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ABSTRACT

A theoretical treatment of the dynamical stability of plane parallel
flow of an ideal, Boussinesq, magnetic fluid is presaited. The magneto-
hydrodynamic approximation is used and the basic magnetic field is
taken to be parallel to the flow. All variations of magnetic field, vel-
ocity and density occur in the direction of a uniform gravity vector which
is perpendicular to the flow. It is shown by an extension of Squire's
theorem that the two-dimensional version of the problem exhibits the
greatest instability for normal mode disturbances whenever the strati-
fication is stable. A scaling analysis is applied to a gaseous atmos-
phere and conditions are derived for showing when the gas behaves like
the Boussinesq fluid. Reference is made to the case of the solar atmos-
phere.

Two simple problems are solved. A three layer model for a jet
exhibits several of the characteristics of continuous jets. Instability
may be manifest through a varicose wave and a sinuous mode. It is
found that the magnetic field acts solely as a stabilizing influence. A
surprisingly accurate heuristic formula describing the behavior of the
sinuous mode for small wave numbers is derived. The double shear
layer model represents the first problem with a complete solution in
which the magnetic field can destabilize the motion. Instability can
occur through three modes. One of the modes degenerates as the mrag-
netic field in the central layer approaches zero. It is this third mode
which is mainly responsible for the destabilizing effect which the mag-
netic field produces. It is shown in some cases that this destabilizing
effect is connected with the fact that a magnetic field in the central
region produces a coherency in the waving motions throughout the fluid.
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Since the normal modes do not constitute the complete solution,
the problem is treated as one of initial values. Considering the case of

a fluid in which the square of the derivative of the velocity is always
greater than the square of the derivative of the magnetic field, the initial

perturbation amplitude is found to decrease algebraically in time for any

gravitationally stable stratification. At zero stratification, the solution
is neutral.

The Nyquist stability criterion is applied to Couette flow with var-

ious magnetic field configurations. A piecewise linear magnetic field

can produce instability whenever it has a maximum which is less than

half of the maximum of the velocity. The Nyquist technique strictly
applies for a homogeneous fluid at zero wave number only, but can be

used for arbitrary velocity and magnetic field configurations.

A theory for long wave unbounded flow is presented when certain
restrictions are placed on the behavior of the velocity density, and
magnetic field configurations near plus and ininus infinity. A very

simple, convergent eigenvalue relation in powers of wave number and

overall Richardson number is obtained by two approaches. This relation

gives results which agree with the approximations for small wave num-

bers of the solutions to the two three layer models considered in the

dissertation. A formula for determining approximately the critical

Richardson number is derived for a shearing fluid with antisymmetric
velocity and density but symmetric magnetic field profiles. For the two

continuous velocity profiles considered a magnetic field which increases

the ci'itical stratification is found. Finally, a critique of the dissertation

is presented and suggestions for future research are mentioned.

Thesis Advisor: Victor P. Starr
Title: Professor of Meteorology
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I. Introduction

I take it as a fundamental principle in nature that physical proces-

ses act in a manner which serves to relieve tensions. Whatever the ex-

ternal forces acting on fluid may be, the latter will react in such a way

as to most suitably accommodate itself to these outside influences. It

may be, as in the case of our atmosphere, that heating differences will

force the fluid into a relatively well organized motion pattern such as

the jet stream.

It often happens that the velocity and density patterns produced by

various outside forces cannot be maintained and the patterns change

very suddenly. The attempts to understand such breakdowns constitute

the study of hydrodynamic stability. A fluid state of precarious balance

needs to be only slightly disturbed to undergo complete alteration.

Such disturbances may well be provided by the very forces which pro-

duced the fluid situation in the first place but from the point of break-

down the changes which occur indicate little dependence on external

forcing and seem to depend mainly on the fluid characteristics.

The general approach, guided by mathematical convenience, has

been to consider only the initial reaction of a basically steady fluid

state to arbitrary but small wavelike disturbances. If these perturba-

tions grow with time, we have an unstable situation; if they maintain

their amplitude the basic state is neutral and if they gradually damp
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out, the fluid will return to its basic state and is therefore stable.

There are two reasons that small disturbances are chosen. If a

large disturbance is superimposed on the basic state the question of the

nature of the disturbance becomes relevant because almost any state,

when bombarded by a sufficiently large disturbance will be completely

altered. So long as the question of importance concerns the liklihood

of maintaining a given situation when no gross attempt is made to change

it, it is clearly desirable to use a disturbance which nature itself might

provide by chance and which often enough is some small vibration.

Secondly, the mathematical problem of considering small disturbances

makes possible the approximation that the products of the disturbance

quantities may be neglected. Mathematically, this introduces the

simplification that is inherent in linear equations; physically, it limits

the investigation to an analysis of the effects of the interactions between

the perturbation and the basic state and excludes all consideration of

the mutual interactions of the perturbations. The limitations of the

linear technique prohibit the investigation to proceed in time when the

basic state is unstable because of the fact that the mutual interactions

of the disturbances soon become important and may behave in a manner

which restricts further development of the instability. Such a situation

must then be considered by nonlinear techniques. In this paper the

linear technique is used exclusively.
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A complete analysis of the linearized problem must take into ac-

count the various diffusive effects which are at work. In the body of

this thesis the fluid is taken to be ideal so that instability will be a

function solely of the dynamical processes. The complete diffusive pro-

blem for a heterogeneous magnetic fluid yields an equation of the twelfth

order which is rather difficult to work with. In the ideal problem we

are left with an equation of second order which is singular whenever

-there is no unstable solution. Further justification for ignoring the

diffusive effects lies partially in the fact that so little work has been

done on the subject. Also, the larger the scale of motions, the smaller

the effect of diffusive forces.

The fluid model consists of the infinite plane parallel flow of an

ideal incompressible heterogeneous magnetic fluid. The fluid is taken

to obey the standard approximations of magnetohydrodynamics. Only

small percentual density changes are permitted so that density varia-

tions assume importance only as buoyancy effects and are taken to

have no inertial effects. This is known as the Boussinesq approxima-

tion. The basic magnetic field is taken to be parallel to the flow. All

variations of velocity, magnetic field and density are considered to be

parallel to a constant gravity vector perpendicular to the basic flow.

A detailed discussion of these restrictions is given in chapter 2.

The instability problem considered inthis paper is one in which

three distinct physical processes operate. In briefest terms, these
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Sheor Velocity Profile

Jet Velooity Profile

The basic fluid model.Figure 1.
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three processes and their effects are: 1, the presence of a density

gradient in the fluid coupled with gravity so that a redistribution of the

fluid would cause a change in the potential energy of the system,

2, the presence of shear in the fluid so that redistribution would cause

a change in the kinetic energy of the basic state, and 3, the presence of

a magnetic field so that a redistribution of the fluid would cause a change

in the magnetic energy of the system. Because the preponderance of

the literature has dealt with the nonmagnetic version of the problem,

emphasis will be placed on the role of the magnetic field throughout this

thesis. It is appropriate at this point to present a review of :the litera-

ture as one means of introducing the topic and setting the tone for the

work in the body of the thesis.

A. Review of the Literature

Rayleigh (1916) showed that as soon as the stratification in an ideal

fluid was such that density increased with height, gravitational instability

set in. When viscosity and thermal conductivity were included in the

analysis, he could no longer solve for the time behavior as a function of

the stratification and other parameters. He then assumed that there

was a critical value for the stratification beyond which instability would

set in. He arrived at the following equation for perturbation velocity

=(1.1)
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is the Rayleigh number, and it becomes the eigenvalue of this pro-

blem.

In problems of hydrodynamic stability it is the aim to solve for

the wave speed. Lacking the ability to do so, as is almost always

the case, we proceed in one of several manners. One is to proceed

as Rayleigh did, namely, by finding some neutral solution and then

make assumptions about stability characteristics for parameters

with neighboring values. Several perturbation schemes, with vary-

ing degrees of validity, are also employed to find the solution in the

neighborhood of the neutral point. Act u ally, it is not often possible

to find neutral solutions. Another technique is to find some sufficient

condition for stability or instability. These conditions, however, are

generally restricted to rather simple cases; there are a large class

of flows for which the stability characteristics cannot be determined

by these "general" conditions.

In the case of the Benard problem a simple neutral solution

could be found and we are guaranteed 1y the principle of Exchange

of Stabilities that instability will result for any increase in the stra-

tification. The dissipative forces, moreover, act purely as stabiliz-

ing influences and thus, the problem is rather straightforward.

Generally, for parallel flows of an ideal fluid, the Exchange of

Stabilities is not valid and diffusive effects may exhibit seemingly

anomalous behavior as in the case of plane Poisseuille flow, where
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viscosity is the cause of the instability.

Squire's theorem has enabled us to consider two-.dimensional

disturbances of plane parallel flow as being the most unstable. We

assume that the solution is composed of normal modes and thus write

Cx3 = FCn e (1.2)

The governing equation for an ideal homogeneous fluid is given by

C -c 10 -XOYw =o (1.3)

We use the boundary conditions that w-o on both of the horizontal

boundaries. The main difficulty in solution lies in the fact that there

are singularities present in the equation when cs,aO and U=eC. The

inherent difficulty may become clearer by considering what would

appear to be a simple problem. Plane Couette flow, (UVz ), yields

an equation

=b L 0 (1.4)

which would seem to admit exponential solutions with no regard to

c.. Actually, we find it impossible to satisfy the boundary conditions.

If, for example, £ = -'Ia., then the general solution

becomes, at e= V'ia respectively
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O= Ae + Be

whose only solution is ,A*-0. We have incurred our first major

problem. The normal mode solution yields, at most, an incomplete

picture of the stability problem. This incompleteness is reflected

by the fact that in casually dropping the (U-c) term from consider-

ation one solution is lost. The problem is rendered complete when

we solve it by the method of Laplace transforms as an initial value

problem. The continuum which the initial value approach yields

generally exhibits algebraic time behavior so that if we can find un-

stable distinct modes we need look no further.

The Kelvin-Helmholtz problem is one of the very few which has

been solved completely. Without including density effects we find that

C = ,, _0. (1.6)

The equation is seen to have exponential solutions which can be sat-

isfied by the boundary conditions at the interface of the two distinct

fluid layers. All other problems which have been completely solved

possess this layered nature. Lin has shown that there does exist

value in these problems in the long wavelength limit in connection

with problems possessing continuous velocity distributions. Since
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short waves tend to be stable for continuous velocity distributions,

the behavior is seen to be somewhat different for the two cases.

We now modify our aims and seek weaker but more general re-

sults. Since only X appears in the equation and k appears in a

symmetric way in the boundary conditions, we suffer no limitations

by considering the case 'ko only. Furthermore, if we have a wave

speed, c, corresponding to a solution, W , then there will also be

a wave speed, C. , corresponding to a solution, WS . This

meanrs that if we ever find a CL. ' 0 , then the flow is unstable.

Integral theorems provide several results. Multiplying (1.3)

by W'/ (O-c) , integrating between the boundaries and making

use of the boundary conditions, we get the classical result first de-

rived by Rayleigh (1880) for the imaginary part of the equation.

CLS: -IV (1. 7)
1( -c31

If Cc, is to be nonzero, then D' must change sign somewhere in

the interval. Fjortoft has extended Rayleigh's result by considering

the real part. He obtained

(1.8)

In order to have instability the fluid must have regions where

In order to have instability the fluid must have regions where
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DO'(U OS , 4O and if the velocity distribution is monotonic and

has one inflection point (point where 30 -O ) then

&L (U-0s) $ 0 everywhere. When the conditions of these

theorems are met, we are still not guaranteed that the fluid will be

unstable because sinusoidal flow becomes stable once the boundaries

are sufficiently close. If, however, the conditions are not met,

then the fluid will be stable to normal mode disturbances. Graphic-

ally, various profiles are shown in figure 2 and the possibility of

instability is ruled out in all cases but (d); (c) satisfies Rayleigh's

theorem, but not Fjortoft's and it is interesting to note that Kent (1968)

has shown that a small constant magnetic field may destabilize some

flows in this category.

These arguments can be phrased in terms of vorticity considera-

tions. A fluid parcel interacts withthe basic flow in such a way as to

seek out its own vorticity level. In a fluid with a monotonic vorticity

profile, a fluid parcel will oscillate around its point of origin; only

when the vorticity has an extremum can a parcel, when forced across

it, be forced even further from its initial position.

The fact that ideal plane Poisseuille flow has t~e = const # 0

indicates its stability to normal mode disturbances. Since in actuality

it is unstable we can only conclude that if the continuum solution

isn't unstable, then viscosity was the cause of the instability. Much
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Figure 2. Four shearing profiles. c. and d. have an inflection

point but only d. satisfies Fjortoft's theorem and only

d. can be unstable (borrowed essentially from Drazin

and Howard 1966).

c d
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difficulty has been encountered in taking the inviscid limit of the

viscous Orr-Sommerfeld equation. Part of this difficulty arises

from the fact that on considering only the ideal problem the order of

the governing equation is reduced so that certain solutions are lost.

4 Nevertheless, we shall continue to ignore all diffusive effects in the body

of the thesis and consider only those solutions of the complete equations

. whose limits are expressed in the ideal equations.

Tollmien and later Lin (1945) have found sufficient conditions

for instability. For symmetric flows in which Fjortoft's theorem is

satisfied a neutral solution is given by c-- U . Finding the wave

number corresponding to this neutral solution and then investigating

the behavior of C with wave members in the vicinity of the neutral

point gives instability. Lin developed the general formula

(1. 9)

For symmetric flows of the Tollmien variety we are guaranteed that

for k just smaller than ks we have instability.

Rosenbluth and Simon (1964) have extended this result by use of

an interesting technique. The Nyquist stability criterion can be ap-

plied to problems for which the general form of the solution is known.
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For wave number zero the general solution is known for arbitrary

velocity profile. For a fluid in which the velocity profile is mono-

tonic and which satisfies Fjortoft's condition throughout, instability

is guaranteed if

>0

From this it is possible to see that if the boundaries are sufficiently

close the first term dominates and the expression is negative. Sta-

bility is thus guaranteed for boundaries sufficiently close.

The form of the equation they used is given in terms of the dis-

placement F = W / (U- c. and appears -as

(1.10)= -O

From this equation we can derive one further integral theorem. Mul-

tiplying it by F , integrating and making use of the boundary con-

ditions, we arrive at Howard's semicircle theorem. This states

that we can place limitations on the ranges of both C, and CL, for

unstable solutions and it is given by

(1.11)+, - C(,; O + -c

u Co,- ,"
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Equation (1. 10) proves useful for expansions in small wave

number. Drazin and Howard (1962) have derived a rather simple

formula for C. for a certain class of unbounded flows given by

0= X (LL-c - Cy + - 500 - 2

(1. 12)

where the subscript indicates the value of a at which the velocity

is evaluated. For the Kelvin-Helmholtz problem this gives the

exact value for C

When we include the effects of stratification we add to the com-

plexity of the problem. If the density gradient is anywhere gravita-

tionaly unstable we will have instability, for the velocity profile has

no effect on disturbances normal to it. When the stratification is

stable, Squire's theorem is once again valid and the two-dimensional

equation governing the flow may take the following forms corresponding

respectively to (1. 3) and (1. 10)

L- [ b-  - (0 - f e o (.13)

and

.to-/(C)t01 i c R, = (1.14)

. (ba F_ R is the Richardson number, a nondimensional para-
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meter relating the effects of stratification to those of shear. It

seems reasonable to assume that if the homogeneous problem ex-

hibits an instability, then we may be able to suppress that insta-

bility if we superimpose a strong enough stable stratification on it.

There must be some curve yielding a critical value for the Richard-

son number corresponding to each k for any given velocity profile.

Physically, instability becomes impossible when Lt S -I

because then there is not sufficient kinetic energy in the basic flow

to overcome the potential energy created by a redistribution of the

fluid. Seeing that instability may not always arise for homogeneous

flows, we observe a certain inefficiency in the fluid instability pro-

cesses. In fact, Howard has proven that if R. ' -'1 through-

out the fluid then there is no possibility for instability to normal modes.

Several general results which were valid for homogeneous fluids

are applicable to the stratified case also. We are justified in consi-

dering only K - o and are guaranteed that any c.,* o implies in-

stability. The semicircle theorem is valid for flows in which ~.4O

and becomes slightly more restrictive. Consideration of the con-

tinuum is necessary for a complete analysis.

For monotonic shear flows with suitably restricted singularities

Miles (1963) has proven that the curve traced out by singular neutral

solutions is in fact a stability boundary. Thus, the result we would

expect is justified in at least certain cases. Because the singularity
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is of a stronger nature than in the homogeneous case several of the

results do no extend to the heterogeneous case.

Several problems have been solved, at least for the neutral

curve. The Kelvin-Helmholtz problem has been solved completely

for the growth speed and we obtain

C= +o 2. (.21 9%. (L (1.15)

Thus, shorter wavelengths exhibit greater instability and there is a

wavelength above which we get stable travelling waves. One of the

best examples of the partial solution of a problem with a smooth

v locity profile is the treatment by Drazin (1958) of a hyberbolic

tangent velocity profile with 1i - const. When the equation is

phrased in terms of velocity as the independent variable we obtain

+_ _ -M 4)(- - (1.16)

dO 3 - U

where WI = &(%- \  a X . Drazin observed that this impos-

sible looking equation has the solution 9* const if

(Ac~vc ++2 + -(1.17)

where

I l a*
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This yields the result that

Drazin and Howard (1961), using equation (1. 14), expanded in

powers of the wave number and the Richardson humber, both of which

were taken to be small. They obtained the following rather simple

formula for the wave speed for a certain class of unbounded flows.

. ,--. (1.19)

-, L I +,-_C2

where G C \k - i. and G is the basic overall Richardson num-

ber. For both the Kelvin-Helmholtz problem and the neutral curve

of a variation of Drazin's problem this formula gives the exact so-

lution. Its success has merited extension to the magnetic problem.

The earliest works which included the effect of a magnetic

field on stability problems resulted in the conclusion that the mag-

netic field acted as a stabilizing influence. In the Benard problem,
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the critical Rayleigh number increases as the vertical component of

the magnetic field is increased. In the Kelvin-Helmholtz problem

with an aligned magnetic field we obtain the formula

S + % .ipt (1.20)

for the wave speed. When 2\ . I a .' 3 all

possibility of instability is ruled out.

The possibility that the magnetic field might act in a destabiliz-

ing manner was demonstrated by Drazin (1960) but his fluid model

has finite conductivity. Axford (1960) has shown that so long as the

magnetic field is not aligned with the velocity field we will get insta-

bility in the Kelvin-Helmholtz problem. A two-dimensional treatment

will not be adequate for this problem because there will then be a

wave component perpendicular to the basic current. The magnetic

field does not act as a destabilizing agent for this problem, but only

changes the direction at which an unstable wave will appear.

Two researchers have found that the presence of a magnetic

field may destabilize the motion for ideal fluids. Both Stern (1963)

and Kent (1966,1968) have used the governing equation for a perfect

homogeneous fluid with an aligned magnetic field

j - n(1. 21)
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and investigated the behavior for small X.

Stern considered Couette flow and superposed a piecewise linear

magnetic profile on it. Expanding in powers of I" , he found that

there were cases that had a C with an imaginary part. Kent (1966)

showed that if the magnetic field, with symmetric Poisseuille flow

satisfied the conditions

O= 0

then for small wave number, C L 0 t~h* and the problem is

unstable.

In a more thorough analysis, Kent (1968) has considered general

properties of (1. 21). As with (1. 3), the existence of any CL L o 0

implies instability and the study may be restricted to k o . Squire's

theorem is valid and a stricter version of the semicircle theorem can

be obtained (Stern 1963).

Finding neutral solutions becomes an even more difficult job

and expansions around the neutral point are guaranteed valid only in

the case that C O0 at some point where ~o- O and

-* 11= o

This represents such a limited class of profiles as to be of relatively

small value. There is one exception when the above conditions need
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not be met to provide a marginally stable solution. This occurs when

KC = o (Low 1961, etc) and , in fact, marginally stable solutions at

'Ka o often do not conform to the above restrictions.

The Nyquist stability technique may be used for homogeneous

fluids for the case of K= o and in the case of a fluid whose velocity

profile satisfies Rayleigh's necessary condition but not Fjortoft's,

Kent has shown that even a constant magnetic field may cause insta-

bility. In addition, it is important to study the continuum solution

but Kent's conclusions are dependent on his use of a delta function

amplitude disturbance and not any realistic form for the initial per-

turbation.

B. Summary

The purpose of this paper is to extend the theory of the sta-

bility characteristics of plane parallel flow of an ideal magnetic

fluid. In the majority of the paper, the treatment includes the buoy-

ancy effects due to the density stratification present in the fluid model.

Because of the fact that for large scale motions dissipative forces

play a lesser role in the dynamical processes, it is expected that

there is some applicability to various geophysical and astrophysical

phenomena. Emphasis is always placed on the theoretical aspect of the

problems, however, and nowhere in the thesis is the strict applicability

of any result stressed.
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The brief historical background material which was presented

in the previous section gives an idea of the basic approach taken in

the body of the thesis. The remaining chapters are now outlined.

In chapter 2 a brief introduction to the magnetohydrodynamic

approximation is presented. The basic equations for a Boussinesq

liquid are perturbed, and the first order perturbation equations are

combined into one governing equation, which is a second order ordina-

ry differential equation when a normal modes solution is assumed.

Integral theorems which place restrictions on the wave speed are

then derived and Squire's theorem is proved. Finally, a scaling

analysis is performed for a gaseous atmosphere to see for what

range of parameters the equations are approximately Boussinesq.

In chapter 3, analytical solutions are obtained for two relatively

simple problems. A three layer jet model is shown to have two modes

(sinuous and varicose) through which instability may occur. A heuris-

tic formula is developed for the sinuous mode of the long wavelength

disturbances of a narrow jet in an unbounded fluid and is shown to

agree with the long wave approximation to the solution of the sinuous

wave of the three layer jet. The second model is the double shear

layer and it is analyzed in some detail. Greater instability is often

manifest in the magnetic case especially for long waves and even a

constant magnetic field can destabilize the flow for small enough mag-

netic field values. A physical argument for the destabilization is pre-
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sented.

In chapter 4, two general stability finding techniques are used.

Noticing that the normal modes solution is often incomplete, the pro-

blem is reformulated by taking the Laplace transform and solving by

an initial value approach in the case of a monotonically shearing

fluid. Stability is established whenever the fluid has a gravitationally

stable stratification.

The Nyquist stability criterion is then applied to several simple

problems. This technique gives a graphical means of determing

if there is any solution for which an unstable root exists. The tech-

nique is limited to the case of homogeneous fluid at zero wave num-

ber but may be used for arbitrary distributions of velocity and mag-

netic field. By continuity.it is possible to extend these results to

sufficiently small but nonzero wave number.

In chapter 5, we consider the long wave disturbances in an un-

bounded homogeneous fluid which has finite velocity and magnetic

field limits. Two equivalent approaches can be taken: one, a series

approach and the other an integral equation attack. Both give con-

vergent eigenvalue relations for waves with a nonzero imaginary wave

speed. The 'first two terms of the series are applied to the simple

examples of chapter 3 -nd give ex !ll nt ,agrment. For the cas

of the sinuous mode for a jet flow, the eigenvalue relation agrees

remarkably with the heuristic formula of chapter 3.
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In chapter 6, the study of chapter 5 is extended to the case of

a heterogeneous fluid. It is found to be profitable to use a double

series expansion. The resultant eigenvalue relation is thus ex-

pressed in powers of the wave number and the overall Richardson

number. Convergence is proven in the same manner as that of

chapter 5, and the examples of chapter 3 are once again success-

fully applied. The case of marginal stability is investigated in

greater detail for monotonically shearing flows and several exam-

ples are treated. In two cases, the indications are that the magnetic

field serves to destabilize the flow by increasing the critical Richard-

son number.

In chapter 7, a brief critique is presented and some future

research is suggested.
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II. Delineation of the Problem

A. The Basic Equations

Magnetohydrodynamics is concerned with the behavior of an

electrically conducting fluid which is characterized by velocities

much smaller than the speed of light. Any conducting fluid obeys

Maxwell's equations, which are

a (2.1)

E -(2.2)

- (2.3)

p'o = o (2. 4)

We assume that phenomena are characterized by a length scale, L.

and time scale, t , such that

L

where C is the speed of light. A dimensional analysis of Faraday's

law of induction, (2. 3) states that

so that the electric field is related to the magnetic field by

E -Y



-35-

A dimensional analysis of Ampere's Law, (2. 1) yields

The second term on the right is thus far lower than the left hand side

so that

L c,

and we can write Ampere's Law as

x (2.5)

We have thus ruled out all effects of electromagnetic waves by

considering that the electric field is basically an induced field. In

our approximate form of Ampere's Law we have relinquished the

strict consistency of Maxwell's equations for the simplification which

we have obtained. We find further that when the fluid is fully ionized,

Ohm's law reduces to

C9
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and since in this paper we always assume infinite conductivity (a- =l,

we have

o= *~~ (2.7)

The manner in which the electromagnetic effects enter the fluid

equations of motion is through the Lorentz force,

*1 (2.8)

The order of magnitude of the charge distribution, E , is deter-

mined from Coulomb's law, (2. 2)

.so that a comparison of the first and second terms of (28) yields

\LE\ -V J- 8
S L.

so that

--
Zf - EE

xu
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and thus we can neglect the forces due to the charge distribution

within the fluid. Here we see more clearly that we are considering

fluids whose electric fields arise primarily as a result of the inter-

action of the fluid motion with magnetic fields; large local concen-

trations of charges are not considered in magnetohydrodynamics.

The Lorentz force is thus approximated by

J~=x I~1?(2.9)

Now, it becomes possible to express all the electrical variables

in terms of the magnetic field. Substituting for in (2. 9) from

(2. 5) we obtain

(2.10)

Eliminating the electric field between (2. 3) and (2. 7) we obtain

-B - - (2.11)

and we see that an incompressible fluid ( v.4 = o ) with use of

(2.4) yields
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+' . " z d . . 'k (2.12)

Zt 6X

This equation takes the same form as the equation for the time

rate of change of vorticity in an ideal incompressible fluid. We

therefore find that magnetic lines, like vortex lines in a nonmagnetic

fluid, move with the fluid. This equation depends heavily on the fact

that we have considered a fluid with infinite conductivity and places

several interesting restrictions on the possible fluid motions.

Through (2 12), we shall be able to relate our boundary conditions on

the magnetic field to those on the velocity field and shall also be able

to obtain one governing equation.

We limit our initial consideration to those fluids which are in-

compressible and Boussinesq. This means we do not consider such

phenomena as sound waves and neglect the inertial effects of the den-

sity variation since the latter is assumed to be small in comparison

with the average density. The momentum equation appears in vector

form as,

at - - ,(, (2.13)
Ckt

The equation for the continuity of mass is
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(2.14)

The thermal equation is

n t.

and the equation of state is

(2.15)

(2.16)aT -T

The basic state is one of hydrostatic balance. The basic tem-

perature, velocity and magnetic fields are all considered to be arbi-

trary functions of E . The equations for the disturbance quantities

are approximated by neglecting squares of all the small terms. We

obtain

b

(2.17)

e I t'7ay 4P(%%') 4 g -x

A
bt

b'.

V bs. -bY
P. wt 449. by%

(s9O -
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+ -0
la'

*b I.'

4j.

(2.17)

P34
B~L

b.

+b

These equations may now be nondimensionalized. We choose a

time scale, t , given by the basic shear and a length scale, L

given by the width of the shearing region. Thus, we have

LV
t

We shall thus scale the velocity so that

(~ U ua v(u '.:W)
i~ tocimloc

Z3To

awJ TS --
a~c

a~, __,
b~E

.-d

w h~
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and we scale the magnetic field so that at any point in space the Alfven

number, which gives the ratio of the Alfven wave speed to the veloci-

ty, can be obtained by dividing the nondimensional velocity U' into

. Therefore, we have

Furthermore, there is a part of the magnetic force which may be in-

corporated into the pressure term with no loss of generality. Thus,

Yo 4W
-L ?Dx

1f,,

nondimensionalizing ? and

number, RL , is expressed by

RL U%)

we find that a local Richardson

" I

-b:Th
The equations (2. 17) then appear as (dropping stars)

bt Vk bt b i It 3

bt a a

doll~

0'aa ~ _~S t 0 1 ZI 6* 9

(2.18)
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(2.18)

a t a %

B. General Behavior of the Problem

It is now proven that in a stably stratified fluid two dimensional

disturbances have the same nature as their three dimensional coun-

terparts and are, in fact, more unstable than the latter. This ana-

log of Squire's theorem assumes that the perturbations can repre-

sented oy wavelike solutions of the form
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S ( j k* FZa eL[W Y-+) +A1

for all perturbation quantities. The equations of (2. 18) then appear as

i(-c)u + w3U -- -ip + ikhk. \na

(O -C:) v = L kp -t kth

ctw

*bvw

(2.19)

= 0

iy\ 0 -C: k t wb t'

t*x t i L ,

90 ,

I\ W -c.3 9 =

C.k VI L Iv \

i~n Mw
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Multiplying the second equation of (2.19) by I/lk and adding it

to the first, we have

A 41 \

where we have used the following definitions

"x=\k let

(ZV

Similarly, by adding the first magnetic equation to I/k

times the second, we obtain

Finally, defining

we have a two dimensional analog to (2.19).

- I

0 (U C- + ~bt O i-j

K-C) O
ry ~u

L M"wDM

i~CU-c~"u + ~ bV ~
OV
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N Y\ A V M (2.20)

We thus see that the two-dimensional, (2d), set is completely

equivalent to the three-dimensional, (3d), set of equations. Further-

more, since RCo.gt /) , we see that the 2d .L is larger (and

thus more stable) than the 3d R. by a factor . We would

expect the growth speed to be smaller for analogous 2d disturbances

from a consideration of this factor alone. Nevertheless, since

growth is given by in the 3d case and WCQ in the 2d case

we find that the 2d problem is, in fact more unstable and we are

justified in limiting our consideration to the two-dimensional case.

Finally, with no I dependence in (2.18) or (2. 19) we find that the
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y equations for v and are formally independent of the other

equations and need not be incorporated.

Now we may proceed to derive the basic governing equation from

the 2d version of (2. 18). Utilizing the operator

and the fact that

when the X dependence is given by

We ultimately obtain (Appendix A)

(2. 21)

4 R to)u)cl I A 2.
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(2.21)
Ths- 'a soQ i 2 o)(a

This may be shortened to

W.)p
UL

(2. 22)

+0~ 1- r~cZ Hra-b % ( )A IO

which assumes significance when %LJ -' ikC. and which

reduces to Rayleigh's equation as I-O . By substituting

so that W a 4 we may write the equation in its most convenient

form (Appendix B),

(2. 23)

Assuming that /DL = - Lc , (2.23) becomes

- O I(2.24)

When the fluid is confined between two horizontal plates the

boundary conditions at the plates demand that there is no vertical

rr Lii~ ~

kYa'-M~F-R F~-o.6 -
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velocity, i. e.,

For unstable solutions this also means that Vao . When the basic

current is symmetric about the central value of a we obtain two so-.

lutions: the symmetric wave (varicose) and the antisymmetric wave

(sinuous). This enables us to use boundary conditions at the mid-

point respectively of w-o and Dw * o. We need no further bounda-

ry condition for our equation. This simplicity is due to the non dis-

sipative model we have chosen. Conditions on w are equivalent to

conditions on a by the P component of equation (2.12). A con-

dition of perfect conductivity at the walls implies that no tangential

electric field can be tolerated and thus, no perturbation transverse

magnetic field by Faraday's law.

Since our equation has only Ik terms and the boundary condi-

tions are symmetric in k we can thus limit consideration to the

case 'Ko. without any loss in generality. We shall now prove the

property of this equation that if there is a solution, E , corres-

ponding to a wave speed,, C, , then there also is a solution F.

corresponding to a wave speed C' . In other words so long as the

wave speed has an imaginary part, the situation is an unstable one.

Splitting (2. 24) into its real and imaginary parts, we have
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Re.

Replacing Fr by - F and by - C, leaves the real

part the same and simply changes the sign of all terms in the imagin-

ary part so that the equation if solved by ( F C ) is also solved by

(f*, C*).

Integral theorems are more difficult to derive in the magnetic

case because they contain the unknown, Cr , in a non-positive

definite manner. It is much the same difficulty as is introduced in-

to the attempt to find integral theorems when density effects are

added to the Rayleigh equation, but in the magnetic case the com-

plication is more severe. Thus, we have not been able to find a

theorem which places a limit on the stratification which will allow
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an unstable solution. An analog of Howard's semicircle theorem has

been proven for the homogeneous case by Stern(1963) and extends

somewhat more strongly to the heterogeneous case. It reveals the

surprising fact that as the magnetic field increases, whatever insta-

bility appears does so at wave speeds closer to the average velocity.

To prove the theorem, we multiply (2. 24) by V and integrating

across E , we obtain

To obtain a more convenient form, we integrate the first term

by parts and then use the boundary condition that Ca, - O0

We then have

We then separate this equation into its real and imaginary parts,

each of which must equal zero. They are, respectively,

and
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IFZ "f"IL

We conclude from the imaginary part that if we are to have an unstable

solution, C r must be in the range of the basic current.

* W4 F\ =-f

we observe that

S Ix
(2. 25)cc O

Now, we are guaranteed that

The real part of our integrated equation then appears as

r+
Vu..laO -

Qj(U* rU~~, 4 jw).o~~(X
a.L,

Defining

(. 4 C .IL'L)

Vk T: I (it
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where we have used the equation (2.25). Furthermore, since 1i4 so

everywhere, we can drop the term it appears in and strengthen our

inequality. The right hand side thus appears as

So that we are assured that whenever

cc C (um o,,. . SJ < l Sj ,-- (2. 26)

where , is the lowest absolute value that the magnetic field as-

sumes. When = o0 this reduces to Howard's result. If, how-

ever the magnetic field is never zero a more severe limit is placed

on the maximum possible value that C; may attain and more se-

verely restricts the range of the phase'speed, c, . It should not

be assumed that a nonvanishing magnetic field acts only as a stabi-

lizing influence since examples have been found where the opposite

is true. Certain instabilities will, nevertheless, be ruled out, as

is discussed in chapter 3.

We see that all possibility of obtaining unstable solutions is

ruled out whenever the magnetic energy exceeds the kinetic energy

everywhere, i.e., whenever
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Taking U4 - (Um , we see that

and thus

Ic.\ - \<MAeV\

which shows more clearly the restriction placed on the range of the

wave speed.

C. Applicability to Gaseous Atmospheres, A Scaling Analysis

Because of the highly theoretical nature of the work in this

thesis, no intention is made of emphasizing pract ic al applications.

It is appropriate, however, to mention two examples to which this

thesis may bear relevance. The justification for suggesting a com-

parison between real phenomena and our nondissipative model can

be illustrated by referring to the Benard problem. The stratifica-

tion necessary to produce instability varies inversely as the fourth

power of the depth of the fluid layer. Using typical values for vis-
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cosity and thermal conductivity, we find that by the time the dimen-

sions reach thunderstorm size, the dissipative forces are virtually

ineffective in restraining motion and virtually any lapse rate greater

than adiabatic will produce instability. Our examples occur on large

scale so that the ideal model is reasonable.

By tracing the motion of sunspots, and more recently by analyz-

ing actual Doppler velocity measurements on the sun, observers have

noticed that the sun does not rotate as a solid body at photospheric

levels. The degree of this differential rotation is quite significant

and many attempts have been made to explain its existence. The

theories assume that the sun is in solid body rotation at some lower

level and we are thus faced with a situation in which there is a zonal

shearing current superimposed on whatever convective motions are

occurring. If this differential rotation is confined to the photosphere,

then the vertical component of the shear will be a rather strong. Re-

gardless of the cause for this situation, it then becomes subject to

a hydromagnetic stability analysis which, if the shear is strong enough,

may occur on a time scale much shorter than that of solar rotation

and so be virtually independent of rotation.

Boller and Stolov (1969) have attacked the problem of the semi-

annual variation of geomagnetic activity. They attributed this varia-

tion to the semiannual periodicity of the alignment of the earth's mag-

netic field with sun. The varying phase of the magnetic field at the
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magnetopause is related to the ease with which the Kelvin-Helmholtz

instability may occur. Their theory fits the data with a good degree

of reasonableness and lends support to a consideration of the stabili-

ty characteristics of more general distributions of density, velocity

and magnetic field.

Since both of these phenomena occur in gaseous atmospheres,

it is important to see for what conditions, if any, our Boussinesq

liquid may be representative of a gas. The main difficulty in attempt-

ing to equate the behavior of liquids and gases lies in the differences

between the two equations of state. This is reflected in the added

role which the pressure assumes in a gas. For an incompressible

Boussinesq liquid, the pressure is passive and is invariably eliminated

by taking the curl of the equations of motion. In a gas, the pressure

has to adjust excessive density variations and is generally not elimina-

ted by taking the curl except under rather restrictive assumptions on

the scale of motions.

In somewhat unorthodox fashion, the approximations necessary

to make the gas appear the same as the liquid equations, (2.18), will

be made while scaling the equations and the restrictions which they

place on the range of validity will be discussed afterwards. Parti-

cular attention is shown to the case of the solar atmosphere at photo-

spheric levels.
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Our equation of state becomes the ideal gas law

"P- pRT ' R

Together with Poisson's law for adiabatic motions

T (2..
S 1000

and the thermal equation expressing the conservation of potential tem-

perature

CkG

it, forms the distinguishing aspects of a gas. Logarithmic differentia-

tion of Poisson's equation leads to

JL +_ C-, L , (2.27)

for the basic state which is denoted by the subscript, . , Since the

basic state is in hydrostatic balance this becomes

In many theoretical works the density profile is chosen so that
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for reasons of mathematical simplicity. This, however, does not

give a constant stability factor as can be seen by a relatively simple

example. Set

We then see that above this height, where T . < To , we will

have

and below it, where T. > To

Since an atmosphere is stably stratified when the potential tempera-

ture increases with height and unstably stratified when the potential

temperature decreases with height we see that our atmosphere has

both stable and unstable regions. For this reason, the basic strati-
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fication has been defined in terms of the potential temperature and

we note that because thermal conductivity has been neglected we need

not impose a basic state that has a linear temperature profile.

We can now scale our equations. Defining a time scale, t

to be the inverse of the average shear, and a length scale, . , to

be equal to the depth of the fluid we may write

L

where . is the arbitrary but small amplitude of the velocity per-

turbation. Indicating an average magnitude for a variable by an over-

bar, we write

9. -p s

The variables are scaled in the following manner

4 ,
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where the symbol " over the variable indicates the perturbation

amplitude which is of order

netic field to be

41T

. Finally, we scale our mag-

We determine the value of by noticing that the pressure term

has the same order of magnitude as the acceleration terms.

first order in 6

Thus to

.L P~s

and the magnitude of is thus

From Poisson's law we may write

Sa = e f ^C

C?

(2. 28)

(2. 29)

So that the scaling for density and potential temperature is revealed as

C,

L
t

t' at pae'

Iv *Y

9="
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The scaled continuity equation appears as (d1iopi, 4awrs )

0%0

4-~n
iiY

+ W %P YJ
Ys wt

In order to have the continuity equation in the form

we must demand that

C .

C~ct' P

The vertical equation of motion becomes

i-U z9 zjI

Since we wish the pressure term to appear as a pure gradient term

and also since we don't want to see the 9s

magnetic terms, we rewrite our equation as

bk
4 C3

in connection with the

*?~KT1

L ~i~s
g, at

t - Laef4

g, b't
-La(8~~

r

bt 1A C

o~, agL
9Sf 3't
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Defining a new magnetic field

and a new pressure,

In order to render our set of equations analogous to (2.18), we

should express the buoyancy in terms of potential temperature.

From (2. 29)

Cj" ) 'beg
Cy t-

Since the term

cVP - _

which by the hydrostatic law becomes

C? V
CP,3 -e

Our vertical equation thus becomes

= 0"
-~ss

Z
S

91-8

9SGS $ ?

M- ~-
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+7 .zo Ar TA IM A t

(2. 30)

To render this in the form of (2.18) we would like

Q<4(\

These approximations cause the fourth and fifth terms on the right of

( . 30) to be less than the first and third terms respectively. Our final

adjustment must appear in the magnetic equations. The horizontal

magnetic equation becomes

* \w
bX

and this reduces to the magnetic equation of (2.18) when

.LA"b._ < \
91 ba

Our equations are now formally identical to the set (2.18). Let

us investigate the meaning of the physical restrictions we have iri-

*ec

'Bk
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posed. Requiring <.< simply means that the fractional range

of the potential temperature must be much less than unity. Requiring

that

means that

+ .

Now, we have already set

We thus want

scale height, \ .

of compressibility

so that we want

the depth of the layer to be but a fraction of the

Finally, to remove sound waves and other effects

we have required that

In dimensional terms since we now require that

- L/,d,2.1

go, =
at

Lf--

t~tR=i~
-,

g - tt

t' RT

(2.31)
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Let us now see when these approximations are valid for the sun.

CGS units are used throughout.

0= \0

Typical values in the photosphere are

,= to

C= Ea= 1

Assuming that the motion is due to the differential rotation, we have

In order to insure that , the study must be restrict-

ed to fluid layers with

In order to satisfy (2. 31), we must have

*- "'e' X1o3

but since we have neglected rotation, we must also have

t'IQ" IOt , this means that the differential rota-

tion occurs over a depth of 15 KM and stronger shears are not ex-

, the differential rotation occurs

When

.= a V 10"pected. When
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over a depth of 6,000 KM and the existence of stronger shears seems

quite likely.

Since the photosphere is a convective layer one might argue that

there is only unstable stratification. Several studies (Veronis, Kuo)

on nonlinear convection have shown that in the body of the convective

layer the stratification is actually slightly stable.

Finally to show that the magnetic effects are important but not

overwhelming, we note that using a velocity of o , we

find that a typical value for M is

= , - to' _

4q0 19O' lo
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.III. Examples

The Kelvin-Helmholtz instability was the first problem in hydro-

dynamic stability to be solved. Several other problems have been

completely solved since then, but all of these have one artificial char-

acteristic in common. Each of these solved examples possesses either

a number of homogeneous layers of distinct properties or, at best, a

number of piecewise linear layers.

Despite this artificiality, such profiles are useful. The Kelvin-

Helmholtz problem has been applied with considerable success to a var-

iety of phenomena ever since it was initially used to explain the gener-

ation of surface water waves by a wind in the overlying air. Kelvin de-

rived a critical wind speed necessary to produce waves when surface

tension effects were included. Since waves form at much lower wind

values, it is apparent that viscosity has an effect. Nevertheless, Munk

(1947) has observed that the critical wind speed derived by Kelvin is ac-

companied by an increase in whitecaps and convection in the air above.

If we consider a fluid which extends across a rather broad

expanse and in which there is a relatively narrow shear zone, then

Howard and Drazin (1962) have shown by dimensional arguments that

the fluid behaves like a Kelvin-Helmholtz fluid in the long wave length

limit. Furthermore, these discontinuous models are more amenable

to simple physical arguments than are the continuous models with any vel-
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ocity and density profiles. Sufficient motivation therefore exists from

both the mathematical and physical sides of the problem to warrant an

investigation of the stability properties of discontinuous models.

The form that the equations take is slightly different from that

in the continuous models. In addition to this, we must satisfy some-

what different boundary conditions. When we consider an unbounded

fluid, we have one kinematic boundary condition at each of Z = * co

and two boundary conditions, one kinematic and one dynamic, at each

fluid interface. We assume that the perturbation velocity as t1 - o

remains finite. We further assume that there is no discontinuity of

the velocity normal to the interface at the interface. The dynamical

boundary condition stipulates that the pressure must be continuous at

an interface so as to avoid infinite accelerations.

Assuming that the height of the interface is given by , then

to first order we have

+ 0(3.1)

When all the perturbation variables have solutions of the form

-iE~ x-c =

t
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(3. 1) becomes

(3.2)

LW(U-)rU=

and the continuity of normal velocity at the interface is expressed as

O "(3.3)

where &s indicates the jump in

height approximated by R a Zs

derived from (2. 20) and takes the

the term in brackets at the interface

. Our governing equation can be

form

U-c.

M0 U-c C)
U-CVc Uc

This

V

(3.4)

is simply an alternate form of (2. 21). For each region of constant

, and the governing equation reduces to

% (3.5)

Whereas in the nonmagnetic case, piecewise linear velocity and density

profiles are governed by a relatively simple equation (Goldstein (1932) ),
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when ,A * o the resultant equation becomes prohibitive to solve

analytically. It is for this reason that we are restricted to discontinuous

models composed of several homogeneous layers.

Rather than phrasing the dynamic boundary condition in terms of

pressure, we integrate the basic equation (3. 4) across the interface

from Z - . to s +* and take the limit as 6 -- * o . This

is mathematically equivalent to the condition that the pressure be

constant. We arrive at the result

5 Tw + bj ) 5 O (3.6)

Our basic approach will be illustrated by first reproducing the

solution to the standard Kelvin-Helmholtz problem in the presence of

a parallel magnetic field (Figure 3). Equation (3. 5) is valid for each

layer and yields the solution

Satisfying the boundary conditions at 12\ S * and the kinematic

boundary condition at Z.-s O leads to

(3.7)

V (u, - e
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Figure 3. Two layer model.
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We shall be able to determine C by satisfying the dynamical boundary

condition, (3. 6) by substituting (3. 7) into the former. We obtain

.)7

which results in the following solution for

c + _ __ 6) (3. 8)

Equation (3. 8) appears in a slightly different form from (1. 20)

because we have neglected the inertial effects of density here, but

included the possibility that the magnetic field varies from one layer

to the other. The two equations are:identical otherwise and both indi-

cate that the magnetic field acts solely as a stabilizing agent.

We now consider two slightly more complicated problems. These

each consist of three fluid layers. The first problem represents a

symmetric j.et and the second, an antisymmetric double shear layer.

The first problem has been considered by Axford (1960) when there is

a magnetic field only in the two semi-infinite outer regions, and the

second problem has been solved without any magnetic fields by

Howard (1963). The method of solution for these problems is exactly

the same as above, namely, obtain the general solutfion for each region

and then solve for C by satisfying the kinematic and dynamic boundary
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conditions, respectively. The reason for choosing three layer models

is justified in retrospect as the solutions exhibit several properties char-

acteristic of the continuous profiles. In the remainder of the chaptor,

we normalize everywhere by considering I)\ = I and we take our

interfaces at Z -- -i . All other variables are similarly normalized.

A. Three Layer Jet

Our governing equation for each of the three layers depicted in

Figure 4a is once again (3. 5). By satisfying the kinematic boundary

conditions at f£= tco and at the two interfaces, our solution for W

is given by

\N - (3.9)

In order to eliminate one of the unknowns, A and , from

(3. 9) and solve for the growth speed, C , we make use of the dynami-

cal boundary conditions at = L 1 , which are, respectively

(3. 10a)

, [.~ t , .-,,- , - . - I ,- O
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and

IQ, A V

rI.Cja + o C-,Cf - & - MI ' o

where G is defined by

G- -% -_A = --
Y

and is negative when the stratification is gravitationally stable.

shall find it convenient to define

'IK% 4

By substituting the conditions (3. 10) into (3. 9) we obtain

which results in the following two equations for C

e' = o
~c7 ~( IA1 +~\te~1\

l-a, i. c- t b- (3. 10b)

We

EJ -

Y6

I- IAL = ,

- -%' e "' rr ~aar . k p - " = 0

A C e. I'l =

- C %-
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By defining

O - O

the two solutions for C become respc ~tively

and

C -= Or -0.- (3. 12)

The appearance of two distinct solutions is characteristic of a

fluid with symmetric velocity and magnetic field profiles and antisym-

metric density profiles. The first solution represents the varicose

disturbance, i. e., the name given by Rayleigh to waves which are

symmetric about the midpoint of the channel. The second solution

gives the sinuous disturbance, or the wave which is antisymmetric

about the midpoint. In the long wave length limit ( ?O= O of the

homogeneous nonmagnetic problem both these waves are marginally

stable (unstable for k'o ). The varicose wave at 1%= o travels

with the maximum value of the current and the sinuous wave at %Ss O

has a wave speed equal to the minimum of the current.

Let us consider the homogeneous magnetic problem. At k= 0
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the varicose wave has two solutions given by

and we see it is independent of the surrounding magnetic field. We

can see that neither of these waves is marginally stable and we

rewrite (3. 11) as

Cx= -

Any value of MY , (ia rules out all instability since then the

discriminant can never be negative. In fact, increasing either Kt

or M serves only to decrease instability wherever it exists and

can never serve to produce instability if it does not already exist.

This reasoning plainly extends to the stratified case as well. By

investigating the discriminant further, we see that it can never be

negative when t'M Lo for we then have

and thus a magnetic field of )-\ 1.0 causes stability.

We can determine the maximum value of t which can result

in an unstable situation for ahy given MaL . This is accomplished

by taking the derivative of M, determined from setting the discri-

Ll~a-~LZ~na+ 206" KtLI
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minant equal to zero with respect to and setting that equal to zero.

We thus have

ca

Marginal stability thus occurs at a wave number for which

U2- . IA

is then given by

IA '% \- Xo

This formula is valid for all 4. 'Ia since when

marginal instability for the maximum occurs for 0- and

is given by

= IkaA o -x

This procedure has also been followed for various values of CL and

the results appear in Figure 5.

The sinuous wave for the homogeneous case has a wave speed

given by the formula

S(3.13)

and ~4L

't '1

OIL,

.L =

,5k

(3.13)

3
=-da' Mo'- a~
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which, in the long wave length limit is given by

C,. t K,

and therefore is not marginally stable whenever V A O . Once

again, increasing either IA% or Mo serves only to decrease insta-

bility whenever it is present. Instability now may occur for any value

of MV. \ so long as A = O . We can rewrite the discriminant

of (3. 13) as

which is non-negative for all M 1 l1- so that Ki ' 1'I implies

stability. This, we see, is the reverse of the situation for the varicose

wave. Using the same procedure as we did for the varicose wave, we

determine the maximum value of MIA for that may produce insta-

bility to be given by

at O.Q ' =  for %o I1 and by

at

for 'lt S Ma 4 \ . More complete details including the maxi-

mum value of Mt for each t4o' corresponding to given growth
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speeds, CL , is presented in Figure 6. In Figure 7, a comparison

of the stability characteristics of the varicose and sinuous waves is

shown and we arrive at the simple result that if A~ < Mo we expect

the sinuous wave to dominate and if M > o we expect the vari-

cose wave to dominate.

Our mathematical result, at least in the case of the sinuous wave

for long wave length disturbance, may be given physical significance

by the extension of a rather ingenious heuristic argument, developed

by Backus (1960) and refined by Drazin and Howard (1966), to the mag-

netic problem for finding the wave speed, C .

The logic involved is simply that for long wave length disturbances

(when compared to the width of the jet) of the sinuous type, we can

treat the jet essentially as a string. We have thus assumed that

where L

height of

We

is the width of the jet. Disturbances die out with a scale

take the height of the disturbance to be

=CA

There are three forces which

due to the motion of the fluid,

due to the heterogeneity of the

will balance the acceleration term. One,

is a centrifugal force. The second,

fluid is a buoyancy force, and the third
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is due to the tension which the magnetic field gives to the fluid. We

proceed by consideririg each of these forces individually.

The centrifugal force is- given by

Co

Since we are considering only the vertical compient of force which

corresponds to the growth rate of the height amplitude, we have

Co first order (since

To first order (since

r C

A * is a small amplitude) we have

A= 'r
and thus

CF

Because the large

area where

LF

part of the contribution to this term comes in the jet

~t = 1 , we can approximate

S JIk9qr k" CAN

We consider the wave disturbance from 0 to IT so that
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The buoyancy force for that part of the wave from 0 to T

(where r o as we have already assumed with the approximation for

the curvature) is given by

But

ii 0

Therefore we simply have

The magnetic force is composed of a pressure and a tension term.

The pressure term is the integral of an exact differential so that we

can neglect it and consider the tension term above. We thus have

sO

and taking the vertical component this becomes

~x at /6-z
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Since in our ideal model the magnetic field lines are initially parallel

to the flow, they remain so and we have

(b4
Thus, the magnetic force is given by

Since we are considering a magnetic field which varies only in

the jet region we may write

M = K t V\,
so that

k IR 6a

4(;LrX% M)

Now, we assume that

tA V% -

I W o

='L

so that

S e-k
~o z

-cO

- 9 (a) X q &-

hI

k% + K-4)

N da

1i 0

~,= rz
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and thus

MUAiMAv~dc AeoS 10

The sum of these three forces is equal to the density times the

acceleration, which is given by

p

ItL

- 1Ceqr*=

When we solve this for C

S-- V

our final result is then

(;L da 4

Applying this to our three layer° jet, we obtain

c41
cZ- - ~ 0- -LI:

XU-M. ~

To show how closely related this result is to the exact solution,

der the discriminant of (3. 12) for small X . Approximating to first

order in K we have

\ - e-,L

. Inserting this into (3. 12), we obtain

(3.14)

consi-

MF- -gMr~S~

Oa c- q 2.

9w(

= t - It .---

and e. = O w)S
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which is exactly equal to the result given by our heuristic theory. We

will have further cause to refer to this argument when considering the

expansions for long wave length. Let us note here that by this argument

any basic magnetic field is always sufficient to stabilize the long wave

sinuous disturbances simply because there is not sufficient kinetic ener-

gy available to be converted into the magnetic energy of the disturbances.

B. Double Shear Layer

We now consider the antisymmetric double shear layer depicted

in Figure 4b. Because the flow indicates no preferred direction, it

seems plausible that instability will set in as a wave with .g o so

that the Principle of the Exchange of Stabilities would then be valid.

Although it does seem as if this is often the case, it need no be so.

Howard (1963) showed that the curve Cm o in the G % plane

does not define the stability boundary for the antisymmetric double shear

layer and that instability sets in as two waves travelling in opposite

directions. While there are unstable solutions with C, = , these

lie enttire2y embedded in the unstable region.

When an aligned magnetic field is superposed on this pattern,

several new interesting features arise. A small magnetic field actually
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destabilizes the problem in many instances. This example therefore

proves to yield the first complete analytical solution for an ideal mag-

netic problem in which the magnetic field destabilizes the fluid. There

are even ranges of the parameters for which this destabilization occurs

when the magnetic field is constant. We shall now proceed to present an

analysis of the problem.

In each of the three regions, (3. 5) is seen to be the governing

equation. After satisfying the kinematic boundary conditions, the solu-

tion for WI is given by

w C I e C_- e-P" e.,

W -Ac e '. " E - Be'e..i ' '  ,- '. i (3.15)

The dynamical boundary conditions at 2 L \ respectively, are

given by

(3. 16a)

and

C~(\CIc \ 4 PI- "I7\(\(3. 1 b)
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We shall find it convenient to define

We again obtain the solution for C by substituting (3. 15) into (3. 16)

and thus

CCo aa n (3.17)

Instability can arise in any of three manners. Since (3. 17) is of

the form

we can see that c has an imaginary part if < o ofr if 'T ) S

or if T<c> . Furthermore, whenever we have a solution for C

with an imaginary part we are assured that there is an unstable branch

(C L > o . An example of a stability diagram is presented in Figure

8 where we use the case of tt - O.e . So long as we are within a

region bounded by any one of the marginal stability curves, T ,

S O. , T= 5 , there is an instability.

Before analyzing the problem in completest generality, let us

analyze the case where G= O and where we have ,L O . Consi-

derifirst the nonmagnetic problem. Equation (3. 17) becomes
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of double shear layer.
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C - 1- - sQ, -+ 1 (3.18)

The first term on the right is negative for all Q. < ( and the discri-

minant is negative for all . 'l. C 3- f- i . so that we have

instability for all values of 0' . When o2 - 'h (- 1.-i'\ instability

of the type S < O occurs so that we have Cr = . For larger

QL , we see that C and thus C are complex.

When we include the effects of a magnetic field 'in the central

region only, the problem becomes slightly more complicated. Formula

(3. 17) becomes

- (3. 19)

Any increase in Mot increases the discriminant so that by substitut-

ing O ~= ' . into the discriminant we obtain

which is negative for I , .L 4~4 only, and thus for

VA' 112. , instability can arise through C O only. Setting

S .T ,we find that
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Instability will occur through T ' whenever (0~o0 + x - \ > O

and .4 < c0 . The value for the magnetic field at which

is ~o - .24S and the significance of this point lies in the fact that

for any value

we have instability for all values of 0' and for

,2s 5 M' <.

ther'e is an intermediate range of O. for which we have stability but

there is instability at both the long and short wave length limits. As an

example, consider that case of MoIL 0k . We find that T<o for

0.2> .14S but S<O for Q.' o.( so that there is a region

between .Go 'S O i.-VS in which -T >O and thus we have no

unstable solution for certain intermediate .

Instability may occur for virtually any value of lto . Take

the case of .' o . We then have

Taking the negative root we see that -- \.
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We now solve for the growth speed for several values of

First, take the nonmagnetic problem. For

s- (--'

instability arises from Cr z I

When

and we have

bl50 cL-.'

instability is manifested by travelling waves and the growth speed is

given by

CL

When AI' L (3. 19) becomes

=a i- eLa-

Taking the negative root, we have

Q+ \Q1
A plot of the values for various values of

We see immediately that for the long wave length

appears

3 - k-S. I

%4;1.

in Figures 9 and 10.
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Figure 9. Growth curves for the homogeneous double shear
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disturbances, any value for Mi,< can produce an instability greater than

for the nonmagnetic case at some wave number. Comparing n~~o with

Ih' i , we see that for all a..7lt (.*, L.) the magnetic problem is

more unstable. The kink present in the curve for Mow is physically

meaningful. When O.' - i , we find that

Substituting this into (3. 16b), we find that A 1 e . Therefore,

by (3. 15), any solution of magnitude % e2 at 2 xi has magnitude

3 at t l . Since k is large, any solution drops off rapidly

from either interface. We essentially have, as Howard mentioned,

two separate instabilities, one at each interface, travelling at the aver-

age velocity around that interface. For the magnetic problem, the sit-

uation is different. Taking the wave speed for the case el at , we

have

e. - jk -C

and substituting this into (3. 16), we obtain A 13 so that the dis-

turbance maintains its amplitude throughout the intermediate layer. We

thus see that there are two influences that the magnetic field exerts on

a fluid. A magnetic field in a fluid of infinite conductivity adds a tension

to the fluid, so that it becomes more difficult to produce an instability.

But it also adds a cohesiveness to the fluid which it may not have

possessed before. This cohesiveness may serve either to increase or

produce an instabilityby miaking available an extra energy source
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which the nonmagnetic fluid may not be able to take advantage of. Thus,

the tw.o semi-infinite layers are always tied together in the magnetic

problem so that there is more kinetic energy of the basic flow available

for transformation to perturbation energy than in the nonmagnetic

problem. It must be mentioned that this "cohesiveness" is, in fact,

the tension of the magnetic field lines, so that the two influences spring

from the same source, but it is clear that the behavior of this one

force may manifest itself in a variety of ways.

We now generalize the discussion to include the effects of a

background magnetic field, , and stratification & . For this

problem, we find that <\ . Consider first the case eo . We

find that T< ' for all %- and so instability may arise by only two

means (S4o JT oC) now so that if > O instability may occur

only when T o . To see for what range of Yr instability may

occur, set

yl\- - r+ 0 o

or

so that instability occurs for

o* v
0..\

and the stability boundary is given by
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When we include the effects of K'' we find that T may be

greater than SL . In fact, the value of n for which S'=T is

found by solving the equation

so that

:-x
o (3.20)

For all mr with vilues between these two roots, we have instability.

At M% = o this range of vn degenerates to zero so that, as has

been mentioned above, no instability may occur in this way.

We are assured that instability will occur for3 S3 o , or for

hn> o + t4o

Finally, when T'- , we also have instability. This mode of insta-

bility may occur only for \ < ~'L , beyond that point, instability

occurs through c= O

By inspecting (3. 17), we see that instability may occur for any in

arbitrarily close to zer.u for the proper jY, . The range of K

which will produce instability is given by
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This range shrinks to zero for nonzero 0 as Yv approaches zero so

that at uv o we no longer have instability.

A comparison of the marginal stability curves for various %

values is given in Figure 11. The apparently unreasonable result that

as ho decreases the bottom line departs further from the line

~o =1 o is resolved by noticing that in the limit ~.o the curves

designated with the asterik:( I ) coincide with the t,'- wo marginal

stability curve. We see that the presence of a magnetic field in the

central layer may destabilize a stable configuration for the nonmagnetic

problem at virtually any wave number and any value of G[V up to one.

That the instability is manifest With C r O might be antici-

pated by looking at Howard's sem'icircle theorem. As the magnetic

field increases, if we still have an instability, then the range of

possible C becomes restricted to values closer to the average velo-

city. The fact that we may expect instability at Cr=O might also

be inferred from the coherency which the magnetic field imparts to the

fluid so that the waving at either interface is closely tied up with the

waving motions at the other interface.

If M ~~O , we can compare the Gj1 values for various

values of ?4 . In Figure 12, we plot G vs K and find that for



-100-

m 1.0

.9

Mo Values

.8 -

0.2'
.7-

.6 -

.5-

.4-

.3 0.

.2- \ ,

0.2

.. .. .. I I I
0 .. .2 .3 .4 .5 .6 .7 .8 .9 1.0

02

Figure 11. Marginal stability curves for various Mo
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k( 47 the problem with \I is unstable at larger

strhtification than the nonmagnetic problem.

The application of a constant magnetic field may also destabilize

the double shear problem for a considerable range of wave numbers.

Consider the situation depicted in Figure 13. We see that the heutral

curve for MId' = 0O. o lies within the unstable region for

for M = es; 3 0.\ for a considerable range of wave number

(S 5 . 6475) . By appropriate choice of G/K , we can destabi-

lize all wave numbers up to 0.'L (% a0) . As the magnetic field

increases, this property is valid for an increasingly restricted range

of wave numbers, until at about Mo ' .o , where the destabilizing

effect vanishes.

We can see that there is a range of GI'1 for which the magnetic

problem will be stable while the nonmagnetic problem will be unstable.

To be able to tell by physical means exactly what combination of mag-

netic field and stratification have destabilizing effect and which are

stabilizing is not a simple matter. Energy considerations lead to no

new insights simply because of the artificiality of the model. Energy

exchanges are expressed in terms of pressure and the mathematical

formulation reveals no new information, because all terms are propor-

tional to C., and a Reynold's stress gives no contribution.
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IV. Generalized. Stability Revealing Techniques

After succesfully presenting complete solutions to two problems,

it is disappointing to recall that we generally do not proceed with such

impunity in these problems. We are very often satisfied when we pos-

sess sufficient information to tell if a problem will exhibit instability.

For this reason we do not trouble ourselves with the attempt to obtain

a complete solution in every, case, but rather, utilize mathematical

techniques which reveal information about the time behavior of the

problem. In this chapter, two general stabilty criteria are reviewed

and applied to our problem.

The normal mode solutions, as we have seen from one example

presented in the Introduction, will not always give a full description of.

the time behavior. One must thenapproach the problem as one of initial

values taking into account the nature of the initial perturbations by

Laplace transforming (2. 23) with respect to time. The initial value

approach yields whatever distinct normal mode solutions exist and

includes the effects of the c.,ntinuum solution. Emphasis will be

placed on determining the time dependence of the continuum in the

first section of this chapter.

Whenever we know the form of the general solution of (2. 23) we

may make use of a stability technique long known to electrical engineers.

The Nyquist Stability test was first applied to hydrodynamic stability
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problems by Rosenbluth and Simon (1964). As we shall see, the require-

ment that we know the general form of the solution restricts the appli-

cability of this technique to the homogeneous problem at zero wave

number, but we may consider arbitrary distributions of velocity and

magnetic field.

A. Initial Value Treatment

We now solve the initial value problem for general distributions

of velocity, density and magnetic field profiles which are subject to the

conditions that the quantity

has, at worst, zeros of second order in t , but that nowhere does

We are,thus, restricting the discussion to shearing flows and shall

follow much the same procedure as Case (1960).

It is necessary to begin by investigating the singularity properties

of (2. 24) and giving a solution valid in the region of the singular points.

Equation (2. 24) may be written as

where X has a r" order zero at to . For the homogeneous case,

K may have a zero of any order because the equation is always
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amenable to solutions by the Frobenius technique, but for the stratified

problem we are limited to, at most, second order zeros of X

because otherwise there is no assurance that the Frobenius technique

is valfd.

We expand around the singular point, 2o , and define

Then when )( has an v\i order zero at 2, , we may write

@o

V 0o

0(' " ')

X" .C, t"

(4.2)

rl"

We now proceed to solve (4. 1) in the neighborhood of ?o

Assuming a solution of the form

A
we consider the case where A\ \ first. Substituting (4. 2) into

(4. 1) and then using (4. 3) we obtain

.A (e-\) *

c~~~ ~~ (L. a'c- "iD. A lL+- qs1
4 lr , / .

(4.3)

(4.4)

~X = ~,

X 9
RC
X + S
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The coefficient of each power of must equal zero so that by

taking the case SMo we obtain

.+ Ao fr-

and thus 0 = e . In the case that the two r values are iden-

tical we are guaranteed that there are two solutions given by

and

(pA)7s(,-26r Is

Setting Jo we determine from (4. 4) that

Ao =(

0
~a R 2 , tsX.

and the recursion relation is given by

V A s- 4AR-~
S1L

where

Asv W

(4. 5)

'3~ar

soo
br

- e ,-

(S'+ C -%", kc, 1"

F% = ( Ass
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The thing of importance for our purposes is knowledge of the

lowest power of q , for that is what is connected ultimately with the

time behavior. For the case h = % our solutions are similar to

those obtained by Kent (1968). Since the nature of the solutions is the

same in our case, we are assured:of stability because Kent obtained a

stable time dependence even when using a delta function initial amplitude

disturbance. Thus, we arrive at the rather surprising result that the

density configuration has no effect on the time dependence of the con-

tinuum solution so long as ) has zeros of,at worst, first order.

Instability mist then be manifest by distinct modes.

We now consider the case when X has second order zeros.

This means that at the point where

u -c - O o

we also have

When he 0 O , we must have (t) L (b 1oZ  and when NMIO

we must have Oo * bj(o~ or y will have a zero of at

least third order. We restrict this discussion to problems in which

(buo - (bty \ oM is always of one sign for a reason which will be

made clear shortly. Upon substituting (4. 3) into (4. 1) with tl 2

we obtain
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Equating powers of , we obtain for the case

Solving for S , we obtain

We can see that the two r values will generally not differ by

an integer, so that both solutions are of the form (4. 3). Now that we

have knowledge of the solutions of f (determination of the recursion re

relation for the coefficients is not necessary for our purposes), we

may proceed to solve the initial value problem.

We return to (2. 23) as our governing equation. We take the

Laplace transform with respect to time The Laplace transform pair
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of F is given by

F = ,5 0eeP
w= 4.

F-~;S~i~LO

The Laplace transforms of O7 t

Fck cA

FP cI

and /O

in terms of the Laplace transform of F

may be redefined

. They are respectively

btt

- €. o
*- cW

I(F~ e \ r6 C- d

e' cL*dt 24 Irk*' -m

Using these operations in (2. 23), it becomes

b j(i- P'2 I Ftl

(4. 7)

bt tzo4

'(.V-oc is the initial amplitude perturbation and may be any

subject to the boundary conditions

do

0.

and

2

A pC-,

P Fia-,s + ~ FP

= -L(40 , -?

function of Z

t IFe -

.M- ~



-111-

~0c1 t -(- Fj( ? 0 (O- )F (a = 0

The right hand side of (4. 7) contains all the inhomogeneous terms.

We shall solve (4. 7) by the method of Green's Functions and obtain

the time dependence by inverting the Laplace Transform.

The solutipn to the homogeneous problem in the vicinity of
I

are given by

'F
and

where 9, and are analytic in the vicinity of to . The amplitude,

F , is given by

and using our boundary conditions (dropping the subscript i where

C . P.kk , we obtain

In searching for a Green's Function we use two solutions, W

and rt such that

The 's are then defined by
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W I = FAR. - ( T- V", Ci I &)

The Green's F,unction is then given by

The Green's Function is then given by the formula

Gci, J p)

where:

rvr>
Il

and

'I ~l ~l -FtlsFr,

Values for which £= 0 give the distinct mode solutions. We

neglect this part of the solution and consider only the continuum. The

colution to (4. 7) is given by

P? ' G (1 on-, d(4.8)

where ' €"hS." is the right hand side of (4. 7).

We first invert the Laplace transform. The major contiibution

will come in the vicinity of 2o . A small change in C corresponds

to a linear change in so long as , - o at the point where

has a second order zero. If hIA 4, at a second order zero of ) ,

then the change in . corresponding to a change in C is given by

c,

1

5,I ~ ~VI crl 41~
1)

>
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Since we want to expand in terms of (7 -. ) in the neighborhood of

the second order zero of K , we will consider the case when -- o

at 7- . Since a change in C by some real quantity. equals a

change in p by an imaginary quantity, such a change does not affect

the value of the Laplace transform. We can thus write

Since the largest contribution comes when

t ~= C,
we also write

The Greeh's function then takes the explicit form

2~F~ C~~ - ; ~ 2F t

2<Z

CI c' ; ek) -0

I~ (Zc) F;~t,~ - Fr CZ-c~ S~r.ll

GC2,E;c~ F;ct~- F;~2-c,

iF. t) Fz CZ ~ - Fc-~- I) F.(liil
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The essential behavior of G is then given by

(4.9)

where T is a regular function for each region of G . We now invert

the Laplace transform.

Setting

p- W -. =

we have

Therefore, from (4. 9) we see that the dominant behavior is given by

the term which has

We now integrate over . The integral is approximated for large

vblues of time, since the mode which eventually dominates emerges

mathematically only at large time. This does not upset our assumption

of linearity since we can choose the amplitude of the initial disturbance
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to be as small as is necessary. The general form of the equation (4. 8)

then becomes

( V Oh)

+ C?1
(4. 10)

'Y*~ ~c-

For large time integrals of this form may be represented

approximately as

S i&.t - -e t2 I r. %.I= 8,(~, o~t-.

where

h-4

0

t:nV eA4 wtk

O

The term giving the dominant contribution to the time behavior

of (4. 10) has the factor

the dominant terms of (4. 10) thus give a time dependente of

- \ - i o' -(4

iCVI\sl ck

ZILt~
Z

ei~ ttu-s

eirL(n -m 2.

Fot (4.11)

S ,r,;,,, t

t-h)
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So long as (D o -(P o ' > 0 this answer seems reasonable.

It is analogous to the result for nonmagnetic flows, to which it reduces

as the magnetic field approaches zero. The continuum is stable for all

values of RL o withstability increasing as the stratification

becomes more gravitationally stable. '(4. 11)_does not agree with the

result Kent derived, simply because Kent used a delta function distur-

bance for the amplitude, a disturbance which is physically questionable.

Equation (4. 11) is not universally applicable. When ( Do. >(DMA)

the magnetic energy exceeds the kinetic energy and it would thus seem

that instability should be ruled out for the continuum solution so long

as R.,6. o . (4. 11) indicates instability increasing as the strati-

fication becomes more stable. The fact that our result is undesirable

in this case does not imply that the technique is illegitimate. There

is one loophole. The Green's Function technique guarantees a unique

sblution only whenever A is always of one sign. For our problem,

X necessarily has a zero so that our result is not necessarily unique

and may be rejected if it contradicts common sense. -Whereas it is pos-

sible to accept a result which states that the stratification has no effect

on a certain part of the solution, as when X has at most a first order

zero, it is difficult to accept a result which indicates that the effect of

the density is exactly opposite that which is physically reasonable.for

any part of the solution.
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The Nyquist Stability Criterion

The guiding principle of the Nyquist Stability Criterion is so

simple that I regret not having thought of it independently.. Consider

an analytic function, q cc , of the complex wave speed, C . For

every curve that C traces out in the complex plane, there is a corres-

ponding curve in the complex plane that P traces out. For every

value of C interior to the first curve, there will be a value of 4

in terior to the 9 curve (Figure 14). The interior must, of course,

be consistently defined with respect to the orientation of the curve.

We now consider our example. For a homogeneous fluid at zero

wave number, (2. 24) reduces to

S(Q Q (4. 12)

The general solution to this equation is given by

I ) d. 0  (4.13)

and (4. 13) satisfies the boundary condition at Z, ond aL , nambly

Clearly, this is true only for special values of C . We consider the

function

Actually, er c need only be single valued.
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interior

Figure 14. Mapping from C plane to C?

Or

plane.

hi
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z, ,.-c- t (4.14)

When C is complex qtO is integrable and single valued in c. so that

the basic principle of the Nyquist Stability Criterion applies. Consider

the curve in the C plane which includes the entire upper half plane

(. ( L> o ) . The points where ) is zero on the real axis are ex-

cluded so that when we compute 4 along the real axis we are taking

the principle value of the integral in (4. 14). If the corresponding r C~

curve then circles the origin, there is a root for which , C ca o

or F , - O for some value of C, o . For the fluid problem

it is not necessary that the orientation of the curves in the r and S

planes be the same. The extra degree of freedom is due to the fact that

if the c citrve circles the origin in the opposite direction, then there

is a root with C, . O and we are guaranteed by one of the funda-

mental properties of (4. 12) that there is also a solution with C.00 0

Thus, all that is needed for instability is that the B curves encircle

the origin a nonzero net number of times in tither direction. Thus,

without locating the eigenvalue, it is possible to determine when there

is an instability. This may be done for arbitrary distribiitions of

velocity and magnetic fields.

Kent (1968) has used this technique to show that a constant mag-

netic field may destabilize an otherwise stable flow. He chose a
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velocity profile which does not satisfy Fjortoft's necessary condition

and produced an instability. Stern (1963) found 'the first instance in

which a magnetic field destabilized a perfect fluid. Using Couette flow

with a piecewise linear magnetic field (Figure 15) he used expansion

techniques to establish the existence of a solution with a positive CL

Stern's problem will now be solved by using the Nyquist technique.

More complicated profiles mayhLbe handled by computer.

The expression

so that (4. 14) may be rewritten as

(4. 15)

and this form will prove convenient for computing the real part of ~CL

for the examples. The polar plot for C .is given in Figure 16 and the

curve corresponding to the C values from points 2-- I -- --

is independent of the specific details of the velocity and magnetic pro-

files. For ~r a , q is givenby

q~ ~isieb
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Figure 15. :Stern's example.

'L
X
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Cl

(U +M)min (U-M)max

4 5 6 7 8 C:r
(U-M)min (U+M)max

Figure 16. Nyquist diagram in c. plane.
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so that over 1-*2-5 the:origin' is circled once in the clockwise

direction.

When . lies between 3 and - or 8 and r , the integral

for 4 has no singularities and is a positive real quantity in both

regions. This is all we can determine in general, and for the behavior

of q when

we must look at the individual profiles.

Consider first the magnetic field and velocity profiles given by

= = Z - k (L 

Mo t bt o 5 b a \ b> o

where

J

Substituting this into (4. 15), we obtain

-\ o - L - . to , 4*+% +

\ , (4. 16)

jt4 0
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For the purposes of the technique, the only concern is to have

knowledge of the sign of the real and imaginary parts of i for each

value of C . Each of the three terms will dominate in some part of

the region

- I-Mo-O , C% - + M, *

and we now consider the following subregions

When

it is clear that the term giving the largest contribution is which

is a large.negative number. When

term O again gives the largest contribution but here it is positive.

Thus in subregion (i), Re:9 changes from positive to negative.

This procedure is followed throughout the five subregions and the

manner in which the real part of P behaves is depicted in Figure 17..
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- Im:
--- Re:

'I

*14

II I
L-j

I
hi

Trace of q (CV for 'I<. 1, o

CGr
_ I _ _I I '41 C r

r 1

7~5

Figure 17.
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The imaginary part of I is determined from

O )

+ (t4, ~ZoA (4.17)

The only contribution s to this integral come from the places where

there is a zero in the denominator of the integrand and for this profile

the zeros are simple and of first order. Analyzing the zeros in each

subregion, we find one zero for UO-c - u3 in (i) which yields

and thus the imaginary part of I is positive. In (ii), there are two

zeros, both of which occur for negative values of - . The contribu-

tions cancel so that in this subregion the imaginary part of q is zero.

The behavior in each region is depicted in Figure 17.

When theNyquist plot is traced out (Figure 18) it is seen that

there is an unstable root since the origin is circled a net total of one

time. If we had chosen M. / Ih.) , our subregions would have been
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Figure 18. Nyquist diagram in cp plane.

Or
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--M, < . < -Kl-tO~q,

m-H 4L C. <

and the behavior of 9 is shown in Figure 19 and since there are no

net circlings of the origin, no instability arises. Here, the coherency

effect of the magnetic field is dominated by either the stabilizing

tension producing effect or boundary effects. Taking the case of a

constant magnetic field impressed on Couette flow leads to stability

for all values of the magnetic field.

The usefulness of this technique is not limited to the case of zero

wave number. When C9 , C. is continuously dependent on

so that if C( for k(O , + for some region of k>o

and thus instability is manifested for sufficiently long waves.
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V. Long Wave Theory for Unbounded Homogeneous Flow

Lateral boundaries place a constraint on the motions in a fluid

and therfore generally exert a stabilizing influence for plane parallel

flow. When the boundaries are sufficiently close, it has been shown by

Tollmien (see Drazin and Howard 1966) for certain nonmagnetic flows

that all instability may be suppressed. On the other hand, boundaries

can occasionally destabilize a fluid as can be seen by considering

Poiseuille flow. In this case, the boundaries communicate the insta-

bility to the interior of the fluid through viscous effects. It is therefore

of interest to investigate those :stability characteristics which a re due

entirely to the fluid acting on itself and divorced from any boundary

effect. This omission does not restrict the applicability of the material

severely for the effect of boundaries is small in many physical situations

where there are relatively narrow jets or shear layers present.

When considering ideal models which posses discontinuous pro-

files, we find that instability occurs for all wave lengths and, in fact,

the greatest instability often occurs for the shortest waves. If we

include surface tension or viscosity, the short wave length end of the

spectrum is immediately stabilized. Models which posses continuous

velocity profiles are always stable to short wave length disturbances

for a homogeneous nonmagnetic fluid, as has been shown by Drazin and

Howard (1962). Unfortunately, a similar result has not been dcmon'-.

strated for the magnetic case. Eventually, it is hoped, a proof will be
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developed which will show exactly how a magnetic profile changes the

lowest unstable wave length corresponding to a given velocity profile.

When the zones in which shear is present is relatively narrow in

comparison to the lateral extent of the fluid, the differences between

different velocity profiles is not so important in the long wave length

limit because a shearing fluid may be approximated by a Kelvin-

Helmholtz fluid and (if momentum flux is conserved) a jet may be

approximated by a delta function flow.

It is of interest, then, to consider long wave length disturbances

in an unbounded fluid. There are two procedures by which this may be

done. One can expand in powers of the wave number, , or use an

integral equation approach. Both give equivalent results but the inte-

gral equation approach leads to a somewhat simpler means for arriv-

ing at an explicit eigenvalue relation.

The work done in this and the following chapters represents an

extension of the treatments of Drazin and Howard (1962, 1961) respec-

tively to a magnetic fluid. The approach is more rigorous for the

homogeneous case which is considered in this chapter. In Chapter 6,

we will include the effects of density stratification.

A. Series Approach

Heisenberg (1924) was the first to use a wave number expansion

scheme to attempt the solution of a hydrodynamic stability problem.
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Writing the solution as

we can determine each

governing equation, (1.

(1. 10) becomes

of the terms RS

10). For example,

by substitution into the

to zeroth order in k "

which, upon integrating

The higher order terms

form

twice yields two independent solutions

are then evaluated rather easily and take the

.F+, = -5 (u CL~F.-' dca LZ 1 lt?# '" "

When the fluid has infinite lateral extent, this expansion scheme

does not converge uniformly because the limiting F is dependent on the

order in which we take the limits -.. - o

Restricting our -velocity profile to be of the form such that U -'s3. and

0 converges

in the limit - o , F -* O for all Z values larger than the

2 value at Which U C . On the other hand, when Z--.o ,

= ,v e"M' so that the results are not in accord and besides,
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e cannot be expanded in a power series in k when A

sufficiently large. Some other expansion scheme is necessary.

In the magnetic case, because of the formal similarity of

and (1. 10), the situation is virtually the same. Equation (1. 21)

by using the transformation

Qbe written as=

be written as

Whenever the integral

converges, and )--% COSt

(4. 1) as \Z-- as

0. = ~ t o

(5.1)
u Q.

we are guaranteed that we can write

so that

a ev

and,making use of the fact that

also.

X - Cons , this enables us to write

Making use of the apymptotic form of F

is

(1.21)

may,

2 -t 40

S it is now possible to



-134-

obtain a series expansion. The factor e has caused the diffi-

culty in the first place so here we write

F e(5.2)

and expand the variables ' and Q in terms of i rather than doing

so for F .. Thus

(5.3)

This is the series expansion we want. The eigenvalue relation

is obtained by matching these two solutions at the origin. For boundary

conditions, therefore, we require

DF, to, - Co, At - c

and this may be written without the constant as

FA o (5.4)

Substituting the first equation (5. 2) into (1. 21),

We obtaihn

)k-t (\- %e -~~1 G ' -o
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or

- 2 kX +b ?( - t±} + 0 9=o

and by substituting in the first of (5. 3) and equating powers of

(5. 5) then gives us the recursion relation which appears as

b _, o 3 - 0

Solving for Eo by integrating twice yields

Is ck a, A- C .

The constants must be chosen so that Oo (0o is finite and since

we normalize to

fore, C, 0=

Similarly for §,

t , we must have 4o too,> I . There-

and we have

(5. 8a)

, we have

geo + -
and

-) s = (I
O, ,. C js r - o

Ct

, is equal to zero and agaill inequiring that

is finite requires that

CO \
(5. 8b)

(5.5)

1P

(5.6)

ObxG%* = b\.\K\ 4-XkO " r O s -.. (5.7)

c~ dr,

0 1 IoI>
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where the subscript on ( denoted the a value at which it is evalu-

ated. The next term is given by

4X

so that

In the same manner we can evaluate the . Their recursion

relation is given by

-biyD% -a
(5.9)

Uby\w4- k
and this leads to

0- -\ (5. lOa)

(5. lOb)
a- d

% t.

Sa~ Qa-~-~ds4 (5. 10c)L ts (y\ -

04

D~XOVhJ b Yv\ - 3,, , -".

XI
X1 c~z\

L xX

So I + 1 S th~-X~dt;lda,
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The eigenvalue relation results from (5. 4) which becomes

LoDG . o - eLoN, - 2 , G(o,6lbc = O

when written in terms of 0

and equating powers of k ,

\< be C)* tbi

',VA4,b6

and W . Substituting (5. 3) into (5. 1)

the eigenvalue relation becomes

- o'b,.- B~ o - * eo "

(5.12)
+ qzbW, + ctloG - Qtbst

-8o%.- , o, - %e, +... =0o

After substituting the equations of (5. 8) and (5. 10) into (5. 12), we

obtain

-a

I ;0Q a-'

+Y1

So4! \

{-'4 -SLQ1 4m
\'dA

-'-,.. : Q

(5. 11)

-O,~~u-

I -
jr ( \ -

S~ -c X-,

)r,30bS~X-X4) da

) dz _ J-. So(x-~t -)ma

X-6
4 ( k d6~i

IC
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which, after manipulation (the third term in this series is almost

proportionally longer), reduces to a surprisingly simple fo rm

LL4dX X + + +o (5.13)

We consider a normalized velocity so that if we are dealing with

a shear layer

and if we have jet flow

The first order approximation to the wave speed is then given by

which for shearing flow is

We therefore have instability whenever the average magnetic energy

is smaller than the average kinetic energy. In the jet case, the first

approximation to the wave speed is given by

and thus the background magnetic field is a stabilizing agent. When

there is no background field the next approximation for the wave speed

is given by
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c2 - (5. 14)
This is seen to coincide exactly with the result of 'the heuristic argument

as given by (3. 14) which describes the long wave sinuous disturbances.

We therefore see that (5. 14) gives the correct second order approxima&-"

tion for the sinuous wave disturbance of the three layer jet model of

Chapter 3. Tlhs agreement is all the more pleasing when we consider

that if (5. 13) should given any trouble, it would much sooner be expected

to do so for a model with discontinuous velocity and magnetic field pro-

files than otherwise.

But, we may ask, does (5. 13) ignore the existence of the varicose

wave? To this question, we may answer a cautious no. Considering

the three layer jet model fo Chapter 3, (5. 13) becomes

I ol-2 - m " I

Multiplying by b- C. - M o" , we obtain

C\-(c)'., - tJ, '.. " , (5. 15)

Taking the limit as - O gives us

When the term inside the second set of brackets is set equal to zero,

the wave speed represents the sinuous disturbance, but if the term in

the first set of brackets equals zero, the wave speed then represents
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the varicose disturbance. The second order approximation to the

varicose mode is determined by an iterative process where to

first order

C= I-tMO

and then we write in (5. 15)

Q --+' -M-

The solution for C. is then

C I t t, , -, (5. 16)

When ~= O , K o represents marginal stability and (4. 16)

becomes

C (5. 17)

Referririg back to (3. 11), Cl may be approximated by

for small k and (3. 11) becomes

which is essentially the same as (5. 17).

For the Kelvin-Helmholtz fluid the first two terms of (5. 13) give
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-I

which is exact.

1. -LM .

For the double shear model considered in Chapter 3

when we approximate a, as

(3. 17) becomes

t L

15. 18)

Formula (5. 13) leads to

O = 2C\-ni) ,

or

* C ~-khI I(' MK-&\ -1,= 0

Solving for C' , we obtain

-~~~~~~~~~~~~~ - -~ .. ~~ 3 ~M'~ ~%.lM\

which coincides exactly with (5. 18).

4 - ( IYTL V - "01- -K.' *M FI~~

\ -2C- Mt ei.~" ~14 C ML + o~



B. Convergence of the Eigenvalue Relation

The remarkable agreement between the series solution and those

two examples for which analytic soluticn do exist is quite encouraging.

It is possible to show that (5. 13) represents a convergent series so long

as the imaginary part of the wave speed is nonzero. Such a result:lends

considerable weight to the validity of the entire procedure. We now

prove convergence of the series for 9 and remark here that the proof

for 9 is entirely analogous.

Using the recursion relation (5. 7) for e in the form

S2T r e,, =- s n\ + 2A 1', (5. 19)

We find it convenient to define a new independent variable, q , such

that

and therefore

Equation (5. 19) then becomes

or, upon integrating,

-1 -K drti
YrQ

5. 20)
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The restrictions which we place on the velocity and magnetic

field profiles are such that

We are. also guaranteed that

Making use of these inequalities, we see that (5. 20) may be

written as

This leads to

and

Similarly,

dri

r-I '3

Otd

A.

I&C -t

ifA

'IZ -I

~' V.

and

0 C4 A

IBO, IA + : i Q

2.

~ ~2~(4) l'b

O F
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We compute one more term in order to obtain an idea of the

general form of the Series

<~~

C _'oY

AL
aq6

I+ Z

so that

03 O. 4 { I 4-1- 

-

and now, by mathematical induction we can say

t-w%

Since we can write this as

6 QL)T
(41

The series will converge for every value of X

problem supports a

2<\2\VE) nVI
()

for which the

o by the ratio test, since

-2 _ _

(5.21)

is necessarily less than unity for n sufficiently large. We should

expect that our series will thus give a good estimate for the shortest

Al

1 4, 1 c~ts j 3G - r

k A CLV%
tz ( Ir - %))

A- ZA . 4. a. -
0. 1'1"~

(I ?.) ( ,15"
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wave which will produce instability, so long as enough terms are included.

This is, of course, no simple matter and we have not been guaranteed

that such a lower wave length limit does in fact exist.

For a jet velocity profile we know that C1 -- o as tk, so

that we must look more closely at the above result. Our first approxi-

tation for C4 gives C . ') L so that by (5. 21) we again expect con-

vergence, but it is desirable when possible to prove convergence without

first approximating C . This can be done by using an integral equa-

tion approach.

C. Integral Equation Approach

The integral equation approach actually has two advantages. The

convergence proof for the eigenvalue relation is more rigorous, and

also the eigenvalue relation itself is more easily obtainable in a compact

form than is the virtually equivalent relationship obtained by the series

expansion in powers of the wave number.

Once again, we utilize the governing 6quation in the form (1. 21)

and find it advantageous to write it as

bL K - V =(5.22)

We now solve (5. 22) by the method of Green's Functions and,

with the left hand side of (5. 22) as the homogeneous part, we can write
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Using a new independento variable such that

Using a new independent variable such that

Li

and

(5. 23) becomes

which:has solutions

XS

u and v are two solutions which satisfy the boundary conditions at

- .o and eo , respectively, and then the Green's Function is given by

Lk~. ~ Al, 1 (A)V V 2,Lk ( \1(.4 6%)Z1 .-

The constant S, is determined from the equation

and is given by

(5.23)

- V

AC~ AK $
RA e

a~:

r3
Lk C,)b V L ll) - \4 Cl,)-b Lk ( Z,

B- e "-'
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Substituting this into the expression for the Green's Function, we write

and the integral equation corresponding to (5. 22) is then given by

(5.24)

where

The eigenvalue relation is determined by the vanishing of a

quantity called the Fredholm determinant, which is given by

+ - a '( 11"Z+ -

c)< <.o is ordinarily guaranteed for problems with finite functions

in finite intervals, but since we are dealing with an unbounded fluid,

a new-pr6of of convergence must be given. Convergence depends on the

restrictions which we place on the asymptotic behavior of the velocity

and magentic fields. It is sufficient to require, as before, that as 2 -
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and we also want

0, .o

I N <

which necessitates that we restrict our consideration tothe case where

ks m 0 for jet flows. This latter restriction is reasonable, since

we are investigating the case of marginal stability but we are limited to

the case of the sinuous wave.

The argument for convergence now proceeds as follows. For

I.* we write

where \ K\

where

Since the determinant is symmetric in all variables, we are

guaranteed that

0 O 0 o

It is advantageous to consider the interval

and then the determinant for I. tL(b 1

cally as

may be written schemati-

ac toeb
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e

e
e a

e.S.
'L • W

I'

In order to facilitate computation of the determinant, we multiply

the L; row by the L4' term of the L .Lsl row and subtract these

products from each term of the j~, st row. Since what is being

done is to subtract a constant multiple of one row from another, the

value of the determinant is unchanged. But in the new term for & , ,

all the terms below the principal diagonal vanish and the determinant is

evaluated by taking the product of the terms of the principal diagonal

so that

d~= l j

~~-eu~-zkLX

.... Iz
exn( - 7 a

We now show that 4D is convergent under the restrictions mentioned ,.

a,=

Az
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above. Since, for all Z

X

we have

4 e¢

< ae

0c , nI

(CL

or, if we abandon the requirement that , the last

line may be rewritten

< j'+' x~ t 1;, +
c'

\ \k 4...

Therefore

~etKc~a\

and (5. 25) converges whenever the integral of (5. 26) is finite.

that this is so we observe that

(X+r~e

1.C\

(5. 26)

To show

I
~~e 2 r r It+exp ((Zb

e~elk k

Y ( ), Il

00 \ I -)-M e)(,p( ?.

4- k zV%
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which by our restriction

__14A'

on I X-X ae

which converges so long as

We can thus see that for v, sufficiently small, c converges and the

first two terms of the eigenvalue relation for a jet flow are given by

I \\- % ..-.. = 0 (5. 27)

Further terms are easy to write down formally, although they may

not be simple to evaluate analytically.

D. Completeness of the Scheme-

One may ask whether there are solutions which our perturbation

scheme (5. 13) leaves out. To this we cannot give a complete answer

for .the magnetic problem. It is, however, possible to prove that the

limiting value C- I- ~ as - o in the shear case represents

the only solution with a wave speed which is not real in the limit K o .

This we prove by referring to (1. 21). When k- ,

Xir= (Ah'&2

and in order to avoid divergence as k\a

equal zero. Thus, so long as ~ o0

all Z when C 4 o , F is constant.

--.* , this constant must

which must be the case for

At points where Y( - O
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F -may have a jump. Differentiating (1. 21), we have

whose coi:responding integral equation is

Differentiating this and making use of (1. 21), we have;

Assuming that F* has no jumps and normalizing it to one, this becomes

in the limit, k O0

In the shear layer case we have

and in the jet case C - O .." is therefore continuous only for

the unstable shear layer wave, which is the only wave which has a

nbnzero imaginary part to the wave speed at '*O , and Fr is

continuous for the sinuous wave disturbance of a jet. There may be

other marginal modes, as our examples clearly show, but they do not

have a continuous F at ko . In the nonmagnetic case it has

been proven that at two the only other possible marginal modes.

occur for C values equal to the velocity at points where bO = O

(Drazin and Howard 1962). The case ?=O is seen to be exceptional

to the rule that a neutral solution must; occur at a point U .= where
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S0 -m O . The case =o is exceptional for the magnetic

problem also so that the conditions found by Kent (1968) and mentioned

in the introductory chapter need not be obeyed. Unfortunately no

alternate condition has been found in the magnetic problem. In fact,

Kent's conditions are violated by the marginal mode of the double shear

layer model since marginal stability occurs at a .) -c) where 4Mo .

For the jet case, though, it seems that the magnetic field must vanish.

at the maximum value of U in order to support marginal stability.
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VI. Long Wave Theory for Unbounded Heterogeneous Flow

The stability theory for long wave length disturbances in an un-

bounded fluid is now extended to the care of a heterogeneous fluid. As

before, we consider a fluid in which the buoyancy effects completely

overshadow the inertial effects of the heterogeneity and thus the gov-

erning equation is given by

DXbFK - 0'X F- RF - (2.24)

One of the restrictions we must place on the density profile is that

its percentual change is small. Indeed, we shall also demand that the

main raifiation of density occurs in the same region in which the

velocity and magnetic field also vary. It proves convenient to define

where

is the same as that of Chapter 3, and is defined so that > is a

normalized variable. Thus

The governing equation thus takes the form

D ,DF - 0k (6.1)
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In order to find the correct expansion scheme, we would like to

see the behavior of (6. 1) as -\-- oo . It is clear that if we retain

the restrictions placed on )( and notice that the integral of DX

easily converges (it in fact equals two), the asymptotic form of (6. 1)

is given by

S- = o

and thus

A. Series Approach

Since the emphasis in this study is placed on the stability char-

acteristics as they are affected by the stratification, it is desirable to

form an expansion in terms of two parameters: the wave number, K

and a stratification parameter, G . The double expansion is neces-

sary because as K- o , any finite value of G guarantees stability.

It is of interest to find the ci-itical value of G , which is an overall

Richardson number, for a given C , and this procedure proves ideal.

As with the homogeneous case, we first factor out the asymptotic

behavior of F before expanding and define two new variables, Q and

, such that

(6.2)
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These solutions are matched at f - o by (5. 4) and are phrased in

terms of the new variables

Lo) D toCO- c(pcb, co - 2Wk co ctco) O (6.3)

The expanded forms of our new variables appear as

(6. 4)

We solve for 4 in some detail and then present the results

for , since the latter is computed in similar fashion. By substitut-

ing (6. 2) into (6. 1) and equating powers of k\ and C by use of the

second equation of (6. 4) we arrive at the recursion relation

-4 (6.5)

where

whenever one of the subscripts is less than zero.

is normalized so that at an -. it is equal to one. At

a O , we require only that it be finite. Integrating

Lx0 =o

twice we obtain

o~b = .. 0 % -
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C =- 0 to k

Therefore

90 =

eep ooL0CO0 finite and Cz = % because .-,*)l.

The equation for ( o is given by

and upon integrating twice this becomes

1 = a- c k" + C
Since (-do) = \

at - . . Therefore

we shall not bother inserting

finite, we must have

where

TIO

, all

it at all,

terms other than p equal zero

and in the next few computations

In order to render the integral

c, _= V%-

the subscript indicates the Z value at which \ is evaluated.

is then given by

(6. 6b)to 0i c J

For , (6. 5) gives

which becomes

(6. 6a)

cka,
~ ~-S C; X
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after integrating twice. .To avoid an invinite answer, we choose

c = \._ -i
so that

po0 - a B

In like manner, the second order terms are found to be

z 1. Z. r , a , _Ch 1. \kk d~
X

lx
\ 4 % ail,

;S3cai bY%

* Zx

For ECZ)

tA-x b

the recuresion relation becomes

and the terms up to order L- = a2 are given by

;

~~, ~ d:+6b%

(6. 6c)

(6. 6d)

(6. 6e)

S 1,X 5 a
(6. 6f)

*bN S j-
(6.7)

(6. 8a)

(6.8b)

(6. 8c)

in ~xsr.~ xnf,..,

0\

'TiS 0 a aI(

t ( -M, ) 4a
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toX

51I =

Cd IZ,

S'

(6. 8d)

(6. 8e)

(6.8f)

When these relations are substituted into the boundary condifion,

(6. 3), we have, up to second order in ti.;- ) ,

(O-)
+k(- ,o- ,o

$ ~ 5,, S %kl

A C -Tt

*GpoTa s\
~ f\

b ,,i + (, o , -
+~~+G(c~~~

Soo, +
SO% 1 )qo

After a finite amount of manipulation on the second order terms,

(6. 9) reduces to the surprisingly simple form

(6.10)Y\ , Y\CD"'=-
V\ t ' - Y\ - CD) Gil

(6. 9)

a \ 
/ 

-

X 5~ n"

X x

~C-2+Dg~o-~~I~
+t~SI t g1oo ,o
G(-tz O\-'Zqo t

j C -a D

LDmZX~ A-~r~

S i vk ata-\XP~
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This is our eigenvalue equation. For a shear layer the first order

approximation gives

which is exact for the Kelvin-Helmholtz problem. Marginal stability

occurs for

For the double shear layer model 6f Chapter 3, (6. 10) becomes

Solving for C, , we get

C=

4It
2.'

M + Mb7~I

G-h

IL 
"

which is exactly equal to (3. 17) when t he latter is approximated for

long waves by writing

In the jet case, approximating (6. 10) to first order leads to

the conclusion that

t.'L ~0-4- -

G . o - V A 6 -WI
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When the background field is neglected we may have marginal stability

at k 0 for G less than the critical value given by

(6.11)

We mention once again that this describes the sinuous wave, and

(6. 11) agrees with the heuristic formula, (3. 14). The critical G is

thus somewhat smaller than for the corresponding nonmagnetic problem.

Once again, if used properly, (6. 10) yields information about the

varicose wave. For the three layer jet, (6. 10) may be written to

second order as

K - 40 e- M (6.12)

One of the roots at \=o is given by

C.= \ -to

which is marginally stable when "- O . To second order then,

(6. 13) may be written approximately as

to which- Gthe solution for is given by,

to which the solution for C is given by
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The agreement with the long wave approximation of (3. 12) is

good and captures the essence of this mode. The critical & is

then given by

- (6.14)

so that we can see that the varicose mode is more unstable to long wave

length disturbances for this example. A more general statement will

not be made although it would seem as if the varicose mode is probably

marginally stable at K=o when - and DM = O at the point

where U has its maximum, and exhibits a larger critical Richardson

number than does the sinuous mode

B. Convergence of the Series and the Integral Equation Approach

Before attempting to solve for an approximate value for the

overall Richarson number, ( , for several shear velocity profiles,

it is desirable to investigate the convergence of the series. In Chapter

5, convergence was established for the case G - t but now as we

increase G towards its ctiticallvalue GQ approaches zero and

convergence does not follow immediately from the homogeneous case.

Since we are interested in obtaining the marginal stability curves,

convergence of the scheme is essential to the validity of the results.

The approach is essentially that of Chapter 5 where we first

prove the series converges and then reformulate the integral equation
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method and show that, here too, it leads to a simple means for obtain-

ing an explicit form for the eigenvalue relation. Convergence is proven

for S and extends without any essential changes to .

Retaining the restrictions on ( and subjecting the density field

to the restriction that

where, as before, we use a new independent variable, , such that

and

Writing the integral of the recursion relation (6. 7) leads to

(6. 15)

Observing that

(6. 15) becomes
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r .I v
dj

?Aq

k 1
c

cM, 9, -tI6 A

Notice that we have already computed io in Chapter 5 since

Convergence of

ai

5oJ follows simply.

GAc4y1

(6. 7) gives

o-- d.

and by mathematical induction

GA " CL
C'L

These two cases form the framework by which the convergence argu-

ment is completed.

LJ

It follows immediately that

W. (zTU~z ~+(z~~)

and therefore with

0. T 2

Q ~r
r-3-

d

I Glt~I-L-\ 64
\C;C~r

-LL

I~

S;~'Jj 11

-L o
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we see that the series converges for all V and ( such that Ci . 0 •

The change in the integral equation due to the indroduction of den-

sity variations is minor. The Fredholm determinant, 4D , given by

(5. 25) retatins the same functional form but the kernel 1 gJ ) is

now defined as

When all the restrictions of the integral equation approach of Chapter 5

are retained and we now demand that

for a positive 0. , convergence follows immediately for sufficiently

small \, so long as . is finite as -. o . The first two

terms of the eigenvalue relationship as given by , is theh

S+(6. 16)

We recall that this argument has been used for the sinuous wave of the

jet.
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C. Stability Boundaries for Shear Layers

Since the series expansions for 9 and 4 converge, our

eigenvalue relation also converges for all \' , ~ such that C.L O

and this suggests that we may look more closely at (6. 10) for a more

accurate estimate of the critical overall Richardson number. We

shall iestrict consideration to the case when U and X are antisym-

metric and ]A is symmetric about the point Z =0 Physically, we

can expect instability being manifest at Cr = O . For reasons

mentioned in Chapter 3, the double shear layer is an example of a flow

which may, for small enough magnetic field, exhibit instability by two

waves travelling at equal but opposite velocity. Generally, (C = 0 when

C- 9 i and although this result will not be proven, it will be used.

Taking the limit CL - O , (6. 10) becomes

(6. 17)

Whenever 0 = t the integrand is singular and thus (6.17) is

strictly speaking not integrable. This difficulty can be circumvented by

a method used by Drazin and Howard (1961). What we do is to subtract

a value from the integrand equal to the integrand at the singular point
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and, expressing the ;subtracted quantity as an exact differential, add

it outside the integral. Noting that

and making use of the symmetry properties, (6. 17) appears as

a~ -( n~4 ~\~, Iooto

+4 \

MZO\ ~ Obs)AU S~MtKoutA~
14%w

G U-x V 3

\-o
An equivalent forrriulation can be derived by using

I
200 00 - "w M

When the background magnetic field is zero,

4 G(k-\NIV k(oL wiCL- \ M +c )

o'a

(6. 18)

(1,r - '
Z C t- D

-0

( -k - o'L" V

tG(I-xo.~3~k(- + K LC a t

G IA- 0 nll

Ck

(6. 18) reduces to
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7.w~~~A\
+4 X,.,, ' (6.19)

or equivalently

4 kz(y

(6.20)

2V(l - M Os
U Z>\)- tA C) If

where, because C' O

To see the initial effect of the magnetic field on the stability,

we define

~A1* M ~krF

and take the derivative of (6. 19) which respect to 0oL and evaluate

this at Ml = O . It is first necessary

as functions of Ma when to is small. The point

close to the origin for VMo

series and write

small, so that we can expand in a Taylor

U = o *abtoa
U " Moc o27 Moo0 ~co-'

r = k

to find

U -- A occurs

UA MUb"U=#

-X )



-169-

Therefore, the Z value at which U M is given by

-

Therefore, we may write

X = t4%

and

so that

(6. 21)

By expanding near -=. O the two parts of the integrand which

become singular cancel, so that the integral converges. When (6. 21)

is positive, the magnetic field acts as a destabilizing agent since it

serves to increase the <c'ritical Richardson number.

We now consider two problems, Our formulas will not work for

the discontinuous models because they involve derivative terms but this

is not overly disappointing because by direct use of (6. 10) their solutions

have been depicted rather well. The two problems that are chosen are

among the small number of examples for which the stability boundary
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is known in the nonmagnetic case. Since no analytic solutions exist for

any magnetic problem which fits our model there can be no comparison'

of results. Nevertheless agreement is observed in the nonmagnetic

verson between the expansion results and the actual solution

For Goldstein's problem

-*

the stability boundary is given by

and in the limit 1A = (6. 19) gives

which is exact to second order. For Holmboe's problem

U = X - A-Gt
the nonmagnetic limit of (6. 19) gives

which is exact. With this somewhat encouraging information in view,

we now proceed.

In Goldst in's problem consider a magnetic field given by

IMO 0\1

~3 ~-\

Is TE
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(6. 19) and (6. 20) both lead to

G I-,h - ~ (6.22)

Taking the derivative with respect to h'o we see

3 0

4 V-3 1A

The dominant term for small o ~ is given by

and is positive so that the magnetic field acts as a destabilizing influ-

ence for small values. A plot of (6. 22) (Figure 20) indicates that the

magnetic field is destabilizing for all values of M)lt 1.7 and -sta-

bilizing for ? L1

Consider Holmboe's example with tAI= tSeecA, . Equation

(-6. 19) then takes the form
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A =O(K 2 ) destobilIzotion

.2 4 .6 .8 1.0 1.2 1.4 1-6 1.8 2.0
2

Mo

Figure 20. Destabilization to for Goldstein's

problem.
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__+ Sscer
+C~~ d i~s~bI

After several pages of maniputation this becomes

M4'I

and it is relatively simple to show that this produces greater stability

than in the nonmagnetic case for all Mo . The proof rests on the

fact that

u fi L _o+ - A a - -

At 1 CA there is

moa %ttQ

equality and beyond it we take

A-it b 4tJso'

so that the nonmagnetic problem is more stable.

If,however, we choose

i = to se eat

= A0

I

~anS-~2

Sa~JrS\I~ - (Cb se3ru~~

V , . V\- VI 9 \ Mo'
~i---------

~\\rt M,~

LogMJ~tMa'

d .
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for the Holmboe problem, (6. 21) becomes

4%.
IL~

0-5

PbQ
rSc~W >05

and since the integrand is always positive, a small magnetic field

causes greater instability.

_Se~LZ~~ -: ckdi

sec~42 ~ I- ~ -
~tUh~L ~

CID
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VII. Critique

Roughly one hundred years of experience with hydrodynamic

stability studies of ideal parallel flow has shown that the problem is,

indeed, quite difficult. When a parallel magnetic field is added, the

situation becomes even more complex. The methodology employed in

the creation of this dissertation has been to attempt to apply the tech-

niques used in the hydrodynamic studies to the magnetic version of the

problem. Some of these techniques have proven-to be fruitful but

many have not.

Most of the early work on magnetic fluids has shown the magnetic

field to act as a stabilizing agent. In fact when the magnetic energy

is lhrger than the kinetic energy everywhere all possibility of instability

is ruled out for normal mode disturbances (see also, eg., Gilman 1966).

Several researchers, notably Kent, have been able to demonstrate,

without obtaining complete solutions, that magnetic configurations

which destabilize otherwise stable flows (of a homogeneous fluid) can

frequently be found. The technique most successfully used in this

connection is to expand for small wave number around the known (but

somewhat artificial) solution at zero wave number. All that is deter-

mined from this procedure is knowledge of whether the wave speed has

an ,imaginary part.

The double shear layer model presented in this dissertation

represents the first analytically solved problem for parallel flow of
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an ideal magnetofluid which shows there are magnetic field values

which cause destabilization of the fluid, both with and without stratifi-

cation. Because of the simplicity of the model, a tentative physical

explanation for the destabilizing effect that the magnetic field may

produce was offered. It seems quite possible that this mechanism may

extend to fluids with continuous distributions of velocity and density.

The value of this example suffers from one main drawback. The

distributions of velocity and density have discontinuities and when the

magnetic field varies at all, it too does so discontinuously. The degree

to which discontinuous models are representative of the physical proces-

ses of continuous models falls somewhat short of completeness.

No complete solution for a continuous velocity and density profile

exists, even in the nonmagnetic case. Reliance is placed on general

theorems such as Rayleigh's theorem for homogeneous flows

and Howard :s result for heterogeneous fluids that no instability can exist

when the Richardson number is less than minus one quarter. In the

magnetic case a result analogous to Rayleigh's theorem has been

proven, but for a heterogeneous fluid no result limiting the stratification

for instability could be proved. For a homogeneous nonmagnetic flow

there is stability for sufficiently short waves and although a similar

result is expected for the magnetic problem, none has been found.

When dealing with a heterogeneous fluid, one often tries to locate

a stability boundary. This consists of a curve of values of the
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Richardson number as a function of wave number for which the real

part of the wave speed lies within the range of values of the velocity

and the imaginary part of the wave speed equals zero. The physical

situation is supposed to reflect the fact that any decrease of the

Richardson number at a given wave length below the "critical" value

leads to a iituation where there is now sufficient energy to cause the

system to become unstable. Miles has provided mathematical support

for the conclusion for a certain class of shear flows. The same assump-

tion seems reasonable for magnetic flows but is, so far, without an

equivalent proof.

This shortcoming is not a pressing question at present, if only

because so far no marginally stable solutions have been obtained for

magnetic problems. This is due to the fact that whereas the singular-

ities of the nonmagnetic problem are generally algebraic, in the mag-

netic problem we have logarithmic singularities to contend with in most

cases. In several of the formulas of Chapters 4, 5 and 6, we see how

the logarithmic terms enter and complicate the situation. Tlis diffi-

culty is further reflected in the fact that whereas the nonmagnetic

problem has a governing equation which may be written in at least two

highly useful forms, in the magnetic case only one of the forms yields

much information readily. In any case, the obtaining of a marginally

stable solution is a very desirable goal and would give a better indica-

tion of the accuracy of the formulas at the end of Chapter 6 which
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purport to describe the stability boundary for unbounded shear flow.

No numerical techniques have been developed or used in this

work. It was felt that there was large enough ground to make progress

by more elemental methods, which would afford, at least in the early

stages of research, more insight into the nature of the problem.

Although it would be desirable to have some analytic result to which

the numerical results may be compared, the computer study might

still lend support to the expansion schemes of Chapters 5 and especially

6. It is anticipated that this will provide an open avenue for future

research in this area.
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Appendix A.

We take the I component of the curl of the equations of motion

and then differentiate with respect to X . Using the fact that the vel-

ocity and magnetic field are divergenceless, the result is expressed as

Taking tL (A. 1) enables us to elithinate reference to T by use of

the thermal equation. We must take Q (A. 1) in order to eliminate

reference to the perturbation magnetic field by use of the E component

of the magnetic equation in (2. 18). Care must be taken since

In fact using the operations

repeatedly on the magnetic terms of q$ (A. 1) leads

directly to (2. 21).
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Appendix B.

Equation (2. 23) is now derived from (2. 22).

we can write (2. 22) as

we can write (2. 22) as

Since

(B. 1)

4

Now

Qbv + bQ IF

so that (B. 1) can be written

- y\-.
9~1'

Cancelling where appropriate and multiplying by 4

ly to equation (2. 23).

leads direct-

Other general forms for (2. 23) may be derived

simply by substituting

r J = ( 'C- r " '' R

and when

equation,

j we obtain another useful form of the

given for the homogeneous case by (5. 1).

4 tYIA'
QI. (

K
1AL

-S-It
-=O
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01Q'

A- R LI
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