distribution of melt. Melting creates lateral changes in mantle density and composition.

The change in composition changes the mantle solidus and the change in mantle density

changes mantle flow patterns. The additional density-driven flow then alters the pattern of

melting. Thus, the melt-mantle system beneath a mid-ocean ridge is dynamic and, for this

reason, ill-understood. Furthermore, the mechanisms of melt migration are still being

debated. Does melt migrate via percolation or via dike propagation? Are non-linear

phenomenon such as compaction boundary layers and "magmons" important for melt

transport?

The distances and time scales over which these processes occur render a laboratory

study impracticable. Remote-sensing techniques (e.g. seismics, gravity, magneto-

tellurics) do not provide any insight as to the relative magnitude of forces acting upon the

mantle-melt system or their interactions. At present, the only means at our disposal for

investigating the dynamics of the upper mantle beneath mid-ocean ridges is through careful

numerical experiments. In this thesis, I have developed the numerical tools to explore a

thermo-dynamically self-consistent physical model for mantle flow, melting, and melt



migration beneath an oceanic spreading center. I have then applied these tools to better

define the geophysical and petrological implications of several potential candidate models of

subridge flow and melting.

Chapter Two provides a more detailed discussion of the issues and physics

surrounding current investigations of melt migration and mantle flow beneath mid-ocean

ridges. A goal within this chapter is to characterize the behavior of the melt-mantle system

with changes in the spreading rate of the oceanic lithosphere and changes in the mantle

viscosity structure. I examine the efficacy of changes in the mantle viscosity as a means of

creating a narrow neovolcanic zone at the ridge axis. I compare each of these models by

calculating several surface observables.

Chapter Three presents several numerical experiments that characterize the effect

various energy transport mechanisms have upon the generation and distribution melt

beneath a mid-ocean ridge axis. The mechanisms investigated include latent heat of

melting, advection of heat by the melt phase, and transport of heat by flow in the mantle

(both plate-driven and buoyancy-driven).

Chapter Four develops the idea that dynamic forces in the mantle are an inadequate

mechanism for focussing melt to a mid-ocean ridge. I present a model that allows the

mantle permeability to be anisotropic. The orientation of strain in the mantle (e.g.

crystallographic deformation) is related to the permeability and several numerical

experiments are performed that show this mechanism can be quite effective at focussing

melt to the ridge axis.



Chapter Two
The Effects of Spreading Rate and Variable Viscosity on Mantle Flow and

Melt Migration at Mid-Ocean Ridges

Peoples, know then once and for all that nature wanted to protect you from science just as a mother
wrests a dangerous weapon from the hands of her child; that all the secrets she hides from you are so
many evils from which she is protecting you, and that the difficulty you find in teaching yourselves is not
the least of her kindnesses.

Jean-Jacques Rousseau
Discourse on the Arts and Sciences

INTRODUCTION

Mid-ocean ridges are the sites of oceanic crustal genesis, where the crust itself is

created by a partial melting event in the mantle immediately beneath the ridge axis. Melting

occurs because the divergence of the lithospheric plates and ridge-local buoyancy forces

induce flow in the mantle causing hot mantle material to rise above its solidus. The

resulting melt migrates through the mantle and eventually reaches the surface and cools to

form the oceanic crust. Observations of mid-ocean ridge structure and chemical

composition raise a number of questions unanswerable by this rather simple model. For

example: What is the lateral extent and depth range of the partial melting regime? What is

the distribution of melt fraction in the melt regime? How does the crustal thickness and

composition depend upon spreading rate and mantle temperature? What are the important

factors that cause melt to be accumulated into a narrow magma chamber at the ridge axis?

Seismic, gravimetric, and/or magneto-telluric experiments may someday help constrain

these questions but observational data alone do not provide insight into the forces

responsible for upwelling, melting and melt migration beneath a spreading center.

Theoretical modelling of mid--ocean ridge dynamics will provide this insight so long as our

assumptions are reasonable and the results of such models make predictions that can be

tested against observation. The coupled physics and chemistry involved in melting, melt

migration, and mantle convection are complicated, however, and our studies must proceed

carefully and in a systematic fashion if key associations are to be credibly unravelled.

Melt Migration and Observations of the Oceanic Crust

Current geophysical models of melt generation and extraction have their foundations in

a seminal paper of McKenzie [1984] which presented the physics of melt extraction in a

deformable porous medium. Prior to this work, models of melting and melt extraction

assumed that a simplified form of D'Arcy's Law governed melt migration [Frank, 1968;

Sleep, 1974; Turcotte and Ahearn, 1978; Ahearn and Turcotte, 1979]. In these models,



vertical pressure gradients due to melt buoyancy forces are the only agents available to

remove the melt from its solid porous matrix. McKenzie [1984] showed that deformation

of the mantle in response to the creation of a partial melt results in significant local pressure

gradients which can be important in the migration of the melt phase. The physics of mantle

deformation in two-phase flow resulted in the discovery of the possibility of such

phenomena as compaction boundary layers [McKenzie, 1984; Richter and McKenzie,

1984; Ribe, 1985a] and non-linear travelling waves of porosity [Scott and Stevenson,

1984; Scott and Stevenson, 1986; Scott-, 1988; Richter and Daly, 1989].

After the development of the compaction theory, several studies applied it to the

problem of melt genesis and crustal formation at mid-ocean ridges. The results of these

models, however, present a dilemma. Simple calculations imply that the region of melting

beneath a mid-ocean ridge is rather broad, approximately 100 km wide [Reid and Jackson,

1981; Phipps Morgan, 1987; Scott and Stevenson, 1989; Sotin and Parmnentier, 1989].

However, several observations indicate that crustal accretion occurs within a very few

kilometers of the ridge axis. Macdonald [1982] showed that the neovolcanic zone of mid-

ocean ridges is only 3-5 km wide, regardless of plate spreading rate. Seismic evidence

also indicates that the oceanic crust is completely formed at the ridge axis [Detrick et al.,

1987]. Recent reevaluations of available seismic data indicate that the thickness of the

oceanic crust is a constant 6 km [McClain and Atallah, 1986] and does not thicken

appreciably with age as concluded by Reid and Jackson [1981]. Hence, the problem is

how to focus the melt from a broad area at depth into a narrow region at the surface. How

this focussing occurs is an outstanding problem, the answer to which may depend upon

several factors. The results of previous studies of melt migration at mid-ocean ridges

touch upon some of these factors. Thus, it will be useful to review these studies both to

provide an overview of the important physics and to use as a guide in developing the model

I present below. I will restrict my review to those models which assume that melt

migration proceeds via porous flow. Models that do not make this assumption will be

discussed in the following chapter.

Broad Melt Zone - Narrow Volcanic Zone Paradox:

The Effects of Mantle Viscosity

A current goal in modelling mid-ocean ridge dynamics is to determine the dominant

forces or mechanisms that lead to the apparent focussing of a distributed melt source into a

very narrow region at the ridge axis. One argument is that pressure gradients caused by the

divergence of lithosphere at the ridge axis may be large enough relative to melt buoyancy

forces to direct melt to the ridge [Spiegelman and McKenzie, 1987; Phipps Morgan,



1987, Figure 2.1a]. However, in a constant viscosity mantle, the viscosity required to

achieve this effect is 1021 Pa s. This value for the mantle viscosity is larger than expected

for the upper mantle directly beneath a ridge axis, and a number of arguments may be made

against it. First, this viscosity is larger by an order of magnitude than the 1020 Pa s value

derived from post-glacial rebound studies [Nakada and Lambeck, 1989]. Due to the

dependence of mantle viscosity upon temperature and pressure, an even lower viscosity

zone is expected beneath mid-ocean ridges and oceanic lithosphere [cf. Buck and

Parmentier, 1986]. An upper mantle low-viscosity (1018-1019 Pa s) zone a few hundred

kilometers thick is required to match the observed variations of bathymetry and geoid

anomalies over mid-plate swells [Robinson et al., 1987; Ceuleneer et al., 1988; McNutt

and Judge, 1990]. Studies of geoid anomalies across oceanic fracture zones also seem to

require a low-viscosity zone beneath the lithosphere if small-scale convection is the source

of their variation with plate age [Craig and McKenzie, 1986; Robinson et al., 1988].

Joint inversions of shear wave travel times, geoid, and depth anomalies along the mid-

Atlantic ridge [Sheehan and Solomon, 1991] also weakly indicate the presence of a low-

viscosity zone beneath the ridge axis. However, its presence is harder to detect there

because along-axis temperature anomalies are generally smaller than those associated with

plumes.

A large, constant mantle viscosity also leads to problems in the theoretical study of

mid-ocean ridges for, though it allows viscous stresses to focus melt to the ridge axis, it

creates a strong dependence of crustal thickness upon spreading rate with low spreading

rate ridges having a markedly thinner crust than their faster spreading counterparts-a result

in contradiction with observation [Chen and Sandwell, 1990]. This dependence results

from the fact that a high-viscosity mantle cannot easily flow in response to the lateral

density changes caused by melt extraction. With no component of mantle flow other than

that provided by the divergence of the lithosphere, the thickness and width of the melting

regime, and hence the crustal thickness, are determined by the depth marking the onset of

the thermal boundary layer or the loss of clinopyroxene. Lowering the mantle viscosity

allows melting-induced density variations to induce a vigorous component of upwelling

directly beneath the ridge axis. Enhanced upwelling raises the isotherms beneath the ridge

axis, increases the thickness of the melting regime, and increases the rate of melt

production (see Chapter 3). The additional melting markedly reduces the spreading rate

dependence of crustal thickness. However, the mantle viscosity is so low that viscous

stresses are weak relative to mantle buoyancy forces. Melt will then rise vertically above

the melting regime resulting in a broad region of crustal accretion [Figure 2.1b].



One potential means of circumventing the problems outlined above is to assume that the

mantle viscosity depends upon both temperature and pressure. The advantage of such a

viscosity law is that viscosities are low (1018-1019 Pa s) in regions where melting occurs

and high (>1021 Pa s) in the thermal boundary layer. Thus, in the melting regime,

viscosities are low enough to allow buoyancy forces to induce convection and limit the

dependence of crustal thickness upon spreading rate (Figure 2.1c). Conversely, mantle

viscosities are high enough near the surface to create pressure forces capable of focussing

melt to the ridge axis. The ability of the ridge to focus melt, however, will depend critically

upon the thickness of the thermal boundary layer at the ridge as the mantle viscosity

decreases exponentially with increasing temperature. Thus, plate-spreading-induced

pressure gradients may decrease rapidly with distance from the ridge axis, potentially

limiting their usefulness as a focussing agent.

A low-viscosity zone beneath the ridge axis can also influence the focussing of melt by

changing the mantle flow field. Lowering the viscosity at some depth beneath the ridge

axis creates faster upwelling velocities there because, unlike in models with a constant

viscosity mantle, a rigid, "high-viscosity" lithosphere now exists that moves at the plate

velocity. The rigid lithosphere increases the lateral flux of mass thus the vertical flux

increases in order to conserve mass. Since the vertical flux of mantle must match the

horizontal flux caused by the divergence of the lithosphere, the upwelling region becomes

narrower. Melting at mid-ocean ridges is a response to vertical motions of the mantle;

narrowing the region of upwelling creates a narrower melting region. In this scenario the

region of crustal accretion is narrow not because enhanced mantle pressure gradients draw

a broadly distributed melt to the ridge axis, but because the region of melting is itself

narrow.

To date only a few studies present experiments incorporating a variable viscosity.

Buck and Su [1989] present a description of a buoyancy-driven flow and melting

experiment beneath a ridge that incorporated a temperature-dependent viscosity. They state

that melt is not strongly concentrated to the ridge and that the crust continues to thicken out

to a distance of 50 km from the axis. This result is similar to that of Scott and Stevenson

[1989] who lowered the mantle viscosity by a factor of five wherever a melt phase was

present [Cooper and Kohlstedt, 1984, 1986] and found no significant narrowing of the

crustal accretion region. Buck and Su [1988] further suggested that, if melt fractions in the

mantle can approach 20%, the mantle viscosity will drop by several orders of magnitude.

This leads to an extreme narrowing of the melt production regime, and, by their argument,

a zone of crustal accretion only a few kilometers wide. It is unlikely, however, that melt

fractions reach this magnitude several tens of kilometers below the ridge axis [Johnson et



al., 1990] and uncertain that the presence of melt has such a drastic effect upon the mantle

viscosity [Cooper and Kohlstedt, 1984, 1986]. From the above discussion, it should be

clear that the effect of near-ridge mantle viscosity structure on mantle flow and melt

migration have not yet been strongly demonstrated.

The Effects of Buoyancy Forces

The addition of buoyancy terms into the balance of forces will change patterns of

mantle flow and mantle pressure gradients. Changing mantle pressure gradients will affect

the path melt takes to the surface through D'Arcy's Law. Changing mantle flow fields will

alter the size, shape, and distribution of melt in the melt regime by changing (1) the mantle

temperature field, (2) the rate at which rock is advected above its solidus, and (3) the path a

given mantle sample takes through pressure-temperature-composition space. Three kinds

of buoyancy forces operate in the sub-ridge mantle and are caused by lateral variations in

porosity, temperature, and composition. Of these three, the effect of variations in porosity

is most likely the smallest if melt fractions are small and their effect is dominated by the

influence of other forces (buoyancy or viscous) [Scott and Stevenson,1989]. The effect of

thermal buoyancy forces is likely to be negligible near mid-ocean ridges for two reasons.

First, the largest lateral variations in temperature occur near the ridge axis (within 100 km)

where the effects of conductive cooling become important. In this thermal boundary layer,

mantle viscosities will be quite high and thus unlikely to induce any significant convection.

Second, the effect of melting is to reduce mantle temperatures to the solidus and thus

eliminate lateral variations in temperature everywhere within the melting region. On the

other hand, convection due to lateral variations in mantle composition can be quite

vigorous. Lateral variations in density due to mantle composition result from the

irreversible chemical change in the mantle upon the extraction of the melt phase. While this

convection is important at mid-ocean ridges, its magnitude depends upon the degree to

which density changes with extent of melting. Unfortunately, how the mantle density

changes as melting proceeds is not well characterized. The general effect of this

convection, though, is similar to that of a low-viscosity zone beneath the ridge. The

source of convection is local to the ridge axis and enhances upwelling there. Just as in the

case of a low-viscosity zone, in order to match the mass flux of the diverging plates, the

upwelling zone must narrow leading to a narrower region of melting albeit with higher

melting rates and a concomitantly higher crustal thickness.



Parameterizations of Mantle Melting

Finally, an issue of fundamental importance in models of mid-ocean ridge dynamics

are the assumptions made about the nature of the melting in the oceanic upper mantle. Two

of the most important assumptions inherent in all models are (1) whether melting and melt

extraction are better idealized as a fractional or batch process and (2) the method of

parameterizing the melting process. The assumptions made about melting are important not

only because of the physical feedback between melting and mantle dynamics, but also

because of the dependence of melt and residuum chemistry upon the path a mantle sample

traverses through pressure-temperature-composition space (and thus upon mantle

dynamics). So far, models of mid-ocean ridge melting and circulation have assumed a

rather simple functional dependence for melt production. Either a certain percentage of

melting per degree centigrade above some solidus is assumed [Reid and Jackson, 1981;

Phipps Morgan and Forsyth, 1988; Sotin and Parmentier, 1989; McKenzie and Bickle,

1988] or a certain percentage of melting per kilobar change in pressure [Scott and

Stevenson, 1989]. In the latter case, the generation of melt is not strictly

thermodynamically controlled.

Given the number of free parameters one may change in this problem, it should not be

surprising that widely disparate physical models can all produce 6 km of oceanic crust.

Crustal thickness and neovolcanic zone width are thus necessary but not sufficient

conditions for the evaluation of any given model. Because the models all produce widely

different distributions of melting, however, and because melt composition depends upon

pressure and temperature, it should be possible to use petrologic data to constrain further

modelling and to evaluate results. In order to perform this task, an adequate

parameterization of the melting process is required.

The oceanic upper mantle is a polymineralic, multicomponent system with major

contributions to the melt coming from olivine, pyroxene and an alumina-rich phase

(plagioclase, spinel or garnet). Even if solid-state phase changes are ignored this is a

complex system to characterize thermodynamically. One approach would be to fully

characterize the multicomponent phase space for the upper mantle [e.g. Ribe, 1985b]. That

is, one could fully described as a function of composition the solidii in the CAMS

tetrahedron. Unfortunately, phase proportions and the phases themselves change with both

pressure and composition thus rendering this approach somewhat intractable. Another

approach is to parameterize the mantle solidus with simple functions of pressure,

temperature, composition and melt fraction as done by McKenzie and Bickle [1988].

While the results of McKenzie and Bickle [1988] are useful for their emphasis of a

parametric approach, their results are flawed in several important aspects. First, the data



used to construct their solidus are from batch melting experiments. The work of Johnson

et al. [1990] on abyssal peridotites strongly suggests that melting beneath mid-ocean

ridges is better described as a fractional melting process. Thus, much of the data used to

determine the solidus in McKenzie and Bickle [1988] do not adequately determine the

behavior of mantle melting at small melt fractions. Second, their solidus does not depend

upon mantle composition at any given point. As melting proceeds, the phase proportions

and composition of the mantle will change as the low-melting-point components are

removed. As these components are lost, the temperature at which subsequent melting

occurs will rise. The proportion of phases, their composition, and which aluminous phase

is present will also determine how much melt is generated for a given temperature increase.

Moreover, since mineralogy is an important control on the partitioning of oxides into the

melt and residuum, it is important that melt composition be an explicit function of mantle

mineralogy. A final important criticism of parameterization of McKenzie and Bickle

[1988] is that the composition of the melts used to create their solidus are not appropriate

for low-melt fraction, primary melts from a MORB source [R. Kinzer and T. Grove, pers.

comm.]. Furthermore, the melt fractions in each experiment are quite large (>10%) thus

making the use of their solidus at low melt fractions questionable at best.

If chemical variations of abyssal peridotites and mid-ocean ridge basalts are to be used

as constraints upon and indicators of mantle dynamics, then an improved model of melting

in the sub-ridge mantle must be devised and adopted.

Objectives

In this study, I will develop a self-consistent, fluid-dynamic model of flow and melt

migration in the mantle below a mid-ocean ridge. This model is thermodynamically self-

consistent in that the generation of melt occurs due to the advection of mantle heat above the

mantle solidus. I also include the effects of latent heat of melting and advection of heat by

the melt. Finally, I use a petrologically-defined mantle solidus that is controlled not only

by pressure, but also explicitly by mantle mineralogy and residue composition. This

method allows me to calculate directly the composition of both primary melts and the

mantle residuum as melting proceeds. After the model is defined, I will present a suite of

numerical experiments aimed at determining the effects of spreading rate and viscosity

structure on mid-ocean ridge mantle dynamics, melting and melt migration. I will also

explore a number of calculated surface observables (bathymetry, gravity, seismic structure,

mantle residuum chemistry and primary melt composition) in order to determine if

observable differences exist between models with the same spreading rate but with different

viscosity structures.



MODEL DEVELOPMENT

Our goal is to investigate numerically the steady-state thermo-fluid dynamic character

of the mantle beneath a mid-ocean ridge. In striving for a semblance of petrologic realism

in the suite of numerical experiments presented in the next section, a certain degree of

complexity is added to an already complex system. To mitigate this, I make a few

simplifying assumptions regarding the governing equations.

Assumptions Regarding Melting and Melt Migration

I explicitly assume that melt migration occurs via porous flow (D'Arcy flow). This is a

good approximation to flow through a pre-existing network of grain boundary channels or

macroscopic veins, but not for the transport of melt via dike propagation. I assume that the

melt phase forms an interconnected network for all melt fractions along grain edges rather

than collecting in isolated non-porous pockets. This assumption is manifest in the

functional form of the permeability used in previous studies of melt migration. To date, all

models assume that the permeability kg, is proportional to qp where (p is the melt fraction

and n>O is some integer (generally n=2,3). In this form, the permeability is non-zero for

all values of q, thus the melt phase forms an interconnected network at all melt fractions no

matter how small. However, the morphology of the melt phase is dependent upon several

factors.

For a monomineralic crystalline aggregate, the crucial parameter that determines if a

partial melt is interconnected is the dihedral, or "wetting", angle 0. Bulau et al. [1979]

show that 0 is determined by the ratio of two interfacial free energies, i.e.

cosa = I Ss (2.1)
121 2 osi

where oss is the excess free energy due to atomic misfits at crystal-crystal interfaces and

Usl is the free energy at crystal-liquid interfaces. Furthermore, they show that if 0 < 60'

then the melt phase is interconnected via melt channels along triple junctions. If, however,

0 > 60' then the triple junctions are melt-free and the melt accumulates at grain corners

forcing the permeability to zero everywhere. Hot-pressing experiments on natural systems

of dunite and basalt at upper mantle pressures (-1 GPa) and temperatures (~1300 'C) are

done by placing a basalt within a charge in contact with an olivine matrix and allowing the

resulting melt-rock system to achieve an "equilibrium" texture. These experiments show

that the median dihedral angle is about 30*-50' [Waff and Bulau, 1979; Jurewicz and



Jurewicz, 1986; Toramaru and Fujii, 1986; Daines and Richter, 1988]. Evidence that

the faces of adjacent grains are indeed dry is shown in a series of scanning electron and and

transmission electron micrographs by Waff and Bulau [1979] and Vaughan and Kohlstedt

[1982]. These images show that the intergranular faces are free of melt to within the

resolution of the scanning devices (-2-20 nm). Perhaps the best evidence that the melt

forms an interconnected network comes from the hot-pressing experiments of Daines and

Richter [1988] who doped the melt phase with a radioactive 151Sm tracer and placed it in

contact with a dunite matrix. They found that after the system had reached equilibrium, the

radioactive tracer was distributed throughout the matrix. By ruling out diffusion of the

samarium tracer into the matrix and establishing a one-to-one correspondence in quenched

samples between high radiation levels and the melt phase their results allow us to infer a

highly connected melt network.

Bulau et al. [1979] assumed isotropic surface energies in their derivation of the

dihedral angle equation (2.1). In fact it is possible to show numerically [von Bargen and

Waff, 1986] that the melt is interconnected for all melt fractions no matter how small if the

surface free energies are isotropic and the dihedral angle is less than 60'. They note it is

likely that interfacial free energies are anisotropic and depend upon the orientations of the

crystal lattices at phase boundaries. If the effect of this anisotropy is large the melt phase

may not be interconnected at low melt fractions. However both Waff and Bulau [1979]

and Vaughan and Kohlstedt [1982] describe the recrystallization growth of the matrix

olivine as isotropic. Thus they conclude that in a hydrostatic stress field the effects of

surface energy anisotropy on the geometry of the melt phase must be negligible. If the

surface energies are anisotropic and cause the connectivity of the melt to diminish the effect

would be most significant at low melt fractions i.e. when the crystal faces are close

together. The work of Daines and Richter [1988] does not support this conclusion

because the melt is interconnected even at low melt fractions (-1-2 weight percent) though

the possibility of locally isolated melt pockets cannot be ruled out.

The mantle stress field beneath a mid-ocean ridge is not hydrostatic-an assumption

made in the experiments outlined above. Von Bargen and Waff [1986] show that it is

possible to pinch off melt channels in certain directions depending upon the magnitude and

orientation of the deviatoric stress field. However, they also point out that the magnitude

of the deviatoric stress field beneath mid-ocean ridges is probably too low (10-40 kPa) to

significantly affect the geometry or connectivity of the melt phase thus this effect is also

assumed to be negligible.

Finally, I note that the above conclusions are predicated on the assumption that the

mantle is composed exclusively of olivine plus a melt phase (basalt). Typical upper mantle



rock is a polymineralic assemblage (olivine, orthopyroxene, clinopyroxene, ±aluminous

phase). Our conclusion that the melt forms an interconnected network is in no small part

tied to the observation that the dihedral angle is less than 60'. However, the dihedral angle

equation (2.1) assumes that adjoining crystals have the same composition. Thus, the above

experiments imply but do not guarantee that the melt will form an interconnected network in

rock similar in composition to that found in the sub-oceanic upper mantle. Toramaru and

Fujii [1986] derived a new set of dihedral angle equations for a mantle composed primarily

of olivine (ol), orthopyroxene (opx) and clinopyroxene (cpx) and performed some hot-

pressing experiments on a spinel lherzolite. Their dihedral angle measurements indicate

that in such an assemblage the only morphologically stable configuration (i.e. one that

allows an interconnected melt network) is one in which melt along triple junctions is

surrounded on all sides by olivine (ol-ol-ol). By assuming that the melt-filled grain

corners are approximately tetrahedral, they were further able to show that the only stable

grain corners are ol-ol-ol-ol and ol-ol-ol-opx. Their calculations agree well with their

observation that the melt tends to be surrounded by olivine and that pyroxene grains are

melt free.

Additional theoretical results also support the assumption of an interconnected melt

phase. Nakano and Fujii [1989] argue that in a polymineralic system the melt

connectivity depends upon both the modal composition and a critical melt fraction below

which the melt does not connect along grain edges. They conclude that if the volume

percent of olivine in a natural peridotite (ol,opx,cpx) exceeds 63% and the volume percent

of melt exceeds 0.8% then the melt will be interconnecting. They further note that as

melting proceeds, the effects of the pyroxenes on melt morphology may decrease and thus

the critical modal percentage of olivine may decrease as well. Since upper mantle rocks are

composed predominantly of olivine and the critical melt fraction seems relatively low I will
assume in the following numerical experiments that the melt phase is interconnected

beneath mid-ocean ridges at any finite melt fraction.

I also assume that the amount of melt present at any given time is always small, of

order a few percent and that melt extraction is a steady-state process. Physical evidence

that melt fractions are likely to be small in the melting regime beneath mid-ocean ridges

was recently reported by Johnson et al. [1990] who showed that the trace element

signatures of clinopyroxenes in abyssal peridotites could only be reproduced if melting

occurs fractionally. This discovery does not rule out the possibility that melt only begins to
migrate when some critical melt fraction <po is exceeded. Thus some melting (0-3%) may

initially occur as a batch melting process but it is likely that its contribution to the total melt

production is small.



The assumption that (p <<1 not only simplifies my governing equations but allows me to

ignore the effects of compaction on the deformation of the mantle and the possibility of

convective flow due to lateral variations in porosity. Simple numerical experiments indicate

that the compaction boundary layer expected at the base of the melting regime is likely to be

only a few hundred meters thick [e.g. Ribe, 1985a] whereas the melt regime itself is of

order a few tens of kilometers thick [e.g. Sotin and Parmentier, 1989]. Thus the effect of

a compaction boundary layer on the overall dynamics of the system is expected to be small.

The extraction of melt over a broad region also acts as a sink for mantle mass and has the

effect of drawing mantle towards the melting regime. If the melt fraction is small,
however, this effect is negligible [Phipps Morgan et al., 1987].

The assumption of steady-state melt extraction is a strong constraint on the behavior of

the system. For example, it eliminates the existence of non-linear porosity waves or

"magmons" in our solutions as these features are inherently time-dependent. These

features are not seen in the ridge-like melting environment explored by Scott and

Stevenson [1989] which implies that such effects are either not important at mid-ocean

ridges or not resolvable with their numerical technique. Whether or not buoyancy forces

due to porosity can be ignored relative to those due to density reductions in the mantle

depends upon their relative strengths. If the density variations from both are approximately

the same, then it may not be valid to ignore one in favor of the other. This issue will be

discussed later.
My final melt migration assumption is that melt velocities are in general much larger

than mantle velocities (v>V). This allows me to ignore the effects of relative motion

between the melt and the mantle (v-V). Thus, melt migration paths are determined purely

from buoyancy forces and viscous stresses and not by mantle transport. If the melt

velocity v is comparable to the mantle velocity V, then lateral and vertical transport of melt

by mantle flow may be important in shaping the pattern of surface eruption by focussing or

defocussing melt towards or away from the ridge axis. Simple numerical experiments

[Ribe, 1985a] indicate that, for reasonable mantle parameters, melt may flow at velocities

at least 10 times greater than mantle velocities. This result, of course, depends critically

upon the mantle permeability which will control the rate at which melt escapes from the

mantle. Recent experimental results on olivine-basalt systems indicate that mantle

permeabilities may be much higher than previously is assumed [Riley et al., 1990] which

would imply even faster melt ascent. On the basis of 230Th-2 38U ratios in mid-ocean

ridge basalts, McKenzie [1985] argues both that melt fractions must be everywhere small

(<2%) and that melt ascent rates are of order 1 m yr -1, a value much larger than the rate of

mantle upwelling.



Governing Equations of Momentum, Mass and Energy

Given the previous assumptions and the two-phase flow equations of McKenzie

[1984], non-dimensional equations for the conservation of momentum in the mantle and

melt are written as follows

Vp a= 8x + RmAp^ (2.2)

q = = - K ( - 6P) (2.3)

where equation (2.2) describes the viscous fluid response of the mantle to driving forces

such as lateral variations in density and plate motions. Equation (2.3) is D'Arcy's Law for

the motion of an interstitial fluid through a porous medium. The fluid flows in response to

both imposed pressure gradients (in this case pressure gradients due to mantle deformation)

and the buoyancy forces caused the differential density between the melt and the mantle.

As will be described later, the tensor K in D'Arcy's Law is the ratio of permeability to melt

viscosity. In our case, the melt viscosity is essentially a constant [Kushiro, 1986] thus this

tensor may be thought of simply as the permeability divided by a constant. The

permeability is, in general, a tensor quantity because parameters that effect the permeability,

such as channel width and tortuosity, may vary with direction. A description of all notation

used in this chapter is provided in Table 2.1. Parameters used to non-dimensionalize all

equations are provided in Table 2.2. The non-dimensional factor Rm = pmgd2/Ui70 is

similar to a Rayleigh number in that it describes the relative strength of mantle buoyancy

forces to viscous stresses. Note that the mantle is assumed to be incompressible and that

the standard Boussinesq approximation is made for all density terms. Therefore, mantle

density only varies in the second term on the right-hand side of the mantle momentum

equation (2.2) and is assumed to be constant elsewhere as in D'Arcy's Law and the energy

equation. As stated above, mantle buoyancy forces due to lateral variations in temperature

and porosity are ignored and only those due to changes in mantle composition are allowed.

The way in which mantle density varies with composition will be discussed below. The

density of the basaltic melt is assumed to be a constant though it is known to exhibit an

appreciable variation with pressure with the melt density increasing about 100 kg m- 3 as

pressure increases from zero to ten kilobars [Fujii and Kushiro, 1977; Rigden et al.,

1984].



Note that form of the mantle momentum equation (2.2) allows for a variable viscosity.

In this chapter results in which the mantle viscosity is assumed either to be constant or

variable will be presented. For a variable viscosity, it is assumed that the mantle viscosity

depends upon pressure and temperature and follows an Arrenhius-type law

S= C+oe p V*) (2.4)

where CO is a constant such that the mantle viscosity achieves a certain value at a certain

temperature and pressure (see Table 2.3). To calculate viscosities from equation (2.4),

temperature is in units of degrees Kelvin and the pressure is assumed to be the hydrostatic

pressure p = pmgz. Wherever the mantle viscosity is greater than 50770, I explicitly fix the

mantle velocity to be the plate spreading velocity (V=(Uo,O), see Figure 2.1) thus defining

an effectively rigid lithosphere. The total viscosity range in these experiments is from

O.10 to 501lo (cf Figure 2.15).

The mantle viscosity might depend upon the presence of melt. These effects,

however, are not clearly known at present. Cooper and Kohlstedt [1984, 1986] argue that

the effect of an interstitial melt phase will lower the mantle viscosity by at best a factor of

two to five if creep in the mantle is controlled by diffusion through the lattice. However,

if, as is thought, deformation in the upper mantle is controlled by dislocation creep [Ashby

and Verrall, 1977; Goetze, 1978; Weertman, 1978] this effect may be even less because

mantle deformation rates will be higher for a given stress and thus the enhancement of

creep by the melt phase is muted relative to that for diffusion-controlled creep. In fact,

Karato [1986] suggests that the presence of a small amount of melt will actually strengthen

the mantle by preferentially incorporating incompatible elements and fluids into the melt

phase. Thus I assume the melt has no effect upon mantle viscosities.

Conservation of energy is described by the following non-dimensional equation for

temperature

T + (V + q).VT = 1 V2- pfSm (2.5)
at Pe pmCp

which correctly incorporates both the loss of latent heat due to melting and the advection of

heat due to melt percolation. The non-dimensional factor Pe = Uod/ K is a Peclet number

which describes the relative strength of thermal advection to thermal diffusion. If the

advection of heat dominates the transport of heat by diffusion then Pe > 1. Note that the



the latent heat of melting L may be written L = ATASm and that specific heat capacities of

the melt and mantle are the same. In the experiments I present, the latent heat release due to

crystallization of the melt phase is not incorporated into the model though it is possible in

this formulation.

To complete the expression for D'Arcy's Law (equation (2.3)), the functional form of

the permeability needs to be specified. However, if, as is assumed, the mantle does not

deform in response to the formation and extraction of the melt and that melt is immediately

extracted after it is formed, why then calculate the permeability at all if the melt is not

actually present in the calculations? The answer is that while the mechanics of the system

may be little affected by the presence of melt, the migration of the melt may transport a

considerable quantity of heat. The amount of heat transport by the melt depends not only

upon the amount of melt present but upon its velocity as well (q = qp,). Thus, if the melt is

moving rapidly relative to the mantle, it may significantly affect both the volume and

distribution of melt (see Chapter 3).

As noted before, experiments on a variety of porous materials indicate that the

permeability may often be directly related to the porosity via some relationship such as kP =

coqi where co and n are some constants (usually, n = 2, 3). Such a relation is sometimes

referred to as the Blake-Kozeny-Carman equation. Unfortunately, no data exist to

determine the constants necessary to make this equation useful and reliable for mantle-melt

systems. What data does exist in the geological literature is in all likelihood not a good

parameterization of permeability in the mantle [Maaloe and Scheie, 1982]. Furthermore,

the melt fraction is not calculated at every point in the models I present, only the melt

production rate is known. In order to use the BKC equation to calculate permeability along

a melt flowline, I would need to know the melt fraction along that flowline, which I do not.

Given the above assumptions, though, the path melt takes on its way to the surface may

still be calculated if an appropriate permeability relation can be found that allows the

completion of D'Arcy's Law without specifically knowing the melt fraction present.

D'Arcy's Law (equation (2.3)) requires that both the permeability and the melt viscosity

be specified. For purpose at hand, it is sufficient to know their ratio. The ratio of

permeability to melt viscosity is, in general, a second order tensor which is written as the

following linear relation

K =k A (2.6)



The tensor A is a symmetric dimensionless anisotropy tensor with the property that ij 5 1

and the scalar kg is the magnitude of the permeability-melt viscosity ratio (k/My) The

steady-state melt production rate is defined as

pfV.q = F (2.7)

Combining the melt production rate equation (2.7) with D'Arcy's Law and equation (2.6)

yields the following differential equation for kg

8k akA
f- + f-'- + f3ku = RmF (2.8a)ax az

where the coefficients fl,f2 andf3 are as follows

fi = A - + Ax a Rmp (2.8b)

f 2 
= Ax x- + A z L+ Rmp (2.8c)

f3 = -Ax2p + Ax 2 Az- A 2-
+ 'a--D (2.8d)

+ aA xzaAxAa ( +aAxz azzl + Rmp
Fxa_ az Iax 3ax az z

Note that, in deriving equation (2.8d), the buoyancy term Sp is a constant and, thus, no

gradients of this term appear. In this chapter, it is assumed that the mantle is isotropic and,

therefore, A = I where I is the identity matrix. Experiments with A * I will be presented

in the following chapter.

For basaltic melts, the melt viscosity is essentially a constant 1-10 Pa s [Kushiro,

1986] thus variations in kg directly reflect variations in the permeability. Note that the

source term for kg in equation (2.8a) is the melt production rate. If no melting occurs then

the permeability is zero, as for the Blake-Kozeny-Carman equation. Note further that

equation (2.8a) has almost the form of a steady-state advection equation with a source

term. The source term is the melt production rate. If no melting occurs (F= 0) then the

permeability is zero. Only when F> 0 does the permeability become non-zero. The first

two terms on the left-hand side of equation (2.8a) are the advection terms and the



coefficients fj andf 2 can be regarded as velocities describing the way pressure gradients,

buoyancy forces and anisotropy act to direct the permeability. The third term on the left-

hand side of equation (2.8a) provides a mechanism for increasing or decreasing the

permeability in response to anisotropy.

Parameterization of Melting

To complete my set of equations, the melt production rate needs to be specified as well

as how the mantle density varies with extent of melting. As mentioned above, I wish to

avoid being overly simplistic as to how the mantle melts if I am to use petrological and

geochemical data as indicators of mantle processes. For the reasons stated above, I choose

not to implement the parameterization of McKenzie and Bickle [1988]. Rather, I choose

the parameterization of Kinzler and Grove [1991] for its simplicity, its consistency with

known melting processes, and its dependence upon both mantle mineralogy and

composition. In this parameterization, the mantle is defined by a modal mineralogy vector

M and a oxide composition vector O. Observations of abyssal peridotites indicate that the

mantle beneath mid-ocean ridges always contains the following minerals in varying

proportions: olivine, clinopyroxene, orthopyroxene and an aluminous phase [Dick et al.,

1984; Dick and Fisher, 1984; Michael and Bonatti, 1985; Johnson et al., 1990]. In the

mantle, the aluminous phase appears as either plagioclase, spinel or garnet, in order of

increasing pressure. The mineralogy and composition of the mantle respond to patterns of

mantle flow and thus the vectors M and O satisfy the following differential equations

aMm+ V.VM =fM (2.9)
at

-o + VVO =fo (2.10)
at

where fM andfo describe how the abundance of each mantle mineral and oxide responds to

melting. Note that diffusion of each mineral and oxide is assumed to be negligible so that

species transport is solely by mantle flow.

I assume that the mantle is described by a four phase spinel lherzolite assemblage

(olivine, clinopyroxene, orthopyroxene and aluminous spinel) and eight oxides (K20,

Na20O, CaO, FeO, MgO, TiO2, SiO2 and A1203). It should be noted that the assumption of

a pervasive spinel lherzolite assemblage (i.e. plagioclase and garnet are absent regardless of

pressure) is not an arbitrary one. First, it simplifies an already complex system. The



primary goal of this study is to investigate the physics of melt migration and mantle

deformation. The secondary goal is to determine if melt and residuum compositions can be

used as a discriminant between various extant physical models. If calculated compositions

do not agree with observations then I can determine that melting of additional phase

assemblages is required. Little data exist to constrain melting in the higher pressure garnet

lherzolite field though it may be argued some melting must occur at such higher pressures

[Salters and Hart, 1989; Johnson et al., 1990]. Finally, little melting will actually occur

in the lower pressure plagioclase lherzolite field. If plagioclase is left in the residue at the

end of melting, then we might expect to observe significant europium anomalies in the trace

element patterns of mid-ocean ridge basalts (negative Eu anomalies) and abyssal peridotites

(positive Eu anomalies). That these anomalies are not observed in either the basalts or the

peridotites argues against melting in the plagioclase field. Furthermore, experimentally

determined melts for the lower pressure plagioclase lherzolite assemblage typically have

higher SiO2 and lower MgO, CaO and A1203 proportions than primary melts from the

higher pressure spinel lherzolite assemblage. These latter melts are closer in composition to

the most primitive mid-ocean ridge basalts and thus the inference is that much of the melt

that formed the oceanic crust is generated in the spinel lherzolite stability regime.

Given the mantle composition, Kinzler and Grove [1991] calculate the melt fraction at

any given pressure and any temperature above the spinel solidus with the following relation

1155 + 16p - 50(1 - Mg#) - 129NaK# - T= 0 (2.11)

where the pressure p is in kilobars and temperature T is in degrees centigrade. The two

compositional parameters, Mg# (Mg/(Mg + Fe)) and NaK# ((Na + K)/(Na + K + Ca)), are

non-dimensional parameters describing the compositional state of the melt. Both of these

latter parameters depend upon the melt fraction in the following way. For small melt

fractions, fractional melting and batch melting produce very similar results with regard to

melt and residuum chemistry. Thus, the concentration of a melt component in equilibrium

with the mantle is given by the batch melting equation where the melt increment q is finite

but small

Cl C (2.12)
Dg + ((1 - PB)

In this equation, C1 is the concentration of a melt component (e.g. Na20) in the melt, CO is

the initial concentration of that component in the solid, DB is the bulk partition coefficient



between the solid and melt for that component weighted by the initial mode of the solid,

and PB is the bulk partition coefficient between the solid and the melt, for that component,

weighted by the fraction of each mode entering the melt (non-modal melting). Since

equation (2.12) depends upon melt fraction, so does equation (2.11). I use a simple

bisection technique to iterate for the melt fraction (p in equation (2.11). A further

complication of this procedure is that the Mg# of the melt is not the Mg# at the beginning of

melting but at its conclusion. The Mg# of the melt is determined from the initial olivine

composition of the solid, thus fixing its value during the iterative procedure. The Mg# of

olivine is determined iteratively, as well, by solving mass balance equations for Mg and Fe

[Langmuir and Hanson, 1980; Kinzler and Grove, 1991]. As long as the melt fraction is

small this procedure yields reasonably good estimates for the melt Mg#.

One difficulty encountered in solving the solidus equation (2.11) for the melt fraction is

that complete extraction of sodium and potassium in the solid causes the NaK# to be zero,
regardless of the melt fraction. Thus, at point where sodium is lost, equation (2.11) cannot

be used to solve for the melt fraction since pressure, temperature, and melt Mg# are fixed

and the NaK# is zero. To overcome this problem, I make a simple thermodynamic

argument that, at any point, the melt fraction may not exceed that determined by the

following energy balance

PmCpT = PmCpTs + ppPL (2.13)

where Ts is the solidus temperature determined by equation (2.11). Once melt fraction is

known, the melt production rate Fis simply F = aq p/at.

Once the melt fraction is known, the residual mantle mineralogy and composition may

be calculated as well as the melt composition. The residual mantle mineralogy is

determined by subtracting from the mantle mode vector an experimentally-constrained

amount of each mineral per unit amount of melt. The coefficients of this mantle melting

reaction are given by Kinzler and Grove [1991] for a spinel lherzolite assemblage

0.81.Cpx + 0.40.Opx + 0.06-Sp - 0.27-01 = 1.00-Liquid (2.14)

Melt oxide compositions are determined with the parameterization of Kinzler and Grove

[1991]. The new mantle oxide composition is simply the starting oxide composition less

the amount of each component now in the melt times the melt fraction. As a final point, if

the weight percent of clinopyroxene drops below 1%, then the melt fraction is set to zero.

This is my effective 'cpx-out' criterion. My assumption that melting ends when



clinopyroxene is lost does not necessarily mean that this is the point at which melting

ceases in the Earth's mantle. In fact, evidence exists that some amount of melting

continues to occur even after clinopyroxene is lost [H.J.B. Dick, pers. comm.]. One

reason for requiring melting to end when clinopyroxene is lost is that no data exist to

constrain the melting reaction (2.14) and solidus (2.11) when only olivine and

orthopyroxene occur as mantle phases. However, we do expect that when the low melting-

point components are lost, the latent heat of melting will increase sharply and melting will

effectively cease at the point of 'cpx-out'.

Mantle density is, in general, a function of pressure (compressibility), temperature

(thermal expansion), composition (Fe/Mg ratio) and mineralogy. For the purposes of this

work, I will initially ignore the variation of mantle density with pressure and temperature.

The mantle density at any point is the simple sum of densities for all mineral phases

present. The density of each mineral phase is determined by its Fe/Mg ratio and the density

of the magnesium- and iron-bearing end-members or that mineral. For our purposes, the

Mg-Fe end-member pairs are olivine : forsterite (3325 kg m- 3) - fayalite (4400 kg M- 3),

clinopyroxene : diopside (3277 kg m- 3) - hedenbergite (3632 kg m- 3), orthopyroxene :

enstatite (3190 kg m-3) - orthoferrosillite (4005 kg m-3), and spinel : spinel (3583 kg m- 3)

- hercynite (4265 kg m-3). The appropriate Mg# for each mineral is determined by the

Mg# of olivine and appropriate Fe/Mg distribution coefficients [Langmuir and Hanson,

1980; Kinzler and Grove, 1991]. Note that because there is no spinel-plagioclase phase

transition in my model, there is also no corresponding density jump at the phase transition.

Finally, I do not consider crystallization of the melt phase as its temperature falls below its

liquidus.

Numerical solutions to the differential equations presented above are obtained using the

finite-element method. The computational geometry and boundary conditions for each

experiment are summarized in Figure 2.1. The computational domain has dimensions 400

km (horizontal) x 150 km (vertical). The computational grid has a variable spacing with a

minimum horizontal resolution of 3 km at the ridge axis and a minimum vertical resolution

of 3 km above 60 depth. The total number of nodes is 73 in the horizontal direction and 37

in the vertical. Experimental run parameters are listed in Table 2.3 and the initial mantle

mineralogy and composition, MO and Co respectively, are listed in Table 2.4. Mantle which

has not lost any basaltic components will be referred to as "fertile" mantle with no other

isotopic or geochemical interpretations implied. Mantle that experiences a loss of basaltic

components will be referred to as "residual" mantle or simply "residuum".



RESULTS

In this section, I present the results of nine numerical experiments, all of which are

described in Table 2.3. I choose a mantle temperature of 1340 'C in order to obtain a

reasonable crustal thickness across the suite of experiments. In the presentation that

follows, I will proceed by fixing the mantle viscosity and describing the salient features that

appear as I increase the lithospheric half-spreading rate. I will offer comparative

descriptions for models with different viscosity structures as the opportunity arises.

Constant Viscosity - 1019 Pa s

My goal in this section is to present a description of the steady-state mantle/melt system

without the complicating factor of compositionally-driven convection. Plots of several

melt- and mantle-related variables for experiments with half-spreading rates of 1, 4 and 8

cm yr 1 are shown in Figures 2.3, 2.4 and 2.5, respectively. At this viscosity, the mantle

flow field is almost completely determined by the spreading of the lithospheric plates. This

is clearest in the 1 cm yr- 1 model (Figure 2.3) which shows significant lateral variations in

residual mantle density indicating that viscous stresses due to the divergence of the

lithosphere dominate buoyancy forces. The dominance of viscous stresses depends upon

the magnitude of the density reduction experienced by the mantle after extraction of the melt

phase. If the average density change is large, then buoyancy forces may dominate viscous

stresses. If the density change is much less, then viscous stresses may dominate. For

example, Sotin and Parmentier [1989] observe significant compositionally-driven

convection beneath the ridge at this same mantle viscosity. This difference in behavior

results from the fact that their maximum change in residual mantle density Ap is about 50

kg m- 3 whereas the maximum change in all models I present is about 10 kg m- 3 (a change

from 3328 kg m- 3 to 3318 kg m- 3). Thus my ratio of buoyancy forces to viscous stresses

is lower and plate behavior dominates despite the lower viscosity.

The reason that the density changes are markedly different between my model and

others resides in the different means by which the aggregate densities are determined.

Ideally, we should have experimentally determined densities of abyssal peridotites as a

function of extent of melting. The range of mantle densities will depend upon both the

mineral phases present as well as their proportion and composition. Most current

experimentally determined mantle density functions are for a garnet lherzolite assemblage

taken from kimberlite xenolith samples [Boyd and McCallister, 1976; Jordan, 1979].

Removal of a melt component from these samples yields an estimated density change of

about 50 kg m- 3 after approximately 20% melting. Such large density changes result from

the loss of the dense garnet phase which is present in xenoliths in significant quantities. As



argued above, little melting is expected to occur in the garnet stability field thus bringing the

use of this data throughout the melting regime into serious question. Since no data exist for

a spinel lherzolite assemblage, we calculate the densities directly from the mantle modes

and their Fe/Mg ratio. That is, the Mg# of each mode is calculated via mass balance, then

the density of each mode is simply Mg#.pMg + (1-Mg#).pFe where PMgi s the density of

the Mg-rich end-member of a particular mineral and PFe is the density of the Fe-rich end-

member of that mineral. The bulk density of the mantle is then the sum of all mode

densities weighted by their weight fraction at any point. The high-density spinel phase is

present in much lower quantities in the spinel lherzolite (Table 2.4) than garnet in the

xenoliths (2.5 weight % vs. 10 weight %). Most of the density change in the models I

present is associated with the removal of clinopyroxene which has a density closer to those

of the coexisting phases, resulting in much smaller density changes.

The maximum density changes obtained in these models should be considered a lower

limit. Petrologic evidence suggest that some small amount of melting is likely to occur in

the higher pressure garnet lherzololite field [Salters and Hart, 1989; Johnson et al., 1990].

Since garnet contains an abundance of heavy oxides that are lost upon melting (e.g.

A1203), then small amounts of melting in the garnet field may cause the maximum density

change to be larger than if melting occurred in the spinel field alone. An increase in the

range of densities will result in an increase in the ratio of buoyancy forces to viscous

stresses (Rm). For this ratio to remain constant, and thus the pattern and magnitude of

convection, the mantle shear viscosity must be increased. For example, factor of five

increase in the range of mantle densities (from 10 kg m- 3 to 50 kg m-3) results in a factor

of five increase in the mantle shear viscosity-an amount certainly within reason and

uncertainty. Thus, even if a discrepancy exists between theoretical and observed melting-

induced density changes, the relative density differences are small enough such that

reasonable changes in the mantle shear viscosity produce the same ratio of buoyancy forces

to viscous stresses and therefore the same pattern of mantle flow.

Since melting controls much of the interesting physics, it is worthwhile to investigate

its distribution in some detail. Referring again to Figures 2.3, 2.4 and 2.5, I note that melt

production rates increase with the velocity of the overriding plates. This is expected

behavior because as upwelling velocities increase the rate at which mantle rock is advected

above its solidus increases. Since the pressure change per unit time increases, the rate at

which melt is produced must increase in order for the mantle to remain on the same

temperature-pressure phase boundary.

The maximum and minimum pressures of melting for each model are listed in Table

2.5. The maximum pressure of melting for all models is 15.7 kbar and is fixed by both the



mantle temperature and the fertile mantle mineralogy and composition. Since the starting

composition and mantle temperature are the same across all models, the onset of melting

begins at the same pressure for each. Beneath the ridge axis, the minimum pressure of

melting is determined by one of two phenomena : either the effects of conductive cooling

become important and melting ceases or clinopyroxene melts out (cpx < 1%). In all but

one experiment (run 1), the minimum pressure of melting is determined by the depth at

which clinopyroxene melts out (about 4 kbar). This is in agreement with McKenzie and

Bickle [1988] who argue that conductive cooling does not contribute significantly towards

limiting the amount of melt produced beneath a ridge. In contrast to their work, however, I

clearly do not observe melting continuing all the way to the surface.

In all cases, I observe that melt production rate beneath the ridge axis increases as

pressure decreases. This trend can be explained by considering the steady-state energy

balance in the melting regime. If the effects of diffusion are negligible in the melting

regime, then the advection of heat by the melt and mantle ((V+q).V 7) is balanced by the

latent heat term (pfASmFIPmCp ) in the thermal energy equation (equation(2.5)). Consider

for a moment the situation where the mantle flow is purely vertical, as beneath the ridge

axis, and there is no flux of melt (q=O). If the mantle solidus depended solely upon

pressure and if the upwelling rate were constant, then the melt production rate would be

constant as well. The additional flux of heat due to the buoyantly rising melt could account

for the increase of melt production rate with decreasing pressure, but the same trend is seen

for models in which the flux of melt heat is ignored (Chapter 3). If the upwelling velocity

were not constant but increased through the melting regime, a result perhaps of enhanced

flow due to compositionally-driven convection, then the melt production rate would

increase as the velocity increased much like the effect of spreading rate upon the rate of

melting. Again, however, the trend of melting rate with depth is the same if the flow is

driven solely by the plates and the mantle velocity is constant through the melting regime

(Chapter 3). Thus, while flow of the mantle and melt do affect the distribution of melt

(Chapter 3), neither one accounts for the observed trend of melting.

The only remaining explanation for the melting trend, therefore, must be that the slope

of the solidus is changing with pressure. If the coefficient of the pressure dependence is

constant, as it is here, then any changes in the shape of the solidus with pressure must

result from changes in the mantle composition. Recall that the solidus I am using in this

study depends upon both alkali content through the NaK# of the melt and upon the Fe/Mg

ratio through the Fe# (1-Mg#) of the melt. Since I have the melt composition at every

point, I can calculate the NaK# and Fe# of the melt then calculate their respective pressure

derivatives. Multiplying these derivatives by their coefficients in the solidus equation



(equation (2.11)) yields the curves in Figure 2.7a which show how changes in mantle

alkali content and the Fe/Mg ratio affect the pressure derivative of the solidus. The effect of

alkali content on the slope of the solidus clearly dominates the effect of iron content.

Furthermore, changes in the solidus due to alkali content of the melt are clearly reflected in

the variation of melt production rate (Figure 2.7b); exposing their role in trend of melt

production rate with pressure. The effect of the alkalis decreases as melting proceeds

because the alkalis are strongly incompatible in the spinel lherzolite mantle and their

depletion dominates any ancillary pressure effects.
As the spreading rate increases (Figures 2.4 and 2.5), the top of the melting regime is

delimited by the loss of clinopyroxene both beneath the ridge axis and for some distance

away from it. Thus a zone of harzburgitic residue exists above the melting regime and acts

as a barrier to further melting. (Recall that the cessation of melting upon the loss of

clinopyroxene is an assumption built into the model. Some small amount of melting may

occur after clinopyroxene is lost but I am unable to model the melting process beyond that

point.) The width of the melting regime increases with spreading rate because mantle

isotherms become shallower thus raising the temperature of previously sub-solidus mantle

above its melting point. Increasing the width of the melting regime results in the mantle

density having less lateral variation than it would at slower spreading rates (Figures 2.4 and

2.5). This effect, along with the increased plate velocity, acts to limit the effect of mantle

buoyancy forces on the mantle flow field and hence the melting regime and crustal
thickness.

Melt production rates decrease with distance from the ridge axis simply because the

mantle flow becomes increasingly horizontal. In the absence of down-stream temperature

increases or upwelling (e.g. mantle plumes) the horizontal advection of mantle will not

result in melting. Except at the slowest spreading rate where melting is laterally delimited

by conductive cooling, most of the melt at the faster spreading rates is produced where

significant upwelling occurs. These controls on melting can be applied towards
understanding the asymptotic relationship between crustal thickness and spreading rate

shown in Figure 2.6 and previously described by Sotin and Parmentier [1989]. At the

faster spreading rates, where buoyancy forces are negligible, crustal thicknesses are

approximately the same because the melt production regimes at these spreading rates are

determined by the depth at which clinopyroxene is lost and the region over which

significant upwelling occurs. Since the patterns of flow are the same, the amount of crust

produced for each model is about the same. At 1 cm yr- 1, any enhanced flow due to

convection is not sufficient to offset the effects of conductive cooling and thus the crustal

thickness decreases.



An examination of the magnitude and orientation of the melt flux vectors and contours

of permeability-melt viscosity ratio clearly show that melt is rising vertically under the sole

influence of melt buoyancy forces. Mantle viscous stresses have little effect upon melt

migration paths at this viscosity. A similar conclusion was reached by Phipps Morgan

[1987] who showed that little focussing of melt to the ridge axis is to be expected unless

the mantle viscosity is about 1021 Pa s. The permeability-melt viscosity ratio increases

along the vertical melt paths for two reasons. First, the permeability must increase in order

to allow both melt produced locally and melt rising from below to escape. Second, the melt

production rate increases with height. Outside of the melting regime, the permeability no

longer increases because no further melting occurs and thus the permeability remains

constant along the melt paths. The average permeability increases with spreading rate

because melt production rates increase concurrently.

If the melt viscosity is about 1 Pa s [Kushiro, 1986] then the average permeabilities in

these models are about 10-14 m2 . Scott and Stevenson [1989] relate the permeability to

the melt fraction via the relation kgq = koqp2 where ko = 10-10 m2 . Using this relation and

the average permeabilities I obtain an estimate of the melt fraction of about 1% which is in

agreement with my assumption of a small melt fraction. If the melt fractions are about 1%,

then the maximum melt velocities in these models are of order 10-100 times the half-

spreading rate across the suite of models presented in this section. Thus, the permeability-

melt viscosity relation yields reasonable results despite the fact that it does not depend upon

any particular phenomenology (i.e. melt channel geometry). The constant in Scott and

Stevenson's permeability equation, however, is not necessarily valid in the mantle. A

change in this constant by a factor of ten yields a corresponding change in the melt fraction

by about a factor of three if k9 is held constant. My conclusion that melt fractions must be

small given an uncertain permeability-melt fraction relation must be interpreted with

caution.

The distances over which crustal accretion are important can be seen in Figure 2.8a

(also Table 2.5) which shows non-dimensional crustal thickness versus distance from the

ridge axis. The accumulation of crustal material is significant out to several tens of

kilometers from the ridge axis in contradiction to the observation that oceanic crust is

emplaced entirely at the ridge axis. This result is a consequence of the fact that the melt is

rising vertically and therefore the width of the zone of crustal accretion reflects the width of

the melting regime. The width over which accretion is important increases with spreading

rate simply because the lateral dimensions of the melting regime increase concurrently.

However, there is less relative difference between models as the spreading rate increases



because most of the melt is produced near the ridge axis where significant upwelling

occurs.

Constant Viscosity - 1018 Pa s

Lowering the mantle viscosity to 1018 Pa s (Figures 2.9, 2.10 and 2.11) causes the

relative magnitude of mantle buoyancy forces to mantle viscous stresses to increase. At

this viscosity, the effects of compositionally-driven convection manifest themselves in a

number of ways, primarily in the slowest spreading rate models.

Previously, the 1 cm yr - 1 model exhibited clear lateral variations in density. Now,

because the mantle viscosity is much lower, the resulting buoyancy forces are much

stronger, resulting in a significant component of upwelling flow. Enhanced mantle

upwelling increases the melt production rate by advecting more heat above the solidus than

would be possible by plate-driven flow alone. The additional advection of heat due to

convection has raised the isotherms above the melting regime and thus lowered the

minimum pressure of melting thereby causing more melting to occur. This effect, in

conjunction with the higher rates of melting and greater average extents of melting, causes

the crustal thickness to increase thus eliminating the marked variation of crustal thickness

with spreading rate observed at higher viscosities (Figure 2.6). This result is in agreement

with that of Sotin and Parmentier [1989] though our values are different due to

differences between the models.

As convection becomes more important, the width of the melting regime narrows

(Table 2.5), as is observed elsewhere [Rabinowicz et al., 1984; Scott and Stevenson,

1989; Sotin and Parmentier, 1989; Chapter 3]. The width of the melting regime contracts

when convection occurs because of conservation of mass. When flow is driven solely by

the plates, a certain amount of mass is advected through the region defined by the edges of

the melting regime. Enhanced upwelling due to buoyancy-driven flow increases mantle

velocities through this region. Evidence for this is seen in the higher crustal thickness of

the 1 cm yr 1 model relative to the previous model with the same spreading rate but higher

viscosity. The higher velocities do not lead to more mass being advected through the

melting regime, however. Rather, the residual mantle, being lighter than the unmelted

mantle below it, forces mantle that has passed through the melting regime to be constrained

to depths less than or equal to the depth of inital melting (see Figure 2.9). In order for the

mass of mantle rising up through the melting regime to equal that transported laterally in the

depleted harzburgite residuum, the width of the melting regime must narrow. The crustal

thickness increases, however, because the average extent of melting throughout the melting

regime is higher.



The total mass of mantle passing through the melting regime must match the mass of

mantle advected away by the lithosphere to both sides. The relative amount of narrowing

decreases with spreading rate, however, because lateral variations in density become

progressively weaker, as noted before, and plate-spreading-induced stresses become more

important. Note that the additional flow causes the density fields in each model to be

almost stably stratified. Any downward flow that may exist is resisted by the positive

buoyancy of the light residuum overlying the denser fertile mantle. For the same reason,

upward flow of the mantle is resisted and the mantle density field becomes stably stratified

[Scott and Stevenson; 1989; Sotin and Parmentier, 1989].

Narrowing of the melt regime can also be seen in the width of the crustal accretion zone

at the surface (Table 2.5, Figure 2.8). The mantle viscosity is even lower than before,

further diminishing the effects of mantle viscous stresses on the migration of the melt

phase. Hence, the melt rises vertically only in response to melt buoyancy forces. The

reduced width of the crustal accretion zone, relative to the higher viscosity models, can be

directly attributed to the narrowing of the melting regime by convection. Despite this

narrowing, however, the model crustal accretion zone is still 50-150 kilometers in wide.

Temperature- and Pressure-Dependent Viscosity

As shown above, a mantle viscosity of order 1018 Pa s is required if there are to be no

strong variations of crustal thickness with spreading rate. With such a low viscosity mantle

pressure gradients are too weak to focus melt to the ridge axis. Realistically, mantle

viscosities are not constant but depend upon both temperature and pressure (equation (2.4))

with viscosity decreasing with temperature and increasing with pressure. In the sub-ridge

mantle, this dependence leads to a high-viscosity lithosphere underlain by a low-viscosity

zone. The low viscosity in the sub-lithospheric mantle will cause buoyancy forces to

dominate viscous stresses resulting in compositionally-driven convection thereby reducing

the dependence of crustal thickness upon spreading rate. Arguably, the high viscosities in

the lithosphere above the melting regime could enhance mantle pressure gradients to the

point where significant focussing of melt to the ridge may occur.

Experimental runs at the same spreading rates as before but with a variable viscosity are

presented in Figures 2.12, 2.13 and 2.14. A meaningful presentation of the salient points

in these figures requires a knowledge of the viscosity structure of the mantle which are

shown Figure 2.15 for all spreading rates. In all runs, the reference mantle viscosity is

assumed to be 1019 Pa s at 150 km depth and 1340 'C. An upper limit of 5 x 1020 Pa s is

also imposed which is close to the value of 1021 Pa s used by Phipps Morgan [1987] and



Spiegelman and McKenzie [1987]. Underlying the high-viscosity lithosphere is a low-

viscosity zone with a minimum viscosity of about 1018 Pa s.

Perhaps the most obvious statement that can be made about the variable viscosity

experiments is that there is little discernable difference between the flow fields shown in

this series and those of the constant viscosity experiments. There is no dramatic reduction

in the width of the melting region relative to the models at 1018 Pa s. However, some

differences exist. The crustal thickness (Figure 2.6, Table 2.5) clearly shows a modest

spreading rate dependence due to the fact that the sub-lithospheric mantle is not a constant

low viscosity (i.e. 1018 Pa s). Thus the influence of buoyancy forces on the flow field is

somewhat reduced by the high viscosity lid.

Contours of permeability and the melt flux vectors indicate that enhanced focussing due

to viscous stresses does occur because of the presence of the high-viscosity lithosphere

above the melting regime. The amount of focussing increases with the spreading rate

because the magnitude of viscous stresses scales with the spreading rate. At 1 cm yr -1, the

crustal accretion zone is 15 km narrower than for the model with a constant viscosity of

1018 Pa s and the same spreading rate. At 8 cm yr-1, the reduction in the width of the

crustal accretion zone is about 50 km when compared to the model with a constant viscosity

of 1018 Pa s. Even at 8 cm yr-1, however, the amount of focussing due to viscous stresses

is insufficient for concentrating most of the melt into a narrow region at the ridge axis.

This can be seen more clearly in Figure 2.8c which shows that the crustal accretion zone is

still quite broad, of order several tens to a couple of hundred kilometers. The inability of

the high-viscosity lithosphere to efficiently focus the melt to the ridge axis can be

understood as follows. The divergence of the lithosphere at the ridge axis creates a region

of low pressure at the surface centered about that axis. Along with the pressure gradients

due to buoyancy-driven convection, pressure gradients due to this lithospheric divergence

are what drive melt migration in D'Arcy's Law (equation (2.3)). Within the region of

thermal conduction near the surface, the mantle viscosity is high due to its strong

temperature-dependence and thus pressure gradients are high. However, temperatures

increase rapidly with depth through the conduction boundary layer resulting in a rapid

decrease in mantle viscosity (Figure 2.15). The rapid decrease in viscosity with depth

causes the magnitude of plate-spreading -derived pressure gradients to decrease rapidly

with distance from the ridge axis. Thus, enhanced pressure gradients do aid in focussing

melt to the ridge, but only near the surface. If melt is to be drawn in to the ridge from

throughout the melting regime, relatively high pressure gradients must exist across its entire

expanse. As shown here, this result is not possible indicating that other forces or factors

need to be considered.



DISCUSSION

In this chapter, I have developed a thermodynamically-consistent model of melting,

melt migration and mantle convection beneath a mid-ocean ridge. The results presented in

the previous section illustrate the importance of a number of factors on melt production, the

distribution and migration of the melt phase, and on crustal accretion. Though the work I

present above is a considerable advance in the study of mid-ocean ridge dynamics, it is a

worthwhile task to evaluate the results in light of the approximations I made in the model.

One of the effects I ignore is convection that results from lateral variations in mantle

density due to the presence of a lighter melt phase. The effect of the increased density

change would be to enhance upwelling beneath the ridge axis and thus narrow the melting

regime. However, it is important to recall that the efficacy of density variations in

enhancing mantle upwelling is dictated by the ratio of buoyancy forces to viscous stresses.

Since melt fractions are likely to be small beneath a ridge axis the resulting density

differences between dry mantle and mantle with an interstitial melt phase will likewise be

small. For a melt fraction of 1%, the bulk density of the melt and mantle would be about 6

kg m- 3 lighter than for dry mantle. This density change is about the same order as the

maximum change (-10 kg nrm- 3) in the mantle density at the end of melting for the models

presented here. Enhanced upwelling due to this increase in the density change can be

countered by increasing the mantle viscosity resulting in patterns of mantle flow that are the

the same as for models with a lower maximum density change and lower mantle

viscosities. Since flow in the mantle strongly determines the distribution of melt, the

incorporation of buoyancy forces due to lateral variations in porosity is not likely to change

the major observations or results presented here.

The results of Scott and Stevenson [1989], however, indicate that while melt-driven

convection does enhance flow beneath the ridge, it is not a sufficient mechanism for

focussing melt to the ridge axis.

Thermal buoyancy forces will enhance vertical mantle flow beneath the ridge axis

because the primary mass flux will be cold, down-welling plumes moving in the direction

of plate spreading [Sotin and Parmentier, 1989]. However, the effect at the ridge axis of

thermal plume descent depends upon several factors. One of these is the distance from the

ridge axis where down-welling plumes first appear. This distance is, in turn, determined

by the point at which the increase in mantle density due to conductive cooling becomes

more important than the positive buoyancy forces in the light harzburgitic layer. Because

of the relatively low density changes produced by this model, thermal buoyancy forces

could be important in the constant viscosity models. However, beneath a mid-ocean ridge,



the viscosity structure is likely to depend upon temperature and pressure. The presence of

a high viscosity lithosphere will tend to inhibit downwellings. Furthermore, the only

significant lateral temperature variations will occur along the base of the thermal boundary

layer and, within the melting region, these variations will be buffered by the presence of

melt. Thus, thermal buoyancy forces are likely to have little effect near ridge axes.

Observational Implications

As shown above, different viscosity structures can lead to differences in the behavior of

the mantle-melt system. It is a useful exercise, therefore, to determine if these differences

can be observed with measurements of bathymetry, gravity, teleseismic event travel times,

abyssal peridotite composition or in the aggregate melt compositions.

Bathymetry

Seafloor bathymetry near mid-ocean ridges is influenced by a number of mantle

processes. The thickening of the thermal boundary layer with distance from the ridge axis

results in the well-known deepening of the seafloor with age [Parsons and Sclater, 1977].

Conversely, variations in the mantle density due to changes in mineralogy and composition

cause the seafloor to rise in order to restore the isostatic balance of forces at depth.

Dynamic topography is caused by stresses resulting from flow due to plate spreading and

flow due to convection. These effects of dynamic topography are likely to be greatest near

the ridge axis where the pattern of flow is primarily upward. However, I choose to neglect

its effects for two reasons. First, for any given spreading rate, the largest differences

between models are for those with the slowest plate speed. The near-ridge topography at

slow spreading rates is dominated not so much by viscous mantle processes but rather by

plastic and elastic deformations [Lin and Parmentier, 1989] which cannot be directly

determined from the models. Second, by fixing the mantle velocity within the rigidly

moving lithosphere as I do, it is difficult to calculate the viscous stresses at all. Therefore,

I choose to simply calculate the isostatic topography due to variations in mantle temperature

and composition. If I ignore variations in crustal thickness at the top of the mantle, then the

variation of bathymetry with distance, b(x) is calculated as follows

b(x) = Pma f (T(x,z) -AT) dz + f (pm - p(x,z)) dz (2.15)

Bathymetry as a function of the square root of age for each model are shown in Figure

2.16. At any spreading rate, there is little variation between models with different mantle
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viscosities and the bathymetric signals are clearly dominated by the mantle thermal

structure. Thus, bathymetry is not a strong discriminant between these models.

Beyond about 1 myr. from the ridge axis, the mantle is moving horizontally and the

bathymetric curves vary linearly with the square root of age in agreement with theory and

observation [Parsons and Sclater, 1977]. Nearer to the ridge axis, however, the flow

field is no longer horizontal and the effects of conductive cooling become important

resulting in a flattening of the bathymetry curves for ages younger than 1 myr. The curves

for 4 and 8 cm yr-1 have two distinctly different bathymetry trends for ages less than 1

myr. Between the ridge axis and the older lithosphere lies a region with an intermediate

slope. The only phenomenon that could cause this change in slope is the change in mantle

temperature upon melting.

The effect of variations in the mantle density due to changes in composition is small

because the maximum density change from fertile to residual mantle is only about 10 kg

m-3. This density change corresponds to a temperature change of approximately 100 "C

which is much less than the total variation in mantle temperature. Furthermore, the mantle

density field is approximately horizontally stratified thus the compositionally-derived

density variations produce only a constant, small offset in the bathymetry curves. The

effect of composition may become more important if convection due to lateral variations in

porosity occurs since this will tend to displace upward isopleths of mantle residuum density

[Scott and Stevenson, 1989].

Gravity

As with bathymetry, I assume that the total vertical gravity is solely the sum of

variations in mantle temperature and composition. Since I am only interested in

discriminating between models whose differences arise from variations in mantle

parameters, I do not consider the effect of bathymetry or crustal thickness upon the gravity

field. The flattening of the bathymetry with age near the ridge axis is not likely to be

important for gravimetric investigations of mid-ocean ridge crustal structure because these

studies directly correct for observed seafloor bathymetry.

Gravity is calculated using an analytic expression for the gravity signal of a rectangular

region at depth [Telford et al., 1976]. The rectangular regions used are the elements in the

finite element grid. Densities are assigned to each element by taking the average of the

densities of each node in the element. In order to avoid edge effects, I subtract from every

point the mantle temperature and residuum densities along the edge of the computational

regime. This procedure eliminates contributions to the gravity field from mass beyond the



edges of the computational regime. The resulting gravity anomalies Ag(x) are calculated

along a line 6 km above the top of the mantle.

The total contribution of temperature and composition to the gravity field is shown in

Figure 2.17. The effect of composition on the gravity is negligible because mantle

densities are horizontally stratified thus essentially all of the gravity signature in each of the

curves shown is the result of variations in temperature. The gravity anomaly at the ridge

axis is greater than at any other point because the relative difference between temperatures

at the edge of the computational regime and the ridge axis is the largest. As distance from

the ridge axis increases, lateral variations in temperature decrease due to the thickening of

the thermal boundary layer and, furthermore, the distance from the lighter density ridge

axis increases. Both of these results combine to cause the mantle gravity anomaly to

decrease with distance. The peak-to-rough amplitude of the anomalies decreases with

spreading rate simply because conductive cooling becomes less important causing the

maximum temperature differences between the ridge axis and the edge of the computational

regime to decrease.

As with the bathymetry calculations, little differences are seen between the gravity

anomalies of any two models at a given spreading rate. At best, there is a few milligals

difference between some curves but nothing that may be considered measurable or even

diagnostic of differences in mantle flow or rheology.

Seismic Wave Travel Time Anomalies

Shear wave travel times have been used by Sheehan and Solomon [1991] to determine

variations in temperature and composition along the mid-Atlantic Ridge. Similarly, my

intent here is to look for any systematic variations in shear wave travel times that result

from the effects of melting in the mantle. The velocity of shear waves in the mantle is a

function of a number of parameters including temperature and composition. Other factors

which may be important in determining the velocity, and hence travel time, are anisotropy

and the presence of an interstitial melt phase. I will defer a discussion of the effects of

seismic anisotropy to the following chapter. Also since the effect of melt upon seismic

wave velocities is not well understood or constrained I choose to ignore its influence. I

assume that the shear wave velocity vs(x) is given by the following linear relation

vs(x) = vO + s (T-AT) + AMg# (2.16)
aT aMg#
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where v 0 is the reference mantle shear wave speed (5 km s- 1). The partial derivatives in

equation (3.16) are the variation of shear wave speed with temperature and Mg# of the

mantle, respectively. I subtract a reference mantle temperature (1340 "C) and a reference

mantle Mg# (fertile mantle) at every point.

Teleseismic wavefronts will arrive at the surface along nearly vertical raypaths thus I

approximate the travel time anomalies at any point along the surface by the vertical integral

of travel time

Oh Ok

8t(x,z=O) = vs (T(x)-AT) dz + v s AMg#(x) dz (2.17)
DT J vs2(x) aMg# v 2(x)

Sheehan and Solomon [1991] give values of avsfT = -6.0 x 10- 4 km s- 1 *C- 1 and

avs/Mg# = 1.8 x 10-2 km s- 1 Mg#- 1. Note that shear wave speed decreases with

temperature and increases as the Mg content of the mantle increases.

Curves of travel time anomalies as a function of distance from the ridge axis for all

models are shown in Figure 2. 18. The positive values of the travel time anomalies indicate

that the vertically-rising wavefront arrives earlier than it would if the mantle temperature

and composition were constant. This can be understood by realizing that the residual

mantle has a faster shear wave velocity than the fertile mantle. Also, because of the lower

temperatures in the conductive boundary layer, shear wave velocities also increase. As

with gravity and bathymetry, the curves of travel time anomalies are dominated by

temperature effects. The horizontally stratified residual mantle causes a wavefront to

arrive, at best, 0.03 seconds early regardless of distance from the ridge axis. Variations in

arrival time due to changes in mantle temperature are small and considering the error (~1

sec) in determining seismic arrival times also undetectable. Almost certainly, sensitive

tomographic methods will be required to image the temperature, composition and melt

structure beneath the ridge.

Residuum Mineralogy and Aggregate Melt Composition

As I discussed in the development of this model, the normative mineralogy and

composition of the primary melts generated in these numerical experiments depend upon

temperature, pressure, and the modal mineralogy of the mantle residuum. Thus, the melt

chemistry, and thus the residuum mineralogy and composition, are determined by the

temperature and pressure path taken by any mantle sample. Variations in the pattern of



mantle flow, therefore, should result in observable variations in the nature of the derived

melts and residual mantle.

Different trends in the mineralogy of the mantle residuum are well-documented [Dick

et al., 1984] and are inferred to be the result of along-axis variations in mantle chemistry.

Here, I apply the same approach as Dick et al. [1984] and plot the proportions of olivine,

orthopyroxene and clinopyroxene along a cross-section beneath the ridge axis on an

appropriate ternary diagram (Figure 2.19). The trends clearly show the evolution of the

mantle from a lherzolite mineralogy to a harzburgite mineralogy as it upwells beneath the

ridge. As melting proceeds, the mantle mineralogy moves directly away from the melting

reaction point (not shown) which changes with pressure, temperature, and mantle

composition. The resulting trends are qualitatively and quantitatively similar to those

shown by Dick et al. [1984] for abyssal peridotites with the residual mantle losing

clinopyroxene and orthopyroxene as pressure decreases until the end of melting at point

whereupon clinopyroxene is lost. Otherwise, no discernable differences exist between

trends for different models at the same spreading rate. This is true even for the slowest

spreading rate model which shows the greatest sensitivity to the effects of lateral density

variations. It may be that discernable variations exist for mantle flow paths that do not

intersect the ridge axis, however, there is little chance of actually observing rocks from

such paths.

The resident melt in the crustal magma chamber at mid-ocean ridges is an aggregate of

all melts produced throughout the melting regime. McKenzie and Bickle [1988] refer to

such a mixture as an "aggregate primary melt" reflecting the fact that, so far, no melt added

to the aggregate, or the aggregate itself, has undergone any fractionation process that would

change its composition or normative mineralogy. There are two advantages to looking at

the melt aggregate rather than individual melts. First, the aggregate gives an average view

of the entire melting field the shape of which will be determined in large part by the mantle

flow field. Second, the melt aggregate, to first order, is the parent source of mid-ocean

ridge basalts. Any successful model of mid--ocean ridge dynamics must be able to

reproduce the variety of MORB's observed globally [Bryan and Dick, 1982; Dick et al.,

1984; Klein and Langmuir, 1987; Klein and Langmuir, 1989]. Aggregate primary melt

compositions for all runs are shown in Table 2.6. For all models, the oxide compositions

indicate that the aggregate melts have somewhat low concentrations of sodium and iron

indicating that the fertile mantle mineralogy and composition used in this chapter is too

depleted in basaltic components to yield a more reasonable primary melt composition. In

fact, the aggregate melts are close in composition to some depleted melts produced by

Elthon [1989]. Otherwise, except for the model that produced only 4 km of crust, there is



little difference between any two of these melts for a suite of runs. This lack of difference

between aggregate melt composition is due to the fact that the mantle flow fields in each of

the models presented are similar and yield essentially constant average pressures of melting

(Table 2.5).

In order to understand the global array of MORB composition, it seems clear that we

need to investiage not only the effects of temperature and three-dimensional mantle flow

upon melt composition, but that of mantle mineralogy and mantle oxide composition as

well. The assumption that any one of these variables accounts for all of the observed

variation in MORB composition is likely to be incorrect.

Summary Comments

In the previous sections, I've shown that, from the perspective of surface observations,

there is little difference in models with different viscosity structures. However, there is

abundant evidence that the sub--ridge mantle varies as a function of spreading rate. The

presence of transform faults clearly indicate a three-dimensional structure of mantle

upwelling as do variations in along-axis depth. Spacings between transform offsets and

non-transform offsets also appear to vary as a function of spreading rate [cf. Kuo and

Forsyth, 1988; Blackmnan and Forsyth, 1990; Lin et al., 1990]. Along-axis variations in

crustal thickness are clearly evident at fracture zones [Cormier et al., 1984; Mutter et al.,

1984] where the crust is thinner than normal indicating a hetergeneous environment for

melting and melt production. Mantle Bouguer anomalies along the Mid-Atlantic Ridge

clearly indicate that mantle upwelling beneath the ridge-axis is variable and three-

dimensional [Kuo and Forsyth, 1988; Lin et al., 1990]. Klein and Langmuir [1987]

show that along-axis variability in the average pressure of melting leads to changes in the

along-axis chemistry of basalts [Dick et al., 1984]. Furthermore, composition is

correlated with variations in axial-depth which they interpret as being indicative of along-

axis variations in mantle temperature. From a theoretical perspective, Parmentier and

Phipps Morgan [1991] show that, at low spreading rates (1 cm yr - 1 half-rate) and low

viscosities (1018 Pa s), a two-dimensional mantle flow structure maybe no longer stable

and inherently breaks up into a three-dimensional flow with discrete upwelling zones.

Variations in the along-axis average pressure of melting can occur because increasing

(decreasing) the mantle temperature causes the pressure at which the mantle intersects its

solidus to increase (decrease) [Klein and Langmuir, 1987]. However, mantle temperature

variations are not the sole means by which to attain variations in average pressure of

melting. First, variations in mantle composition and modal mineralogy may change the

pressure slope of the solidus [Kinzler and Grove, 1991] and the pressure at which phase



changes occur. Variations in mantle composition are clearly documented in abyssal

peridotites [Dick et al., 1984; Michael and Bonatti, 1985]. These studies also indicate

that the degree of depletion varies along-axis whereas in this study the sub-ridge mantle

always melted to the point where clinopyroxene was lost. Variations in extent of melting

can occur not only from pressure and composition but from changes in the pattern of

mantle flow as well. Numerical studies of three-dimensional mantle flow beneath two

ridge axes offset by a transform fault show that mantle upwelling becomes progressively

weaker near the ridge-transform intersection [Phipps Morgan and Forsyth, 1988]. The

weaker upwelling zone results in lower melt production rates, lower extents of melting and

higher average pressures of melting. The primary point here is that variations in mantle

temperature should not be used indiscriminately to account for variations in melt and mantle

composition as this may increase the range of inferred mantle temperatures. Additional

factors with equal or smaller effects and acting alone or in concert may yet account for

some significant fraction of the global variation of parameters along axis. The effect of

these factors have yet to be studied in detail.

CONCLUSIONS

1. I have developed a thermodynamically self-consistent model of melting, melt migration

and mantle convection beneath a mid-ocean ridge. Melting is explicitly controlled by the

flux of thermal energy above a mantle solidus. The mantle solidus depends upon pressure,

mantle mineralogy and mantle composition. As the extent of melting increases, the mantle

solidus temperature rises and its pressure derivative changes as the mantle becomes more

depleted in its basaltic components. The latent heat of melting controls how much melting

occurs locally for a given temperature increase. Advection of heat by the melt will increase

melting rates as will convection.

2. The pattern of melt production will depend both upon (1) the rate of heat advection and

therefore local mantle velocities and (2) changes in the solidus temperature and its pressure

derivative.

3. Beneath the ridge axis, melting ceases at the depth where clinopyroxene is lost as a

phase. This effect results in a depleted harzburgitic layer above the minimum depth of

melting. The harzburgite layer acts as a barrier to further melting away from the ridge axis.

Melting occurs between 4 and 16 kbar depth with an average pressure of melting of 10

kbar.



4. Much of the melt that forms the oceanic crust is created within several tens of

kilometers of the ridge axis where significant mantle upwelling occurs. For medium to fast

spreading rate ridges, flow driven by density gradients is small compared to flow driven by

the plates. Since there is little difference between flow fields these spreading rates, and

most of the melt is generated where vertical flow is significant, the thickness of the crust

trends towards a constant value as spreading rate increases.

5. Convection due to lateral variations in residuum density becomes increasingly important

as spreading rate decreases for two reasons. First, the lateral dimensions of the melting

regime are increasingly delimited by the onset of conductive cooling. The smaller width

leads to larger lateral varations in density which are the driving force for convection.

Second, the magnitude of viscous stresses decreases relative to buoyancy forces because of

their dependence upon spreading rate.

6. If mantle viscosities are of order 1018-1019 Pa s, then the flowpaths of the melt phase

will be little affected by pressure gradients due to viscous stresses and the melt will rise

vertically resulting in a broad region of crustal accretion. Enhancement of these pressure

gradients by the use of a temperature- and pressure-dependent viscosity is not a sufficient

mechanism for focussing melt to the ridge axis.

7. Comparing several geophysical observables (bathymetry, gravity, seismic travel time)

shows that, for any given spreading rate, there are no detectable differences between

models with different viscosity structures. A comparision of mantle residual mineralogy

and aggregate primary melt compositions show that there is also little difference in these

observables between models with different spreading rates and viscosity structrures. The

fact that significant differences in these variables do exist between mid-ocean ridges

implies that changes are required in other parameters, such as mantle temperature,

composition and perhaps variations in the mantle flow field due to ridge-transform offsets,

ridge migration, or asymmetric spreading.

FIGURE CAPTIONS

Fig. 2.1 Diagram showing the effect of mantle viscosity upon mantle flow and migration

of the melt. Mantle flow lines are shown by solid lines terminated with large arrows. Melt

flow lines are shown by solid lines terminated by small arrows. The speckled area is the

region of melting. Unmelted mantle is indicated by dark-banded layering. For a high

viscosity mantle (a), mantle flow is dominated by the flow generated by the lateral motions
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of the lithosphere. The high mantle viscosity results in strong viscous stresses which focus

melt to the ridge axis. Crustal thickness depends strongly upon spreading rate. For a low

viscosity mantle (b), a significant component of mantle flow is driven my lateral variations

in mantle density caused by melting and melt extraction. The low mantle viscosity mantle

results in weak viscous stresses and melt buoyancy forces cause the melt to rise vertically.

Crustal thickness does not depend upon spreading rate. For a mantle with a low-viscosity

asthenosphere and a high-viscosity lid (dotted region) (c), convection can occur such that

crustal thickness does not depend upon spreading rate. The high-viscosity lid may create

viscous stresses that are strong enough to focus melt to the ridge.

Fig. 2.2 The diagram shown is a description of both the computational geometry and the

boundary conditions used in the numerical experiments presented. Boundary conditions

for velocities are presented to the right of the ridge axis. Boundary conditions for all other

variables are presented to the left of the ridge axis. Velocity boundary conditions are

prescribed not only on the boundaries, but in the interior of the computational regime as

well. The hatched region in the interior defines an area of the mantle that is moving with

the surface velocity, i.e. as a rigid plate with velocities U = UO and V = 0. The area

encompassing the rigid lithosphere is defined in the following way. For both constant and

variable viscosity models, it is possible to calculate a pressure- and temperature-dependent

viscosity structure, il(T,p), for the mantle using equation (2.4). Wherever the viscosity is

calculated to be greater than 50 times the reference viscosity 770, the plate is defined to be

moving rigidly. To avoid computational difficulties, the rigid behavior of the mantle is

assume to terminate within a distance 0.ld (15 km) of the ridge axis. Along the side

boundaries and below the hatched region, mantle velocities are prescribed using the analytic

solutions for isoviscous plate-driven flow [Batchelor, 1967]:

Vps(x,z) = [ 2z2]

Note that the frame of reference for each of these equations is as follows. The origin of

the horizontal coordinate x is fixed to the ridge axis. The origin of the vertical coordinate z

is fixed to the base of the plate, zl(x), at the edge of computational domain.



Fig. 2.3 A plot pair showing results for experiment #1 (1 cm yr - half-rate, 77 = 1019

Pa s). The computational domain is divided in half down the ridge axis and variables

pertaining to the melt phase are plotted in (a) and those pertaining to the mantle are plotted

in (b). (a) Dimensional melt production rate is shown as levels of grey. Contours of melt

production rate are (0.25 (lightest gray shown), 0.50 0.75, 1.0 (darkest gray shown) x

10-11 kg m- 3 s- 1. Solid black contour lines show contours of the permeability-melt

viscosity ratio ky = kqlp. Contours are (0.1, 0.2, 0.3, 0.4, 0.5, 0.6) x 10-14 m2 . Black

arrows show direction and magnitude of melt flux q. Melt flux vectors are scaled to the

labelled arrow above the plot. The label next to the arrow shows the scaling flux for the

remaining arrows as a fraction of the plate velocity UO. The scaling flux is taken to be the

maximum flux magnitude. (b) Filled arrowheads show direction and magnitude of mantle

velocity (V). Mantle flow vectors are scaled to the arrow above the plot. The scaling

velocity is shown next to the arrow. Solid lines are contours of mantle temperature with

dimensional contour values 200, 400, 600, 800, 1000, and 1200 "C. Mantle density is

shown as levels of grey. Contours of density are 3326 (lightest gray shown), 3324, 3322,

and 3320 (darkest gray shown) kg m- 3.

Fig. 2.4 Experiment #2 (4 cm yr 1 half-rate, 77 = 1019 Pa s). (a) Dimensional melt

production rate is shown as levels of grey. Contours of melt production rate are (0.01

(lightest gray shown) 0.50, 1.00, 1.50 (darkest gray shown)) x 10-11 kg m- 3 s- 1. Solid

black contour lines show contours of the permeability-melt viscosity ratio kg = kq/jU.

Contours are (0.5, 1.0, 1.5, 2.0, 2.5, 3.0) x 10-14 m2 . (b) Solid lines are contours of

mantle temperature with dimensional contour values of 200, 400, 600, 800, 1000, and

1200 *C. Mantle density is shown as levels of grey. Contours of density are 3326

(lightest gray shown), 3324, 3322, and 3320 (darkest gray shown) kg m- 3.

Fig. 2.5 Experiment #3 (8 cm yr- 1 half-rate, 71 = 1019 Pa s). (a) Dimensional melt

production rate is shown as levels of grey. Contours of melt production rate are (0.05

(lightest gray shown)1.0, 2.0, 3.0 (darkest gray shown)) x 10-11 kg m- 3 s- 1. Solid black

contour lines show contours of the permeability-melt viscosity ratio kg = k/9p. Contours

are (1.0, 2.0, 3.0, 4.0, 5.0, 6.0) x 10-14 m2 . (b) Solid lines are contours of mantle

temperature with dimensional contour values of 200, 400, 600, 800 and 1200 "C. Mantle

density is shown as levels of grey. Contours of density are 3326 (lightest gray shown),

3324, 3322, and 3320 (darkest gray shown) kg m- 3.
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Fig. 2.6 Crustal thickness versus half-spreading rate for the models defined in Table 2.3.

The different viscosity structures are differentiated by the symbols shown in the legend.

Solid lines connect results from models with the save viscosity structure.

Fig. 2.7 (a) The curves in this plot show the effect of varying mantle composition on the

pressure (depth) derivative of the mantle solidus. Values used are from experiment #4 (1

cm yr 1, 70 = 1019 Pa s) and show a vertical cross section through the melting regime

beneath the ridge axis. If variations in mantle chemistry do not affect the the rate at which

the mantle solidus increases with pressure, then these curves would lie along the dashed

line of zero slope. The curve labeled "NaK effect" is calculated from the composition of

the melts in the melting regime and shows the effect of varying alkali composition (Na20,

K20, CaO). The curve labeled "Fe effect" is similar but shows the effect of varying the

Fe-Mg ratio. Both curves are calculated as follows

aNaK#
"NaK effect" = -129

ap

"Fe effect" = -50 a(1 - Mg#)
ap

where the coefficients are taken from equation (2.11). (b) Non-dimensional melt

production rate along the same vertical cross section showing the correlation between

increasing melt production rate and increases in the slope of the solidus due to the

progressive loss of alkalis during melting. See text for further explanation.

Fig. 2.8 Normalized crustal thickness vs. distance from the ridge axis for all models.

Each curve is calculated by integrating the flux of melt, q, at the surface (z-0 km) and

assuming that the total integrated flux of melt from the ridge axis (x=0 km) to the edge of

the box (x=200 km) equals the crustal thickness, h. Curves are shown for three different

viscosity structures: (a) 1019 Pa s, half-spreading rate of each model is shown by the

numbers next to each curve, (b) 1018 Pa s, (c) temperature- and pressure dependent

viscosity.

Fig. 2.9 Experiment #4 (1 cm yr - 1 half-rate, 77 = 1018 Pa s). (a) Dimensional melt

production rate is shown as levels of grey. Contours of melt production rate are {0.25

(lightest gray shown), 0.50, 0.75, 1.0 (darkest gray shown)) x 10- 11 kg m- 3 s- 1. Solid

black contour lines show contours of the permeability-melt viscosity ratio k4 = k9 /yu.



Contours are (0.50, 1.0 1.5, 2.0) x 10-14 m2 . (b) Solid lines are contours of mantle

temperature with dimensional contour values of 200, 400, 600, 800, 1000, and 1200 "C.

Mantle density is shown as levels of grey. Contours of density are 3326 (lightest gray

shown), 3324, 3322, 3320 (darkest gray shown) kg m-3 .

Fig. 2.10 Experiment #5 (4 cm yr - 1 half-rate, 71 = 1018 Pa s). (a) Dimensional melt

production rate is shown as levels of grey. Contours of melt production rate are (0.01

(lightest gray shown), 0.50, 1.0, 1.50 (darkest gray shown))x 10-11 kg m- 3 s- 1. Solid

black contour lines show contours of the permeability-melt viscosity ratio kg = kg/yp.

Contours are (0.5, 1.0, 1.5, 2.0, 2.5, 3.0) x 10- 14 m2 . (b) Solid lines are contours of

mantle temperature with dimensional contour values of 200, 400, 600, 800, 1000, and

1200 "C. Mantle density is shown as levels of grey. Contours of density are 3326

(lightest gray shown), 3324, 3322, and 3320 (darkest gray shown) kg m- 3.

Fig. 2.11 Experiment #6 (8 cm yr- 1 half-rate, 77 = 1018 Pa s). (a) Dimensional melt

production rate is shown as levels of grey. Contours of melt production rate are (0.05

(lightest gray shown), 1.0, 2.0, 3.0 (darkest gray shown)) x 10-11 kg m- 3 s- 1. Solid

black contour lines show contours of the permeability-melt viscosity ratio kg = kgplj.

Contours are (1.0, 2.0, 3.0, 4.0, 5.0, 6.0) x 10-14 m2 . (b) Solid lines are contours of

mantle temperature with dimensional contour values of 200, 400, 600, 800, 1000, and

1200 "C. Mantle density is shown as levels of grey. Contours of density are 3326

(lightest gray shown), 3324, 3322, and 3320 (darkest gray shown) kg m- 3.

Fig. 2.12 Experiment #7 (1 cm yr - 1 half-rate, 77 = q(T,p)). (a) Dimensional melt

production rate is shown as levels of grey. Contours of melt production rate are (0.25

(lightest gray shown), 0.50, 0.75, 1.0 (darkest gray shown)) x 10-11 kg m- 3 s- 1. Solid

black contour lines show contours of the permeability-melt viscosity ratio kg = kqy.

Contours are (0.5, 1.0, 1.5, 2.0) x 10-14 m2 . (b) Solid lines are contours of mantle

temperature with dimensional contour values of 200, 400, 600, 800, 1000, and 1200 "C.

Mantle density is shown as levels of grey. Contours of density are 3326 (lightest gray

shown), 3324, 3322, and 3320 (darkest gray shown) kg m- 3.

Fig. 2.13 Experiment #8 (4 cm yr - 1 half-rate, 17 = 7(T,p)). (a) Dimensional melt

production rate is shown as levels of grey. Contours of melt production rate are (0.01

(lightest gray shown), 1.0, 2.0, 3.0 (darkest gray shown))x 10-11 kg m- 3 s- 1. Solid

black contour lines show contours of the permeability-melt viscosity ratio kg = kq/jy.



Contours are (0.5, 1.0, 2.0, 3.0, 4.0) x 10-14 m2 . (b) Solid lines are contours of mantle

temperature with dimensional contour values of 200, 400, 600, 800, 1000, and 1200 "C.

Mantle density is shown as levels of grey. Contours of density are 3326 (lightest gray

shown), 3324, 3322, and 3320 (darkest gray shown) kg m- 3.

Fig. 2.14 Experiment #9 (8 cm yr 1 half-rate, 7 = 7(T,p)). (a) Dimensional melt

production rate is shown as levels of grey. Contours of melt production rate are {0.10

(lightest gray shown) 2.0, 4.0, 6.0 (darkest gray shown)) x 10-11 kg m- 3 s- 1. Solid

black contour lines show contours of the permeability-melt viscosity ratio kg = kq/jP.

Contours are (0.10, 2.0, 4.0, 6.0) x 10-14 m2 . (b) Solid lines are contours of mantle

temperature with dimensional contour values of 200, 400, 600, 800, 1000, and 1200 "C.

Mantle density is shown as levels of grey. Contours of density are 3326 (lightest gray

shown), 3324, 3322, and 3320 (darkest gray shown) kg m- 3.

Fig. 2.15 Gray-shade image of mantle viscosity (r)for (a) UO = 1 cm yr- 1, (b) UO = 4 cm

yr 1 and (c) UO = 8 cm yr-1. Viscosity is calculated using the temperature- and pressure-

dependent viscosity equation (2.4). Contour levels of loglo(7) are shown in the gray-

scale bar to the right of each plot.

Fig. 2.16 Isostatic bathymetry b (thermal + compositional) as a function of the square root

of age (myrl/ 2) from the ridge axis. No reference depth is added to the curves as only

relative differences are important. Shown are calculations for experiments with (a) UO = 1

cm yr- 1, (b) UO = 4 cm yr-1 and (c) UO = 8 cm yr1. Within each plot are curves for

experiments with different viscosity structures: t7 = 1019 Pa s (solid line), 77 = 1018 Pa s

(long dash line), 77 = l(T,p) (short dash line).

Fig. 2.17 Gravity anomalies Ag due to variations in temperature and composition as a

function of distance from the ridge axis. As mentioned in the text, the temperature and

composition profiles along the edge of the computational regime are subtracted from the

mantle temperature and composition at every other point before gravity is calculated.

Shown are calculations for experiments with (a) UO = 1 cm yr1, (b) UO = 4 cm yr 1 and

(c) UO = 8 cm yr-1. Within each plot are curves for experiments with different viscosity

structures: 7 = 1019 Pa s (solid line), 17 = 1018 Pa s (long dash line), 7 = rl(T,p) (short

dash line).



Fig. 2.18 Travel-time anomalies Bt due to variations in temperature and composition as a

function of distance from the ridge axis. As mentioned in the text, travel times are

calculated after subtracting a constant mantle temperature (AT) from the temperature field

and the Mg# of the fertile mantle from the Mg# of the depleted mantle. Shown are

calculations for experiments with (a) UO = 1 cm yr-1, (b) UO = 4 cm yr - 1 and (c) UO = 8 cm

yr- 1. Within each plot are curves for experiments with different viscosity structures: 17=

1019 Pa s (solid line), 11 = 1018 Pa s (long dash line), 77 = r/(T,p) (short dash line).

Figure 2.19 (a) The full olivine-orthopyroxene-clinopyroxene ternary. Darkened inset

shows the subsection of the ternary shown in b-d. (b) The filled circles in this subsection

of the ol-opx-cpx ternary show the proportions of the mantle modal mineralogy along a

vertical cross-section beneath the ridge axis. The spreading rate is 1 cm yr 1. Phase

proportions are renormalized after projection from spinel. The color of the filled circles

indicate the mantle viscosity of the appropriate experiment: white-10 19 Pa s, gray-10 18

Pa s, black-77 (T,p). (c) Same as b except experiments for which the spreading rate is 4

cm yr-1 are shown. (d) Same as b except experiments for which the spreading rate is 8

cm yr-1 are shown.



TABLE 2.1 Notation

Variable Description Value Units

A

cp
d

ASm

AT

E

E*

g
h

I

K

kg
kA
L

M

0

o

p

Pe

q
R

Rm

T

t

UO
V

v
V

x

z

1000

1.5 x 105

450

9.81

J kg- 1 C-1

m

J kg-1 C- 1

C

Permeability anisotropy tensor

Specific heat at constant pressure

Length scale

Change of entropy upon melting

Temperature difference between surface and

mantle

Finite strain tensor

Activation energy

Gravitational acceleration

Crustal thickness

Identity tensor

Permeability-melt viscosity tensor

Permeability

Permeability-melt viscosity ratio

Velocity gradient tensor

Mantle modal assemblage vector

Mantle oxide assemblage vector

Melt oxide assemblage vector

Pressure

Peclet number

= (pq) Melt percolation velocity vector

Universal gas constant

Buoyancy force-viscous stress ratio

Temperature

Time

Plate velocity (half-rate)

= (U,V) Mantle velocity vector

= (u,v) Melt velocity vector

Activation volume

Horizonal coordinate

Vertical coordinate

m2
m2

m 2 Pa-1 s-1

Pa

m s-1

J mol-1 C-18.314

C

s

m s-1

m s-1

m s- 1

m

m

m s-2

km



F Melt production rate

7 = 77(T,p) Mantle shear viscosity

170 Reference mantle shear viscosity

K Mantle thermal diffusivity

Jp Shear viscosity of melt

P Melt fraction

p = p(M,O) Mantle density

pf Melt density

Pm Reference mantle density
Ap = (Pm - p) Density difference between

unmelted and melted mantle

8p = (Pm - Pf) Density difference between

unmelted mantle and melt

1019

10-6

2700

3328

628

kg m- 3 s- 1

Pa s

Pa s

m2 s-1

Pa s

kg m-3

kg m-3

kg m-3

kg m- 3

kg m- 3



TABLE 2.2 Non-dimensionalization Parameters

Variable Parameter Units

V UO ms-1

(x,z) d m

t d/Uo s

T AT C'

g g ms -2

n7 770 Pa s

p Pm kg m-3

p 0loUo/d Pa

F pfUold kg m -3 -1

K UO/pmg m 2 Pa- 1 s- 1



TABLE 2.3 Experimental Parameters

Run # UOa  AT Peb Rmc  77
(cm yr - 1) (*C) (x 103) (Pa s)

1 1 1340 47 232 1019

2 4 1340 190 58 1019

3 8 1340 380 29 1019

4 1 1340 47 2,320 1018

5 4 1340 190 580 1018

6 8 1340 380 290 1018

7 1 1340 47 232 Variabled

8 4 1340 190 58 Variabled

9 8 1340 380 29 Variabled

a UO is the half-spreading rate of the surface plates.
b Peclet number : U0d/c.
c Rm: pmgd2/UO70O.
d Mantle viscosity depends upon both temperature and pressure. A suitable pre-
exponential factor is chosen such that the viscosity has a value of 1019 Pa s at 150 km
depth and temperature AT. See text for explanation.



TABLE 2.4 Mantle Modal Mineralogy and Oxide Composition

Mantle Modes

Mode Weight Fraction

Clinopyroxene 0.185

Orthopyroxene 0.240

Olivine 0.550

Spinel 0.025

Mantle Oxides

Oxide Weight Percent

K20

Na2O

CaO

FeO

MgO

T10 2

SiO2

A120 3

0.0035

0.2510

3.1430

7.6675

38.6945

0.1665

46.3240

3.7545



TABLE 2.5 Physical Dimensions of Crust and Melting Regime

Pressure of Melting

77 ha  wb Minimum Maximum Averagec

Run # Pa s (km) (km) (kbar) (kbar) (kbar)

1 1019  3.8 35 5.9 15.7 10.4

2 1019 5.9 113 3.9 15.7 9.8

3 1019 6.4 153 3.9 15.7 9.8

4 1018 6.1 50 3.9 15.7 9.6

5 1018 6.3 114 3.9 15.7 9.8

6 1018 6.4 162 3.9 15.7 9.8

7 r(T,p) 5.7 36 3.9 15.7 9.8

8 r(T,p) 6.5 90 3.9 15.7 9.7

9 ?(T,p) 6.7 117 3.9 15.7 9.7

a Crustal thickness. To form the crust, all melt is assumed to contribute to the total crustal
thickness. By simple mass balance, the total thickness of the crust h is given by

h - 1 F dxdz
2 pjUoff

b The width of the neovolcanic zone, w, is defined by the flux of melt out of the top of the
computational regime. If the total integrated flux of melt out of half of the box is equal to
the crustal thickness h, then the neovolcanic zone width may be defined as twice the
distance xo (w = 2x0) such that the following integral has a value of 0.90h

f=h f I0200 )m
f = h || lq(x,z=0)11 dx/ f

IIq(x,z=0)ll dx

c The average pressure of melting, j, is the integral over the hydrostatic pressure weighted
by the melt production rate

jP = f rp gz dxdz/f F dxdz



TABLE 2.6 Aggregate Primary Melt Compositions

Oxide 1 2 3 4 5 6 7 8 9

K20 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Na20 1.82 1.44 1.40 1.43 1.42 1.38 1.51 1.42 1.37

CaO 12.18 12.53 12.57 12.54 12.56 12.59 12.46 12.55 12.59

FeO 7.48 7.56 7.58 7.56 7.57 7.59 7.54 7.57 7.60

MgO 11.84 12.20 12.25 12.20 12.28 12.28 12.12 12.22 12.27

TiO2 0.80 0.72 0.71 0.72 0.71 0.71 0.74 0.71 0.71

SiO2 49.81 49.96 49.94 50.05 49.99 49.99 49.94 49.99 49.99

A1203 16.05 15.56 15.52 15.49 15.49 15.49 15.62 15.51 15.45

The aggregate value of each melt oxide, 6j,
weighted by the melt production rate

is the integral of that oxide over the melt regime

= roi dxdz/ff dxdz
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Boundary Conditions

Free melt outflow
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Crustal Thickness vs. Half-Spreading Rate
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Chapter Three
Melting and Mantle Flow beneath a Mid-Ocean Spreading Center

"The best thing for being sad", replied Merlyn, beginning to puff and blow, "is to learn something. That is
the only thing that never fails. You may grow old and trembling in your anatomies, you may lie awake at
night listening to the disorder of your veins, you may miss your only love, you may see the world about you
devastated by evil lunatics, or know your honour trampled in the sewers of baser minds. There is only one
thing for it then - to learn. Learn why the world wags and what wags it. That is the only thing which the
mind can never exhaust, never alienate, never be tortured by, never fear or distrust, and never dream of
regretting".

T.H.White
The Once and Future King

INTRODUCTION

Each year approximately 20 km 3 of new oceanic crust is created at mid-ocean ridges

making them the predominant source of new crustal material on the Earth. Oceanic crust is

the product of partial melting in the upper mantle beneath the ridge axis. The first-order

description for this process is that beneath the ridge axis mantle rock rises adiabatically and

begins melting at the pressure where its temperature exceeds that of its solidus. The

resulting melt, lighter than its parental rock, rises buoyantly to the surface where it

crystallizes to form the crust. This model, however, does little to illuminate the thermal,
mechanical and chemical interactions between the melt and the mantle. These interactions at

depth may likely exert a strong influence on observations at the surface. For example,
melting and the advection of heat via melt percolation may alter the near-ridge mantle

temperature, density, and viscosity structure and lead to significant changes in mantle flow

as well as in patterns of melt production and percolation. Changes in these variables may

result in observable variations in crustal thickness, bathymetry and basalt chemistry.

Melting is also the source of significant density variations in the mantle. The extraction
of a melt from the mantle acts to lower the mantle density by removing the denser iron-

bearing minerals [O'Hara, 1975; Boyd and McCallister, 1976; Oxburgh and Parmentier,

1977]. The resulting melt extraction-induced density variations are comparable in

magnitude to temperature-induced density variations; providing a significant driving force

for flow in the vicinity of the ridge axis. In addition, unlike thermal density variations,

these compositional density changes are irreversible and work toward generating a layered

compositional structure with the lightest and most depleted mantle overlying progressively

less melted, denser, layers. Melt extraction-enhanced convection will also change patterns

of melt production by altering both the flow field and the amount of heat advected into the

melt production regime.



The above interrelationships suggest that there may be strong links between convection

in the mantle and the generation and transport of melt. In the last few years much work in

this area concentrated on the physics of extracting a melt from a porous matrix via

compaction [McKenzie, 1984; Richter and McKenzie; 1984; Ribe, 1985a]. Recently,
more efforts have been made towards applying the above theories to the problem of mantle

flow and melt generation and migration beneath a mid-ocean ridge [Phipps Morgan, 1987;

Rabinowicz and Ceuleneer, 1987; Spiegelman and McKenzie, 1987; Buck and Su;

1989; Scott and Stevenson, 1989, Sotin and Parmentier, 1989]. This study presents

another step in understanding mantle upwelling and melting beneath a spreading center.

The computational tool I have developed is the first truly self-consistent model of melt

generation and migration because it simultaneously considers the effects of melting, melt

migration, and mantle flow on the thermal structure. In this sense it bridges the gap

between Scott and Stevenson [1989] (who treat melt migration and buoyant mantle flow

but not the thermal structure) and Sotin and Parmentier [1989] (who treat buoyant mantle

flow and thermal structure but assume rapid melt migration and neglect the effects of heat

transport by melt migration on the thermal structure). In this study I apply this tool to

investigate several first order questions raised by these previous studies, in particular: (1)

What are the effects of the latent heat of melting? (2) How much heat is advected by the
melt relative to the mantle and does this shape the melt production region? (3) Can
melting-induced changes in the dynamics of the mantle by themselves account for the
narrow width of the neovolcanic zone? I approach these questions by treating the various
aspects of convection and melt migration beneath mid-ocean ridges in a systematic fashion.

This paper will initially examine the effects of a latent heat of melting, advection of heat
by the melt and their effects on the temperature field, melt production rate and total extent of

melting (the amount of depletion experienced by the mantle after the onset of melting, not to
be confused with the melt fraction). Finally, I will address the effects of melt-extraction
induced flow beneath a spreading center.

MODEL DEVELOPMENT

In the previous chapter, I developed a set of simplified governing equations for two-

phase flow and melt generation in the oceanic upper mantle. In this chapter, I will use the
same equations with no modifications.

Numerical solutions to the differential equations presented above are obtained using the

finite-element method. The computational geometry and boundary conditions for each

experiment are summarized in Figure 3.1. The computational domain has dimensions 400
km (horizontal) x 150 km (vertical). The computational grid has a variable spacing with a



minimum horizontal resolution of 3 km at the ridge axis and a minimum vertical resolution

of 3 km above 60 depth. The total number of nodes is 73 in the horizontal direction and 37

in the vertical. In all models, the half-spreading rate is UO = 1 cm yr 1, the mantle

temperature is 1340 'C, and the mantle viscosity is 1018 Pa s.

RESULTS

In this section I present a suite of four calculations designed to illustrate the effects of

latent heat of melting, advection of heat by the melt, and compositionally-driven

convection. To better compare these effects, I will assume a constant half-spreading rate

of 1 cm yr- 1. My first goal is to investigate the effects of incorporating the latent heat of

melting into the energy equation. Next, I will present a model that also incorporates the

effect of advection of heat due to melt migration. The final model includes melt extraction-

induced density variations that also shape sub-ridge flow. As mentioned above, I will

ignore the effects of various thermal phenomena and compaction of the mantle due to the

mass loss resulting from melt extraction [current work by Parmentier and Phipps Morgan

(unpub.) show these effects to be small].

The Effect of Latent Heat of Melting

To properly investigate the effects of the latent heat of melting, I would like compare

two steady-state models: one with a low latent heat of melting and the other with a latent

heat close to a reasonable mantle value. I will compare the results of two models with finite

but significantly different latent heats of melting (ASm = 250 J kg-1 °C- 1 and ASm = 450 J

kg-1 *C-1). As mentioned above, the first model (model P-L250, ASm = 250 J kg- 1 *C- 1)

is an extremely simple one. Compositional buoyancy forces are neglected; thus flow in the

mantle, and flow-induced advection of mantle heat, are driven solely by surface plate

motions. Figure 3.2 shows the resulting flow field along with the temperature, melt

production rate, and total extent of melting. The maximum pressure of melting is defined

by the depth where the mantle first intersects the solidus. The minimum pressure of

melting is defined by the point where clinopyroxene is lost as a phase (cpx<l%). Melt

production rates increase monotonically through the melting regime up to the cessation of

melting. The cross-sections of temperature and melt production rate in Figure 3.3 allow us

to see the points outlined above more clearly. Table 3.1 also lists some useful parameters

describing the melt production regime. Note that this model produces 4.7 km of crust and

that it achieves a maximum extent of melting of 20% beneath the ridge axis.

My next model increases the entropy of melting to 450 J kg- 1 'C - 1 (model P-L 45 0), a

value more reasonable for the mantle. Figure 3.4 and Table 3.1 show that the dimensions



of the melting regime are essentially the same as in the previous model. However, the
minimum pressure of melting is higher because melting in this model ceases due to the

onset of conductive cooling rather than the loss of clinopyroxene. The different

distribution and lower extents of melting between these models are reflected in the smaller

crustal thickness (3.0 km). Figure 3.4 shows that melting is more uniformly distributed

about the melt production regime though the maximum melt production rates do occur

beneath the ridge axis, as expected. Melt production rates are lower than in the previous

model because the entropy of melting is now twice as large as before. More energy is

required to produce a given amount of melt and thus melt production rates decrease.

Another factor is that heat is extracted through melting without accounting for advection of
heat via the melt. As shown below, however, heat advection via the melt in these models is

smaller than the effects of the latent heat of melting.

The Effect of Advection of Heat via Melt Percolation

In my next model, I include the effects of advection of heat due to migration of the

melt. The advection of heat due to the melt raises the isotherms above the melt production

region (Figure 3.5, model P-L+Q). Similarly, the melt production rate also increases

because the advection of heat due to the melt provides an energy source for additional

melting at shallower depths. Why the melt production rate increases can be explained by

considering a cross-section of temperature beneath the ridge axis. At some depth in the

melting regime, a small, finite amount of melt is formed. Let this melt be transported

vertically to a point within the melting regime but at a lower pressure. Perforce, the

temperature at that point is lower because of the solidus' pressure dependence and, hence,
so is the total energy at this point (pmCpT). The additional energy provided by the presence

of the melt (qppfL) results in an increase in the mantle temperature and thus the melt

production rate increases. The crustal thickness increases by 20% (0.9 km, maximum
extent of melting -10%).

Both the permeability (actually the permeability-melt viscosity ratio but the melt

viscosity is nearly a constant) and the melt flux vectors (Figure 3.5) show that, at this low

mantle viscosity of 1018 Pa s, the mantle pressure gradients due to the divergence of the

surface plates are small relative to the buoyancy of the melt and, hence, are not large

enough to focus melt to the ridge axis [cf. Phipps Morgan, 1987]. The melt rises

vertically and this is mimicked in the contours of ky. Note further that kg increases with

height through the melting regime. This is a consequence of the fact that the equation for

kg is essentially an advection equation with a source term that is the melt production rate.

Thus, as melt rises in the melt regime, kg must increase in order to accommodate both local



melt production and the advection of melt from below. Above the melt regime there are no

more sources of melt and kg is a constant along the melt flowpaths (I can, but do not,
include the effect of melt solidification). It is interesting to note that the maximum

dimensional value for the permeability is 4.1x10-14 m2 if the melt viscosity is taken to be

10 Pa s. This is certainly within the range of values given by Maaloe and Scheie [1982].

In this model, where the mantle viscosity is 1018 Pa s, melt buoyancy forces dominate

mantle pressure gradients in D'Arcy's Law and melt rises vertically. The vertical advection

of melt and the broad width of the melting regime result in a 117 km-wide "neovolcanic"

zone.

The Effect of Buoyancy-Driven Flow

In my final model (model CC-L+Q), melting-induced variations in mantle density also

drive convection. Because of the low viscosity used, the effect of this flow is to eliminate

horizontal variations in density clearly shown in the previous three models [cf. Figure 3.6;

Sotin and Parmentier, 1989] Unlike thermal buoyancy forces, the effect of compositional

convection is limited to the region near the ridge axis. Beneath the ridge, convection causes

mantle rock to be drawn though a region approximately the width of the melting regime.

Within a few kilometers of the melting regime, where the total extent of melting (density) is

no longer changing, the mantle begins moving laterally along paths of constant density.

Were a mantle parcel to deviate from this path, differential buoyancy forces would return it

to its original depth because the mantle density field is now stably stratified (excluding

thermal effects of course).

This convection sharply increases melt production rates because more mass is now

advected above the solidus. Accordingly, the crustal thickness and the maximum extent of

melting increase to 6.1 km and 19%, respectively and melting beneath the ridge ceases

when clinopyroxene is lost. Mantle temperatures above the melting regime increase sharply

(up to 200 *C) reflecting the thinning of the thermal boundary layer (cf. Figures 3.5 and

3.6).

The melting region in this model narrows from 117 km to 66 km. This is due to the

fact that convection has caused upwelling beneath the ridge to be confined into a narrower

region than in the previous models. Since the region of vertical mantle flow is narrower,

and upwelling is the main cause of mantle melting, the melting regime narrows. The

thinning of the thermal boundary layer causes the melt regime to thicken by 6 km (Table

3.1). Note that melt production no longer has a low production 'tail' away from the ridge

axis as in Figure 3.2. Also, the maximum dimensional permeability has increased by

almost an order of magnitude to 1.8x10-13 m2; reflecting the higher melt production rates.



The ratio of heat advection by melt vs. mantle flow is shown in Figure 3.7. Maximum melt
heat transport is about 30% of the upward mantle transport above the melting region,
suggesting that melt migration does significantly affects the sub-ridge thermal structure

above the melting region.

Finally, note that the additional pressure gradients caused by the presence of melt

extraction-induced flow are not capable of focussing melt to the ridge axis. Both the

permeability and the melt flux vectors indicate that melt again rises essentially vertically.

DISCUSSION

A primary goal in modelling mantle dynamics at mid-ocean ridges is an understanding

of the relative effect various forces and parameters have upon mantle flow, melting and

melt migration. Much of the interesting physics, such as compaction and compositionally-

driven convection, is determined by the nature of melting and the magnitude and

distribution of melt production. In its turn, deformation and flow in the mantle and the heat

transported by it influence how the mantle melts. As this chapter has shown, incorporating

the effect of latent heat of melting and the advection of heat by the melt are important

parameters controlling the magnitude and distribution of the melt phase. The total amount

of melting will also determine the crustal thickness. The work I present here clearly

indicates that melting and melt migration in models of mid-ocean ridge dynamics needs to

be properly parameterized and accounted for in the energy balance if a constraint such as

crustal thickness is to be used as discriminant between various models.

CONCLUSIONS

(1) A large impediment to further progress in studies of melt migration at mid-ocean

ridges is our uncertainty in the functional dependence of permeability upon melt fraction.
The rate at which both mass and heat may be transported by the the melt are critically

dependent upon the permeability. As the transport of heat via the melt may affect melt
production rates, the extent of melting, etc., it is important that this parameter be well
determined. For steady-state melt migration, we are able to derive an equation for the ratio

of permeability to melt viscosity from a set of simplified governing equations. This

equation lets the permeability adjust for both local production of melt and the advection of

melt from other regions. Also, our formulation allows for the potential effects of

anisotropy.

(2) The effect of latent heat of melting is to reduce mantle temperatures to the solidus

wherever sufficient heat is advected to cause melting. Lowering the latent heat of melting

causes both the total amount of melting and the melt production rates to increase. The latent



heat also has an effect on the variation of melt production rate with depth. Small latent
heats yield high melt production rates. More mantle-like latent heats decrease melt
production rates because less heat is required to keep the mantle temperature on its solidus

for a given amount of melt. Differences in the latent heat of a factor of two can lead to large

differences in the thickness of the crust. For low latent heats (250 J kg- 1 *C-1), melt
production rates are high and melting continues until clinopyroxene is lost as a phase.

Since most of the basaltic component is melted out for this value of the latent heat, the
crustal thickness is higher than for a high-latent heat model (450 J kg- 1 *C-1) where
melting ceases due to the onset of conductive cooling.

(3) The advection of heat due to the melt increases melt production rates by providing

additional energy for melting at shallower depths. Outside the melting region, melt heat

advection raises isotherms and provides a means for changing the thickness of the melting
region by providing additional energy for melting at lower pressures. These may be
important effects where melt is focussed into a narrow region. In my simple plate spreading
models, the combined effects of low melt production and vertically rising melt combine to

produce a small effect on the temperature and melt production rate fields. However, when
crustal thicknesses become appreciable (-6 kin), advection of melt heat may be a factor that
cannot be ignored in any self-consistent study.

(4) Compositionally-driven convection increases crustal production by a factor of 1.5-
2 over the non-dynamic models and significantly changes both the width and thickness of
the melting regime by (i) constricting the upward flow of mantle into a narrower region and
(ii) thinning the conductive boundary layer beneath the ridge. This result confirms the
result of Sotin and Parmentier [1989].

(5) The narrowing of the melt regime and the additional pressure gradients resulting
from compositional convection are insufficient to focus melt to the ridge axis when the
sub-ridge viscosity is low enough for significant compositionally driven flow to occur.

FIGURE CAPTIONS

Fig. 3.1 The diagram shown is a description of both the computational geometry and the
boundary conditions used in the numerical experiments presented. Boundary conditions
for velocities are presented to the right of the ridge axis. Boundary conditions for all other
variables are presented to the left of the ridge axis. Velocity boundary conditions are
prescribed not only on the boundaries, but in the interior of the computational regime as
well. The hatched region in the interior defines an area of the mantle that is moving with
the surface velocity, i.e. as a rigid plate with velocities U = U0 and V = 0. The area

encompassing the rigid lithosphere is defined in the following way. For both constant and



variable viscosity models, it is possible to calculate a pressure- and temperature-dependent
viscosity structure, 77(T,p), for the mantle using equation (3.4). Wherever the viscosity is
calculated to be greater than 50 times the reference viscosity r0, the plate is defined to be

moving rigidly. To avoid computational difficulties, the rigid behavior of the mantle is
assume to terminate within a distance 0.ld (15 kin) of the ridge axis. Along the side
boundaries and below the hatched region, mantle velocities are prescribed using the analytic
solutions for isoviscous plate-driven flow [Batchelor, 1967]:

Ups(x,z) = [ a-l - x z]
=-- z[tnx'()X2 + Z2

Vps(x,z) = 2U [ z2]

Note that the frame of reference for each of these equations is as follows. The origin of
the horizontal coordinate x is fixed to the ridge axis. The origin of the vertical coordinate z
is fixed to the base of the plate, z(x), at the edge of computational domain.

Fig. 3.2 A plot pair showing results for run PP-L25 0 (1 cm yr- 1 half-rate, 77 = 1018 Pa s,
ASm = 250 J kg-1 C- 1). The computational domain is divided in half down the ridge axis

and variables pertaining to the melt phase are plotted in (a) and those pertaining to the
mantle are plotted in (b). (a) Dimensional melt production rate is shown as levels of grey.
Contours of melt production rate are (0.20 (lightest gray shown) 0.40, 0.60 0.8 (darkest
gray shown)) x 10-11 kg m- 3 s- 1. (b) Filled arrowheads show direction and magnitude of
mantle velocity (V). Mantle flow vectors are scaled to the arrow above the plot. The
scaling velocity is shown next to the arrow. Solid lines are contours of mantle temperature
with dimensional contour values of 200, 400, 600, 800, 1000, and 1200 "C. Mantle
density is shown as levels of grey. Contours of density are 3326 (lightest gray shown),
3324, 3322, and 3320 (darkest gray shown) kg m-3 .

Fig. 3.3 (a) Vertical cross sections of mantle temperature beneath the ridge axis for all
models. (b) Vertical cross sections of non-dimensional melt production rate ("') beneath
the ridge axis for all models.

Fig. 3.4 A plot pair showing results for run PP-L450 (1 cm yr-1 half-rate, 77 = 1018 Pa s,
ASm = 450 J kg- 1 "C-1). (a) Dimensional melt production rate is shown as levels of grey.

Contours of melt production rate are (0.1 (lightest gray shown), 0.2, 0.3, 0.4 (darkest



gray shown)) x 10-1 1 kg m- 3 s- 1. (b) Solid lines are contours of mantle temperature with

dimensional contour values of 200, 400, 600, 800, 1000 and 1200 *C. Mantle density is

shown as levels of grey. Contours of density are 3326 (lightest gray shown), 3324, 3322,

and 3320 (darkest gray shown) kg m- 3.

Fig. 3.5 A plot pair showing results for run PP-L450+Q (1 cm yr - 1 half-rate, 71 = 1018

Pa s, ASm = 450 J kg- 1 *C-1). (a) Dimensional melt production rate is shown as levels of

grey. Contours of melt production rate are (0.15 (lightest gray shown) , 0.30, 0.45, 0.60

(darkest gray shown)) x 10-11 kg m- 3 s- 1. Solid black contour lines show contours of

ky. Dimensional contours are (0.1, 0.2, 0.3, 0.4, 0.5, 0.6) x 10-14 m2 . Black arrows

show direction and magnitude of q. Melt flux vectors are scaled to the labelled arrow

above the plot. The label next to the arrow shows the scaling flux for the remaining arrows

as a fraction of the plate velocity UO. The scaling flux is taken to be the maximum flux

magnitude. (b) Solid lines are contours of mantle temperature with dimensional contour

values of 200, 400, 600, 800, 1000, and 1200 'C. Mantle density is shown as levels of

grey. Contours of density are 3326 (lightest gray shown), 3324, 3322, 3320 (darkest gray

shown) kg m- 3.

Fig. 3.6 A plot pair showing results for run CC-L450+Q (1 cm yr -1 half-rate, 17 = 1018 Pa

s, AS m = 450 J kg-1 *C-1). (a) Dimensional melt production rate is shown as levels of

grey. Contours of melt production rate are (0.25 (lightest gray shown), 0.50, 0.75, 1.00

(darkest gray shown)) x 10-11kg m-3 s- 1. Solid black contour lines show contours of kg.

Dimensional contours are (0.5, 1.0, 1.5, 2.0) x 10-14 m2 . (b) Solid lines are contours of

mantle temperature with dimensional contour values of 200, 400, 600, 800, 1000, and

1200 *C. Mantle density is shown as levels of grey. Contours of density are 3326

(lightest gray shown), 3324, 3322, and 3320 (darkest gray shown) kg m- 3.

Fig. 3.7 Contours of Iqzl/IVI for the model CC-L450+Q. Dimensional melt production rate

is shown as levels of gray. Contour levels of the flux ratio are (0.01, 0.1, 0.2, 0.3). This

plot may be thought of as a ratio of the heat advected by the melt to that advected by the

mantle. Ratios higher than 0.3 exist but are not shown in order to highlight areas within

the region of melt production.



TABLE 3.1 Physical Dimensions of Crust and Melting Regime

Pressure of Melting

ha  wb  Minimum Maximum Averagec

Run (km) (km) (kbar) (kbar) (kbar)

PP - L450 3.0 107 6.9 15.7 11.0

PP - L250 4.7 107 5.9 15.7 10.8

PP-L45 0+Q 3.9 117 5.9 15.7 10.5

CCL450+Q 6.1 66 3.9 15.7 9.6

a Crustal thickness. To form the crust, all melt is assumed to contribute to the total crustal

thickness. By simple mass balance, the total thickness of the crust h is given by

h= o1 dxdz
2pjUof

b Maximum width of the melting regime.

c The average pressure of melting, 5, is the integral over the hydrostatic pressure weighted

by the melt production rate

1 = ft Fpgz dxdz/ff F dxdz
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Chapter Four
Anisotropic Permeability in the Oceanic Upper Mantle and its

Effect on the Migration of Melt at Mid-Ocean Ridges

Amid all the revolutions of the globe the economy of Nature has been uniform, and her laws are the only
things that have resisted the general movement. The rivers and the rock, the seas and the continents have
been changed in all their parts; but the laws which direct those changes and the rules to which they are
subject, have remained invariably the same.

John Playfair
Illustrations of the Huttonian Theory of the Earth

INTRODUC ION

An outstanding first-order problem in the study of mid-ocean ridge dynamics is the

mechanism by which partial melts generated over a broad region beneath the ridge axis are

transported into a relatively narrow band along the ridge axis. Detailed morphologic

studies of mid-ocean ridge axial valleys clearly show that constructional volcanism occurs

only within a few kilometers of the ridge axis proper [e.g. Macdonald, 1982]. Seismic

reflection and refraction data from the last two decades clearly shows that the mean crustal

thickness is about 6 km regardless of spreading rate [Figure 4.1, Chen and Sandwell,

1990]. At slow-spreading rate ridges, the scatter in the data increases due to the influence

of closely spaced transform faults and non-transform offsets where the oceanic crust is

observed to thin by about 2 km [Detrick and Purdy, 1980; Cormier et al., 1984; Mutter

et. al., 1984]. In the mean, however, the data from slow-spreading ridges yields about the

same crustal thickness as that from faster spreading ridges.

The oceanic crust is not only possessed of a constant thickness (at fast spreading

ridges) but the seismic reflection from the Moho can be traced to within a few kilometers of

the ridge-axis whereupon it is truncated by the appearance of an axial magma chamber

[Detrick et al., 1987]. The narrow width of the neovolcanic zone and the continuity of the

Moho reflector to within a few kilometers of the ridge axis clearly indicates that essentially

all magma that eventually becomes the oceanic crust is emplaced entirely at the ridge axis.

Two-dimensional numerical calculations of melting beneath mid-ocean ridges often

show, however, that the width of the melting regime beneath a mid-ocean ridge is of order

100 km [Reid and Jackson, 1981; Phipps Morgan and Forsyth, 1988; Phipps Morgan,

1987; Scott and Stevenson, 1989; Sotin and Parmentier, 1989]. If all of the melt formed

beneath a mid-ocean ridge is used to create the oceanic crust and if this melt is entirely

emplaced at the ridge axis, then the problem becomes how to laterally transport such a

broadly distributed melt over several tens of kilometers into a narrow zone at the ridge axis.
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Transport of Melt Due to Dynamic Processes in the Mantle

A number of factors may influence the transport of the melt phase to the ridge axis.

Among these are the pattern of mantle flow beneath the ridge axis and the pressure

gradients resulting from that flow. If I assume that the mechanism of the melt migration is

by porous flow, then the pattern of melt percolation is specified by D'Arcy's Law

q = cp(v - V) =-(Vp - pg^) (4.1)

where p is the melt fraction, v is the melt velocity, V is the mantle velocity, kq, is the

permeability of the mantle, p is the melt shear viscosity, p is the deviatoric mantle pressure,

and 6p is the density difference between the mantle and the melt. The second term on the

right-hand side states that melt will simply rise vertically by virtue of it being lighter than

the surrounding mantle. The first-term on the right-hand side is a statement that deviatoric

pressure gradients resulting from flow in the mantle can influence melt flowpaths. In a

viscous mantle, these pressure gradients result from velocity shear gradients as described

by Stokes' equation expressing conservation of momentum of the mantle

Vp a = - jyj + + f  (4.2)

In this equation, 77 is the mantle shear viscosity and f is a source term that generally

involves buoyancy forces. Note that pressure gradients due to compaction of the mantle

have been ignored. Scott and Stevenson [1989] show that time-dependent features such

as magma solitons are not observed in the mantle flow field beneath mid-ocean ridges.

The generation of magma solitons requires that a zone of low melt fraction be underlain be

a zone of high melt fraction. Beneath a mid ocean ridge, this situation does not occur

because the production of melt and its subsequent migration cause the melt fraction to

increase monotonically or remain constant as it migrates to the ridge.

If mantle flow is driven solely by the motions of the lithospheric plates, then the mantle

deviatoric pressure field is dominated by a strong pressure sink located at the ridge axis that

decays rapidly (as r-2 ) with distance from the axis [Batchelor, 1967; Phipps Morgan,

1987]. This low-pressure zone acts to draw melt to the ridge and thus is a possible

mechanism for producing a narrow melt accumulation zone. The efficacy of deviatoric

pressure gradients at focussing melt depends critically upon the magnitude of the mantle

shear viscosity 17 in Stokes' equation (4.2).
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Both Spiegelman and McKenzie [1987] and Phipps Morgan [1987] show that, if the

mantle viscosity is low (1018-1019 Pa s) then melt buoyancy forces dominate mantle

pressure gradients and melt will rise vertically, resulting in a broad region of crustal

accretion. Not until the mantle shear viscosity reaches a value of 1021 Pa s are mantle

pressure gradients comparable to the natural buoyancy force of the melt and thereby

capable of focussing a considerable quantity of melt to the ridge axis. However, large

mantle viscosities lead to a marked dependence of crustal thickness upon spreading rate

[Sotin and Parmentier, 1989; Chapter 3]. This dependence arises because, as the mantle

viscosity increases, buoyancy forces are dominated by mantle viscous stresses and thus

any convection that might arise due to lateral density variations is dominated by the plate-

driven flow. At slow spreading rates, conductive cooling then becomes important in

defining the dimensions of the melting regime. The resulting decrease in the size of the

melt regime lowers the crustal thickness. At faster spreading rates, crustal thickness is

largely determined by the plate-driven flow field and the pressure at which clinopyroxene

is lost (Chapter 3). To eliminate the spreading rate dependence upon crustal thickness,

convection is required to both increase the thickness of the melting regime and raise melt

production rates . Lowering the mantle viscosity to 1018-1019 Pa s will result in

convection driven by melting-induced density variations. The resulting enhanced mantle

upwelling will markedly reduce the spreading rate dependence but only at the expense of

defocussing the melt away from the ridge. This negatively correlated behavior between

mantle viscosity/ melt focussing and crustal thickness presents a dilemma. From the above

discussion, it seems that what is required is a mantle viscosity that is relatively low within

and about the melting regime and relatively high otherwise. The low viscosity about the

melt regime would allow convection to occur while the high viscosities above the melt

regime might focus melt to the ridge.

Such a pathology in the variation of mantle viscosity can be obtained by assuming that

the viscosity has strong temperature- and pressure-dependence. Mantle viscosities that

depend upon these two variables will have large values in the conductive boundary layer

above the melting regime, and low viscosities below. Numerical models (Chapter 3) of

mid-ocean ridge dynamics incorporating this viscosity structure do indeed show that

compositionally-driven convection occurs in the low-viscosity asthenosphere.

Unfortunately, while the high viscosities in the lithosphere do enhance mantle pressure

gradients, they do so only within the thermal boundary layer. Outside of that layer, low

mantle viscosities reduce the magnitude of mantle pressure gradients about and within the

melting regime. The resulting effect upon melt flowpaths is limited because relatively large

pressure gradients are confined to the region where conductive cooling is important
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(Chapter 3). For the high pressure gradients in the lithosphere to be effective in focussing

the melt, their influence needs to be distributed over the entire region through which the

melt is percolating.

Convection driven by melting-induced lateral variations in mantle density also acts to

focus melt to the ridge axis but in a fashion different from mantle pressure gradients. The

density variations may be due to changes in mantle porosity, mantle temperature, or loss of

dense basaltic components upon melting. The convection induced by these density changes

acts to reduce the width of the melting regime because mantle upwelling velocities in the

melting regime increase. In order to match the lateral flux of mass transported by the

lithosphere, the width of the melting regime must decrease. Because the width of the

melting regime decreases, the zone of crustal accretion must decrease as well. However,

several studies that incorporate the effect of buoyancy terms into the balance of forces

[Scott and Stevenson, 1989; Sotin and Parmentier, 1989; Chapters 2 and 3] clearly show

that the resulting narrowing of the melting regime and lateral transport of melt by the mantle

are insufficient mechanisms for creating a narrow zone of surface volcanism.

Buck and Su [1989] suggested that, if melt fractions in the mantle can approach 20%,

the mantle viscosity will drop by several orders of magnitude. This leads to an extreme

narrowing of the melt production regime, and, by their argument, a zone of crustal

accretion only a few kilometers wide. It is unlikely, however, that melt fractions reach this

magnitude several tens of kilometers below the ridge axis [Johnson et al., 1990].

Furthermore, Cooper and Kohlstedt [1984, 1986] show that, if the mantle deforms via

diffusion creep, the reduction of mantle viscosity is at best a factor of 2-5. The upper

mantle deforms via a faster dislocation creep mechanism, however, so the effect of melt

upon the viscous deformation of the mantle is likely to be much less. In fact, Scott and

Stevenson [1989] showed that a factor of five reduction in the mantle viscosity wherever a

melt phase was present resulted in no significant narrowing of the crustal accretion region.

Sparks and Parmentier [1990, 1991] argue that melt flows to the ridge axis along a

high-porosity channel that parallels the isotherm below which melt begins to crystallize (i.e

the melt's liquidus). In this mechanism, the solidification of the melt leads to local pressure

gradients that drive the melt away from regions where solidification is occurring. The

natural buoyancy of the melt and the sloping of the melt liquidus towards the ridge axis will

result in focussing of the melt to the ridge axis. The efficacy of this scheme depends upon

the balance of two factors: (1) the rate at which melt is transported into the region where

melt is crystallizing and (2) the rate at which melt is crystallizing. If the solidification rate

of melt is faster than the rate at which melt is brought towards its liquidus, then the channel

will not develop and melt will solidify in-situ. If the transport rate is greater than the



105

solidification rate, then the high porosity channel will form and melt will flow to the ridge.

The attractions of this mechanism are that it is both dynamically consistent with the full

two-phase flow equations and it is testable. Seismic and electromagnetic or magneto-

telluric methods could be used to detect the high-porosity layer.

One testable aspect of the freezing-induced high porosity channel is that solidification of

the melt along an isotherm should result in a the presence of interstital soldified melt along

that isotherm (a solidification front). These fronts will then be advected away from the

ridge by the lithosphere. Field studies of the mantle section of ophiolites, however, yield

no indication of the solidification front that should result if melt were transported in this

fashion. Compositional layering observed in alpine-type peridotites might be interpreted as

evidence of migrating/solidifying melt packets, but geochemical and petrologic evidence

suggest otherwise. First, geochemical evidence analyses indicate that such peridotites

show systematic depletion of Al, Ca, Na, Ti, Al/Cr, and Fe/Mg. This trend is unlike that

expected for a melt that is crystallizing but is consistent with melt generation and extraction

[Dick and Sinton, 1979]. Second, while trapped melt does exist in some samples of

abyssal peridotites [Dick, 1989] it is rare. Investigations of ophiolites further indicate that

trapped melt is rare [Dick and Sinton, 1979] and that, moreover, it does not seem to be

spatially associated with compositional layering in the mantle.

Stevenson and Scott [1987] argue that if deviatoric stresses are accounted for in

determining the morphology of the melt phase, then the melt-filled, grain triple junctions

that are the conduits for melt percolation will be dilated in the direction of greatest

compressive stress and contracted in the direction of least compressive stress. Permeability

depends directly upon the cross-sectional area of channels in the porous network therefore

such a mechanism would enhance permeability in the direction of greatest compressive

stress. In the sub-ridge mantle, the direction of greatest compressive stress is oriented

laterally away from the ridge axis [Sleep, 1984]. Such a mechanism would thus direct melt

away from the ridge axis [Stevenson and Scott, 1987].

Transport of Melt due to Dike Propagation

Until now, I have only considered mechanisms in which the melt percolates via porous

flow. Attendant with these mechanisms is the assumption that the structural fabric of the

mantle in no way effects the route that melt takes on its way to the surface. Field studies of

ophiolites belie this assumption, however. Within the peridotite section beneath the

overlying gabbro/dike complex, cross-cutting dikes and veins are ubiquitous (Figure 4.2)

indicating that, near the surface, the primary mode of melt transport is no longer porous

flow.
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A number of authors have presented models of melt migration at mid-ocean ridges

based around the idea that the primary mode of melt migration throughout the melting

regime occurs via dike or vein propagation rather than by porous flow [Mavko and Nur,

1975; Nicolas and Jackson, 1982; Sleep; 1984; Nicolas, 1986a.b; Nicolas, 1989]. The

basic idea of this mechanism is that melt is retained in the matrix until some critical melt

fraction is reached. At this point, the deviatoric stresses on the matrix caused by the

differential density between the matrix exceeds the yield stress of the matrix. Melt is then

collected into the the dike or vein which then propagates to the surface fairly rapidly.

In the presence of buoyancy forces alone, the dikes transporting the melt will rise

vertically. If the melt regime is broad, as shown by a number of authors [Scott and

Stevenson, 1989; Sotin and Parmentier, 1989; Parmentier and Phipps Morgan; 1991,
Chapters 1 and 2] this mechanism will also lead to a broad crustal accretion zone at the

surface. The viscous deformation due to mantle flow, however, results in deviatoric

stresses that will affect the propagation path of dikes and veins. In an two-dimensional,
isotropic medium subjected to deviatoric stress, dikes will propagate along the direction of

greatest compressive stress [Sleep; 1984]. Beneath a ridge axis, the influence of deviatoric

stresses results in dikes propagating away from the ridge axis thereby creating an even

broader region of crustal accretion than if dikes propagated under the influence of buoyancy

forces alone [Phipps Morgan; 1987].

An argument might be made that dikes are only created in a relatively narrow zone

about the ridge axis. Once a dike is created, the pressure drop between the mantle and the

melt in the dike will cause melt to be drawn to the dike via porous flow. However, the

compaction length in the mantle is only a few hundred meters and the melting regime

beneath a mid-ocean ridge is of order 100 km wide. Given that the pressure drop caused

by the presence of the dike will decrease rapidly with distance, it does not seem likely that a

narrow band of dikes about the ridge axis will be extremely efficient at extracting melt over

distances of several tens of kilometers.

Nicolas [1986a,b,1989] argues that the depth at which the yield stress of the mantle is

exceeded is about 50 km if melt is not allowed to percolate until a critical melt fraction is

obtained. This estimate of the depth of dike initiation depends upon how much the

presence of melt reduces normal stresses in the mantle. Nicolas [1989] overestimates this

effect by assuming that the resulting difference in the mantle normal stress between melted

and an unmelted mantle is Spgh where 8p is the density difference between the mantle and

the melt and h is the depth. This is an estimate of the pressure difference at the base of a

melt column of height h and a similar unmelted mantle column. However, melt fractions in

the mantle are not likely to be larger than 1-2% within the melting region. A better estimate
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would be the integral (Pm-p ) where pm is the unmelted mantle density and p is the density

of the melt/mantle aggregate. If the melt fraction in a column of mantle is 1%, then the

resulting pressure difference at a depth h is only 0.01.Spgh which would yield a much

shallower depth of dike initiation for a given yield stress. Moreover, the displacement

caused by the initiation of dikes should be detectable seismically. Studies of mid--ocean

ridge seismicity, however, indicate that little seismic activity occurs below a depth of about

6-10 km [Toomey et al., 1988].

Anisotropy in the Mantle and its Effect upon Melt Migration

The inability of dynamic forces in the mantle to focus melt to the ridge axis and the

defocussing effect of dikes requires that an alternate melt migration mechanism be sought.

The presence of the dikes and veins in ophiolites strongly implies, however, that much of

the melt is transported to the ridge axis via a mechanism other than porous flow, at least at

shallow depths beneath the ridge. These dikes and veins provide a clue for an efficient

mechanism for focussing melt.

In any porous medium, the permeability will be controlled by a number of factors.

Two of the most important are the cross-sectional area of the channels through which the

fluid flows and a factor known as the tortuosity Tij.

Though the analogy is not strictly correct, dikes and veins may be considered as

exceptionally wide melt channels with some orientation. Consider for a moment the plate-

driven mantle flow field beneath the ridge axis. If at some point in this flow field a vein is

created, the vein will be oriented in the direction of greatest compressive stress. As shown

by Sleep [1984], the vein will propagate in a direction away from the ridge axis (Figure

4.3a). However, if the vein propagates slowly, shear strain in the mantle will reorient the

vein such that it is directed towards the ridge axis (Figure 4.3b). Such a reorientation of

veins may also occur because the vein lowers the effective mantle viscosity Simple

numerical experiments for fluids with an anisotropic viscosity [Christensen, 1987,

Stevenson, 1989; Phipps Morgan, unpublished data] show that bands of low viscosity

material embedded in a higher viscosity matrix will eventually be reoriented by the flow

towards the plane of shear and eventually along flowlines. Phipps Morgan [1987]

postulated that if a preexisting isotropic network of veins exists in the mantle, then the

network will progressively deform such that veins will be aligned parallel to the shear plane

in the mantle. Within a few tens of kilometers from the onset of melting, most veins will

be oriented towards the ridge axis (Figure 4.4a). The high "porosity" of the veins relative

to the surrounding porous matrix would provide an efficient means of directing melt to the

ridge.
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Recent experiments on partially-molten olivine-basalt systems may yield another

means of enhancing melt percolation in the direction of the ridge axis. The traditional

theory of crystal-melt interfaces states that, for an isotropic system, the liquid-crystal

interface curvature is constant [Bulau et al., 1979]. This result predicts the cross-section

of a melt-channel is prismatic with inward-curving faces (Figure 4.4b). Waff and Faul

[1991] observe that while this morphology does exist in olivine-basalt systems, flat

crystal-melt interfaces are often observed coexisting with curved interfaces (Figure 4.4c).

The resulting increase in the cross-sectional area of the melt-channel will significantly

enhance permeabilities along that melt-channel. Furthermore, Waff and Faul [1991]

identify the faceted crystal face as the (010) slip plane of olivine. It is well-established that

(010) is the dominant slip plane in olivine and is the means by which it deforms under the

influence of an imposed shear. Theoretical studies of the lattice preferred orientation of

olivine (LPO) predict that the (010) slip plane will align itself parallel to the plane of mantle

shear [Ribe, 1989a,b]. Observations of the ultramafic sections of ophiolites indicate that

olivine does behave as the theory predicts [cf. Christensen, 1987]. Beneath a mid-ocean

ridge, therefore, the (010) plane of olivine will align itself such that the observed high-

porosity channels will be oriented towards the ridge axis [Waff and Faul, 1991].

The progressive deformation (finite strain) of the mantle under the the influence of

shear strain leads to another kind of anisotropy in the melt channel network. Consider an

equigranular solid wherein melt channels are of equal cross-sectional area and randomly

oriented (shown somewhat diagrammatically in Figure 4.4c). Next, define a distance 1,

aligned with either the horizontal or vertical axis, over which a pressure change 8p occurs.

The effective path length le is the distance over which the fluid actually travelled in order to

move a distance I along the horizontal axis. The ratio of these two lengths gives a measure

of the medium's tortuosity. In an isotropic solid, the ratio is the same in all directions and

the permeability may be defined by a scalar value kq. For an anisotropic medium,

however, the effective path length will be different depending upon orientation and thus the

permeability becomes a second-order tensor. This effect is often observed in materials

such as micaceous or slaty rock.
Bear [1972] argues that for a given pressure drop p , the tortuosity Tij is proportional

to (1/le) 2 . Consider now that our crystalline solid undergoes a pure shear event such that

individual crystals are elongated in the horizontal direction. In this case, the ratio 1/le in the

in the direction of shortening decreases and the permeability in that direction drops

markedly relative to the permeability in the direction of greatest elongation. Beneath a

mid-ocean ridge, the direction of greatest elongation is parallel to the shear plane [e.g.

Nicolas, 1989] which, again, is oriented towards the ridge axis. For a simple crystalline
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solid like that shown in Figure 4.4c, the change in le scales linearly with the amount of

elongation (strain) of the crystal. By the above relation between tortuosity and the effective

path length, the change in tortuosity scales with the square of the amount of strain and thus

so will the permeability [Phipps Morgan, 1987].

Objectives

My goal in this chapter is to incorporate a model of anisotropic permeability into the

thermo-fluid dynamic model of melt migration and mantle convection I developed in the

previous chapter. I will compare the results of these numerical experiments with identical

experiments from the previous chapter wherein the mantle permeability was assumed to be

isotropic (i.e. scalar-valued).

MODEL DEVELOPMENT

In the previous chapter, I developed a set of simplified governing equations for two-

phase flow and melt generation in the oceanic upper mantle. In this chapter, I will use the

same equations with only one modification. Recall that the permeability-melt viscosity

ratio tensor K was written

K = kuA (4.3)

where kp = kg(x,z) is the scalar permeability-melt viscosity ratio and A is a symmetric,

non-dimensional anisotropy tensor with the property that j4iJ 5 1. In order to examine the

relative strength of mantle pressure gradients to buoyancy forces, the anisotropy tensor was

previously assumed to be isotropic or A = I where I is the identity tensor. Here, I remove

this assumption and allow A to have have off-diagonal terms and diagonal terms of

different magnitude.

Recalling the differential equation for the permeability-melt viscosity ratio

f-- + f2-z + f3 k = RmT (4.4a)

where the coefficients fl,f2 andf3 are as follows

f = Ax- + Ax- + RmSp) (4.4b)
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f2 = Ax I + A- + Rm Sp (4.4c)

f3 = -A(- - + -Ax 2 A p
(4.4d)

Axx ,Axz p aAxZ az +p+ ( + + + Rm P

The addition of anisotropy affects the magnitude of the permeability-melt viscosity ratio in

two ways. First, the coefficientsfj andf2 are similar to velocities in an advection equation

since the first two terms on the left-hand side of equation (4.4a) can be written (flf2).V
k. Anisotropy effects relative magnitudes of these two coefficients which in turn reflect

the direction in which melt is propagating. The third term on the left-hand side of equation

(4.4a) provides a mechanism for increasing or decreasing the permeability in response to

anisotropy.

To complete the equation for ky, I need to specify the anisotropy tensor A. As

mentioned above, Phipps Morgan [1987] suggested that anisotropy in the mantle will be

proportional the the square of the finite strain E under simple shear. To calculate the finite

strain, I use the continuum theory of McKenzie [1979] who showed that the finite strain

tensor E satisfies the following differential equation

DE
- + V.VE = LE (4.5)
at

where V is the mantle velocity, and L = iVildxj is the mantle velocity gradient tensor. The

boundary conditions on equation (4.5) are that the mantle is isotropic (E = I) along the
bottom boundary of the computational regime (z= 150 kin). The side boundaries are free

outflow boundaries. The strain along the top boundary is set to the strain at the level

beneath it. The anisotropy tensor A is symmetric since K is symmetric [Bear, 1972].

However, the finite strain tensor E is not symmetric. A particular coordinate

transformation for the finite strain tensor can be found though where E is diagonal.

Transforming E into this principal coordinate system, squaring the principal axes of the

strain ellipse and rotating back into the original coordinate system yields a symmetric tensor

A that is related to the square of the finite strain by the following equation

A = RTA2R (4.6)



111

where R is a rotation matrix describing the orientation of the principal axes of the strain

ellipse and A is the diagonal matrix containing the normalized eigenvalues of E. Each

eigenvalue in A is normalized by the largest eigenvalue i.e. Ai = Ai / ,am .

In this chapter, I present a suite of numerical models which incorporate the above

anisotropy tensor into D'Arcy's Law and into the permeability-melt viscosity ratio

equation. Numerical solutions of the full thermo-fluid dynamic equations presented in

Chapters 2 and 3 and using the above modifications to the permeability are obtained using

the finite-element method. The computational domain has dimensions 400 km (horizontal)

x 150 km (vertical) and in all other respects (e.g. boundary conditions) is identical to that

used in Chapter 3.

RESULTS

Herein I present the results of three numerical experiments that incorporate the

anisotropic permeability parameterization given above. For reference, I also present the

three experiments from the previous chapter with identical paramters but without

anisotropy. Parameters for all numerical experiments are listed in Table 4.1.

The results for models without anisotropy in the permeability are shown in Figures 4.5

(1 cm yr 1), 4.6 (4 cm yr- 1), and 4.7 (8 cm yr-1). The salient features in this suite of runs

are (1) that the melt rises vertically resulting in a broad zone of crustal accretion (2) mantle

pressure gradients have little effect upon melt flow paths because of the low mantle

viscosity, (3) narrowing of the melt regime, and thus narrowing of the melt regime, due

compositionally-driven convection is only important at slow spreading rates and is not a

sufficient mechanism for focussing melt to the ridge axis.

A salient discussion of the anisotropic models requires a brief discussion of their

associated finite strain fields. Steady-state finite strain ellipses for experiments 4 (1 cm yr-

1), 5 (4 cm yr-1) and 6 (8 cm yr- 1) are shown in Figure 4.8. These experiments are the

same in all respects to those shown in Figures 4.5-4.7 except that the mantle permeability is

allowed to be anisotropic. The differences between the strain fields at the slowest and

fastest spreading rates is quite remarkable and unexpected. These differences are due to

enhanced mantle upwelling due to convection at the slower spreading rates. It is

worthwhile, therefore, to examine the faster spreading rate models first so that this

additional complication can be understood. At 8 cm yr- 1 (Figure 4.8c) flow in the mantle

is primarily driven by the divergence of the lithosphere. Along a mantle flowline, finite

strain ellipses show that an initially isotropic crystalline aggregate will become
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progressively deformed in such a way as to cause individual crystals to elongate in the

direction of the shear plane. Beneath a ridge axis, this effect results in a pervasive ridge-

directed anisotropy in the crystalline lattice. Within the rigid lithosphere, deformation

ceases and any preexisting strain is frozen in. The general form and orientation of the

ellipses is in agreement with the finite strain results of McKenzie [1979] and Phipps

Morgan [1987] and the lattice preferred orientation theory of Ribe [1989a,b].

As the spreading rate decreases, convection enhances the flow of mantle material

through the melting regime (Chapter 3). The effect of this enhanced flow results in a

mantle strain field that is markedly different from the strain field at faster spreading rates

(Figure 4.8a). In the deep mantle, beneath the lithospheric lid, the strain field is much like

that for simple plate-driven flow. From the base of the lithosphere to the surface,

however, the mantle strain field changes orientation and magnitude. This result can best be

understood by the nature of the non-plate driven flow. The density driven flow basically

imposes a strong recirculation flow on the plate-driven flow field that is very local to the

ridge axis [Rabinowicz et al., 1987; Scott and Stevenson, 1989; Sotin and Parmentier;

1989]. This recirculation cell component acts to reorient the shear such that the axis of

greatest extension points away from the ridge axis rather than towards it. The efficacy of

this flow at altering the orientation and magnitude of the mantle strain depends upon the

point at which any mantle flow line becomes part of the rigidly translating lithosphere. At

this point, the mantle strain ceases to change.

For all spreading rates, the effect of the strain upon the the mantle permeability is quite

marked. I note, however, that the overall patterns of flow, density and temperature are

unchanged between the isotropic and anisotropic permeability models. This is reflected in

there being little difference in crustal thickness (total melt production) between models at

the same spreading rate.

Concentrating again upon the faster spreading rate models where the strain field is

simple, the ridge directed anisotropy at 4 cm yr - 1 (Figure 4.10) and 8 cm yr- 1 (Figure

4.11) clearly show that the melt flux vectors are strongly oriented towards the ridge axis

even though the driving force for the melt is almost solely due to melt buoyancy. The melt

flux at the ridge axis relative to that off-axis is much stronger than in the isotropic models

indicating that larger quantities of melt are being delivered to the ridge axis. Contours of

the mantle permeability that slope towards the ridge axis envelope most of the region over

which significant melting occurs. Evidence that this melt is then channeled laterally several

tens of kilometers to the ridge axis is shown by the convergence to the ridge axis of

permeability contours directly above the melting regime.
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The results for the 1 cm yr -1 model (Figure 4.9) are perplexing. Unlike the faster

spreading rate models, mantle strain throughout the melting regime has a strong nearly-

vertical orientation. Within a few kilometers of the surface, the strain orientation changes

abruptly such that major axis of the strain ellipse is oriented towards the ridge axis. Thus,

melt would rise rapidly towards the surface along the vertically-oriented high-permeability

network and then be deflected laterally towards the ridge. The result appears to be a layer

of high permeability near the surface. The presence of this layer seems to me implausible.

In fact, the algorithm I use to solve this equation (Appendix A) seems to have some

difficulty solving for kg in this particular model.

Further evidence that the solution algorithm for the permeability equation is having

some difficulty with the strong anisotropy in these models can be seen in the curves of

crustal thickness versus distance from the ridge axis (Figure 4.12). First, the width of the

crustal accretion region is rather broad (Table 4.2) given the strong anisotropy in these

models. This seems to result from the fact that the integrated flux of melt out of the surface

does not equal the total amount of melt produced by the melting regime. A check of these

two values for the isotropic models indicate a discrepancy of at most 10%. For the

anisotropic calculations, the flux of mass across the surface is systematically lower than the

mass of melt produced by about 50%. Part of this discrepancy may have to do with the

solution algorithm.

DscussIoN

The presence of pervasive dike structures in ophiolites strongly suggests that the

assumption of melt migration via porous flow breaks down at some depth. Nicolas [1989]

suggests that dike propagation initiates at a depth of about 50 km. This is likely to be a

gross overestimate considering that it is based upon the assumption that the melt

overpressure is given by Spgz where z is the depth and Sp is the difference in density

between the mantle and melt. However, the melt fraction is small throughout much of the

melting regime and is distributed in an interconnected network. The overpressure given by

the above relation is the difference in pressure between a column of melt and column of

mantle both of height z. Given the extreme assumptions leading to this result, the actual

overpressure is likely to be much less and therefore the depth at which the rock fails to

form a dike is likely to be much less than 50 km as well.

I suggest that melt preferentially travels towards the ridge axis either by passage

through veins, differences in the melt channel widths due to surface energy anisotropy,

and/or by strain-induced anisotropies in the tortuosity of the mantle. Melt will migrate

rapidly towards the ridge axis where it will accumulate to within a few kilometers of the
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ridge and at a few kilometers depth. The amount of melt in any volume of mantle wm

steadily increase as the ridge axis is approached causing the mantle rock to be

overpressured. As the volume of mantle rises to the surface, its yield stress is exceeded

and the resulting dike flushes the mantle free of any local melt. By transporting the melt to

the ridge axis in this fashion, I avoid the problem of requiring dikes to be prevalent

throughout the broad melting regime and oriented towards the ridge axis [Sleep, 1984;

Phipps Morgan, 1987].

The marked differences in mantle anisotropy in the models presented here have

important implications for seismic studies of the upper mantle beneath the ocean basins. It

is a well established fact that travel times in fast spreading ocean basins such as the Pacific

depend upon the azimuth of the seismic raypath. Raypaths oriented in the direction of plate

spreading are faster than raypaths oblique to that direction [e.g. Nishimura and Forsyth,

1985]. This effect results from flow-induced anisotropy in the crystallographic orientation

of olivine in the mantle. Within the lithosphere, the seismically-fast axis of olivine is

assumed to be aligned with the direction of plate spreading. Theoretical studies of mantle

strain [McKenzie, 1979; Ribe, 1989a, 1989b] beneath mid-ocean ridges agree with this

assumption as do observations of grain deformation in ophiolites [e.g. Nicolas, 1989].

The results of this chapter show (Figure 4.8) that at fast spreading rates this assumption is

valid. However, at slower spreading rates, where compositionally-driven convection has

imprinted the mantle strain field with an additional component of strain, this assumption is

not.necessarily valid. The strain field is seen to change both orientation and magnitude

with depth through the lithosphere. These differences between slower and faster spreading

rates may help explain why seismic anisotropy is clearly observed in the Pacific Ocean

basin and is very difficult to detect in the slower-spreading Atlantic basin [e.g. Sheehan

and Solomon, 1991]. Future seismic studies of ocean basins and mid-ocean ridges that

attempt to map anisotropy in the upper mantle should take these possible differences into

account.

CONCLUSIONS

(1) A model for transporting melt to the ridge axis is presented that takes advantage of

strain-induced mantle anisotropy. Regardless of the exact mechanism, the resulting

anisotropy in the mantle permeability strongly focuses melt to the ridge axis, in accordance

with observation. This result is in contrast to models which rely upon dynamic forces to

drive melt to the ridge.
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(2) A marked difference in patterns of finite strain exists between models with different

spreading rates. At medium to fast spreading rates, flow is predominantly plate-driven

resulting in a strong yet uniform pattern of mantle anisotropy. At slow spreading rates, a

strong component of flow due to compositionally-driven convection results in a pattern of

lithospheric anisotropy that varies in both orientation and magnitude. This result may help

explain why a pervasive mantle anisotropy oriented in the direction of plate spreading is

relatively easy to detect beneath the Pacific and difficult to detect beneath the Atlantic.

FIGURE CAPTIONS

Fig. 4.1 Oceanic crustal thickness versus half-spreading rate. Data from seismic studies

done since 1970. Asterisks mark average crustal thickness from each seismic profile. Thin

vertical bars at slow and intermediate spreading rates show variations in crustal thickness

along several seismic profiles. Note the significant variations in crustal thickness at slow

spreading rates which reflects crustal thinning towards fracture zones and non-transform

offsets. Heavy vertical bar at 70 mm/yr shows range in crustal thickness from 100 seismic

refraction results near the southern East Pacific Rise [McClain and Atallah, 1986]. Heavy

vertical lines show crustal thickness variations inferred from recent along-axis gravity

surveys [Figure courtesy John Chen].

Fig. 4.2 Intrusive gabbro dikes in the harzburgite section of the Oman ophiolite [Photos

from Nicolas, 1989].

Fig. 4.3 (a) Solid lines with large arrows show mantle flowlines beneath a ridge axis.

Line segment is a newly formed vein. Small arrows about the vein show axes of least

compressive stress. (b) Same as (a) except shear flow has rotated dike so that it now

points towards ridge axis.

Fig. 4.4 (a) Diagrammatic sketch of a pervasive vein network with a preferred orientation.

(b) Left: Diagram from Waff and Faul [1991] showing the shape and cross-sectional area

of the melt-channel along a grain triple-junction when all three interfaces between the

crystalline solid and melt have the same mean curvature. Right: Diagram from Waff and

Faul [1991] showing the shape and cross-sectional area of the melt-channel along a grain

triple-junction with two curved and one faceted interface. (c) Left: Diagram showing an

idealized crystalline solid in an initially undeformed state. Right: After a pure shear

deformation, the crystals are elongated in the direction of minimum compressive stress.
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Fig. 4.5 Experiment #1 (1 cm yr 1 half-rate, r7 = 1018 Pa s). (a) Dimensional melt

production rate is shown as levels of grey. Contours of melt production rate are (0.25

(lightest gray shown), 0.50, 0.75, 1.0 (darkest gray shown)) x 10-11 kg m- 3 s- 1. Solid

black contour lines show contours of the permeability-melt viscosity ratio kg = kpl/.

Contours are (0.50, 1.0 1.5, 2.0) x 10-14 m2 . Black arrows show direction and

magnitude of melt flux q. Melt flux vectors are scaled to the labelled arrow above the plot.

The label next to the arrow shows the scaling flux for the remaining arrows as a fraction of

the plate velocity UO. The scaling flux is taken to be the maximum flux magnitude. (b)

Filled arrowheads show direction and magnitude of mantle velocity (V). Mantle flow

vectors are scaled to the arrow above the plot. The scaling velocity is shown next to the

arrow. Solid lines are contours of mantle temperature with dimensional contour values of

200, 400, 600, 800, 1000, and 1200 "C. Mantle density is shown as levels of grey.

Contours of density are 3326 (lightest gray shown), 3324, 3322, 3320 (darkest gray

shown) kg m- 3.

Fig. 4.6 Experiment #2 (4 cm yr 1 half-rate, 71 = 1018 Pa s). (a) Dimensional melt

production rate is shown as levels of grey. Contours of melt production rate are (0.01

(lightest gray shown), 0.50, 1.0, 1.50 (darkest gray shown))x 10-11 kg m- 3 s-1. Solid

black contour lines show contours of the permeability-melt viscosity ratio kg = k(p.

Contours are (0.5, 1.0, 1.5, 2.0, 2.5, 3.0) x 10-14 m2 . (b) Solid lines are contours of

mantle temperature with dimensional contour values of 200, 400, 600, 800, 1000, and

1200 "C. Mantle density is shown as levels of grey. Contours of density are 3326

(lightest gray shown), 3324, 3322, and 3320 (darkest gray shown) kg m- 3.

Fig. 4.7 Experiment #3 (8 cm yr - 1 half-rate, 7r = 1018 Pa s). (a) Dimensional melt

production rate is shown as levels of grey. Contours of melt production rate are (0.05

(lightest gray shown), 1.0, 2.0, 3.0 (darkest gray shown)) x 10-11 kg m- 3 s- 1. Solid

black contour lines show contours of the permeability-melt viscosity ratio kg = kPq4.

Contours are (1.0, 2.0, 3.0, 4.0, 5.0, 6.0) x 10-14 m2 . (b) Solid lines are contours of

mantle temperature with dimensional contour values of 200, 400, 600, 800, 1000, and

1200 'C. Mantle density is shown as levels of grey. Contours of density are 3326

(lightest gray shown), 3324, 3322, and 3320 (darkest gray shown) kg m- 3.

Fig. 4.8 Plot of the steady-state finite strain field for (a) Experiment #4 (1 cm yr 1), (b)

Experiment #5 (4 cm yr-1), and (c) Experiment #6 (8 cm yr-1).
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Fig. 4.9 Experiment #4 (1 cm yrl-1 half-rate, 1 = 1018 Pa s, anisotropic permeability).

(a) Dimensional melt production rate is shown as levels of grey. Contours of melt

production rate are (0.25 (lightest gray shown), 0.50, 0.75, 1.0 (darkest gray shown)) x

10-11 kg m- 3 s- 1. Solid black contour lines show contours of the permeability-melt

viscosity ratio k, = k/My. Contours are (1, 2, 3, 4, 5) x 10-14 m2 . (b) Solid lines are

contours of mantle temperature with dimensional contour values of 200, 400, 600, 800,

1000, and 1200 *C. Mantle density is shown as levels of grey. Contours of density are

3326 (lightest gray shown), 3324, 3322, 3320 (darkest gray shown) kg m- 3.

Fig. 4.10 Experiment #5 (4 cm yr half-rate, 17 = 1018 Pa s, anisotropic permeability).

(a) Dimensional melt production rate is shown as levels of grey. Contours of melt

production rate are (0.01 (lightest gray shown), 0.50, 1.00, 1.50 (darkest gray shown))x

10-11 kg m- 3 s- 1. Solid black contour lines show contours of the permeability-melt

viscosity ratio k, = k/ 4y. Contours are (4,6,8,12,16,20) x 10-14 m2. (b) Solid lines are

contours of mantle temperature with dimensional contour values of 200, 400, 600, 800,

1000, and 1200 "C. Mantle density is shown as levels of grey. Contours of density are

3326 (lightest gray shown), 3324, 3322, and 3320 (darkest gray shown) kg m- 3.

Fig. 4.11 Experiment #6 (8 cm yr- half-rate, 77 = 1018 Pa s, anisotropic permeability).

(a) Dimensional melt production rate is shown as levels of grey. Contours of melt

production rate are (1.0 (lightest gray shown), 2.0, 3.0, 4.0 (darkest gray shown)) x 10-

11 kg m- 3 s- 1. Solid black contour lines show contours of the permeability-melt viscosity

ratio kg = kply. Contours are (10, 20, 30, 40, 50) x 10-14 m2 . (b) Solid lines are

contours of mantle temperature with dimensional contour values of 200, 400, 600, 800,

1000, and 1200 "C. Mantle density is shown as levels of grey. Contours of density are

3326 (lightest gray shown), 3324, 3322, and 3320 (darkest gray shown) kg m- 3.

Fig. 4.12 Normalized crustal thickness vs. distance from the ridge axis for anisotropic

permeability models only. Each curve is calculated by integrating the flux of melt, q, at the

surface (z-0 km) and assuming that the total integrated flux of melt from the ridge axis

(x=0 km) to the edge of the box (x=200 km) equals the crustal thickness, h. Curves are

shown for three different spreading rates: 1 cm/yr, 4 cm/yr, and 8 cm/yr.
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TABLE 4.1 Experimental Parameters

Run # UOa  AT Peb Rmc  77

(cm yr- 1) (C) (x 103) (Pa s)

1 1 1340 47 2,320 1018

2 4 1340 190 580 1018

3 8 1340 380 290 1018

4 1 1340 47 2,320 1018

5 4 1340 190 580 1018

6 8 1340 380 290 1018

a UO is the half-spreading rate of the surface plates.
b Peclet number : U0d/
c Rm: Pmgd2/Uo070.

Note: Runs 1,2, and 3 are experiments with isotropic permeability. Runs 4, 5, and 6 are

experiments with anisotropic permeability.
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TABLE 4.2 Physical Dimensions of Crust and Melting Regime

Pressure of Melting

1r ha wb Minimum Maximum Averagec

Run # Pa s (kin) (kmn) (kbar) (kbar) (kbar)

1 1018 6.1 50 3.9 15.7 9.6

2 1018 6.3 114 3.9 15.7 9.8

3 1018 6.4 162 3.9 15.7 9.8

4 1018 5.8 25 3.9 15.7 9.6

5 1018 5.8 73 3.9 15.7 9.9

6 1018 5.8 107 3.9 15.7 9.8

a Crustal thickness. To form the crust, all melt is assumed to contribute to the total crustal
thickness. By simple mass balance, the total thickness of the crust h is given by

h = 1 F dxdz
2pfUo

b The width of the neovolcanic zone, w, is defined by the flux of melt out of the top of the
computational regime. If the total integrated flux of melt out of half of the box is equal to
the crustal thickness h, then the neovolcanic zone width may be defined as twice the
distance xo (w = 2x0) such that the following integral has a value of 0.90h

f= h Iq(x,z=0) 11 dx/f jq(x,z=0)ll dx

c The average pressure of melting, j5, is the integral over the hydrostatic pressure weighted
by the melt production rate

S= ft Fpgz dxdz/ ftF dxdz
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Figure 4.3
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Chapter Five
Conclusions

We are usually convinced more easily by reasons we have found ourselves than by those which have
occurred to others.

Pascal
Pensies

In this thesis, I develop a unique finite-element computer program that calculates the

following variables in the mantle beneath a mid-ocean ridge: (1) the mantle flow field, (2)

the melt flow field, (3) the mantle temperature, (4) the rate of melt production, (5) the

mantle density, (6) the modal mineralogy and oxide composition of the mantle, (7) the

oxide composition of the melt, and (8) the ratio of permeability to melt viscosity.

Optionally, the finite strain in the mantle is also calculated. I then apply this model to a

suite of numerical experiments designed to examine the interactions of melting, melt

migration and mantle flow in the subridge mantle.

Flow in the mantle is driven by two-mechanisms: (1) the divergence of the rigid

lithosphere that results in a broad stagnation point flow beneath the ridge axis and (2)

convection driven by melting-induced variations in the residual mantle density.

Deformation of the mantle due to compaction is ignored. Melt flow paths are obtained

using D'Arcy's Law for the flow of a Newtonian fluid through a viscous matrix. The

driving forces for melt migration are (1) the natural buoyancy due the density contrast

between melt and mantle and (2) mantle flow derived pressure gradients. The direction of

the flow of melt may also be changed by allowing for anisotropy in the mantle.

The steady-state temperature structure of the mantle is determined by balancing the flux

of heat due to the mantle and melt against thermal diffusion and the loss of latent heat due to

melting. Melt production rate is determined by the rate at which energy is advected above a

mantle solidus. The solidus used in this study is a function of pressure, modal mineralogy

and oxide composition where the assumed mantle mineralogy that of a spinel lherzolite

which is defined by the following modes: olivine, orthopyroxene, clinopyroxene and

spinel. Mantle and melt oxide compositions are given by concentrations of the following

eight oxides: K20, Na20, CaO, FeO, MgO, TiO2, SiO2, A12 0 3. The density of the

mantle, which drives buoyant flow, is calculated using the weight percentages of each

mineral present and their Fe/Mg ratio.

In order to close D'Arcy's Law, the ratio of the permeability to mantle viscosity is

required. In other studies, a value is assumed for the mantle viscosity and the permeability

is assumed to have a functional dependence upon the mantle porosity. This latter functional
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dependence is not well-constrained. Rather than assume a functional form for the

permeability, I derive an expression for the ratio of permeability to melt viscosity using

D'Arcy's Law and the equation describing conservation of melt mass. Mantle

permeabilities obtained using this equation yield reasonable results based upon available

data and other theoretical studies.

In general, a D'Arcy Law formulation requires a second order (anisotropic) tensor in

order to describe the permeability. The presence of a crystallographic preferred orientation

in mantle minerals found in ophiolites as well as veins and dikes all imply that, at some

depth, the mantle permeability is anisotropic. In this thesis, I present a method for

mapping the finite strain of the mantle into the mantle permeability to allow for this

anisotropy.

The program described above was applied towards (1) characterizing the interaction of

a thermodynamically self-consistent mantle/melt system, (2) testing the efficacy of various

mechanisms for focussing melt to the axis of a mid-ocean ridge. Specific conclusions

from this thesis are as follows;

(1) In a thermodynamically self-consistent model of melting, melt migration and mantle

convection beneath a mid-ocean ridge melting is explicitly controlled by the flux of thermal

energy above a mantle solidus. The mantle solidus depends upon pressure, mantle

mineralogy and mantle composition. As the extent of melting increases, the mantle solidus

temperature rises and its pressure derivative changes as the mantle becomes more depleted

in its basaltic components. The latent heat of melting controls how much melting occurs

locally for a given temperature increase. Advection of heat by the melt will increase melting

rates as will the buoyantly-driven component of upwelling.

(2) A large impediment to further progress in studies of melt migration at mid-ocean ridges

is our uncertainty in the functional dependence of permeability upon melt fraction. The rate

at which both mass and heat may be transported by the the melt are critically dependent

upon the permeability. As the transport of heat via the melt may effect melt production

rates, the extent of melting, etc., it is important that this parameter be well determined. For

steady-state melt migration, one may derive an equation for the ratio of permeability to melt

viscosity from a set of simplified governing equations. This equation lets the permeability

adjust for both local production of melt and the advection of melt from other regions.

(3) The effect of latent heat of melting is to reduce mantle temperatures to the solidus

wherever sufficient heat is advected to cause melting. Lowering the latent heat of melting
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causes both the total amount of melting and the melt production rates to increase. The latent

heat also has an effect on the variation of melt production rate with depth. Small latent

heats yield high melt production rates. More mantle-like latent heats decrease melt

production rates because less heat is required to keep the mantle temperature on its solidus

for a given amount of melt. As a result, differences in the latent heat of a factor of two can

lead to large differences in the thickness of the crust. For low latent heats (250 J kg- 1

"C-1), melt production rates are high and melting continues until clinopyroxene is lost as a

phase. Since most of the basaltic component is melted out for this value of the latent heat,

the crustal thickness is higher than for a high-latent heat model (450 J kg- 1 OC- 1) where

melting ceases due to the onset of conductive cooling.

(4) The advection of heat due to the melt increases melt production rates by providing

additional energy for melting at shallower depths. Outside the melting region, melt heat

advection raises isotherms and provides a means for changing the thickness and width of

the melting region. These may be an important effects where melt is focussed into a

narrow region. In my simple plate spreading models, the combined effects of low melt

production and vertically rising melt combine to produce a small effect on the temperature

and melt production rate fields. However, when crustal thicknesses become appreciable

(-6 km), the advection of melt heat may be a factor that cannot be ignored in any self-

consistent study.

(5) The pattern of melt production will depend both upon (1) the rate of heat advection and

therefore local mantle and melt velocities and (2) changes in the solidus temperature and its

pressure derivative. This latter effect provides an explanation for the increase of melt

production rate with height from the pressure of initial melting. This effect is initially

counter-intuitive because the solidus temperature actually increases as the low-melting

point components are extracted. However, what is important in the generation of melt is

the rate at which heat is advected across the solidus. The important parameter for then is
not the mantle temperature, but the spatial gradient of temperature (V.A 7). Since the

pressure derivative of the mantle solidus increases as pressure decreases throughout the

melting regime, the melt production rate increases.

(6) Beneath the ridge axis, melting ceases at the depth where clinopyroxene is lost as a

phase. This effect results in a depleted harzburgitic layer above the minimum depth of

melting. The harzburgite layer acts as a barrier to further melting away from the ridge axis.
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In these experiments, melting occurs between 4 and 16 kbar depth with an average pressure

of melting of 10 kbar.

(7) Compositionally-driven convection increases crustal production by a factor of 1.5-2

over models where mantle flow is driven solely by the divergence of the lithosphere.

(8) At fast spreading rates (4-8 cm yr-1), compositionally-driven convection does not

significantly enhance mantle flow beneath the ridge. At these velocities, viscous stresses

are high and lateral variations in mantle density are small and, thus, little buoyantly-driven

upwelling occurs. At slower spreading rates, the effect of buoyancy forces on the mantle

flow becomes increasingly important for two reasons. First, the lateral dimensions of the

melting regime are increasingly delimited by the onset of conductive cooling. The smaller

width leads to larger lateral variations in density which are the driving force for convection.

Second, the magnitude of viscous stresses decreases relative to buoyancy forces because of

their dependence upon spreading rate

(9) Most of the melt that forms the oceanic crust is created within several tens of kilometers

of the ridge axis where significant mantle upwelling occurs thus strongly delimiting the

lateral dimensions of the melting regime. The maximum pressure of melting is constant if

the mantle temperature and initial mantle composition are also constant. The minimum

pressure of melting is constant in all models in which clinopyroxene is lost as a phase. The

limits placed upon the size of the melting regime by the mantle flow field and the depth

range over which significant melting occurs explains why the crustal thickness remains

constant as spreading rate increases beyond about 4 cm yr -1.

(10) The narrowing of the melt regime and the additional pressure gradients resulting from

compositional convection are insufficient to focus melt to the ridge axis when the sub-ridge

viscosity is low enough for significant compositionally driven flow to occur.

(11) If mantle viscosities are of order 1018-1019 Pa s, then the flowpaths of the melt

phase will be little affected by pressure gradients due to viscous stresses and the melt will

rise vertically resulting in a broad region of crustal accretion. Enhancement of these

pressure gradients by the use of a temperature- and pressure-dependent viscosity is not a

sufficient mechanism for focussing melt to the ridge axis.
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(12) Comparing several geophysical observables (bathymetry, gravity, seismic travel time)

shows that, for any given spreading rate, there are no physically detectable differences

between models with different viscosity structures. A comparison of mantle residual

mineralogy and aggregate primary melt compositions show that there is also little difference

in these observables between models with different spreading rates and viscosity

structures. The fact that significant differences in these variables do exist between mid-

ocean ridges implies that changes are required in other parameters, such as mantle

temperature, composition and perhaps variations in the mantle flow field due to ridge-

transform offsets, ridge migration, or asymmetric spreading.

(13) Several of these numerical experiments explore the effects of strain-induced mantle

anisotropy as a mechanism for transporting melt to the ridge axis. Regardless of the exact

mechanism, the resulting anisotropy in the mantle permeability strongly focuses melt to the

ridge axis, in accordance with observation that the entire volume of melt forming the

oceanic crust is emplaced there. This result is in contrast to models which rely upon

dynamic forces to drive melt to the ridge.

(14) A marked difference in patterns of finite strain exists between models with different

spreading rates. At medium to fast spreading rates, flow is predominantly plate-driven

resulting in a strong yet uniform pattern of mantle anisotropy. At slow spreading rates, a

strong component of flow due to compositionally-driven convection results in a pattern of

lithospheric anisotropy that varies in both orientation and magnitude. This result may help

explain why a pervasive mantle anisotropy oriented in the direction of plate spreading is

relatively easy to detect beneath the Pacific and difficult to detect beneath the Atlantic.
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Our little systems have their day;

They have their day and cease to be;

They are but broken lights of thee,

And thou, 0 Lord, art more than they.

We have but faith: we cannot know,

For knowledge is of things we see;

And yet we trust it comes from thee,

A beam in darkness, let it grow.

Let knowledge grow from more to more,

But more of reverence in us dwell;

That mind and soul, according well,

May make one music as before.

But vaster.

Excerpt from In Memoriam by Alfred Lord Tennyson
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Appendix A
Finite Element Formulation of the Governing Equations

and their Solution via Digital Computers

Nature hates calculators...

Ralph Waldo Emerson

Introduction

In this thesis, I derived several equations that described (1) creeping fluid flow in the

Earth's upper mantle, (2) melt migration via two-phase flow, and (3) the generation of a

partial melt beneath a mid-ocean ridge and the related time-evolution of the mantle

composition and mineralogy. Each of the non-linear equations required to describe the

behavior of the coupled mantle-melt system are too complicated to be solved analytically.

Rather, numerical techniques are used to solve the resulting system of non-linear equations

on digital computers. Of the techniques available to us, we have a choice of two relatively

robust candidates: finite differences and finite elements.

The main advantages of finite differences are that it is relatively easy to implement and

generally results in memory- and time-efficient algorithms. For example, consider the one-

dimensional heat equation

8 2Tr-T +f(x) = 0 (Al)
ax 2

where T is temperature, c is the thermal diffusivity, andf(x) is a source function. We wish

to solve this equation on the closed interval [0,1] subject to some appropriate boundary

conditions. Since we can only solve the equation at a finite number of points, we divide

the interval into n-1 equally spaced intervals and solve the equation at their n intersections

(nodes). To solve this problem via finite differences, we simply discretize the first term in

the equation by the standard centered difference approximation to the second derivative

Ti-1_l - 2Ti + Ti+1 f(x (A2)

Ax 2
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where Ax is the node spacing and the subscript i indicates the ith node. Writing one of

these equations for each degree of freedom results in an 3 x n system of linear equations

which may then be solved by one of various methods (Gaussian elimination, for example).

Clearly, this ease of implementation is part of the strong attraction of the finite

difference technique. Moreover, certain types of problems are extremely easy to solve

using finite differences because they do not require the solution of a matrix problem via

some sort of inversion scheme. Despite these advantages, finite difference methods are

often difficult to implement on irregular meshes or for problems with spatially variable

material properties. This last quality is particularly desirable in the problem we wish to

solve. In these problems, we would like to have a fine mesh near the ridge axis where

strong gradients exist in several of the variables we are calculating. Second, we will be

investigating the effects of lateral variations in viscosity and density. Hence, we would like

to have a method which handles these problems with ease. For these reasons (amongst

others we will mention in passing at the appropriate times) we generally choose to

discretize our equations with the method of finite elements.

Unfortunately, the theoretical development of finite elements is less intuitive than that

for finite differences. Therefore, we will begin this section with a preliminary discussion

of the idea of finite elements and shape functions. Next, we will outline the method of

conjugate gradients which forms the basis of the algorithms used to solve most of

equations. This discussion will lead us into a novel method of storing the resulting system

of equations. This technique, known as the Element-By-Element (EBE) method, provides

us with an efficient scheme (both in terms of computation time and storage) for solving our

equations on a vector-parallel computer. From there, we will proceed to discretize each of

the equations presented in the body of the thesis.

The Finite Element Method

In this section, we give a brief description of the basis of the finite element method,

using similar notation and descriptions found in Hughes [1987] which should be consulted

for a more thorough and lucid explanation.

Consider again for a moment the one-dimensional diffusion equation with a source term

(equation Al). We have already stated the equation we wish to solve and the domain over

which we wish to solve it. The only things we need declare in order to complete the strong

or classical form of this problem are boundary conditions. If we choose to employ both

fixed (Dirichlet) and flux (Neumann) boundary conditions, then the strong form of this

problem is as follows:
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Givenf: f -- t 1 and constants g and h, find u : D ~-9 i such that

u, xx+f= 0,Vxe 
u(1) = g

-u,(0) = h

where £2 is the closed interval [0,1] (without the overbar it would indicate the open interval

(0,1)), 931 is the set of real numbers, and the subscript comma indicates differentiation (i.e.

u X = d2uldx2).

To define the weak or variational form of (S) we first need to describe two classes of

functions. The first is a collection of trial solutions denoted by U which consists of all

functions which have square-integrable first derivatives and take on the value of the fixed

boundary conditions. In our example, this is stated as follows

U=( ulue H, u(1)=g )

where H 1 implies that u is a function such that (A3)

(uxfdx < c.

The second collection of functions we must define are the so called weighting functions or

variations. The definition of the weighting functions is very similar to the definition of the

trial functions (A3) but with the exception that the weighting functions w are identically

zero on fixed boundaries. The collection of these functions, denoted V, is defined as

follows

V=(wlweH1, w(1)=0) (A4)

The weak form of (S) is obtained by integration by parts of the integral

f w(uxx + ) dx

and is
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Given f, g, and h, as before. Find u U such that V w e V

f w.xU.x dx =f wf dx + w(O)h

We now make an essential distinction between usual finite difference and finite element

formulations. Finite differences are usually based upon discretizing the strong form (S),

whereas finite elements is based upon a discretization of (W), the weak form.

From here we proceed to the method of discretizing the weak form. In finite

differences, recall, we merely wrote down the discrete form of the differential operator and

the source term. In finite elements we are required to be a bit more explicit since we are

dealing with classes of functions. That is, in finite differences, nothing about the variation

of say, u, between nodes was explicitly mentioned. The definitions of our trial function

and weighting function spaces (U and V, respectively), require us to ensure that a function

in either space is at least continuous and that its first derivative is square-integrable.

Therefore, we need to specify how our variables will change between nodes and within

elements. At the very least, this can be seen by the need to have some way of calculating

the integrals in the weak form. This is where the idea of shape or interpolation functions

comes into play. We need to make one more critical step, however, before we can proceed

to defining these functions explicitly.

Now, we define the finite-dimensional approximations to U and V, Uh and Vh, and

associate them with a mesh or discretization of the domain KI which is characterized by a

mesh spacing h. These approximations are thus subsets of their parent spaces, i.e. Uh c U

and Vh c V. Note here that one consequence of this definition is that the finite-dimensional

analogues of u and w will satisfy their respective boundary conditions, e.g. uh(1) = g and

wh(O) = 0.
Assume that the set of discrete weighing functions, Vh, is given. We now construct a

function uh E Uh by

uh = vh +gh (A5)

where vh e Vh and gh is a given function satisfying the Dirichlet boundary conditions, i.e.

gh(1) = g. Note that (A4) satisfies this boundary condition as well. The important point

here is that, up to a function gh, Uh and Vh are composed of identical collections of

functions. Upon inserting (A5) into the weak form (W), we are left with the Galerkin form

of our problem
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Given f, g, and h, as before, find uh = v h + gh where vh e Vh

(G) such that V wb r Vh

W hxvhx dx = whf dx +w(O)h- w hxgh dx

Let Vh be the collection of all linear combinations of given functions denoted by NA

where A = 1, 2,..., n. Thus

n
wh= , CANA (A6)

A=1

The NA's are referred to as shape functions and the cA's are constants. We require that at

each Dirichlet boundary the shape functions are homogeneous i.e. NA(1) = O0, A = 1, 2,...,

n. To complete Uh, we need to specify gh. To accomplish this, we introduce an additional

shape function Nn+j with the property that at each Dirichlet boundary N,+j = 1. Then gh

= gNn+l and thus gh = g. With these definitions, we may write uh as follows

u h = vh +gh
n (A7)

= dANA + gNn+l
A=1

where the dA's are constants. Inserting this equation into the Galerkin form of our

problem, plus a little algebra, yields the following equation

1  
(1 1 _ _

B=1 ax ax x ax

Everything in (A8) is known except the dB's. Thus, equation (A8) is a system of n

equations in n unknowns. We may simplify equation (A8) by compressing our notation

thus

KABdB = FA, A = 1, 2,...,n (A9)
B=1
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If we adopt matrix notation, then (A9) may be further simplified into

Kd = F (A10)

It is common practice to refer to the matrix K as the stiffness matrix, and the vectors d and

F as the displacement and force vectors, respectively, reflecting the elasticity origins of

the first finite element formulations.

Before we immerse ourselves in shape functions, let us make mention of two minor but

important bookkeeping tools. Consider the bounded region in Figure Al which is divided

into a number of subregions. A node exists at the vertices of each subregion. We may

assign a global node number to each node by assigning the node in the lower left-hand

corner a value of one. From this point we number the remaining nodes in increasing order

from left-to-right, bottom-to-top. Our ordering could have been arbitrary, as long as each

node has a unique value but for the rectangular regions we will be considering, this type of

ordering is natural and useful.

We now ask ourselves what is an element? An element is the region bounded by a

finite collection of nodes. In our examples (Figure Al), the nodes may be only at the

corners of an element (as in the case of the four node element) or along the sides and

interior as well (as in the case of the nine node element). Elements only share nodes along

their edges. Within each element, we may assign a local node number to each node. In

the case of the four-node element, we assign to an arbitrary node the value one and number

the rest in increasing order in a counter-clockwise direction. It does not matter which node

we pick to be first, as long as we are consistent in our ordering. In this thesis, we use both

the global and local node orderings shown in Figure Al.

The distinction between global and local coordinates is an important one because the

stiffness matrix K and force vector F are essentially the sum of elemental contributions.

That is, the integrals in, say, equation (A8) are calculated at an element level and then

summed into K and F.

In this thesis, we use two basic elements, the four node bilinear quadrilateral element

and the nine-node biquadratic element. The four node element, perhaps the most basic of

all elements, is shown in Figure A2. The domain of each element is referred to with the

symbol fe. In general, element domains are irregular and of unequal size, making the

calculation of multidimensional integrals rather tedious. We would like to have a standard

integration scheme and be able to apply it to all elements. We may accomplish this by

mapping all elements to a parent domain. In two dimensions, the parent domain is the
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biunit square shown in Figure A2. We can now relate the coordinates of our original four-

node quadrilateral, x, to those of the parent domain, 4 by mappings of the form

4

x(4,4) = Y Naxe  (A 11)
a=-I
4

y(4,77) = I Nay (A 12)
a=-I

where 4 and 17 are called the natural coordinates. It can be shown that the shape function

Na has the form

Na(5) = Na(4,7) = 1( 1 + a4 )( 1 + 7a77) (A13)

where -1 5 , 17 5 1 and the premultiplication factors 4a and 77a are given in the following

table

TABLE A

a aa t7a

1 -1 -1

2 1 -1

3 1 1

4 -1 1

The form of the bilinear shape function is shown in Figure A3. Because the shape

functions we have used to map coordinates are isoparametric we may them as our

interpolation functions as well, i.e.

uh() = Na()d e  (A14)
a=1

where nen is the number of nodes per element.

We may also define the higher-order nine-node element shown in Figure A4. Rather

than go through the above process, we may construct the nine-node element by beginning
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with the four node element and then adding on nodes and correcting previously defined

nodes as required. This process is shown in Figure A5.

To calculate the entries in our stiffness matrix and force vector, we need to calculate the

integrals resulting from the Galerkin approximation to the weak form of our problem. For

example, given a function f and an element domain fle we wish to calculate

af(x) dO (A 15)

First we must map our integral to our parent domain as follows

,f(x) d92 = f f(x(,l),y(,,i))J(,7) didr7 (A 16)

where J(,77) = det( ax/83D), the Jacobian of our coordinate transformation. To actually

integrate equation (A16) we use the method of Gaussian quadrature. In one-dimension,

Gaussian quadrature may be stated as follows

f(4) d4 = f( t)W1 (A17)

where nint is the number of integration points, 41 is the coordinate of the lth integration

point, and WI is the 'weight' of the lth integration point. In multiple dimensions, the

method is basically the same with, of course, the added factor of our Jacobian. In this

thesis, we rely most heavily on the one-, 2x2-, and 3x3-point Gaussian quadrature rules

given in Table A2 and shown in Figure A6.

The Conjugate Gradient Algorithm

In this section, we describe the classic conjugate gradient algorithm for solving

problems of the form Ax = b. Why conjugate gradients? Basically we wish to avoid either

inverting the matrix A or using the computationally intensive Gaussian elimination method.

In conjugate gradients, the most computationally intensive tasks we need perform are the

inner-product of two vectors and matrix-vector multiplies. If coded properly, this

algorithm is very efficient on vector-parallel machines (see next section).
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We will begin by showing how the conjugate gradient algorithm is derived from the

method of steepest descents and then finish by discussing the biconjugate gradient

algorithm and methods of preconditioning to achieve further speedup. In the following

discussion, we assume that A is an n x n symmetric, positive-definite matrix. The

description here is basically that found in Hageman and Young [1981] (see also Press et.

al, 1986).

The method of steepest descents begins with the quadratic functional

F(x) = I(x,Ax) - (bx) (A18)
2

where the parentheses indicate taking the following inner product

(fg)= ffg dx (A 19)

Thus, the problem we encounter is that of trying to minimize F(x ). The gradient of the

functional is given by

VF(x) = b - Ax (A20)

The direction of VF is the direction for which F(x) has the greatest rate of change at the

point x. If xn is an approximation to the true answer xo, then moving in a direction parallel

to VF from the point xn to a point xn+1 where the functional F(x n +l ) is a minimum will

give us an improved estimate of xo. Thus

n+1 = xn + Ar n  (A21)

where An is chosen to minimize F(xn+l). Using equations (A18) and (A20), the method of

steepest descents is

x0 arbitrary,
xn+1 = x n + Anr , for n = 0, 1, .,(A22)

r n = b -Au n,

= (rn,rn)
(rnAr n)
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However, for ill-conditioned matrices, the convergence rate of this method is slow.

The basic problem is that in moving from xn to x n +1 it is possible to degrade previous

minimizations. What we want is a method that moves us towards the minimum of F

without affecting the minimizations of all our previous guesses. This is basically the idea

of the conjugate gradient algorithm. In conjugate gradients, we still move in a direction that

minimizes F (through the parameter An) but we choose a correction vector pn (through the

parameter an) that is 'A-conjugate' to pn-1 , i.e. (pn ,Apn-I) = 0. By correctly choosing pn

rather than rn , we can avoid the problems caused by the steepest descents method. The

conjugate gradient algorithm is given by the following formula

xo arbitrary,

xn+ 1 = Xn + Alp n, n = 0, 1, - -

pnr= rn, if n =0

r n  + ?Apn-1, n = 1, 2, - -,
(A23)

(rnAp n-1) = 1,2,...,
(pn-1,Apn-1)

rn = b -Axn, n = 0, 1, ,

An - (pn,r n=0,1,..-
(pn 4pn)'

Fixed (Dirichlet) boundary conditions are implemented by setting the correction vectors pn

= 0 at each iteration.

If a matrix is ill-conditioned, that is the ratio of its largest to smallest eigenvalues is

large, then iterative methods tend to have some difficulty converging to a solution. A

common technique is to precondition the matrix A by another matrix Q such that the

spectral separation of the product QA is smaller than that of the matrix A alone.

Furthermore, such a preconditioner should not change the nature of the solution while

enhancing convergence rates. A number of good preconditioners exist, however,

implementing them in an Element-By-Element framework is difficult. One method that

seems to work reasonably well and is easy to implement with the EBE data structure is

diagonal preconditioning. Consider a diagonal matrix Q with the following properties

1/Aij, i = j(A24)
Q= i(A k24)

0=IA , ikii =
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The conjugate gradient algorithm (A23) can be modified to incorporate this preconditioning

matrix resulting in the following PCG (preconditioned conjugate gradient) algorithm

xo arbitrary,

Xn+1 = xn + Anp n, n = 0, 1,
pn= rn, if n =0

r n + npn- 1, n = 1, 2,...,
(A25)

(rn,QApn1)A
an =- n = 1, 2, .. .,

(p - ,QApn-1)
r n = b -QAx n, n = 0, 1, ,

= (n,rn), n = 0, 1, ...
(pn,QApn)

When a matrix is not unsymmetric and not positive definite, then one must resort to

using a class of algorithms often referred to as Generalized Conjugate Gradients or

Biconjugate Gradients. A number of algorithms exist and each have their own convergence

properties. One might consider simply multiplying both sides of Ax = b by AT; the result

being a symmetric system of equations. However, if the condition number of A is large,

then this procedure only serves to further worsen the convergence properties of the system.

For this reason, we choose to use biconjugate gradients to solve systems of equations that

are unsymmetric. The algorithm we use in this thesis is a basically the ORTHOMIN

procedure [Hageman and Young, 1981] and is as follows

ro = Po = r = pX = b - Axo

= (p,rn)

(PnTjApn)
Xn+l = Xn + anPn

rn+l = rn - an(Apn
rTl = rT - anA TpT

(rX,APn)

Pn+1 = rn + fnrn

pT+ = r T + fnrT

Computations on Vector-Concurrent Computers and the Element-By-Element Concept

The fact that finite-elements is based upon integrals over elements (such as those in

equation A15) leads us to develop programs based on element structure and logic. This is
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in contrast to finite differences where programs are based on nodal structure and logic. The

main bulk of a finite element program would thus involve looping over all elements,

computing the element matrix contributions, accumulating these element contributions into

the stiffness matrix, and solving the resulting system. Depending upon the problem to be

solved, the bandwidth of the matrix may be quite large even though the matrix itself has

mostly zero-valued entries. For large problems with numerous degrees of freedom per

node, the bandwidth of the stiffness matrix may rapidly become prohibitive. Ideally, we

would like to be store only the non-zero entries of the stiffness matrix, while retaining

information on which degrees of freedom are associated with which entries in the matrix.

Another consideration is that we wish to solve our system on a digital computer

featuring a vector-concurrent architecture. On a standard serial computer, operations on

data structures are executed sequentially. For example, consider the following Fortran loop

DO 10 I = 1, 8192

10 A(I) = A(I) + S

where A is a double precision array and S is a double precision scalar. On a serial

computer, only one array entry may be updated for each iteration of the loop. Thus, the

time to execute the loop is 8192 times the amount of time required for one iteration.

A computer operating concurrently can execute the same loop over multiple processors.

For example, on a concurrent computer with eight processors, we can update eight entries

of the array in one iteration of the loop, i.e.

A(1) = A(1) + S

A(2) = A(2) + S

A(3) = A(3) + S
A(4) = A(4) + S

A(5) = A(5) + S

A(6) = A(6) + S

A(7) = A(7) + S

A(8) = A(8) + S

Thus, in our example loop, each processor executes 1024 iterations; completing the loop in

about 13% of the time required to perform the same instructions on a serial computer.

On the Alliant FX/Series of computers, each processor is also capable of performing

the same instruction across multiple pieces of data. Working in this vector mode, each
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processor on an Alliant is capable of working on 32 elements of data at once. Processing

32 elements with a vector instruction is about two to four times faster than processing the

same 32 elements in scalar mode.

If we combine these two ideas and operate in a vector-concurrent mode, our example

loop is broken up into groups of 32 elements, then these 32 element groups are allotted to

each processor. Using eight processors, the total time to execute our loop is now 3% of

the time required in scalar mode.

Most of the computational effort in solving our finite element system via conjugate

gradients (see previous section) is the formulation of matrix-vector products of the form Ax

= b. We would like to write our program such that the formation of such products takes

full advantage of the vector-concurrent nature of the computer we will be using (an Alliant

FX/40). If we could break up the process of forming matrix vector products, we could

easily distribute the task across multiple processors and vector pipelines. This idea, along

with our desire to minimize the demands of the stiffness matrix upon the core memory,

leads us to the Element-By-Element concept [Carey et al., 1988].
Let us define Ae and be as the element matrix and vector contributions to the stiffness

matrix. If we take these element contributions, expand them to the size of the stiffness
matrix (i.e. the entries of Ae and be are mapped to their appropriate global row and column

positions with all other entries being zero) then we may rewrite the system Ax = b as

follows

Ae x= be (A27)

where E is the number of elements and Ae and be are the elemental contributions expanded

to system size. If we know how to map from local node orderings to global node

orderings we need not store the non-zero entries of A. Thus, we store Ae as dense local

element contributions without summing them into a stiffness matrix.

The other half of the conjugate gradient algorithm is the formation of matrix-vector

products Ax. Recalling equation (A24) we may write this product as follows

Ax= Aex = A = = b (A28)
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Only the non-zero entries of each element matrix and vector enter term-by-term into the

above sum. Hence, the non-zero entries be can be computed as dense element matrix

vector-products Aexe rather than in the expanded form shown above. That is we may

calculate

be = Aexe (A26)

and each element matrix-vector product can be calculated independently and then summed

into the global vector b.

We now ask the question: what is the optimal procedure for forming these matrix vector

products on a vector-concurrent computer? Our first thought would be to loop over all

elements, calculate each element matrix-vector product by looping over the nodes in the

element, and then sum the result into the global force vector. However, a vector-

concurrent Fortran compilers will try to optimize the inner-most loops in this scheme

resulting in rather short vector lengths (basically, the number of nodes in an element).

Rather, we need to rearrange our loops such that the all or most of the vectors on a given

processor are filled. Here we use our knowledge that, in a typical finite-element problem,

the number of elements is generally much larger than the number of nodes per element. If

we rearrange our loops such that our outer loops are over the number nodes per element

and the innermost loop is over the number of elements, then we achieve the longest vector

lengths possible in a simple and efficient coding scheme. To make this more explicit, let

the element matrices be stored as a four-dimensional array Akl(ij) - Aklij and the element

vectors be in a one-dimensional array b(i) = bi. The above scheme may then be written

For i = 1, 2, ..., N nodes do

For j = 1, 2, ..., N nodes do

For I = 1, 2, ..., Ey elements do

For k= 1, 2, ... , Ex elements do

bi = bi+ Aklijxj
End do

End do

End do

End do.
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This scheme is very efficient on vector-concurrent computers and yields very nearly linear

speedup as the number of available processors increases.

As we mentioned before, the element-by-element method of storing the stiffness matrix

results in a savings of allocated core memory thus either freeing up available memory and

allowing for the solution of larger problems or eliminating page swapping from RAM to

disk. How much of a savings may we expect? Consider a finite element mesh spanning a

square domain. The banded stiffness matrix for this problem will have roughly n3/2 entries

where n is the total number of nodes in the grid. By contrast, storing the element

contributions separately requires approximately n(npe)2 entries where npe is the number of

nodes per element. The ratio of the memory required by the stiffness matrix versus the

element-by-element method is thus nl/2/(npe)2. Typically, elements have four or nine-

nodes. The following table shows the above ratio as a function of n for these values of

npe.

TABLE A3

npe\ n 16 32 64 128 256 512 1024

4 1 2 4 8 16 32 64

9 0.2 0.4 0.8 1.6 3.2 6.3 12.6

In this case, the element-by-element storage method is clearly more memory efficient large

problems.

Discrete Form of the Momentum Equations

A number of methods exist for solving Stoke's equation for viscous flow. In the earth

sciences, a likely choice is the penalty function method because of its ability to handle large

variations in viscosity. However, the penalty function method often performs poorly when

the system of equations is solved iteratively, e.g. by conjugate gradient relaxation

techniques. However, the direct solvers used with the penalty function method require a

large amount of computer memory relative to the Element-By-Element data structure.

Memory requirements may or may not be an issue for two-dimensional problems. Three-

dimensional problems are another matter, however, with direct solution algorithms

becoming rapidly untenable due to their large storage requirements. Furthermore, some

complicated data accessing schemes must be devised if direct algorithms are to be made

efficient on vector-parallel computers. Fortunately, both the data storage issue and the data
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access issue are straight forward if Element-By-Element data structures are used in

conjunction with iterative solvers. The desirability of a robust iterative solver for the

Stoke's problem led us to choose from a new class of algorithms that have as their basis a

conjugate gradient solution process. This class of algorithms are generally referred to as

global iterative Uzawa algorithms. The algorithm presented below is that of Maday and

Patera [1989] and the presentation follows theirs closely.

For a constant viscosity fluid, the Stoke's problem for an incompressible fluid is

V 2V- Vp =f (A29)
VV = 0

where V is the fluid velocity, p is the fluid pressure, andf encompasses any forcing terms

(i.e. buoyancy). Equation (A29) may be written in a discrete form as

AV- DTp = Bf (A30)
-DV = 0O

where A and B are discrete Laplacian and mass matrices, respectively and D is a discrete

gradient operator. The superscript T indicates the matrix transpose. Equation (A30) can be

solved for V directly from the momentum equation

V = A'DTp + A-'Bf (A31)

Substituting the discrete divergence equation into this yields

-DV = -DA'DTp - DA'IBf (A32)

Thus, the original statement of the discrete Stoke's problem may be written

AV -DTp = Bf (A33a)

Sp = -DA 1-Bf (A33b)

where

S = DA'IDT (A34)
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Note that the matrix S is symmetric and positive semi-definite. One advantage of this

formulation is that velocity and pressure are decoupled in the solution process. Equation

(A33b) is first solved for pressure and then equation (A33a) is solved for the velocities

once p is known. Note that I need not have assumed a constant viscosity fluid in order to

arrive at equations (A33a,b).

Solving for the pressure involves several iterations of the following conjugate gradient

loop

Guess Po

ro = -DA'Bf- Spo, q0o = ro

(rm,rM)
(qm, Sqm)

Pm+l = Pm + Gmqm (A35)
rm+1 = rm - aoSqm

P = (rm+1,rm+i)
(rmrm)

qm+l = rm+l + Imqm

The matrix-vector product Sq within this loop is evaluated via the following sequence of

discrete problems

y = DTq (A36)

Az = y (A37)

Sq = Dz (A38)

Equation (A37) is solved using a preconditioned conjugate gradient algorithm with diagonal

preconditioning. The other two equations in this sequence are merely a vector-vector

multiply and a vector-vector dot-product. Note that the residual r is the above conjugate

gradient loop is actually the discrete divergence -DV which can be used as an error criteria

for stopping iteration. In this thesis, iteration for the pressure ceases when IlrIl < 104 (note

that this is a non-dimensional value) which usually requires O(1) iterations of the main

pressure solution loop. Once the pressure is determined, the velocities may be solved for

directly using equation (A33a) which is solved using a preconditioned conjugate gradient

algorithm with diagonal preconditioning.
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An issue that has not been addressed so far is the type of element used to interpolate

the velocities and pressures between nodes. One choice might be the Q2 -Pj element in

which velocities are specified on 9 (3x3) node, biquadratic element and pressure is

specified on 4 (2x2) node bilinear (Figure A7a). A property of this element is that

velocities and pressure are both continuous across element boundaries. This element also

works well with the velocity-pressure algorithm of Maday and Patera [1989]. While

continuity of the bilinear functions across element boundaries results in a smooth pressure

field, the incompressibility condition (V-V = 0) cannot be easily satisfied for each element

individually. In order to circumvent this problem and satisfy incompressibility in each

element separately, we adopt a pressure interpolation that is discontinuous across element

boundaries. We assume that the pressure within each element can be described by the

following linear function

f(C,r7) = ao + al + a2r (A39)

Unlike the Q2-PI element where pressure is specified at the corner nodes of the nine-node

macroelement, we now specify pressure at three nodes all located at the center of the nine-

node macroelement (FigureA7b). Since the pressure functions are not matched at the

element boundaries, pressure is discontinuous across element boundaries.

A further change is made to the shape functions that interpolate the velocities across the

nine-node element. Rather than use the standard biquadratic Galerkin shape functions at

each node, we use what are known as hierarchical shape functions. In this scheme, full

velocities are only specified at the corner nodes and bilinear shape functions are used to

interpolate velocities within the rest of the element. The remaining five nodes in the

element contain correction terms to the linear velocity interpolation (Figure A7c ). These

correction terms are themselves linearly interpolated throughout the remainder of the

element resulting is velocities that vary quadratically over the element. While this

procedure seems unnecessary, it turns out that this formulation of the velocity element

actually improves the condition of the resulting element stiffness matrix. As a result,

noticeable improvements in convergence rates are observed in the velocity-pressure

iteration described above.

Discrete Form of the Energy Equation

In this thesis, we have two forms of the discrete energy equation. The first is a steady-

state advection-diffusion equation without any source terms. We use this equation to

provide a reasonable initial starting guess to the temperature field. The second equation is
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our time-dependent advection-diffusion equation with a source term given by the melt

production rate (equation A26). Our non-dimensional steady-state equation is as follows

PcV.VT- V2T= 0 (A40)

The stiffness matrix Ae for this problem is given by

Ae , VNTVN dt + Pef NT.VVN d2 (A41)

where N is the four-node bilinear shape function and the integrals are computed using

the 2x2 point integration rule shown in Table A2 The velocity field for the steady state

problem is simply the plate-driven flow due to the divergence of the rigid lithosphere.

Because advection terms are present in this equation, the resulting stiffness matrix is not

self-adjoint, hence we must use the biconjugate gradient algorithm (equation A26) to solve

the resulting system of equations.

After an initial guess to the temperature field is made, advection of heat by the melt,

changes in the mantle velocity field and the initiation of melting begin to alter the

temperature field. In order to reach a steady-state solution, we solve the non-dimensional

time-dependent advection-diffusion equation

PeT + V-VT + q.VT = V2T Pe F (A42)
a t PM Cppm

As mentioned above, the presence of advection terms in the energy equation makes the

resulting stiffness matrix nonself-adjoint, thus forcing us to use a biconjugate gradient

algorithm. However, the biconjugate gradient method is more computationally intensive

compared to its simpler cousin, conjugate gradients. A problem arises however if we

attempt to solve an equation discretized with standard Galerkin elements via the conjugate

gradient algorithm. Basically, solutions resulting from such a scheme exhibit a noticeable

amount of non-physical diffusion and spatial oscillations. To eliminate such numerical

artifacts, some workers [e.g. Hughes and Brooks, 1982] developed the streamline

upwind/Petrov-Galerkin (SUPG) method for dealing with the advection terms. The basic

idea of the SUPG method is that the standard Galerkin shape functions are modified by

adding a streamline upwind perturbation to the weighting functions which acts only in the

flow direction. While this method ameliorates the above numerical artifacts, it does not free
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us from the constraint of using the biconjugate gradient algorithm to solve the resulting

system. What we would like is a method that allows us to use the self-adjoint Galerkin

shape functions (and thus a simpler solution algorithm) while incorporating the desirable

qualities of the SUPG method. Such a algorithm exists and is referred to as the Taylor-

Galerkin method. The Taylor-Galerkin method [Zienkiewicz et al., 1984] essentially

consists of approximating the temperature at the next time step via Taylor expansions of the

associated variables, viz

T( ,t n) = T(x,tn) -At(V- - + -, V) T. (A43)
ax 2 ax2

where V is the velocity of the mesh and V is the average velocity of a particle in the element.

Similar expansions can be written for the remaining variables in our energy equation,

resulting in the following one-dimensional example (neglecting terms of higher order)

-~ Tn t2,V_ 22Tn
Tn+1- Tn = -At(V- V V V)ax 2 ax2

ax +2 x 2

where Q is a volumetric source function. According to Zienkiewicz et al. [1984] this is

still the representation of a self-adjoint problem and can be discretized using the standard

Galerkin shape functions yielding

[M + OAtK ]Tn+ = [M- At.( V + K+ (1-O)Kf]T n +fo (A45)

where

M = NTN dW (A46)

K= JaNT k d2 (A47)
fgax ax
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V = N(V- V)- x dD (A48)

and

K - ~ 2aN TNK= -V)aNT aNd (A49)
2 K- (VV ax ax

Lastly, fo is a term containing the appropriate boundary conditions and Q values. We note

that M is the 'standard' mass matrix, K is the 'standard' diffusivity matrix, V is a non-

symmetric Galerkin convective matrix, and K is a new matrix incorporating the effects of

upwind diffusion (cf. SUPG method). Note that the velocity terms in equation (A48-A49)

are the average velocities evaluated at the center of an element. If we discretize our energy

equation (A42) via this technique and non-dimensionalize using the methods describe in the

body of the thesis, we obtain the following discrete equation

[ PeM + 9AtK ]Tn+1 = [PeM - At.( PeV + K + (1-)K)]Tn  (A50)

- AtPf'ASm PeM(On+ l + (1-)r) + (1-9)At.( PeV + K)Fn]
pmCp

In our use of equation (A50) we assume that 0 = 1 (implicit time-stepping) and V = 0.

Our final problem is in selecting an appropriate time step At. Here, I use the method

recommended by Zienkiewicz et al. [1984] for the case where 0 = 0 (explicit time-

stepping). For every element, I calculate the average velocity, Uavg in a four-node element

and the minimum element dimension dl = min( dx, dz). The element Peclet number is then

given by Peh = Pe-dl-Uavg. For optimal results, Zienkiewicz et al. [1984] calculate an

"upwinding number" Co = l/tanh( Peh/2) - 2 /Peh. The time step is then given by

At = min dl-Co (A51)
Uavg)

To solve our discrete equation (A50) we use the approximate inverse technique of

Donea et al. [1984] which is known to work well with the Taylor-Galerkin method.

Consider the system Ax = b. Let us write the following identity for A

A=D+(A-D) (A52)
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where D is the diagonal and positive matrix of A. Since D is diagonal and has positive

entries, it is possible to write

A=D2(I + X )D 1/ 2  (A53)

where

X = D-l/2( A -D )D- 1/2  (A54)

Under the assumption that IIXIl 5 1, the inverse of A can be expressed by the following

series

A - ' = L-/2( I I-X + X 2 - X3 +. )L- 1/2  (A55)

In practice, successive approximations to A-I1 can be generated iteratively using the

following multipass algorithm. Consider the sequence of approximate solutions xn, g = 0,

1, ..., G, defined as follows: start from a guess to xO, then for g = 0, 1, ..., G-1,

determine xg+1 from xg by the following linear system

Dx9+1 = b -(A - L )xg (A56)

Finally, assume that x = xG. In this thesis, we assume that G = 5.

Discrete Form of the Melt Production Rate

The amount of melting that must occur at each time-step can be calculated using the

melting equation for a spinel lherzolite given by Kinzler and Grove [1991]

1155 + 16p -50Fe# -129NaK# - T = 0 (A57)

where p is the pressure in kilobars and T is the mantle temperature in degrees

Centigrade. The two compositional parameters, Fe# and NaK#, are non-dimensional

parameters describing the compositional state of the melt. These two parameters are non-

linear functions of the melt fraction [Kinzler and Grove, 1991]. Since the functional

dependence is non-linear, the melt fraction must be solved for iteratively. I iterate for the

melt fraction using a simple bisection algorithm [Press et al., 1986]. The bisection
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technique requires that upper and lower search bounds be specified. The lower bound for

the melting problem is no melting whatsoever, or q = 0. The upper bound is determined

from the simple thermodynamic statement

pmCPT = pp'L (A58)

where Cp is the specific heat capacity of the mantle, pf is the melt density, L is the latent

heat of melting, and BT is the difference between the mantle temperature and the solidus

temperature at the current time. If bT >0, then melting occurs and the amount (melt

fraction) is given by equation (A57). Iteration for the melt fraction continues until the

difference between successive guesses is less than or equal to 10-4.

Discrete Form of the Permeability-Melt Viscosity Ratio Equation

The non-dimensional equation for the permeability-melt viscosity ratio kp is

ak kfi + f2-- + f 3k = RmF (A59a)ax az

where the coefficients fl, f2 andf3 are as follows

fi Ax 1+ A a + Rmcp (A59b)

f2A= Ax +  -P + Rmcp (A59c)

f - + Ax - -A 2 (A59d)

laAxx aAxzlp ,a x +aA zzxz (ap + R+ + a - + Rm

The implementation of this equation via finite elements presents its own particular

difficulties as it essentially describes the pure advection of a scalar variable. Our desire is

that kg be a spatially smooth variable albeit it may exhibit rapid changes near its source

region. When dealing with equations possessing a relatively large advection term, it is

common to discretize the equation using SUPG methods [e.g. Hughes and Brooks, 1982].

However, in the presence of strong boundary layers or discontinuities, both Petrov-
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Galerkin and anisotropic diffusivity methods exhibit unacceptable oscillatory behavior in

the calculated variable. The obvious solution is to refine the grid in the regions we expect

boundary layers or discontinuities. This approach is undesirable because grid refinement

only increases computation time and, even for fine grids, oscillations in the solution will

persist. What we need is an algorithm that incorporates the basic features of SUPG

methods (i.e. upwinding) yet is specifically tailored to exhibit no oscillatory errors.

One might imagine that higher order elements or techniques would yield the desired

result. Yet both these paths lead to additional computational complexity. In this thesis, we

use the method of Schnipke [1986] who developed an extremely simple but effective non-

oscillatory upwinding technique using four-node elements. In the remainder of this

section, we will describe how Schnipke [1986] deals with the advection terms in equation

(A59a), then we will describe how we discretize the remaining mass and advection terms.

All integrals in this section are calculated using the 2x2-point Gaussian quadrature rule.

Following the notation and discussion in Schnipke [1986], pure advection of a scalar

variable 4 may be written

U- + vq- = (A60)
ax ay

where u and v are the horizontal and vertical velocity components. For the permeability-

melt viscosity equation, the velocity components (u,v) = (flf2). To calculatefl andf2,

first derivatives of the mantle pressure and finite strain are required as well as second

derivatives of the mantle pressure.The first derivatives of the mantle pressure and finite

strain are calculated at the center of each element [Barlow, 1976]. The gradients are then

weighted and assigned to each node in the element using the smoothing scheme described

by Hughes [1987]. Once the pressure gradients are interpolated onto the finite element

grid, these values are then used to calculate the second derivatives of pressure by the

method just described.

If we align our coordinate system with the velocity field (see Figure A8) equation (A60)

becomes

u = 0 (A61)as

Within an element, we now need to determine which nodes are "downwind". A

"downwind" node is one for which the velocity vector at that node points away from the
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interior of the element under consideration [Figure A9, Schnipke Figure 3-3]. From

Figure A10 (Schnipke Figure 3-5) a downwind node is one for which

tan 0- < tan 0 5 tan 0+  (A62)

This may be rewritten as

-vjAx- + -ujy- > 0 (A63)
-vjAx + -ujAy + > 0

Both of these conditions must be satisfied at a downwind node.

Once the downwind node is identified, the streamline through that node must be traced

back through the element to find the point (x', y') where the streamline intersects the side

of the element (Figure A10). At this point, Schnipke [1986] assumes that the upwind point

(x', y') must intersect one of the opposite sides of the element. In the case of Figure A10,

the point lies either on side 2 or side 3. As we shall see, this leads to the result that

downwind nodes in an element contribute only that element when we form the advection

contribution to the stiffness matrix. For flow that is parallel to the grid, however, this

condition is violated and nodes may be "downwind" in two elements. This leads to the

problem that such nodes are overweighted in the stiffness matrix and may lead to spurious

results. Later in this section, we describe a simple and effective method of overcoming this

problem. Now, the location of the upstream point is determined using the factors Fp and

Fn shown in Figure A10. The Fp factor is used if the upstream point lies on side 2 and Fn

is used if the point lies on side 3. Note that the difficulty mentioned above does not affect

the choice of either factor. The selection of Fp or Fn is implicit in the following calculation

based on mass flux through the sides of the element

F,= max min F21 O
FF1  (A64)

Fn =max min 4 , 1 0}

where

F a M

F1 
= - pv dx + pu dy (A65)

1 1
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F2 =- pv

F3 =(- pv

d 13

dx + pu dy

7r+ 4
dx + fy pu dy}

F4 = pv dr + pu dy

In calculating these factors, we assume that p is constant.

The upstream point is calculated as

x' = (1-Fp,)12 + (1-Fnl4 + FpFnXI3

y' = (1-Fp,)y2 + (1-Fn)YI4 + FpFnly3

Similarly, (p' is determined by

p' = (1-F,)p12 + ( 1-Fn)p4 + FFn 13

With these definitions, the advective term (equation A61) can be evaluated for the element

in Figure A10 as

(A72)

(A73)

(A74)

tu 0 a_ = -Y91 -- ((1-F,)42 + (1-Fn)pt4 + FpFn(PI3)]

Us = (U 2 + V2)1/2

As = [(yll - y') + (x1 - x')2]1/2

(A66)

(A67)

(A68)

(A69)

(A70)

(A71)

where
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The advection coefficient matrix A for this element is shown in Table A4 where Af
represents the effective area of the downwind node. In our case, we are using a rectangular
four-node elements on a rectangular grid. Hence, the effective area of a node is the total
area of the elements around a node divided by four.

One contribution to the source terms is from the melt production rate. Since we are
essentially dealing with an advection problem, we choose to discretize this term using the
SUPG weighting functions of Hughes and Brooks [1982]. Therefore, our source term S
may be written

S = Rmf, ~w d (A75)

where the SUPG shape function W is given by

w = NA + k-VN (A76)
IIVl12

The variable k in equation (A76) is an artificial diffusivity term whose value depends upon
the local grid size and local velocity

(k v h ) (A77)

where 4 and 17 refer to the local coordinates of our parent domain. For our problem, the
velocity terms are merely the mantle velocities V = (U,V) and the terms h and hq are Ax
and Ay for the element, respectively. The remaining two factors in equation (A77) are
given as follows

= coth(a4) - 1/al , r = coth(a) - 1/a(A78)
(A78)

ag= Pe ,x a = Pe-

The final contribution enters in on the left hand side our discrete equation as a mass
term. The result is a mass matrix of the form
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M = fa TN dW (A79)

Combining the mass matrix, the advection matrix and the source term results in the

following system of equations

[M + A]ky = S (A80)

which is solved using the Taylor-Galerkin algorithm that is used above to solve the time-

dependent temperature equation.

Discrete Form of the Advection Equation for Mineralogy and Oxide Composition

Each oxide and mineral in the mantle must satisfy the following time-dependent

advection equation

-+ V.Vf = 0 (A81)
at

where f is an oxide or mineral component and V is the mantle velocity. A good way to

discretize this equation would be with the same advection algorithm devised by Schnipke

[1986] and used above to solve for the permeability -melt viscosity ratio. The presence of
the stagnation point at the ridge axis presents a special numerical problem that results in
numerical instabilities unless ad hoc methods are adopted at that point. Furthermore, the

need to solve equation (A81) for each of the thirteen oxide and mineral components
consumes a great deal of computer time. In a simple experiment, we tried simple bilinear
interpolation. Consider a particular componentfi at a particular node at a position x. At

any time step, the new value of that component at every node can be calculated by
determining the value of that component at a position x - V-At. At this point, the new value
is determined using bilinear interpolation. Surprisingly, this method compares well with

the Schnipke [1986] algorithm on the meshes we use and has the further advantage of

being much faster.
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Discrete Form of the Finite Strain Equation

The finite strain tensor E satisfies the following time-dependent advection equation

E+ VVE = LE (A82)
at

where V is the mantle velocity and Lij = dVil/dx. Again, the almost pure advection nature

of this equation presents some special numerical difficulties. Given the success of simple

interpolation when applied to composition, this method is used here to solve for the finite

strain tensor. As with the permeability tensor equation, the first derivatives of the mantle

velocity are calculated at the center of each element [Barlow, 1976]. The pressure

gradients are then weighted and assigned to each node in the element using the smoothing

scheme described by Hughes [1987].

The permeability tensor requires that the mantle strain be symmetric. In general,

however, E is unsymmetric. A symmetric version of the strain tensor is calculated in the

following way. At every node, one can obtain the principal axes of deformation from the

components of the strain tensor. The ratio of the major axis a to the minor axis b is

= 7+ 1 (A83)
b

where

(E2 + E,2 +E2x +E2z) (A84)
2

A diagonal matrix A is then constructed containing the major and minor axes along the

diagonal. This matrix is, essentially, the eigenvalue matrix of E. This matrix is squared

and then rotated back into the original cartesian frame of reference

A = RART (A85)

where the matrix R is a two-dimensional rotation matrix with the entries

R = cosO -sin0] (A86)
sinO cosO1

The correct rotation angle 0 is found by a simple numerical search.
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Discrete Form of the Melt Flux Equation

Melt velocities are calculated using D'Arcy's Law for the percolation of an interstitial

fluid through a porous medium. The non-dimensional form of this equation developed in

the body of the thesis is

q = -KVP (A87)

where q is the melt velocity, p is the deviatoric mantle pressure, Sp is the density difference

between the mantle and the melt, and K is the permeability-melt viscosity ratio tensor. The

melt velocity q is trivial to calculate because the mantle pressure p and the permeability

tensor K are known at each node. The density difference is simply a constant thus all that

remains is to calculate the directional derivatives of the pressure. As with the permeability

tensor equation, the first derivatives of the mantle pressure are calculated at the center of

each element [Barlow, 1976]. The pressure gradients are then weighted and assigned to

each node in the element using the smoothing scheme described by Hughes [1987].
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FIGURE CAPTIONS

Fig. Al A finite element grid with 9 nodes (black circles). Global node numbers for each

node are given by boldface numbers. Nodes within each element (local node ordering) are
ordered as shown by the smaller, italic numbers.

Fig. A2 (a) A four node, bilinear element. (b) A nine node, biquadratic element. (c) A
diagram showing the transformation between the natural coordinates of the element (right
hand side) and the natural coordinates of the parent quadrilateral element (left hand side)
(Figure from Hughes [1987]).

Fig. A3 A diagram showing the form of a bilinear shape function for a node a (Figure
from Hughes [1987]).

Fig. A4 A diagram showing the form of various shape functions within a nine node
biquadratic element (Figure from Hughes [1987]).

Fig. A5 A flow chart showing the sequence of steps for constructing higher-order
elements from a parental, four node element (Figure from Hughes [1987]).

Fig. A6 Diagrams showing the location of quadrature points within an element that has
been transformed into its parental coordinates. Quadrature points are shown as small
crosses within each element. (a) 1 point integration, (b) 2x2 point integration, (c) 3x3
point integration.

Fig. A7 (a) Figure showing the location of the nine velocity nodes (black circles) and four
pressure nodes (open squares) in the Q2 -PI element. (b) Figure showing the location of

the nine velocity nodes (black circles) and three pressure nodes (open squares) in the
modified velocity-pressure element used in this thesis. All three pressure nodes are located
at the element's center of mass. (c) Figure illustrating the idea of hierarchical elements.
The black circles show the location of velocity nodes the edge of an element. The nodes at
the end of the element have values a and b, respectively. The node located between these
two end nodes has a value 8c. The nodes at the ends of the element are interpolated
throughout the rest of the element using bilinear shape functions. Summing the
contributions of these two nodes along the edge of the element yields the straight dashed
line. If the value at the center node is interpolated along the edge using bilinear shape
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functions and then added to the linear variation, then the result is the solid, curved line

between the edge nodes.

Fig. A8 The streamline coordinate system. Figure from Schnipke [1986]. See text.

Fig. A9 The definition of the downwind node. Figure from Schnipke [1986]. See text.

Fig. A10 Downwind node identification. Figure from Schnipke [1986]. See text.
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TABLE A2

Gaussian Quadrature Rules

One-Point Rule

1 I W

1 0 0 4

2x2 Point Rule

1 W1

2 1/4 -1/, 1

3 1/ 1/43 1
4 -1/4-3 1/N 1

3x3 Point Rule

1 71 Wl

1 -,r3/5 -375 25/81

2 -3/5 -,r3/5 25/81

3 -3/15 N"3-/5 25/81

4 -45 5 25/81

5 0 -,345- 40/81

6 -3/5 0 40/81

7 0 3/5 40/81

8 -3- 0 40/81

9 0 0 72/81
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TABLE A4

Streamline Upwind Advection Matrix
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Figure A3
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N [11 - t2)(1 -i) - N9]

N6= 1[(1 - 2)(1 + ) - N9g

0

N [(l - 172)(1 - t) - N91

if node 5 is present
if node 5 is absent

if node 6 is present
if node 6 is absent

if node 7 is present
if node 7 is absent

if node 8 is present
if node 8 is absent

N, - N i - -(N 5 + NS)

N2 - N2 - !(Nr + N6)

N3 - N3 - l(N 6 + N7)

N4 - N4 - l(N 7 + N8 )

Figure A5
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It happens like this: a kind of languor;

A ceaseless striking of a clock is heard;

Far off, a dying peal of thunder.

I somehow sense the groaning and the sorrows

Of unrecognized, imprisoned voices,

A kind of secret circle narrows;

But in the abyss of whispers and ringing

Rises one triumphant sound.

Such an absolute stillness surrounds it

That one can hear the grass growing in the woods,

How misfortune with a knapsack plods the earth...

But now words are beginning to be heard

And the signalling chimes of light rhymes-

Then I begin to comprehend,

And the simply dictated lines

Lie down in place on the snow-white page.

Anna Akhmatova
excerpt from Secrets of the Craft
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Up! up! my Friend and quit your books;
Or surely you' II grow double:
Up! up! my Friend, and clear your looks;
Why all this toil and trouble?

The sun, above the mountains head,
A freshening lustre mellow
Through all the long green fields has spread,
His first sweet evening yellow.

Books! 'tis a dull and endless strife:
Come, hear the woodland linnet,
How sweet his music! on my life,
There's more of wisdom in it.

And hark! how blithe the throstle sings!
He, too, is no mean preacher:
Come forth into the light of things,
Let Nature be your Teacher.

She has a world of ready wealth,
Our minds and hearts to bless-
Spontaneous wisdom breathed by health,
Truth breathed by cheerfulness.

One impulse from a vernal wood
May teach you more of man,
Of moral evil and of good,
Than all the sages can.

Sweet is the lore which Nature brings;
Our meddling intellect
Mis-shapes the beauteous forms of things:-
We murder to dissect.

Enough of Science and of Art;
Close up those barren leaves;
Come forth, and bring with you a heart
That watches and receives.

William Wordsworth
Excerpt from The Tables Turned. An evening scene on the same subject.


