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Abstract

A conic linear system is a system of the form
P: find z that solves b— Az € Cy, z € Cy,

where Cx and Cy are closed convex cones, and the data for the system is d = (4, b). This system
is“well-posed” to the extent that (small) changes in the data (A, b) do not alter the status of the
system (the system remains solvable or not). Intuitively, the more well-posed the system is, the
easier it should be to solve the system or to demonstrate its infeasibility via a theorem of the
alternative. Renegar defined the “distance to ill-posedness,” p(d), to be the smallest distance of
the data d = (A4, b) to other data d = (A4, b) for which the system P is “ill=posed,” i.e., d = (4, b)
is in the intersection of the closure of feasible and infeasible instances d’ = (A’, b’) of P. Renegar
also defined the “condition measure” of the data instance d as C(d) Al|d||/p(d), and showed that
this measure is a natural extension of the familiar condition measure associated with systems
of linear equation. This study presents two categories of results related to p(d), the distance to
ill-posedness, and C(d), the condition measure of d. The first category of results involves the
approximation of p(d) as the optimal value of certain mathematical programs. We present ten
different mathematical programs each of whose optimal values provides an approximation of
p(d) to within certain constant factors, depending on whether P is feasible or not. The second
category of results involves the existence of certain inscribed and intersecting balls involving the
feasible region of P or the feasible region of its alternative system, in the spirit of the ellipsoid
algorithm. These results roughly state that the feasible region of P (or its alternative system
when P is not feasible) will contain a ball of radius r that is itself no more than a distance R

from the origin, where the ratio R/r satisfies R/r < O(n C(d)), and such that r > Q (WI(ES)

and R < O(n C(d)), where n is the dimension of the feasible region. Therefore the condition
measure C(d) is a relevant tool in proving the existence of an inscribed ball in the feasible region
of P that is not too far from the origin and whose radius is not too small.
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1 Introduction

This paper is concerned with characterizations and properties of the “distance to ill-posedness”
and of the condition measure of a conic linear system, i.e., a system of the form:

P:

where Cx C X and Cy C Y are each a closed convex cone in the (finite) n-dimensional normed
linear vector space X (with norm ||z|| for z € X) and in the (finite) m-dimensional linear vector
space Y (with norm [|y|| for y € Y), respectively. Here b € Y, and A € L(X,Y) where L(X,Y)
denotes the set of all linear operators A : X — Y. At the moment, we make no assumptions on
Cx and Cy except that each is a closed convex cone. The reader will recognize immediately that
when X = R™ and Y = R™, and either (i) Cx = {z € R*z > 0} and Cy = {y € R™|y > 0},
(ii) Cx = {z € R™z > 0} and Cy = {0} € R™ or (iii)), Cx = R™ and Cy = {y € R™|y > 0},
then (1.1) is a linear inequality system of the format (i) Az < b,z > 0, (ii) Az = b,z > 0, or (iii)
Az < b, respectively.

The problem P is a very general format for studying the feasible region of a mathematical
program, and even lends itself to analysis by interior-point methods, see Nesterov and Nemirovskii[9]
and Renegar [13].

The concept of the “distance to ill-posedness” and a closely related condition measure for
problems such as P was introduced by Renegar in [11] in a more specific setting, but then generalized
more fully in [12] and in [13]. We now present the development of these two concepts in detail.

We denote by d = (A, b) the “data” for the problem (1.1). That is, we regard the cones Cx
and Cy as fixed and given, and the data for the problem is the linear operator A together with the
vector b. We denote the set of solutions of P as X to emphasize the dependence on the data d,
ie.,

Xeg={r e X|b—- Az € Cy,z € Cx}.

We define
F ={(A,b) € L(X,Y) x Y| there exists x satisying b— Az € Cy,z € Cx} . (1.2)
Then F corresponds to those data instances (4, b) for which P is consistent, i.e., (1.1) has a solution.

Ford = (A,b) € L(X,Y)xY we define the product norm on the cartesian product L(X,Y) x
Y as
lldll = (A, )|} = max{]|All, [|5]|} (1.3)

where ||b|| is the norm specified for Y and ||4|| is the operator norm, namely
|All = max | Az]]

(1.4)
stz £1
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We denote the complement of F by €. Then F¢ consists precisely of those data instances
d = (A, b) for which P is inconsistent.

The boundary of F and of F€ is precisely the set
B = cl(F) N cl(FC) (1.5)

where cl(.S) is the closure of a set S. Note that if d = (A4,b) € B, then (1.1) is ill-posed in the sense
that arbitrary small changes in the data d = (A, b) will yield consistent instances of (1.1) as well
as inconsistent instances of (1.1).

For any d = (A4,b) € L(X,Y) x Y, we define

pd)= if Jd-d| = inf (4 (ED)]
d Ab (1.6)
st. deB st. (A,b) € c(F)Ncl(FE)

Then p(d) is the “distance to ill-posedness” of the data d, i.e., p(d) is the distance of d
from the set B of ill-posedness instances. In addition to the work of Renegar cited earlier, further
analysis of the distance to ill-posedness has been studied by Vera [16], {17], [18], Filipowski [6], [7],
and recently by Nunez and Freund [10].

In addition to the general case (1.1), we will also be interested in two special cases when
one of the cones is either the entire space or only the zero-vector. Specifically, if Cy = {0}, then
(1.1) specifies to

Az=b, z€Cx . (1.7)

When Cx = X, then (1.1) specifies to

b—Az€Cy, z€X . (1.8)

One of the purposes of this paper is to explore characterizations of the distance to ill-
posedness p(d) as the optimal value of a mathematical program whose solution is relatively easy
to obtain. By “relatively easy,” we roughly mean that such a program is either a convex program
or is solveable through O(m) or O(n) convex programs. Vera [16] and [17] explored such charac-
terizations for linear programming problems, and the results herein expand the scope of this line
of research in two ways: first by expanding the problem context from linear equations and linear
inequalities to conic linear systems, and second by developing more efficient mathematical programs
that characterize p(d). Renegar [13] presents a characterization of the distance to ill-posedness as
the solution of a certain mathematical program, but this characterization is not in general easy
to solve. There are a number of reasons for exploring characterizations of p(d), not the least of
which is to better understand the underlying nature of p(d). There is the intellectual issue of the
complexity of computing p(d) or an approximation thereof, and there is also the prospect for using
such characterizations to further understand the behavior of the underlying problem P. Finally,
as is shown in [17], when p(d) can be computed efficiently, then there is promise that the problem
of deciding the feasibility of P or the infeasibility of P can be processed with a ”fully efficient”
algorithm, see [17] or Renegar {12] for details of the concept of a fully efficient algorithm. In Sec-
tion 3 of this paper, we present ten different mathematical programs each of whose optimal values
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provides an approximation of p(d) to within certain constant factors, depending on whether P is
feasible or not, and where the constants depend only on the “structure” of the cones Cx and Cy
and not on the dimension or on the data d = (4, b).

The second purpose of this paper is to prove the existence of certain inscribed and inter-
secting balls involving the feasible region of P (or the feasible region of the alternative system of
P if P is infeasible), in the spirit of the ellipsoid algorithm and in order to set the stage for an
analysis of the ellipsoid algorithm, hopefully in a subsequent paper. Recall that when P is specified
to the case of non-degenerate linear inequalities and the data d = (A,b) is an array of rational
numbers of bitlength L, that the feasible region of P will intersect a ball of radius R centered at
the origin, and will contain a ball of radius r where r = (1/n)27% and R = n2F. Furthermore, the
ratio R/r is of critical importance in the analysis of the complexity of using the ellipsoid algorithm
to solve the system P in this particular case. (For the general case of P the Turing machine model
of computation is not very appropriate for analyzing issues of complexity, and indeed other models
of computation have been proposed (see Blum et.al. [3], also Smale [14].))

By analogy to the properties of rational non-degenerate linear inequalities mentioned above,
Renegar [13] has shown that the feasible region Xy must intersect a ball of radius R centered at
the origin where R < ||d||/p(d). Renegar [12] defines the condition measure of the data d = (A, b)
to be C(d):

_ ldll

C(d) = ,
D=2@
and so R < C(d). Here we see the value 27 has been replaced by the condition measure C(d).

For the problem P considered herein in (1.1), the feasible region is the set X4. In Sections
4 and 5 of this paper, we utilize the characterization results of Section 3 to prove that the feasible
region X, (or the feasible region of the alternative system when P is infeasible) must contain an
inscribed ball of radius r that is no more than a distance R from the origin, and where the ratio
R/r must satisfy R/r < O(n C(d)). Furthermore, we prove that r > Q (n—clz(—ﬁ) and R < O(n C(d))
(and where n is replaced by m for the alternative system for the case when P is infeasible). Note
that by analogy to rational non-degenerate linear inequalities, that the quantity 2% is replaced by
C(d). Therefore the condition measure C(d) is a very relevant tool in proving the existence of an
inscribed ball in the feasible region of P that is not too far from the origin and whose radius is
not too small. This should prove effective in the analysis of the ellipsoid algorithm as applied to
solving P.

The paper is organized as follows. Section 2 contains preliminary results, definitions, and
analysis. Section 3 contains the ten different mathematical programs each of whose optimal values
provides an approximation of p(d) to within certain constant factors, as discussed earlier. Section 4
contains four Lemmas that give partial or full characterizations of certain inscribed and intersecting
balls related to the feasible region of P (or its alternative region in the case when P is infeasible).
Section 5 presents a synthesis of all of the results in the previous two sections into theorems that
give a complete treatment both of the characterization results and of the inscribed and intersecting
ball results.
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2 Preliminaries and Some More Notation

We will work in the setup of finite dimensional normed linear vector spaces. Both X and
Y are normed linear spaces of finite dimension n and m, respectively, endowed with norms ||z|| for
z € X and ||y|| for y € Y. For Z € X, let B(Z,r) denote the ball centered at T with radius r, i.e.,

B(z,r)={z € X| |z —z| <},
and define B(f, r) analogously for § € Y.
For d = (A,b) € L(X,Y) x Y, we define the ball
B(d,r) = {d=(A,b) € L(X,Y) x Y||d - d|| < r}.

With this additional notation, it is easy to see that the definition of p(d) given in (1.6) is
equivalent to:

sup{é|B(d,6) c F} ifdeF

p(d) = (2.1)
sup {6|B(d, 6) C FO} ifdeFC

We associate with X and Y the dual spaces X* and Y* of linear functionals defined on
X and Y, respectively, and whose (dual) norms are denoted by |lu|l« for v € X* and |w]||« for
w € Y*. Let ¢ € X*. In order to maintain consistency with standard linear algebra notation in
mathematical programming, we will consider ¢ to be a column vector in the space X™* and will
denote the linear function ¢(z) by ¢’z. Similarly, for A € L(X,Y) and f € Y*, we denote A(z) by
Az and f(y) by fTy. We denote the adjoint of A by A7.

If C is a convex cone in X, C* will denote the dual convex cone defined by

C* ={z€ X*|zTz > 0 for any z € C}
Remark 2.1 If we identify (X*)* with X, then (C*)* = C whenever C is a closed convez cone.
Remark 2.2 If Cx = X, then Cx = {0}. If Cx = {0}, then C}x = X.

We will say that a cone C is regular if C is a closed convex cone, has a nonempty interior
and is pointed (i.e., contains no line).

Remark 2.3 C is regular if and only if C* is regular.

We denote the set of real numbers by R and the set of nonnegative real numbers by R,.

Regarding the consistency of (1.1), we have the following partial “theorem of the alterna-
tive,” the proof of which is a straightforward exercise using a separating hyperplane argument.
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Proposition 2.1 If (1.1) has no solution, then the system (2.2) has a solution:

ATy e Cx
yeCy
yTh <0
y#0.

(2.2)

If the system (2.3) has a solution:
ATy e Cx

yeCy (2.3)
yTb <0,

then (1.1) has no solution. |

Using Proposition 2.1, it is elementary to prove the following:

Lemma 2.1 Consider the set of ill-posed instances B. Then B can be characterized as:

B= {d=(4,b) € L(X,Y) x Y] there exists (z,r) € X x R with
(z,7) # 0 and y € Y* with y # 0 satisfying br — Az € Cy,z € Cx,

y € C¥, ATy € C%, and yTb < 0} 1

We now recall some facts about norms. Given a finite dimensional linear vector space X
endowed with a norm ||z|| for z € X, the dual norm induced on the space X* is denoted by ||z||«
for z € X*, and is defined as:

llzlls = max 2Tz
v (2.4)
st. |zl £1

If we denote the unit balls in X and X* by B and B*, then it is straightforward to verify that

B={z € X|||z|| 1} = {z € X|zTz < 1 for all z with ||z« < 1}, (2.5)
and
B*={ze€ X*|||z|l« < 1} = {z € X*|2Tz < 1 for all z with ||z|| < 1}. (2.6)
Furthermore,
2Tz < ||2|+||z]] for any z € X and z € X*, (2.7)

which is the Hoélder inequality. Finally, note that if A = wv?, then it is easy to derive that
IAll = llv|l«]|ull using (2.4) and (1.4).

If X and V are finite-dimensional normed linear vector spaces with norm |z|| for z € X
and norm ||v|| for v € V, then for (z,v) € X x V, the function f(z,v) defined by

f(@v) = iz, v)lF A llzll + [[v]] (2.8)
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defines a norm on X X V, whose dual norm is given by

ll(w, w)llx & max {Jlwllx, [lull«} for (w,u) € (X x V)" = X" x V*. (2.9)
The following result is a special case of the Hahn-Banach Theorem, see for example {19]:

Proposition 2.2 For every z € X, there ezists z € X* with the property that ||z||+ = 1 and

lall = Tz

Proof: If z = 0, then any z € X* with ||z||, = 1 will satisfy the statement of the proposition.
Therefore, we suppose that z # 0. Consider ||z|| as a function of z, i.e., f(z) = ||z||. Then f(-) is a
real-valued convex function, and so the subdifferential operator 8f(z) is non-empty for all z € X,
see [2]. Consider any z € X, and let z € 0f(x). Then

f(w) > f(z) + 2¥ (w — z) for any w € X. (2.10)

Substituting w = 0 we obtain ||z|| = f(z) < 2Tz. Substituting w = 2z we obtain 2f(z) = f(2z) >
f(z)+27(2z—z), and so f(z) > 2Tz, whereby f(z) = 27z. From (2.7) it then follows that ||z||, > 1.
Now if we let v € X and set w = = + u, we obtain from (2.10) that f(u) + f(z) > f(u+<z) =
flw) > flx) + 2T (w—x) = f(z) + 27 (u+z — z) = f(z) + 2T u. Therefore, 27u < f(u) = ||ul|, and
so from (2.4) we obtain ||z||« < 1. Therefore, ||z]j« = 1. ]

Because X and Y are are normed linear vector spaces of finite dimension, all norms are
equivalent. Thus we can specify a norm for X and a norm for Y if we so desire. If X = R, the L,
norm is given by

n 1/p
llllp = (Z |le?> : (2.11)
j=1

for p > 1. The norm dual to ||z||p is ||z]lx = ||z|lq where ¢ satisfies 1/p + 1/q = 1, with appropriate
limits as p — 1 and p — +o0.

A critical component of our analysis concerns the extent to which the norm function ||z|
can be approximated by a linear function u”'z over the cone Cx for some u € C%, and the extent
to which the norm function ||y||« can be approximated by a linear function 2Ty over the cone C3
for some z € Cy. We now define two important constants that relate the extent to which these
norms ||z|| and ||y||« can be approximated by linear functions over the convex cones Cx and Cy,
respectively.

Definition 2.1 (i) If Cx ts regular, let

B = sup inf ulx
ue X* z € Cx (2.12)
lulle =1 llzll =1
(i3) If Cy 1is regular, let
B* = sup inf yT 2
zeY y€Cy (2.13)

=l =1 ol =1
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Examining (2.12) in detail, let @ denote that value of u € X* that achieves the supremum in (2.12).

Then for all z € Cyx, Bz < @7z < ||z||, and so ||z|| is approximated by the linear function @’z

to within the factor 3 over the cone Cx. Therefore, 3 measures the extent to which |||l can be
approximated by a linear function 4’z on the cone Cx. Furthermore, 4Tz is the “best” such linear
approximation of ||z|| over this cone. If we let Z denote that value of z € Y that achieves the supre-
mum in (2.13), then similar remarks pertain, and so 27y is the “best” linear approximation of ||y||.
on the cone C%. (It is easy to see that 8 < 1 and 8* < 1, since, for example, uTz < ||ull||z|| =1
for uw and « as in (2.12), and y7z < ||y|l4|lz]| = 1 for y and z as in (2.13).) The larger the value of 3,
the more closely that ||z]| is approximated by a linear function u¥'z over z € Cx. Similar remarks
pertain to 3*. We have the following properties of 3 and 3*:

Proposition 2.3 (i) If Cx is regular, then 0 < 8 < 1, and there exists 4 € int C% such that
|@|ls = 1 and 8 = min{a x|z € Cx, |z|| =1}
(ii) If Cy is regular, then 0 < §* < 1, and there ezists Z € int Cy such that

|Zl| = 1 and §* = min{z"yly € C¥, llyll. =1}
The proof of Proposition 2.3 follows easily from the following observation:
Remark 2.4 Suppose K is a closed convex cone. Then z € int K* if and only if 2Tz > 0 for all

z € K/{0}. Also, if z € int K*, the set {z € K|2Tz =1} is a closed and bounded convez set.

For the remainder of this study, it is assumed that % and Z of Proposition 2.3 are known
and given, whenever Cx and/or Cy are regular.

Corollary 2.1 (i) If Cx is regular, then
Bllz|| < @z < ||z|| for any z € Cx. (2.14)

(i2) If Cy is regular, then
B*llylls < 27y < llyll« for any y € C5. (2.15)

We also define

Definition 2.2 (i) If Cx is regular, let

B = inf sup wlz
w e Ck% zeCx (2.16)
[wlle =1 Jlzf| £1
(i) If Cy is regular, let
B* = inf sup vTw
w € Cy veCy (2.17)

lwll =1 [l <1
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We offer the following interpretation of 8 and 3*. Note that 8 < 1 since w”z < |lw||.||z| < 1
for any w and z given in (2.16). Now, from (2.4) we have that for any w € C% with ||w||. = 1, that

1= |w|+= supwlz > supwlz
zeX z € Cx
=] <1 =zl <1 .

Thus 3 represents the extent to which ||w||, is approximated by optimizing over Cx instead of over
X in the construction of ||w||s, as w ranges over all values in C%. A similar interpretation for 3*
can also be developed. We have:

Proposition 2.4 )
(1) If Cx is regular, then 0 < <1 .

(i1) If Cy is regular, then 0 < 8* < 1.

Finally, we note that the constants, 3, #*, 3, and 3* depend only on the norms ||z| and
|lyll and the cones Cx and Cy, and are independent of the data (A, b) defining the problem (1.1).

We now present two families of examples that illustrate the constructions above. For the
first example, let X = R™ and Cx = {z € R"|z > 0}. Then we can identify X* with X and in so
doing, C% = {z € R™z > 0} as well. If ||z|| = ||z||p, then for z € Cx, it is straightforward to show

that @ = (n%_l) e, where e = (1,...,1)7, i.e., the linear function given by 4z is the “best” linear
approximation of the function ||z|| on the set Cx. Furthermore, straightforward calculation yields
that 8 = n%—l. Then if p =1, § =1, but if p > 1 then § < 1. However, regardless of the value
of p, it will be true that § = 1. To see this, note that if w € R* and w > 0 (i.e., w € C%) and
lw|l« = 1, then with z = (z1,...,z,)T where

(5%9)

:EJ-:’LU] y

that wlz = ||lw|lq = ||w|l« =1 (where +3 1 1) and ||z|| = 1. Note that z > 0, so that § = 1.

The second example concerns the cone of symmetric positive semi-definite matrices, which
has been shown to be of enormous importance in mathematical programming (see Alizadeh [1]
and Nesterov and Nemiroskii [9]). Let X denote the set of real n x n symmetric matrices, and let
Cx = {z € X|z is positive semi — definite}. Then Cx is a closed convex cone. We can identify X*
with X, and in so doing it is elementary to derive that C% = {y € X*|y is postive semi — definite}
i.e., Cx is self-dual. Foe z € X, let A\(z) denote the n-vector of ordered eigenvalues of z. That is,
/\(a:) (A1(2), ..., An(2))T where Ai(z) is the it largest eigenvalue of X. For any p € [1,00), let

the norm of z be deﬁned by
1
P
ETESETE (Z |Aj(z ) ,

i.e., ||z||p is the p-norm of the vector of eigenvalues of X. (see Lewis (8] for a proof that ||z|l, is a
norm.)
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When p = 2, ||z||2 corresponds precisely to the Frobenius norm of z. When p = 1, ||z||; is the
n
sum of the absolute values of the eigenvalues of z. Therefore, when z € Cx, ||zl = tr(z) = ¥ =i
i=1
where z;; is the i*? diagonal entry of the real matrix z, and so is linear on Cx. It is easy to show
1 1
for the norm ||z||, over Cx that % = (nF_l) I has ||@l|» = ||all; = 1 and that 8 = n»"". Thus, for
the Frobenius norm we have § = ﬁ and for the Lj-norm, we have § = 1. Just as in the case of

the non-negative orthant above, it can easily be shown that 3 = 1 for any value of p € [1, ).

We conclude this section with the following:

Remark 2.5 If Cx is regular, then it is possible to choose the norm on X in such a way that
B = 1. If Cy is regular, then it is possible to choose the norm on'Y in such a way that §* = 1.

To see why this remark is true, recall that for finite dimensional linear vector spaces, that
all norms are equivalent. Now suppose that Cx is regular. Pick any @ € int C%. Then define the
following norm on X:

”.’E” é minimum {ﬁT.’E’ _ '&Tl'”fx _ ;I;I n :1,‘”’ xl c CX, z// c —CX}

It can then easily be verified that || - || is a norm and that for all z € Cx, that ||z|| = 4z, whereby
B = 1. A parallel construction works for ||y||« and shows that || - ||« on ¥Y* can be chosen so that
g =1

3 Characterization Results for p(d)

Given a data instance d = (A,b) € L(X,Y) x Y, we now present characterizations of p(d)
for the feasibility problem P given in (1.1) .

The characterizations of p(d) will depend on whether d € F or d € F€ (recall (1.2)), i.e.,
whether (1.1) is consistent or not. We first study the case when d € F ((1.1) is consistent), followed
by the case when d € F¢ ((1.1) is not consistent).

3.1 Characterization Results when P is consistent

In this subsection, we present five different mathematical programs and we prove that the
optimal value of each of these mathematical programs provides an approximation of the value of
p(d), in the case when P is consistent. For each of these five mathematical programs, the nature
of the approximation of p(d) is specified in a theorem stating the result.

We motivate the development of these programs on intuitive grounds as follows. If P is
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consistent, i.e., d € F, then it is elementary to see that:

p(d) = infimum |d- J||
d

s.t. C:l-——'- (/1,5) € fc ’

that is, p(d) measures how close the data d lies to the set of data for which P has no solution. As
d & FC, then there is no solution y € Y* to the system:

ATy e Cx
Ty >0
yeCy
lyll«=1

see Proposition 2.1, and notice in the above that we have added a normalizing constraint “||y||. = 1.”
However, when Cx is regular, then the vector @ € intC% (see Proposition 2.3), and we can measure
how far away d = (A, b) is from admitting a solution to the above system (i.e., how far away d is
from the set FC) by solving the following program:

Py(d) :
a(d) = minimum -~
Y,
s.t. ATy +~v@ € C} 3.1
X

—bTy+~4>0
Iyl =1
yeCy

Notice that a(d) > 0, since otherwise d € F€ via Proposition 2.1, which would violate the hypothesis
of this subsection. Also notice that a(d) < +o0, since @ € intC%, and so Py(d) is feasible for any
y € Cy with ||ly|l« = 1 and -y chosen sufficiently large. The smaller the value of a(d) is, the closer
the conditions (2.3) of infeasibility are to being satisfied, and so the smaller the value of p(d) should
be. These arguments are obviously imprecise, but we will prove their validity in the following:

Theorem 3.1 Ifd € F and Cx is regular, then

B-a(d) < p(d) < o(d)

This theorem states that o(d) approximates p(d) to within the factor 3, where recall the definition
of 8 in Definition 2.1. The proof of this theorem and all of the results of this subsection are deferred
to the end of the subsection.

Remark 3.1 It should be pointed out that P,(d) is not in general a conver program, due to the
non-convez constraint ‘y|l« = 1”. However, in the case when Y = R™, (then Y* can also be
identified with R™), if we choose the norm on Y* to be the Lo norm (so the norm on Y is the
L) norm), then P,(d) can be solved by solving 2m convez programs. To see this, observe that the
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constraint “|y|l« = 1” can be written as —e <y < e and y; = £1 for some i € {1,

is the vector of ones. Then a(d) = minimum {o/ (d), a”(d)}, where :

o' (d) =

g

ATy +yu e C%
-bTy+v>0
—e<y<e

yi =1

yeCy :

Y

ATy + 4t € C%
~bTy+~2>0
—esy<e
yi=—1
yeCy

11

...,m}, where e

The next mathematical program is obtained by considering the following homogenization

minimum  minimum
i=1,...,m Y,
s.t.
and "
a (d)= minimum minimum
t=1...,m Y,y
s.t.
of P:
br— Az € Cy
zeCyx
r>0

7

which can be normalized in the case when Cx is regular as follows:

H:
br — Az € Cy
z e Cyx
r>0
r+alz=1

One can think of @7z as a linear approximation of ||z|| over the cone Cx, see Corollary
2.1. (In fact, the construction of 8 and @ in Definition 2.1 and Proposition 2.3 is such that @’z
is the “best” linear approximation of ||z|| over the cone Cx.) Now, an “internal view” of p(d) is
that p(d) measures the extent to which the data d = (A, b) can be altered and yet (1.1) will still be
feasible for the new system. A modification of this view is that p(d) measures the extent to which
the system (1.1) can be modified while ensuring its feasibility. Consider the following program:
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Py(d) :
w(d) = minimum  maximum 6
v r,z,0
|| <1 s.t. br — Az— 0 € Cy (3.2)
z € Cx
r+ @'z = 1
r>0

Then w(d) is the largest scaling factor 8 such that for any v with ||v]| < 1, v6 can be added to the
first inclusion of H without affecting the feasibility of the system. We will prove:

Theorem 3.2 Ifd € F and Cx is regular, then a(d) = w(d), and so

B-w(d) < p(d) < w(d)

Three remarks are in order here. First, the theorem asserts that a(d) = w(d), and in fact
the proof of the theorem will show that P, (d) can be obtained from P,(d) by dualizing on a subset
of the variables and constraints of Py(d), i.e., Pa(d) and P,(d) are partial duals of one another.
Second, there is an underlying geometry in P, (d). To see this, let

S = {v € Y| there exists r > 0 and x € Cx satisfying br — Az —v € Oy, @z +r=1}. (3.3)
Then P,(d) can alternatively be written as:

w(d)= sup 0
o (3.4)

st. {veY||||<8}cCS

Then w(d) is the radius of the largest ball centered at the origin and contained in the set S. Third,
if we replace the normalizing linear constraint “r + 4’2 = 1" of Py,(d) by the norm constraint
“r+||z|| = 1,” then the modified program is analogous to Renegar’s characterization of the distance
to ill-posedness (see Theorem 3.5 in [13]) when P is consistent. The modified program is:

P.(d):
7(d) = minimum  maximum 6
v r,z,0
vl £1 s.t. br — Az— v € Cy
zeCx
r+lzl o= 1
r20 :

and Renegar shows that r(d) = p(d) when d € F. We will not use this fact, nor duplicate the proof
of this fact here; rather it is our intent to show the connection to the results in [13].

One problem with P,(d) is that P,(d) is generally nonconvex, due to the constraint “||y||« =
1.” When Cy is also regular, then from Corollary 2.1 the linear function 27y is a “best” linear
approximation of ||y||. on C}, and if we replace “||y|l« = 17 by “2Ty = 1” in P,(d) we obtain:
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Ps(d) :
@ &(d) = minimum -~
v
s.t. ATy +~yu € C% (3.5)
~bTy+v>0
Ty =1
yeCy

Replacing the norm constraint by its linear approximation will reduce (by a constant) the extent
to which the program computes an approximation of p(d), and the analog of Theorem 3.1 becomes:

Theorem 3.3 Ifd € F and both Cx and Cy are regular, then

BB - a(d) < p(d) < a(d).

Notice that a very nice feature of P5(d) is that it is a convex program.

The fourth mathematical program is derived by once again measuring the extent to which
the data d = (A, b) does not admit a solution of (2.3). In the case when Cy is regular, consider the
program:

Py(d) :
u(d) = minimum maximum {HATy —qll«, 18Ty +g|}
Y99
s.t. y€Cy (3.6)
g€ Cxk
g20
ZTy=1

If d = (A, b) were in F€, then form Proposition 2.1 it would be true that u(d) = 0. The nonnegative
quantity u(d) measures the extent to which (2.3) is not feasible. The smaller the value of u(d) is,
the closer the conditions (2.3) are to being satisfied, and so the smaller the value of p(d) should be.
These arguments are imprecise, but the next theorem validates the intuition of this line of thinking:

Theorem 3.4 Ifd € F and Cy is regular, then

Bu(d) < p(d) < u(d)

Therefore, u(d) approximates p(d) to within the factor 8*, where 3* is defined in Definition 2.1.

Notice that P,(d) is also a convex program, which is convenient. If the constraint “z7y = 1”
in P,(d) is replaced with the norm constraint “||y||« = 1,” one obtains the nonconvex program:
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Pj(d) :
j(d) = minimum maximum {IIATy —qll«, BTy + gl}
Y¥,4,9
s.t. y€Cy
g€ Cx
920
lylle=1

and one can prove (although we will not do this here) that P;j(d) can be derived as a partial dual
of P.(d), and so j(d) = r(d), whereby j(d) = p(d) as in Theorem 3.5 of [13].

Returning to Py(d), notice that the feasible region of this program is a convex set, and that
the objective function is a gauge function, i.e., a nonnegative convex function that is positively
homogeneous of degree 1, see [15]. A mathematical program that minimizes a gauge function over
a convex set is called a gauge program, and corresponding to every gauge program is a dual gauge
program that also minimizes a (dual) gauge function over a (dual) convex set, see [5]. For the
program P, (d), its dual gauge program is given by:

P,(d) :
v(d) = minimum Izl + |7
z,T
br — Az —z¢€Cy (3.7)
zeCx
r>0

In general, dual gauge programs will have the product of their optimal values equal to 1, as the
last theorem of this subsection indicates:

Theorem 3.5 Ifd € F and Cy is regular, then u(d) - v(d) = 1 whenever u(d) > 0, and

g 1
o) <p(d) £ e

Note that P,(d) is also a convex program. One can interpret P,(d) as measuring the extent
to which P has a solution that is interior the cone Cy. To see this, note from Proposition 2.3 that
Z € intCy, and so P,(d) will only be feasible if P has a solution interior to Cy. The more interior
a solution there is, the smaller (r,z) can be scaled and still satisfy br — Az — z € Cy. One would
then expect p(d) to be inversely proportional to v(d), as Theorem 3.5 indicates.

The proofs of these five theorems are given below.

Proof of Theorem 3.1: Suppose v > a(d). Then there exist 7,7, with a(d) < ¥ < v and
(7,7) is feasible for Py(d). Therefore, AT§ +7a € C%, ~bT5+5 >0, ||gll« = 1, and 7 € Cy.
From Proposition 2.2, there exists ¥ € Y that satisfies [|5]| = 1 and 7% = |||l = 1. Let
d = (A,b) = (A+~9a", b—70). Then || A-A|| = v||gaT|| = 7||5]| l|all« = v, and b=b]| = y||3]| = .
Thus ||d — d|| = maz {||A — A4]|, ||b— ||} = . Next note that ATg = ATg+~yuvTy = AT§+~u =
AT+ 750+ (y—7)i € Ck, and ~bTg = —bT g+ 4075 = —bT§+~ > —bT§+5 > 0. Therefore, by
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Proposition 2.1, (4,b) € FC. Therefore, p(d) < ||d — d|| = . As this is true for any v > a(d), we
must have p(d) < a(d), proving the second inequality of the theorem.

To prove the first inequality of the theorem, let & > p(d) be chosen. Then there exists (4, b)
for which ||d — d|| < o and d € FC€. Then, from Proposition 2.1, there exists § € C}, satisfying
AT e C%, b7§ <0, and ||7|l« = 1 (without loss of generality). Then for any x € Cx that satisfies
lz|l = 1, we will have

=T ATy + %ﬁTm =zT(A— A)Ty+2TATy + %’&Tx
> —|lz|| |4 = Al ||F]l« + 0+ (from Proposition 2.3)

z2-a+a=0
Therefore, ATﬂ-I—%ﬂ € C%. Also, -bT§+% = —5Ty+(5—b)Ty+% > —|lb—b|} 7ll«+5 = —a+F 20,

o

since § < 1 from Proposition 2.3. Thus v = 3 is feasible for P4 with y = §. Therefore,

a(d) < v = 5. As this is true for any a > p(d), it is also true that a(d) < ﬂ;—), completing the
proof. |

Proof of Theorem 3.2: Consider the program P,(d) given in (3.1). Because d € F, i.e., P has a
solution, there can be no feasible solution (y,v) of Py(d) with v < 0 (for if so, then y € Cy, b7y <
v <0, and ATy = ATy + @i ~ vii € intC% since @ € intCY%, violating Proposition 2.1). Therefore,
we can amend Py (d) by replacing the constraint ”|ly|l« = 17 by "||yll« = 17, so that

a(d) = minimum 0
Yy
s.t. ATy +~u e Cxk
~bfy+~y>0
lyll« > 1
yeCy

However, ||y|l« > 1 if and only if there exists v € Y that satisfies ||v]| < 1 and y¥v > 1 (see (2.4)),
and so we can write:

a(d) = minimum ¥
U Y Y
s.t. ATy +~yu € Cx
0Ty +~20
yTv>1
yeCy
veY v <1
We then separate this problem into the two-level optimization problem:
a(d) = minimum minimum ¥
veY Y,y
ol <1
s.t. ATy + 6 € Ck
Ty +7>0
yTv>1

yeCy
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Next note that the right-most (or bottom-level) problem is an instance of ND of the Appendix
given in (A.9), where K7 = C%, w = v, and K3 = C% xRy, MTy = (- ATy, +bTy), and f = (,1).
The dual problem associated with ND is given by NP in (A.8), which translates to

yp = maximum 7}
z,r,0
s.t. br — Az —6velCy
zeCyx
r>0
W +r=1
>0

Furthermore, since d € F, this program is feasible (set § = 0, and rescale any solution z of P), and
then since all of the hypotheses of Theorem A.2 are satisfied, vp = vp, and so we can replace the
bottom-level program by its dual, whereby

a(d) = minimum maximum 0
veY y,7,0
vl <1
s.t. br — Az —6velCy
zeCx
r>0
afr +r=1

6>0 ,

which is precisely w(d), so a(d) = w(d). |

Proof of Theorem 3.3: Suppose a > d(d). Then there exists (7, 7) feasible for Ps(d) such that
¥ < a. Therefore, ATy +7u€ C%, —bT§+4 >0, and 27y =1 and g € Cy.. From Corollary 2.1,
1< ||gll« 5 . From Proposition 2.2, there exists 7 € Y such that 7§ = |7« and ||5|| = 1. Now
let d = (4, b) (A+ ava?, b— av). Then [[A Al = a||v|| lill« = o, and ||b - b|| = «||7|| = «,
so that ||d —d|| = a. Now 07§ = bTg — T = b7g — alljll« < 7§ —a < BT —7 < 0,
so that 577 < O (the first inequality here being an instance of (2.15)). Also, for any z 6 Cx
satisfying ||z|| = 1, we have 2T AT§ = zTAT§ + azTao’y + 3Tz — 3Tz > axTuva ~yulz =
@Tz(atTy —7) > 3a z(87g — 1) > 0. Thus ATy € C%. From Proposition 2.1, then d € F€, and
so p(d) < ||d—d|| = a. As this is true for any a > &(d), then p(d) < &(d), which proves the second
inequality of the theorem.

To prove the first inequality of the theorem, suppose that oo > p(d). Then there exists
a data instance d = (A,b) with ||d — d|| < « for which d € F¢. From Proposmon 2.1, there
exists § € C} satisfying ATg e C%, bT§ < 0, and without loss of generality, Z T = 1. We now

show that (y,v) = (y, ﬁﬂ,) is feasible for P5(d). First observe that § € Cy and 27§ = 1. Also
Ty + a5 = TG+ (b-b)Tg+ 75 2 — 1o = ollllFll« + a5 > — % + = 2 0. It remains to show
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that ATy + 758 € Cx. To see this, observe that for any z € Cx with ||z|| = 1, that

a:TAng—i-%ﬂTm = gT AT+ 2T(A - A)Ty ﬁﬁ,

> —|lzfl 14~ Al Ig]l. + 55=
_ - ailz
= =gl BG*
> _E%i_f + Z%”x” (from Proposition 2.1)

_ —a o
—ﬂ*_!’-ﬁt—o

Thus AT agﬂfu € C%, showing that (y,7) = (gj, B%*) is feasible for Pg(d). Therefore, ﬁ—%T >

&(d). As this is true for any a > p(d), then p(d) > B6*&(d), completing the proof. |

Proof of Theorem 3.4: Suppose that a > p(d). Then there exists d = (4,b), with the
property that ||d — d|| < o and d € F€. From Proposition 2.1, this implies the existence of
a vector § € Cy that satisfies AT§ € C’X, bT7 < 0, and without loss of generality, 27y = 1.

Let ¢ = ATf§. Then AT§—q = (A A) g+ ATy —qg = (A- A) g, whereby ||ATg — g|lx <

(A=A 17l < ellglls < o‘z = 4+, from Corollary 2.1. Let g = —bT§. Then g > 0 and
75+ g| = |pTg — Ty < ||b— b|| 7l < e.u = £&. Thus (,q,9) is feasible for Py(d) with

objective value maz {HATy qlls, 1677+ g|} < g+, whereby u(d) < z=. As this is true for any

a > p(d), it is also true that u(d) < ?2, which proves the first inequality of the theorem.

Next, suppose that & > u(d). Then there exists § € Cy,, q¢ € C%, and g > 0 such that

775 =1and |AT§ —q||. < @ and |bT§ +g| < a. Let ¢ = o — |b'§+ g|, and note that e > 0. Define

= (A5 =(A-2(s"4~q"), b~ (77 +g+¢)z). Then |A—A| = ||z]| |ATG~ gl < @ and

o —oll = ||2]| 1677+ g + ¢l < |2 (| 7+gl+ |e|) = ||z]la = a. Therefore, ||d — d|| < . However,

AT = AT~ (ATg—-q) 275 = g € C%, and 575 = bTg — (b75+ g +¢€) 2Ty = —g — € < 0. Thus

from Proposition 2.1, d € F€, and so p(d) < ||d — d|| < a. As this is true for any o > u(d), it is
true that p(d) < u(d), completing this proof. |

Q.

Proof of Theorem 3.5: Note that P,(d) in (3.6) is an instance of the program G P of the Appendix
given in (A.2). To see this, we make the following associations. We let U = Y* x X* x R, and
V = X*x R, where R is the set of real numbers. We let K = Cy x C% x R, where R is the cone of
non-negative real numbers. We let d = (Z,0,0) and let the gauge function f(-) : V' — R be defined
by F(w,a) = maz {||w||«, |a|} for (w,a) € X* x R. Then with the linear operator M given by
M(y,q,9) = (—ATy +q, Ty + g), (3.6) is seen to be an instance of GP. The gauge dual GD of
GP for this instance is precisely P,(d) given in (3.7), and so we can apply Theorem A.1. If u(d) = 0,
then v(d) = 400, proving the result. If u(d) > 0, we cannot have u(d) = 400, since P,(d) always
has a feasible solution. It remains to show the result when u(d) > 0, and from Theorem A.1 of the
Appendix, we need only to verify that the four hypotheses of part (III) of Theorem A.1 are satisfied.
Hypothesis (i) translates to the assertion that all projections of {y € Cy |27y = 1} x C% x Ry are
closed sets. This is true because C% and R are closed cones (whose projections will be closed
sets), and {y € C}|zTy = 1} is a closed bounded set, and so its projections will be closed sets.
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Hypothesis (ii) translates to sup{zTyly € C}} = +o0, which is true because Cy is regular and
z € intCy from Proposition 2.3. Hypothesis (iii) is true because f(-) = f(w, a) = maz {||w|+, ||}
is a norm, and so is a closed gauge function, and hypothesis (iv) is true because f(w, a) is a norm
and so its level sets are bounded. Since the hypotheses of Theorem A.1 are satisfied for the gauge
program P,(d), then u(d) > 0 implies u(d)v(d) = 1, proving the result. |

3.2 Characterization Results when P is not consistent

In this subsection, we parallel the results of the previous subsection for the case when P
is not consistent. That is, we present five different mathematical programs and we prove that the
optimal value of each of these mathematical programs provides an approximation of the value of
p(d), in the case when P is not consistent. For each of these five mathematical programs, the nature
of the approximation of p(d) is specified in a theorem stating the result.

We motivate the development of these programs on intuitive grounds as follows. If P is not
consistent, i.e.,d € FC, then it is elementary to see that:

p(d) = infimum ||d - d-||
d

s.t. d=(Ab)eF

that is, p(d) measures how close the data d lies to the set of data for which P has a solution. As
d & F, then there is no solution z € X and r > 0 to the homogenized system:

br — Az € Cy
zeCx
r>0

r+flzff=1 ,

and notice in the above that we have added a normalizing constraint ”r + ||z|| = 1.” However, when
Cy is regular, then the vector Z € intCy (see Proposition 2.3), and we can measure how close
d = (A, b) is to being in the set F by solving the following program:

P,(d):
o(d) = minimum -~
r’ x7’Y
s.t. br — Az +2zy€ Cy (3.8)
r+jlz| =1
r>0
z€Cx

Notice that o(d) > 0, since otherwise it would be true that d € F (by perturbing r to make r
positive if need be in P, (d)), which would violate the hypothesis of this subsection. Also notice that
o(d) < +o0, since z € intCy, and so P,(d) is feasible for any z € Cx and r > 0 with ||z|| +r =1
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and vy chosen sufficiently large. The smaller the value of (d) is, the closer the conditions (1.1) are
to being satisfied, and so the smaller the value of p(d) should be. These arguments are obviously
imprecise, but we will prove their validity in the following:

Theorem 3.6 Ifd € F° and Cy is regular, then
B*-o(d) < p(d) < o(d)

This theorem states that o(d) approximates p(d) to within the factor 8*, where recall the definition
of 8* in Definition 2.1. The proof of this theorem and all of the results of this subsection are deferred
to the end of the subsection.

Remark 3.2 It should be pointed out that P,(d) is not in general a convex program, due to the
non-convez constraint ‘r + ||z|| = 1”. However, in the case when X = R", if we choose the norm
on X to be the Lo norm, then Py(d) can be solved by solving 2n convexr programs, where the
construction ezactly parallels that given for P,(d) earlier in this section. One can easily show that
o(d) = min {O‘l(d), a"(d)}, where :

!’ P . e
0 (d)= minimum minimum -~
i=1...,n rzv

s.t. br— Az +zZy € Cy
—(l~-re<z<(l-r)e
LL‘j=(l-—'r‘)
r>0
z € Cx ,

and
" « . o
0 (d) = minimum minimum -«
i=1,...,n T, T,y

s.t. br — Az +zy € Cy
—(1-regz<(1—1r)e
Zj = —(1—7‘)

The next mathematical program is obtained by considering the following normalized version
of the infeasibilty conditions (2.2):

HD:
ATy e Cx
Ty >0
yeCy
Zly=1

One can think of 27y as a linear approximation of ||y||« over the cone Cy, see Corollary 2.1. (In
fact, the construction of 3* and Z in Definition 2.1 and Proposition 2.3 is such that z7y is the
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"best” linear approximation of ||y||« over the cone C}.) Now, an “internal view” of p(d) is that
p(d) measures the extent to which the data d = (A,b) can be altered and yet (2.2) will still be
feasible for the new system. A modification of this view is that p(d) measures the extent to which
the system (2.2) can be modified while still ensuring the feasibility of the system. Consider the
following program:

Ps(d) :
@ 6(d) = minimum  maximum 6
vEX* y,0
lvll« €1 s.t. ATy —vh € C¥% (3.9)
—bTy—-6>0
yely
Ty=1

Then 6(d) is the largest scaling factor 6 such that for any v with |[v||, < 1, (—v8) can be
added to the first inclusion of HD and 6 can be added to the inequality in H D while still ensuring
its feasibility. We will prove:

Theorem 3.7 Ifd € F¢ and Cy is regular, then o(d) = 6(d), and so
B*-6(d) < p(d) < 6(d)
Three remarks are in order here. First, the theorem asserts that o(d) = §(d), and in fact
the proof of the theorem will show that Ps(d) can be obtained from P;(d) by dualizing on a subset

of the variables and constraints of P,(d), i.e., P,(d) and Ps(d) are partial duals of one another.
Second, there is an underlying geometry in P,(d). To see this, let

T = {(v,7) € X* x R| there ezists y € Cy satisfying ATy —v € C%, —bTy—~v>0, 2Ty =1}.

(3.10)
Then Ps(d) can alternatively be written as:
§(d) = maximum 6
6 (3.11)

s.t. {(v,7) € X* x Rlmaz{|lvl., |y} <6} T ,

and we see that §(d) is the radius of the largest ball centered at (v,v7) = (0,0) and contained
in T, where the norm is max{||v|l«, |y|}. Third, if we replace the normalizing linear constraint
“2Ty = 17 of Ps(d) by the norm constraint “||y||« = 1,” then the modified program is analogous
to the construction of Renegar (as applied to the system (2.2)) for characterizing the distance to
ill-posedness (see Theorem 3.5 of [13]) when P is not consistent. The modified program is:

Pr(d):

m(d) = minimum  maximum 6
veEX* y,0
lll« <1 s.t. ATy —vh e C%
Ty —6>0
y€Cy

lylls =1 :
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and one can in fact show that m(d) = p(d) when d € F€. We will not prove this here; rather it is
our intent to show the connection to the results in [13].

One problem with P,(d) is that P,(d) is generally nonconvex, due to the constraint “r +
llz]| = 1.” When Cx is also regular, then from Corollary 2.1 the linear function Tz is a “best”
linear approximation of ||z|| on Cx, and if we replace "r + ||z|| = 1” by “r + 47z = 1”7 in P,(d) we
obtain:

Pa d):
“ 5(d) = minimum -~y
T,y
s.t. br — Az + zy € Cy (3.12)
r+alr=1
r>0
reCx

Replacing the norm constraint by its linear approximation will reduce (by a constant) the extent
to which the program computes an approximation of p(d), and the analog of Theorem 3.6 becomes:

Theorem 3.8 Ifd € F¢ and both Cx and Cy are regular, then

BB -5(d) < p(d) < &(d).

Notice that a very nice feature of P3(d) is that it is a convex program.

The fourth mathematical program of this subsection is derived by once again measuring
the extent to which the data d = (A4, b) does not admit a solution of (1.1). In the case when Cx is
regular, consider the program:

Py(d) :
g(d) = minimum |br — Az — w||
z, T, W
s.t. z € Cx (3.13)
r>0
w € Cy
alr+r=1

If d = (A, b) were in F, then it would be true that g(d) = 0. The nonnegative quantity g(d) measures
the extent to which (1.1) is not feasible. The smaller the value of g(d) is, the closer the conditions
(1.1) are to being satisfied, and so the smaller the value of p(d) should be. These arguments are
imprecise, but the next theorem validates the intuition of this line of thinking:

Theorem 3.9 Ifd € FC and Cx is regular, then

B g(d) < p(d) < g(d)
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Therefore, g(d) approximates p(d) to within the factor 3, where 3 is defined in Definition 2.1.

Notice that P,(d) is also a convex program, which is convenient. If the constraint “a" z+r =
1” in P,(d) is replaced with the norm constraint “||z||+r = 1,” one obtains the nonconvex program:

Pi(d) :
@ k(d) = minimum |br — Az — w||
z,r,w
s.t. rz€Cyx
r>0
w € Cy
lzl +r=1

and one can prove (although we will not do this here) that Px(d) can be derived as a partial dual
of P;(d), and so k(d) = 7(d) = p(d) as mentioned earlier.

Returning to Py(d), notice that P,(d) is a gauge program. For the program P,(d), its dual
gauge program is given by:

Py(d) :
h(d) = minimum ||y«
Yy
st.  ATy_weCy (3.14)
—Ty—1>0
yeCy

In general, dual gauge programs will have the product of their optimal values equal to 1, as the
last theorem of this subsection indicates:

Theorem 3.10 If d € F¢ and Cx is regular, then g(d) - h(d) = 1 whenever g(d) > 0, and

Note that Pp(d) is also a convex program. One can interpret Py(d) as measuring the extent
to which (2.2) has a solution that is interior to the cone C% and that satisfies bTy < 0 strictly. To
see this, note from Proposition 2.3 that @ € intC%, and so Py(d) will only be feasible if the first
and the third conditions of (2.2) are satisfied in their interior. The more interior a solution there
is, the smaller 3 can be scaled and still satisfy ATy — @ € Cy and —bTy — 1 > 0. One would then
expect p(d) to be inversely proportional to h(d), as Theorem 3.5 indicates.

The proofs of these last five theorems are given below.

Proof of Theorem 3.6: Suppose that a > o(d) is given. Then there exists a feasible solution
(7,%,7) of Py(d) with ¥ < o, i.e.,, bF — AZ+ 2y € Cy, 7+ ||Z]| =1, ¥ > 0, and Z € Cx. From
Proposition 2.2, there exists (v, t) € X*x R satisfying v7 Z+t7 = 7+||z|| = 1, and maz {||v|ls, ||} =
1. Let us then define d = (A4,b) = (A — azvT, b+ azt). Then ||A — A| = a|Z|| ||v]l+ £ @ and
I6—-bl = alt| ||2|| < @, so ||d—d| < . However, bF — AT = bi+azti— AT+ azvTZ = bF— AZ+aZ =
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b7 — AZ + 7Z + (o — 7)Z € int Cy. Thus b(7 + €) — Az € Cy for € > 0 and sufficiently small, and
so after dividing this expression by 7 + ¢, we see that d = (A,b) € F. Therefore, p(d) < a. Since
this is true for any a > o(d), it is also true that p(d) < o(d), proving the second inequality of the
theorem.

To prove the first inequality of the theorem, let o > p(d) be chosen. Then there exists
d= ({1, b) for which ||d - d|| < @, and d € F, whereby there exists Z € Cx and 7 > 0 satisfying
bF — Az € Cy, and ||Z|| + 7 = 1. Thus for any y € C that satisfies ||y[l« = 1,

yT (b7 — Az + £3) = o7 (br— A3+ (b-b)7 — (A— A)z + £3)
> b= B~ A - Al | + £77y
> —a(f+|z]|) + « (from Corollary 2.1)
=0

Therefore, (b’F — Az + [%2) € Cy, |Z||+7=1, and Z € Cx and 7 > 0. Thus (z,7,7) = (a‘:, 7, Z%)
is feasible for F,(d), whereby o(d) < £. As this is true for any a > p(d), it must be true that

a(d) £ %‘f—), completing the proof. |
Proof of Theorem 3.7: Consider the program P,(d) given in (3.8). Because d € F¢, i.., (1.1)
has no solution, there can be no feasible solution (z,r,v) of Py(d) with v < 0 (for if so, then
br — Az € int Cy, r > 0, = € Cx, and so for € > 0 and sufficiently small b(r + €¢) — Az € Cy,
and rescaling would give a solution ;- of (1.1)). Therefore, we can amend F,(d) by replacing the
constraint “||z|| + 7 = 1" by ”||z|| +r > 17, so that

o(d) = minimum -~
Ir, x) ’7

s.t. br — Az +zy € Cy
lzll 21-r
r>0
z€Cx

However, ||z|| > 1~ if and only if there exists v € X* that satisfies vTz > 1 —r and ||v||.« < 1 (see
(2.4)), and so we can write:

o(d) = minimum 7y
U7T7$77

s.t. br — Az + zZy € Cy
Te>1—1r
r>0
T € Cx
veX*
loll« <1
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We then separate this problem into the two-level optimization problem:

o(d) = minimum minimum 7
ve X* T, T,y
ol <1
s.t. br — Az + zy € Cy
r+vlz>1
r>0
reCx

Next note that the right-most (or bottom level) problem is an instance of ND of the Appendix
given in (A.9), where K3 = Cy, K{ = Cx xRy, y = (z,7), MTy = Az—br, f =z, and w = (v,1).
The dual problem associated with ND is given by NP in (A.8), which translates to:

vp = maximum 6
y,0
s.t. ATy —0v e Cx
Ty —-6>0
Ty =1
yeCy

Furthermore, since d € FC, this program is feasible (set 8 = 0 and apply Proposition 2.1), whereby
the hypotheses of Theorem A.2 are satisfied, and so vp = vp and we can replace the bottom-level
program by its dual, so

o(d) = minimum maximum @
veEX* y, 0
o]l <1
s.t. ATy — v e Cx
Ty —6>0
y€Cy
y=1 ,

which is precisely §(d), so o(d) = §(d). ]

Proof of Theorem 3.8: Suppose that a > p(d) is given. Then there exists a data instance
d = (A,b) with ||d — d|| < « for which d € F. Then by rescaling if necessary, there exists T € Cx
and 7 > 0 such that b7 — A% € Cy and @7 + 7 = 1. We now show that (b7 — AZ + 5%;%) € Cy.
To see this, note that for any y € Cy that satisfies ||y||l« = 1, then

yT (bF—Aa‘c+(ﬁ+‘ﬁ> z) = o7 (br— Az + (b— ) — (A— A)Z + 5%72)

> —llb—blIF - |4 - A |zl + 53527y

> —afF +||z]) + 2yl (from Corollary 2.1)
_  aT=
> —a(F+52)+g

v
|
wiR
&)
+
£l

~
§/I
+
IR
Il
(o
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Therefore (bf— AZ + (ﬁ) 2) € Cy. Thus (z,r,v) = (;?:, 7, ﬁ?ﬁ) is feasible for P;(d), and so
p

g(d) < 7o5- As this is true for any o > p(d), then 5(d) < ﬂfg, proving the first inequality of the

theorem.

Next, suppose that o > ¢(d) is given. Then there exists a feasible solution (Z, 7, ¥) of Ps(d)
with ¥ < a,ie,Z€Cx, 720, y<a, i —AZ+ 732 € Cy,and 7+ @'Z2 = 1. Let d = (4,b) =
(A—azi®, b+az). then ||[A—A]| = «||Z|| |G| = o, and ||b—b]| = ||Z|| = a, whereby ld=d| = c.
However, b7 — A% = bF — AT + aZ(F+ 47%) = bf — AT + az = bF — AZ +7Z + (a — ¥)z € int Cy.
Then b(7 + €) — AZ € Cy for ¢ > 0 and sufficiently small, so z = Z%G) satisfies for (1.1) for the data
d=(A,b),ie.,d€ F. Thus p(d) < ||d —d|| = e Since this is true for any o > g(d), it is also true
that p(d) < &(d), completing the proof. J

Proof of Theorem 3.9: Suppose that o > p(d) is given. Then there exists d = (4,b) € F
that satisfies ||d — d|| < a. Thus, by rescaling if necessary, there exists Z € Cx and 7 > 0
such that b7 — AZ € Cy and @7Z+7 = 1. Let w = bFf — A%. Then w € Cy and b7 — AT —w =
bF — Az —w+ (b—b)Ff —(A—A)Z = (b—b)F— (A~ A)Z, so ||bF — AT —w]| < ||b—b||F+ ||A— Al ||Z|| <
af + a||Z]] < aF + @ (@%§> < %, from Corollary 2.1. Therefore, (Z,7,w) is feasible for P,(d) with
objective value at most %, and so g(d) < 3- As this is true for any a > p(d), it must be true that

g(d) < ﬁ(ﬁd—), which proves the first part of the theorem.

Next, suppose that a > g(d) is given. Then there exists (z,7,w) feasible for Py(d) with

objective value ||br — Az —w|| < a. Then from (3.13), (z,7,w) satisfiesz € Cx, r > 0, @lz+r = 1,
and w € Cy. For ¢ > 0, define (%,7) = (1%5’ {—j_z) Then (Z,7,w) is feasil_J_le for—]-"_g(d),
and we can always choose € sufficiently small that ||bf — AZ — w| < a. Let d = (4,b) =

(A — (AZ — b7 + w)aT, b+ (AT — bF + w)). Then ||A— Al < a and ||b—b|| < a, so that ||d—d]| <
o. However, bf — Az = bf — AT + (AZ — bF + w) (ﬁTi + F) = w € Cy. Since 7 > 0, then
b— A (%) € Cy, and we see that d = (4,b) € F. This implies that p(d) < ||d — d|| < c. As this is
true for any o > g(d), it is also true that p(d) < g(d), proving the theorem. |

Proof of Theorem 3.10: Note that Py(d) of (3.13) is an instance of the program GP of the
Appendix given in (A.2). To see this, first change the notation of “z” in GP to “Z” and then
T=(z,mn,w), Mi=Az—-br+w, f(:)=|-|l, K =Cx x Ry x Cy, and d = (@, 1,0). The gauge
dual GD of GP for this instance is precisely Py, (d) given in (3.14), and so we can apply Theorem
A.2. If g(d) = 0, then h(d) = +o0, proving the result. If g(d) > 0, we cannot have g(d) = 400, since
Py(d) always has a feasible solution. It remains to show the result when g(d) > 0, and from Theorem
A.1 of the Appendix, we need only to verify that the four hypotheses of Theorem A.1 are satisfied.
Hypothesis (i) translates to the assertion that all projections of {(x,r,w) € Cx x Ry xCy|aTz+r =
1} are closed sets, which is true because {(z,7) € Cx x Ri|aTz +r =1} is a closed and bounded
set (and hence its projections will be closed sets), and Cy is a closed convex cone (and so its
projections will be closed sets). Hypothesis (ii) translates to sup{a’z +r|z € Cx,r € R} = 400,
which is true since one can set £ = 0 and r arbitrarily large. Hypotheses (iii) and (iv) are true
since f(-) = || - || is a closed gauge function with bounded level sets because || - || is a norm. Since
the hypotheses of Theorem A.1 are satisfied, then g(d) > 0 implies g(d) - h(d) = 1, proving the
theorem. |
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4 Bounds on Radii of Contained and Intersecting Balls

In this section, we develop four results concerning the radii of certain inscribed balls in the feasible
region of the system (1.1) or, in the case when P is not consistent, of the alternative system (2.2).
These results are stated as Lemmas 4.1, 4.2, 4.3, and 4.4 of this section. While these results are of
an intermediate nature, it is nevertheless useful to motivate them, which we do now, by thinking
in terms of the ellipsoid algorithm for finding a point in a convex set.

Consider the ellipsoid algorithm for finding a feasible point in a convex set C. Roughly
speaking, the main ingredients that are needed to apply the ellipsoid algorithm and to produce a
complexity bound on the number of iterations of the ellipsoid algorithm are the existence of:

(©) a ball B(Z,r) with the property that B(Z,r) C C,
(i¢) a ball B(0, R) with the property that B(z,7) C B(0,R) , and

(#4%) an upper bound on the ratio R/r .

With these three ingredients, it is then possible to produce a complexity bound on the
number of iterations of the ellipsoid algorithm, which will be O(n? in(R/r)). In addition, it is also
convenient to have the following:

(7v) a lower bound on the radius v of the contained ball B(Z,r), and

(v) an upper bound on the radius R of the initial ball B(0, R) .

In the bit model of complexity as applied to linear inequality systems, one is usually able
to set 7 = (1/n)2"L and R = n2L, where L is the number of bits needed to represent the system.
(Of course, these values of 7 and R break down when the system is degenerate (in our parlance,
“ill=posed” ) in which case the system must be perturbed first.)

By analogy for the problem P considered herein in (1.1), the convex set in mind is the set
X4, which is the feasible region of the problem P, and 2L is generally replaced by the condition
measure of d = (A, b), denoted C(d), which is defined to be

cay =L,

see Renegar [13]. The results in this section will be used in Section 5 to demonstrate in general
that we can find a point Z € X; and radii 7 and R with the five properties below, that are analogs
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of the five properties listed above:

(1) B(Z,r) C X4

(i1) B(z,r) C B(0,R)

(i) R/r <O(nC(d) =0 (%%)

fﬁ%ﬁ) ,and

(v) R<O(nc(d) =0 (Y

(i) r=1/(0(nC(d))) =90

N

Here the quantity 2% is roughly replaced by C(d) .

The above remarks pertain to the the case when P is consistent, i.e., when (1.1) has a
solution. When (1.1) is not consistent, then the convex set in mind is the feasible region for the
alternative system (2.2), denoted by Y;. The results in this section will also be used in Section 5 to
demonstrate in general that we can find a point § in Yy and radii » and R with the three properties
below, that are analogs of the first three properties listed above:

(7’) B(i)?"‘) CYd
() B@r)CBOR)

(i) R/r<O(mc(d) =0 (=)

Because the system (2.2) is homogeneous, it makes little sense to bound r from below or R
from above, as all constructions can be scaled by any positive quantity. Therefore properties (iv)
and (v) are not relevant.

The results in this section are rather technical, and their proofs are unfortunately quite
long. The reader may first want to read Section 5 before pondering the results in this Section in
detail.

We first examine the case when (1.1) is consistent, in which case the feasible region X4 =
{z € X|b— Az € Cy,z € Cx} is nonempty.

Lemma 4.1 Suppose that d € F and Cy is regular. If p(d) > 0, then there ezists £ € Xy and
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positive scalars 1 and R; satisfying:

(¢) B(Z,mr) C{ze X|b— Az € Cy} (4.1)

(i) B(%m)C B(0,R1) (4.2)
(i) & < A
B p(d)

(Z’U) T 2 —'3-[[3""

and (v) R; < ﬁ3 pd )

In the case when C'x = X, (4.1) states that the feasible region X, contains a ball of radius 71,
and (4.2) states that this ball does not lie more than the distance R; from the origin. Furthermore,

& < %. In order to prove Lemma 4.1, we first prove:
Proposition 4.1 p(d) < ||d}} .

Proof: If d € F (respectively, FC), then d € F (respectively, F€) for all § > 0. Therefore,
d=(4,8) = (0,0) € B=cl(F) Nel (F¢), and 50 p(d) < [ld — dl| = [|d — 0]l = |id]. |

Proof of Lemma 4.1: For any w € Cy with ||w||« = 1, we have

Arlidl lwlls
1<l

BobTw
Tl

so that 3 (2 + W%ﬂb) € Cy. Now let (Z,7) solve P,(d), and let

w+

_ﬁ*_ ‘—:0)

) T
T=T—7 =

T+ 374

[SSY RS

Whereﬁzf—}—ﬁ%”. Let ¢ = b — AZ — z. Then q € Cy and we have bf—Aaz+—ﬁinb—§z=
Z+a+fqpb—32 =14 (2+ fiyb) +4 € Oy, so that 8b— AZ ~ 1z € Cy, whereby b— A% — %z € Cy.
Thus £ € Cx and b— Az € Cy,s0 £ € Xy4. Let ry = 56%3”. Then if ||z — Z|| < ry, we have

b-Az=b—Ai+A(z—3) =3}(6b—AZ-12)+ %2+ AlE - 1)

=y+ 5zt AE—z)

where y € Cy. Thus for any w € C5 with ||w|« =1,

wl(b—Az) > %ZTw+uwlA@E—z) > g — llwll.[|lAll |12 - |
> % — lidliry =0.

Therefore b — Az € Cy, proving (7).
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Next, let R; = U—(gi—) + 7.

Then
%l = % +1 < %i? + ,l}% (from Proposition 4.1)
= ﬁéudlji) + ggil_‘) (from Theorem 3.5)
< Al (from Theorem 3.4)
= B*p(d) ’ '

proving (#ii). To compute the bounds in (iv) and (v), notice first that 6 =7 + ﬂ% > 5%“, so that
r1 < 1. Therefore,

R1=3%d—)+r1 < 2||dg|'u()+1

< —%L%—; + % (from Theorem 3.5 and Proposition 4.1)

3||d]

< (from Theorem 3.4)

< ol ,
proving (v). We also have:

§=7+fg <v(d)+ g (from (3.7))

v(d) + 27%&5 (from Proposition 4.1)

<3 ————) . (from Theorem 3.5)

Therefore, 11 = _6||7ﬁ 2 ﬂ , proving (iv). Finally, observe that [|Z]|+71 = H—f;iu +7r < -v—(-gl +r =
R;, which proves (4i). |

We next have:

Lemma 4.2 Suppose that d € F and Cx is regular. If p(d) > 0, then there exists £ € X4 and
positive scalars ro and Ry satisfying:

(1) B(&,m)CCx (4.3)
(ZZ) B ((i‘, 7‘2) CcB (0, RQ) (4.4)

e Rg 2n+5)(|d
() 3 < Zna)

: BBp(d
(iv) r22 5 n+p2() ])d||

and (v) Ra < (2—2;,—)%")—‘1”

In the case when Cy = {0}, we can intersect both sides of (4.3) with the affine subspace of
z € X satisfying Az = b. Then (4.3) will imply that the feasible region X contains a ball of radius
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ro intersected with affine subspace of z € X satisfying Az = b. Furthermore, (4.4) states that this

ball does not lie more than a distance Ry from the origin. Furthermore, - —2 < %’E%gﬂ

Proof of Lemma 4.2: Let us consider the set
C={(mr)eXxRlzeCx, r20,@z+r=1,br-Az€ Cr} . (4.5)

Then C is closed, bounded and convex, and there is Léwner-John pair of ellipsoids for C (see [4]).
Therefore, letting (Z,7) be the common center of both ellipsoids, then (Z,7) € C, and it will be
true that for any w € X* and any scalar g, that

wTz 4+ gF — minimum wiz+gr > (maximum wlz + gr — (wT:E + gf)) (46
st. (z,7)eC st. (z,r)eC '
Let v = _msld . Then |jv|| < w(d), and from (3.3) and (3.4) there exists (z',7') satisfying z €
Cx, r >0, br' — Az’ +b"’d =q€Cy,and @z +7 =1. Let
P R
)= an
1+ 4%

" ” ” 7"+w(d) . .
Then (x , T ) €eC,andr = ﬁ—,}({g{— > 0, since p(d) > 0 and applying Theorem 3.2. If we

then set w = 0 and g = 1 in (4.6), we obtain

7> nil (r" —7), (4.8)

using the facts that minimum{ r|(z,7) € C} > 0 and mazimum{ r|(z,7) € C} > r". Therefore,

1"

r >

. 4.
n+2>O (49)

&

We now let # = Z. Then £ € Cx and b — A% € Cy from (4.5). Thus Z € X,.

We next demonstrate the following:

w(d)B
)

for any w € C% with |Jw|l« = 1, wTz > .
e vith ol (1T + w(@) (7 + 2

(4.10)

In order to prove (4.10), we choose any w € C% with |jw|l« = 1. Then, from (2.16), there exists
% € Cx such that ||Z|| = 1 and wTz > 3. If we set v = é[%fl, then |[v]] = w(d) and from (3.4),

there exists (i‘l, F') such that 7 € Cx, 7 >0, 4Tz +7 =1, and b — Az — A‘F—%ﬁ—a =qelCy. If
we then set
7 Fw(d 7
(33 +qan T )

(z".7) = e (4.11)
AZ]|
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then b7 — AT € Cy, i €Cx, 7 >0, and aTz" +7 =1, so that (i‘”,?ll) € C. Therefore, if
we choose g = 0 in (4.6), we obtain

wlz > wld — minimum wlz > n—_lﬁ) (maximum wlz — wT:E>
(z,r)eC (z,7)€C
1 T=" _ . Tx
2 (n—+1) (w z —w x) (4.12)
wTa‘:'«%-“’Tf"’(d)
_( 1 ) 1Az wT.'i':
— \n+1 w(d)z1 a - ’
1+

where the first inequality follows since wz > 0 for any z € Cx since w € C%. Rearranging (4.12)

we obtain
wT Zw(d)
(n+2)([Az]|+w(d)zT @)

wl'z (since wTZE > 0)

\Y

Bu(d
= ) CiEer ) , (from (2.14))

which demonstrates (4.10).

We now set rp = m%%%—maﬁ and prove (4.3). It suffices to prove that if ||z — Z|| < 7o,
then wTz > 0 for any w € C% that satisfies ||w||« = 1. To verify this, suppose w € C% and
llw|l« = 1. Then wlz = wT(z - 2) +wld > —|lz — 2| + —w:—” > —rg+ mﬁ%“fmd—ﬁ = 0, which
shows (4.3).

To prove (iv), note that since 7 < 1, then

Bw(d
2 G

> aﬁﬁﬁ%—"—) (from Theorem 3.2 and Proposition 4.1)

_ BBp(d)
= w2 (d)[+2Tdl

5 ‘
> ﬂ'%ﬂ)ﬁﬂ (since B < 1)

which proves (iv).
Now let Ry = 5—1T.- + r9. Then

Ry _ 1 _ (n+2)(||dli+w(d))
mEwn Tl = ghu@ . TL

2) (|jdfl+L4L
< %ﬁ + %u%u@ (from Proposition 4.1 and Theorem 3.2)

(2n+5)||d||
S "B puw(a)

(2n+5)|ld|
< 500 , (from Theorem 3.2)
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proving (4ii). To prove (i), note that

I +ro =14y <ZEiry  (from (214))

IA
-

+ 7o

I
29

2 )

which proves (4i). As a means to proving (v), first observe that

(n+2)F >r" (from (4.9))

- 1+1[”r;ﬂ'
> ﬁ%&j (since r' > 0)
”dﬁ’id) (from Proposition 4.1 and Theorem 3.2)

B
> “;‘flﬁ (since B < 1)
> /;(‘725 . (from Theorem 3.2)

Therefore,
Ry = 31? +ry <2 Zli?dl)d + 79 (from above)

2(n+2)||d|| 1
S S T D)

< 2(24;2()(})‘1’ + ngd (from above)

(2n+6)||d
< Gl ;

which proves (v). |

We now turn to the case when (P) is inconsistent, i.e., (1.1) has no solution. In this case,
from Proposition 2.1, the system (2.2) has a solution, and let us then examine the set of all solutions
to (2.2), which we denote by Y; to emphasize the dependence on the data d = (A4, b):

Ya={yeY*ATyec C%, yeCy, yTb <0}

Lemma 4.3 Suppose that d € F¢ and Cx is regular. If p(d) > 0, then there ezists § € Yy and

positive scalars r3 and R3 satisfying % < ﬁ[Ld' , and that satisfy:

B(g,r3) c {y e Y*|ATy € Ck, b7y <0}

and
9l < Rs
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In the case when Cy = {0}, then C} = Y*, and (4.14) states that the “dual” feasible region
Y, contains a ball of radius r3, and (4.15) states that the center of this ball does not lie more than

the distance R3 from the origin. Furthermore, % < ﬁl pdltli .

Proof of Lemma 4.3: Let § solve P,(d). Then AT§j—@ € C%, —b7§ > 1, and § € Cy. Then
since 7 # 0 (otherwise —@ € C% and so Cx is not regular, via Proposition 2.3), let § = ﬂ—%': Let

r3 = éﬁ%ﬁl, and let Rz = 1.

To prove (4.14) it suffices to show that if ||y — §ll« < 73, then ATy € C% and yTh < 0. We
have that ¢ = AT§ — Mf‘“: € C%. For any z € Cx with ||z| =1,

2T ATy =2TAT(y—§) +2TAT) - %ﬁ + %ﬁ

. =T
> |l Al lly = 3ll + 2Ta + f7

> —||Allrs + E£ (since z7q > 0)
> —Bg(d) + {5 (since ||d]} > | Al)
> —Pg(d) + (from (2.14))
> -4 (9(d) - w5

=0 . (from Theorem 3.10)

Therefore, ATy € C%. Similarly,
—bTy = by —§) b7y
. T
> —dll ly = gll+ = f
> —f9(d) + i
> —fg(d) + 7;(135 =g(d)(1-8) (from Theorem 3.10)

> 0. (from Proposition 2.3)

Therefore, ATy € C% and bTy < 0, which proves (4.14).

To prove (4.15), note that ||| = 1 = R3, which demonstrates (4.15). Finally note that
Ry _ 1 _ |d d
7-33- = 75 = Bo(d) < % from Theorem 3.9. |

‘We next prove:

Lemma 4.4 Suppose that d € F€ and Cy is regular. If p(d) > 0, then there exists § € Yy and
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positive scalars T4 and R4 satisfying %‘- < (7,2)%1%9@, and that satisfy:

B(y,ra) C C3 (4.16)
and

9l < Ra . (4.17)

In the case when Cx = X, then C% = {0}, and we can intersect both sides of (4.16) with
the affine subspace of y € Y that satisfy ATy = 0. Then (4.16) will imply that the feasible region
Y, contains a ball of radius r4 intersected with the affine subspace of y € Y that satisfy ATy = 0.

Furthermore, (4.17) states that the center of the ball does not lie more than a distance R4 from
2m|\d

.« . _RA
the origin. Furthermore, - < ROk

Proof of Lemma 4.4: Let S = Y;N{y € Y*|zTy = 1}. Because S is bounded, closed and convex,
there is a Lowner-John pair of ellipsoids for S (see [4]). Therefore, letting § be the common center
of both ellipsoids, then § € S, and it will be true that for any w € Y, that

wlj— minimum wly > Zm_l-'ﬁ (mazimum wly —wTy). (4.18)
yes yesS )
(Note that dim(S) < m — 1 from (4.13) and the definition of S.)

We first demonstrate the following fact:
p*8(d)

for any w € Cy with |Jw|| =1, §Tw > ———"4— (4.19)

m (|ldll + 6(d))
In order to prove (4.19), we choose any w € Cy with ||w|| = 1. Then, from (2.17), there exists
5 € Cp with 5], = 1 and 37w > B*. Let M = maz{||ATd|., |675|}, and set v = —42.

Then ||v||« < 1. From (3.10) and (3.11), there exists (y,) with 6 = 6(d) such that ATy — v8 €
C%, —bTy—8 >0, ye Cy,and Ty = 1. Lety = y+ 2. Then ATy = ATy + 4720 —
ATy —vh € C%. Also bTy' = pTy + 228 bT’_"’ < by + 8 < 0. Furthermore, since y € C} and

v € Cy, y'EC';. Wealsohavey w—yw—f—“wer’T—ML‘gz%z.@%@, Note that

"_ oy z T," Bro(d) _ _Bré(d) B*5(d)
Now let y = G% Then y € S, and w'y > (1 2D) = DIy > TdTEsca Since

|vllx =1 implies M < maz{||A[|, ||} = l|d]|-
We now apply (4.18) to assert that
wlg > wlj— minimum wTy > (ﬁ) (mazimum wly — wT'g)
yesS yeS

> (7)) @y —vTg)
which after rearranging yields

- B5(d) :
Tg> ]+ 6() which proves (4.19).
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Let r4 = W%i%ﬁﬁ' To prove (4.16), it suffices to show that ||y — J||« < r4 implies y € Cy.
To demonstrate this, it suffices to show that for any w € Cy with [lw| = 1, that w:fy > 0. Let
w € Cy and |w| = 1. Then if [ly — gl < ra, w7y = wT(y - §) +wT§ > —ra + gy > 0-
Thus y € Cy, proving (4.16).

Let Ry = . Then |[§]lx < & = 4 = Ry, from (2.15), which proves (4.17). Finally, note

8 - p* B8*
that
Ry _. _1 — m{|ld]l+6(d))
T4 B*ra &(d)B*B*

m(lld]+£521)

S —5@ps ( from Theorem 3.7)

2ml|d]|

< p(_d)—“"“—(g')zﬁ* , from Proposition 4.1

5 Synthesis of Results

In this section, we synthesize the results of the previous two sections into theorems that
characterize aspects of the distance to ill-posedness for the three particular cases of problem P of
(1.1), namely

(1) Casel: Cx and Cy are both regular,

(1) Case 2: Cx is regular and Cy = {0},
(141) Case 3: Cx = X and Cy is regular,
and for the status of solvability of P of (1.1), namely

(a) P is consistent, i.e., (1.1) has a solution, and

(b) P is inconsistent, i.e., (2.2) has a solution.

Each of the six theorems of this section synthesizes our results of the previous two sections,
as applied to the one of the three cases above and one of the two status’ of the solvability of P.
Each theorem summarizes the applicable approximation characterizations of p(d) of Section 3, and
also synthesizes the appropriate bounds on radii of contained and intersecting balls developed in
Section 4. For a motivation of the importance of these bounds on radii of contained and intersecting
balls contained herein, the reader is referred to the opening discussion at the beginning of Section
4.

Each case is treated as a separate subsection, and all proofs are deferred to the end of the
section.

5.1 Case 1: Cx and Cy are both regular.

Theorem 5.1 Suppose that Cx and Cy are both reqular. If P is consistent, i.e., d € F, then
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(1) B - e(d) < p(d) < afd)

(i) a(d) = w(d), and so B - w(d) < p(d) < w(d)

(i) 66 - 5(d) < p(d) < &(d)

(iv) " -u(d) < p(d) < u(d)

() &5 < r(d) < 3

(vi) If p(d) > 0, then there exists & € X4 and positive scalars T and R satisfying:
(@) B(&r)C Xq

(b) B(&,r) C B(0,R)

R g4n+10f d|
© == Fppo@

BBB*p(d
@) 2 fh

(2n+6)||d
(€) R < gm0

Theorem 5.2 Suppose that Cx and Cy are both regular. If P is not consistent, i.e., d € FC, then
(i) B* - o(d) < p(d) < o(d)
(ii) o(d) = 6(d), and so B* - §(d) < p(d) < 6(d)
(i) BB - 5(d) < p(d) < 5(d)
(iv) B g(d) < p(d) < g(d)
(v) + < p(d) < 7
(vi) If p(d) > 0, then there exists § € Yy and positive scalars v and R satisfying

R _ _(4m+D)d]
r = (B8*)286* - p(d)

such that
{veY|lly—1dll« <r} CYq

and
{yevilly-dl. <r} c{y e Yyl < R}
5.2 Case 2: Cx is regular and Cy = {0}.

Theorem 5.3 Suppose that Cx is regular and Cy = {0}. If P is consistent, i.e., d € F, then
(i) B - a(d) < p(d) < a(d)
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(i6) o(d) = w(d), and s0 §- w(d) < p(d) < w(d)

(i) If p(d) > 0, then there exists £ € X4 and positive scalars 7 and R satisfying:
(@) {zeX|||lz—2z|| <r, Az=0b} C X4
(b) {zeX|||z-2|| <r, Az =1>b}C B(0,R)

R (2n+5)]d
(© ¥ < s

Bp(d
(@) 2

(2n+6)|\dll
(&) R< G

Theorem 5.4 Suppose that Cx is reqular and Cy = {0}. If P is not consistent, i.e., d € F©, then
(i) 8- 9(d) < p(d) < g(d)
(i) w5 < pd) < 7
(iii) If p(d) > 0, then there exists § € Yy and positive scalars v and R satisfying

R _ _2]d|
T = B-p(d)
such that
{fyeYlly-dll«<r}CYy
and

{veYly—gll <r}c{y e Y*|llyll« < R}

5.3 Case 3: Cx = X and Cy is regular.

Theorem 5.5 Suppose that Cx = X and Cy is regular. If P is consistent, i.e., d € F, then
(i) B* - u(d) < p(d) < u(d)
(i) &5 < p(d) < 7y



PROPERTIES OF THE DISTANCE TO ILL-POSEDNESS 38

(i4i) If p(d) > 0, then there exists & € Xy and positive scalars T and R satisfying:
(@) {zeX]||lz-2|<r}CXq

(b) {zeX|lz—2]<r}cBOR)

R ~ 3|d|
(©) F < 5w

@) r>5fr

3ljd
() R<Fldl

Theorem 5.6 Suppose that Cx = X and Cy is regular. If P is not consistent, i.e., d € FC, then
(i) B* - o(d) < p(d) < o(d)
(1) o(d) = 6(d), and so B* - 6(d) < p(d) < é(d)
(i4) If p(d) > 0, then there exists § € Yy and positive scalars r and R satisfying

R _ (4m+1)]d]
r = (8%)26* - p(d)
such that
{yeY*|ly-gll. <m, ATy=0}C¥y

and
{veYlly—igll« <r} c {y e Y|yl < R}

Proof of Theorem 5.1: Parts (i), (ii), (iii), (iv) and (v) follow directly from Theorems 3.1, 3.2,
3.3, 3.4 and 3.5, respectively. It remains to prove part (vi).

Let S={z € X|b— Az € Cy} and T = Cx. Then SNT = Xy. From Lemma 4.1, there
exists 1 € Xg and r1, Ry satisfying conditions (i) — (v) of Lemma 4.1. From Lemma 4.2, there
exists 2o € X4 and r9, Ry satisfying conditions (i) — (v) of Lemma 4.2. Then the conditions of
Proposition A.2 of the Appendix are satisfied, and so there exists £ and r, R satisfying the five
conditions of Proposition A.2. Therefore, (i) B(Z,7) C SNT = Xg, which is (a). Also from (i),
B(&,r) € B(0, R), which is (b). From (4ii), we have

R R RQ} (4n + 10)||d]|
— §2max{—,— Y- VA
T T T2 B*BB*p(d)
(invoking Lemma 4.1 (iii) and Lemma 4.2 (iii)), which is (c). Similarly applying Lemma 4.1 and
4.2 and Proposition A.2 in parts (iv) and (v) yields

BBB*p(d)

r> }- ; { } >
= gMmUL T2 = Y o) ]

and
(2n + 6)|14]|

R < maz {R1,Rs} < 525 p(d)
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Proof of Theorem 5.2: Parts (i), (ii), (iii), (iv) and (v) follow directly from Theorems
3.6, 3.7, 3.8, 3.9 and 3.10, respectively. It remains to prove part (vi).

Let S={y € Y*| ATy € C%, bTy <0} and T'= Cy. Then SNT =Y;. From Lemma 4.3,
there exists 3, r3, Rg satisfying §3 € SNT, B(Js, r3) C S and ||73]l« < R3, and % < 3‘%. From
Lemma, 4.4 there exists 94, 74, R4 satisfying g4 € SNT, B(94, r4) C T, and ||g4|l+ < Ry, and

- < ﬁ%{%' Then from Proposition A.1 of the Appendix, there exists § and r, R satisfying

B(§, ) C SNT =Yy, and [|j]| < R, and

B <omes (B, B} <omas{dly, FHiw )

< _4m||d|
= B(8*)*B"p(d)

Now let R = R+ 7. Then for any y € B(3, 7), |lylls < |[§ll« +7 < R+7 =R, and

R_R 4m||d d| sy
~=++1 < B @) +£G% (from Proposition 4.1)

(4m+1)||d| I
= B(B8*)?B*p(d) )

Proof of Theorem 5.3: Parts (i) and (44) follow directly from Theorems 3.1 and 3.2, respectively.
To prove (44i) we apply Lemma 4.2; there exists £ € Xg and 72, Rz satisfying the five conditions
of Lemma 4.2. Let 7 = ry and R = Ry + r2. Then (b), (c), (d), and (e) follow directly. To prove
(a), observe that from Lemma 4.2 (i) that

{zeX|||lz—-%| <r}cCx ,
and intersecting both sides with the affine set {z € X|Az = b} gives
{zeX||lz—2|<r, dz=b}CcCxnN{zeX|Az=b} =Xy . |
Proof of Theorem 5.4: Parts (i) and (ii) follow directly from Theorems 3.9 and 3.10, respectively.

To prove (iii) we apply Lemma 4.3; there exists § € Yy and 73, R3 satisfying % < % and (4.14)
and (4.15). Let r =r3 and R = R3 + r3. Then from (4.14) we obtain

ey |ly=gll <r}c{yeY*|ATyeCk, by<0} =Y, .

Also, for any y satisfying ||y — 9|l <7, |ly|l < ||gl| + » £ R3 + r3 = R. Finally, note that

R R: d d d tps
T=014+1 < g ot 1< 23'“5(%7 + }Jd])- (from Proposition 4.1)
2|[d|
< Bp(d ’ I

Proof of Theorem 5.5: Parts (i) and (ii) follow directly from Theorems 3.4 and 3.5, respectively.
To prove (iii) we apply Lemma 4.1; there exists £ € X4 and 71, R; satisfying the five conditions of
Lemma 4.1. Let 7 = r; and R = R;. Then (b), (c), (d), and (e) following directly. To prove (a),
observe from Lemma 4.1(7) that

{zeX|||z—2|<r}c{zeXb-Azely}=Xq4 . 1
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Proof of Theorem 5.6: Parts (i) and (ii) follow from Theorems 3.6 and 3.7, respectively. It
remains to prove (iii).

Let S = {y € Y*ley < 0}. If we let v = 0 in (3.9), we see that there exists §; € Cy
satisfying ATg1 = 0,27 g)l 1 and =bT§; > (5(d) > p(d), from Theorem 3.7. Therefore, if we
set r; = T[@f% and R; = ﬁ,,, we have ||§1]|« ﬁ,, = R; (from 2.15), and for any y satisfying
ly = g1lle < 71, we have b7y = b7 (y — §1) + bTyl < o]l 1191 - yll ~ p(d) < |ldlir1 — p(d) = 0, and
so B(§1, 1) C S. If welet T =Cy, we have SNTN{y € Y*|ATy = 0} = Yy, and §; € Yy. From
Lemma 4.4, there exists §2 and r4, R4 satisfying = B < (—B;g)%%l;d—”—((-ﬁ, and (4.16) and (4.17). Then from
" Proposition A.1 of the Appendix, there exists § and r, R satisfying B(§,7) C SNT and ||3]] < R,

and
(Jal_emid ) 4m]|d]|
Brp(d)’ (8*)2B*p(d)]  (B*)2B*p(d)

Note also that
eV ly—dlls<r, ATy=0}cSNTN{yeV*ATy=0}=Y;.
Let R = R+ . Then for any y € B(§,7), ||lyll« < |lgll« +7 =B+ =R, and

4ml||d| d eps
% =& + 1 < T)’;’g,—g—(d— +7|>'G"7 (from Proposition 4.1)

dm+1)|id
S BVEd) I
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APPENDIX

This appendix contains four results that are used in the body of the paper. The first result
is an application of gauge duality theory from [5]. The second result is a duality theorem for a
class of mathematical programs, and the last two results are simple constructions with balls on the
intersection of two sets.

1. Nonlinear gauge duality for closed gauge functions

Let V be a finite-dimensional normed linear vector space with norm |v|| for v € V. A
function f(-) : V — RU {400} is a gauge function if f(-) is a nonnegative convex function that is
positively homogeneous of degree one, and f(0) = 0. The level sets of f(-) are those sets of the
form Sy = {v € V|f(v) < a}. If all of the level sets of f(-) are closed sets, then f(-) is a closed
gauge function.

Corresponding to every gauge function f(-) is a polar gauge function f*(y) defined for all
y in the dual space V*. When f(-) is a closed gauge function, this polar function takes on the
convenient definitional form:
f*y)= sup y'v
v (A1)
st. fv)<1l ,

for all y € V*. Also, when f(-) is a closed gauge function, f**(-) = f(-), provided that we identify
V** with V. An excellent treatment of polarity for gauge functions is given in [15].

Consider the following optimization problem:

GP :
§* = infimum f(Mz)
x
(A.2)
s.t. €K
dTz = ,
and its gauge dual, defined as
GD :
t* = infimum f*(y)
Y
(A.3)

s.t. MTy—de K*
yeV® ,

where M is a linear operator from a finite-dimensional normed linear vector space U to the finite-
dimensional normed linear vector space V, i.e., M € L(U,V), d is a linear functional, i.e., d € U*,
and K is a convex cone in U. The following duality theorem is a special instance of Theorem 2A
in [5].
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TheoremA.1 : (I)If s* =0, then t* = +o0.
(I) If t* =0, then s* = +oo.
(III) If s* > 0 and t* > 0, then s*t* = 1 under the following hypotheses :
(i) all projections of {z € K|d¥z = 1} are closed sets,
(ii) sup{d®z|z € K} = +c0,
(iii) f(-) is a closed gauge function, and
(iv) {v e V|f(v) <1} is a closed and bounded set.

Before proving the theorem, we first prove the following:
Lemma A.1 Under the four hypotheses of Theorem A.1 (III), suppose that § € V* is given. Then
§ Mz > 1 for all z € Kn{z € UldTz =1} (A.4)

if and only if
there exists m > 1 satisfying MT§—dr € K* . (A.5)

Proof : First suppose (A.5) holds. Then, if z € K and d'z = 1, we have 27(MT§ — dr) > 0, so
that §7 Mz > mdTx = 7 > 1, so that (A.4) is true. Conversely, suppose that (A.4) holds. Let

€= minimum 7J Mz
T
s.t. z €K
dfz=1

From (A.4) and the hypothesis (i), it must be true that ¢ > 1. Let S = {(o,6) € R x
R | there exists € K satisfying 1 —d 'z = a, §T Mz — € < 6}. Then S is a nonempty convex
set and (0,0) € S. Thus, there exists a hyperplane that separates (0,0) from S, i.e., there exists
(m,7v) # (0,0) with the property that am + 6y > 0 for any (a,vy) € S. Therefore v > 0. Also,
for any z € K and any p > 0, 7r<1——de) + (ngMa:—e-i—u)'y > 0. If y =0, then 7 # 0 and
7 > wdlz for any x € K. Thus 7 > 0 and 7 = 1 without loss of generality. Thus d”z < 1 for any
z € K, violating the second hypothesis of the theorem. As this is a contradiction, it must be true
that v > 0, and so v = 1 without a loss of generality. Then 7 — 7d¥z + T Mz — e + . > 0 for any
z € K, and p > 0. Therefore, MT4 — nd € K*. Also, upon setting = 0 we obtain m > ¢ — u for
any ¢ > 0. Thus w > € > 1, proving that (A.5) holds. |

Proof of Theorem A.1l : If s* and t* are both finite, then GP and GD have feasible solutions.
Note that for any feasible solutions z of GP and y of GD, that 2T MTy — 2Td > 0. Therefore,
1 =d¥z < yTMz < f(Mz)f*(y), where the last inequality follows from (A.1). Therefore s*t* > 1,
which is “weak duality” for these dual programs. If either s* = 0 or t* = 0, then t* = +o0 or

s* = 400, respectively, demonstrating (I) and (II) of the theorem.
To prove (III), we suppose that s*t* > 1 and derive a contradiction. Therefore s* > 1, and

I
so the two sets

S = {'U € V|v= Mz for some z € K satisfying d' ¢ = 1}
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and
Sy = {v € VIf(w) < Zl'}

are nonempty and disjoint. Now from hypothesis (i) we have S; is a closed convex set, and from
hypotheses (iii) and (iv) we have that S; is a closed and bounded convex set. Since S; N Sy = ¢,
there exists a hyperplane that strictly separates S; and Ss, due to the boundedness of S3. Thus
there exists § € V* and 3 such that

§E Mz > 8 for all z € K satisfying dz =1 (A.6)
and 1
7T v < B for all v that satisfy f(v) < el (A7)

With v = 0 in (A.7) we see that § > 0, and so 8 = 1 without loss of generality. From (A.7) and
(A.1), we conclude that f*(§) < t*. Next we observe that with 8 = 1 that (A.6) corresponds to
(A.4), so by Lemma A.1, there exists 7 > 1 satisfying MT9 — dr € K*. With y = Y, we have
MTy—de K*, y € V* and f*(y) = %f*(y) < f*(g) < t*. However, as y is feasible for GD,
t* < f*(y), which yields a contradiction. Thus s*t* = 1 is proved. |

2. A Strong Duality Theorem

Consider the following pair of optimization problems:

NP :
vp = maximum 6
z,0
s.t. Mz — 0w € K, (A.8)
z € Ko
ffz=1
6>0 ,
ND :
vp = minimum -y
Y,y
s.t. ~MTy+~f €K} (A.9)
yTw>1
y € Ky ,

where Kj, Ky are convex cones in finite-dimensional normed linear vector spaces Vi and V5, re-
spectively, M € L(Va, V1), f € V5, and w € V1.

Theorem A.2: Suppose that NP has a feasible solution. If K1 and Ko are closed convezr cones
and f € int K3, then vp = vp.

Proof: First suppose that (z,8) and (y,~) are feasible for NP and ND, respectively. Then
yTMz — 0yTw > 0, —2TMTy + ~fTz > 0, and §yTw > 6, all follow by combining feasibility
conditions of NP and ND. Summing these inequalities we obtain vy = 7 me > 60, whereby vp > vp.
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By the hypothesis of the theorem, vp > —oo. If vp = 400, then vp = +oo from the above
inequality. Therefore it remains to consider the case when vp is finite. We proceed as follows:
Let us define the set S = {(s,t,z) € V5 X R x R|there exists (y,v,v) satisfying y € Kj,

ve Ky, -MTy+~yf+s=v1-yTw<ty< z}. Then S # ¢, and for any given € > 0, the point
(0,0,vp —€) € S. Therefore, since S is a convex set, there exists a hyperplane separating S from
(0,0,vp — €). Thus, there exists (z,0,6) # 0 and g such that

§(vp—€)<g<zTs+0t+6z for any (s,t,2) €S .
This implies that § > 0. Also, for any v € K3 and any y € K7, and any v,
2" (v + MTy—7f) +0(1 -y w) + 672 6(wp ~e) -

In particular, this implies that ¢ € K> and Mz — w € K1, ffz =6, and 6 > 6§ (up —¢€). Also,
since f € int K3 from the hypothesis of the theorem, then § > 0. If § > 0, without loss of generality
6§ =1, so that fTz =1 and § > vp —e. Then (z,0) is feasible for NP, and vp > 6 > vp —e€. As
this is true for any € > 0, then vp > vp, which proves that vp = vp.

It only remains to examine the case when § = 0. Then f7z = 0, which implies that = = 0,
since f € int K5 and x € K. Therefore, § # 0, and since 8 > 0, = 1 without loss of generality.
Then 1 — yTw > 0 for any y € K}, whereby —w € K. Because NP is feasible, there exists (z, é)
feasible for NP. And since —w € K1, (Z, 6 + 9) is feasible for NP for all § > 0, whereby vp = +00,
which contradicts the supposition of the case. Thus § > 0 as desired. |

3. A Construction Using Inscribed Balls and Intersecting Sets

Proposition A.1 Let X be a finite-dimensional normed linear vector space with norm || - || and
let S and T be subsets of X. Suppose that

(i) &1 € SNT, B(&,m1) C S, where r1 >0, and ||£1]] < R1, and
(ii) T2 € SNT, B(&q,12) C T, where rg > 0, and ||Z2| < Ra.
Let o= FTT-EE’ and r = 1—,%_’13;, and R=aR, + (1 - a)Rs.
Then the point = a1 + (1 — a)Ze will satisfy:

(i) B(g,rycsSNnT,

@) Izl <R,

=3 I:U)

and (441) < 2mam{%l, %2}

Proof: First note that 0 < o < 1. Because B(#1,71) C S and 22 € S, B(at1+(1—a)Z2,ar;) C S.
Similarly, because B(Z2,79) C T and #; € T, B(az1 + (1 — a)Z2, (1 — a)ry) C T. Noticing
that ar; = (1 — a)re = r, we have B(Z,r) = B(aZi + (1 — a)iy, 7) € SNT. Also ||| <
all#1]l + (1 — @)||#2]l < aR; + (1 — a)Ry = R. Finally, to show (iii), suppose first that % > %2.
Then

R aRi+(1—-a)Ry roRy+7mRy _roRi+roRi 2R {Rl RQ}
_—= = < = =2max{ —, — , .

bl

T T T17T2 - 172 71 Ty T2
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A similar argument holds when %l < 4
1 T2

Proposition A.2 Let X be a finite-dimensional normed linear vector space with norm || - || and
let S and T be subsets of X. Suppose that

(i) &1 € SNT, B(&1,m1) C S, where 71 > 0, and B(%1,71) C B(0, R1) and
(i) o € SNT, B(&s,2) CT, where rg >0, and B(iz,m2) C B(0, Ry).

Leta = 2, andr = 12, and R = aRy+(1—a)Ry. Then the point & = ad1+(1—a)Z2
will satisfy:
() B(gr)ycSnT,
(i) B(&,r) C B(O,R),

(i) £ < 2maz{&, %2} ,
(1v) rZ%min{rl,rg} ,

and (v) R < maz{Ri,Rs} .

Proof: Parts (i) and (iii) follow identically the proof of Proposition A.1. To see (iv), note

that by definition of r, r > min{;”lﬁ}{:ﬁfi{l’”} = zmin{r1,r2}. Part (v) follows from the fact

that R is a convex combination of R; and Ry. To prove (ii), note that for any =z € B(Z,r), we
have ||z|| < |2 + 7 < af|Z1]| + (1 — o)||&2)] + 7. However, ||£i]| + 7 < Ri, 1 = 1,2, so that
lz|| € @ (R1—71)+ (1 —a)(R2—72) +7 = R—r < R, which completes the proof. ]
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