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ABSTRACT

LINEAR VISCOELASTIC CHARACTERIZATION

OF SAND-ASPHALT MIXTURES

by

JOSEPH ELIAS SOUSSOU

Submitted to the Department of Civil Engineering on
May 17, 1968 in partial fulfillment of the requirements
for the degree of Master of Science.

One of the important requirements for the development
of a rational method for pavement design is the determina-
tion of the constitutive equations of the materials used.
Asphaltic materials and bituminous mixtures exhibit visco-
elastic behavior. This study reviews the theory of linear
viscoelastic characterization and the mathematical methods
available to analyze the applicability of the theory to
real materials. A sand-asphalt mixture is taken as an
example and creep and relaxation tests are performed at
different temperatures. The material is found to be linear
and the time-temperature superposition principle is also
found to be valid. The theoretical relationships are
applied by making use of appropriate computer programs
developed for this study. This includes correction of the
relaxation curves for the finite rise time of strain,
approximation of the master curves by means of Dirichlet
series, and comparison of the creep and relaxation results
in Laplace domain. The two series of test results are
also interconverted directly in the real time domain
through numerical integration, and the complex functions
are derived from the analytical expressions.

Thesis Supervisor: Fred Moavenzadeh

Title: Associate Professor of Civil Engineering
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I. INTRODUCTION

The development of a rational method of design for

flexible pavements requires the description of some

failure criteria and their application to the results of

an analysis of stresses and displacements. Such an

analysis requires the determination of the interrelations

between forces acting on a material body and the resulting

deformations. These interrelations are called constitutive

equations and are generally assumed to be linear in form,

thus avoiding the mathematical complications which may

arise otherwise. The rheological behavior of asphaltic

mixtures is found to be time and temperature dependent,

thus these variables should be included in the constitutive

equations of such materials.

The present rational methods of pavement design

generally do not take into account the time and temperature

dependency of the materials. This has resulted in large

discrepancies between experimentally measured stresses and

displacements and those calculated theoretically. Moreover,

variables such as the duration of load and the rate of

loading cannot be accounted for with the present design

methods using elastic assumptions. Similarly the theories

of elasticity cannot be used to explain the accumulation
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of deflection which is observed experimentally in a

pavement. Some methods of analysis developed recently [7]

take into consideration the time-dependent behavior of

materials. A wide variety of time-dependent materials

may be characterized as linear viscoelastic materials as a

first approximation. Such characterization requires the

availability of easy and accurate methods in either

analytical or numerical form for the application of the

theory to the actual data.

Objective and Scope:

The objective of this study was to characterize the

time-dependent behavior of a sand-asphalt mixture so as to

determine the applicability of the theory of linear visco-

elasticity to the mechanical response of such a mixture

at different temperatures. The applicability of the time-

temperature superposition principle to the viscoelastic

response of this mixture was also investigated. Furthermore,

a review of the relations which exist among various visco-

elastic methods of representation and the available mathe-

matical methods of application of these methods to visco-

elastic characterizations of sand-asphalt mixtures was made.

For this purpose, static creep tests and stress

relaxation tests were conducted at six different temperatures
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for a sand-asphalt mixture. Different levels of stress

and strain were used to demonstrate the linear behavior of

the mixture. The use of the time-temperature superposition

principle yielded creep compliance and relaxation modulus

master curves. The two curves were fitted to a Dirichlet

series of exponentials and their Laplace transforms were

compared. A numerical inversion procedure was also used to

compare them in the real time domain. The complex functions

were derived from the transient functions, and the results

obtained from the creep tests were also compared with those

obtained from the stress relaxation tests.
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II. CHARACTERIZATION OF

LINEAR VISCOELASTIC MATERIALS

The mechanical behavior of materials can be studied

at three different levels [19]; the atomic and molecular

level, the structural level and the phenomenological level.

Engineering design is mainly concerned with the phenomeno-

logical or macroanalytical level of representation. At

this level, by appropriate dimensional considerations, the

material is generally considered as continuous, even

though certain materials such as sand-asphalt mixtures

are clearly made of various distinct phases. The assump-

tion of continuity will allow the notions of stress and

strain to be defined for such material bodies.

Phenomenological Characterization of Materials:

Internal force equilibrium of a body yields the notion

of stress [4]. The change in shape and volume yields the

notion of strain. The consideration of forces on an infi-

nitesimal cubical element shows, at the limits when the

cube is shrunk to a point, the stress at that point can be

represented by a second order tensor, having nine elements

aij. Similarly, calling the displacements of a point along

-10-



the axes of a reference system Ui and considering its

variation with space change, results in the definition

of a strain tensor ( ij) which will also contain nine

elements EiJ and will represent the infinitesimal shape

changes at a point.

Geometrical considerations and the definition of

strains yield nine kinematic relations between strains and

displacements:

1
S (Ui, + Uj, + U Uj) (2.1)

where the comma indicates partial differentiation with

respect to the coordinate associated with the index

following the comma. The symmetry of this expression

results in the strain tensor being symmetric and the number

of the kinematic relations being reduced to six. For small

displacements the second order terms are usually neglected

which will further simplify the kinematic equations.

By satisfying equilibrium requirements, for stresses

due to applied loads and inertial forces due to acceleration,

six equations of equilibrium can be defined. Three of them

are derived from the equilibrium of the coupled Stresses,

which result in a stress tensor being symmetric (cij = ji)

for non-polar cases. The other three equations are:

-11-
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2
aiJ,j + Fi 2  (2.2)

where aij is the stress acting along xj an a plane

perpendicular to direction Xi; Fi is the body force

acting along xi and p is the density of the material,

assumed to be a continuous function of the volume.

A point in a body is, thus, mechanically defined by

six components of stresses, six components of strains and

three components of displacements. Thus, in addition to

equations of equilibrium and strain-displacement, six

additional equations are required to define a point in a

body. These additional equations are obtained by establish-

ing relationships which exist between kinematical and

dynamical variables in a material. Such relationships,

which depend entirely upon the mechanical properties of

a material, are referred to as constitutive equations.

Constitutive Equations:

The constitutive equations can be generally written

in the form of implicit functions:

f(stresses, deformations, time, temperature, geometry) = 0

In their general form these equations are complicated and
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are often in non-linear form. In an explicit form the

stress tensor is given as a function of the past history

of the displacements or motion. The simple materials,

moreover, are defined as materials for which the stress

tensor depends on the history of the first spatial gradient

of the displacements [15, 52]. For such materials the

constitutive equations are expressed in operational forms

such as, differential, integral, or integro-differential

relations. For example in an integral operator form the

constitutive equations are written as:

t
uij] = I_ f([iJ], x, t, t', T)[eij] dt' (2.3)

where [aij] is the stress tensor, x is the space variable,

t and t' are the present time and the time as a parameter

of history respectively, and T is the temperature. [Eij]

is the strain tensor which may be a function of time. The

simplest form of such equations is that of linear elastic

materials where the stress is a linear function of strain

only.

The constitutive equations may be dependent on time

as a result of the variation in properties, structure, or

composition of the material. This could correspond to a

chemical degradation or a building up of a structure or

other similar mechanisms. Such time effects are includd

-13-



in the variable t' of the above equation. Disregarding

the influence of such parameters, the forms of the consti-

tutive equations of materials can be divided into time

dependent and time independent systems.

Time Independent Systems: For time independent systems

the time effect is neglected in the mechanical response.

The linear elastic materials are a special case of such

systems with the constitutive equations of the following

form:

[aij] = [Eijhk ][hk] (2.4)

where Eijhk are the constants defining the properties of

the material. These constants are related to the second

derivatives of the free energy F, and thus for the most

general case of anisotropic material, there are only

twenty-one independent elastic constants [27]. For an

isotropic material, these constants reduce to only two

independent parameters such that:

aij = ie61j + 2V Eij (2.5)

where 6 = Ei, 6ij is the Kronecker delta, defined such
i

that 6ij = 1 for i = j, and 6ij = 0 for i # J. x

and p are Lame's constants. Mathematically, the stress

-14-



and strain tensors can be resolved into the sum of a mean

normal tensor and deviatoric tensor which represent the

pressure-volume and pure shear effects, respectively [36].

[oij] = [Sij] + [a]

(2.6)

[E j] = [e ij + [E]

where a = (o11)/3 and E = (E1,)/ 3 , and Sij = Cij

61j and eij = E - 68 i

The two constants characterizing a linear isotropic

elastic material can be written as:

a = 3Ke and Si = 2Ge (2.7)iJ GiJ

where K is the bulk modulus and G is the shear modulus.

Of course, K, G, X and p are interrelated. Although K

and G represent more fundamental mechanical behaviors of

a material, Young's modulus E and Poisson's ratio v are

more commonly used.

Time Dependent Systems: For most of the materials the mec-

hanical response is not truly time independent, and in

certain cases the time variable cannot be neglected in the

constitutive equation. A particular case of the time de-

pendent systems is a Newtonian viscous fluid. The one di-

mensional Constitutive equation of such material is a linear
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relation between stress and the first derivative of the

dE
strain with respect to time: a = n . The three-dimen-

dt

sional characterization is analogous to that of elasticity

if the strain rate is substituted for strain. The response

of this material can also be resolved into volumetric and

deviatoric tensors.

Viscoelastic materials represent a general class of

the time dependent materials. The assumption of linearity

requires that the effect be proportional to the cause for a

given point at a given time.

One Dimensional Linear Viscoelastic Theory:

Assumption of the linearity of the material transforms

equation 2.3 into a simple form:

t
aij= f f(x, t-t', T) Eij dt' (2.8)

0

which is based on the principle of the fading memory. This

principle states that the deformations which occurred in

the distant past have less influence in determining the

present stress than those that occurred in the recent past.

Consequently identical materials having similar recent

past histories of deformation, will have the same mechanical

response, even though their distant past histories could be

different. Thus if the material was essentially unstressed
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during the recent past, the integral summation could be

made on the interval (0,t) instead of (-a,t).

The assumptions of homogeneity and isothermal condi-

tion reduce equation 2.8 to:

t
aij *0 f(t-t') Eij dt' (2.9)

These functions of time will replace the constants

characterizing a linear elastid material. They are

separated into two groups; the creep functions and the

relaxation functions. The creep functions are derived from

stress-controlled tests and the relaxation functions are

derived when deformations are controlled. The creep

compliance function is defined as:

a(t)D (t) = (t) (2.10)c oh(t)
O

where E(t) is the axiAl strain,

ao is the applied constant aKial stress, and

= 0 t < 0
h(t) is the Heaviside step function

1 t X 0

Similarly the stress relaxation modulus is defined as:

Er(t)- a(t) (2.11)r C0 ht)T
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In this case the strain S is applied instantaneouslyo

and maintained constant.

The assumption of the linearity of the material allows

the application of discrete or continuous summations to

obtain the stresses or strains caused by any pattern of

deformation or loading [28]. Letting AE(Tk) and Aa(Tk)

be instantaneous increases of strains or stresses at times

Tk, yields the summations:

n
E(t) = Dc(t- k) Aa(rk)

k=l
and (2.12)

n
a(t) = E Er(t-Tk) AE(Tk)

k=l

These summations can be extended to integral forms [22],

[28] which are the general expressions of Boltzman's super-

position principle.

t
a(t) = f Er(t-T) dE(r) dTr dr

o

(2.13)
t

c(t) = J D (t-T) da(r) dT
c dT

The superposition principle can also be expressed as:

t dE (C)
a(t) = J E(t-T) r

dT (2.14)

or:
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t dD (T)
E(t) = a a(t-T) C dT (2.14)

0dT

Substitution of one of the above equations into the other

will result in an explicit relationship between E (t) and

D c(t) in the form of a Volterra integral equation [53]:

t t
f E (t-T) D (T) dT = f D (t-T) E (T) dT = t (2.15)

O O

or

t dD (T) t dE (T)
SEr (t-T) dT dT = J D(t-T) dr dT = h(t) (2.16)

o o

Many engineering materials manifest an instantaneous

mechanical response which corresponds to a discontinuity

at the origin in their relaxation and creep functions.

Such discontinuity in these functions generally results in

certain mathematical complications. Gurtin and Sternberg

[23] have shown that the definition of one of the two

transient functions yields, if it is a continuous function,

a unique value for the other. They have extended this

proof to the case where discontinuities are included as a

limiting case of continuous functions.

-19-



Differential Operators: The constitutive equation of a

viscoelastic material may also be written in an operational

form:

P[E(t)] = Q[a (t)] (2.17)

where P and Q instead of being integral operators as

in equations 2.14 are differential operators. For linear

viscoelastic materials P and Q are linear differential

operators, such that:

P k
P E P

k=O k at

and (2.18)

q k
Q = E Qkk kk=O at

Gurtin and Sternberg [23] have shown such a differential

representation can be derived from the integral representa-

tion if P can be found such that P[Er(t)] = Qo for

0 < t < m. They have further shown that when p j q

only one of the two integral representations can be found

from a differential representation unless generalized

discontinuity functions are used such as the Heaviside step

function and the Dirac delta function or its successive

-20-



derivatives.

Mechanical Models: To visualize the behavior of visco-

elastic materials, and more precisely the differential

operator representation, an interpretation in terms of a

finite network of springs and dashpots is often used.

Springs represent an elastic law: a = Ke and dashpots

represent purely viscous fluid where a = n . The mecha-

nical response of a combination of these elements can be

represented in differential operator form. These models

have been used to represent actual materials. To represent

the behavior of real materials over an extended time period,

elaborate mechanical models are used. The interest in the

mechanical models seems to be more of historic and academic

value than ease of representation.

Following consideration of some mechanical models,

terms corresponding to pure linear elastic response and

the pure viscous flow are sometime separated from the

remaining terms in the integral representation [22,32]:

o(t) = Er(0)E(t) + o6(t) + I E (t-T) dT dTo 0 dT

(2.19)
t

E(t) = D (O)a(t) + -t + D (t-T)d ( ) dT
o o0

These expressions are derived directly from the consideration

-21-



of mechanical models of springs and dashpots. The terms

which were taken out from the integrals represent the

degenerated elements in a generalized model. Dc(0) and

E (0) are terms corresponding to the isolated springs and

n and no are the terms related to the isolated dashpots

in a generalized Voigt and Maxwell model respectively [5]

(Figure 1). These terms can be kept in the integral

definitions, but their separation may allow a better

understanding of the mechanical behavior. For cross-linked

1
polymers - 0, thus the creep compliance reaches a

finite value for an infinite t&te; while for uncross-linked

polymers there is a constant flow for extended time. In

what follows, since only linear visooelastic solids are

studied, the term corresponding to long term flow is

separated from the creep compliance. This separation

prevents any confusion which may otherwise arise in some

of the approximate formulas, and it also assures the

convergence of integrals.

The instantaneous viscosity term is also neglected

since its physical existence is doubtful, and it has not

yet been actually measured. Its existence would mean that

the stress would go to infinity when the straining time

approaches zero. Actually, when the rate of straining

-22-



Generalized Voigt Model

En

nn+ i

E
E(t) = + n 1 -itDh(t) (1 - e t

() h(t=2 E i +1

Generalized Maxwell Model

4 1E E41 2 E 3

a) T

En

Tn

En i
Er(t) = t) = [EI + 1 2 6(t) + Z E ie-'

o im,

Figure 1. Mechanical Models
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increases, the instantaneous stress seems to level off at

a finite value.

The instantaneous responses D (0) and Er(0) will,

however, be left in the integral expressions for this study.

Complex Functions: These functions aan be derived

directly from the hereditary representation and can be

measured by subjecting the material to a cyclic loading.

Letting

o(t) = a0ei st

(2.20)

or s(t) = E e

in equations 2.13, the following expressions can be

derived [22]:

a*(im) igo e i t  e- i r t E
r ( T )d

o

(2.21)

it Io e-ietand E*(iw) = iwa0e f e D (T)d

Thus, the steady state response to a sinusoidal excitation

with a circular frequency -lwilEalso be sinusoidal with

the same frequency.

Defining

a*(iw) = E*(im)c*(iw)

(2.22)

E*(in) = D*(iw)a*(iw)and



leads to
o

E*(iw) = iw f E()e-iWt d

(2.23)
00

D*(iw) = i J D(T)e-i dT
o

These complex functions are the Fourier transforms

of the transients functions defined in equations 2.13.

Combining equations 2.22 yields:

E*(iw) D*(iw) = 1 (2.24)

The complex modulus E* and complex compliance D*

can be separated into a real and an imaginary component:

E*(iw) = E,(w) + iE 2 (W)
(2.25)

and D*(iw) = D1 (w) + iD 2 (w)

The real component is associated with the recoverable

energy and the imaginary part is a measure of the loss energy

[17]. A loss tangent is defined to relate these two

components:

-D 2 (mW) E 2 (w)tan 6(w) = D1 (w) E (2.26)

6(w) is also the phase angle between the vectors repre-

senting e*(iw) and a*(iw).
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C
The relationships derived from equations 2.23 give

these two components in terms of transient functions [17,

33]:
00

E1 (w) = w [E r(T) - E.] sin WT dT + E
O

E2(W) = W fo [Er(T) - E ] cos WT dT

(2.27)

D (w) = f [D (T) - D- t- sin T dT + D
O

D2() = -w j [De(t) - D ] cos wT dT + -

D and E0  are the equilibttum values for an infinite

time after the flow term is subtracted. These terms are

separated from the expressions of D c (t) land Er(t) to

avoid the difficulties of the integrations.

The real and imaginary components of complex modulus

and complex compliance are related to each bther by the

following equations, derived from equation 2.4:

Dz(w) -D2(w)
E1 (o) = D() E 2 (o) = D_

D()]+D2 2 [D,(W)] 2+[D2 (W)]2

or (2.28)

ED (w) -E2 (w)
D ,( E) = D(w) =

[E (m)]2+[E2()] 2 [E (w)]2+[E2()] 2
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The inverse Fourier transformation gives transient

functions from the complex function components [17]:

00

Er(t) = EM+ EE1 (w) - EW]/W sin wtdw

(2.29)
oo

Er (t) = E + 2 [E 2 (w)/w] cos wt dw

0

D (t) = D + fo [DI(w) - D o/W3 sin wt dw+ t

(2.30)

Dc (t) = D + 2 [D2(w)/ - l/w 2 ][ - cos wt] dw + t
c o n n

Similar algebraic relationships can be obtained

between the various viscoelastic functions using Laplace

transformation. Applying this transformation to a stress

relaxation test [54]:

E (t) a (t) (2.31)r 0 h(t)

we obtain E(p) = p Er (p) (2.32)

The relationship between the creep function and the relaxa-

tion function in the real time domain becomes algebraic

between their images in the Laplace domain: E(p) x "(p) =

p 27(p) x D(p) = 1. This transformation may be interesting

for the characterization of a viscoelastic material because

-27-



the relations of linear elasticity can be applied to the

associated functions in the Laplace domain. However, since

the inverse transform is not easy to obtain, the approximate

techniques applied to the direct conversion are often

preferable.

Spectral Representation: The spectral distribution functions

of a viscoelastic material cannot be measured experimentally,

and should be derived mathematically from the experimental

functions. They are of interest for two principal reasons:

They make iertain relationships between characteristid.:

functions easier to handle. They also will eventually

permit the description of the molecular phenomena. A

spectral distribution function can be expressed as:

co

F(t) = J H(T)f(t,T)dT (2.33)

where H would be the spectrum related to the function F.

The kernel f(t,T) could be any function. Often by

analogy with the mechanical models it is either f(t,T) =

-t/T e t / T

e or f(t,T) - . Different authors use different

definitions. The spectrum H(t) can be continuous or

discontinuous.

On a natural scale, the spectrum is defined as [22]:

Er(t) = E0 + J Hn(T) e-t/T dT (2.34)
0
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where Hn(t) is the relaxation spectrum corresponding

to the relaxation function E (t). This expression can be

written as:

Er(t) = Em + L[Hn(T)] (2.35)

which leads to Stieltjes integral equations as:

E (p) = H T dT
E (p)

(2.36)

The spectra, however, are generally defined on a logarithmic

scale such that:

D (t) = D + f L(T)(e-t/ )d(lnT) + t
c

(2.37)

Er(t) = E0 + I H(T) e - t / [ d(InT)
O

where L(T) and H(T) are also respectively the retar-

dation and relaxation distribution functions. This defini-

tion will be retained for the remainder of this presentation.

It is useful to note that these two definitions of distri-

bution functions are related:

H(T) = TH n(T)

(2.38)

L(T) = TL (T)n

-29-



Similarly, if one wants to use logarithmic time to the

base 10 [6]:

H(log 10 T) = 2.303 H(.nT) = 2.303 T H (T)

(2.39)

L(logo0 T) = 2.303 L(.nT) = 2.303 T Ln(T)

where the definitions of H and L are in terms of loga-

rithms to the base 10, in terms of natural logarithms and in

terms of linear time, respectively.

The dynamic functions are also related to the

spectral representation as defined in equations 2.37, by

Stieltjes integral equations [45]. Thus the components of

the relaxation complex modulus are:

E,(w) = E0 + f H()wT 2 d(2nT)
S i + W2T2

(2.40)

E2 ( ) = W wT H(T) d(InT)
o 1+W2T 2

Through change of variables these expressions can be

transformed into convolution integrals, which are sometimes

easier to solve.

Letting

= n(T/T 
o )

8 = In(wT 0 )
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( a) = H(T)/T

and T = To ea where T is arbitrary, yields

+0

E f J ( C(a)[l + tanh (a-B)] da

(2.41)
+00

E2(B )  i f () sech (B-a) da

Similar expressions can be derived for the creep functions.

Fuoss and Kirkwood [21] derived exact inverse relationships

to obtain the spectral distributions from the components

of the complex functions.

H(1 = 1 m Im(-wti) 1= 1Im E*(we (2.42)

These equations are also discussed in Reference [17] and

[22]. The relations relating directly the two spectral

distributions and all the remaining interrelationships

are summarized in Tables 1 and 2.

Effect of Temperature: The constitutive equations of

materials are in general functions of temperature. In

general the effect of temperature on the properties of

materials is quite involved. In special cases, however, the

well-known time-temperature superposition principle may be
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TABLE I

DIAGRAM OF MATHEMATICAL RELATIONSHIP

OF THE CHARACTERISTIC FUNCTIONS

(After B. Gross)

Complex
Compliance

Function
D*(iw)

o c-
I -

Creep
Function
D (t)C

Algebraic
Relations---

(Eq. 6)

Volterra
*--Integral

(Eq. 3)

0-\
0U) 01
S

Retardation
Spectrum

L(T)

Integral
-Transforms

(Eq. 11,12)

Complex
Modulus
Function
E*(iw)

m CM'O O

Relaxation
Function
E r(t)r

©

0)
o

(C

c4

Clo

E1

Relaxation
Spectrum

H(T)

Note: The equations are summarized in Table 2.

-32-

O

'C
0)

H

©

0
0

cr

H

SU

,-0©

,-4

E

o)

O0);HS0
0d

rr
1--

HLf\H

01

S
0C0

H

0)

4-)

U)a,
©



TABLE 2

A Summary of the Transformations

Applied in Linear Viscoelasticity

De(t)

0h(t)

Sa(t)
Er(t) - h(t)

0

where h(t) =
0 t<O0

1 t)0

t
f Er(T)Dc(t-T)dT = t

0

D*(iw) = iw j Dc (t)e - i t dt

E*(iw) = iw f E (t)e -itdt

E*(iw)D*(iw) = 1
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TABLE 2 (Continued)

D*(iw) = Dl(w) + iD,(a )

E*(iw) = El(w) + iE 2 (w)

D (t) = J L(T)(1 - e-t/T) d T +
C 0 T

E (t) = f H(T)e-t/T d + E
O T

L(T) =

H(r) =

S t

o n

H("T)

[E - I H(u) d(inu)] 2 + 7r2H 2 (t)]

L(T)

L(T)

[D0 + f
o

L(u)
U
T

T)
+ Trr2L2 (rT)

= D + L(T ) d(lnT)
o 1+W 2T2

= J0 " L(T) d(ln(T
o 1+W 2 2

(7)

(8)

(9)

(10)

(11)

(12)

D 1 (aw)

D 2 (a)

(13)

1+ -- (14)

--

))



TABLE 2 (Continued)

E 1(w) = E0 + fI H(T)w2 T2 d(ln) (15)
o 1+W 2 T 2

E,(f ) = J mT H(T) d(lnt) (16)
o 1+0W T

Dc (t) = Do + 2 [(D (w) - D )/w] sin wt dw + t (17)

D (t) = D + 2 [D()/ - 1/W 2 n](1 - cos wt) dw + ~ (18)

Ec(t) = E + n

E (t) = E + 2 ( [(c )/ c wt dw (20)

L(t) = E + 2 m DE2(W)/w ) = m D* ( (20)

L = lim Im D* (-w 7iE) = 1 Im D* (we ir) (21)

H(= = lim Im E* (-+± i) = + Im E* (we l w ) (22)
7T 0 7T
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TABLE 2 (Continued)

H = + 2 lim Im E, (ciw) = 2 Im E (we iT/2) (23)
(T=) -7r E+*O Tr

(T=) lim Re E 2 (E±iW) = Re E2 (wei/2) (24)
22(4
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used to account for the effect of temperature. This

principle was found experimentally and proposed by Leaderman

[28] and Tobolsky and Andrews [50]. It simply states that

the viscoelastic functions obtained at different temperatures

can be derived one from the other by two consecutive shifts

on a log-log plot. If one has E(T) and wants to get

E(T ), one has to use a vertical shift first by plotting

poT o 0 E(T). This corresponds to the fact that an increase
pT

in temperature brings about corresponding increases in

entropy and modulus. A horizontal shift log aT is then

made. This shift corresponds to an acceleration of the

relaxation or retardation process due to an increase of

temperature. The shift factor has been related to the acti-

vation energy AEA of polymeric materials;

AEa
aT = e R ( T) (2.43)

which in the case of a multiphase system is difficult to

evaluate. For unfilled elastomeric systems an empirical

equation due to Williams, Landel, and Ferry known as the

WLF equation gives the value of aT [54]. The application

of the time-temperature superposition pr1moiple yields

plots which, in terms of the reduced variables, are inde-

pendent of the temperature. The reduced variables are;

PoTo E (t), T D (t), and t* t
pT r 00To aT
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The shift factor aT may be determined experimentally by

measuring the amount of shift necessary to superpose

experimental curves on a log-log plot. This principle of

time-temperature superposition can be applied when the

curves superpose exactly, and the plot of aT vs. tempera-

ture is a smooth curve. The material obeying such principle

is called thermorheologically simple. Schwarzl and Staverman

[44] show that materials are thermorheologically simple if

either they do not exhibit Newtonian flow, or their long

term viscosity has the same temperature dependency as the

remaining part of the creep function. The shift procedure

is also shown to apply to the spectral distribution

functions when they are defined on a logarithmic scale.

The complete characterization of linear viscoelastic

materials, becomes rather straightforward once the time-

temperature superposition principle is applicable. To

determine the viscoelastic functions for very short times,

many difficulties arise. One is the limitation of the

recording apparatus; another is the introduction of inertia

effects, which will produce vibrations whenever the

loading or the straining is very fast. Hence the loading

time is finite while the transient functions were defined

mathematically with a Heaviside step function. Consequently

the mechanical response observed will be mathematically

inaccurate for about 10 times the loading time.
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At long times, due to experimental inconvenience, the

experimental data are limited. Since the viscoelastic

behavior is essentially exponential and may cover more than

10 decades of time, the time limitation can be quite

serious.

Similarly, dynamic tests are limited to narrow ranges

of frequencies because of apparatus limitations. The time-

temperature superposition can be used to assist in

establishing the behavior of the material at above instances.

Extension to Three-Dimensional Cases:

For the three-dimensional case the relations discussed

above are still valid in form, but the scalar functions

are replaced by tensors.

t
[a(t)] = I F(t-t')[(t')] dt' (2.44)

o

In this expression F(t-t') is a linear transformation of

the space of symmetric tensors into itself [151. This

representation and similar expressions can be extended

immediately from the one-dimensional theory. The mathematical

foundation of the theory was laid recently through axio-

matization of the principles [15,23,52]. Coleman and Noll

[15] based their derivation on macroscopic assumptions about
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the mechanical behavior of materials with memory. They

treated the general case of finite linear viscoelasticity

for anisotropic materials. Biot [9] applied the methods

of Lagrangian mechanics for a network of interconnected

springs and dashpots and obtained the constitutive equations

in the form of differential operators. Khazanovitch [26]

derived the general constitutive equation of linear visco-

elastic materials under the form of hereditary functions

from the general principle of statistical physics, similar

to the derivation of the laws of viscous flow from statis-

tical considerations. In all these derivations the consti-

tutive equations separate explicitly a time independent

transformation (elastic) from a time dependent one. This

separation corresponds to a general case where the time-

dependent and time-independent behavior of the material

has two different microstructural explanations. Thus two

different afisotropies Can coexist. The time-independent

transformation is either the reaction at the origin of

time [9, 26], or the equilibrium condition for large

times [15]. For the case of isotropic materials all these

derivations show that only two functions are needed over

the whole viscoelastic range if the time-independent

transformation can be included as discontinuity functions

with the time dependent transformation.

Hilton [24] used mechanical models to define a three-

-40-



dimensional characterization of materials in differential

operator form.

Gurtin and Sternberg [23] have given a mathematical

development of the viscoelastic theory based upon the

hypothesis of hereditary expressions. They gave the

mathematical proofs to relations accepted intuitively.

They also showed that the functions required for the case

of isotropy reduce to two; the functions in shear and in

isotropic deformation. The implication of two different

functions means that the molecular explanation in the two

modes of deformation is different. Often the materials are

assumed to be incompressible and there is only one function

left to be determined.

Thus, by analogy with the elastic theory, stresses

and strains can be separated into deviatoric and volumetric

components or simple shear and bulk compression [48,49].

All the expressions developed for the case of uniaxial

loading can be repeated for three dimensional case. The

main relationships would be:

6.. t do..(T) t dS..
Eij 3 f d B(t-) T) dT

o o

(2.45)

t de (T) t de
a = 3 ij K(t-T) di + 2 J G(t-T) ij dTij ij 0 dT dT

O O

-41-



or, for the normal c6mponents of a one-dimensional case:

t dEii(T)
i (t) = E(t-T) dT

t d ii (T)

Sii(t) f= D(t-T) dT
11 dT

dT

(2.46)

The deviatoric components would be:

ij (t)13
t de (T)

=2 f G(t-T) 1 dT
dT

(2.47)

e.ij
1J-

t dS (T)

dT

and the mean hydrostatic pressure and volumetric deformation

would be:

t dsii(T)
a. (t) = 3 1 K(t-T) dT

11 d

Ei(t) 1

a i(t)li

(2.48)

dii(T)
B(t-T) di

dT

aii(t)

Sij(t) = ij(t) 13 ii(t)

ii (t)

e,,(t) (t)

E(t), G(t), K(t) are the uniaxial, shear and bulk moduli,
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while D(t), J(t) and B(t) are the corresponding

compliances. These two groups are related through convo-

lution integrals:

t

I E(t--T) D(T) dT = t

(2.49)I G(t-T) J(T) dT = t

t
f K(t-T) B(-) dT - t

which can be obtained by combining the preceding

equations, and lead to the following inequalities [55]:

E(t) D(t) < 1

(2.50)

K(t) B(t) < 1

The similitude with elasticity brings also the definition

of viscoelastic Poisson's ratio [48] for

E (t) = E h(t)x o

a (t) = 0 h(t)X o0

-y (t)
vr(t) = (t)

-L (t)

0 X )

-43-
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These equations can be written as an integral form:

t dE (T) t da (T)
- (t) = (t-T) dT = J (t-T)D (t-T) dT dT

o O

(2.52)

thus yielding:

t I -1SV (t-T)Vc (T) dT = 1 (2.53)
0r c

Through combinations of the preceding equations,

Volterra equations of the second kind can be obtained [49].

These equations establish relations similar to those

obtained in elasticity. They can be obtained more easily

through the Laplace images of the different functions,

since the different well-known elastic relationships yield

algebraic relations in Laplace domain. Table 3 lists some

of the relations derived by Theocaris [49]. When temperature

variation occurs, the constitutive equations are affected

as for the one-dimensional case. However, for the volumetric

deformation tensorsstrains due to thermal expansion are to

be added to the relation [24].
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TABLE 3

THREE-DIMENSIONAL RELATIONSHIPS

J(t)+ B(t)D(t) - +3 9

J
o 1

D(t) = 2[1+v (t)] 2
c

B
D(t) = 1 +

6[- v (T)]
2 c

B(t) = 3D(t)[1-2v ] -

J(t) = 2D(t)[l+v ] + ;

E(t) = 3K(t)[1-2v ] -

E(t) = 2G(t)[l+v ] +

t

0o'

:

1 dJ(t-T) dT
[1l+v (T)] dT

t 1 dB(t-) dT
1 dTr

o [ - vc(T)]

t dv (t-)

6 J CdT D(Tr)dT

t dv (t-T)
r c D(T)dr

t dv (t-T)
6 J r K(T)dT

dT

t dv (t-r)

dT
G(T)dr
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TABLE 3 (Continued)

J t

(t) = 2D(t) - + j IJ dt- DT)

B t
( 1 1 dB(t-T) dt

v c ( t )  [ -(t ] + dT D(T)c2 3D(t) & dr

t
E 1 dE(t-T) dT

Vr(t) = [ 2Gt) - 1] + - IJ dT d
o

v(t) = [1 - - 1 dE(t-T) d
O

(2.61)

(2.62)

(2.63)

(2.64)



III. METHODS OF APPLICATION

OF THE THEORY

The mechanical response of a material to different

programs of loading or deformation can be analyzed in

terms of either the transient or the complex functions as

defined in the preceding section. The simplest programs

of deformation (or load) are the static tests, the constant

rate of strain (or stress) tests, and the sinusoidal

strain (or stress). In the case of static tests, strains

(or stresses) are applied instantaneously and maintained

throughout the test and stresses (or strains) are

measured. These tests give directly the transient charac-

teristic functions. The results of these tests are limited

to a certain range of time. Short time results are

inaccurate and long time results are limited by experimental

practicality. These tests can simultaneously give the

relaxation moduli (or creep compliances) in two mutually

perpendicular directions by making two measurements in those

directions. Shear or bulk modulus (or compliance) can also

be measured directly.

Transient functions can be determined easily from

constant rate of strain (or stress) tests. Assuming
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E(t) = Rt; where R is the constant rate of strain and

using a Laplace transform, it can be shown that [54]:

[ d(t)] = E (t) (3.1)d =Rt r

This means that the slope of a stress-strain curve is

equal to the relaxation modulus. The limitations of this

test are; a) the determination of slopes from experi-

mental curves is highly inaccurate and, b) the range of

time for which the modulus is determined is generally

limited. To extend the time range one should use a large

number of tests with different strain rates. This test

can be used in conjuntion with a relaxation test and can

allow the determination of the relaxation modulus during

the short times. Similarly, for the case of a constant

rate of loading tests it can be shown that [45]:

[ ]=R t = [D(t) + ] (3.2)
a =Rt

The third common type of test uses a cyclic deformation

or loading, usually a sinusoidal function. The complex

functions are then determined directly by measuring the

phase lag between the excitation and the mechanical

response, and the ratio between their peak values. To
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obtain the response of material at short and long testing

times, the dynamic tests are generally performed over a

wide range of frequency. The limitations arise from the

experimental difficulty to produce a wide range of

frequencies with the same apparatus.

In the case of a thermorheologically simple material,

different temperatures can be used to extend the experi-

mental functions by the application of the time-temperature

shift procedure.

The characteristic functions determined experimentally

can then be transformed to derive the other functions by

using the equations of linear viscoelasticity. Detailed

reviews of the characterization procedures can be found in

References [12] and [391. The latter also lists the

available computer programs for characterization of visco-

elastic materials. The following is a brief description

of the different methods of characterization. First,

methods of solution for the exact interrelationships between

viscoelastic functions are presented. Then the approximate

relationships are summarized.

Analytical Fittings:

Different analytical expressions can be used to

represent the experimental data and make the viscoelastic

interrelationships readily usable. The polynomial repre-



sentations used for such expressions include Legendre,

Chebycheff and Laguerre polynomials [16, 38]. These

polynomial:representations have been used to obtain the

inversion of Laplace transforms of viscoelastic functions.

Fourier series have also been applied to solve

convolution type integrals [40]:

+00

f(s) = 0 K(s-t) g(t) dt (3.3)

where the unknown is g(t). The eigenvalues of K(s-t)

are first computed:

+m

X() I K(C) exp(iv) dC (3.4)

and equation (3.3) is then solved.

The most widely used methods of representation are

those based on Dirichlet or Prony series. These series of

exponential expansions are directly based upon the mechani-

cal model representations and they often provide a satis-

factory approximation of the mechanical behavior.

Alfrey [4] and Bland [10] have suggested various

techniques for representing the experimental curves by such

series. When the spectra of real materials are broad and

cover many decades of time the exponential series representa-
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tion of viscoelastic functions may result in unrealistic

description of the materials. There are two methods

commonly used to determine the appropriate Dirichlet series

representation of a viscoelastic function. One is

suggested by Tobolsky [51] and the other is proposed by

Schapery [42].

Tobolsky's Graphical Procedure: This method is basically

a graphical technique whereby the creep or the relaxation

functions are expressed as:

E(t) = E + Eie - t/i + ... + E e-t/n (35)

The graphical procedure will determine Ei and Ti from

a semi-logarithmic plot. If the plot of log (E(t) - E.) vs.

t is extended to large enough times t, the curve can be

approximated by a straight line. Tn is the negative slope

of this line divided by 2.303 and En  is obtained from

the intercept of this line with t = 0.

The next step is to plot the difference between this

line and the original curve in the same manner on a semi-

logarithmic plot. This plot will give En and n-

The procedure is repeated until the remaining difference

can be completely represented by a straight line. This

procedure gives a good approximation to the experimental
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curve and has the "advantage" of giving a mechanical model

that permits the visualization of the mechanical behavior

of the material.

Schapery's Procedure: This procedure obtains a set of

linear equations by arbitrarily choosing the exponents Ti.

n -t/Ti
E(t) = Em + Z Eie

i=I1

or (3.6)
n

D(t) = D + De iio i
i=1

Taking n experimental points:

n
[E(tj) = E + E Ei et Ti] (3.7)

i=1 for lJ< n

Ti  is assumed to be equal to 2t i . This technique not

only allows one to express the viscoelastic characteristic

functions of a material in an analytical form, but it also

provides an excellent means to establish the relationships

which exist among the various viscoelastic functions of a

material. The number of terms in Schapery's method is

chosen approximately equal to the number of decades of time

where the curves have a significant slope. Increasing the
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number of terms will result in an oscillation of the

fitted curve around the experimental data. This is because

some of the terms of the series become of opposite sign.

These terms of opposite signs are not basically wrong, but

they have a difficult mechanical and physical interpretation.

They could be represented by elements in Voigt or Maxwell

generalized models, which are in tension when all the other

elements are in compression, or vice versa.

Least Squares Fitting Procedure: Schapery's procedure

can be changed into a least squares fitting technique if

the data is not very smooth or if more experimental data

are to be included while keeping the number of terms in the

series constant, so as to avoid excessive oscillations.

This can be done by determining the coefficients of the series

nn -t/T iE(t) = E + E E. e (3.8)
i=1

while T. are chosen arbitrarily. If there are m experi-

mental data points; (Ej, t.) for 1 < j( m and m >, n

the total square error will be:

m n
(AE) 2  = [E(t.) - E .etj/Ti

j=1 i i=1
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Minimizing the square error with respect to the coefficients

Ei.

d(AE)2  2 m n Ti]d 2 Z [E(t.) - E e-tj/i][-et/Ti]
i j=1 ' i= i

This is a set of n linear equations with n unknowns:

m n m -t./-.
E E(t ) = E X. ( e J ) (39)

j=1 J i=1 J=1

For the creep curves the procedure is identical, but the

coefficients D. will be negative. One way to obtain a
1

more accurate representation of the creep, for t

approaching zero, is to modify slightly the equation by

writing:

n -t/Ti)

D(t) = D + E Di(l-e 1) (3.10)
1i=1

In this form the value of D(t) does not appear as a

difference of two large numbers for t -* 0.

Application of the Dirichlet Series: The series of expo-

nential expansions are very convenient to apply to some

interconversion equations. Laplace transforms and the complex

functions are readily available for these expressions.



Gross [22] also shows that the coefficients of the series

have the meaning of a discrete spectral representation.

Brisbane [11] suggested the use of these series

representations for the correction of experimental data

obtained for short times. In an actual experiment the

application of load or deformation cannot be instantaneous.

To account for this delay in loading or deformation of

the specimens, a correction should be made in the measured

data. This correction, in case of the relaxation modulus,

is based on the assumption that the relaxation modulus

of the material can be expressed in a Dirichlet series:

n
E(t) = E + E. e - it

i=1

When such a material is subjected to a stress relaxa-

tion test, the deformation being applied at a constant rate

of strain R, the stress S(t) will also be given as a

Dirichlet series:

n

S(t) = S + E Si e - it
i=1

The coefficients of the two series are related. When

the origin of time is taken at the end of the loading, an

accurate fitting series can be obtained for S(t), and the
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relationships between the coefficients of the series are:

-Sieaio
E.
1 R[l-eaito] (3.11)

and EM = Sm/Rto

where t = loading time.

Use of this technique will provide a more accurate

representation of relaxation data, especially for times

or temperatures where the material is sensitive to loading.

Numerical Integration of Convolution Integrals:

The creep and relaxation functions of a linear visco-

elastic material are related to each other by a Riemann

Convolution integral which in general form can be written

as:

t
g(t) = I c(t-T)P(T) dT (3.12)

Hopkins and Hamming [25] suggested in 1957 a numerical

method to integrate this integral equation. The solution

assumes that g(t) and (t) are known functions and 4(t)

is unknown. (t) and g(t) are furthermore assumed to

be known only at discrete points. The procedure to obtain

(t) is as follows:
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Introducing the integral *(t)

t
f(t) = J $(t) dT

0

gives f(0) 0 and df(t) (t.dt

The time interval is then divided into n intervals

t, (i=O...n) which can be arbitrarily small. Equation

(3.12) can be written then as:

g(tn+1) = n+i
0

n
g(t ) = 0

i=O
i+ 14, (-T)

n+i

To calculate the integrals, the trapezoidal rule of

gration is then applied:

t

Si+1(T)(t n+-T)dT =
.L Tn+1

=-(t +12) [f(tn+ -ti+1 ) - f(tn+-t ) ]

Then the sum becomes:

n-1
g(tn+) = -

i=0

+ (tn+ )

(t i+12) [f(tn+l-ti+) - f(t n+-ti)]

f(tn+1-t n)

This can be written as:
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n-1
g(tn+ ) - E (t1/ )[f(t -t ) - f(t n+-ti+ )]

f(tn+ -tn)

(3.13)

Thus the function (t) can be computed point by

point by recurrence, the first value being:

g(t i )
4t 1/2 g(t1 )f(t 1 )

Hopkins and Hamming demonstrated that this finite difference

integration is stable and that the effect of errors intro-

duced at different times dies out rapidly in subsequent

stages of the computation.

This finite difference procedure was used by Hopkins

and Hamming [25] to solve the Volterra integral equation of

the first kind relating creep and relaxation. It was also

used by Lee and Rogers [30] to solve a particular problem

in viscoelastic stress analysis, leading to a convolution

type integral.

Theocaris [48, 49] in the so-called indirect method

uses a similar procedure to solve Volterra's integral

equation of the second kind. He shows that for a cross-

linked polymer, all transient functions can be determined
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to a good approximation, if only one of them is known along

the whole viscoelastic range and another function is known

for initial condition.

For example assuming that D(t), the creep function,

and initial value of v (0), Poisson's ratio, or B(0),

bulk modulus, are known, Theocaris [48] by applying the

finite difference procedure to equations (2.57) and (2.62)

finds:

n
B(tn+I) = 3[D(tn) - 2 Doc (tn)] - 6 vc (tn) [D(t n+-t i+ ) -

i=1

D(tn+ l-ti)] (3.14)

and

1 B(t ) B(t ) n
V (t ) = -[1 - 3 D n [D(t n+1-t i+ )c n+l 3D°  n+ i+

0 i=1

D(tn + -t i ) ' (3.15)

where Do = D(tl), Vco = Vc (t I ) and B = B(t I ) are the

initial values of these three functions. The integration

may start either from the rubbery region and proceed back

to the glassy region or the reverse. The iteration process

is to use alternatively equation (3.14) and (3.15) starting at
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one end of the time scale, after dividing the time scale

into arbitrarily small intervals, such that the different

functions can be approximated by a constant. Starting

from one equation or the other would yield an upper or

lower bound for the computed functions. When the number of

subintervals increases indefinitely these two values tend

to approximate the exact value of the functions. Considering

the viscoelastic range divided into n double subintervals,

Theocaris [49] derives the following expressions to yield

an upper and lower bound for B(t) and vc (t) satisfying

his assumptions:

1 D(2n-2) D(2n-4) D(2) 1 (2)]
v2cn) - D(2n-1) D(2n-3) D(T 2 Vc

D(2n) D(2n-2) D(2)
B(2n) = D(2n-1) D(2n-3) "' -17 B(

(3.16)

1 (2n)] = D(2n-1) D(2n-3) D(1) 1 (0)]
2 c D(2n) D(2n-2) ( "' " 2 c(

B(2n) = D(2n-1) D(2n-3) D(3)
D(2n-2) D(2n-4) ... i B(2)

And similar expressions for the relaxation functions.

The so-called indirect method is obviously an approxi-

mation which may happen to be correct Just in special cases,
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By introducing an arbitrary assumption concerning the deri-

vatives of these functions, this method reduces an unde-

termined system of two equations with three unknown

functions to a determined system. This is in fact what the

finite difference method represents. A more fundamental

approach could be achieved by making clearer assumptions

with respect to the basic shear and volumetric functions.

For example assuming the material is incompressible

(K(t) = 0) or has a constant bulk modulus (K = constant),

or its viscoelastic bulk modulus is similar to its shear

G(t) - K(t)
modulus G(t) _ K(t). In any case the assumption made

Go  Ko

cannot be generalized but has to be tested for each particu-

lar material.

Iteration Procedures:

Roesler and Twyman [41] proposed an iteration procedure

which, when it converges, can be applied to solve the

Volterra integral equations:

Let f(s) = J K(s-t) g(t) dt (3.17)

where f(s) and K(s-t) are known functions. An approxi-

mation (n) of g(t) will be:
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f(n)(S) = f K(s-t) g(n)(t) dt (3.18)

Next approximation is defined by:

g(n+l)(t) - g(n)(t) = p[f(s) - f(n)(s)] (3.19)

where p is arbitrary. They show that the convergence

is assured if the kernel [K(s-t)] has all its eigenvalues

obtained from a Fourier expansion, of the same sign and

when p satisfies the relation 0 < p/Xmin < 2.

Generally iteration procedures can be applied to any of the

equations when convergence can be shown.

Approximate Relationships:

Numerous approximate methods are suggested in the

literature for determining complete viscoelastic functions

of a material from the results of a limited laboratory

test. In following sections several of these methods are

briefly reviewed.

Inversion of any Transient Function to any Other: A

crude approximation based on the inequalities of equations

(2.50) are suggested for solution of Volterra integral
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equations of the first kind.

t

I D(t-T) E(T) dT = t
O

At very short times t + 0 or at very large times

t + o the Volterra equation may be approximated by

D(t) E(t) = 1

In the transition region, however, the above equality

is a crude approximation to the integral equation and

results in unrealistic values for the unknown function. To

provide a better approximation Leaderman [28] and Aklonis

and Tobolsky [1] suggested that line tangents over small

portions of a master curve (log D c  or log Er vs. log t)

can be approximated by straight line tangents. This

approximation results in:

sin mir

E(t m 
Er(t) D (t)

where m is the slope of the straight line tangent to the

master curve at the point log t. The validity of the

expression requires that m < 1.

Taylor 146] suggests that, instead of solving
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t
I E(t-T) D(T) dT = t, the Volterra equations can be

solved in an easier manner if it is written as:

D(t)E(0) - j D(T) dE(t-T) dT = 1 (3.20)
0dT

He also suggested that the solution would be more stable if

the flow term is removed from the creep expression. Thus

decomposing the creep function into:

D(t) = S(t) + Rt

which after substitution in equation (3.20).results in:

t t
S(t)E(0) - S(T) dE(t-T) dT = 1 - R J E(T) dT (3.21)

dT
o O

and R = 1/ f E(t)dt

Determination of the Spectra from Transient Functions: The

exact relationship between a transient function and the

spectrum distribution function is:

E(t) = E + H(T) e t/ d(inT)

Alfrey [4] proposed a very simple approximation for solution

of this equation. The method assumes that the intensity

function (e ) behaves as a step function and has a



c value of 0 or 1 at T = t. By differentiation, the first

order approximation is then obtained:

dE(t) H
- d(nt) - H(T)t(nt

Thus the relaxation or retardation spectra are approximated

by the slope of the transient functions. The above

equation can also be solved using Laplace transformations.

Cost [16] presents a critical discussion of the

different methods of approximating the inverse of a Laplace

transform, which is the case for the determination of the

spectra. The inversion can be done rigorously if the

transient functions are analytical. For experimental

C functions, however, approximate procedures have to be used.

A general inversion formula is that of Widder's which

approximates an intensity function:

[tn e-Pt]

t
by a Dirac function. The inverse of f(p) = I f(t)e-Ptdt

is then:

n n
f(t) = lim [ (- ) n+ dnf(p)

n*i= dp p=n/t
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This formula is exact when n goes to infinity. So for

finite values of n one can get different approximations.

However, the formula involves the use of successive

derivatives of an experimental function and it is difficult

to obtain such derivatives accurately. This has resulted

in the use of only first and second derivatives. He shows

that Alfrey's rule described above is a first approximation

of his expression for n = 1.

Ter Haar [41] in a similar manner, assumed that

(te -Pt] can be approximated by a Delta function, and

proposed the following inversion equation:

f(t) = [pf(p)] 1 (3.23)P1t

or

H(enT) = E(nT)

Schwarzl and Staverman [43] have shown that in general

ter Haar's approximation can be considered as a zero order

approximation:

L(YnT) o - *(t) (3.24)

and that of Alfrey is of the first order approximation:
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L(Pnt) d(nt) (3.25)

They then suggest an expression, of a second order

approximation for the determination of spectra functions:

L(Int) 9' di(2t) _ d 2 (2t)
d0nt d(-nt)

or (3.26)

H(2 nt) - dE(2t) _ d 2E(2t)
d-Qnt d(Pnt)2

Ferry and Williams [18] also provide a second order

approximation method which is derived from the considera-

tion that a double logarithmic plot of the spectral

functions can be approximated locally by straight lines of

(-m) for relaxation and (+m) for creep such that:

H(T) = - M(m) E(t) dlogE(t)
dlogt

t=-T

(3.27)
and

t dlog[D(t) -
L(T) = M(-m) [D(t) - ]

n dlogt t

where M(m) = 1/r(m+l). The method is limited to positive

values of m. The calculation is done by successive approxi-



mations. Comparing the preceding two second order approxi-

mation methods it appears that they are equivalent for

their use because even though the procedure indicated by

Ferry and Williams does not require the second derivative

of E(t) or D(t), it requires the determination of the

slope of their spectra. Moreover n has to be known for

Williams-Ferry method. A completely different method

is proposed by Roesler [40] where the transient functions

are expanded in Fourier series and the spectra are also

given in terms of Fourier series, coefficients of which are

related to the first series.

Schapery [42] has proposed two methods for the inversion

of a Laplace transform associated with the determination of

spectra functions. His first method is similar to the

methods suggested by Alfrey and by ter Haar with a slight

change, which resulted from a different location used by

Schapery for the approximate delta functions.

F(t) = pf(p)] 0.5
P

(3.28)
or dE(t)

H(T) -
dint

t = 0.5t

The second method is based on the principle of least
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( squares, which gives a discrete spectral representation

derived from the Dirichlet series.

Cost [16] also presents a method of inversion of

Laplace transforms using Legendre polynomial expansions.

Solutions obtained from this method may be unstable and

may oscillate. Clauser and Knauss [14] describe the

direct numerical inversion and state that Cost's solution

is unstable and yields increasing oscillation if one wants

to evaluate the spectra with more accuracy. They present

an improved method which imposes minimization of the

curvature with arbitrary constraint. The method, however,

is not general and may provide severe oscillations in

certain cases.

Determination of Spectra from Complex Functions: Fuoss

and Kirkwood [21] and Gross [22] derived exact and simple

relationships to obtain the distribution functions, given

in equation (2.42) in terms of complex functions. These

formulas are exact and do not require any approximation

methods. The Williams-Ferry Method provides two formulas

to obtain the spectral distributions from the real parts

of the complex functions depending on whether m the

negative slope of a doubly logarithmic plot is greater

than or less than 1.
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For m < 1:

H(T) = AE' () dlogE'(w) (3.29)
dlogw 1

1L - T

where: A = (2-m)/2F(2-2 ) (1+m)

and for 1 < m < 2:

H(T) = A'E'(w) 2 - dlogE' (w) (3.30)
dlogw 1

- T

where: A' = m/2F(l+m) (2- m
2 2
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IV. MATERIALS AND PROCEDURE

In this section the materials used in this study are

presented, and the test procedures used to determine the

viscoelastic functions of sand-asphalt mixtures are

discussed.

Aggregate:

The introduction of large volumes (80%) of aggregates

into sand-asphalt mixtures makes the selection of the

right quality of aggregate very important. It is necessary

that aggregates be inert, sound, durable and well graded.

Ottawa sand, used in this study, satisfies the above

requirements. The gradation of sand was within the speci-

fication limits of ASTM D1663-59T for sheet asphalts as

shown in Table 4. Flint powder was used as mineral fillers

(passing 200 sieve).

Asphalt:

The asphalt used in this study was AC-20 grade asphalt

cement coded B-3056 from the "Asphalt Institute - Bureau of

Public Roads Cooperative Study of Viscosity - Graded Asphalts".
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Table 4

GRADATION OF AGGREGATES

Sieve Size ASTM Specification Selected Gradation
D1663-59T % Passing*

No. 16 85 - 100 100

30 70 - 95 75

50 45 - 75 45

100 20 - 40 26

200 9 - 20 15

Percent of the total weight of material passing a given
sieve size.

Table 5

THE RESULTS OF CONVENTIONAL TESTS ON ASPHALT

USED IN THIS STUDY

Test

Specific Gravity 77/770 F 1.020

Ductility 770 F 250 + CM

Penetration 200gm., 60 sec., 39.9 0 F 30

Flash Point, Cleveland Open Cup 545 0F
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The results of conventional tests on this asphalt are

shown in Table 5. An asphalt content of 9% by weight of

aggregate was used for this study, which was within the

range recommended by ASTM D1663-59T for sheet asphalt.

Preparation of Mix:

The asphalt and a pre-weighed amount of aggregate were

heated separately to a uniform temperature of 325 0 F, along

with the mixing bowl and plates from the mechanical mixer.

The exact amount of heated asphalt was added to the pre-

heated sand, and mixed for one minute in a mechanical mixer.

The bowl was scraped and mixed for another minute. The mix

was then removed from the bowl and spaded for another minute

with a heated spatula to obtain uniformity. Mixtures were

then wrapped and stored in a refrigerator for less than one

day.

Preparation of Specimens:

A miniature Marshal Compaction Apparatus was used to

fabricate the specimens from the mix. The specimens were

1.4 inches in diameter and 3 inches in length. About 170

grams of sand-asphalt mixtures were heated along with molds

and collars in an oven for 15 minutes at 275 0 F. The mix was
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then compacted under the medium compactive effort corres-

ponding to medium traffic design category. The method of

compaction used was as follows:

A predetermined weight of asphalt mixture

was placed in the mold. The mixture was given

one-half the number of hammer blows calculated

for the amount of compaction desired, that is 25

out of 50 blows. Each blow delivered 15 foot

pounds of energy. The specimen was then turned

over and 25 compaction blows were given on the

second end. The specimen was cooled for a short

time and removed from the mold by means of a

special hydraulic jack extrusion apparatus and

brought to room temperature and stored in a

refrigerator until ready for testing.

It was found that the above compaction procedure yields

specimens that are uniform and of almost identical bulk

densities.

The density of the samples used in this study was

determined by weighing the specimens in air and then in

water. The expression used for the bulk density of the

specimens was:

weight in air
weight in air - weight in water
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The table of densities for some of the specimens

tested is given in Table 6. The average density and void

content is also given in the same table.

Test Procedure:

Creep Tests: In order to conduct a static creep test, a

constant axial stress was applied to the specimen and

maintained for a certain period of time under a constant

temperature and the deformation was continuously recorded.

The creep apparatus used is shown in Figure 2.

Each specimen was brought to equilibrium at the

testing temperature by placing it at least one hour prior

to testing in the appropriate water bath. During the test,

the temperature was maintained at desired temperature by

circulating water around the specimen in a triaxial test

chamber. A thermostat and a heater in the cell maintained

the temperature to within .10 C of that desired. Loading

was done by means of consolidation weights applied to the

loading frame with a hydraulic jack. Deformation was

recorded by means of an LVT transducer (Daytronic Model

102B-600) connected to a Varian Recorder (Model G-14A-1).

The amount of strain was limited to 1%. At low testing

temperatures, below 00 C, ethylene-glycol was added to the

circulating water to prevent freezing.
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Table 6

SAMPLE DENSITIES

Sample Number Densities Sample Number Densities

1 2.20 21 2.26

2 2.22 22 2.27

3 2.26 23 2.27

4 2.27 24 2.25

5 2.30 25 2.28

6 2.28 26 2.25

7 2.28 27 2.26

8 2.25 28 2.27

9 2.28 29 2.26

10 2.29 30 2.27

11 2.28 31 2.27

12 2.25 32 2.27

13 2.24 33 2.27

14 2.25 34 2.26

15 2.27 35 2.26

16 2.27 36 2.25

17 2.23 37 2.25

18 2.24 38 2.23

19 2.25 39 2.26

20 2.27 40 2.26

Average Density for the

p = 2.26

Void Content = 7%

9% Mix
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The specimens were also mechanically preconditioned

prior to testing. The recorder was allowed to run and the

load was applied carefully and kept for ten minutes, after

which the load was removed for a period of ten minutes.

Each specimen was loaded and unloaded three times using

the same load in order to minimize end effects and to control

the uniformity of specimens. For each temperature and

each stress level three identical specimens were tested.

Relaxation: Stress relaxation tests were performed by

applying a predetermined strain on the compacted specimen

and measuring the stress necessary to maintain this strain

as a function of time. Temperature equilibrium was attained

by keeping the specimens at the test temperature for at

least an hour prior to testing. The actual tests were done

utilizing an Instron testing machine. The fastest rise rate

of the crosshead that could be applied was .2 inches/minute.

This rate of deformation was used to approximate as closely

as practically possible the step strain input used in an

ideal relaxation test. The test cell (in which temperature

was maintained) was placed directly on the crosshead of the

Instron. The specimens were preconditioned by straining

each sample to about .3% and letting the stress relaxation

of the specimen occur for five minutes. Then the deforma-

tion was removed, allowing the specimen to reach an
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equilibrium position under zero stress. This cycle was

repeated twice more before testing. Various strain levels

were used for the actual tests.
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V. EXPERIMENTAL RESULTS AND DISCUSSION

Asphalts have been shown to be a linear viscoelastic

liquid above the glass transition temperature [8]. The

time-temperature superposition principle was found valid

for asphalts and the WLF equation is obeyed over a wide

range of temperature.

Bituminous concrete mixtures have also been analyzed

using rheological principles. Papazian [37] tested asphalt

mixtures dynamically to arrive at general stress-strain

relations of a linear viscoelastic material in the

frequency domain. Alexander [3] performed creep, constant

rate-of-strain and relaxation-type tests on bituminous

concrete and determined the limits of linear viscoelastic

behavior. He also compared the behavior in tension and in

compression and concluded that the properties were

different in the two cases.

The effect of temperature on the response of asphalt-

aggregate composite has also been investigated. Pagen [36]

and Lottman [31] found that time-temperature superposition

was applicable to such mixtures.

The experimental phase of this investigation consisted

of the determination of the rheological response of a sand-
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asphalt mixture by using transient creep tests and stress

relaxation tests. The viscoelastic functions were extended

over a wide range of temperature by using the time-

temperature superposition principles. The two series of

experiments were then compared and the complex functions

were predicted from the results of the transient functions.

Creep:

Effect of Repetition of Loading: Characterization of a

material requires that experimental tests be repeatable

and reproducible.

The first quality is directly related to the principle

of Fading Memory. If this principle can be applied, the

repetition of the load will not have a significant effect

on the response of the material providing enough time is

left between the different loadings. However, Figure 3

which is a typical example at 450 C shows that the rheologi-

cal response of the material is influenced by the loading

history, and the same specimen undergoing the same creep

test gives a different creep function after each loading.

This behavior is not surprising since the mixture is

expected to behave primarily as a granular soil because of

the large percentage of the aggregates. Al-Ani [2]

performing creep tests on a similar type of material,
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found the same behavior. The curves show that after

three cycles the effect of the repetition of the load

becomes small.

The second required test quality is reproducibility.

This refers to the possibility of obtaining identical

results from similar tests performed on identical specimens.

It was found that the scatter observed for the first cycle

due to slight variations in the densities or due to any end

defect is larger than that obtained from the subsequent

loadings. During the first cycle the specimen work

hardens, and the increase in stiffness is mainly due to the

interlocking of the sand particles and due to a slight

increase in density. The creep compliance is thus expected

to tend asymptotically towards a minimum value, and possibly

increase again later on under fatigue processes. This work

hardening is a transient state in which the properties of

the material are changing and it significantly interferes

with linear viscoelastic characterization.

For this study, all the specimens were preconditioned

by three cycles of loading as described above to insure a

better repeatability and reproducibility of the tests. It

is believed that the choice of the fourth cycle rather

than the first cycle to describe the material is also

preferrable when the results are used for prediction of the

dynamic functions of the material. The material after three
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cycles of loading is closer to a steady state rheological

configuration. Ideally a larger number of preconditioning

cycles are required to obtain a better uniformity in the

specimens tested at different temperatures and at different

stress levels.

Effect of Finite Loading Time: The definition of creep

functions assumes an instantaneous application of the load

which would correspond to a Heaviside step function. This

cannot be achieved in reality. Application of a load

requires a finite time. The shorter this loading time is,

the better would be the approximation of a Heaviside step

function. Unfortunately for very fast loading, the inertia

forces could not be neglected and damped oscillations could

occur. The loading procedure, however, affects only the

results at short times. This is also a consequence of the

principle of fading memory. Generally results are unaffected

by duration loading time after ten times the loading time

has elapsed.

In this study the specimens were loaded mutually and

the time required to place the load was of the order of a

tenth of a second. Results reported are for times larger

than two seconds.

Creep Curves: Figure 4 shows typical creep curves at

250C where strains are shown as functions of time on an
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algebraic scale for different stress levels. Semi-

logarithmic plots of creep tests, as shown in Figure 5,

are more useful for the analysis of the data in the short

time region. Figure 5 also shows the amount of variations

generally obtained among identical specimens tested under

the same load.

Tests of Linearity: To test the linearity assumption, two

series of plots are used; the isochrones and the compliances.

Figure 6 represents a typical isochrone plot for the results

of creep tests at 25 0 C. The stress-strain relationships,at

any given time, are well approximated by straight lines

which indicate that the material tested is linear when

tested in creep. Similarly, Figure 7 which shows the com-

pliances obtained from the results of tests performed at

different stress levels can also be used as a check of the

linearity. The creep compliance is defined as the strain

response to a unit stress applied instantaneously. When such

compliance curves can be superimposed, the material is

considered to be linear.

Temperature Effects: Since the asphaltic mixtures are

shown to be temperature sensitive the results of the creep

tests are also very sensitive to temperature changes. The

limits of linearity thus vary at different temperatures. To

assure that material is linear, the linearity was checked
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at all the six temperatures used in this study. The

figures showing the creep compliance curves and the iso-

chrones obtained at these temperatures are presented in

the Appendix.

Time-Temperature Superposition Principle: Figure 8

presents the creep compliances obtained at six different

temperatures. The compliances are plotted as reduced

T
variables D - corrected for the entropy temperature

change. The reference temperature was chosen as 250C. The

correction for density change was neglected since the

levels of deformations were very small, and the density

changes were less than .5%. The application of the time-

temperature superposition principle was tested on the

curves of Figure 8 and the creep compliance master curve

was obtained for the reference temperature. The shift

factors were measured graphically by evaluating the hori-

zontal translation necessary to superpose the different

curves. They were then plotted on Figure 10 vs. the recipro-

cal of the absolute temperature. This plot was found to

be close to a straight line and this corroborates with

the theoretical expression relating it to the activation

energy. The master creep curve in Figure 9 shows three

different regions of viscoelastic behavior:

1. A glassy region, where the effect of time is

not very important, corresponding to low tempera-
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ture or short time response of the material.

2. A transition region in which the reduced

compliance changes very rapidly with time and

temperature.

3. The onset of a rubbery region where the

time effect diminishes.

Relaxation:

Effect of Repetition of Straining: A parallel study was

made on the relaxation tests. The effect of the repeti-

tion of the straining was checked and it was found to be

very important. Figure 11 is a typical example of the

effect of repetition of the deformation at a relatively

high test temperature. In relaxation, a higher number of

cycles is required to reach the steady state response

particularly at high temperatures. This is easy to under-

stand since in a creep preconditioning the sample attains

large strains at the first loading, while if preconditioned

in relaxation, the amount of deformation introduced in the

material is very small. Thus for elevated temperatures,

the samples were either preconditioned with six cycles or

preconditioned with a constant load similar to the pre-

conditioning realized for the creep tests. The straining

was performed on the Instron Testing Machine.
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Effect of Finite Loading Time: As discussed above for

the creep tests, the application of the strain cannot be

instantaneous. A high rate of loading can be used, but

it may produce wave propagation and the inertia forces

would become significant. Also the inertia of the

recording apparatus would not permit significant observa-

tions of fast varying results. To avoid these difficulties

the specimen was deformed at a rate of 0.2 inches/minute

which corresponded to a strain rate of 1.12 x 10 - 3 inches/

inches/second. A numerical method using a collocation

technique, which was described in section III was used to

correct for the error introduced by the stress relaxation

occurring during the loading period. The results of such

a correction are shown in Figures 12 and 13 for two

different test temperatures. To emphasize the variations

of the results at short times, the time axis is plotted in

logarithmic scale. The origin of time is taken at the

end of the loading time. Relaxation modulus is defined as

Er(t) = E(t)/Eo, Eo being the strain applied at zero time

as a step function. Figure 12 contains the results of

stress relaxation tests at -50C. At this temperature the

response of the material does not vary significantly with

time and it is referred to as the glassy region, hence

the correction for finite straining time is not very sig-

nificant. Figure 13, however, represents the relaxation
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modulus at 350C, the transition region. The correction

in this region is significant and the results should thus

be accounted for. The feasibility of the correction

method was tested on a three-element mechanical model,

and it was found to improve the validity of the experi-

mental curve for short times. However, the accuracy of

the correction depends highly on an accurate experimental

curve and a good fitting for the short times. Moreover,

it was found that when time-temperature superposition

principle is applied to the corrected relaxation results,

the superposition would be better than that for uncorrected

results. Thus all the relaxation results in this study

were corrected for finite straining time prior to their

use. Figure 14 shows typical stress relaxation curves at

25 0 C.

Tests of Linearity: Linearity of the relaxation results

are also shown in two series of plots, the isochrones and

the moduli. Figure 15 shows the isochrones of relaxation

curves. The results are similar to Figure 6 which shows

the isochrones for creep data. The relaxation modulus at

250C is plotted in Figure 16. The fact that the relaxa-

tion moduli determined from the results of tests under

different levels of applied strain are superposed indicate

that the material is linear viscoelastic.
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Temperature Effects: A complete characterization of a

material requires the determination of the viscoelastic

functions at different temperatures. For relaxation

tests, six different temperatures were used and the

relaxation curves and the isochrones are shown in the

Appendix.

Time-Temperature Superposition Principle: In Figure 17,

all the relaxation moduli of the sand-asphalt mixture

obtained in this study are plotted as reduced variables
T

E o vs. time to an arbitrary base temperature of 250C.rT

By appropriate horizontal shifts of these reduced curves,

the relaxation master curve at the reference temperature

of 250C is constructed in Figure 18. The procedure used

here is similar to that used for the creep compliance

master curve. The master curve of relaxation modulus

shows also three different regions; glassy region, transi-

tion region, and rubbery region.

Comparison of Creep and Relaxation:

Shift Factors: The values of the shift factors obtained

from both the creep and relaxation results are compared in

Figure 10. Within the limits of experimental accuracy,

the shift factors obtained from the relaxation and the
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creep tests are the same. This indicates that the sand-

asphalt mixture used is a thermorheologically simple

material. The shift factor represents the function of

temperature at a given time, while the master curve

represents the function of time at a given temperature.

Analytical Expression of Master Curves: To express the

relaxation and the creep characteristic functions

analytically, the experimental data was handled using

Dirichlet series. The technique is described in section

III of this study. The number of terms was chosen

approximately equal to the number of decades of time

where the curves have a significant slope. The relaxation

modulus Er(t) and the creep compliance D (t) are:

11 _ai t
Er (t) = E +Ei E e

i=1

and
I -ait

D c(t) = D + E D.eait
i=1

The numerical values obtained for coefficients Ei, Di and

ai. are given in Table 7. E, and D are the values

of the relaxation and the creep compliance at infinite

time. A computer program to perform this collocation

was written for this study and it is listed in the Appendix.
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TABLE 7

Series Fitting of Master Curves

Creep Compliance:

Relaxation Modulus:

where:

D =

D

D =

=

D =

D =

D =
D 

=

D =
D =
D 9 =

D

D c(t) = D + Di e-ait
i=1

E (t) = E + E Ei e-ait
i=1

a. = 0.5 x 1 0 (5-i)

-0.697

+0.458

-0.165

-0.330

-0.213

-0.245

-0.546

-0.662

-0.797

-0.133

-0.361

+0.750

10-6

10- 7

10-s

10-5

10-4

10-4

10-4

10-4

10-4

10-3

10-3

10-3

for 1 ( i 11

El

E =E 2

E -

Es =

E =

E =E 6

E

E 11=

E

+0.545

+0.231

+0.706

+0.526

+0.299

+0.143

+0.659

+0.317

40.126

+0.478

+0.160

+0.130

105

10s

10s

10 s

10 5

10 s

104

10 4

104

10 3

103

10 4
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The same program was used previously in viscoelastic

study of cement paste [34].

The use of this technique in certain cases may result

in certain coefficients with opposite sign. When such

variations in sign of the coefficient occurs, it means that

too many terms were used to approximate the transition

region. Since the coefficients (Ei ) and (-Di) can be

considered as an approximation to a continuous spectral

distribution function or as a discrete spectral distribu-

tion [22], it seems to be physically unacceptable to have

the coefficients (Ei ) or (-D i ) with negative values.

In Figure 19, log Ei and log (-D i ) are plotted vs.

log 1/a i . It should be kept in mind that coefficient Di's

are negative, thus (-Di)'s are positive quantities. This

plot can be considered as a discrete spectral representa-

tion of the transient functions. For the sake of clarity

of the figure, instead of plotting the values of (Ei )

and (-Di), their logarithms are plotted. Thus the nega-

tive value (-D 2 ) found in the series fitting, could not

be shown since it does not have a logarithm.

The occurrence of this negative value (-D 2 ) could

be avoided in the series either by changing the number of

terms or by choosing other values for the exponents ai.

This value was kept, however, in the fitting series, since

this representation is considered as a purely mathematical
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expression.

Comparison in Laplace Domain: The above curve fitting

technique provides an excellent means to establish the

relationships which exist among the various viscoelastic

functions of a material. For example a comparison of the

relaxation modulus and the creep compliance may be done

easily in the Laplace domain. This can be achieved using

the Laplace transform of the above expressions for E (t)

and D (t) , that is:

E(p) = pEr(p) = p Er (t) e -P t dt

E E.
E(p) = p[- + 1

p p+ai = 1 i

and

D(p) = pD (p) = p J D (t) e - p t dt
O

D 11 D.
D(p) = p[- + E 1

p p+ai = 1 i

In Laplace domain, these quantities are simply the

inverse of each other such that E(p) = [(p)]-' or

pE (p) = [pD (p)]- . The values of E(p) and

[-(p)]-1 are plotted vs. p in Figure 20. This figure

shows that a good correspondence exists between the results
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of the creep and the relaxation tests in all regions

except in certain transition parts, where the two values

deviate from each other. This deviation is attributed

to experimental variation occurring in the preconditioning

stage. Figure 11 shows the extent of this variation for

the relaxation results. Moreover the time-temperature

superposition principle may increase considerably the

experimental errors in the master curves because an error

in the evaluation of the shift factor aT  for one

temperature is cumulative throughout the graphical shift

procedure.

Direct Conversion of Master Curves: In Figures 21 and 22,

direct comparison of the two functions in the time domain

is obtained using numerical integration of Volterra

equations:

t

f Er(t-T) Dc(T) dT = t
o

and
t

J D c (t-T) Er(T) dT = t
o

The procedure used was that of Hamming and Hopkins

numerical technique which is described in previous sections,

and the FORTRAN listing of a computer program using this
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procedure is in the Appendix. Comparisons of creep and

relaxation results in Figures 20, 21 and 22 show similar

trends in Laplace and time domains; a good comparison

in the glassy region and part of the transition region

and some deviations occurring towards the end of the

transition region. This corresponds to the curves obtained

from high temperatures and long times. In this region the

cycling effect was most pronounced and the limit of

linearity was very low, which would suggest that either

another way of preparing the specimens to minimize this

cycling effect should be found or non linearity of the

material occurring in this region should be accounted for.

Comparison of Complex Functions: Substitution of (iw)

where w is the circular frequency of a dynamic testing,

for p in the analytical expressions of the associated

functions E(p) and D(p), gives the complex functions:

n E.(iw)
E*(iw) = E + E

i=1 1

and

E*(iw) = E 1 + iE2

n EiW2

where E (w) =E +
Si=1 i+2
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n Ei i
E 2 (w) = 2

i=1 +W 2

Similar expressions are obtained from the Dirichlet

expansion of the creep compliance. Figure 23 is a plot of

D,(w) and D 2() obtained from Dc(t), and Figure 24 is

a plot of EI(w) and E 2 (w) obtained from Er(t). These

dynamic functions derived from two independent sets of

results, creep compliances and relaxation moduli, can be

directly compared.

From D,(w )  D ) + iD (E () = it can be shown

easily that:

E
Di(w ) = 1

(E )2 + (E )2

and

-E 2

D2(w)2 (E )2 + (E )2

The values of Dj(w) and D 2(W) calculated directly

from D c(t) are compared in Figure 25 with the values

computed from Er(t) and E,() and E (w). The

deviation that occurs corresponds to the same deviation

observed in the former comparisons made in Figures 20, 21

and 22 in Laplace and time domains. Finally the two
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different complex functions are compared by the

evaluation of their loss tangent, in Figure 26:

E2(w) -D 2(w)
tan 6(w) = =

In this plot the deviations are emphasized due to the

addition of the errors obtained from E (t) and D (t)

and then increased because of the division of the imagi-

nary and the real part of the complex function.

Summary of Results:

The results presented above indicate that the

sand-asphalt mixture used in this study exhibits a

distinct time dependent behavior which is highly tempera-

ture susceptible. The application of theories of linear

viscoelasticity to time dependent response of this

material indicated that to within a certain degree of

approximation the material can be assumed as linear

viscoelastic. The temperature dependency of the material

was found to be within the realm of thermorheologically

simple materials and the time-temperature superposition

principle is applicable to the response of the material.
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VI. CONCLUSIONS

The results of this study have demonstrated a few

basic points:

1. The response of sand-asphalt mixture to creep and

relaxation modes of testing is similar to that of a linear

viscoelastic material, providing the levels of imposed

stresses and/or strains are small, and the work hardening

effect is minimized.

2. The time-temperature superposition is applicable

to the response of such a material in creep or relaxation

tests, and the necessary shift factors in these two modes

of testing are almost identical. In order to minimize the

cumulative errors produced by the shift factors, however,

it seems preferable to extend as much as possible the

experimental range of time such that the number of tempera-

tures necessary to complete the master curve can be

reduced.

3. Exponential series can be used for analytical

representation of creep and relaxation functions and they

provide for easy transformation of one set of viscoelastic

functions into another. They allow a good representation

of the experimental data over a very wide time or frequency

range. The accurate prediction of the complex functions from

401#
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the results of transient functions (creep and relaxation)

depends on the degree of accuracy by which the transient

functions are related to each other. Thus a unique

transient function, accounting for the experimental errors,

should be used to predict the complex values.

4. The numerical methods allowing direct conversion

of one transient function to another can be used to obtain

the necessary functional transformations with a high degree

of accuracy.

5. The study of the characterization of sand-asphalt

mixtures should be completed by performing some dynamic tests

and comparing the actual results with values predicted from

creep and relaxation tests. Also an independent visco-

elastic function should be measured experimentally, as the

Poisson's ratio. The numerical techniques described above

using the indirect method would then be checked on sand-

asphalt mixtures to see if only the initial value of this

independent function is necessary. The study may then be

extended to an investigation of the effect of the asphalt

content and the asphalt type on the viscoelastic behavior.
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C PROGRAM FOR CURVE FITTING AND RAMP CORRECTION
C J AND L ARE IDENTIFICATION NUMFEPS
C M=N=NIJMBER OF TERMS IN SERIES
C CNOT=ASYMPTOTIC VALJE FOR INFINITF TIME
C TNOT=LOADING TIMF
C RATE=VALUE OF CONSTANT RATF OF STRAIN
C SIGMA=EXPERIMENTAL VALUE OF RELAXATION LOAD
C RAT=AREA OF CROSS SECTION
C ALPHA=VALUE OF EXPONFNTS
C HCOEF=COEFFICIENTS OF FITTING SERIES

C DCOEF=COEFFICIENTS OF CORRECTED SERIES REPRESENTATION
C DCnEF=COEFFICIFNTS IF CORRECTED SERIES REPRESENTING

C RELAXATION MODULUS
C DNOT=ASYMPTOTIC VALUE OF RELAXATION MODULUS

DIMENSION SIGMA(20), T(20),ALPHA(23),HCOEF(20),D(20,20)
DIMENSION A(20,20) ,FRS(20), F(20,20),FR(20)
DIMENSION COEF(20) ,DCOEF(20)
DIMENSION BM(23,20),CM(20,20)

999 READ(5,1)J,L,M,N,CN9T
I FORMAT( 415,F0.5)

RFAD(5,231)PAT
231 F0RMAT(5X,FI0.3)

WRITE(6,231 )RAT
CNCN=CNOT/RAT
WRITE(6, 100)J,L,M,N,CNOT

100 FORMAT ( 415,F I 0. 5)
READ(5, 15)TNOT,RATE

15 FORMAT(2FI0.5)
WRITE(6, 15 )TNOTRATE
READ(5,3)(T(I),I=1,N)

3 FORMAT (8F10.5)
WRITE(6,102) (T( I),I=I,N)

102 FORMAT (8F10.5)
PEAD(5,2) (SIGMA( I,I=, N)

2 FORMAT (8F10.5)
D0 232 I=I,N
SIGMA(I)=SIGMA( I)/RAT

232 CONTINUE
WRITE(6,101)(SIGMA(I),I=1,N)

101 FORMAT (8F10.5)
C COMPUTE COEFFICIENTS

00 4 T=1,N
ALPHA(I)=1./(2.*T( I))

4 CONTINUE
WRITE(6,103) (ALPHA(I),I=1 ,N)

103 FORMAT('COEFFICIENTS OF EXPONFNTS.=',7F1O.4,//)
DO 5 I=l,N
D(I,1)=SIGMA( I)-CNOT

5 WRITE(6,98)D(I,1)
98 FORMAT(FI10.4)

DO 6 I=2,N
DO 6 J=1,M
A( I,J)=0.O
FRS(I)=-T( I)*ALPHA(J)
A( I,J)=A(I,J)+EXP( FRS(I))

6 CONTINUE
DO 61 J=lM

61 A(1,J)=1. -168-
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DnC 99 T=1,M
99 WRITE(6,104)(A(I,J),J=1,M)
104 FORMAT(7FIO.5)

DO 1000 I=1,M
DO 1000 J=1,M

1000 BM(I,J)=A(T,J)
CALL MATINV(A,M)
DO 7 I=1,M

7 WRITF(6,106)(A( I,J),J=1,M)
106 FOIRMAT(4X7E10. 5)

CALL MULTP(A, BM, CM,M, M, M,I M ISUCC,3)
DC) 2000 I=1,M

2000 WRITE(6,106)(CM( I,J) ,J=1,M)
CALL MULTP(AtDF,M,M,M,t ISUCC,0)
WRITE(6, 105)( F( I,1), I=1,M)

105 FORMAT(4X,'RAMP COEFFICIENTS.=', 10F 10.3,//)
C COMPUTE MODULUS COFFFICIENTS

00 8 I=1,N
8 HCOEF(I)=F(T,1)

CALL PLOT(M,ALPHA,HCOFF,CNOT)
DO 9 I=I,N
S=ALPHA(I )*TNOT
IF( ABS(S)-50) 85,90,90

85 DCOEF(I)=( HCOEF(I)*(EXP(S) ) ALPHA(I))/(RATE*(EXP(S)-l.))
GO TO 9

90 DC OEF(I)=(HCOEF(I)/(RATE*TNOT) )
9 CONTINUE

WRITE(6,107)(DCOEF(I),I=l,N)
107 FORMAT(4X,'MODULUS COEFFICIFNTS.=',7E10.3,//)

C COMPUTE CONSTANT VALUF OF MODULUS
DNOT=CNOT/(TNOT*RATE)
WRITE(6, 108)DNOT

108 FORMAT (4X,'CONSTANT VALUE OF MODJLUS.=',1E10.3,//)
CALL PLOT(M,ALPHA,DCOEF,DNOT)
GO TO 999
FND
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SUIBROUTINE MULTP(A,8,C,MANA,MB,N,,ISSUC,48)
C, A=MA*NA MATRIX
C B=MB*NB MATRIX
C C=PRODUCT MATRIX
C ISSUC=TEST FOR CONFORMABILITY
C IF=TFST FOR HOMOGENEOUS SYSTEM

DIMENSION A(20,20),B(20,20),C(20,O0),TEMP(400)
IF(NA-MB) 1,2,1

1 ISSUC=2
WRITF (6,40)
GO TO 35

2 ISSUC=I
IF(IB-0) 15, 5,15

5 DO 10 I=1,MA
DO 10 J=1,NB
C( I,J)=0.0
DO 10 K=1,NA

10 C(I,J)=C(I,J)+A( I,K)*B(K,J)
GO TO 35

15 CONTINUE
00 30 J=1,NR
DO 20 I=1,MA
TEMP(I)=0.O
DO 20 K=1,NA

20 TEMP(I)=TEMP(I)+A(I,K)*B(K,J)
DO 30 I=1,MA
B( I,J)=TEMP(I)

30 CONTINUE
40 FORMAT ('MATRICES ARE NOT COMFORMABLE')
35 RETURN

ENn
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SURROUTINE MATINV(A,N)
G MATRIX INVERSION BY PARTITIONING

DIMENSION A( 20,20) ( 30) ,C( 0)
NN=N-1
A(11,)=1./A(1,1)
on 1110 M=1,NN
K=M+1
DO 1160 I=I,M
B( T)=0.0
DO 1160 J=1,M

1160 8( I)=B( I)+A(I,J)*A(JK)
R=0.0
DO 1170 I=1,M

1170 R=R+4(K,I)*B(I)
R=-R+A(KK)
A(KK)=I./R
00 110 I=1,M

1180 A(I,K)=-B(I)*A(K,K)
DO 1190 J=1,M
C ( J)=0 .0
DO 1190 I=1,M

1190 C(J)=C(J )+A(KI )*A(I,J)
00 1100 J=1,M

1100 A(K,J)=-C(J)*A(K,K)
DO 1110 I=1,M
00 1110 J=1,M

1110 A(I,J)=A(I,J)-B(I)*A(K,J)
RETURN
FN)
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SIJIROUTINE PLOT (M
)IMFNSII)N ALPHA(2

T( I )0.t I
T(2) =0.3
T(3)=0.5
T(4)=1.
T(5)=3.
T( 6 )=5.
T(7)=10.
T(8)=30.
T(9) =50.
T( 10)=100.
T(11)=300.
T( 12)=500.
T( 13)= 1000.
T( 14)=3000.
T(1 5)=0.01
00 40 J=1,15
0= r)NOT
00U 20 I=1,M
S= ALPHA (I )*T(J)
IF( S-60)4,20,21)

4 IF(S+60)5,5,10
5 D=+DCOEF( I )

GO TO 20
10 D=D+DCOEF( I)/EXP(
20 CINT INUE

WRITE(6,35 )T(J )D
35 FORMAT(4X, 'TIME
46 CONTINUE

RETURN
END

, AL PHA, DCOEF,DNOT
0), DCOEF(20)1 T( 15

S)

' ,F7. 1,10X,FlO.3)
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C THIS SUBROUTINE SOLVES NUMEPICALLY VOLTERRA
C INTEGRAL EQUATION.
C FOR CONVENIENCE DATA ARE GIVEN AS SERIES OF
C EXPONENTIALS.F(T)=RRR+(COEFF(I)*EXP(-OELTA(I)*T))
C WHERE THERE IS SUMMATION FOR I=1 TO I=K
C K IS LESS THAN 20
C T(J) ARE TIMES AT WHICH UNKNOWN FUNCTION Q(J)
C IS COMPUTED.

SUBROUTINE CONV(K,C OEFF,DELTA,RRR)
DIMENSION T(500),0FLTA(20),COEFF(20),Q(500)
DIMENSION F(500),G(500)
N= 450
REM=-6.
RN=0.05

15 FORMAT(2FIO.5)
WRITE(6,4)N,K

4 FORMAT(4X,2I5)
WR ITE( 6, 15)RN, REM
WRITE(6,5)(COEFF(I),I=1,K)

5 FORMAT(4X,8E10.3)
WRITE(6,5)(DELTA(J),J=1,K)
CREM=REM
CRN=RN
T(1)=0.0
NNN=N- 1
nOf 6 JJ=1,NNN
J=JJ+1
CREM=CREM+CRN
T(J)=l0.**CREM

6 CONTINUE
WR ITE(6,21)(T(I), I=2,N)
DO 31 JK= I,N
G(JK)=0.0
DO 30 I=1,K
FT=-T(JK)*DELTA(I)
G( JK)=G(JK)+COEFF( I) *EX

30 CONTINUE
G( JK)=G(JK )+RRR

31 CONTINUE
WRITE(6,20)(G(J),J=1,N,
F( 1)=0.0
MM=N- 1
DO 40 L=I,MM
KI=L+1
F(KI ) =F(L)+0. 5*(G(KI )+G

40 CONTINUE
WRITE(6,20) (F(J),J=1 ,N,
DO 50 KT=3,N
ST=0.0
MMM=KT-1
DO 45 I=2,MMM
0(2)=T(2)/F(2)
KK=I-1
PF=F(KT)-F(KK)
PS=F(KT)-F( I)

45 ST=ST+Q(II*(PF-PS)
R=F(KT)-F(MMM)
Q(KT)=( T(KT)-ST)/R

50 CONTINUE

P( FT)

10)

10)
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WRITE(6,21)(Q(J),J=2,N)
20 FORMAT(4X,8E10.3)
21 FORMAT(4X,8E10.3,//)

RETURN
END
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LAPLACE TRANSFORMATION OF DIRICHLET SERIES
ANOT =CONSTANT TERM IN SERIES
ALPHA(I)=CtnEFFICIENTS OF EXPONENTIALS
GAMMA(I)=COEFFICIENTS OF DIRICHLET SERIES
P( I )=LAPLACE PARAMETERS
NN=NUMBERS OF D PARAMETERS
CLAPL(I)=LAPLACE TRANSFORM OF CREEP
N=IDENTIFICATION NUMBER
M=l CREEP
M=2 RELAXATION
MLAPL(I)=LAPLACE TRANSFORM OF MODJLUS
DIMENSION ALPHA(50),GAMMA(5O),P(130),LAPL(50),SLAPL(50)
DIMENSION PSUM(50), SUM(50)
DIMENSION ACLAPL(50),ARLAPL(50)
DIMENSION CLAPL(50),DtAPL(SO),ELAPL(50)
REAL MLAPL(50)

999 READ(5,
100 FORMAT(

WR ITE ( 6
104 FORMAT(

READ(5,
101 FORMAT(

100) N, M,NN, ANOT
315,E10.3)
,104)N,M,NN, NOT
315,F10.3)
101)(AL HA(I), I=1,N)
8E10.3)

WR ITE( 6,105) (ALPHA( I ), 1= 1,N)
105 FORMAT(8E10.3)

READ( 5, 102)(GAMMA(I) I=1,N)
10? FORMAT(8E10.3)

WRITE(6,106)(GAMMA(I),I=1,N)
106 FORMAT(8E10.3)

READ( 5,103)(PJ) ,J=1 ,NN)
103 FORMAT(8E10.3)

WR IT (6, 107) ( P(J ),J= ,NN)
107 FORMAT(8E10.3)

IF(M-2)3,7,7
7 J=1
8 1=1

SUM( I )=GAMMA(I)/fP(J)+ALPHA(I))
DO 2 I=2,N
PSUM(I)=GAMMA(I )/(P( J)+ALPHA( I))
SUM( I)=SUM( I- ) +PSUM( I)

2 WRITE(6, 08)M,I,J,StUM(I)
108 FORMAT( 3I5,4X, El 0.3)

OLAPL(J)=ANOT/P(J)
MLAPL (J )=DLA PL ( J)+SUM(N )
WRITF(6,109)M,I, J,MLAPL(J) ,DLAPL( J )

109 FORMAT( 3 I5,4X, E10.3, 4X,E10. 3)
ARLAPLJ)=P(J )*MLAPL(J)
WRITE(6,200)P(J ), ARLAPL (J)

200 FORMAT( ' P(J)= ',E10.3,' P*MLAPL= ',EIO.3)
J= J+1
IF(J-NN)8,8t999

3 J=l
9 1=1

SUM(I)=GAMMA(I/(P(J) +ALPHA(I))
DO 20 I=2,N
PSUJM( I )=GAMMA(I )/(P( J) +ALPHA( I))
SUM( I)=SUM( I-1)+PSUM( I)

20 WRITE(6,1111)M,I,J,SUM( I)
111 FORMAT(315,4XE10. 3

DLAPL(J)=ANOT/P(J) -175-



CL &PL(J )=1./(DLAPL(J )+SUM(N) )
WRITF(6,110)MI,J,CLAPL(J) DLAPL(J)

110 FORMAT(315,4X,EL0.3v4X,E10.3)
ACLAPL(J)=CLAPL(J) /P( J )
WR ITE( 6, 300)P(J ), ACL APL (J)

300 FORMAT( ( P(J)= ',F10.3,' 1/P*CLAPL= 'EO.103)
J=J+1
IF( J-NN )9,9,999
FND
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THIS PROGRAM COMPUTE THE COMPONFNTS OF DYNAMIC FUNCTIONS,.
GIVEN TRANSIFNT FUNCTIONS IN TERMS OF DIRICHLET SERIES.
D( T )=ANOT+(GAMMA(I )*EXP(-ALPHA( I )OT))
WHERE THERE IS SUMMATION FOR I=1 TO I=N.
N IS LESS THAN FIFTY.
Pl AND P2 ARE THE CIRCULAR FREQUENCIES AND THERE SQUARES.
DL AND D2 =REAL AND IMAGINARY PARTS OF D(T)
1E AND E2 THE CORRESPONDING COMPONENTS OF OTHER FUNCTION

DABS IS ABSOLUTE VALUE OF COMPLEX FUNCTION D*
TANDEL=LOSS TANGENT
SUBROUTINE DYNA(GAMMA,ALPHAtP1,P2,NNN,ANOT)
DIMENSION SUM(100),GAMMA(50),P( 100),P2(100),ALPHA(50)
DIMENSION PSUM(100),DYNA(100),DYNAM(100),D(O100)
DIMENSION 02(l00),F( 100),E2(100)
M= 10
J= L

8 I=1I
SJM(I)=GAMMA(I)/(P2(J)+ALPHA(I)**2)
DO 2 I=2,N
PSUM( I )=GAMMA( I )/(P2(J)+ALPHA(I )**2)
SUM(I)=SUM(I-1)+PSUM(I)

2 WR ITE (6,1 08 )M, I, JSUM( I)
108 FORMAT(3I5,4XEl0.3)

DYNA(J)=ANOT/P2(J)
DYNAM(J)=DYNA(J)+SUM (N)
WRITE(6,109)M,I,J, DYNAM(J ) ,DYNA(J)

109 FORMAT ( 3I5,4XE0.3 t 4X, E10.3)
D1 (J)=P2(J)*DYNAM(J)
02?J)=0.
DOf 15 I=1,N
D2(J)=D2( J ) +(GAMMA( I)ALPHA(I)*PI(J))/(P2( J )+ALPHA(I)**2)

15 CONTINUE
SMOD=(0D1(J )*DI(J))+(02(J)*D2(J))
DABS=SMOD**.5
E1(J)=DI(J)/SMOD
E?(J)=02( J) /SMOD
TANDEL=D2(J)/DL(J)
WRITE(6,200)P1(J),P2(J),Dl(J),D2(J),EI(J),E2(J),DABSTANDEL

200 FORMAT(4X,8 (EI.3,2X))
J=J+1
IF(J-NN)8,8,999

999 RETURN
END
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