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Abstract

For two CTD surveys taken two months apart during the 1981 Ocean Tomog-

raphy experiment southwest of Bermuda, a time-dependent ocean state is estimated

that evolves from the first to the second survey. The mesoscale motions are modelled

by quasi-geostrophic dynamics, and the ocean model state is represented by freely

propagating Rossby waves in the 1st and 2nd baroclinic modes whose time-dependent

amplitudes are fit to the data at the two survey times. First the linear dispersion

relation is used to evolve the waves in time, then the weak nonlinear interactions be-

tween the waves are incorporated into the model. The wave-wave interactions enable

the waves in the barotropic mode to enter into the model state evolution as an un-

known control variable. Three techniques from optimal control theory are developed

and applied to this problem: the Kalman filter/smoother, the adjoint method and

dynamic programming. These methods allow the barotropic component of the flow,
which is indeterminate from the CTD data, to be estimated.
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Introduction

Our ideas and theories about the ocean circulation must be able to stand the test of

observations. Observations of the ocean have been sparse and sporadic in space and

time. It is a major problem to reconcile our various models of the ocean with these

observations.

For this particular problem the observations are two CTD surveys taken 55

days apart in the western North Atlantic. A linear quasi-geostrophic model is used

to evolve the flow between the two surveys.

There are diverse means of fitting dynamics to data. Here I am going to

examine and compare three techniques taken from the field of optimal control theory:

the Kalman filter/smoother, the adjoint method and dynamic programming. These

methods enable ocean models to evolve in time such that they produce observable

fields consistent with real data, or equivalently, that allow the information contained

in the data to be extrapolated in time and space using some model of the ocean

physics. The mathematical background for these methods can be found in Bryson

and Ho (1975) and Brogan (1982).

The application of these methods to physical oceanography is still in its in-

fancy, mainly due to the large computing memory required. A strong motivation

for applying these techniques to an oceanographic problem is that it is possible to

estimate unknown variables that are not directly observable. Wunsch (1988) used the

adjoint method to show that; given some observations in space and time of a tracer

field in the ocean, one could estimate what the history of the surface boundary condi-



tions were, in order that the tracer concentrations obeyed a simple advection-diffusion

model and produced fields consistent with the data.

Oceanographic problems are usually very underdetermined, there are far more

model parameters to be estimated than there are independent pieces of information

available. Simple models are used as a first attempt, so as to reduce the number of

parameters. I have taken this approach here, via the quasi-geostrophic approxima-

tion, the oceanographic variables are all expressed in terms of the dynamic pressure

streamfunction, which is then expanded as vertical and horizontal modes or Rossby

waves. The model state is then just the time-dependent amplitudes of these waves.

Rossby waves have long been thought to be an important feature of the gen-

eral circulation of the ocean and atmosphere. With the MODE experiment in the

mid-seventies it was found that a lot of the kinetic energy of oceanic motions is in the

mesoscale band, 50-150 days with horizontal scales of the order of hundreds of kilo-

metres (Richman et al, 1977). Linear quasi-geostrophic dynamics can not adequately

model these mesoscale motions, or eddies, as their short time and length scales make

the nonlinear terms in the equations of motion significant. When the nonlinear terms

dominate, the motions are in the regime of geostrophic turbulence (Charney, 1971

and Rhines, 1977). Linear dynamics apply for large enough scales. In between these

two regimes, it should be possible to model mesoscale motions using Rossby waves

that weakly nonlinearly interact with each other.

Attempts have been made to fit the Rossby waves predicted by quasi-geo-

strophic theory to observations. McWilliams and Flierl (1976) fit four barotropic and

baroclinic waves to MODE data, and found that their linear wave model fit the data

quite well, but also predicted significant weak nonlinear interactions that were not

evident in their fit.

Gaspar and Wunsch (1989) fit barotropic Rossby waves to satellite altimetric

data from the northwest Atlantic. They applied a Kalman filter and smoother to
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Figure 0.1: Relative locations of the 1981 Ocean Tomography Experiment and the
MODE experiment in the western North Atlantic.

the time-dependent data. Fu, Vazquez and Perigaud (1991) fit equatorial planetary

waves to altimetric data using the Kalman filter.

The 1981 Ocean Tomography Experiment is the source of the data I will be

using here. This experiment was conducted in the MODE region (see figure 0.1) and

produced a dataset consisting of acoustic tomography travel-times, temperature time

series, AXBT and CTD surveys (see Ocean Tomography Group, 1982 and Cornuelle et

al, 1985). Chiu and Desaubies (1987) fit three 1st mode baroclinic mode Rossby waves

with a mean barotropic flow, to the time series of acoustic travel time and temperature

and the first two CTD surveys, using a linear wave model. A time sequence of their

estimated sound speed anomaly (which is proportional to temperature) at 700 metres

depth is shown in figure 0.2. The CTD surveys were taken at the time of the first

and last plots. A cold eddy is present in the middle of the domain at the first survey,

then it slowly moves off to the west.



In all of these previous studies only a few long wavelength Rossby waves were

used that could explain only a fraction of the variability of the data, effectively filtering

out smaller scales. Also, the nonlinear interactions were not included in the fit. These

fits entailed finding the wavenumbers and amplitudes of some small number of waves

that fit the data and the dispersion relation for Rossby waves to some degree.

For this study I am using a model basis consisting of 130 waves in the first

and second baroclinic modes so the data is fit very well. Richman, Wunsch and Hogg

(1977) found that in the MODE region, most of the baroclinic energy of the mesoscale

motions is in a form where the thermocline simply moves up and down, the entire

water column moving together. The mesoscale variability is adequately described by

the lowest vertical modes. I am here only using the first and second CTD surveys

which are two months apart. The optimal control methods will be applied to estimate

the time-dependent amplitudes of the waves necessary to evolve the ocean from the

first to the second survey, and estimate any unknown control in the wave model.

In chapter one the quasi-geostrophic model is formulated and the dataset is

described. It is shown how the model parameters are related to the observations,

then the model parameters are fit to the observations using ordinary least-squares. In

chapter two the time-dependent control problem is formulated and the three optimal

control methods are expounded to show how to calculate an optimal state in time

consistent with the model and the data. The models used are simple persistence in

time and then the linear dispersion relation for Rossby waves. This is done to see if

improving the model improves the time-dependent fit. A more sophisticated model

is developed in chapter three that includes the weak nonlinear interactions between

the waves in the model. The wave-wave interactions between the baroclinic and the

barotropic waves are used to estimate the size of the barotropic waves, in terms of an

unknown control that is to be estimated.

Assimilating a baroclinic wave model with CTD data, I find that it is pos-

sible to estimate a barotropic flow that is consistent with the model and the data.
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The determination of the barotropic flow from observations has long been a frustrat-

ing problem for oceanographers. Here is presented a new approach to solving this

problem.



Chapter 1

The model and the data

1.1 The Model

Within this quiescent region of the ocean south-west of Bermuda, quasi-geostrophic

dynamics are expected to model the ocean quite well. Following Pedlosky (1979)

and Flierl (1978), let dynamic pressure, p', and density, p', be quasi-geostrophic

perturbations to a hydrostatic basic state, ie.

p'(x, y, z, t) = p(x, y, z, t) - (z)

p'(x, y, z, ) = p(, y, z, t) - T(z)

and these perturbations are in hydrostatic and geostrophic balance using a beta-plane

approximation for the coriolis acceleration,

p'(,yt) = -0 '(, y, z, t) (1.1)

fou - (1.2)ay

fo0v (1.3)



note that here p' is the dynamic pressure (- pressure/density, units m 2 s-2). Also,

for adiabatic perturbations, conservation of density is

g dpPt + up' + vp' + w z = 0

ie. - dp (1.4)
N 2p o dt

Combining the above equations using the quasi-geostrophic approximations and ne-

glecting forcing and dissipation terms, we get

( fU + V V _L = 0
(a 8u ay Oz N 2 PP

or equivalently, using (1.2) and (1.3)

SV + (+ , ) + ,[ ( 2~p = 0 (1.5)
at -z N2 az z N 2 z

This equation expresses the conservation of quasi-geostrophic potential vorticity for

a continuously stratified ocean on a beta-plane, and governs the evolution of the

dynamic pressure for mesoscale motions.

Here the mesoscale motions are not being linked to local forcing by wind stress

curl or dissipation by bottom topography. The ocean bottom is flat over the region

of interest and the wind stress curl acts on time scales too short (10 days) to excite

baroclinic Rossby waves. Furthermore the connection between mesoscale baroclinic

motions and Ekman pumping in this region is not well known, Brink (1989).

Hence the mesoscale motions are modelled here as freely propagating Rossby

waves. Where these waves come from and where they get their energy is not clear.

Some possible sources for these waves are: radiation into the region from somewhere

energetic outside such as the Antilles Current or the Gulf Stream (Malanotte-Rizzoli

et al, 1987; Hogg, 1988; Malanotte-Rizzoli et al, 1992) or they arise due to the

baroclinic instability process extracting energy from the mean meridional temperature

gradient as suggested by Gill et al (1974).



The surface and bottom boundary conditions for the dynamic pressure are

that,
dp'
dt - gw at z=O

w = 0 at z=-H

Separation of variables by

p'(, y, z, t) = a(x, y, t)Gm(z) (1.6)

produces an equation for the vertical component

d (f dGm = -A Gm (1.7)
dz N 2 dz G, (1.7)

with G'(z) + N(-)Gm = 0 at z=0 and G'(z) = 0 at z=-H. The solutions to this

Sturm-Liouville problem are the eigenfunctions or vertical modes, Gm(z), with eigen-

values, Am, orthonormalised by

- H G,(z)G(z)dz = 6ij (1.8)
H -H

and by definition, the radius of deformation of the nth mode is R, = A,'

An associated Sturm-Liouville problem emerges from (1.7) by substituting

fo2 dGm
N 2 dz

then we get
A2 N 2

(Z) + 2 (m = 0

with C((z) - = 0 at z=0 and Cm(z) = 0 at z=-H. The orthogonality relation

here is
1 0 N(z)2
Hf (i(z)C(z)dz = A6,j (1.9)

All dynamical quantities can now be expressed in terms of the perturbation

dynamic pressure using the above eigenfunction expansions. (1.1),(1.2),(1.3) and (1.4)

become

p' = Ea m ( -Np (1.10)

14



-1= a G, (1.11)

V = am,G (1.12)

0m /1

W = a 1 (m (1.13)

Combining (1.6) and (1.8) we can write

am(X, y, t) = - p'(, y, z, t)G(z)dz.
H f-H

Equation (1.5) is now multiplied by Gm(z) and vertically integrated using (1.6) to

give

[V2 ] m J (,, [V -2 ?] a m -Emambm, =0 (1.14)

where ~m,,,,bm fOH G,(Z)G,,b(z)G,,(z)dz is a vertical interaction term repre-

senting the size of the coupling between vertical modes m.,mb and mc.

Now this is the equation governing the evolution of the horizontal components

of the perturbation dynamic pressure. The Jacobian term represents the change in

mode m. potential vorticity due to the advection of mode mc potential vorticity by

mode mb motions.

We now expand am(m, y, t) as a Fourier Series in x and y, periodic with respect

to a square model domain of dimension (L x L)

a,(x,y,t) = R { cklm(t)e - (k+1y) . (1.15)

where k, I = f, f .... klm(t) is complex and is hereafter referred to as the

state vector O(t) = {¢k,,m(t)}, the elements of this state vector being the real and

imaginary components of the amplitude of the wave (k, 1, Am). It is this state vector

which we want to estimate from the data using the dynamics. R denotes the real part

of the complex sum.



It is useful and simple at this stage to linearise the evolution equation by dis-

carding the Jacobian term; then upon substituting the above expansion for am(x, y, t)

into (1.14) we get the linear dispersion relation for planetary waves, ie.

dlcim -iPkklm(t) 16)
dt k2 + 12 +A 2 -

However, from scaling, the relative sizes of the local and advective accelerations

are, for typical values of L = 1 x 105m, U = 0.1ms-1, fo = 10- 4 s - 1, P = 2 x

10-1m- 1 s- 1

- o (PL) u ~ O (UL-

advective U 0
local PL2

So the non-linear advective term in the evolution equation is probably significant and

should not be neglected. This is also to say that the horizontal gradients of planetary

and relative vorticity are comparable. Physically this means that the phase speeds of

the Rossby waves are comparable to the water velocity.

Equation (1.16) is still an approximation to the full dynamics and due to this,

and its simple form, is used as a model for state evolution in chapter 2. In chapter 3

we return to address the non-linear wave-wave interactions.

The model domain is a (L x L)=600x600 km square region centred at 260 N,

70W. I use k = + ... + 2 _= 1- .' 2 as shown in figure 1.1, and m = 1, 2,

that is, horizontal wavelengths from 600km down to 120km in the first and second

baroclinic modes. The size of the state space is reduced by only using I > 0. The wave

basis is still complete but there are no southward propagating waves. The shortest

wave has a length scale of 19 km. The radii of deformation are 48 km for the 1st mode

and 19 km for the second mode. The mesoscale motions could be more accurately

modelled by expanding to higher wavenumbers but the state vector becomes quite

large. Here there are 2 x 65 unknown complex wave amplitudes to be estimated, so the

state vector has dimension (260x1), which is of a comfortable size for the assimilation.
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Figure 1.1: The model wave basis in wavenumber space.

The first and second baroclinic mode Rossby waves have generally low frequen-

cies, with periods ranging from 146 days for 1kl = 2 = 0.029km-', I = 0 to well over

2000 days for the higher wavenumbers. Hence, time-scales shorter than about 150

days and length-scales shorter than about 20 km are not being modelled. It is known

from observational studies (Richman, Wunsch and Hogg, 1974) and from modelling

(Rhines, 1975) that there is strong variability at scales shorter than these. The vari-

ability at short time and length scales is dominated by strong nonlinear interactions.

Here I am ignoring these scales of variability and in chapter 3 model the flow as being

due to Rossby waves with weakly nonlinear interactions.

Equation (1.16) can be rewritten in matrix form as

O(t + 1) = FO(t) (1.17)

where the transition matrix, F, has the frequencies along the main diagonal with

the time derivative expressed in Crank-Nicholson form. The time step I am using

is 1 day, which gives 54 time-steps between survey A and survey B. Apart from the



neglected nonlinear interactions, another uncertainty in this formulation is due to

truncating the Fourier Series expansion for the dynamic pressure. This gives rise to

Gibbs phenomena; where spatial changes too short to be modelled by the waves, such

as around the edges of the model domain, are picked up by the higher wavenumbers

and propagated in the model domain. Hopefully this will not be a problem during

the short (relative to the wave periods) time of the model run.

1.2 The Data

The data used for this time-dependent assimilation are two CTD surveys taken as part

of the 1981 Tomography Demonstration Experiment (see Ocean Tomography Group,

1982). The first is denoted survey A at March 16, 1981, consisting of 65 stations, and

the second is survey B at May 9, 1981, consisting of 75 stations, as shown in figure 1.2.

Temperature and salinity profiles with two metre depth spacing, at each station, were

made available to me from these surveys. All of the temperature and salinity profiles

were smoothed to fifty metre depth spacing then the density was calculated for each

profile. Horizontal mean profiles of density and buoyancy frequency were calculated

from both surveys, from which were calculated the first and second baroclinic modal

structure (see figure 1.3). The mean profile was subtracted from all of the density

profiles to produce the density anomaly profiles for each station as shown in figure

1.4 , ie.

p'(, y, z, t) = p(, y, z, t) - (z).

These anomalies are assumed to be caused by adiabatic perturbations to the

mean density profile, these perturbations being the quasi-geostrophic planetary waves

described in the previous section, ie.

S-Po p'( , y, z, t)
'(, y, z, t) -

g 8z
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19



0.012

0.006

Z 0.004

0 1000 2000 3000 4000 5000 6000

depth (m)

4

3

2
1

0--- ---- --------- -----------------

-1 - 2

-2-
0 1000 2000 3000 4000 5000 6000

depth (m)

x 10,
2

-2-2

-3

-4I I
0 1000 2000 3000 4000 5000 6000

depth (m)

Figure 1.3: Plots with depth (metres) of (a) buoyancy frequency (b) Vertical modes,
Gj(z) and G2(z) (c) Vertical displacement modes, (C(z) and ( 2(z)

t



Survey A

0

-0.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
depth (m)

Survey B

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
depth (m)

Figure 1.4: Density anomalies for all stations (top) survey A 3/16/81 (bottom) survey
B 5/9/81 .



= k.m(t)e'(kX+t) (N 2 o C-) (1.18)

k,1,m fog

With p'(x, y, z, t) as just described, there are about 7000 data points for each survey.

To effectively reduce the number of data points whilst keeping as much information

as possible, each density profile was projected onto the vertical baroclinic modes in

the following way: Multiply both sides of (1.18) by C (z) and integrate in the vertical

to give

S p'(, y,z,t)((z)dz = Z klm( +y) -(+ )P z - 2 z
H - k,1,m H H fg

E Z ln(t)e +ii) (~o
k,l g

where the orthogonality of the (m, equation (1.9),was used. Thus

C kl (t)e ' (k+ ' y) = dC(x,y, t) (1.19)
k,l

where d,(, y, t) -- pI '(, y, z,t)(n(z)dz (1.20)
poA H f-H

d(x, y, t) is the modal data that the wave amplitudes are fit to. For each mode and

each station there is one number giving the vertical structure instead of one number

every fifty metres, reducing the number of data points for each survey to about 140

for two modes. The d(z, y) were calculated for surveys A and B for the first and

second baroclinic modes, using (1.20).

One can see from figure 1.4 that there is a large signal in the surface layer

and around the main thermocline, where N is large. Quasi-geostrophic theory breaks

down in the surface mixed layer since the first and second vertical displacement modes

go close to zero at the surface (see figure 1.3), but the data does not. So the modes

will fit the data poorly near the surface. The variability in the main thermocline,

however, should be well modelled. Figure 1.5 shows the variance of the variability

of the perturbation density that is captured by projecting onto the first and second

modes. The modal expansion does well around the thermocline but poorly near the

surface.
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1.3 Stationary Fit

Here the waves in the model basis are separately fit to the two surveys. The duration

of each survey is about two weeks so the surveys are treated as being synoptic with

respect to the Rossby waves. The amplitudes of the Rossby waves are estimated from

the modal density data. They are related by the sampling equation (1.19) which is

written in matrix/vector form as

d = EO + n (1.21)

where d = {d1 (x, y)}, 4 = {qjk,,n,} are column vectors, and the elements of E are the

sines and cosines in (1.19). The rows of E correspond to fixed values of x,y and mode

number, the columns of E to fixed values of k,l and mode number. The vector n is

the noise vector representing uncertainty in the data and inadequacies in the model.



The best fit of 4 to the data is found using ordinary least-squares and the

Gauss-Markov theorem, that is, find the 4 that minimises the cost,

(d - EO)TR-'(d - E4) + (0 - o0)Tpo1(0 -_ o)

where R - 1 and Po1 are positive definite weighting matrices. 40 is the best a priori

estimate of 4, here set to zero. This cost is a positive definite quadratic form and

hence has a minimum with respect to 4 that can readily be found.

R and Po are set as a priori estimates of the covariance matrices of the noise

and the state respectively, ie.

R _< nn T > Po -< (- 0)(0 - o) T >

which are to be estimated beforehand. For R, measurement error due to instrumental

and navigation error is small, the main source of error in this sampling equation is

internal waves acting on the vertical density gradient, these waves are not modelled

by quasi-geostrophic dynamics. A first estimate of n is constructed by finding the Ap'

due to some typical internal wave vertical displacement on the buoyancy frequency as

a function of depth, this typical wave displacement is taken from the Garrett-Munk

spectrum for internal waves. The Ap'(z) is then projected onto the modes, treating

this error as being independent of horizontal location,

ie. Ap' = - Az
dz

then Ad - Ap'
apt

= -gH L. Ap'C,,dz

then set R = (Adn)(Ad)T. In figure 1.6 is plotted the a priori density error with

depth, and the residuals (rms difference between the density data and that produced

by the least-squares fit) for the fits to surveys A and B. The residuals of the fit are

large near the surface as expected. Around the thermocline the fit is good but the
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Figure 1.6: rms density residuals from least-squares fit to survey A (dashed), and
survey B (dotted), and the a priori density error, Ap'(z) (solid).

residuals are somewhat larger than the a priori error due to the fit being biassed by

the surface signal.

Po is constructed as a diagonal matrix representing the expected square of the

amplitudes of the waves. This is set as a Gaussian with respect to total wavenumber,

ie.

< ( ,) >xe Y- +e -

< (k,1,22 > e + e 2

where: -y is a wavenumber representing the spatial correlation length scale for mode

m, I have set -y = 72 = 27r/100 km-', and A, = R;1. The magnitude of Po, IPol is

set quite large so as to give more weight to the data than to the a priori guess for o0.

There is usually difficulty in setting the a priori covariances in oceanographic

problems. The important thing is that the estimated covariances found after the

estimation be consistent with the a priori estimates.



The state that minimises the cost is found by setting the derivative of the cost

with respect to 0 to zero, then we get

0 = o0 + PoET(EPoET + R)-'( d - E0 0)

with expected state error covariance, that is, expected variance of the estimated wave

amplitudes about their true value, of

P = <( ( -)(4 _-)T >

= Po - PoET(EP oE T + R)-1EPo

These were calculated for surveys A and B. 0 had 260 elements (65 1st and

second mode waves with complex amplitudes), d had 130 elements (65 stations x 2

modes) for survey A and 150 elements for survey B. There are more state variables to

be estimated than there are observations available, the a priori statistics for the state

provide extra information. Fortunately for this least-squares problem, the matrix

inverses in the above expressions are not singular.

The least-squares method of fitting unknowns to observations with a model in

the presence of uncertainty as described here, is at the heart of the optimal estimation

methods to be used in the next chapters.

Figure 1.7 shows 4, P and Po for the fits to surveys A and B. As can be seen,

the underdeterminedness of the state with respect to the data has meant that there is

not enough information from the observations to determine all of the wave amplitudes

so the higher wavenumbers are not significantly different from their a priori value of

zero.

In figures 1.8 and 1.9 are shown the modal data, d, the least-squares fit, EO,

and the residuals d - E0, plotted versus station number (see figure 1.2) for the first

and second baroclinic modes. The fit is very good due to there being a relatively large

number of state variables to fit the variability of the modal data. The least-squares

fit is pracically indistinguishable from the data, the dashed curve being coincident

with the solid curve, hence the residuals (dotted curve) are small.
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Figure 1.7: Estimated amplitudes of the 1st (+) and 2nd (x) mode waves, a pri-

ori standard deviation (solid) and estimated standard deviation (dashed) vs. total
wavenumber for Left: survey A and Right: survey B.

The quality of the fit can be expressed by how much of the variance of the

modal data is modelled by the wave fit, that is, the fractional explained variance

given by < dTd > - < (d - EO)T(d - EO) >
V=

< dTd >

For the waves fit to survey A, V=0.9939, and for survey B, V=0.9885, indicating

that the waves adequately describe the data. If we estimate the modal data for

those waves whose estimated amplitudes are significantly different from zero to one

standard deviation, we get V=0.9533 for survey A and V=0.9253. To two standard

deviations we get V=0.8733 for survey A and V=0.7552 for survey B.

In figure 1.10 are shown the estimated density anomaly for surveys A and B

at 700 metres depth, mapped onto a regular grid (every 50 km) covering the model

domain and contoured. The area covered by the CTD surveys is within the dotted

line.
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The estimated density anomaly at 700 metres depth for the two surveys can

be compared to the first and last frames in figure 0.2. Here I am picking up more of

the spatial variability of the data, as I have more waves with a wide range of scales

available to fit to the data than had Chiu and Desaubies. The same cold (dense) eddy

is seen in survey A. A cold eddy is on the western edge, and a warm eddy is in the

northeast corner of the data domain, in survey B. How the flow evolves from survey

A to survey B will be shown in the next chapters.
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Figure 1.10: Estimated density anomaly at 700m for Top: Survey A and Bottom:
Survey B, from fitting the waves separately to each survey (c.i.=0.05 kg/m3).



Chapter 2

Time-dependent Fit

Having fit the waves to surveys A and B separately, the waves from survey A are

evolved forward in time using some dynamical model to see if they match the data at

survey B. Three methods from optimal control theory are then formulated so as to

calculate an optimal state trajectory that takes the state from the initial time to the

final time such that it fits the data at both times as well as evolving in time according

to the dynamical model. A hierarchy of models is used to see how including more

and more dynamics improves the fit. To start with, simple persistence in time is used

to evolve the state,

t+1 = t + et

which does not model any of the dynamics of the flow. Secondly, the linear dispersion

relation for Rossby waves is used, equation (1.17),

et+1 = Ft + et

In both equations, et is the process noise and represents the uncertainty in each state

variable in predicting Ot+1 from ,t due to ignored dynamical effects.

Figure 2.1 shows the time sequence of the density anomaly at 700 metres over

the model domain every 11 days, from evolving the state forward in time from k1

using the linear model (1.17). Here 41 denotes the state vector of wave amplitudes



fit to survey A, the initial time in the time-dependent fit. In the 55 days between

surveys A and B, the waves move very slowly toward the west, and comparing the

state at t=55 with the stationary fit to survey B (see figure 1.7) it is apparent that

the state does not evolve from 41 using the dispersion relation to match survey B.

The fractional explained variance of the evolved final state is V=0.0626. The waves

in the model basis cannot propagate quickly enough in the time between the surveys

to render the ocean state as seen in survey A to the form as seen in survey B. In

chapter three a third, more sophisticated state evolution equation is formulated to

take into account the nonlinear interactions.

2.1 Formulation of the time-dependent control

problem

The optimal control problem is as follows, this general form is taken from Bryson and

Ho, p.395, (1975).

Minimise

J = (01 - 0 1 0)-( - 1) + _ E uTQ - u + 2(dN - EON )TR-'(dN - EON)
2 2t=12

(2.1)

with respect to Ot, t = 1... N and ut, t = 1... N- 1, subject to

Ot+1 = Fot + But (2.2)

which is the general form of the state evolution equation.

This is a mathematical form of the statement: Find an optimal state and

control trajectory that obey the model evolution equation such that the state goes

from the initial state, ~,, forward in time to match the data at the final time, dN,

whilst minimising some unknown control vector along the way. The terms "optimal"

and "match" mean in a least-squares sense.
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Figure 2.1: Time sequence of density anomaly at 700 metres obtained by evolving

the state estimated from survey A forward in time using linear dynamics (c.i.=0.05

kg/m3).



Here ut is some unknown vector of control variables with covariance Q =

< utuT >, that is mapped onto the state vector space by B. For the two models

used in this chapter, the control vector to be estimated is the process noise at each

time-step, assumed to be Gaussian and uncorrelated in time. If linear Rossby wave

dynamics can model the oceanic flow between the surveys to some degree, there should

be less estimated process noise using the linear model than that estimated using the

simple persistence model. For the results in this chapter, ut is set as the process

noise, et, and B set as the identity matrix.

The control problem will be formulated here using the more general and ver-

satile form, (2.2), so that the resulting equations can be readily applied in the next

chapter. As was done in the stationary fit, R =< ntnT > is the observation noise

variance at t=N. , Pi are the best estimates of 4, and its covariance from the data

at t=1, that is, the least squares estimates calculated from the stationary fit.

For both the Smoother and the Adjoint method, we apply the so-called sweep

method (see Bryson and Ho, chapter 5, 1975). Lagrange multipliers are used in the

following way. Define an augmented cost function

N-1

J' -J + A+[F , + But - t+t]
t=1

thus when the model constraint is satisfied, J' = J, and At is arbitrary. Also define

Ht = T Q- Ut + AT +[Fot + But]

Then we get

1 T . A 1 N-1T
J' = _1 - 1) PT (01-01)+ 1(dN - EON)TR-1(dN-EON)+ E [Ht-AT+lt+i

2 2 t=1

The optimal state and control are given by the minimum of this positive-definite

quadratic form. Setting dJ' = 0, J' is minimised with respect to 4t and ut for

t=1,...,N

dJ Tmd T 4Ti9 t N-1 T N-i + + TA9J] =01J O dN' 15N+E= dt(0 + Out u+dt+0



the A are now defined by:

At H = F TAt+ i 0

AN - -ETR-1(dN - EN) a = 0

A2 -1 01 1= 0

therefore

N-i T ( 
TdJ' = du t = 0 4 ut = -QB z At+l

t=l

In this way the minimisation problem reduces to the two-point boundary value prob-

lem:

=t+i = Ft- BQBTAt+1 , 1 = - P1 FT A2  (2.3)

At = FTAt+  , AN = -ETR-1(dN - EON) (2.4)

These two equations can be readily solved by numerically integrating them

from their boundary conditions on the right-hand sides. The Kalman filter/smoother

and the Adjoint method do this in different ways. Dynamic Programming starts from

(2.1) and (2.2) but instead uses a cost function based on (2.1) that expresses the cost

to go from state ,t to the final state, and finds the control sequence from t to N

that minimises that cost. Since all these methods minimise the same cost function

constrained by the same state evolution equation, they should all produce the same

optimal estimates of the state and the control.

2.2 The Kalman Filter/Smoother

The Kalman filter is the most well-known method of assimilating model variables

with observations in time, and there is much literature on its application (see, e.g.:

Wunsch, 1989; Sorenson, 1985; Ghil and Malanotte-Rizzoli, 1991).



First the Kalman filter is run forward in time. The data available at t=1 is

used to make estimates of 41, P1 as in section 1.3. From these estimates the Kalman

filter is run forward by: forecast using the model

t+ = Ft (2.5)

Pt+1 = FPtFT + BQBT (2.6)

then whenever data becomes available,

Ot+1 = t + Kt(dt - Et4t)Pt = Pt - KtEtPt

where
T T -1

Kt = PtET(EPE T + R)- l

For this problem, however, there is data only at t = 1 and t = N so , = , Pt = t

for all other times.

For the smoother, estimates of the state are made by using the data at t=N

to improve the filtered estimates at t < N which only used the information from the

data at t =1 carried forward by the model. Also, estimates can be made of the control

vector. Denoting these smoothed estimates by 0+, u+ , explict expressions for these

estimates can be derived from (2.3) and (2.4), see Bryson and Ho, chapter 13, (1975)

for details.

Using the forecasts, (2.5) and (2.6), equation (2.3) becomes

+ = t - PtAt (2.7)

and also

t+ = -QBTAt+i (2.8)

At the final time, t=N, the filtered state, ON, is the best estimate of 4 N from all the

data, so

0+ N



P+ = PN

The smoothing is then done by integrating (2.4) backwards from 0+ to produce the

sequence of At,

AN = -ETR-i(dN - Et + )

At = FTAt+i

The smoothed state and control sequences are then given by (2.7) and (2.8). The

attractive feature of the filter/smoother is that the covariance matrices of the state

and control are calculated at each time. With the above sweep method, the covariance

of At, At, is given by

AN = ET(EPNET + R)-1)E

At = FTAt+iF

Then the covariances of the smoothed state and control vectors are readily calculated,

P+ = Pt - PFAtFPt

Q+ = Qt - QtBTAtBQt

The method so far described neccesitates the storage of P at each time-step,

as the Kalman filter is run forward in time.

As with most oceanographic problems these covariance matrices are quite large,

(260x260) for this model basis, and there might not be enough computer memory to

store them at each time step. An alternative algorithm that requires less memory but

involves more computations is the so-called RTS algorithm, after Rauch, Tung and

Streibel (1965). They developed the following expressions using maximum likelihood

estimates. These expressions can also be derived algebraically from the sweep method

expressions described above (see Bryson and Ho, sections 13.1, 13.2, 1975).

Here the smoothed state and control vectors and their covariance matrices are

calculated recursively without the At, At, and without storing the filtered covariances.

+ = t + L(t+ 1 - Ot+j)



where
L -- PtFT Pt-

Mt QtBTP 1

Pt is calculated at each time step by inverting equation (2.6).

To summarise: The state is run forward from the initial estimate at t = 1,

making forecasts at each time-step. When data is encountered at t = N, a best

estimate of the state at t = N is made by taking a weighted average of the forecast

and the least-squares fit to the data. The misfit between this best estimate and the

data, is evolved back in time, and is used to make best estimates of the states at t < N

using all the available data. The misfit at the final time is also used to estimate an

optimal control sequence u+ , that drives the smoothed state from t = 1 to t = N so

that the state evolution equation is satisfied.

2.3 The Adjoint Method

This method as formulated here was that used by Wunsch (1988) to estimate bound-

ary conditions as optimal control in a model of tracer flow in a box model of the ocean.

More theory and applications of the adjoint method, otherwise known as Pontryagin's

Minimum Principle, can be found in Bryson and Ho (1975) and Brogan (1982).

With this method equations (2.3) and (2.4) are manipulated to produce explicit

expressions for the optimal estimates of 0+ and u+ , expressing these in terms of the

so-called adjoint state, At. Start by rewriting (2.4) as

At = -F(N-t)TETR-l(dN - EON) (2.9)



then the boundary condition for (2.3) becomes

O = 1 - PF(N-1)TETR- (dN - EON)

where, as before, 0+ and 0+ are the optimal estimates of 01 and ON. Now (2.3) is

integrated forward from 0+, using the above two expressions to yield an expression

for +4 in terms of + ,

= F(N-1)T + + HjETR-(dN - E4 + )

where
N-i-1

H1  E F'BQBTFiT

i=0

ie.

0+ = (1 + H 1ETR-1E)-1[F(N-1)T4 + + H 1ETR-d] (2.10)

Substituting this into the above expression for 0+ we get, after some manipulation

= (1 + P 1F(N-1)TVW-1F(N)-) [~1 + PF(N-1)T(l - VW-1H,)E T R - d]

(2.11)

where W = 1 + HIV, V = ETR-E

Then, as in the Kalman Smoother, the At are readily calculated using (2.4)

AN = -ETR-1(dN - E + )

At = FTAt+,

and u+ is calculated using (2.3). Finally 0+ is evolved forward using the optimal

control sequence to produce the optimal state estimates.

Hence the best state estimate at t=1 is calculated as a weighted sum of the

initial estimate and the final data (mapped back N time-steps under an adjoint trans-

formation), which are both known. The best estimate at t=N is then calculated as a

weighted sum of the best estimate from t=1 (evolved forward to t=N) and the final



data. As in the Kalman Smoother; the At represent the misfit between the optimal

estimate and the data at t=N evolved back in time with the adjoint model equation

(2.4), and the optimal control sequence and state estimates are readily calculated

from the At. This method is faster and clearly requires much less memory than the

smoother as the covariance matrices are not calculated, but there is no measures of

the uncertainty in the optimal estimates.

Wunsch (1988) and Tziperman and Thacker (1989) applied the adjoint method

to oceanographic problems. The latter showed a way of calculating error covari-

ances of the optimal estimates using the Hessian matrix of the cost function (see also

Thacker, 1989).

2.4 Dynamic Programming

The idea here is to dissect the cost function, J, equation (2.1), and construct an

"optimal return function" that expresses the cost to go from some state 4t, to the

final state ON in terms of finding the optimal control sequence that minimises J,

while satisfying the model (2.2). For more details and examples of this technique see

Brogan (1982) and Bryson and Ho (1975). Starting at the final time, define

g(qN) = (dN - E4N)TR-1(dN - EN)

then

Min [un--iQ uN-1+ (dN - EN) T R-1(dN - EON)
g(¢N-1) - - -

Min [uT -1uN-1 + 9(N)] (2.12)

UN-1

then at any time t,

Min +1 1 g(Ot+l)
) t Q- +



This is the optimal return function, which is saying that for any state at time

t, the optimal control sequence, from time t to time N, must also be optimal for any

state resulting from that at time t (optimal in the sense of minimising J). At the

initial time, t=1, we have

1 T
J = - 41) pll(41 -P1) + g(9 1 ) (2.13)

2

The above expressions are used in a backward then a forward sweep to get the 0/+

and the ut+ . Starting at t=N-1, we have from (2.12) and (2.1)

Min [_ -1

g(¢N-1) N -1N--1
Ut

+I(dN - EFON_- - EBuN-1)- 1 R-I(dN - EF4N- 1 - EBuN-1)]

The term in the brackets is a positive-definite quadratic form in UN-1, and thus has

a minimum for

uN-1 = -[Q-1 + BTETR-1EB]-1BTETR-1(dN - EF4N_1 )

and thus,

g(4N-1) = 1(dN - EFN-1I) T [R + EBQBTET] - (dN - EFN-1)

Continuing back in this way we get the optimal control for time t, in terms of O4,

u+ = SBTF(N-t-1)TETG-1I(dN - EFN-tot) (2.14)

where St = -[Q- 1 + BTF(N--1)TETG1I EFN-t-1B]-1 . The cost to go from any

state 4, to a final state at t=N, which is arbitrarily close to dN in a least-squares

sense, is

g(t) = (dN - EFN-t,)TG - 1(dN - EFN-'~t)

where Gt = Gt+l + EFN-t-BQBTF(N-t-1)TET is calculated recursively starting

from GN -- R.



Now (2.13) can be used to get the optimal state at the initial time, 0 + ,

J =( - 0 1) P1 1( - 1) + (dN - EFN-11) TG1(dN - EF-14 1)
2 2

Setting = 0 gives

+= (P + F(N1)TETG EFN-1)-i + F(N- 1)TETGld]

This expression is similar to (2.11) in that 0 + is calculated as a weighted

sum of the estimate, and the final data dN (mapped back to t=1 under an adjoint

transformation), which are both known. u+ is then calculated using (2.14), and the

model (2.2) is marched forward in time to produce all of the 0 + and the ut using

(2.14). This method involves the storage of the Gt at each time-step.

The essential difference between dynamic programming and the other two

methods is that the smoother and the adjoint required that the optimal final state, and

some estimate of the initial state, be known before the optimal control sequence could

be calculated, this is so-called "closed loop control". With dynamic programming,

the optimal control at time t is only a function of: the state at time t and some

estimate of the state at t=N, so-called open loop control. This is not an important

difference for the present problem as all of the above solutions are in closed loop form

since here we only have initial and final states. Dynamic programming has potential

for solving other sorts of problems where one would like to know all possible state

and control trajectories passing through some state that minimise some cost whilst

satisfying a model evolution equation.

2.5 Results

Each of the three methods were run using the simple persistence model and the linear

dynamical model. It was found necessary to use the RTS algorithm for the smoother

so as to reduce the memory requirements. 01 and P1 were set as the least-squares



estimates for survey A from section 1.3, dN, E and R are the modal data, the sampling

matrix and the noise covariance for survey B. The variance of the process noise was

rather arbitrarily set as Q = 0.01IPol.

It is to be expected that the smoothed initial and final states will be slightly

different from the stationary fits, and that there will be some process noise estimated

at each time-step.

Figure 2.2 shows the optimal wave amplitudes 0 + for the initial (left) and

final (right) times calculated using (top) Kalman Smoother with standard deviation

Jdiag(P+) of 0 + , (middle) Adjoint method, and (bottom) Dynamic programming,

using the linear model.

As expected the methods all produce the same optimal states at the initial

and final times, since they all minimise the same linear cost function with the linear

model as a constraint.

In figure 2.3 are the contour maps at 700 metres depth of the density anomaly

produced by the optimal state trajectory, 0 + , for the linear model using the Adjoint

method. Surveys A and B correspond to times t=1 and t=55. Comparing these to the

stationary fits from section 1.3, figure 1.10, we can see that the optimal estimators

have estimated initial and final states that resemble each other more, than do the

stationary fits to surveys A and B. For those waves whose amplitudes are significantly

different from zero to one standard deviation, the quality of their fit to the modal data

at the initial and final times is such that they give a fractional explained variance of

V=0.9640 to survey A and V=0.9283 to survey B. Thus the fit to the data is good,

while the process noise variance, Q is low enough so that the model can interpolate

the state between the two surveys.

Since there are uncertainties in the data passed to the optimal estimators, due

to internal waves and to projecting the data onto modes, the methods do not force the

state to fit the initial and final data exactly. The misfit allowed by the uncertainties



in the data is used to estimate initial and final states more in agreement with the

state evolution equation.

Figure 2.4 shows the process noise estimated as an optimal control trajectory

when the simple persistence model is used, and figure 2.5 shows the estimated process

noise for the linear dynamical model. For both models the process noise is an order of

magnitude less than the state wave amplitudes. The estimated process noise required

for the optimal state trajectory using the linear model is substantially less than that

required for the simple persistence model, indicating that the linear dynamics are

better than no dynamics at all.

However, we saw that when left to themselves the waves do not propagate from

survey A to survey B by the linear dynamical model, so the linear dynamics are not

perfect. Some added control is needed at each time step. This estimated control has

here been treated as some process noise for each wave in the model basis. This noise

represents errors in the model state evolution equation. From the scaling in chapter

one, we assume that the biggest error in the model is due to the ignored dynamical

effect of the nonlinear wave-wave interactions. In the next chapter, this effect will be

included in the state evolution equation and formulated in the control vector.
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Chapter 3

Estimating the Barotropic Flow

So far in this study simplified dynamics for the model state evolution have been used.

At the simplest level we had persistence in time, then we saw that linear dynamics

did a better job of taking the state from the initial to the final surveys. The nonlinear

advective term in the conservation of potential vorticity equation has been ignored

and from scaling, this term is the next most important effect to be included.

For freely propagating Rossby waves in a periodic domain the nonlinear term

is represented as weakly nonlinear wave-wave interactions between waves that form

resonant triads. Here I follow Fu and Flierl (1980), to formulate these interactions.

The interactions for the waves in the model basis are then calculated, and included in

the state evolution equation. The evolution equation is linearised so that the control

methods so far developed can be applied. As in chapter two, optimal state and control

trajectories are estimated that take the state from the initial to the final surveys.

Through the nonlinear interactions the 1st and 2nd baroclinic mode waves in

the model basis not only interact with each other but also with waves in other modes.

The control vector is now formulated as the unknown amplitudes of the barotropic

waves that interact with the baroclinic waves in the model basis. In this way the

barotropic component of the flow can be estimated, even though it is not able to be

determined directly from the density data.



3.1 Wave-Wave interactions

Considering only motions in the 1st and 2nd baroclinic modes, the conservation of

quasi-geostrophic potential vorticity, equation (1.14) becomes

a ' - + a n ) +1 j (" [2 pA2 12-= 0

To examine how the nonlinear term affects the evolution of these waves, substitute

in a triplet of waves from (1.15), the Fourier Series over the periodic model domain,

ao(X, y, t) = R {an(t)ei(kax+LV) + kbn(t)e(kb+by) +i(kx+Y)I

and then integrate over the periodic model domain. The Jacobian term vanishes

except for when ka = kb + kc and Ia = Ib + Ic then we get

1 (2
2 d 1 2

Kn = - b- -2fo (kalb - kbl0 ) 2 abqp q cqwa bp) ynpq \
P,q=l

2 db 2 *

xn = -Pckc + (kalb - kbla) Z (qap - 2aq b pq
p,q=1 uO

where x 2  k + 1 + An, and an is an abbreviation for l(ka, la, An), ie. horizontal

wavenumber (ka, aI), and vertical mode n. 0* is the complex conjugate of 0.

These equations express the conservation of potential vorticity of each wave in

the triplet. The rate of change of the potential vorticity of each wave, -(k 2 + 12 +

A2) 4(t), is due to two effects: advection of planetary vorticity north and south, and

to nonlinear interactions with the other two waves. The former contribution gives

rise to planetary waves and the latter are contributions from other waves present that

form triad interactions, ie. that have horizontal wavenumbers such that

ka = +kb+kc and la = l±l .

For such waves the advection of the potential vorticity of wave c by wave b, say,

affects the rate of change of the potential vorticity of wave a.



For the model basis of 130 1st and 2nd mode waves, as shown in figure 1.1,

there are many possible triad interactions for almost all of the waves. These can be

computed beforehand. The evolution of the state vector of all the wave amplitudes,

can be put in matrix form as

d5 = FO(t) + C (O(t)) (3.2)

where C(O,) is the vector of non-linear contributions to the evolution of the state

vector, the second terms on the right in (3.1). This term involves products of wave

amplitudes. Each row of this matrix equation represents one of the equations in

(3.1), with the nonlinear contributions summed over all triad interactions. As was

done in chapter 2, this matrix equation is discretised by rendering the time derivative

in Crank-Nicholson form. However the size of the time step must be reduced signifi-

cantly from that used in the linear model since the non-linear term is not calculated

at exactly the same time that the derivative is calculated, and hence numerical insta-

bilities can develop. The equation can be evolved forward in time from some initial

state, calculating C (O(t)) at each time step.

The model state was evolved forward from, /,. C ((t)) was calculated at

each time step from the state at that time. It was found that when a time-step

greater than one day was used, the wave amplitudes blew up over the 54 day time

period. For time-steps of less than one day the model was stable but very slow and

used a lot of memory. Since now the transition matrix from one state to the next

is time-dependent, for the control methods it must be stored at each time step. A

time-step of one day was used. In figure 3.1 is shown the time sequence of density

anomaly at 700 metres obtained by evolving the state forward from 01 using equation

(3.2).

Comparing these snapshots to those of figure 2.1 where the linear dynamics

were used, it is clear that the nonlinearities in the model are important. The state

trajectories shown at 11 day intervals for the two models do not resemble each other.



Shorter time scale motions are present using the nonlinear model, due to the wave-

wave interactions moving amplitude information around the model basis.

Also comparing the field at t=55 with the stationary fit to survey B, we can see

that the two are quite different. The explained variance of the waves from this forward

run with the data at survey B is V=-.88, indicating that the waves fit to survey A

do not evolve on their own to match the data well at survey B. Some control may

be needed and the fit to survey A can be adjusted so that the waves evolve toward

survey B.

3.2 Formulation of the control

The barotropic component of the flow is indeterminate from the density data, and

is thus not represented in the model state. However, examination of the full wave

equation, (1.14), shows that it is possible for motions in the barotropic mode to

interact with motions in the baroclinic modes. Hence it is possible for the barotropic

dynamic pressure to enter into the state evolution equation for the baroclinic flow as

an unknown control variable.

When the barotropic dynamic pressure mode is expanded in the same hori-

zontal Fourier Series as the baroclinic modes, ie.

ao(x, y, t) = kI0o(t)e'(kx+'y)

k,l

S7kl()
e i(kL +ly)

k,l

the barotropic waves can interact with the baroclinic waves via the same triad inter-

actions as described in the last section. Equation (1.14) becomes

SV - 1 + 1 2

+oJ (as, V2ao) J (ao, [V2 ) =0
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Figure 3.1: Time sequence of density anomaly at 700 metres from evolving the state
estimated from survey A forward in time including wave-wave interactions (c.i.=0.05
kg/m3).



where n=1 or 2 and o101 = 11o = 2o02 = ~20 = 1. In each Jacobian term is the

unknown barotropic component, ao.

This equation can be put in a discrete matrix form like (3.2),

dT = F4(t) + C (q(t)) + B(4 , 7rt) (3.3)

which is still nonlinear. C and B are functions of products of wave amplitudes.

For the linear methods of control theory developed in chapter 2, the state evolution

equation needs to be in the linear form

t+1 = DtMt + Btrt

where the state and control transition matrices, D and B can be time-dependent but

are not to be functions of the present state or control vectors.

Equation (3.3) is linearised by linearising C and B about some known state

trajectory. C(4(t)) is formulated as Ct4(t) by setting

1 2
C(qan(t)) = 2 (kalb - kbla) (Kbbq ccp) 2cq bpt)cq 4pq

2o b,c p,q=l

1 2

S 2fo (klb - kbl) E ( '(t)q0p(t) - bp
b,c p,q=l

C 4(t)

where Ct is a function of 0'(t), which here denotes some state trajectory previously

calculated.

Similarly, B(t, 7rt) is approximated as

1 1

B(qan(t), 7r(t)) = 2 E (kalb - kb ) Z (A (t)p(t) - ~q (t) (t))
f b,c p,q=O

= Bt-7r(t)

where Bt is also a function of 0'(t). Also ~co = rc and 5bo = 7rb within the summation.

In this way, Ct and Bt are made independent of the present state, and we can

write

Ot+1 = Dqt + Bt-rt



as the model to use in the control methods. The time-dependent transition matrices,

Dt and Bt, are calculated and stored for each of the 54 time-steps. The optimal

control methods can now be applied using this model.

It is important to note that here 7rt represents any unknown control affecting

the state evolution. As well as the time-dependent amplitudes of the barotropic

waves that interact with the baroclinic waves, 7rt also contains any process noise due

to errors in the model such as truncation of the model basis.

I am going to try two different state trajectories to linearise about, the first be-

ing the smoothed state from chapter two using the linear model, the second being the

state from the nonlinear model of the previous section evolved forward in time from

the initial survey. The optimally estimated state and control, that is the baroclinic

and barotropic wave amplitudes, will probably be different for the two linearisations

since the two state trajectories look quite different.

One could possibly determine a best state trajectory to linearise about by iter-

atively calculating an optimal state trajectory then linearising the transition matrices

about the new optimal state trajectory.

3.3 Results

These assimilations were run using the methods formulated in chapter two. The

three methods all produced the same results and I am here showing the results using

the Kalman filter/smoother. The time-step I am using is one day so there are 54

time-steps between the two surveys.

Case 1: The nonlinear model is linearised about the smoothed state trajectory

obtained in chapter two using the linear dynamical model. The optimal state and

control trajectories are calculated. The time series of the density anomaly at 700

metres every eleven days as produced by the optimal state, is shown in figure 3.2.

= (Ft + Ct)ot + Bt-rt
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Figure 3.2: Time sequence of estimated density anomaly at 700m every eleven days
from the optimal state for case 1 (c.i.=0.05 kg/m 3 ).



Case 2: The nonlinear model is linearised about the state trajectory obtained

by evolving the state forward in time from survey A using the nonlinear model. The

time series of the density anomaly every eleven days as produced by this optimal

state, is shown in figure 3.3.

Both cases produce initial and final states that are consistent with the data.

This can be seen by comparing the agreement of the area within the dotted region

of the first and last frames of figures 3.2 and 3.3 with the stationary fits to surveys

A and B as shown in figure 1.10. There is high underdeterminedness of the model

parameters with respect to the available data so the estimated field within the data

domain is reproduced well by the optimal estimators.

Outside of the data domain in space and time the two cases produce quite dif-

ferent states, due to the models used in each case having different transition matrices.

There is energy going into high wavenumbers in the part of the model domain outside

of the data domain. This is due to the wave-wave interactions transfering energy to

higher wavenumbers as most of the energy is initially at low wavenumbers. These

short scale features are amplified by Gibbs phenomena: Since the Fourier Series is

truncated (the shortest wavelength in the model basis is 120 km), small scale spatial

changes in the field such as at the boundaries are not well modelled. Any sudden

changes in the field are taken up by the higher wavenumbers.

Assuming that there is no process noise, the control vector then represents

only the barotropic waves. The time sequence of barotropic dynamic pressure can

be computed from the optimal control trajectory for cases 1 and 2, and is shown in

figures 3.4 and 3.5. The estimated barotropic flows for both cases are quite different

from each other, illustrating that the optimal control trajectory is dependent on which

state trajectory we linearise the wave-wave interactions about.

Qualitatively, case 1 produces a smoother time-dependent fit. There is less

energy at high wavenumbers in the optimal state from the linear dynamics, and it

has been smoothed by both surveys. For case 2, the trajectory is linearised about the
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state trajectory containing the wave-wave interactions, but it only evolves forward

from survey A and does not contain any information about survey B. Consequently,

the model state is "surprised" by the data at survey B. This is illustrated in the

time sequence of barotropic dynamic pressure for case 2 as shown in figure 3.5. Its

amplitude increases suddenly at the last times, so as to force the state evolution away

from the linearised trajectory toward the state at survey B (see figure 1.10) which

does not resemble the state evolved forward by the nonlinear model starting from

survey A (see figure 3.1).

These results illustrate how there can be different flows between the two surveys

by linearising the nonlinear model about different state trajectories.



Conclusions

I have here shown an effective means of combining oceanographic data that is sparse

in space and time with a dynamical model using optimal control theory. The size of

the model state space was reduced by representing all dynamical quantities in terms

of the amplitudes of quasi-geostrophic Rossby waves. The size of the data space was

also reduced by projecting the data onto the vertical modes. With the model and data

equations of a comfortable size and with a linear model and cost function, the Kalman

smoother, the adjoint method and dynamic programming could be manipulated to

give explicit forms for the optimal state and control trajectory estimates. One of the

first pleasing results of this study was that all of the three methods produced the

same optimal state and control sequences, which was to be expected.

The three methods were applied here to examine their relative merits. All

of the computations were performed in MATLAB on a SPARC2 workstation, which

takes advantage of the matrix/vector formulation. The calculation of the wave-wave

interactions in the transition matrices, however, were done element by element and

could have been computed more quickly in FORTRAN. Comparing the times taken

for the three methods:

Using linear dynamics (chapter 2),

Kalman filter/smoother 66 minutes

Adjoint 1.5 minutes

Dyn. Prog. 28 minutes

Including wave-wave interactions (chapter 3),



Kalman filter/smoother 137 minutes

Adjoint 45 minutes

Dyn. Prog. 53 minutes
Out of the three optimal control methods used, the adjoint performs best in

terms of speed. When the wave-wave interactions are included the transition matrices

for the state and control vectors are updated at each time step, thus increasing the

time taken for all of the methods. The adjoint and dynamic programming both use

much less memory than the filter/smoother but do not produce error estimates. A

next step is to calculate error estimates of the optimal state and control for the adjoint

method and dynamic programming by examining the Hessian of the cost function.

In chapter two the linear dispersion relation was shown to be a better model

for state evolution between the two surveys than simple persistence in time. The

process noise needed as a control at each time step to drive the model state between

the surveys was found to be greater using the simple persistence model than that

needed for the linear model.

The nonlinear wave-wave interactions of the model state were addressed in

chapter three and the interactions with the barotropic waves were formulated as

an unknown control. The wave-wave interaction terms were incorporated into the

state and control transition matrices which were then linearised about a known state

trajectory. For case 1, the transition matrices were linearised about the optimally

estimated trajectory from chapter two using the linear dynamics. For case 2, they

were linearised about the trajectory of the state evolved forward in time from survey

A using the full nonlinear model for the baroclinic waves. Case 2 involves a state

trajectory that contains more complete dynamics. The nonlinear interactions give

rise to motions of shorter time scale than the period of the fastest baroclinic wave,

160 days. These shorter time scales of 50 to 150 days are energetic in this part of the

ocean (Richman et al, 1977), and linear Rossby waves cannot model these motions.

Thus one would expect the nonlinear state trajectory to be more realistic. However



the trajectory used in case 2 to linearise the model about did not evolve towards the

final state for survey B, so large amounts of control were needed at the last time

steps to correct the state. The dynamically linear trajectory used in case 1 smoothly

transfered the state from the initial to the final states consistently with the data,

but was lacking the short time scale motions known from observations and theory to

be significant. The result is two realisations of the barotropic flow between the two

surveys, corresponding to the two linearisations.

Iteratively one could find better trajectories to linearise about by running the

assimilation repeatedly, each time linearising the transition matrices about the last

optimal state trajectory.

In chapter 3 the barotropic flow was estimated assuming there was no process

noise in the model. A further step is to run the assimilation including the barotropic

waves already estimated and estimate the process noise as the unknown control.

Comparing this process noise those estimated in chapter 2 one could test whether the

model has been improved by the inclusion of the estimated barotropic waves.

To address these issues the assimilation needs to be run on a faster computer

with more memory such as a CRAY then the time step can be reduced so that there

is less numerical error in the time integrations.

Implicit in the cost function that I started from, equation (2.1), is that the

unknown control vector to be determined is uncorrelated in time and has zero mean.

Thus a test of the optimal control estimates is that they have no temporal structure

and resemble a white noise processes. The temporal structure of the optimal control

trajectories computed in this project should be examined to see if they violate this

assumption. Correlation in time of the control vector can be incorporated into the

optimal estimation (see Bryson and Henrikson, 1968).

An interesting prospect is the inclusion of the time series of travel times from

the acoustic tomography array. This array spans the region covered by the CTD

surveys shown in figure 1.2, and provide a spatially integrated measure of the sound-



speed perturbations. This data would provide much more precise information about

mesoscale motions than point measurements. The travel times could be incorporated

into the assimilation presented here by explicitly calculating the Fourier Series rep-

resentation of the spatial slices covered by the travel times, then relating this to the

amplitudes of the waves in the model basis.
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