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ABSTRACT

Observations and theories of the solar differential rotation and
of large scale solar magnetic fields are reviewed. The fluid dynamo ap-
proach is emphasized for the maintenance of magnetic fields. A numerical,
hydromagnetic dynamo model is then formulated. It has two layers and is
baroclinically driven. Its principal new features for a model of this type
are thin shell spherical geometry, a Robert (equivalent to a spherical har-

monic) spectral representation on spherical surfaces, and "primitive" hydro-

magnetic equations. Magnetic fields are allowed to penetrate across the

upper boundary.

A time averaged, zonally averaged angular momentum balance is

achieved locally, only if the angular momentum equations (A.M.E.) are
"correctly truncated". This is attributed to both the spectral represen-

tation and low model resolution. In contrast, the surface integral of the

A.M.E. and the energy integrals derived for the model are preserved by the

orthogonal truncation process.

Numerical integration of the low resolution model yields computa-
tionally stable solutions. The model is applied to the sun. For two of

five thermal forcing profiles examined in the nonmagnetic case, a horizon-
tal differential rotation of the required strength develops and is main-

tained by horizontal eddy transports. The streamline patterns are usually
tilted upstream away from the relative velocity jet. Fultz's dishpan exper-
ments and Ward's sunspot statistics lend credence to the above results.

For four of the thermal forcing profiles, analogous magnetic runs
are made to study, qualitatively, magnetic feedback upon the flow. In this
context, two magnetic production runs are discussed in detail for the case
of approximate equipakrtion of kinetic and magnetic energy. In neither run
do the magnetic fields reverse the sign of the horizontal eddy transport of
angular momentum. Nevertheless, the strong magnetic feedback has several
consequences including weaker eddy transports and a somewhat stronger meri-
dional circulation. In addition, the horizontal shear of the vertically
averaged angular velocity profile is almost totally destroyed. The horizon-
tal axisymmetric Reynolds and Maxwell stresses play very important roles in
the vertically averaged angular momentum balance.

At the upper level, the horizontal differential rotation has the
correct sign in both magnetic production runs. Thus, in P.R. 1, i.e., the
production run with warm equator-cold pole thermal forcing, the horizontal
shear has reversed sign there, but is too weak by a factor of --6, when
strong magnetic fields have developed. The horizontal shear decreases, yet
remains of the correct order of magnitude in magnetic P.R. 2, i.e., the
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production run with warm pole-cold equator forcing. A crude determination

of the RosEby-Hadley regime boundary is mnde for P.R. 2.

Regarding magnetic induction, magnetic fields are generated and

then sustained by dynamo action, provided the magnetic Reynolds number ex-

ceeds a critical value. This value apparently varies with the type of

thermal forcing profile and with model resolution. Illustrations are given

of magnetic field patterns, mainly for both production runs. In a very

crude sense, the vertical magnetic eddies may be identified with solar mag-

netic active regions. But except during the first 12 years of P.R. 1, they

do not generally tilt persistently in the proper sense.

In the attempted simulation of the solar magnetic cycle, the re-

versals of axisymmetric poloidal (nd toroidal) magnetic fields is an en-

couraging result. For the run having the less realistic angular velocity

profile at the upper level, i.e., P.R. 1, the mean reversal time of 11 to

12 years is in rather good agreement with the presumed solar value. But

the reversals are irregular. For P.R. 2, the mean reversal time of 1 to 2

years is about an order of magnitude too small.

The energetics of both magnetic runs and their implications for

the maintenance of the dynamo are discussed. In its grossest aspects, the

reversal process appears to resemble Gilman's, except that poloidal fields

are stretched into toroidal fields by the vertical shear of the differential

rotation. Some other phenomena related.to the magnetic reversals are

briefly described for our model. It is found that the generalized Sp6rer's

law for the equatorward migration of the zone of maximum solar magnetic

activity is not obeyed.
A critique of our results and suggestions for future numerical

research are given.

Thesis Supervisor: Victor P. Starr

Title: Professor of Meteorology
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CHAPTER I. THE EQUATORIAL JET AND MAGNETIC FIELDS

IN THE SOLAR ATMOSPHERE

1.1, Introduction.

The existence and maintenance of the solar equatorial jet

and the large scale solar magnetic fields will be a central theme of

this study. In Chapter I, the basic observational evidence relating to

the equatorial jet and to large scale magnetic fields will first be re-

viewed. The discussion then turns to various possible physical mecha-

nisms for maintaining the jet. As for the maintenance of the magnetic

fields, the self-sustaining fluid dynamo approach is emphasized. In

this connection, a survey of the literature on dynamo theory has reveal-

ed certain basic properties of fluid dynamos.

In the concluding part of Chapter I, a self-consistent model

which contains various essential ingredients already enumerated, is pro-

posed. In principle, the model is capable of dynamo generation and main-

tenance. The chief departures from a recent numerical dynamo study by

Gilman (1968) include the adoption of the "primitive" hydromagnetic

equations and thin shell spherical geometry. When these modifications

are coupled with suitably adjusted baroclinic thermal forcing, an equa-

torial acceleration is possible.

1.2. Solar Observations,

1.2.1. A rough view of the sun.

The basic solar data consists of continuum emission, absorp-

tion lines, and emission lines. This'radiation reflects the local values

of wind, temperature, density, magnetic field strength, composition, and
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state of ionization averaged long the line of sight. The most serious

observational limitation is due to the opacity of the solar disk. Even

in white light, only its uppermost few hundred kilometers are visible.

A rough picture of the solar interior has emerged, however,

from stellar model calculations of Schwarzschild (1958) and others. Thus

the sun probably has a convective envelope, and a radiative core in which

a thermonuclear core is imbedded. Denoting the solar radius by Re , the

radiative core-convection zone interface lies between 0.8 R and-0.9 R. ,

while the upper boundary of the convection zone lies just beneath the

visible surface. The observed photospheric "granulation" would then

represent small scale convection which has penetrated this upper

boundary. Speculation on the more detailed temperature structure within

the convection zone is deferred until later.

The 5 x 103 oK photophere is separated from the overlying

1.5 x 106 oK corona by a sharp transition region known as the chromosphere.

The continuum emission originates mainly from the photosphere and lower

chromosphere. Absorption lines are also formed there, while emission

lines are formed predominantly in the corona and-upper chromosphere.

1.2.2. Observational length and time scales.

Solar observations reveal hydrodynamic and magnetic phenomena

over a broad range of time and space scales. Near the short end of the

spectrum is the granulation. An individual granule has a characteristic

size of 700 km and a lifetime of 8 minutes (Zirin, 1966). These scales rYe

The.method is summarized by Zirin (19C6) on pp. 279-280.
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SMall compared to the sun's radius (Rez 6.95 x 105 km).and observed mean

rotation period ( T, 25.4 sideral days). Photospheric cellular hori-

zontal motion patterns, dubbed supergranules, have a diameter of about

3 x 104 km and a mean lifetime of 20 hours (Simon and Leighton, 1964).

Supersupergranulation, i.e., convective cells with a characteristic

dimension of several hundred thousand kilometers may have been observed

(Bumba, 1967). Horizontal eddy motions of similar size are implied by

Ward's (1964) and later studies.

A very large sunspot group may encompass 0.3% of the solar

disk area (Zirin,19E6), which is roughly supergranular size. But spots

are imbedded in active regions having lateral dimensions of up to 2 x 105

km (Bumba and Howard, 1961b). Comparably large scale magnetic fields

having intenSities of several gauss are another manifestation of active

regions (Bumba and Howard, 1965b). These magnetic fields as well as

active regions and large sunspots may persist for several rotations. A

polarity reversal of the leader and follower spot magnetic fields is a

feature of the double sunspot cycle 2 . The large scale, axisymmetric

poloidal field, i.e., the axisymmetric component in meridional planes,

also seems to undergo such a reversal. The average length of the double

sunspot cycle is 22 years. Finally, an equatorial jet is a quasi-per-.

manent feature, and not just a statistical remnant of the solar general

circulation. Of chief interest to us will be phenomena having large

length and time scales.

2
The various characteristics of the sunspot cycle are conveniently

summarized by Babcock (1961).
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1.2.3. Observational evidence for the existence and maintenance

of the equatorial jet.

"Observations" of the Differential Rotation.

Three methods of observing motions in the solar atmosphere

are (1) tracing sunspot displacements, (2) tracing other definable fea-

tures such as filaments and (3) measuring Doppler line shifts. Sunspot

data is the most comprehensive. Since 1874, sunspot group positions

(in tenths of degrees of latitude and longitude) have been extracted and

tabulated once each day, from photographs taken principally at the

Greenwich or Cape Observatories.

Newton and Nunn (1951) measured the time interval between

successive central meridian passages of longlived, generally large sun-

3
spots from recurrent sunspot data for the period 1878-1944. By a least

squares technique, they obtained the angular velocity profile

Ai - 8 237 , o 7 x/nQ longitude per day (1.1)

C- being the latitude.

'As an alternative to Newton and Nunn's procedure, Ward (1964)

computed displacements of shortlived and longlived spots. His angular

velocity profile agreed with equation (1.1) to within a few percent.

Ward (1966) noted that the daily motions of small spots predict an angu-

lar rotation rate slightly larger than equation (1.1) near the equator

and 2% larger at 300. Moreover, elongated spots seemed to move up to 2%

Recurrent sunspots reappear at least once on the east limb (look-
ing toward the sun) of the solar disk.
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faster than circularly shaped spots.

An auto-correlation analysis of the local magnetic polarity

in active regions has recently been performed by Wilcox and Howard (1970)

based upon roughly seven years of data, A mean differential rotation

qualitatively similar to equation (1.17 may be inferred from the sharp

peaks at 26 to 29 synodic days in the auto-correlation curves for differ-

ent latitudes.

Filaments can be found at more poleward latitudes than sun-

spots, tend to be elongated, and are of chromospheric rather than of

photospheric origin (Zirin, 1966). The angular velocity profile deter-

mined from filament displacements by ,. and L. d'Azambuja (1948) agrees

qualitatively with (1.1) but the angular velocities are slightly larger.

Since 1966, Dr. Howard has obtained Doppler shift measure-

ments at 11,000 points over nearly the whole disk on an almost daily

basis. Howard and uarvey (1970) comment in fact that "the analysis of

the 1st day's observation combined more individual measures of rotation

Doppler line shifts than were collected in all such previous endeavors",

Obtaining a least squares fit to their data, they found

13.76 - 1.74sin 2 - 2.19 sin 4e per day. (1.2)

Note that the equatorial value is some 4% less than in (1.1). It also

happens to be in fairly good agreement with other recent spectroscopic

determinations, Secondly, the shear is less pronounced in (1.2) than in

(1.1) at sunspot latitudes. The probable errors of the coefficients in

(1.2) were estimated to be of order 0,1%, 10%, and 10%, respectively.

Rased upon a small sample of Doppler measurements, Plaskett(1962) found

% % . 4
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a maximum angular velocity at CL=22 , although his equatorial value

agreed with (1.2).

Unlike sunspot heights, the heights of different spectral

line formation can be estimated. Thus, Doppler measurements could be use-

.ful to help determine height variations in JLo" In a review article,

Bumba (1967) cites Aslanov's results on the variation of (zonally-aver-

aged) solar equatorial zonal-velocity, o . From optical depth .111 to

.010, (a 210 km thick layer) Q, increases montonically with height by

12%, whereas from optical depth .125 to .111, LC. decreases with height.

Comparison of the filament and sunspot rotation laws suggests L,, in-

creases with height, but the primary effect could be the shape of the

filaments rather than their location in the chromosphere.

Mean Meridional Velocities

Ward (1964) attempted to compute the space-time mean merid-

ional velocity fv] from daily displacements of sunspots. But the 5% con-

fidence limits exceeded the magnitude of the computed v's everywhere

except in the 0-5oN latitude belt. Within the sunspot latitude belt, the

largest possible magnitude for [v] consistent with the confidence limits

was slightly under 20 m/sec.

Even earlier, Plaskett (1962) attempted to determine fvj from

line of sight spectroscopic measurements. Unfortunately, the sign of the

meridional velocity depended upon which wavelength standard was adopted.

Nevertheless he felt that the'observed' meridional velocity was equator-

ward. No similar attempt has been made yet with Howard's 1966-1969 data.

In principle, coefficients.of a fv3 profile and their probable errors

~ r
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could be estimated from his spectroscopic data.

Horizontal Eddy Motions and Eddy Momentum Transports

Ward (1964) has computed the space-time covariance u'v'J =

£uvi - Lu v) and the associated correlation coefficients from the daily

sunspot displacements. The zonal velocity u and meridional velocity v

are measured in the Greenwich reference frame whose rotation rate is-

14.1840 per day. Space-time averaging (denoted by f 3 ) weights each

spot group equally and is appropriate considering the nature of the data.

The u and v components are significantly correlated so that faster ro-

tating spots tend to move towards the equator. If streamlines could be

drawn, the trough and ridge lines would probably tilt northwest-south-

east (in the northern hemisphere). The eddy momentum transport is up

the angular velocity gradient. Ward (1964) estimated the decay time of

the differential rotation at just a few rotations if the eddy momentum

transport were cut off and not replaced. Starr and Gilman (1965a) show-

ed that Ward's results implied a systematic conversion by horizontal

eddies of eddy kinetic energy into kinetic energy of the mean zonal flow

at sunspot latitudes.

Hart (1956) demonstrated that observed fluctuations of the

Doppler line of sight velocity VL were above the noise level and coherent

for at least an hour. The fluctuations had a weak spectral peak near

2.6 x 104 km and an RMS value of 0(100 m/sec ). Howard and Harvey .(1970)

thought they detected fluctuations with a comparable length scale and a

time scale of several days, in addition to a much longer secular varia-

tion of J .
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It may even be possible to construct a zeroth order approxi-

mation of the large scale flow pattern from Howard's VL data by retriev-

ing the eddy motions from the residual velocities defined by Howard and

Harvey (1970). One would assume (1) the large scale vel'city field is

horizontal and nondivergent, i.e., can be specified by a stream function

CY, , and (2) the equator is a streamline (at least as an initial guess).

Then a linear first order partial differential equation in /

relates / to the observed VL values integrated (numerically) by the
L

method of characteristics. A necessary condition for assumption (1) to

be valid is that VL be small near the center of the disk. Hopefully, the

streamline patterns would be tilted in a manner consistent with Ward's

(1964) results.

Ambiguities in the Observational Data

There are certain ambiguities in the interpretation of the

data mentioned thus far. A very crucial assumption is that sunspots are

good tracers of the large scale flow. An interesting indirect check was

made byMacDonald (1966) who used migratory cyclones and anticyclones as

tracers of the angular velocity and eddy motions in the terrestrial atmos-

phere. The predicted eddy momentum transport was only 1/3 the observed

transport. Nevertheless, the predicted shapes of both the eddy momentum

transport and absolute angular velocity profiles agree fairly well with

the(vertically averaged) observations, except near the equator where

cyclone and anticyclone data was scarce. MacDonald reasoned that if the

migratory cyclones and anticyclones were satisfactory tracers, then by

analogy, sunspots could be too.
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It has already been noted that size and shape and life ex-

pectancy of sunspots affect how fast they move. Spots also move faster

in the incipient as compared to later stages of development (Ward, 1966).

In addition, the equivalent height of the circulation traced out by sun-

spots is not clear. Sunspots are thought to be manifestations of hydro-

magnetic disturbances in the conoction zone. Ward (1964) speculated

that spots of greatest vertical extent (which might include the large re-

current spots) move the slowest.

Even assuming that sunspots (groups) are good tracers,

positional errors of sunspots (center of gravity of groups) might serious-

ly affect the results. For example, sunspot positions are least accur-

ately known near the edges of the disk due to foreshortening. Ward (1964)

counteracted this difficulty by discarding sunspot data close to the disk

edges. Even worse, the birth of a new sunspot and death of an old one

between observations or change in structure of a sunspot group could be

misinterpreted as sunspot motion. Suspicions were advanced that Ward's

(1964) eddy correlations might be due largely to systematic errors in the

center of gravity position of sunspot groups along the spot group axis,

which was preferentially tilted NW-SE (NE-SW) in the northern (southern)

hemisphere. But Ward (19C5b)refuted the brunt of this argument by ob-

taining significant correlations from displacements of single spots.

Also, the correlations basically held up when sunspot displacements ex-

ceeding critical longitude and/or latitude values were screened out (Ward,

1964).

Table 2 of Ward (1964) reproduced as Table 1.1 shows that the



Table 1.1. Latitude distribution of sunspots as a function of time (from Ward (1964)).

Table 2

Number of Observations

(Cutoff: 1.0* Lat., 1.50 Long.)

North South

Year > 30 30-25 25-20 20-15 15-10 10-5 5-0 0-5 5-10 10-15 15-20 20-25 25-30 > 30 Total

1935 16 76 115 40 25 0 5 2 4 23 102 93 78 47 626
1936 25 44 129 188 138 18 0 0 33 149 229 160 89 74 1276
1937 58 52 179 225 367 179 9 1 106 226 204 141 F 6 24 1827
1938 3 69 128 142 255 137 50 29 251 220 188 120 6 12 1669
1939 2 59 74 158 178 167 41 41 241 233 238 67 2 9 1510
1940 0 2 20 90 176 168 26 33 239 233 90 22 1 0 1100
1941 0 1 5 46 204 113 68 68 137 78 27 0 0 0 747
1942 0 0 4 21 98 132 12 36 101 105 I 0 0 0 510
1943 0 0 0 9 47 86 38 26 22 12 I 8 2 1 252
1944 4 7 21 9 1 11 9 0 14 0 0 50 17 7 150

1935-44 108 310 675 928 1489 1011 258 236 1148 1279 1080 661 310 174 9667
1935-44 282 620 1336 2008 2768 2159 494 (9667) North and South Total (Cutoff: 1.00, 1.50)

1935-44 335 753 1569 2361 3203 2519 574 (11 314) North and South Total (Cutoff: 2.00, 3.0*)

1935-44 350 777 1635 2464 3333 2595 596 (11 750) North and South Total (no cutoff)
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latitude distribution and total number of sunspots varies dramatically

over the sunspot cycle. Thus a formula like (1.1) might reflect a time

variation as well as latitudinal variation of the solar rotation. The

reduction of spectroscopic data of Livingston (1969) and of Howard and

Harvey (-1970) suggests that whereas a positive solar equatorial jet is

prezent on most days, the profilee does vary with time.

It may be noted that the Doppler line shift measurements con-

tain various systematic and random errors. The orbital motion and rota-

tion of the earth must be- subtracted out as well as the red shift at the

limb (- 340 m/sec). Also, the arbitrary zero reference may shift from

day to day or even during the 90 minute scan of the disk. A pressure

fluctuation of only 0.13 mb will produce a 60 m/sec shift. These and

other sources of error including scattering by the terrestrial atmosphere

and optics involved are discussed by Howard and Harvey (1970).

As techniques are improved and more Doppler measurements made,

our knowledge of the large scale solar circulation will be refined. Never-

theless, the basic quantities mentioned in this section are probably of

the correct order of magnitude and the differential rotation should.be

accurate to within 20%. At this stage, it would be gratifying if the

numerical model we construct could reproduce the large scale solar circu-

lation even qualitatively.

1.2.4. Observations of large scale magnetic fields.

Methods of Observation

In the presence of a magnetic field, solar spectral lines

split approximately into a classical Zeeman triplet. Two components, 6
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and 6 are shifted tAA relative to the center of the undisturbed iT

component. The formula for the wavelength splitting in Ao is (Zirin,1965)

AA- 4.7 x 10 1 3 GH. (1.3)

Here the nondimensional Lande factor G depends upon the atomic transition,

S is the wavelength in Ao of the undisturbed line, and H is the mag-

netic field in gauss. Except in very strong magnetic fields, e.g. sun-

spot fields of over 1000 gauss, the splitting is too small to measure

directly.

Line of sight magnetic field components in the photosphere

(or chromosphere) slightly weaker than 1 gauss can be detected, however,

by the solar magnetograph, a sensitive photoelectric instrument devised

by Horace Babcock in 1952.4 The magnetograph actually measures the split-

ting \ in equation (1.4). The observed splitting is usually so small

that the shape of the line profile responds as a linear function of AA

(Bumba and Howard, 1965c). Secondly, the magnetograph subtracts out

almost all the instrumental errors which would otherwise be detrimental.

A magnetogram is produced by scanning the disk. 5 Synoptic isogauss

contour maps of the line of sight magnetic field can be constructed daily

from magnetograms (Bumba and Howard, 1956b). Then over each solar rota-

4
A good description of the magnetograph may be found in Zirin (19C6),

pp.105-106 and pp. 367-370, or in Bumba and Howard (1965c).

5Utilizing the basic principles of the magnetograph, Leighton (1959)
devised a photographic subtraction technique for obtaining an instantan-
eous picture of solar magnetic fields. This method is quicker but less
sensitive than photoelectric scanning. Astronomers at the Crimean Obser-
vatory have measured strong magnetic fields transverse to tie line of
sight (Severny, 19C5).

V . IN
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tion, data ncar (if possible) the central meridian on successive daily

maps may be transferred to a mean synoptic chart whose abscissa is time.

Assuming large scale features are longlived, the abscissa may be convert-

ed to longitude using the mean solar rotation rate. Bumba and Howard

(1956b) argue that such mean synoptic charts help facilitate the study of

large scale magnetic features. There is of course some tradeoff. The

final product is not a time mean (i.e., averaged over one rotation) map

in the usual sense, but a collage. Alternatively, significant inhomogen-

eities between central meridian vs. limb data as well as foreshortening

bffects are avoided. In any event, rather coherent, large scale contour

patterns appear on many of Bumba and Howard's (1965b) mean synoptic

charts. Secondly, features on one mean synoptic chart can often be iden-

tified on the next.

Magnetograph Resolution

Babcock's original magnetograph had an angular resolution of

70" of arc while resolution close to 1" has since been achieved (Living-

ston, 1967).6 With the development of the higher resolution magnetographs,

increasingly fine structure magnetic fields have been reported. Bumba

and Howard (1965b) noted that weaker features and finer structures could

be detected with a magnetograph having 23" compared to 70" resolution,

Severny (1965) plotted H vs. position in an active region, at two resolu-

tions. Again, finer structure was revealed at the higher resolution. The

greatest magnitude of H was about 35 gauss at both resolutions however.

Livingston (1966) also reported little variation in range of intensity (as

6
The solar disk subtends 31'59" of arc while a characteristic

granule dimension is roughly 0.5" of are.

40-
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opposed to fineness of structure) when his magnetograph resolution 
was

improved thirtyfold. to 1.8" of are.

In contrast, Severny (19C5) did observe a marked variation

of maximum magnetic field intensity near latitude 600 as a function of

angular resolution. At 5" arc resolution, the maximum intensity was

nearly 30 gauss, about ten times the value at 50" resolution. S~ond.,

Severny (195) could identify only 50% of the magnetic elements on two

successive 5" resolution magnetograms of the polar region. Unfortunately,

he did not indicate how short the time interval was between successive

magnetograms. A rather short lifetime for features having a characteris-

tic angular dimension of approximately 5" could contribute to the obser-

ved incoherency.

Bumba (1967) has attributed apparent discrepancies in re-

ported results to factors like differences in seeing conditions and dif-

ferences in sensitivity or resolution amongst magnetographs. In contrast,

the general validity of the magnetograph measurements has been challenged

by Alfven (1965). He postulated that numerous dark pores called micro-

spots, which are small compared to the magnetograph resoluti6, could be

imbedded in the background medium. Supposedly, magnetic fields would be

very strong inside microspots and weak elsewhere. Moreover, magnetographs

would fail to adequately compensate for saturation effects due to the in-

tense field strength and reduced light emission within microspots. Thus,

magnetograph measurements would bear little resemblance to large scale

magnetic field patterns if, in fact, any even exist. At best, they could

indicate the level of microspot activity.

% . .
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Froc. .- Synoptic chart of solar magnetic fields for rotation No. 1417 (August, 1959). Solid lines and an indication of the quality of the magnetograms from which the synoptic chart was drawn, with 4 the
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Fig. 1.1. Synoptic chart of line of sight solar magnetic fields (from Bumba and Howard (1965b)).



Of course, tiny microspots cannot be observed. There are

also some counter arguments to Alfven's. First of all, consider the

measurements of Bumba and Howard (1965b) taken with a 23" angular resolu-

tion instrument. The noticeable regularity of the contour patterns on a

given chart and th- persistence of features (mostly active regions) from

one chart to the next lend plausibility to the measurements. At h gher

resolution, there is more fine structure as already mentioned. But

eyeball smoothing suggests qualitatively similar patterns to those ob-

served at lower resolution.

Second, a sector structure in the interplanetary magnetic

field has been measured by magnetometers aboard orbiting satellites

(Wilcox, 1966). The preddminant polarity of the interplanetary magnetic

field varied from + to - to + to - (corresponding to wave number two) for

each solar rotation, This polarity was correlated with that of the large

scale photospheric field. A subjective smoothing was applied to some

mean synoptic magnetic charts for this purpose. A cross correlation of

0.8 was achieved at a time lag of four to five days, a reasonable

transit time for solar wind plasma.

Observational Results

We will take the view that the magnetograph basically responds

to the line of sight magnetic field. The character of the magnetic obser-

vations is revealed in Fig. 1.1 which is a reproduction of a mean synoptic

magnetic chart of Bumba and Howard (1965b). The contour patterns are

typical for the more active phases of the sunspot cycle, when measurable

fields cover over 50% of the disk. Smoothing over the fine scale struc-
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ture, a dominant feature equatorvard of 4no is extensive regions (bi-

polar magnetic regions) of predominantly one magnetic polarity flanked

on either.side by analogous regions of predominantly opposite polarity.

These regions are preferentially elongated as if stretched out by the

differential rotation. Thus the elongated axis is tilted NW-SE (NE-SW)

7
in the northern (southern) hemisphere . Maximum field strengths of

25 gauss and large areas with field strengths between 2 and 6 gauss are

typical when active regions are present. On a small magnetograph data

sample covering seven solar rotations, Bumba, Howard, Kopecky, and

Kuklin (1969) performed an auto-correlation analysis. The significance

of various bumps in the auto-correlation curve may be questionable. But

it is interesting perhaps, than there are peaks corresponding to longi-

tudinal wave numbers 6 and 2. The more extensive auto-correlation analy-

sis by Wilcox and Howard (1970) reveals peaks corresponding to wave num-

bers 1, 2, 3, 4, 6, and others. The wave number one peak, which reflects

the persistence of active regions over a solar rotation, is sharpest,

most persistent, and most coherent.

The synoptic chart also reveals unipolar and ghost unipolar

magnetic regions. The leading portion of a unipolar region merges with

the bipolar field of the same polarity equatorward of 400. The tail por-

tion is poleward of 400 and is more spread out in longitude, usually over

100 . At times, these unipolar regions show up virtually as a wave

number one feature on the auto-correlation curves of Wilcox and Howard

(1970) poleward of 40 . Typically, the tail portion is weaker than the

7
Reflect the chart about its left boundary and take longitude,

increasing to the right, as the abscissa.

% % . 0
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leading portion, has the oppoiiie polarity as the net polar field, and

migrates towards the nearest pole. Compared to unipolar tails, the ghost

unipolar tails have the reverse polarity and are weaker by at least a fac-

tor of two. (Bumba and Howard, 1965b).

Bumba (1967) believes that all magnetic fields observed on the

sun probably originate in active regions during the first few days of-

development. A field could evolve through the combined action of advec-

tion, stretching by differential motions, and magnetic diffusion. During

periods of strong activity, active regions overlap. Preferential longitude

zones of activity could be only partially explained by persistence.

Despite fine scale structure and nonuniformity, the concept

of a net space-averaged polar field is apparently valid. Severny (19e5)

remarked- that the observed' (line of sight) net polar field was rather

constant with latitude instead n' decaying as the pole is approached. The

implication is that even the net large scale polar magnetic field is not

like a pure dipole. The rapid oscillations in the fIne structured fields

are not necessarily incompatible with the slow secular changes in polarity

of the net field either. For the past two cycles, polarity reversals have

been observed, not quite simultaneously, at the two poles, around the time

of maximum sunspot activity. Also, a poleward migration of poloidal

magnetic flux has been noted by Bumba and Howard (1965b).

1.3. Theories of the Solar Differential Rotation.

A systematic review of theories on the differential rotation

was given by Gilman(1966). We plan to reiterate only a few essentials of

the earlier work while emphasizing the more recent ideas. The various

theories could be categorized as to mode (i.e., axisymmetric or eddy),



ultimate driving mechanibm (e.g., convective, baroclinic or unspecified

process), or dependence, if any, upon magnetic fields. Some physical

mechanisms seem more plausible than others. But the question of which

mechanisms actually dominate is unresolved mainly because they tend to

apply to deep regions hidden from view. Often, one is forced to assume

the surface observations are linked to conditions below the surface in

"comparing" theory and observations. Moreover, even if a theory makes a

prediction for the visible surface layers, the nature of the data may

make direct comparisons difficult.

1.3.1. Axisymmetric theories

The idea that an axisymmetric circulation in meridional planes

might maintain the differential rotation was put forth by Eddington (1925)

and Bjerknes (1926). In principle such a circulation could transport

either (1) so-called JI angular momentum or (2) relative angular momentum

up the angular velocity gradient (Lorenz, 1967). The first type could be

associated with either a significant mass transport or a variation of

radius within the fluid layer. Mass ejection by the solar wind is itself

too slow to cause a significant mass transport at photospheric or convec-

tion zone levels. The radius variation effect requires a deep layer.

Roxburgh (1969) suggested that this effect might take place in the convec-

tion zone. The meridional cell would be characterized by rising motion

near the poles, a descending branch near the equator, equatorward trans-

port near the top, and poleward transport near the bottom. A-.iet horizon-

ttal transport-of relative angular momentum by mean meridionaL motions,

would require a vertical shear.of angular velocity, if the net mass trans-

port and variation of radius effects were neglected.
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There are a few general criticisms of axisymmetric theories.

Observationally, large scale, time varying eddy patterns of photospheric

line of sight velocities appear on Howard's recent dopplergrams. The

presence of large scale horizontal eddies may also be inferred from Ward's

(1964) sunspot statistics. Secondly, eddy motions are probably required

for dynamo maintenance of the magnetic fields, as discussed later. Third,

mathematical solutions which are axisymmetric could possibly be unstable

to small perturbations.

Energy Sources for Axisymmetric Models

An energy source is an essential ingredient of any self-con-

sistent theory of the differential rotation which includes dissipation.

Also, it now seems quite pl'usible that small seal~e turbulent dissipation

predouinates by several orders of magnitude over molecular dissipation

(e.g. see Ward (1964) or Cocke (1967)). In the present context, the

question is then what drives a large scale axisymmetric meridional

circulation.

Baroclinic Energy Sources

Until roughly 20 years ago, the core had been regarded as

convective and the envelope as in radiative equilibrium, in opposition to

current thinking. Von Zeipel's theorem predicted negative energy genera-

tion near the surface of a barotropic star in radiative equilibrium. Re-

jecting this conclusion, Eddington (1925) suggested the sun might be baro-

clinic. But as Gilman (1966) mentioned, the deduced Eddington meridional

currents were later shown to be only of order 10-9 cm/sec, much too small



to affect the angular momentum balance. Krogdahl (1944) showed that in

principle, a baroclinic star, but not a barotropic one, could have non-

uniform rotation in the equilibrium state despite isotropic friction,

The verification of large scale meridional temperature grad-

ients would promote the cause of baroclinic theories, whether they be of

the axisymmetric or eddy mode type. As noted by Gilman (1966), various

measurements of pole to equator temperature gradient are in disagreement.

Polar temperatures warmer, the same as, and colder than the equatorial

temperature have been reported. In one case the pole was found to be

warmer than the equator, with a temperature minimum at middle latitudes.

Measurement uncertainties are such that temperature differences of a few

tens of degrees of either sign cannot be precluded at the surface and

larger temperature differences could exist deeper down. Even if photo-.-

electric techniques increase the sensitivity of measurements, there is

still the problem of knowing for certain whether they are being made

along geopotential surfaces.

One early justification for the existence of baroclinicity was

given by Randers (1942). He suggested parcels would rise preferentially

along the axis of rotation, movements perpendicular to the axis being

constrained by centrifugal stability. The implication was that the poles

would be warmer than the equator. More recent work by Chandrasekhar (1961)

and Busse (1970) indicates a tendency at least for asymmetric convection

parallel to the rotation axis to be inhibited by rotation. More will be

said qualitatively on the plausiblility of the baroclinitic hypothesis, in
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connection with asymmetric baroclinic instability theories.

Anisotropic Viscosity as an Energy Source

Kippenhahn (1963) studied steady state, axisymmetric motions

in a spherical shell of incompressible, barotropic fluid with anisotropic

viscosity and stress-free boundaries. The frictional force was derived

from Wasiutyns-ki's (1946)- anisotropic turbulent stress tensor. The

anisotropic viscosity was parameterized by the ratio S of the horizontal

to radial constant diffusivities. Kippehhahn thought the anisotropic

viscosity might help explain the solar differential rotation. We shall

attempt to clarify the significance of his work.

The following notation will be used: the absolute angular

velocity W(k), the stream function ,(A)for axisymmetric motions in

meridional planes, the velocity vector V -, isotropic friction C ,

the anisotropic correction 3_ to - , the azimuthal unit vector A ,

the radial coordinate e , the latitude ( , and the integral SdT

over the fluid volume. The "" or "1" subscript on W(k)or Mdenotes

a zeroth or first order correction, respectively.

Two equations, i.e., the azimuthal components of (1) the

vector equatioi of motion and (2) its curl, contain only inertial and

(k) 60
frictional terms and hence constitute a closed set for W and /

Biermann (1958) had demonstrated that (nontrivial) solid body rotation

( W(k)= constant, q ')= 0) is not a solution to the hydrodynamic

equations if S 1. Kippenhahn assumed W () ce r and

PO Q . This zero order solution failed to satisfy the second

of the above two equations for the anisotropic case Sfl. First order



corrections were obtained by a method of successive approximations.

Kippenhahn felt this order of approximation would suffice qualitatively

but not quantitatively for the sun. The nonlinear self-interaction of

WV ) in the second, i.e., unbalanced equation gave a meridional circu-

lation , ( . In turn 1 )interacted with Wo  in the first equa-

tioh to give a differential rotation '~ 1Crb) /

For S >1, the meridional circulation was characterized by one

cell in each hemisphere with rising motions near the poles and descending

motions near the equator. As W,2(1) was positive so was the equatorial

acceleration. Finally, the meridional circulation even transported

(k) (k)angular momentum up the gradient of W but down the gradient of W
1 o

It may be noted that a meridional circulation with the same sign could re-

sult from heating the poles baroclinically (see Chapter VI). Also,

dW ()/ 0 r ( , which is consistent with the thermal wind relation.

Whereas the meridional circulation, (/o 'or , and ,) all re-

verse sign if S<1, Kippenhahn (1963) argued that S> 1 could be reasonable

for the solar convection zone.

The vertical shear of W. rather than the anisotropic viscosity

is apparently the true energy source. The basic criticism of Kippenhahn's

(1963) model is that he has failed to show that anisotropic viscosity (or

any other process for that matter) maintains W (k) The energy equation

for Kippenhahn's steady state model should reduce to ) ( rS.t 7:O

because the kinematic boundary condition prevents any flux of kinetic,

internal, or potential energy across the boundaries. Since isotropic

friction is a well known energy sink, i.e., since V).Y d 1
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there is an inconsistency unless *' V d T >O .We verified

that S( .A rCO)dr<O so that anisotropic friction does not

maintain W (k) The inequality SI7 ( ")d?<O probably holds for the

deep atmosphere case, since it holds for the thin spherical shell case.

But even if anisotropic viscosity were an energy source, there would have

to be a negative viscous effect which might be better understood by ex-

plicitly retaining turbulent eddies. What Kippenhahn has really shown is

that an axisymmetric meridional circulation which is driven by a rather

nebulously defined energy source could maintain a differential rotation.

Axisymmetric Magnetic Theories

Differential rotation in a (thin) spherical shell containing

magretic fields has been studied by Nakagawa and Trehan (1968) and by

Nakagawa and Swarztrauber (1969). Neither model really explains the ob-

served differential rotation however, because it is imposed as a condition

at the top boundary. In both, solid body rotation W0 o is also imposed

at the lower boundary.

Nakagawa and Trehan (1968) seek steady state, axisymmetric,

toroidal velocity and poloidal magnetic field solutions in an inviscid,

perfectly conducting fluid. Thus Ferraro's law of rotation holds through-

out, i.e. the angular velocity ) is a function of the poloidal magnetic

stream function PMin meridional planes. They choose a simple relation-

ship of the form cWZ= ,j . +b, where a, and b, are constants.

This formula is imposed as a constraint in the Nakagawa-

Swarztrauber (1969) model at both boundaries. However, such a constraint

may violate the physical boundary condition that currents be confined to



the spherical shell. The axisymmetric toroidal magnetic field (which

does not identically vanish) is correctly set to zero at both boundaries.

But judging by the kinks in their figures 3a, 4a, 5a, and 6a, c' p/Y

is discontinuous at the boundaries. Yet, as shown in Chapter II, all

magnetic field components and hence Dvyp/dr (as well as g ) should

be continuous there. In any case, the maghetic field plays a strong

role even though the Maxwell stresses are insignificant. Thus, as in the

first model,W o equals the angular velocity of the pole at the top

boundary and bl W .

The Nakagawa-Trehan (1968) model is not relevant to the

question of maintenance of a differential rotation, since viscous dissi-

pation is absent. There are no Reynolds stresses nor Maxwell stresses,

and none are needed. The maintenance of Nakagawa and Swarztrauber's (1969)

differential rotation is of interest however, since their model includes

a meridional circulation, toroidal magnetic field, and viscous (as well as

ohmic) dissipation. The differential rotation within their spherical

shell is directly maintained against frictional dissipation mainly by

axisymmetric Reynolds stresses, which can be inferred from their figures

3b and 3d. Curiously enough, the cellular patterns and sense of the mer-

idional circulation agree qualitatively with Kippenhahn's for his S > 1

case. The ultimate energy source is of course the imposed differential

rotation at the upper boundary.

The horizontal angular velocity profile exhibits a smooth

transition with height between the profiles at the top and bottom bound-

aries, suggestive of frictional coupling. In contrast, in the first model,
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the angular velocity profile depends upon an arbitrary constant surface

current at the upper boundary. An intense positive jet just below the

surface or a negative equatorial jet in the center of the shell are

possible.

1.3.2. Asymmetric Theories

A Modified Barotropic Mod el

Thus far the discussion has focused upon axisymmetric

theories of the solar differential rotation. But in Nickel's (1966)

modified barotropic model, the differential rotation was maintained by

asymmetric processes. The flow was assumed to be two-dimensional and

was characterized by a stream function / ( 9)

where the ~,c(z) are complex spectral coefficients and the >,

are spherical harmonics. The barotropic vorticity equation was modified

by including horizontal frictional coupling, parameterizing vertical

frictional coupling, and infusing energy into one or more source modes

YM+- at a constant rate. This rate was governed by the decay time

7V0  of the differential rotation. The model was integrated numerically

in time.

The following source modes were considered: alone. ,

alone; lone; .lone equally weighted; and

Z=1 ...... g equally weighted. With ' very small initially,

a large amplitude quasi-steady differential rotation developed only for

the source modes or 13 . The higher energy input required by

source mode k/3  as compared to ' probably reflects the greater

frictional dissipation of C3



Eddy transport of relative angular momentum up the angular

velocity gradient is the only mechanism which can maintain the differ-

ential rotation against frictional dissipation. This is achieved through

energy flow from the source mode to lower modes. The best qualitative re-

suits were achieved with source mode V and 7 -~y/o seconds, a

decay time comparable to Ward's (1964) estimate. While modes with n=l

and n=2 had sizable amplitudes, the dominant eddy momentum transport was

by source mode type waves (n=6). Angular momentum convergence occurred

equatorward of 250. In this region, the streamlines were tilted NW-SE

(SW-NE) in the northern (southern) hemisphere. The differential rota-

tion and eddy transports were only a factor of two greater than indicated

by the observational data.

Unfortunately perhaps, a negative differential rotation or

even an antisymmetric one could be maintained given different initial con-

ditions. Presumably, the quasi-barotropic model lacks sufficient physical

constraints to insure independence of the average differential rotation

from the initial conditions. In a sense, the behavior of Lorenz's (1960a)

maximum simplification "dishpan" model is analogous.

His unsuccessful attempts with other source modes led Nickel

to speculate that a small upper bound on m could be a prerequisite of

suitable source modes. Such a result would be interesting in view of

recent findings by Busse (1970). Although Nickel's energy source lacks an

explicit physical mechanism, his energetics are self-consistent.

Magnetic Braking

According to Starr and Gilman (1965b), horizontal eddy Maxwell



(magnetic) stresses might oppose the action of the horizontal eddy

Reynolds stresses on the differential rotation. Such magnetic braking

could occur if the large scale horizontal magnetic streamline pattern

were tilted systematically in the same sense as Nickel's (1966) velocity

streamline pattern. The line of sight contours on mean synoptic magnetic

charts do tilt this way. Prom Lhese charts, Starr and Gilman (1965b)

have inferred that the horizontal eddy Maxwell stresses could be about

25% as strong as the Reynolds stresses. An RMS value of roughly 7 gauss

for the horizontal eddy magnetic field would suffice at photospheric

levels (150 gauss at r=0.98 R 0 ), assuming similar correlation coeffic!-

ients for the Maxwell and Reynolds stresses.

Of course, there is no guarantee that charts of horizontal

magnetic field patterns resemble the contours on mean synoptic magnetic

charts. After all, the functional relationship between the line of

sight component and the radial, meridional, and zonal magnetic field com-

ponents depends upon the disk coordinates of the original magnetograph

measurements, 8... But suppose the large scale photospheric field were

shown to pass' a known consistency check for approximately horizontally

nondivergent vectors. Then the magnetic stream function (analogous

to ~y ) could probably be estimated by the method of characteristics.

In this case, one could obtain a better estimate of'magnetic braking by

horizontal eddy Maxwell stresses.

The line of sight magnetic field is approximately radial near the
disk center, zonal near the east and west limbs, and meridional near the
poles. Inclination of the plane of the ecliptic to the solar equatorial
plane adds complications.
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Convective Energy Source

As already implied, a convectively unstable lapse rate in a

portion of the sun is predicted by stellar models and suggested from ob-

servations of cellular patterns of various sizes. It is capable of local-

ly generating convective motions, some of which penetrate into the visible

photosphere. The effects of rotation and possibly spherical geometry

could be important in solar convection. For a sphere of Boussinesq

fluid containing an axisymmetric distribution of heat sources, Roberts,

(1968) linear theory predicts that asymmetric dnvective modes are the

most unstable except for the smallest Taylor numbers. Asymmetric motions

also tend to occur in rotating dishpan experiments or numerical simula-

tions of them. An implication is that asymmetric motions may be charac-

teristic of (rapidly) rotating fluids whether the motions are convectively

or baroclinically driven.

Very recently, some important theoretical work relating to the

maintenance of the differential rotation by convective motions has been

carried out by Busse (1970) and Davies-Jones (1969). Busse solved the

Benard convection problem with dissipation, heat conduction, and rotation

for a spherical shell of Boussinesq fluid. The nondimensional variables

and Rayleigh number were expanded in terms of two small parameters E

and \ which are measures of convection amplitude and rotation, respec-

tively. The mean temperature gradient was a linear function of radius.

Unlike the nonrotating case, oscillatory convection set in at

the onset, when rotation was present. The convective waves propagated in

the opposite direction, as the rotation,and the dispersion relationship



was rather like the one for conventional Rossby waves on a sphere. The

most unstable mode corresponded to the spherical harmonic ) Y y (y

was the most successful energy source mode in Nickel's modified barotro-

pic model As in previous investigations, rotation inhibited the onset

of convection in Busse's model. The known solutions of &(E.) entered

into the nonlinear terms of the equations. A very important

result was that the a(C 2) nonlinear terms generated a vertically

averaged differential rotation. We do not know if the differential

rotation was positive at all heights, however,

Although Busse claimed his results 9hould carry over for

large ?B , corresponding to the solar case, he did not prove this. Also

he did not give the ratio of horizontal to vertical scale of the unstable

modes for the spherical geometry. But he seemed to have in mind very

large scale modes corresponding to the postulated supersupergranulation.

As Busse recognized himself, compressibility should really be included

for such modes since the 'ertical scale is O (lo-' / ) . Despite the

above shortcomings, Busse's theory must be considered as a plausible,

self-consistent explanation of the differential rotation. It would be

interesting to see of course, if large amplitude eddy angular momentum

transports by supersupergranules could establish and maintain the sun's

differential rotation.

Davies-Jones (1969) considered the effects of linear horizon-

tal velocity shear and uniform rotation separately and together upon con-

vection in an infinitely long channel. The treatment was simpler mathema-

tically than Busse's, due largely to the cartesian geometry, The mean

-40-
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temperature structure was characterized by a constant unstable lapse rate.

Generally speaking, the fluid was assumed ideal. But for the case of

linear horizontal shear, a fluid with frictional dissipation and finite

thermal conductivity was also studied. In the ideal fluid case, attention

was focused on the lowest latitudinal modes because they interact most

strongly with the shear flow, although they had the lowest growth rates.

But the largest scale modes could be made the most unstable in a real

fluid.

The closest analogue to Busse's model was the case of rota-

tion with no shear. However the fluid was ideal, had side boundaries,

and no P effect. Davies-Jones found that the eddy Reynolds stress could

have the same sign throughout the channel. Moreover, among various un-

stable modes including those having the same latitudinal and longitudinal

wave numbers and growth rates not fast compared to the rotation period,

the Reynolds stress and rotation had opposite signs. These modes do not

exactly correspond to the Yt modes of Busse, except for I =1.

With no rotation, the convection interacted with the shear in

an ideal fluid as follows: (a) For latitudinal mode 0, disturbances with

all 16ngitudinal wave numbers gave up energy to the mean flow. For

latitudinal modes 1 and 2, the shorter wavelength disturbances also de-

livered energy to the mean flow while the longer wavelengths extracted

energy from it.

With rotation and shear, up the gradient momentum transport

could still occur. For example, if the rotation and shear had opposite

signs, such a transport was.accomplished by waves whose ratios of longitu-

• • • 8
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dinal to latitudinal wave number 9 and rotation rate to growth rate were

not small. Conversely, axisymmetric cells transported momentum down the

gradient. Increasing the rotation rate served to decrease the growth

rate of latitudinal mode 1 type disturbances and make the horizontal

flow more parallel to the isobars. The latter effect is reminiscent of

geostrophic flow.

The results of Davis-Jones indicate that the dynamical effects

of sphericity, more specifically the P effect is not crucial for up

gradient m6mentum transports. The validity of an extrapolation for con-

ditions in the sun is not fully established. Regarding the channel as an

anrnulus, the outer rim is a kinematically rigid side wall boundary. The

region adjacent to the outer rim would correspond to the solar equatorial

region. But the latter presumably plays a role in the equatorial acceler-

ation and is not flanked by any side boundaries. On the other hand,

Davies-Jones work does lend plausibility to a convective theory of the

differential rotation.

Baroclinic Energy Source Reconsidered

Whether of symmetric or asymmetric origin, a baroclinic theory

in its simplest form requires the existence of a large scale meridional

temperature gradient in a convectively stable layer. The only relevant

temperature measurements available are in the surface layers. But their

uncertainty is so great that at best they give an estimate of the upper

bound of horizontal temperature difterences. Although the surface layers

9
The result applies basically to latitudinal mode 1. Higher modes

were not discussed.
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are convectively stable, the radiation relaxation time based upon photo-

spheric opacity estimates (Allen, 196.3) is only of the order of minutes.

Radiation processes would attempt to destroy slowly varying large scale,

horizontal photospheric temperature differences.

No observations are available of course, inside the convection

zone say at r=0.98Re . Stellar evolution models now in use preclude hor-

izontal temperature differences anywhere, as all variables depend by

assumption only upon radius. They also do not permit subadiabatic lapse

rates to be imbedded in the middle of the convective zone, although the

positive departure from adiabatic can be made small there. On the other

hand, such models do provide estimates of the opacity in the convective

zone. From these, one may infer radiative relaxation times > &(10 years)

at r= 0.98R e , a very tolerable value. This radiative relaxation is less

of an obstacle at that depth for baroclinic theories. But can a large

scale meridional temperature gradient be imbedded inside a "stable" layer

of the convective zone? Gilman (1967, 1969) was the first to argue that

this could be a plausible condition based upon the work of Veronis (1966)

and Gille (1967). We shall now elaborate on these arguments.

Veronis's (1966) numerical-spectral model of two dimensional,

nonlinear, asymmetric Benard convection in a nonrotating fluid with

stress-free boundaries is relevant here. The initial lapse rate was

linear and unstable, and the system of equations ultimately approached a

steady state. The final lapse rate was slightly stable over much of the

region away from the top and bottom boundaries and very unstable near

them in many instances. More specifically, this behavior occurred over



the wide range of Prandtl numbers tried, and for Rayleigh numbers of

order 10 times the critical value. The overshooting did not occur for

low supercritical Rayleigh numbers and was confined to small boundary-

interior transition regions for very high supercritical Rayleigh numbers.

Temperature reversals in boundary-interior regions were also reported by

Herring (19(4). Likewise, Deardorff (1965) obtained a slight reversal for

a Rayleigh number of 6.75 x 105. For small Prandtl numbers, Veronis argu-

ed that a region of stable stratification for a fully turbulent fluid

with three.dimensional motions should not exist. He was not sure what

to expect for larger Prandtl numbers.

On the experimental end, temperature reversals had been ob-

served to be present prior to 1967, but were either not recognized as

significant or else were regarded as spurious. By means of an inter-'

ferometric technique, Gille (1967) successfully measured in a laboratory

model the horizontally averaged 19bse rate at 20 levels of air between

two plates roughly 2 cm apart. The differential heating between the

plates corresponded to a superadiabatic lapse rate. As the ratiu of

actual to critical Rayleigh number increased, the mean temperature pro-

file became steeper near the boundaries and more nearly adiabatic

away from them. Finally, at a ratio of 16, the mean temperature profile

was subadiabatic by roughly 1 part in 100 in about the middle third of

the air layer. Gille attributed Deardoff's failure to observe a temper-

6
ature reversal experimentally to the Rayleigh number (1,5-x 106) being

slightly too high, i.e. being characteristic of the fully turbulent

regime. Estimates of the Rayleigh number for solar convection could vary

over several orders of magnitude. But adopting Lx/lD /3 /2/ ec, as the
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-4
eddy viscosity and eddy thermal conductivity, 10-4 as the mean positive

departure from adiabatic of the lapse rates, and 1010 cm as the depth,

thei the Rayleigh number is 00o. Thus a region of subadiabatic lapse

rate in the solar convection zone is plausible. Buoyant convective

elements could penetrate into the overlying unstable layer thereby

transporting heat upwards through the stable layer, i.e. up the potential

temperature gradient (refrigerator effect).

Secondly, would a meridional temperature gradient be possible

within the convection zone? Now in Weiss's (1964) cellular model of con-

vection, the superadiabatic lapse rate depends among other things upon

whether the rotation and gravity vectors are (1) parallel or (2) mutually

perpendicular. If the respective vertical heat fluxes F(1)and F(2) were

equal, then the lapse rate for case (1) would be steeper by 4 x 10 °K/cm.

As noted by Roxburgh (1967) this could imply a 3000 horizontal tempera-

ture difference near the top of the solar convection zone, the pole being

colder. If F(2) - F(1) were gradually increased from zero, this temper-

ature difference would first decrease and ultimately change sign. A

latitude-varying heat flux at certain levels might be related to the in-

hibiting effects of rotation upon convection noted by Chrandrasekhar (1953),

Busse (1970) and others. In particular, Busse's most unstable mode (for

marginally unstable convoction) is proportional to cos t and hence dies

off rapidly near the poles. Does this mean that the.vertical heat flux

would be inhibited near the poles within the convection zone? If so, a

vertical convergence of heat would occur in polar regions, assuming the

vertical heat flux at the radiative core-convection zone interface were

radially symmetric. Horizontal heat transports towards the equator and a
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relatively warm pole might then develop at certain levels. The warm pole

could radiate more strongly, without complete compensation for the reduc-

ed vertical convective heat flux.

In the above scheme, energy generated in the thermonuclear

core and transported upwards would first be -transformed into convection

energy. A small fraction of the latter would then be converted to avail-

able potential energy which could be- released baroclinically.

Nickel (1966, 1969) estimated the rate of kinetic energy

released by granulation and available potential energy released from

baroclinic processes, comparing them to his required source mode energy

input. Although the granulation released energy at a much more rapid

rate than required, probably only a small fraction would cascade up and

be available to modes of source mode size. There was a marginally Adequate

amount of available potential energy, for a horizontal temperature dif-

ference of 1000 K.

Judging from results of Busse (1970) mentioned earlier, rota-

tion has similar dynamical effects upon large scale convective waves and

conventional'Rossby waves despite their different sources of energy.

These two types of waves could possibly even coexist. If so, an intrigu-

ing question is whether both or just one type would deliver energy to the

solar differential rotation. Ward (1964) suggested that the solar atmos-

phere has a Rossby regime ( in the general sense) as opposed to a sym-

metric regime. Given the observed mean solar rotation, a pole to se~tor

temperature difference of 1000 K, and a Reynolds ,umber of -5(10), a

Rossby regime could exist in the solar atmo :, (see Chapter VI),

Recently, Davies-Jones a, J4;iiman (1970) have evaluated hor-



izontal and vertical heat transports as well as other second order quanti-

ties for Davies-Jones's (1969) model. The effect upon the Oth order

temperature structure was then computed. The upper (lower) half of the

fluid was warmed (cooled) by vertical heat transports, at both high and

low Prandtl number. In contrast, a significant Oth order horizontal

temperature gradient was set up by horizontal heat transports at low

Prandtl number only. As the model was linear,these computations were

made at slightly supercritical Rayleigh number. A nonlinear numerical

study of large scale convection in a rotating fluid having a moderately

high supercritical Rayleigh number would be valuable. It might answer

the question: Can a significant horizontal temperature gradient 'exist

in a stably stratified layer within a convection zone?

If magnetic fields are present, baroclinic instability can

still occur (Gilman, 1967), provided the ratio of inertial to magnetic

forces is not small. But there are complications. In particular, the

question arises to what extent the magnetic fields would modify the

time-averaged differential rotation. (S.e Chapter V 1,

1.4,Theories of Magnetic Fields.

A fundamental question is how the solar magnetic fields are

maintained. According to Mestel (1967) the three most popular classes

of stellar magnetism theories are (a) primeval theories, (b) battery

theories, and (c) dynamo theories.

Cowling (1957a) gave molecular magnetic diffusivity estimates

82 22
of 10 cm /sec and 10 cm /sec for the photosphere and radiative core, re-

spectively. On the other hand, the magnetic diffusivity outside the

radiative core should probably be characterized by a much larger eddy
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coefficient. (S3e Elsasser (1956) and Leighton (1964)). Eddy decay times

are just too short for the observed solar magnetic field to be a remnant

of some primeval photospheric field. Moreover, polarity reversals are dif-

ficult to reconcile with a theory based upon primeval fields in the radi-

ative core.

The so-called battery term, i.e. the last term in equation

(2-2) could convert thermal energy directly into magnetic energy. A

qualitative description of a battery process was given in Mestel's (1967)

review article. Consider a fluid in which axisymmetric conditions pre-

vail and the' ressure gradient is balanced by gravitational and centri-

fugal forces. If the rotation rate is uniform or a function only- of

distance from the rotation axis, no currents ard generated. But for a

more complicated rotation, the fluid is baroclinic and the battery term

has a nonvanishing curl. This provides an EMF which generates an

axisymmetric toroidal (zonal) magnetic field associated with currents

in meridional planes. Neither asymmetries nor any fluid motions relative

to the basic rotation are required.

1.4.1. Fluid Dynamos

Another possibility is that fluid motions could maintain

finite amplitude magnetic fields and associated currents indefinitely,

through induction, against ohmic dissipation. Such a fluid system may be

loosely termed a (self-sustaining) fluid dynamo. Dynamo action could

generate large magnetic fields from a small, seed magnetic field origin-

ally created by the battery process.

Two subclasses of fluid dynamo problems are the kinematic and

0 W . 4
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hydromagnetic types. For a kinematic dynamo, the problem is to find a

magnetic field 8 given the velocity field V . The magnetic induction equa-

tion (3-36) is linear in 8 . For hydromagnetic dynamos, the feedback of

the Lorentz force upon the motion is taken into account. In addition, the

problem is nonlinear in both V and 1 . If frictional dissipation is pre-

sent, the Lorentz force cannot indefinitely maintain motions so that a new

energy source, e.g. thermal energy is required. But induction is still

assumed to be the only source of magnetic energy. In a homogeneous fluid

dynamo, the fluid has homogeneous density. The homogeneous kinematic

fluid dynamo is the simplest and most often treated case. In a reversing

dynamo, the polarity of the magneiic field oscillates with time. Geophys-

ical or astrophysical dynamo models usually have simply connected, e.g.

spherical, geometry and frequently contain exterior current free regions.

For a long time, there was considerable controversy whether a homogeneous

fluid dynamo could exist. In fact, several anti-dynamo theorems were

proved before any existence proofs were constructed. Historically, the

idea of a steady state dynamo seemed rather intriguing.

The rotating disk dynamo is an example of a successful labora-

tory dynamo constructed from rigid moving parts. In contrast, there are

no successful experimental fluid dynamos, to our knowledge. The dimen-

sions of electrically conducting fluids in the laboratory are so small

that magnetic induction evidently cannot overcome ohmic dissipation.

Anti-Dynamo Theorms

Cowling (1934) showed that magnetic fields cannot be maintain-

ed under steady state, axisymmetric conditions with the magnetic and vel-

ocity fields confined to meridional planes. Backus and Chrandrasekhar
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(1956) proved that Cowling's ttieorem still holds even if the magnetic and

and velocity fields are not confined to meridional planes. Braginskii

(1964) showed rather elegantly that no axisymmetric dynamo exists, even

if conditions are unsteady.

Another theorem states that dynamo maintenance is impossible

if the velocity field is toroidal, i.e. can be expressed in terms of a

horizontal stream function alone. Utilizing a vector spherical harmonic

representation, Bullard and Gellman (1954) proved this for steady state

conditions. But the proof holds even for unsteady conditions. The

crucial point is that there is no way to regenerate poloidal from toroidal

magnetic fields without poloidal motions. Thus, all magnetic fields

ultimately die out, even if poloidal fields are initially stretched out

into strong toroidal fields.

Finally, a steady state dynamo in which the variables are

functions of only two cartesian coordinates cannot exist. Cowling

(1957b) devised a general technique to prove this anti-dynamo theorem and

the others in which steady state conditions were assumed.

Analytic Dynamos

The Backus (1958) existence proof applies to a spherical non-

steady, asymmetric, three dimensional, homogeneous fluid dynamo. Both

poloidal and toroidal fluid motions and magnetic fields are allowed. The

energy source which drives the motions is apparently not specified. The

only restrictions on the velocity are that it be solenoidal, be bounded,

be continuously differentiable everywhere for all time, and vanish on the

outer surface.

The actual motions which maintain the dynamo are somewhat

S % . .
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peculiar in that there are time intervals when stasis occurs, i.e. the

fluid Is at rest. Backus's motions cannot be identified with convection

cells or Rossby waves. But Backus (1958) claims that "the magnetic effect

of any motion can be approximated with arbitrary accuracy by replacing it

by a series of rapid jerks interspersed with periods of rest." The

dynamo works as follows. Initally, a strong axisymmetric shear flow

converts an axisymmetric poloidal (dipole) field of unit energy into a

strong axisymmetric toroidal field. Some contamination fields are also

present. By shutting off the motion, the small contamination fields de-

cay more rapidly, leaving mostly the axisymretric toroidal field. By

switching on asymmetric poloidal motions for a short time, the axisym-

metric toroidal field are converted to the original dipole field-plus

other unwanted cotmponents. The latter fields decay faster than the di-

pole field when the motion is switched off again. To the extent the

original starting point is reached, the process is periodic. Notice that

the desired main field is a pure dipole.

The setup for the Herzenberg (1958) dynamo model consists of

two rapidly rotating electrically conducting, rigid spheres of radius "a"

imbedded in a stationary conducting fluid medium. Their centers are sep-

arated by a distance R > a. While each sphere rotates at the same angu-

lar velocity, their respective rotation axes are oriented in different

directions. The magnetic Reynolds number is R, >> and a steady state is

quickly attained.

The dynamo works on the following principle. A magnetic field

is created by mutual induction in the first sphere. The rotation of the

second sphere acts upon this field to generate a second magnetic field

% " 4
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component. Likewise, the rotation of the first sphere acts on the latter

magnetic field to produce the original magnetic field. Energy must of

course be supplied externally to keep the spheres rotating at the desired

rate. For the dynamo to work, both spheres must rotate in the same sense

about their respective axes.

Mathematically, a set of homogeneous equations are solved for

which the magnetic Reynolds number is an eigenvalue. There is the

possibility of R. being small but imaginary, which is unphysical. Vari-

ous remedies exist to guarantee that R be positive, such as surrounding

the two spheres at a large distance from them with an insulator. The

theory predicts a value of ,,=24.5 if the rotation axes of the two spheres

form a 900 angle and both axes are also inclined at 45o to the line join-

ing the centers of the two spheres.

The Herzenberg (1958) dynamo model is not a good analogue to

the sun of course. One of its virtues is that the theory is mathematically

rigorous. Also, Lowes and Wilkinson (1967) have demonstrated experimental-

ly that a Herzenberg-like dynamo works even if Rm and A/R are not large.

A very important analytic study of homogeneous kinematic

dynamos has been carried out by Braginskii (1964). Some of his basic

ideas were foreshadowed by Parker (1955bl. But Parker's dynamo was par-

tially based upon heuristic arguments and lacked a completely self-con-

sistent expansion scheme (P.H. Roberts, 1967).

In Braginskii's (1964) theory, the velocity is assumed to have

the form V = 4Vo> + , >. Here <yo> is the axisymmetric toroidal

(zonal) velocity, is the total eddy velocity of 7( ~ ),
(zonal) velocity, .. ~ is the total eddy velocity of B'( ~_ ),R
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and <~ is the zonally averaged poloidal velocity of (( (V,)/?R M ).

The symbol Rm is the magnetic Reynolds number and <V,>is the magnitude of

< ,, etc. Similarly, fi<_.+(80- D where (8> is the zonally

averaged toroidal magnetic field, _ is the total eddy magnetic field of

((18.> RF, /0) , and ( 9 is the zonally averaged poloidal field

-I

of CY((8.>M ) . The Braginskii theory is valid in the asymptotic

limit as R m -o . Clearly, the axisymmetric toroidal velocity and

magnetic fields are much larger than corresponding poloidal fields and

asymmetric fields in this- limit.

Braginskii considers the induction of poloidal magnetic fields

<3LX using the A component equation for the magnetic vector potential

AA

< 4> , where curl(<>A).<)>, (Az.=(< A> , and A is a unit

azimuthal vector. The induction equation for (<8) is retained. Secondly,

Braginskii introduces "effective quantities" (Aa)e and (<V>e into the

equations mentioned above. They reduce to <A2> and ( Vz for the axisym-

metric case.

Following this procedure, the zonally averaged (8<> induction

equation has the same form in cylindrical coordinates for both the axisym-

metric and asymmetric cases. This is also true of the zonally averaged

<Ai1e induction equation with one crucial exception. There is a new

term containing asymmetric effects, i.e. the generation term (~=G

which depends upon eddy correlations involving functions of .' and - .

Braginskii shows that <F,= <e3 =O, while <(,)= a <*0 , where

r2/ does not vanish. This result is consistent with the

diffusive time scaling and the scaling for (Az). Now 1j can be expressed

as a function of C S and S S of the spectral expansion



<v - >V C ~+ S Sin MA for the poloidal part {P of the

asymmetric velocity ./ This follows from the relation - - 8> Vif,

for the first order asymmetric poloidal magnetic field and a more com-

plicated expression for 0 in terms of functions of <V> and .

Carrying out the expansion to the next highest order in n , the

11
equations quite remarkably retain the same form (Tough and Gibson, 1969)..

The only modifications are that E is replaced -by [~+ and the "effec-

tive quantities" are more complicated.

The generation term(EO) is crucial to the net production of

axisymmetric poloidal fields <(>. The following conditions must be met

if [z and <(> are not to vanish. First, neither the zonally asymmetric

poloidal velocity s nor the asymmetric poloidal magnetic field

+ B may vanish. From the formulae for (<) and r_ (plus V
2 ? V

.and -g ), <10>O and <Y(Vo>O as well. Second, the phases of at

P

nonuniform, ie. _C,, m 0 for some value of m.

In turn, the_ <Bt fields are twisted into axisymmetric

.toroidal fields 8 ) . This link is vital to the dynamo process, due to
-o

the explicit dependence of (<8~ upon (8 . But twisting cannot occur

if a Ferraro's law type of configuration is present, i.e. if the surfaces

of constant W0(Z and (V,/ coincide, where C is the cylindrical radius.

The boundary layers -in the Braginskii kinematic dynamo theory

are passive, i.e. the interior solution can be obtained without reference

11
They even speculate that this could be true for expansions of

arbitrarily high order in R I n/
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to the boundary.layer solution, However the boundary layer is as impor-

tant a source of induction as the interior.

Braginskii (1964) and Tough and Gibson (1969) actually ob-

tained kinematic dynamo solutions. The geometry was cylindrical and the

specified velocity field steady, whereas the solution for the magnetic

field was time variable. This does not prove that a hydromagnetic fluid

dynamo with a steady velocity field is possible,

The Braginskii theory illustrates quite elegantly the nec-

essary conditions for dynamo maintenance. It is perhaps noteworthy that

poloidal velocity eddies and large scale toroidal magnetic fields are

common to the Backus (1958) and Braginskii (1964) dynamos. Although the

latter is probably more realistic for solar applications, since it re-

quires no jerky motions, it is not conducive to solar magnetic reversals,

as noted by P.H. Roberts (1967). He speculates that magnetic reversals

might be restricted to hydromagnetic type dynamos.

Irregular magnetic reversals are predicted by Rikitake's

(1958) relatively simple double disk (hydromagnetic) dynamo theory. Of

course, the conducting medium is not a fluid. But the electromagnetic

feedback upon the angular velocities of the rotors is apparently crucial

to the reversal process.

As a final example of analytical dynamo work, Childress (1969)

examines a general class of time-dependent hydromagnetic dynamos. He

expands variables in powers of a small parameter , (instead'of R /

where S is the ratio of the characteristic small to large length scales.

Large scale effects and the.spacial average of small scale effects are in-
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cluded in the magnetic induction equation. However the magnetic body

forces in the momentum equation are of only the latter type.

Numerical Dynamos

The numerical study of Bullard and Gellman (1954) is rather'

well known. Their model applies to a homogeneous, kinematic, steady state

(and hence nonreversing) dynamo. -The geometry is spherical and the fluid

is surrounded by an exterior insulating region. A spherical harmonic

spectral representation with radially dependent spectral coefficients is

employed.

Bullard and Gellman's velocity is specified by the toroidal

harmonicl2 T e- EK or -ErYIt-r) and a poloidal harmonic such as

Sz = r (r-r) for the nondimensional radius r, O- " / .

ole
The 1 eo harmonic represents an axisymmetric angular velocity which varies

with radius only and whose mean is E/z or E//O. Also, the S ¢ harmonic

simulates convective eddies and E measures the ratio of the toroidal flow

to the poloidal eddies.

Equations in the spectral domain are obtained from the ortho-

gonality relations on the sphere of ordinary spherical harmonics, toroidal

12
vector spherical harmonics, and poloidal vector spherical harmonics.

Having computed the required Gaunt and Elsasser interaction integrals,

Bullard and Gellman (1954) evaluate various nonlinear products. If /~ /

and C are spectral coefficients and I 1 is an interaction integral,

then a typical nonlinear product has the form Cd~C bA Ax

Fortunately most of the orp S vanish according to the "selection rules",

12 Poloidal vectors, toroidal vectors, and vector spherical harmonics
are all defined in Appendix A.
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These include low order orthogonal truncation, in which only a small

number of harmonics are retained.

In the computations, the radial dependence of spectral coef-

ficients is approximated numerically. The problem is then to determine

the eigenvalue R, for which solutionscan exist. A dynamo solution

appears to be physically plausible because positive real values of R, canm

be found. For a particular level of truncation, i.e. nM+-5Z the following

interactions in the dynamo are most important; (i) An axisymmetric dipole

magnetic field is-twisted by the axisymmetric toroidal velocity field

T; into an axisymmetric toroidal magnetic field 7To antisymmetric about

the equator. (ii) The 7o magnetic field interacts with the eddy convection

mode S to produce an eddy toroidal magnetic field T, . (iii) In turn,

the T ' magnetic field and the 7 motion interact to produce another

eddy toroidal magnetic field T . (iv) To complete the cycle, the 7 z 1

magnetic field and S motion interact to produce S, magnetic fields.

This closed cycle has the schematic representation
o t0 LO xC

The double arrow between and indicates sufficient back coupling

occurs to reduce dynamo action unless Rm is increased significantly. With

JT i) : 3 , more closed loops are possible including the chain

C S-. Also the external magnetic

field has opposite signs for the two cases Y +92 VS. y7l-f n~3

(Bullard and Gellman, 1954).

A controversial question is whether they obtained a true numer-

ical dynamo solution. To a purist, a dynamo solution is convincing only

if it remains essentially unchanged, beyond some level of truncatio4. Now
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Bullard and Gellman (1954) retained the first q interactions starting

0 2,C o
with 7 and S harmonics for V and an S harmonic for - . They

2 L
let q= 4, 7, and 12, ie, retained all spherical harmonics up to Yz ,

and Y) respectively. The dynamo seemed convincing to many people at

first because Rm did not vary much.

However, a more systematic investigation.by Gibson, Roberts,

and Scott (1969) of the effect of the level of truncation upon R proved

more discouraging. They let q= 4,5,7,8,10,12,13,15, and 17 so that

spherical harmonics of degree up to Mvni=' were retained for the

cases q=15 and q=17. Unfortunately, whereas R (q) was bounded by

63 R 75 for the cases q=4,5,7,8,10,12 and 13, Rm(q=15)-./ l

and R (q=17)-139, suggesting no convergence. Now perhaps R (q) would
m m

begin to converge at higher values of q. But if the above trend continu-

ed, then with an infinite number of harmonics, dynamo action might not be

possible for a finite value.of R , They also found incidentally that
m

convergence to the model solution R (q) required gteater vertical resolu-m

tion as q and hence the.horizontal resolution increased.

The Bullard and Gellman (1954) dynamo has been criticized on

other grounds also, Their dynamo may be compared to the Braginskii

dynamo for the asymptotic limits E-- Io, R, - po and /iF./ -

finite limit (P.H.1Roberts, 1967). Although the Bullard and Gellman dynamo

violates the hypotheses of the so-called anti--dynamos and even has an

asymmetric poloidal velocity ',p , the phase of Y, is uniform (SzO).

Hence =z =0 and in fact, r -O 3-

Another steady state numerical spherical dynamo investigation

was carried out by Stevenson and Wolfsoa (1966). The levels of horizon-
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tal and vertical .low order resolution were comparable. Spherical harmon-

ics and Bessel functions were the expansion functions for the spectral

representations tangent to and normal to the sphere, respectively. The

most significant departures from the Bullard and Gellman study are (1)

the dynamo was of the hydromagnetic type (2) a thermodynamics equation was

added, and (3) the ultimate energy source for the system was a volume

distribution of heat sources; Unfortunately their only physically mean-

ingful solutions, i.e. with positive joule heating, were axisymmetric and

thus incapable of dynamo action. This result has obvious implications for

the Bullard and Gellman (1954) dynamo too. In the final analysis, some

physical mechanism is needed to generate and hence justify large scale

steady, but asymmetric motions.

1.4.2. Maintenance of the observed solar magnetic field

Several theories have been proposed to explain the maintenance

of large scale solar magnetic fields and/or aspects of the sunspot cycle.

Generally speaking, they borrow elements from dynamo theories described

heretofore, but are less rigorous.

A classic example is Babcock's (1961) ti-eory. Initially the

large scale magnetic field B is axisymmetric and poloidal and is confined

to the region rif(.). In fact S is a pure dipole, although the large

scale poloidal magnetic field on the sun is more complex, as noted pre-

viously.

Now the "Babcock term" 4 -m )< o>rcoScp in the magnetic

induction equation twists the poloidal field< i into an axisymmetric

toroidal field (~ .13 From the shape of the observed differential rota-

13 cf. with Bullard and Gellman (1954) and Braginskii (1964).

1



-60-

tion <43Q is antisymmetric about the equator, with <8G >> in

the northern hemisphere. The toroidal field amplifies linearly with

time and with 4(Sin l) for t0 3100 , extracting energy from the

differential rotation. Also, the stronger the differential rotation,

the more rapidly the amplification process proceeds.

Next, strands of amplifying toroidal magnetic field are

twisted locally into ropes, enhancing the local field intensity by up to

a factor of 10. If the large scale toroidal field reaches the critical

intensity of B C LZ~ gauss at a given latitude L &'4 . 300

then the flux ropes can form loops. These loops are supposed to rise due

14
to magnetic buoyancy ,emerging at the surface as bipolar magnetic

regions (BMR's) or as sunspots (imbedded inside BMR's). The convective

motions which carry flux loops upward are asymmetric and poloidal.

Babcock's formula for the critical latitude as a function of time agrees

rather Well with the observed equatorward migration of sunspot activity

zones. Sunspots and BMR's form randomly for some time after the critical

field intensity is attained. The net toroidal field intensity begins

to decay after enough magnetic flux Toops rise to the surface, and decay

even more when toroidaf fields of opposite signs are produced somewhat

later.

A rising loop of magnetic flux has a positive and a negative

polarity branch which may be identified with two sunspots of opposite

1 4Parker (1951a) considered a local parcel of ideal gas containing
magnetic flux. If t..e parcel had the same temperature and total (i.e. gas
plus magnetic) pressure as its flux-free surroundings, its density was less.
On the other hand, if such a parcel were cooler than its surroundings, its
buoyancy would be less positive or perhaps even negative.
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polarity. By definition, the 1 spot of a group is closer to the equator

while the f spot is farther away. In the northern hemisphere-, a loop is

tilted relative to a meridian such that the 1 spot has the same polarity

and the f spot the opposite polarity as the original poloidal field. As

noted by Leighton (1964), the observed tilts of sunspot group axes are

much larger however, than predicted by Babcock's theory. In any case,

p spots or f spots have opposite polarities in the two hemispheres, be-

cause the corresponding tilts of flux loops are mirror images about a

meridian.

In the final phase of the cycle, axisymmetric, meridional

currents at middle latitudes could. transport f spot fields (or follower

portions of BMR's) poleward to first neutralize and then reverse the

poloidal field. Similarly, equatorward currents at low latitudes could

help promote cancelation of p spots (or corresponding leader portions

of BMR's) from the two hemispheres. The amount of ohmic dissipation

would govern the time interval for achieving a polarity reversal. Since

much more flux is available than required, considerable dissipation is

evidently present. Of course, axisymmetric meridional motions have not

been conclusively observed.

After another cycle, the original dipole field is retrieved.

During the double cycle, the direction of the horizontal magnetic field

rotates counterclockwise (clockwise) in the northern (southern) hemisphere.

Although Babcock's (1961) arguments are quite heuristic., he

stimulated considerable further -research. His ideas on the role of the

differential rotation in converting poloidal into toroidal magnetic fields

and on the meridional transport of magnetic fields have been incorporated,

% W . I



generalized, or modified in more sophisticated models.

For example, Leighton (1964) accepts Babcock's idea that the

reversal of the dipole field results from migrations of f spot magnetic

fields towards the poles and 'P spot fields towards the equator. But he

proposes a new mechanism to achieve this. In effect, he solves the ver-

tical component magnetic induction equation (3-38c), retaining only the

horizontal dissipation term I t'B for a thin spherical shell. In

this expression, O is the vertical magnetic field and V9' theLaplacian

operator on a spherical surface. Also, -B7 ) is an eddy coef-
-I

ficient of ohmic dissipation, where L S is the radius and 7~G the re-

ciprocal life time of a supergranule. The characteristic decay time is

o 7 ~ /  ('(20 years).

Leighton (1964) argues heuristically that supergranules are

good dispersing agents assuming their quasi-horizontal motions are well

coupled with the magnetic fields in the heart of the convection zone. He

cites the preferred location of strong magnetic fields at supergranular

cell boundaries found by ~Simon.and Leighton (1964) as evidence of such

coupling.

As his most complicated example, Leighton considers the dis-

persal of a time-latitude dependent distribution of ring doublet magnetic

field sources. These are supposed to simulate the longitudinally averaged

sunspot distribution. At time t=3 years, the polarity reverses within the

250 to 400 latitude belt of both hemispheres, creating an octopole magnetic

field configuration. The region of reversed polarity.expands towards both

the equator and the pole. This occurs even if only an instantaneous, lo-

calized doublet source is specified, suggesting that the tilt of a sunspot

-62-
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group axis or doublet source.plays a key role here. In the continuous

source distribution case, the equatorward expansion of the reversed polar-

ity region is also aided by the equatorward movement of the sources. In

any case, the ratio of decay times of the octapole over dipole moments is

only 1/6 and by time t=ll years, a new dipole field of reversed polarity

is established. The neutral line closer to the pole progresses poleward

at a rate comparable to the observed migration of quiescent prominences

(filaments) which are thought to lie along the neutral line. Advection of

magnetic fields by the average differential rotation does not affect their

northward or southward migration. The differential rotation does deform

expanding regions however. The fields at high latitudes would be elongated

and hence weakened the most.

In a more elaborate model, Leighton (1969) tries to simulate the

entire sunspot cycle. Poloidal magnetic fields are twisted into toroidal

fields by an angular velocity profile that varies with latitude and depth.

When the toroidal field 8A reaches a preassigned critical value 8c , a

source eruption term for a ring doublet vertical magnetic field is switched

on. No twisting of toroidal fields into magnetic ropes is required. Two

important parameters in the source term are the time constant T. for

eruptions of toroidal flux tubes and a parameter F which measures the tilt

of the doublet moment. There is a corresponding sink term in the equation

for toroidal fields. As in Leighton's arlier model, ohmic dissipation

on the supergranule scale leads to a polarity reversal of the 8 fields

formed by eruptions. The meridional magnetic field component B is ob-

tained from magnetic continuity.

S 0 . .0
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Besides ,7 and F, the model effectively contains three other

pa'rameters, i.e. o~ (3 and n . These permit various angular velocity

profiles of the form 43 cos)R to be tested. In

this formula, <(Ce) is the observed surface differential rotation relative

to the polar rate, H is the depth of the layer, and the radial coordinate

Ssatisfies the inequality /1?-HS t3- , . As ri is increased, flux

eruptions occur closer to the equator. Therefore it takes more time for

the polarity reversal to reach the pole. For fixed ae, /3 and Y7 ,

Leighton could usually adjust F and 71 to obtain t 22 yeardouble cycle.

Large values of F are undesirable as they would imply too great a tilt.

Conversely, if F does not exceed a minimum value, an oscillatory solution

is not possible.

The most realistic results are achieved for the case oC 0)

z /0/, and r g~ ,..corresponding to a J4/'ed< b type profile with the

sharpest drop off near the equator. With .oo/000o / :-z ,nd ?rZcorres-

ponding to a core-convection zone interface in very rapid solid body rota-

tion, the results are unrealistic. Perhaps the most interesting result is

that the radial variation of at is more crucial than its latitudinal vari-

ation. In particular, the A and hence 3 magnetic field maximum drifts

towards the equator in agreement with the Maunder Butterfly diagram only

if / r<o 0.

The following comments may be made about Leighton' kinematic

model. The conversion of 0A into /3 fields is parameterized by an eruption

term. The true induction equation for I3 is not utilized for this-crucial.

link. Also, the parameterization is such that no asymmetric magnetic fields

or poloidal velocity fields explicitly appear. Thus the anti-dynamo
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theorems show that Leighton's model is not a true dynamo. While the ohmic

diffusion mechanism can cause a polarity reversal, other mechanism are

available. These include meridional transports by supersupergranule

(baroclinic) scale eddy motions (Gilman, 1968), and by axisymmetric motions

(Nakagawa and Swarztrauber, 1969). Furthermore, there is no feedback on

the motion.

On the good side, many of Leighton's results agree qualitative-

ly with various known facts concerning magnetic activity on the sun,

whether or not by coincidence. Finally, his work could have implications

for the variation of solar angular velocity with depth.

The work of Nakagawa and Swarztrauber (1969) previously

discussed in a different context is relevant here. Their model has

essentially no feedback on the motion and is incapable of dynamo action

since all variables are axisymmetric. However their stated purpose is

to investigate only how a toroidal field would evolve from an initial

poloidal magnetic field. In contrast to Leighton's (1969) model, the

Nakagawa-Swarztrauber (1969) model utilizes the true magnetic induction

equation and has a meridional circulation. We recall thWt the meridional

cell consists of rising branches at the poles and a descending equatoria-l

branch.

As the law of isorotation holds initially, the meridional

motions must first distort the field lines so that the differential rota-

tion can twist them into toroidal fields. Adopting the Newton and Nunn

(1951) profile for the surface angular velocity, toroidal fields form

initially at L=38o. Near the surface, the toroidal field is negative as

desired and is transported towards the equator by the meridional cell.



-66-

The stronger the ohmic dissipation, the deeper the negative toroidal field

penetrates. Its maximum intensity of 300 gauss ( compared to Leightonts

value of several thousand gauss) occurs at L =25 0 . Farther down, the

toroidal field is positive and is transported poleward.

Now M. and L. d'Azambuja's profile is only slightly different

from New-ton and Nunn's. Yet for the former, the first negative toroidal

fields appear at 430, the maximum toroidal field intensity is under 150

gauss, and after a short equatorward drift, the toroidal fields drift

poleward.

Nskagawa and Swarztrauber (1969) suggest that these divergent

results may correspond to the Maunder butterfly diagram for sunspot migra-

tion and to the law of filaments, respectively. But that seems too much

to expect. Also, they are in error in claiming that their meridional

circulation with a maximum of 200 cm/sec at CA =30 is in close agreement

with Ward's values. Actually at 300, Ward could not obtain a statistically

significant estimate of the axisymmetric meridional velocity. Finally,

we note that their angular velocity is greater at the top than at the

bottom boundary in contrast to LeigAton's most successful profiles.

The extension of Pedlosky's (1964) linearized baroclinic in-

stability analysis to the magnetic case by Gilman (1967) lays the ground-

work for the development of nonlinear baroclinically driven, hydromagnetic

dynamo models. His linearized model is quasi-heliostrophic l5, utilizes

cartesian geometry, and has two layers, But in addition to a latitude-

height dependent zonal wind profile, the basic (axisymmetric) state has

1 5This term is the solar equivalent of quasi-geostrophic.
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a toroidal magnetic field. Gilman shows how the presence of magnetic

fields modifies Pedlosky's growth rates and phase speeds of eddy distur-

bances and his necessary conditions for instability (integral theorems).

Although the fluid is a perfect conductor (as well as invis-

cid), the model lacks two crucial ingredients for sustaining dynamo action,

as recognized by Gilman. These are (1). a generation term for mean square '

poloidal magnetic flux and (2) a feedback of the poloidal field upon the

toroidal magnetic field. These deficiencies are a consequence of the

scaling of the first order terms in a Rossby number expansion. In partic-

ular, the velocity and magnetic fields are both assumed to be horizontally

nondivergent, i.e. to depend upon (toroidal) velocity and magnetic stream

functions alone, to first order.

More recently, Gilman (1968, 1969) has incorporated the two

crucial ingredients for dynamo action mentioned above into a nonlinear,

quasi-heliostrophic two layer hydromagnetic model with baroclinic forcing.

The geometry is cartesian, a low order spectral representation is adopted,

and the spectral equations are integrated numerically in time. The large

amplitude magnetic field reversals are particularly encouraging even

though only 18 (or 36) degrees of freedom are retained.

The first link in the induction process is a Babcock type

twisting term. It appears because the horizontal poloidal magnetic field

is now formally scaled as large.as the toroidal magnetic field. Basically,

the horizontal shear of the axisymmetric zonal wind twists axisymmetric

poloidal into axisymmetric toroidal magnetic fields. Vertical motions

then twist toroidal into poloidal magnetic fields. The dominant inter-

action involves axisymmetric toroidal magnetic fields plus asymmetric



-68-

vertical motions.and poloidal fields. Finally, asymmetric poloidal

magnetic fields are systematically transported towards the northernmost

wll by meridional eddy motions of toroidal as opposed to poloidal type.

Eventually a polarity reversal occurs. Meanwhile, ohmic dissipation acts

to reduce the amplitude of the axisymmetric poloidal magnetic field

harmonic.

For horizontal velocity shears comparable to the observed

differential rotation, the period for a double reversal isOa(2 years).

The observed double sunspot cycle and double reversal of the polar field

takes about 22 years. A longer reversal period can be attained by

decreasing the Rossby number, but then the differential rotation is too

weak. Dynamo action is sustained only above a critical magnetic Reynolds

number R - 100. Whereas the "reversal period" is apparently insensitive
mc

to the value of R -R , the amplitude of siuceesive peaks begin to fluc-
m mec

tuate as R -R is increased.
m mc

As various toroidal harmonics and asymmetric poloidal harmon-

ics are reaching peak field strengths, the dominant axisymmetric poloidal

magnetic field harmonic is just changing sign. The peak axisymmetric

vertical magnetic field of roughly 40 gauss exceeds the "observed" solar

value by somewhat over a factor of ten. This discrepancy can be reduced

by choosing the ratio & of the vertical to horizontal length scale to

be C 90O.I) instead of P:1 . The ratio of magnetic to kinetic energy

remains rather small, in agreement with Gilman's (1967) linear study.

Dynamo maintenance within a quasi-heliostrophic framework is

possible only by sacrificing some mathematical rigor, This is at least



partially justifiable a posteriori, The generation term for vertical

magnetic fields involving vertical motions is formally of c(oZ), but in

the actual computations is of OC(R). Other terms in the same induction

equation formally of 0(R1) vanish anyway in the two layer model due to

the boundary conditions on the vertical velocity and vertical magnetic

field.

In the absence of thermal forcing and viscous and ohmic dissi-

pation, an invariant "total" energy integral can be obtained, but at a

price. Imposing different potential temperatures at the two lateral

boundaries, Gilman (1969) must discard all terms which explicitly involve

both vertical differentiation and the vertical magnetic field component,

in the horizontal momentum and horizontal induction equations. Meanwhile

terms of the same order in Rossby number involving horizontal differentia-

tion and horizontal poloidal magnetic field components are retained.

Gilman (1969) argues heuristically that the neglected terms would probably

not affect the results too much. However, the twisting of vertical magnetic

fields by the vertical wind shear could interfere either constructively or

destructively, depending upon the selected thermal forcing profile. Also,

the vertical shear twisting term was more important in Leighton's (1969)

model.

The "total" energy mentioned above is defined as the available

potential plus toroidal kinetic plus toroidal magnetic energy. The formal

scaling suggests that the energy of the horizontal poloidal magnetic field

should not be excluded. A posteriori, the ratio of peak poloidal to peak

toroidal energy is only 6%. But the instantaneous ratio is higher since

0o
the energy peaks are roughly 90 out of phase.

-59-
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There are three shortcomings of the model which are especially relevant

to the sun. Two of these were discussed by Gilman (1969), First of all,

his axisymmetric zonal velocity profile < (3 at the upper level corres-

ponds more to the terrestrial midlatitude jet than to the observed solar

equatorial jet. More specifically, <U3> C(t) S;n where c(t) re-

mains positive and y is the nondimensional cartesian coordinate trans-

verse to the channel O~f y - . If the lateral wall y=O corresponded to

the equator, an easterly jet (c< O) would be a better analogue to the

solar case. Unfortunately, Gilman's Rossby number expansion is not- valid,

strictly speaking, too close to the equator, Besides, an artificial

lateral wall at the equator is not very realistic.

Second, Gilman's magnetic field harmonics do not really

correspond to the lowest order harmonics of interest on the sphere. For

example, his only axisymmetric poloidal magnetic field harmonic is pro-

portional to cos y. At first glance, this harmonic is analogous to the

dipole poloidal magnetic field harmonic Y, c( S;n ( where -7T/2 -C 5W 7//Z.

However, the channel O. y 7F is confined to a latitude band in the

northern hemisphere.

Third, the magnetic fields are confined between the top and

bottom boundaries in Gilman's model because both boundaries are perfect

conductors. Yet coronal observations suggest that magnetic flux does

leak out of the photosphere.

1.5 Characteristics of Our Dynamo Model.

We have formulated another numerical dynamo model. The basic

physical processes of the Gilman (1968, 1969) model are retained. Thus

ours has various essential ingredients for the generation and maintenance
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of a fluid dynamo. These include (1) suitably large fluid dimensions,

(2) an energy source, and (3) three dimensional, asymmetric motions. (See

Elsasser, 1956).

The dimensions of the sun are inherently large enough, so that

magnetic induction can, in principle, compete with ohmic dissipation.

Despite its possible shortcomings, baroclinic heating does serve as an

energy source. Under suitable condition e.g., sufficiently rapid rotation,

asymmetric baroclinic disturbances can develop. Also, the conversion of

eddy available potential energy into eddy kinetic energy is accomplished

through asymmetric, poloidal (vertical) motions. Finally, the model

apparently passes the various anti-dynamo theorm tests and in principle

satisfies the conditions for a nonvanishing Braginskii type of generation

term.

The chief modifications we have introduced are:

(i) a set of "primitive" hydromagnetic equations

(ii) more degrees of freedom (126 in all)

(iii) spherical geometry

(iv) a Robert spectral representation

(v) irrotational magnetic fields in a nonconducting region above the

fluid region of main interest.

In principle, our model has the capability of making predic-

tions near the equator which Gilman's (1969) model lacks. This feature is

desirable because most of the relevant solar observations including those

of the equatorial jet are confined to the 30 S-30 N latitude band. Also,

the lowest order odd harmonics of the axisymmetric poloidal magnetic field

i.e. the dipole and octapole harmonics are included. These contribute to
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the mean hemispheric magnetic polarity.

In formulating the "primitive" equation hydromagnetic model,

vertical hydrostatic balance is replaced by vertical magnetohydrostatic

balance, i.e. the magnetic pressure is taken into account. In addition,

the vertical magnetic field induction equation is discarded and the ver-

tical field is obtained from the magnetic continuity equation. This

procedure is dictated by scaling and energetic consistency arguments. Our

scaling is more rigorous than Gilman's. Finally, in thq absence of

dissipation and thermal forcing, an integral invariant can still be found

for the "total" energy.

We retain considerably more degrees of freedom than in

Gilman (1969). Nevertheless, we would have preferred many more harmonics

and more levels for representing even fairly large scale processes within

a thin spherical shell. Due to computational limitations, there is only a

single positive zonal wave number though, as in Gilman's (1969) model.

Zonal wave number n=6 seemed suitable because it is baroclinically unstable.

Its presence in the solar atmosphere is suggested by Wilcox and Howard's

(1970) auto-correlation curves. The Robert functions R (corresponding

n
to spherical harmonics Y ) with n=0, m=1,2,3,4; and n=6, m=0,1,2,3,4 are

m+n

retained for stream functions, potentials and the temperature.

For a realistic dynamo model, the critical magnetic Reynolds

number R for dynamo maintenance should not increase without bound as the

resolution is increased. This does not mean that the time histories for

solutions of two models which were identical except for slight differences

in resolution should coincide for all time. Unfortunately, the computa-

tions required for testing the convergence of R cannot be handled bymc
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present day computers.

We note that the potential field in the nonconducting region is

not maintained by any external sources at infinity. The nonconducting

region and the underlying atmosphere are coupled by the potential field

through equations (3-5b), (3-5c), (3-5d), (3-24c), (3-20b), and (3-20d).

The increased complexity of our model is due mainly to the first

three improvements. The effect of more degrees of freedom is obvious. In

adopting the "primitive" hydromagnetic equations, the time step must be

considerably reduced to prevent computational instability. These equations

are also inherently more complicated than Gilman's. But fortunately, the

number of distinct bilinear terms T can be substantially reduced by applying

the linear Lundquist (1952) transformations 1 6 to our "primitive" equations.

(See Chapter III). In fact, the Lundquist and quasi-heliostrophic equations

have comparable values of T in the space domain. Despite the additional

linear operations associated with the Lundquist transformations, they give

rise to increased computational efficiency.

Spherical geometry introduces complications also, because the

equations contain curvature correction terms, and the algorithms for

evaluating bilinear products in the spectral domain are more complex. On-

the other hand, simpler geometry is probably not as physically realistic.

For example, an equatorial (3 -plane primitive equation model would not be

valid at "sufficiently high" latitudes. Artificial walls could be inserted

at latitudes 300 N and 300 S say. But hydromagnetic disturbances at higher

latitudes on the sun might affect the dynamo process or help maintain

the equatorial jet. Another approach would be to scale the equations

16
Elsasser actually deserves the credit for independently discovering

these transformations earlier. See Elsasser, W. M., The Hydromagnetic

Equations, Phys. Rev. 79, 1950, p. 183.

% 0 1
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differently at low and high latitudes. However, a rigorous matching of

solutions at some intermediate latitude might be difficult to achieve.

Beyond a certain resolution limit, a grid-point representa-

tion would be more efficient than a spectral representation. But a soph-

isticated grid would be required on the sphere in order to prevent linear

and nonlinear instabilities. Two possibilities are the Kurihara-

Holloway (1967) box grid or the Williamson (1969) spherical geodesic grid.

Experience with these grids is limited to nonmagnetic models and we pre-

ferred to avoid working with them if possible.

In any case, we felt that a spectral representation would be

well suited to a low order resolution model like ours. No nonlinear

aliasing instability of the type illustrated by Phillips (1959) s1ould

occur, provided that the truncation is orthogonal. All discarded com-

ponents are then uncorrelated, in the integral sense, with the retained

components (Robert, 1966). Whereas nonorthogonal truncation might lead

to instability, orthogonal truncation is simple enough to perform. It

turns out that there is some difficulty associated with the truncation

process (hopefully for only low order systems) as described in Chapter IV.

The spectral representation itself utilizes a set of Robert functions.

This representation should be equivalent to a spherical harmonic repre-

sentation, but is more convenient, as explained in Chapter III.

1.6. Summary of the Other Chapters.

The model assumptions are spelled out in Chapter II. The prog-

nostic and diagnostic equations plus the boundary conditions are then for-

mulated for a model with continuous vertical resolution. In Chapter III,

the equations are reformulated for a model with two layers in the vertical

% % . .0
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Following that, the Robert(1965, 1966) spectral method is explained in

considerable detail and is applied to these equationS. Finally, the

sequence of steps for solving the equations is summarized.

The angular momentum balance is formulated in Chapter IV in the

space domain, for the two layer model. Using the Robert spectral repre-

sentation, the truncation process preserves the integrated angular momen-

tum balance on each spherical surface. But a localized angular momentum

balance exists for only "correctly truncated" terms. Chapter V contains

a formulation of the energetics for the model.

Model solutions are described in Chapter VI while conclusions

and suggestions for future research are given in Chapter VII. Angular

velocity profiles are obtained for different thermal forcing profiles both

in the magnetic and nonmagnetic case. Two angular velocity profiles are

in qualitative agreement with solar observations. The "correctly trun-

cated" angular momentum balance is discussed for two production runs.

Magnetic fields may be generated and sustained by dynamo action

if the magnetic Reynolds. number exceeds a critical Value. Irregular mag-

netic reversals occur for both runs. The energetics help elucidate the

reversal process. The characteristic reversal time is of the correct

order of magnitude for the run having the less realistic angular velocity

profile and too fast for the other run. While our vertical magnetic eddies

may be loosely interpreted as active regions, they fail to obey certain

laws (such as the generalized Sp'crer's law) of the solar magnetic cycle.

This lack of agreement may be due however to the crude resolution, rather

than to the basic thermal drive. When computationally feasible, runs

should be made having (1) more horizontal resolution (and possibly more

layers), (2) a larger aspect ratio f , and (3) less magnetic induction,
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i.e., a smaller value of R- . This would provide a more definitive

test of the baroclinic hypothesis. Other modifications include (4) choos-

ing a dipole as the initial sped magnetic field (5) testing the response

of the model to different conditions on the velocity at the lower boundary,

and (6) explicitly solving for large scale convective modes.

% V .
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CHAPTER II. FORMULATION OF THE SPHERICAL HYDROMAGNETIC DYNAMO

MODEL WITH BAROCLINIC HEATING

2.1. Introduction.

It is now appropriate to state explicitly the model assump-

tions and develop the mathematical formalism. A rather general set of

equations governing magnetohydrodynamic flow is simplified by making the

"MHD approximation". In effect, this filters out relativistic electro-

magnetic phenomena. A rather detailed account of the "MHD approxima-

tion" has been included for the benefit of readers unfamiliar with it.

But the real starting point is the equations for a thin spherical shell

.f rotating, Boussinesq, conducting, nonrelativistic fluid, heated

baroclinically. Some simplification is achieved through scaling

arguments and energetic consistency arguments of the sort familiar to

meteorologists. Lastly, the boundary conditions are discussed with

emphasis placed upon the electromagnetic boundary conditions. Incident-

ally, cgs electromagnetic units (cgs emu) are adhered to almost exclu-

sively.

2.2. Basic assumptions.

At the outset, several basic assumptions are made which are

either justifiable for the sun or at least self consistent. The first

seven lead to the standard MHD equations. The others or their nonmagne-

tic analogues should be familiar to meteorologists.

1
In these units, the magnetic permeability ao of free space is

unity and the dielectric constant Eo of free space equals the inverse
square of the speed of light. The magnetic induction B is measured in
gauss. Solar magnetic observations are generally reported in gauss.

% 0 .
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(i) The fluid is a single component, fully ionized gas, i.e., contains

free electrons and only one species of bare nuclei.

(ii) The fully ionized gas is a plasma, i.e. is essentially electrically

neutral.

(iii) The fluid may be treated as a continuum.

(iv) The electron gas is in thermal equilibrium and is nondegenerate.2

(v) The plasma is of the "high density" type.

(vi) The gas motions are nonrelativistic.

(vii) The magnetic permeability and dielectric constant take on the con-

stant values of free space.

(viii) The dynamo region is a thin spherical shell of rotating fluid about

2400 km thick and centered roughly 0O.02 solar radii (14000 km) beneath the

surface.

(ix) The fluid in this shell is approximately Boussinesq.

(x) The plasma is in magnetohydrostatic balance in the vertical direction.

In this generalization of ordinary hydrostatic balance, the relevant

pressure is the sum of the hydrodynamic plus "magnetic" pressure.

(xi) The plasma motions are thermally driven by an externally imposed

meridional (potential) temperature gradient.

(xii) Relaxation towards the imposed gradient predominates over other non-

adiabatic heating processes such as Joule or viscous heating in the thermo-

dynamic equation.

2
Degeneracy occurs in very dense stars as a consequence of the Pauli

exclusion principle. Electrons (and possibly even ions) with low momenta

are forced into higher momentum regions of phase space, squaring off the

Maxwell-Boltzmann profile. See Schwarzschild (1958).

% . V 1 .0
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Let us elaborate further on these assumptions. For the postu-

lated model depth, hydrogen is roughly 95% ionized and its relative abun-

dance is (O(0.9) by mass.3 Thus, as a first approximation, assumption (i)

is fairly reasonable.

The potential due to a charged particle is essentially neutra-

lized outside a sphere of radius /\ (the Debye shielding distance) by the

distribution of oppositely charged particles. Roughly speaking,

Ad .. (Tn /) / , where Yo is the average number density of electrons

and ions and 7, is a characteristic temperature. For the postulated

dynamo region, Yo, 10 particles/cm , 7-S f10 o(, and so /d-- XIO cm.

Estimating the characteristic length scale of the large scale flow as

Ao ~/.Sx 10 cm, then d << A-0  . Equivalently, the relaxation time

for charge neutralization is extremely rapid. Therefore the solar gas is

regarded as a plasma.

In a highly ionized plasma, the dominant collision process is

weak interactions at a distance between electrons and ions. Based upon the

above values of n o and To , Jeffrey (1966) offers the crude estimate

A c " /O CM for the effective mean free path of electrons. Clearly,

the plasma is collision dominated and can be described by continuum fluid

properties.

The condition of thermal equilibrium is adopted as a first

approximation, i.e. thermal relaxation processes on the atomic scale are

filtered out. A simplification of the thermodynamics is thereby achieved.

3
Helium is mostly singly ionized and has a relative abundance of ((0.)

at r - 0.98Re . The heavier elements are not stripped of many electrons, but
their abundance is relatively small. The ionization estimates were calculat-
ed from a stellar model of Iben (1966).,

S V 4
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In any case, there are n6 bound electrons to excite or ionize and no chem-

ical reactions in a fully ionized, single component gas. From stellar

model calculations by Schwarzschild (1958), electron degeneracy may also

be neglected in the suA. Then, following Schwarzschild, we can write an

ideal gas law as the equation of state for the fully ionized gas.

Suppose the centripetal acceleration and the magnetic part

of the Lorentz force acting on an individual electron were in balance. The

electron would then circle about the local magnetic lines of force. However,

through an aggregate of weak interactions with other charged particles, the

test electron would in reality be significantly deflected after travers-

ing a distance of ( A). Denoting the spiral or gyro radius by Ag, the

gyro frequency by C( and the effective collision time by r7 , electron

spiraling is inhibited if A,<< , or % 7 << . In this case, the

plasma is a "high density" plasma. The characteristic large scale magnetic

field B is most likely bounded by 2.5 x 103 gauss while the characteristic
o

electron density is n . Then from Jeffrey's discussion (1966, p.6) comes

the estimate l~ c A /O- for the solar plasma in the postulated

dynamo region.

The characteristic speed v of large scale relative motions in
o

the solar plasma --.0(10 cm/sec). As v 2/c<<(, c being the speed of light,

the nonrelativistic approximation is valid for our model. 4

The thermodynamics of an electrically conducting medium is

simplified if the magnetic.permeability 4 and dielectric "constant" (

are constants. A plasma is called nonmagnetic if *o * Its effect

4
Also, the flow is definitely subsonic.
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upon magnetic fields is described solely in terms of electric currents.

While a conducting fluid could be a dielectric, the bound charges (as well

as the free ones) have no dynamic effect in a nonrelativistic plasma)

as shown later. Consequently, the actual value of E is not too important.

As a first approximation, the free space valuesA and E are adopted here.

They should not fundamentally alter the physics of the dynamo.

According to the measurements of Dicke and Goldenberg. (1967)

the surface solar oblateness is only 50 ppm. The ratio of rotational to

gravitational potential is very small at the surface and should remain

small in the postulated dynamo region centered at r- 0.98R . The rapid-

ly rotating interior postulated by Dicke (1964) would presumably be con-

fined to the radiative core, i.e. to r <0.9R0 . Finally, the convection

zone contains only a tiny fraction of the solar mass (Schwarzschild, 1958).

Therefore, apparent gravity is approximately a uniform vector directed

radially inward within a shallow layer of the convection zone centered

at r-0.98 Re 0

The convection zone is a likely seat of dynamo action, as it

has the important ingredient of relative motions. (on various scales). The

current speculation is that the magnetic fields do not penetrate much into

the radiative core. But the actual thickness 2D of the dynamo region is

really quite speculative. If the solar horizontal eddy motions were asso-

ciated with giant convection cells, 2D would be comparable to the thickness

Rz of the convection zone. Since R -0.1R to 0.2R e , the thin shell

approximation would be marginal for 2D/Rcz .(1). But it is very good for

our choice of 2D4((Rz
Cz*
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The Boussinesq approximation makes the model computations more

tractable while filtering out magnetoacoustic waves. In addition, compres-

sibility is not a necessary ingredient of a fluid dynamo. Consistency

requires the characteristic vertical scale to be smaller than the local

scale height SH . Although D could be large in the lower convection zone

Where SH is large, we chose to consider a region closer to the photosphere.

The assumption of baroclinic thermal forcing is probably the

most ad hoc, but is at least internally consistent. We argued heuristic-

ally in Chapter I that perhaps the convection could set up and maintain a

meridional temperature gradient within a stable layer of the convection

zone. To a certain extent, the model results can be used as a further

check on the plausibility (as opposed to the validity) of the baroclinic

hypothesis. Other possibilities were also mentioned in Chapter I.

The dynamo reg~ion iw- several optical depths beneath the solar

surface, where the radiative relaxation time is 0(10 yrs). Thus, direct

radiative heating is small compared to the thermal forcing which is ex-

pressed as a Newtonian cooling law. If reliable observations of a merid-

ional temperature gradient are ever made, a model forcing-profile and

thermal coefficient could be fit to them. The magnetohydrostatic assump-

tion (x) as well as assumption (xii) will follow from scaling arguments

presented in section 2.5.2. To summarize, assumptions (i) through (vii)

are probably the most justifiable for the sun. Assumptions (viii) and (xi)

tend to be ad hoc but internally bonsittent, while (ix), (x), and (xii)

are reasonable to the extent that (viii) and (xi) are.

2.3. The equations.

In analogy to ordinary fluid dynamics, the behavior of an elec-



trically conducting fluid is described by a set of partial differential

equations, identities and boundary conditions. In an inertial coordinate

system, the relevant partial differential equations and identities are:

~.dYK7L - Vlelt~ ;P) f J_
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/* -:9 t~-
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cl/t
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L E L7T- P E J (2-11)

(2-12)

The terms in curly brackets are of electromagnetic origin. In order of

appearance, the variables and parameters in these equations are:

$ , the ion mass density of the resting equilibrium atmosphere

; , the ion mass density

V. , the ion velocity

Pi the ion gas partial pressure

Pi , the electron gas partial pressure

G , total gravity

V , the eddy kinematic viscosity

S , the number of elementary charges in each ion ( Z=1 for protons)

e , the elementary charge of an electron (1.6 x 10-20emu)

ni  ,.the ion number density

n , the electron number density

E , the electric field

v , the electron velocity-e

B , the magnetic induction (often referred to as the magnetic field)

Sthe effective mean collision time for electron-ion interactions

m , the mass of an electron
e

v , the velocity of the mass as a whole (essentially v.)
P, the total mass density

f , the total mass density



c , the specific heat capacity at constant pressure
P

T , the temperature

0 , the potential temperature

Q , the Newtonian cooling associated with baroclinic forcing

BQ , the viscous heating

Qa , the joule heating

Qi , the latent heating due to ionization

P , a reference pressure
o0

p , the gas pressure

R , the individual gas constant based upon the mean molecular weight

0 , the potential temperature of the equilibrium atmosphere

Ts  , the temperature of the equilibrium atmosphere

ft , the mass density of the equilibrium atmosphere

S ,the total current density (charge per unit area per unit time)

H , the magnetic field

D , the displacement

q , the charge density (charge per unit volume)

o , the dielectric constant of free space

P , the electric polarization (vanishes by assumption (vii))

RO , the magnetic permeability of free space

M , the magnetization (vanishes by assumption (vii))

The differential operators are the total time derivative d/dt, the partial

time derivative d/ , the gradient V , the divergence Q* , and the curl

V7 X

Equation (2-1) is the momentum equation for the mass motion,
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i.e. electrons plus ions. "quation (2-2) is the momentum equation for

electrons alone. The viscous, gravitational, and inertial terms are

neglected in (2-2), and v X v. , since the electron to ion mass ratio me/m i

is very small. Similarly, j * . . ' 5 . The ion drag on the electrons

in (2-2) represents the rate of momentum exchange through (weak) interactions

between ions and electrons. Assuming the electron drag on the ions is equal

and opposite, there is no net ion-electron drag in (2-1).

It is convenient to introduce the following standard defini-

tions for the charge density q, the total current density ) the conduction

current J and the convection current J .

+ en- e ,. (2-13)

g: J-J-
J c (2-14)

VT -e U- r(2-15)

(2-16)C

The law of partial pressures is

(2-17)

The electrical conductivity is given by

ne e ,e e (2-18)

and the gyro frequency by

W BO/e (2-19)

% % . a
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(rel)
E E + (x (2-20)

is the electric field measured by an observer moving at the local velocity

v. The momentum equations now simplify to

-t (2-21)

C4W7 x n Vie'e (2-22)

The terms in square brackets will be discarded shortly.

The usual mass continuity equation (2-3) still holds. Two

new terms in the thermodynamic equation (2-4) are joule heating Q , and

5
latent heating Qi of ionization. The quantity Q.i vanishes in a fully

ionized gas, but could be significant in the weakly ionized photosphere.
6

Equation (2-5) is the equation of state, where , Ts, ps'

and PS are the thermodynamic variables in a resting atmosphere. Equa-

tions (2-6) through (2-9) are the Maxwell equations. Equation (2-10) ex-

presses charge conservation and follows from (2-7) and (2-8). Since P

and M vanish in the constitutive relations (2-11) and (2-12), D and H may

be eliminated.

5If the magnetic permeability or electric permittivity were temper-

ature or density dependent, a magnetization or polarization term would be

needed --Chu (1959)
6
As an added complication in a partlially ionized gas, additional

equations relate T to'n and to the ratio of number densities in adjacent
e

stages of ionization for each element. The Saha equations would be

appropriate for local thermodynamic equilibrium.

% f .
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2.4. The MHD approximation.

MHD theory is really a fusion of ordinary fluid dynamics and

preMaxwellian (nonrelativistic) electromagnetic theory. In analogy to

meteorological filtering approximations for eliminating sound waves and

external gravity waves, the MHD approximation filters out high frequency

electromagnetic phenomena.

Let us denote the characteristic magnitudes of if ,E, B, q,

J, Jc , and 1 by a zero subscript, the characteristic time scale by 7

and the characteristic length scale by ADo Observing that 4 = 1 and

-E = 1/c 2 in our system of units, the following scaling 
estimates are

made in MHD theory:

.Eo i o 8o .(2-24)

- .E E/qL7r -. (2-25)

.~ ~s o B /7 Ao (2-26)

(2-27)

Therefore & J , while all bracketed terms in (2-21), -y ,l/dt in

(2-7), and a4/aX in (2-10) vanish to &(Vfortc') << I . To this

order of approximation, equation (2-7) simplifies to

L- V 3' .(2-28)

S 4 . 4
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while equation (2-8) may be rewritten as

7E (2-29)

Equations (2-6), (2-9), (2-28) and (2-29) are the preMaxwell equations.

The charge continuity equation reduces to . *J = 0.

Now in equation (2-22), Igo"4 r C<<r'

while I-n /; V P /  x . The latter ratio

should be small even before significant dynamo action occurs in our

model, since J x B mP 0 initially. Therefore the traditional approximation

of replacing (2-22) by Ohm's law is made, i.e.

S- (E +  "x 8) (2-30)

Suppose a primed coordinate'system moves at uniform velocity

wO ith respect to an unprimed system, where o < < / . Then

according to electromagnetic theory, the equations

/

-- - -- (U x& )/c O (2-31)

Ym T-s Y 0  UiJ (2-32)

E L + U (2-33)
-- - -

relate the primed to the unprimed field variables. For the more compli-

If 0g L , 1 ? ,r (1) ,(2-22) is equivalent to J ( W ( 3

and " L o'(+ W, r ( ~'e 1 ). ( f-EO

-- Cowling (1957a). 1 is a unit vector parallel to B, E -%eVPe and T.

E. "nd E are split-up into vectors parallel and transverse to B. Note
the reduction of currents perpendicular to magnetic field lines and the
emergence of Hall currents. These effects are associated with electron
spiraling.

% W . .6
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cated case in which E or kA are functions of f or 7- , see Chu

(1959). The invariance of the preMaxwell equations (2-6), (2-9), and

(2-28) under the Galilean transformation

is fairly simple to demonstrate (~ae Shercliff, 1965). However, in order

for equation (2-29) to remain invariant,

O - /c 2 (2-35)

In contrast, the charge q would be invariant under Lorentz transformation

in the nonrelativistic limit.

In MHD theory, the magnetic field B may be regarded as the

fundamental quantity. The other electromagnetic variables may be elimin-

ated by substituting (2-6) and (2-28) into the curl of (2-30), using the

identity xVY x - - B + V(V8) . e thereby obtain the

magnetic induction equation

3 /a t .8(x)4 V? B .,;(2-36)

-I

where i -- ( rao T ) is the eddy magnetic diffusivity or resistivity.

Equation (2-9) is still retained.

The current density J can be computed from (2-28), then E

from (2-30). Although equation (2-29) defines q, this equation is not

essential to MHD because q is associated with purely irrotational E

fields and hence has no dynamic effect upon (2-36).



The magnetic induction equation (as well as the preMaxwellian

equations) is invariant under a nonrelativistic uniform rotation transfor-

mation. This may be proved by analogy of equation (2-36) to the absolute

vorticity equation, noting that B is virtually the same vector in both the

rotating and nonrotating coordinate systems. But as noted by Backus (1958);

the boundary conditions for B in .a finite domain are different from those

of curl .

Corresponding to the conventional Reynolds number is the magne-i

tic Reynolds number /~= Aol o/~ We then have R ))1 in the postulated
m

dynamo region of the sun, since A0 and e are large. If R were too

small, the induction term VX(irx8) could not compete with the dissi-

pation term.

2.5. Further refinements and simplifications.

We have already made use of assumptions (i) through (vii), and

to some extent (ix). The others will now be incorporated into the equa-

tions.8

2.5.1. The "Rrimitive" equations.

In a rotating coordinate system, the component equations of

motion for a thin spherical shell of Boussinesq fluid are

8
Simplification of (2-4) and. (2-5) hinges in part on the Boussinesq

approximation.
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+ Al 8 8) + - aZ c(2-38b)Le A

+ / (2-38c)

The square brackets in (2-37) and (2-38) indicate that the terms inside

will be discarded in the magnetohydrostatic approximation.

The new symbols are

, the longitude

S , .the latitude

z , the height relative to the lower boundary

r , the radius measured from the center of the sun

a Z r-Y - 6. x lo10 cm -O

,W, and z, the unit vectors in the X (Q ,and z directions
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t , the time coordinate

J. , the uniform rotation -2.86 x 10- 6 radians/sec (Greenwich convention)

g , the uniform apparent solar gravity --2.73 x 104cm/sec
2

P'=P-P , the perturbation (i.e. dynamically active) pressure

u , the eastward velocity component

v , the northward velocity component

w , the vertical velocity component

A
B , the eastward magnetic field component

B , the northward magnetic field component

Bz , the vertical magnetic field component

, the thin shell horizontal Laplacian operator defined below

A
-AA -t ( &-., the operation of the horizontal thin shell Laplacian

on a horizontal vector in terms of the vector components.

Also, for future reference, we introduce

V = U( A + ( PV , the horizontal velocity
-H

A LfA
B H= B A 8 , the horizontal magnetic field
-H

' - 'P , the perturbation density

T 7-- 7 , the perturbation temperature

'- -- Qs , the perturbation potential temperature

rj , the velocity stream function

, the velocity potential

fm , the magnetic stream function

) , the magnetic potential

and the thin shell differential operators

t +- , the gradient

- -  + - , the horizontal gradient'VI cos Le QL Z
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V= c - the divergence

-= , the horizontal

A I atr a t. Cos WSVX -- , the horizontal

The V A , vr 4 ,and V-A operators

SCO ~ ( c S t  e
H~ cost! COSC ato

(applied to v)

divergence (applied to v)

curl (applied to v)

are defined as follows:

a9'~~9)

j.kVitA(8) AZ(V A)
4(13,13). B = A 7, 2 Shl L B +r2 C/17 2 S;n 4r X

cLoYW Q~O~r/ \ ~~OLP C .0';'TtA Bp %IyV_

V. 1x A 8 A S

~.d(Y~)r ~(RLYn

(2-39a)

(2-39b)

(2-39c)

(2-39d)

In accordance with the thin shell approximation (Phillips,

1967), we substituted "a" for r and d/. for d/j" in the various dif-

ferential operators. Phillips (19,6) has remarked that the angular

momentum principle is preserved.

The equilibrium atmosphere is defined by the equations

(2-40a)

(2-40b)

(2-40c)

aP /a~ +p, - :
a, la -31 +

R /C
Os T / t)

where fS, Ts, p . and &S are all functions of z only. But in the

Boussinesq approximation, variations in PS are neglected. In (2-37c),

the equilibrium atmosphere contribution was separated out. In (2-37a),

W . a

.
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(2-37b) and (2-37c), J was expressed in terms of B through (2-28), and

the bracketed terms of (2-21) were discarded. Observe that the curvature

correction terms take a somewhat different form in (2-38) than in (2-37).

Yet, when the scalar energy equation 1.dt1_~tt f )- .a_ -

= ........... is formed, the relevant curvature terms cancel each other .

Writing the thin shell vector Laplacian V as -VxVl for the solen-

oidal vectors v and B gave r.ise to the dissipation terms which appear

in (2-37) and (2-38).

The details of quasi-geostraphic scaling in a baroclinic

atmosphere are by now quite familiar and have been reiterated by Gilman

(1967). Suppressing the magnetic body force terms, equations (2-37a)

and (2-37b) are the standard horizontal momentum equations. For the

motions of interest, the Reynolds number for vertical eddy diffusion,

the aspect ratio, the ratio of horizontal length scale to the radius, and

the (thermal) Rossby number are given respectively by

Re odA ,/ o= (2-41a)

SD/ o ~ (2-41b)

L Ao/a f/ (2-41c)

R6  AUOf0A / (2-41d)

In (2-41d), AU is a characteristic (thermal) wind and o is a charac-

teristic coriolis parameter. Thus, the coriolis term should still provide

a good order of magnitude estimate of the perturbation pressure except

near the equator. The constraint of strict geostrophic balance to lowest

% 
10
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order is of course relaxed. Numerical results suggest that the divergent

part of the motion tends to be rather small. The basic phenomenon of

.baroclinic instability remains intact. The external thermal forcing

sets up a meridional temperature gradient of comparable magnitude. For

R sufficiently small, a wavelike (Rossby) regime is established.
o

Restoring the magnetic terms again, the only direct source

of magnetic energy is the velocity field, which links the various stages

of the dynamo process. The toroidal magnetic field, for example, extracts

its energy from the horizontal or vertical shear of u. The magnetic

fields could also inhibit baroclinic instability. Then induction would

become weaker and the magnetic energy would decay, allowing the kinetic

energy of shearing motions to build up again through thermal processes.

At times the J x B term could even deliver magnetic energy to the shear

flow., Introducing the Alfven number 4 , the formula

2± ' (2-41e)

gives the ratio of inertial to magnetic terms in (2-37) or the ratio of

kinetic to magnetic energy. The case '1 / corresponds to exact equi-

2
partition of magnetic and kinetic energy, Both B and a are functions

of time, strictly speaking since they are not external parameters. But

defining Bo and hence 46 as time averaged values, 4~ << 1 would seem

unreasonable for a taroclinically driven dynamo. The gist of the above

heuristic arguments is that the geostrophic scale factor 7o ,

is still a good order of magnitude estimate for po in the magnetic case.

To justify the magnetohydrostatic approximation, consider the

0 " a
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ratios of terms in (2-37c) for S' 1/50, Ro ./, c 1, and R> 1i The

scale factors for w and Bz are w oJv and b B O respectively.

2 2I - (2-42a)
C +  / ;'"' (<I (2-42b)

I 'r' Iv 'o << (2-42c)

Each ratio except the last is extremely small. But even R , / a

so the buoyancy term should still be significant in the balance of forces.

Thus p '/gD is a good order of magnitude estimate for *4 All

bracketed terms in (2-37) are hence discarded, giving the law of magneto-

hydrostatic balance

(8 +3 /, 7' y 1f-' o (2-43)

Since I / tAx 2s ' << I , the last term of both (2-37a) and

(2-37b) is neglected as well.

To preserve energetic consistency in the sense of Lorenz (1960).

the terms --V.'V 3 I- 13*VF in (2-38c) must be omitted also. Forming

an equation for kinetic plus magnetic energy density, the omitted coupled

hydromagnetic terms are - sVH4 * r /o a ) from (2-37a) and
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(2-37b) , (W() N G) Irom (2-37c) and ~ V+. V fr .-H

from (2-38c). These terms add up to the divergence expression

" *Aqw oo B+ - - , after differentiatidn by parts. This

simple result also depends upon the equations of mass continuity and

magnetic continuity in the form

VOV 4- 'Oa r/ 7 (-44)S-14

Equations (2-38a) and (2-38b) implicitly contain the expres-

sions (Vy* 1 40 # d/df)B and (V-ct,, /d,)Bdl , respectively. According

to (2-44), both terms vanish, as we have assumed for the magnetohydrostatic

case. Curiously enough, in the ordinary hydrostatic case, the terms

r/ala) and (O/10V80 would have to be discarded alone in

order to preserve energetic consistency. A scaling inconsistency is then

unavoidable. To minimize its effect, one could explicitly impose the

constraint that the motion be horizontally nondivergent to lowest order

as Gilman (1969) did. In the horizontal magnetic induction equation,

poloidal motions would still twist toroidal magnetic fields to complete

the dynamo process and the magnetic energy would still include a contri-

bution from horizontal poloidal magnetic fields.

Noting that Rm > 1 for the dynamo, the dissipation terms

should also be dropped from (2-38c). In fact, equation (2-38c) may be

discarded altogether, provided Bz /(187r 4 ) is excluded from the definition

of magnetic energy density. The justification is that ~ I .Sy.

Likewise, w2 /2 is excluded from the definition of kinetic energy density.
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Thus, in the magnetohydrostati approximation, the two redundant prog-

nostic equations (2-37c) and (2-38c) are replaced by the diagnostic equa-

tion (2-43). The redundancies stem from (2-44) and (2-45), i.e., the

solenoidal vector fields v and B are each uniquely determined from two

scalars. In terms of the velocity and magnetic stream functions and

potentials,

v - JHTo ,v, r (2-46a)

I?7 jwql da4 B (jyo) (2-46b)

(2-47b)

2.5.2. The thermodynamics

Quasi-geostrophic theory predicts i'/' 7 s ., /.-

and / S < . We again argue heuristically that these results

should carry over to our primitive equation magnetic model. An empir-

ical upper bound of T'/T s based upon the strength of the external

thermal forcing is 102  oK/105 oKiv10-3 Hence we retain the linear-

ized equation of state

f .- -- , (
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Substituting equation (2-48) into the law of magnetohydrostatic balance

and applying the Boussinesq approximation, we obtain

S3l (2-49)

. -(2-50)

Observing that R/C = 2/5 for the solar atmosphere, the Boussinesq

approximation is valid provided (3/)(D/)A <( , where SH= Ps gf_

is the local scale height. Equations (2-49) and (2-50) are only margin-

ally valid for our model since we chose D/SH = 0.5. Equation (2-50) could

be interpre-ted as the equation of state of a liquid whose coefficient of

-1
thermal expansion is T -

S

The nonadiabatic terms in equation (2-4) are the external

thermal forcing Q = R (9 J / ,viscous heating V,=-u_( ",

and Joule heating Q -- - - 'V9 F-B)/ ( Tp ) . Here 1 is a thermal

forcing coefficient in sec and w(C2) -) is the specified thermal

forcing. Now )  . Guessing that the eddy

magnetic Prandtl number 4: V/(]ib.) for vertical diffusion--~)

and taking 'Lo /Cps 6 0 and V / - (/O ., then

0Q, /' L " - /0 . Similarly, Q , may be neglected if

4 , 2 ( 1) and the.eddy magnetic Prandtl number 6r,- : (. ,

Thus the thermodynamic equation.for the perturbation potential tempera-

ture is
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The terms in square brackets will vanish in the two layer model.

To summarize, the governing equations for the continuous

theory are the momentum equations (2-37a) and (2-37b).with terms in

square brackets discarded, the magnetic induction equations (2-3Ea) and

(2-38b), the mass continuity equation (2-44), the magnetic continuity

equation (2-45), the equation of state (2-49) for vertical magnetohydro-

static balance, and the thermodynamic equation (2-51). The equation of

state (2-50) merely defines f and T( in terms of variables already

computed.

2.6. Boundary conditions

The boundary conditions complete the formulation of the con-

tinuous model. With spherical geometry, there are no artificial lateral

boundaries. For'a spherical harmonic type representation, no singular-

ities arise at the poles, as explained in section 3.4.

The true boundary conditions on w at the top and bottom of

the solar dynamo region are speculative. The small scale vertical

oscillaftions of the photosphere originate in the convection zone. Judg-

ing from recent unpublished dopplergrams of Howard's, large scale ver-

tical motions may be weak compared to large scale horizontal motions,

In any case, we choose the simplest coditions. The top and bottom

boundaries will be regarded as rigid lids, i.e.,

I t 0 (2-52)

where z4 is the height of the top boundary. If time dependent oscilla-

tions were specified for w at the top boundary, the behavior below might
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be largely a response to that forcing. However, we wanted to see how

the model responds to time-independent baroclinic thermal forcing,

Finally, since such boundary conditions would not filter out external

gravity waves, the time step required for computational stability would

be prohibitively small.

The boundary conditions on u and v are also somewhat ad hoc.

We shall assume a no-slip bottom boundary and a free stress top boundary.

Hence

f: "T : 0 t '- 0 (2-53a)

O at =J(2-53b)aa -

The magnetic boundary conditions are somewhat more complica-

ted. Thiee electromagnetic jump conditions must be satisfied at the

interface between two fluids, irrespective of the electrical conduc-

tivities. These are

0 (2-54)

-AA
Y)[X (2-55a)

?XX( E-1 t ) 0 (2-56)

Here n is the local normal to the interface, and ' is the thickness of

Sa slab straddling the interface. Also, the superscript n denotes the

vector component parallel to n and L is the jump of the enclosed
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quantity across the slab. Equation (2-55a) may be regarded as the defin-

ition of the current flow J t, per unit slab length in terms of B.

Proof of the above jump conditions may be found in Jeffrey (1966).

In a perfectly conducting medium ( Q - oo ),

E+ Irx O (2-57)

so that J is finite. Suppose the fluid region of primary interest

lies above n=z0 while the region n <z is a perfect conductor.
o

Combining (2-56) and (2-57),

t (E f x ) 0 (2-58)

where n - 1, -47 ) signifies the limit is approached from above

(below). Moreover, taking the fluid region n>zoz as finitely conduct-

ing (i.e. O< 6'< o ), lim n x J = " lim n x (E + v x B ) = 0,

by Ohm's law. Invoking (2-28), the correct boundary conditions on the

magnetic field at the perfectly conducting boundary n = z are equation

(2-54),and

At the interface between two finitely conducting fluids

(regions 1 and 2) or a finitely conducting fluid (1) and an insulator

(2), the boundary conditions on the magnetic field are (2-54) and

X I -j flB O (2-55b)

A
Thus B is continuous across the interface. As necurl B involves only
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tangential derivatives, (2-55b) implies that n - 0. But if

region 2 is an insulator, Jn 0 there. In particular, lim+Jn =0,

taking n=z4 at the interface. An immediate consequence is the familiar

condition at an insulating boundary

r4 :J>O (2-60)

The perfectly conducting boundary is the only type that

shields the fluid from external electromagnetic fields. Otherwise

one must solve for B both inside and outside the fluid region of inter-

est, and then match the two solutions at the boundary, i.e. apply (2-54)

and (2-55b).

For the special case in which the exterior region acts like

an insulator ( J=0, O'finite, and E + v x B = 0; or J = 0,0'=0, and

E + v x B finite), the exterior problem and matching problem are relative-

ly simple. Since B is then irrotational as well as solenoidal, the ex-

terior problem consists of the diagnostic equations and boundary conditions

V M O (2-61a)

-~iP (2-61b)

(Q&:. 13 (2-61c)

( r) (2-61d)
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Equation (2-61c) follows from (2-611) and the jump condition (2-54),

while (2-61d) guarantees that there are no external sources of magnetic

field. The above Neumann boundary value problem has an analytic solution.

If (2-61c) has the spherical harmonic expansion 4 Z b m+

(where b0  O ), then

rnrn b ) i )

Here Y+ ( A LO ) is the complex spherical harmonic of degree m + n

and rank n defined by equations (3-30c) and (3-36) while nis

9
a corresponding spectral coefficient. The feedback into the interior

region completes the matching problem. Applying the jump condition (2-55b),

-cpZ 7 . , . (2-63)

In this manner, there is no overspecification of variables. Also, the

only way to regenerate magnetic fields is through the interior induction

process.

Finally, what electromagnetic boundary conditions should be

chosen for the solar model? Qualitatively, a perfectly conducting lower

boundary and a-nonconducting upper boundary of the above type are not too

unreasonable. Cowling (1957a) estimates the molecular resistivity is

several orders of magnitude smaller in the core than in the photosphere.

Likewise, the eddy resistivity could be height-dependent. The transition

of conductivity could be fairly sharp corresponding to the rapid increase

9We note that m corresponds to the number of nodes from pole to pole
while n is the longitudinal wave number.
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of ionized particles with depth.l0 We crudely parameterize such a varia-

tion of , with depth by subdividing the model into five zones:.

(i) an underlying perfectly conducting region in solid body rotation

( : /an, o 0 or r < 0) . Since induction is absent from this

region, B vanishes for all time if-B 0: initially= =,

In particular, BZ= 0 for z 4 0.

(ii) An interface between region (i) and the interior fluid region.

Applying the jump condition (2-54) and noting that lim BZ = 0,
2eo"

= at o (2-64)

Then expanding (2-59). ,

a13/a7,z d3/d3=O at 3=o (2-65)

These conditions are analogous to the conditions (2-53b) and (2-52) on D

and 4f at a free stress,.rigid lid boundary.

(iii) The interior region in which ( is.a finite constant. The

partial differential equations and identities discussed previously are

solved here.

(iv) A nonconducting interface separating the finitely conducting in-

terior region from the insulator or current free exterior region (v).

The appropriate boundary conditions are given by equations (2-61c) and

(2-63). The matching conditions (2-54) and (2-55b) are analogous to the

conditions (2-53a) and (2-52) on v at a no-slip, rigid lid. The added

complication is the coupling between the interior and exterior regions.

10
The atoms are also highly ionized in the corona. In the rarified

chromosphere and corona, ' is a molecular resistivity and 7. decreases
upward thr9ugh the chromosphere and lower corona due to the sharp in-

crease in ionization.
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(v). The exterior region in which P is determined from (2-62), then B

from (2-61b) if desired. As far as the interior is concerned though,

(2-62) need be evaluated only at r=a+z 4 o

No boundary conditions are required for &5 since the potential

temperature is to be predicted at a single level. Thus the formulation

of the partial differential equations, identities, and boundary conditions

for the continuous model is now complete. Obviously, analytic solutions

(assuming they exist) to the nonlinear model are unknown. Yet as

suggested earlier, nonlinearity is probably an important feature of a

reversing dynamo. We simulate it by constructing a numerical model in

Chapter III.
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CHAPTER III. THE NUMERICAL TWO LAYER SPECTRAL MODEL

3.1 Introductory Remarks.

The numerical model combines a two layer vertical representa-

tion with a truncated spectral representation on (horizontal) spherical

surfaces. In addition to these aspects, the time differencing scheme

and the sequence of equations to be integrated are now to be discussed.

In view of the available computer time, the model is chosen to contain

relatively few degrees of freedom. Nevertheless, it is hoped a crude.

simulation of physical processes is achieved.

3.2, Representation of Vertical Variation by Two Layers.

The continuous z dependence of interior variables is replaced

by a generalized two layer meteorological model. This type of procedure

was used by Gilman (1968). A one layer model would lack three dimensional,

horizontally divergent motions required for dynamo maintenance.

The interior region is represented by five equispaced levels.

Level 0 corresponds to the lower boundary and level 4 to the upper boun-

dary. Level 2 subdivides the interior into a lower and upper layer of

thickness D, whose midpoints are respectively at levels 1 and 3.

Henceforth, a numerical subscript on a variable denotes its

level. The prognostic variables are p1 ,, ~ , , c,, 1,t3 )

and hence . = U A + LF A L? a 72l B0 A Z4  3 H

and . The diagnostic variables UW-tz and I8 are computed from the

mass and magnetic continuity equations. The only other active diagnostic

variables are the pressures , and P, . A variable at an intermediate

level is taken as the linear average of that variable at adjacent levels.

% 0 1 S
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For example,

U(, (, - ( 3 )2 (3-la)

+= co, ) (3-1b)

U/o(L±t 4)/z (3-ic)

83 (L 7)/2 (3-id)

Let A denote any variable and (ZA/dl )., its vertical

derivative evaluated at level i. An off-centered difference scheme is

always employed at the boundaries so that

(BAn/33). = (A - AO)/(. S~D3-2a)

(aA/d3 )o -(A,- A ) 5-) (3-2b)

In most circumstances, the following difference schemes are applied to

the interior:

/ ( A + AA - 12 A.) , 3 (3-2d)

However, to avoid spurious sources of vertically averaged

angular momentum or mean square kinetic and magnetic energy, for our

boundary conditions on 8 , we require that

Here A- or V , although V will vanish due to (3-4b).

4 3

% . a
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No nonlinear instabilities should develop due to the vertical differencing

scheme, i.e. formulae (3-2) and (3-3).

The boundary conditions for the two layer model are

Ao ,, 0) (3-4)
L4 3r (3-4b)

The conditions (3-4a) through (3-5a) are substituted directly

into the two layer model prognostic and diagnostic equations at levels 1,

2, and 3. The exterior magnetic potential is the solution to (2-62),

in which the b are spectral coefficients of 8, while 1 and8

are obtained from (3-5c) and (3-5d). In the perfectly conducting region

below level 0, -- B O. The two layer model is obviously too crude

to resolve boundary layers. In a continuous model, the vertical currents.

at z=z 3 would form loops to satisfy (2-60) i.e. lim Jz = 0.
CO C CO, , (3-5c)

The non r magnetic case corresponds to the conventional two layer(2-62),

model of meteorology. The basic features of the generalized two layer

6 0 .0 .



-113-

hydromagnetic model are summarized in Fig. 3.1.

f Tor = oO

current free region

V -L 0

Level 4 4______Zez__ZZ

Level 3 r 8.V
LevelB 3( u~ I~ 1p

Level 2

Level 1

Ur ,

A LO
IV i , if

Level 0 U V-z :O p8 :8~ 4 1%

- = 7 7 O

perfect conducting region

Fig. 3.1. Schematic diagram of the two layer model.

3.3. Interior Equations for the Two Layer Model.

In the interest of efficiency, the Lundquist (1952) linear

transformations of hydromagnetic variables and equations are adopted here.

While apparently providing no new physical insights, these transformations

reduce the number of distinct bilinear products in a Boussinesq model. A

net savings of CPU (central processing unit) computer time is thereby

achieved. Even with the transformations, roughly 507 of the CPU time was

devoted 'to bilinear multiplication.

Following Lundquist (1952), the variable transformations are
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- v- +V + ._

f- : ,_, + (Tr o ,

qo-- I y( o

Each of equations (3-7a), (3-7b), and (3-7c) is really two equations in

one for the variables ,V ; , q) and

* ,

0 1- respectively. Thus

means + 0 and Y -= V- 8 ,etc. This

notation is used throughout this section. The inverse transformations

are

V -.+( + V -)

z: .S ,(Lf T (-f)

'z 1-

(3-8a)

(3-8b)

(3-8c)

(3-8d)

(3-8e)

VM =. ( T i4uPs)

-

- (P 

)

O~M -. 5&tTr ) " ( -q) (3-8f)

(3-6)

(3-7a)

(3-7b)

(3-7c)
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The Lundquist transformaticn of the A and 2 component hydromagnetic

equations may be written symbolically as

12-37b); (2-386) f (2-376). (w'z7tog) *

(-3cz

In particular, (3-9) gives us prognostic equations for U-tU; and if

at levels 1 and 3.

Applying (3-8) and (3-9) to the time derivative terms of (2-37a), (2-37b),

(2-38a) and (2-38b), we have

A
CEi 0-J + (L47rzt )

-12 A 4

au
-E);C

(3-10a)

to

RAJ~ - ia-. t ( Tfl,,g 
- /

--' x
q )i

The corresponding transformations for the curvature correction terms are

. f 7 r
t- , -

S;in C( LC OLC. cos to Cos Lt (3-11a)

2.

0 a- r - Le);) "f ) i f, /s; &J
C os-(Pb)

(3-9a)

(3-9b)

- (3-10b)

[(Z-370);(2.39)j -->(Z-37a) * 7. o) - '

a r

fE_(4 LTlcU

-+ [ ---
(3-11b)
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The symbols E and

respectively, i.e.

)(: (Ls

- (BA

E denote the kinetic and magnetic energy density

t V 1 2Z

7Tr go f)

(3-12a)

(3-12b)

Introducing the variable

the horizontal gradient of total pressure has the transformation

+ (l 3 AZ~peZ)

(3-13)

(3-14)

A considerable simplification is achieved by transforming the remaining

nonlinear terms:

(3-15)-V.V -01+ui a
W4 j) -14 a3

Taking into account (3-2c) and (3-3), we can evaluate the last terms on

the right hand side of equation (3-15) at levels 1 and 3 of the two layer

model. Thus,

(3-16a)

(3-16b)a}

* 13 '0

E-t~(~

+ +

-cw , _v; u _ )o

(w -rf)+ R!(36t*C-N*)

);oj :+ C Aa4)j



From equations (3-11) and (3-15),

c (3-17)-C- ____ ,,_ - .J_5_ ) (Vcos) (3_
- " ce a. co - a. coSL(3" , / 1

Decomposing the coefficients of eddy viscosity and eddy

resistivity into vertical and hor izontal coefficients,

-2
(3-18a)

D ? (3-18b)

V CV (3-18c)

t.) (3-18d)

V) and ()are the vertical eddy coefficients in units of inverse

time, whereas the horizontal coefficients -Vr and 7(,) have the same units

as V and ) . The latter two equations are valid under isotropic

conditions, implicitly assumed to exist up to now. It is also convenient

to introduce

+

(U * (1) +(3-19)

Utilizing the above formulas, the hydromagnetic equations for the two

layer model are written as

1Later on, 1u, and 1 are enhanced to promote selective damping

of the higher harmonics of V and B. Otherwise the horizontal dissipation

terms are negligible since D2/a2<(1.
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-

- QCOS (

R 3

+

5V
7#

I - +i -.
L Cos oe Sow

- -

+ ssin 

+ 2 ;17 Q ~tI +
a cos( ( +

A+ (U 3 )
LL,

-- cos
a cst

aLu1

A
± B 6 L~;k3 :Ot

Sco
a cos a

a(u cosLe)
aT "!

q, cos4e5v - )

+%)(I -ut 3 )

15) .' , 
'3 + "

A
+c -

T A A (U (1

+

at

AA
(H)

(3-20a)

+

cE LL4
, - + -Sn a

- 3 b3/4 cos

U- A
Bc)

A

3

A

i-'8Q

-,-)

, .
N3~e0

*A " (3-20b)
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c coscQ'D 4~

+ + 3

C(7cose)

- ' 6 ,CEaw

+ 'Ij 3 - 3V)

M

) C2oS; nk,

+%- V' * .+-+V)A (a., -igf)

(H) (3-20c)

Ct C5 ( a

(c05)
C ta. cos 9

_ 7 '_

3CE

+ C?

Bi3
-, -2("- -a; awgi -i-

- 2 A, S;nce 1

+ ,-c +ut,V A(i
(/) 3 Vg)

(3-20d)W41 + ALt ( V, -)

Each of the above is really two equations in one. The notation wqs vre-

viously explained in the discussion of equation (3-7a).

--

t 3 ) C o

M
£3

L3 e 43 z~

t E,

c (P

r

-Z*i~ + 13*

- 4) + ~(, -
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From equations (2-44), (2-46a), (3-2c), and (3-4), conservation

of mass in the two layer model requires that 2

VZ F, + --' -; = _ O (3-21a)

- DVu V (3-21b)

These equations then imply

V4 (/- (3-22a)

We may express 4V, and 4) in terms of a finite number of spherical

harmonics m+n defined by equation (3-30c). Since

-v2  - . .+n) m+ni) rn , then + 3  is an arbitrary

unphysical constant. Therefore,

9-- (P (3-22b)

le-t%> + +) (3-22c)

2J =0 (3-23a)

V x (P (3-23b)

The continuity of magnetic fields in the two-layer model is described by

V a-%. + 13 - .

2
For our purposes, it is convenient not to work exclusively with

the V" variables.



3 r- 2- 0 - ( 3 - 2 4 b )

13 D _VM2 ,, V m-. ,, +Ci) (3-24c)

According to (3-23), only the nordivergent part of the motion advects

potential temperature ( 1 at level 2, in the thermodynamic equation.

To be energetically consistent, the vertical advection of Oi should be

suppressed. Fortunately the t-- term vanishes anyway, if potential

temperature is predicted at only one level. Consequently, the

thermodynamics is governed by the prognostic equation

a o..t c os e A /

-K ( (3-25)

The diagnostic equation of vertical magnetohydrostatic balance is

-M

6 32. CL (3-26)

From the nondivergence condition, i.e., (3-23b), one can compute

2
VH ( + 6 )  Inverting this expression and using. (3-26), 6 and 03

and hence ] and 31 are determined. The perturbation density and

temperature play a passive role in the model, i.e.,

S - (3-27)
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In the special case B-0

V y- V (3-28a)

S - ( (3-28b)

4B O rP c (3-28d)

at all levels, while

O (3-29)

.Also the set of equations (3-20) would reduce Co four (nonmagnetic)

primitive equations.

3.4. The Spectral Representation.

Based upon their mathematical properties on the sphere,

spherical harmonics are a logical class of orthogonal spectral functions

for our spherical model. However we have chosen to work with an equiva-

3
lent set of nonorthogonal functions called Robert functions. One advan-

tage is that the interaction coefficients are much simpler. Computation-

al efficiency is an even more important consideration.

Unfortunately, the spherical harmonic spectral method of

Bullard and Gellman (1954) sbitabie for their kinematic dynamo model

cannot be extended in an efficient manner to our hydromagnetic equations.

Some of their spectral equations are derived directly from the vertical

3 The following references contain useful background material on pro-

perties of spherical harmonics or Robert spectral functions, nonlinear

spectral multiplication (interactions), and/or applications to fluids

problems: Bullard and Gellman (1954), Platzman (1960), and Robert (1965,
1966).
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component of the magnetic induction equation, which.we do not retain.

In our model, explicit scalar equations for the horizontal divergence of

magnetic field (and velocity) would play a corresponding role. The num-

ber of nonlinear terms would clearly increase due to the term by term

4
differentiation required to obtain these equations. The spherical harmon-

ic expansion of the meteorological vorticity and horizontal divergence

equations by Kubota (1959) is inefficient a priori.

The spectral method of Robert (1966) may be applied to the

horizontal projections of the primitive hydromagnetic vector equations.

Since the curl and horizontal divergence operate on the sum of terms in

the horizontal primitive hydromagnetic equations, additional nonlinear

terms are not explicitly generated. Orthogonal truncation is a relatively

efficient linear operation. Roundoff errors are potentially more

serious for the Robert representation as the resolution is increased.

However, they were very managable thanks to the relatively low order

spectral resolution and the 60 bit CDC-6600 word length.

3.4.1. The correspondence between spherical harmonics and Robert

functions,

Ordinary spherical harmonics may be expressed as a series of

trigonometric functions:

C wP csan0

:r=0 -2Z a

4 In a convective model, the magnetohydrostatic approximation should
be dropped. But the gas pressure still has to be eliminated by applying
the ^.curl curl operator to the vector angular momentum equation, for
example.
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c (cc,'- c; oy- Pa, e ,m (3-30c)
+n z=o (3m0 +n

Here .- Jt- , m and n are integers, (rn/) 7  is the integer part of

m/2, + is the associated Legendre polynomial of degree pfl+fl and

rank m, and the Y- are (normalized) constants. In many studies,
Y'-

the name spherical harmonic is reserved for the y44n In analogy, the

Yn, C n, S
:n and -,mn could be called cosine and sine spherical harmonics,

respectively. But collectively, all three functions will be referred to

as spherical harmonics. These functions are related to the nonorthogonal

"Robert" harmonic functions

nni, S;rn cos cQ CoS n

} (3-31b)

RA sin ;n cos c e ) n o (3-31c)

There is in fact a one-to-one correspondence between the Y's and R's,

provided m takes on all values in the range 0,2,4,.....,M and/or

1,3,5,.......M-1 where M is even. Equation (3-30) expresses spherical

harmonic functions in terms of Robert functions. The inverse transfor-

mation is

Sn cos e _ A J Y-PI n,)'))0O (3-32)
J:O mf, -ZY)'j+n



-125.-

or since the summation is ovel J only,5

C)
fl) ()

I?
( )T

~~7~ A nm ~y 'CS)z A"? n,1Yn- .? ,0 (37 -Z33)

If the formula for the , ,

can be generated from the &

coefficients is known, the A
m,vn-27

From (3-32) and (3-30),

i -= O = 0 t/2 -n2

* Sin

The only combination of I and J contributing to S;nm is I=J=0. Hence

AMI -

In addition, f ~ O where
s=O vO a , -2 hm-2(-Ic),nm-2

summation over all I,J pairs such that I+J = Kzconstant

denotes

and 1, K-(m/2)
-r"

In general, the recursion formula

A , -
/AI a) n

IK-1i A / , n
,J:o [- if,VM-27 Yr), 4-2 v-2/ -s &

(3-35b)

is valid for K=1,2,3...,,, (m/2). For K=l,a 9"

nnY Y7

- 2j M 4.o M m-2,-
(3-35)

5 c
The notation here is analogous to the '_ notation of section 3.

m-2(X ) s " r os ML -n
Srin C Cos (3-34)

(3-35a)
t)

'W. rn

A '
YA> Yn-Z
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Only (3-35a) is needed if m=0 or m=l. To obtain the y coefficients of

(3-30), express e as the product of the normalization factor

z(2j+I(f- n)!(+n4 'and Rodriguests formula (2 -Sl{ 1(')
Expanding ( 1- ) in a binomial series,

d (27 f:A ' jC'24

Finally, setting t=m + n, = sin(c, and l=I-k,

,/
-Lb (r/ -2r.)!(,7J-n . Ci!~ 2(3-36)

where n,m,Ia. O. The A and y coefficients play an important role in the

orthogonal truncation of the Robert representation.

3.4,2. Details of the Robert spectral method.

Let us now consider the details of the Robert (1965, 1966)

spectral method. All potentials, stream functions and thermodynamic

scalars are represented by a Robert polynomial of the type

M An, c nS M
E (i E ( , COS )74 M Si nA ) Sn e CosnU (3-37)

A nrC A ""I
The Robert spectral harmonics 7n and m are functions of t only.

A 0 ,$
In our model, M=4 and n=O or 6. Since Z has no physical meaning,

we take O for all m. Also, o 0 for stream functions and po-

tentials. Thus fourteen nontrivial harmonics are left. For convenience,

we introduce the variable 7 , where

A -n P1 n
2 Zh, $Is n e COS W (3-38)
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Each vector field, i.e. B, V, V
+ , and V is derivable from

a potential and a stream function. Equation (3-37) is also valid for

vertical vector components. But horizontal vector components have ex-

pansions like

ZCOSY +SM S;n n. A)Sin (P COS (R (3-40)

Robert (1965) desigiiated Z type variables as true scalars and S type

variables as pseudoscalars.. At certain stages of the calculations,

Robert series of the form

S- COS fA -? UMn Sn A Sinms L COS (0 (3-41)

may appear, with M > M. U can be transformed to a Z type polynomial

however in which m is summed from 0 to M 2 >M. Also, S type polynomials

in which m is summed up to M 3 >M are generated. Ultimately, truncation

of m harmonics leads to a new series of the form (3-37).

Keeping track of cos ' factors, each Robert series may be

described by a spectral coefficient matrix. Most of these matrices are

stored in the computer as 3x40x2 arrays and a few as 3x10x2 arrays. The

first index corresponds to n, the second to m, and the third distinguishes

the "c" from the "s" superscript. Schematically, one can think of a

typical 3x40x2 coefficient matrix as a 6x40 matrix:

8



A OJC 6,C A16
z'o z 0 0 ED 0

, , * . :

;61c A 6 •If * * " O

0:

O 0 0o 0 0 0 b b

A Oj S
The fourth column contains the trivial coefficients . The third

and sixth columns may be ignored unless an additional longitudinal wave

AO.,C AOJC A*C A,C 44C ' 'number is permitted. In.practice, . ...
A63S ACJS A 6S1

and Z, Z *, 31 .. z remain dormant too. These locations were kept to

allow enhanced resolution with a bare minimum of program modifications.

The effect of each mathematical operation is to transform

one array of spectral coefficients into another array. The notation

Z-'Z' will denote a transformntion from the spectral coefficient array

fzi of Z to the array £Z'J of Z'. Z-vZ'/cosc would indicate the new

Robert polynomial Z' is to be formally divided by cos c .

Armed with the following transformation algorithms for the

various operators, one can solve the model equations. These algorithms

are equivalent to the ones given by Robert (1966) except for ( x ). We

discuss them here for the sake of completeness.

(i) addition: Like array elements are added as in ordinary matrix addi-

tion.

(ii) scalar multiplication: Each element of the spectral coefficient

array is multiplied by the scalar.

Sdifferentiation: The transformation i
(iii) a7ces ah differentiation: The transformation is of the type
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Z-> Z'/cos CA . Clearly,

A In 1 7L
Z P " 0 . ~

(3-43a)

(3-43b)
A IJC

4. iM

(iv) T-3-1a differentiation: The transformation is also of the type

Z -*Z'/cos 4 . After applying, - -4- to (3-38), rearranging terms,

-n -
and noting that 0 :: , we obtain

M*I M-+2
CC

(i~ I~) Z2MC (3-44)

C r0 m;Y4,

m=O to M+l. , a - I,,- 2  is the Kronecker delta.

(v) Vertical differentiation: Using the finite difference operators,

this is just a combination of matrix addition and scalar multiplication.

(vi) The Laplacian 6Z 1: Applying (2-39a) to a particular term of the

Robert polynomial (3-38), we obtain

m(yn-I) s;n L(I - s;n )nP:(o+2)m+(Yo,)tJ (P COS C

After all contributions are added,a new Robert polynomial Zlis defined by

C C
/ Ya.71 rfl"/(S)

, - C -, ) (3-45)

-2
The factor cos 2Q in the Laplacian operator is effectively removable.

(vii) The inverse Laplacian (V2) - 1 : Interchanging the role of the

primed and unprimed coefficients in (3-45) .yields the recursion formula

Ot r~

)



-130-

c C

(mnx m+n+ t >me

(3-46)

C

m=0 to MA, m+nO/, for ( 0)I. (Z' ) is calculated first and m is

successively decremented by one.. Since Z' is either a stream function or

A OJ C
potential, (Z')0  is an unphysical, arbitrary constant. To avoid a

A O,C
singularity in (3-46) for m+n = 0, (Z')o  is set equal to zero.

(viii) Bilinear multiplication of two Robert series: Let the two poly-

nomials be X and Z, and the product Z'.

'A n C

-- ~~~~ -- o , m-' O

(4 cos , + ,
A X cos IP + X S;in IA) sIn ce cos LC

For generality,

From well-known

(;Y cos na

no restrictions are placed upon the upper summation limits.

trigonometric identities,

+ z"'" sinnA).(X cosA X s;nIA),, mX .

Cec- Z 1W cos S;n -(n4)R

where we have

Wf -

A4 cos (n-i

introduced

A Yc A eC

vrA

)A + W,,I sin In-21A

A ) S A e,
Z Xi

(3-47)

(3-48)

(3-49a)

Sc

(, " ^ n +(. )
(m+n('+n+ I- ,

44'ss
07-41A Wt 'GY*4

,t



^ ,sA nC

ye

A^ C A ,C

z Yn X a

A Yj5" A ,C

+ Ax
AnS A C

z ) ,
er "X 4 )

sy r>ne) G,(-, X

Sy n(n, ) 0 , r
r -I Y1 < I j

In order to obtain a Robert series of the correct form, the power of

cos(Q must equal the longitudinal wave number for each term. Fortunately,

Cos ae -

where b .

(1-sin (4)

rin (,R )

coS
In-el nl;n&n,) m;ncvQ)=

;=0 2
Sin (

are coefficients of the binomial expansion of

and

n , <

Hence the product is

rn n:* oif~ 2 o n= 0 rn a wnRft

(3-51)

(3-52)

COS (ni)A

nrn2)AJ ,+4 n+S;n-n )A S -cos Le

2 YO =0 n:o A0 m=o0 E mi C os (n-A

r-1,s 'nMnA) MSi t in-it

+ s;n r n-/ Aj 5in 0 cos (

The new coefficients of the transformation Z*X->Z ' are

(3-53)

n-IAaf <

7n-1,

(3-49b)

(3-49c)

(3-49d)

(3-50)

n+,S9
+ W nr/7+.k

Y7, e

Wmt A
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2 447m - ir)no W -t fl-V

2+ &.: ) 0 1o +n. nAo 2;

If either Z or X has any factor of cos W in the denominator, Z' will be

divided by the product of such factors.

Bilinear multiplication is the most time consuming computer

operation. Certain simplifications are possible. Each product in (3-49)

appears twice but need be computed only oncQ,, and any product involving

A 0,S A 0o,s
Z or XA may be discarded. Then too, it is more efficient to

compute just than when n+ = 0. The

factor 0.5 can be incorporated into the binomial coefficients to save more

time. Finally, truncation over n can be imposed as a selection rule since

the Robert .harmonics are orthogonal with respect to n over the sphere.

More specifically, if n' = n +4 or n'= In-Iis not in the system, terms

which would contribute to these harmonics are discarded.

In our model, n=0 and n=6 are the only longitudinal wave num-

bers. The self-interaction of two longitudinally symmetric modes (n=1=0)

generates another symmetric mode. Similarly, the self-interaction of

two n=6 harmonics modifies the symmetric modes. The contribution n+l=12

is discarded in accordance with the truncation selection rule. Finally,

the interaction of an n=0 harmonic with an n=6 harmonic affects wave num-

ber.6.

(IX) Division by cos £ in nonlinear products: Consider the generalized

horizontal advection terms e.g. c be i d OA * and curvature correction
I oe e---- 0. oscU t} n curvtue corarectio
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terms in (3-20) plus the horizontal advection of potential temperature

in (3-25). These nonlinear terms can be decomposed into a combination

of Jacobians and scalar products multiplied by a constant or by sin .

Symbolically, each member of the decomposition has the form Z'"/cos2L0 ,

where " i
n o and

is a true scalar. Robert (1966) proved that

*5 iC Se (3-56)

Z' being another true scalar. Since (3-56) holds .for each Jacobian or

scalar product, it also holds for a sum of them. It is more efficient to

group nonlinear terms as an implicit sum of scalar products and Jacobians,

i.e., a sum of Z"' s. Denoting such a sum by Z,

C£ S- . (3-57)

Whenever (3-57) holds for a variable Z, Z is said to be

"exactly divisible by cos 2  . Division by cos2 ( is equivalent to

multiplication by the infinite binomial series (l+sin 2 +sin 4 c + .... ).

The transformation algorithm is

- 0 "ifa -2; (3-58)

J , is the Jacobian operator in herical coordinates, not to

be confused with the current vector J = (J , Jq , J a ).

* . .0
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m=0 to MAX. A necessary and sufficient condition for exact divisibility

by cos 2 is

v / C A YA C

Z - - (3-59)

C

Otherwise, an infinite number of (Z') ) coefficients would be genera-

ted. Program checks confirmed the validity of (3-59) to 12 decimal places

on the CDC-6600 computer, when transformation (3-58) was applied.

(X) Orthogonal truncation of Robert harmonics: Due to the mutual ortho-

gonality of spherical harmonic functions over the sphere, truncation

over m and n is automatically orthogonal. For Robert functions, this is

true for truncation over n only. Whereas

a, ) for all -ni m) and , we have

R')r'c 'dS cS F f nV d / O

if nil and m+k is even. The only operator to generate new n harmonics is

bilinear multiplication. These are discarded. To make the truncation

orthogonal over m:

(a) Evaluate the right side of (3-25) and the set (3-20), retaining the

generated array elements for n=0, 6 and all m.

(b) Apply the *9 x and . operators to the set (3-20). This pro-

duces equations for the true scalars Pa I 2 ... J
. . 3.

7The transformations for these operators are a combination of (3-43)
(3-44) and (3-58). Exact divisibility by cos was verified.
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(c) Transform the Robert representation of the right side of these equa-

tions and of (3-25) to a spherical harmonic representation, using (3-32)

and (3-35). The projection of Robert functions onto Y or Y are

retained only for 0Om.M, invoking the mutual orthogonality of the YIs.

(d) Transform the truncated spherical harmonic series back to a Robert

series using (3-30) and (3-36).

The above truncation requires relatively little CPU time be-

cause it is carried out only at the very end. The actual procedure was to

compute the y coefficients from (3-36) and then the A's from (3-35) once

and for all and read them into the computer as data. The computations were

performed on the CDC-6600 computer in double precision to guarantee accur-

acy of the first 60 bits. As a check on these coefficients, an arbitrary

set of Robert coefficients was transformed without truncation to a set

of spherical harmonic coefficients. Then the inverse transformation was

taken. The result was the original set of coefficients. Some of the

lower order transformations were hand calculated as a second check.
8

Thirdly, the global mean of an arbitrary true scalar in the Robert repre-

sentation proved to be invariant under orthogonal truncation as it siiould.

In particular, this is true for the mean square magnetic energy,

vorticity or fo each term in the vorticity equation.

Incidentally, checks of the various other operators were made

also. Sample arrays along with their transformations were supplied by

Andrg Robert, although for somewhat different values of m and n, Some

hand-calculations and the identity transformation (v,-' jv, were

likewise performed.

Inadvertently, fy 2) d 87r rather the 477 , for n=0.

But this does not affect the validity of the truncation technique.
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-1
Despite the cos 1 C factor, the Robert. series (3-40) for

horizontal vector components has no singularities at the poles. Due to

the cos nC factor in the numerator, only the n=0 harmonics could pos-

sibly be singular. Now the vector components are obtained by differen-

tiation of stream functions and potentials with respect to > and LQ .

Observing from (3-43) that the ix oSL ZA operator generates no con-

tribution to the zonal average <S> of S,

M+I

co Cn+OC

AOC " I
- ( SCL 2 (3-60)

according to (3-44). At the poles, sin(M = 1l for all m. The series

(3-60) can be decomposed into a summation over even m and over odd m

there. It could be shown that each of these summations and hence the

whole series for <S> cos 0e vanishes. Then by application of LaHospitale's

rule, (S)=0 at CZ =- 290. Likewise is finite and the n=l

component of - vanishes at the poles. More generally, no explicita. Ype

boundary conditions are needed there, for either the Robert or spherical

harmonic representations. Taking stream functions and potentials as the

fundamental variables, the vectors derived from them behave properly at

the poles.

To summarize the Robert procedure, the evaluation of the equa-

tions consists of a sequence of transformations on spectral coefficients.

The operators are applied directly to the equations of section 3. Before

time differentiation, each equation takes the form
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)1  () A ,C C 1) A -AC (0) A VS (I)

* COS LQ S;n q - O0 (3-61)

The s3mbol (0) corresponds to either the time derivative of a prognostic

spectral coefficient or -a diagnostic spectral coefficient on the left side

of an equation. The sfmbol (1) denotes summation over all terms on -the

right side of the equation. By the linear independence of Robert functions,

the spectral equation analogue of (3-61) drops out effortlessly, i.e.,
C c

(O) A n, ) ()A ,

m - 0 ;-- ri-) (3-62)

In particular, each ordinary differential equation contains the time

derivative of but a-single spectral coefficient.

3.5. The Time Differencing Scheme.

There are 9 prognostic variables and 15 spectral coefficients

per variable (including the n=0, m=0 coefficient). Hence a set of 135

coupled ordipary differential equations are to be solved simultaneously.

The equations are integrated in time numerically.

Lilly (1965) tested various explicit finite time differencing

schemes on a four component set of nonlinear hydrodynamic, spectral equa-

tions. The expansion functions were elementary sines and cosines, appro-

priate to cartesian geometry. As to stability characteristics, the

Adams-Bashforth two-step procedure ranked high, being decidedly superior

to the centered difference scheme. Furthermore, of the leading contenders,

it was the simplest. Incidentally, Gilman (1969) had good success with
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the Adams-Bashforth scheme for a hydromagnetic dynamo problem. On these

grounds, it is employed in this investigation.

The Adams-Bashforth algorithm for integrating the ordinary

differential equation dX-/dt=F is

X. X. 3 ) (3-63)

Here j=1,2,3,....ng.... A At is the time step, and the subscript j de-

notes evaluation at time t=j At. For j=O, the single step Euler forward

differencing scheme

X X 0 F (3-64)

is used. The storage requirements of the integration procedure are not

very demanding and (3-63) uses relatively little computer time compared

to nonlinear multiplication. In practice, X is an array of Z, coef-

ficients.

The actual choice of At was governed by the phase speed of the

fastest propagating wave. Of all the wave types not filtered out, inter-

nal gravity waves apparently have the edge. An estimate of their phase

speed is c ~ (D tije1~~2lO m/sec. Heuristic arguments based upon the

magnitude of & and anticipated magnitude of the Alfv'n number suggest

hydromagnetic waves propagate slower. di 2- was rather close to

the cutoff between computationally stable and unstable sol-utions.. There-

fore, we set AB (2Tr), corresponding to 50 time steps per rotation.

3.6. Sequence of Equations to be Solved.

To conclude this chapter, we outline in effect how the problem

was posed.



-139-

A. Nonmagnetic case

(i) Set B = 0 to let a nonmagnetic flow to develop.

(ii) Prior to t=0, f. LPV = , O s, 0

(iii) At t=0O, specify various required constants and nondimensional

parameters. Then inject small (random) perturbations (n=6) into ~ .

(iv) Solve (3-22b), i.e. set 4, -

(v) Evaluate y, , , L( and V2 from (2-46a). They are initially zero.

(vi) Compute ~ and E from (3-12a). Initially E 1=0.

(vii) Solve (3-21b) for T . luJ =0 at t=0.

(viii) Solve (3-26) with E, -f -- 0 for the (truncated) true scalar

6) - . Initially, 9 will be the only non-vanishing term in (3-20).

After time t= At, rotational motions will be generated also.

(ix) Apply the Vt operator to .3-S.

(x) Solve the mormagnetic version of the equation set (3-20), making the

substitutions (3-28a) through (3-28d).

a. Compute each term on the right except the horizontal pres-

sure gradient term and the horizontal viscous dissipation term.

b. For each equation, add all the computed terms.

c. Apply the )* %x and 7'. operators to (3-20), incorpora-

ting 2 s;, VH(Vii 2 W ?(,v

d. Orthogonally truncate the spectral coefficients. Analogous

to (3-62) is a set of spectral equations

(CO - j 2

4 3(*,)-- / (3-62),

% 1 4
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e. The condition V .'14 O is equivalent to the initial

value problem

V (3-65a)

&W/0t 0 9 (3-65b)

c = O t = O (3-65c)

Equation (3-65c) is satisfied by our initial conditions. Equation (3-65b)

is obtained by adding the divergence equations at levels 1 and 3, and is

solved for 2 1*4 d ) . With the aid of step (ix), truncated expres-

sions for 1726 and V2' are obtained.

f. The spectral differential equations for ' V , C 7 and

O abq O are marched ahead one time step. For each of the three equations

in the space domain, arrays of truncated spectral coefficients Z

of (3-62) are needed for time steps j and j-1. The redundant equation

for V is discarded.
3

(xi) Solve the thermodynamic equation (3-25). Since LV is a true scalar,

the terms 6n the right are first evaluated, then added, and finally

truncated.

(xii) Invert the Laplacians to obtain (Prd I'3 and (4 at t=(j+l)4t.

1 1

and ) could also be retrieved, if desired. Return to step (iv) and

recycle.

B. Magnetic case

(i) After baroclinic disturbances and self-consistent mean flow patterns

The numbering of steps in the magnetic and nonmagnetic cases

corresponds as much as possible.
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for specified thermal forcing profiles have developed, small magnetic

perturbations are introduced into P, I/ , 4l/ , and 'j 3  These per-

turbations should affect (, but not 1 ,. Alternatively, a small

zonally symmetric magnetic field may be introduced. Resume integration.

(ii)-----------

(iii) ----------

(iv) Solve the equation - ( ) +q7 + ( )

(v) From (2-46a), (2-47a), (3-1) and (3-8)) evaluate U, aL 3 U,, U,

, a1 3 32 3 V2, V3- 1 3 

A A Qnd 13

(vi) Compute £ and E from (3-12) at levels 1 and 3.

(vii) With assistance from the inverse Lundquist transformations (3-8),

solve (3-21b) for Ur., (3-24b) for 3 3 , and (3-24c) for 13 . Initially

B -= 0 since ,m ,, 1 3 O. 14 1 8 and 8 are all trunca'ted true

scalars. Next, convert 8 to a spherical harmonic representation. In

terms of spherical harmonics, the solution to the Neumann boundary value

problem for the exterior region, i.e. to equations (2-61a), (3-5b) , and

(2-61d)is

n M+n* C

Here, (B ) is the cosine (sine) spherical harmonic spectral coef-
' m+ #(

ficient of degree m+n and rank n. After transforming imn +.( to a

Robert representation, N and B may be computed from (3-5c) and (3-5d).

(viii) Solve (3-26) with the magnetic terms left in for 63- C "

(ix) Compute VH( 6 -6).
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(x) Use the same basic procedure as in the nonmagnetic case on the

eight Lundquist equations of (3-20). In step (x)-a., there are now two

horizontal dissipation terms. In stop (x)-c., add the horizontal dissi-

pation terms , , ........2.+...a and V. . ( ) .

In step (x)-e., CO:V + +4 . Equation (3-65b) is now the sum

of four equations. In step (x)-f., the spectral differential equations

for Vo W I V Y3+ 2, V 2 P, V ~ 20 and C2 are marched

ahead one time step. The redundant equation for s 3 is discarded.

(xi) Solve (3-25) for a exactly as in the nonmagnetic case.

t / and arce(xii) Invert the above Laplacians. ((P ' and are

then known at the new time (j+l)At. Return to stop (iv) and recyclej
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CHAPTER IV. FORMULATION OF A "CORRECTLY TRUNCATED" ANGULAR

MOMENTUM BALANCE.

4.1. Introduction.

An "angular momentum balance" is useful for describing

the maintenance of model angular velocity profiles. With this

motivation, we formulate the zonally averaged angular momentum

equations (A.M.E.). When the truncated spectral representation

is introduced, the time averaged A.M.E. do not balance prior to

truncation. Also, if these equations are truncated directly, implicit

boundary conditions at the poles could be violated. This effect is

related to the recursion relationships for the derivatives of LeGendre

functions (spherical harmonics). In practice, inadequate resolution

is a necessary condition for imbalance here. The implicit bounda-ry -

conditions and hence a self-consistent local angular momentum

balance are restored by "correct truncation". This is in accord

with the method of truncation at each time step. It consists of

differentiating the A.M.E., orthogonally truncating the resulting

vorticity equation, and then integrating. The surface integrals of

the time averaged A.M.E. do balance and the balance is invariant under

"correct truncation" as shown by Robert (1970). In our low resolution

model, local phase distortion due to truncation can be severe, for

some terms.

4.2. The Angular Momentum Equations.

The instantaneous zonally averaged angular momentum equations

at level 1 and 3 of our spherical, thin shell, two layer model are

0 % . .
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(2 sin e)( co a)(0)0
(14 )

+ I a (<x, B,
(se) P 1 - jr
( 3 Co.) OS

+ a cosL4 rAto 0

-a Cos 49 W(7
(74)
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0
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% V . .
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>; - C,-os Q . is the zonally averaged angular momentum at level i.

To obtain equations (4-1) and (4-2), we first multiply the two layer

model analogue of equation (2-37a) by a.cosd and take the zonal average..

We then differentiate by parts, utilizing the top and bottom boundary

conditions in the usual manner.

All terms in equations (4-1) and (4-2) have been labeled.

The same label was assigned to terms which appear in both equations, but

with opposite signs. Those terms cancel out in the vertically averaged

angular momentum balance

S, a ' ><, .+ <8 /<83' 2
at- a cos(- Cos "

or o~Q, , 7 +, /s, o. COS C3 * >OLCOS(Dl
in Table 4.1. Most of the nonmagnetic terms are quite familiar toeterorologists. For exaple, at idlatitudes in the terrestrial

atmospherea sizable percentage of the net angular momentum transport a

+ > a Cos (P) - 2 Sln V( r >] (4-3)

for 7 z( 1+ '+ ' 3 )/Z

The various terms in equations (4-) and (4-2) are summarized

in Table 4.1. Most of the nonmagnetic terms are quite familiar to

neterorologists. For example, at midlatitudes in the terrestrial

atmosphere, a sizable percentage of the net angular momentum transport
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Table 4.1 Catalogue of Terms in the Angular Momentum Balance Equations

Category Subclass Label

(la) (lb)A. Coriolis Torque

B. Maxwell stresses

horizontal, axisymmetric

horizontal, eddy1

vertical, axisymmetric

vertical, eddy

(2a), (2b)

(3a), (3b)

(4)

(5a), (5b)

C. Reynolds stresses

horizontal, axisymmetric

horizontal, eddy

vertical, eddy

vertical, axisymmetric

(6a), (6b)

(Ta), (7b)

(8)

(9)

D. Frictional torque

vertical coupling

horizontal coupling

(lOa), (10b)

(11a), (1lb)

iThe notation "eddy" indicates that the zonal average is taken of

a product of asymmetric factors,



across latitude circles is accomplished by horizontal eddy motion, i.e.

by term (Tb). Incidentally, the vertically averaged coriolis torque

vanishes because <(r, > = - ( >.

There are two possible sources or sinks of angular momentum

for the fluid region 0 3.. The first is a net frictional torque 7'

per unit mass equal to.1/2 the sum of terms (10a), (10b), (lla), and

(llb). Thus

± A () 3 )0, ) k U >

+ 0 >,0) 0 Cos ( CAP
(0)) (4-4)

where hasthe same units as 'V=D Z 1 With the help of equation

(3-39),

AA d 4 -5

Then substituting equation (4-5) into (4-4) and integrating the last two

terms by parts,

7ra T T/z

I -L (<U9 a coSW)co L4' dL' -?(ta > a Cos P)coS CP d4O

Ir/
2

n n7a

The first term on the right side of (4-6) is usually associated with the

net external torque (per unit mass) exerted by the rigidly rotating lower
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boundary at z=0 upon the fluid region z >0. The last two terms are due

to the spherical (thin shell) geometry and resemble the first in form.

They vanish only if the horizontal dissipation is neglected. Of course

for the isotropic case ( V V), the second term is clearly negligible

compared to the first, whereas the third term is small provided

c, 3COS c c /dDlZCO > ZoCo s CL /D2 For either the highly

anisotropic case ('/) >f), or the deep atmosphere case (T aZ ),

could conceivably be the small difference of larger terms. The long

term mean of T should be small unless the fluid layer is systematically
F

slowing down or speeding up.

The second possible source or sink of angular momentum for the

fluid region O_ 3 f is the eddy Maxwell stress term (5b), i.e.

P (, < B >a. cos 4Q (4-7)

Formally, this magnetic braking term is not spurious since an analogous

term would occur in a model with continuous vertical variation. If the

vertical integration were extended to the nonconducting region z >z4,

then lim T-7 O due to boundary condition (2-61d).

The axisymmetric counterpart to (4-7) vanishes because

<~A>: 0 . We also discovered that T, was negligible in the numer-

ical computations even though neither 1 nor 8 vahished. It

turns out that L? << 1 in the production runs. Also, B 9(1)
IV 2-

in the region 3>} which causes another reduction by a factor of

at least dfN-/L. Furthermore, we note that no magnetic braking
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if B = 0 as at a perfectly conducting .boundary. Finally, the motion

in the nonconducting region z)z is not affected by local magnetic

fields there, since J 0.

4,3. Inconsistencies in the Untruncated Angular Momentum Balance.

To reiterate, in the course of the original numerical

integrations of the Lundquist equations, various hydromagnetic vari-

ables were written on-a history tape once every rotation, i.e. every

50th time step. From this information, we could reconstruct equations

(4-1) and (4-2) at time t=t,+j t, j=0,1,2...J-1. The arithmetic

average of these equations formally yields the time averaged , zonally

averaged angular momentum balance.

According to the Adams-Bashforth finite difference scheme,

the arithmetic average of the differential equation dX 'tcr = I:

over the time interval to ( to j-(J-i)A; is approximated by

- 2- " F - Aj - .(4-8a)

(k,m) X- , (.A, M
where F is the arithmetic time average 2: F * The

quantity X could represent the mth spectral coefficient of the angu-

(k,m)
lar momentum 2=, (u>a..coSP . Similarly, F could represent the

mth spectral coefficient of the kth term on the right hand side of

equations (4-1) or (4-2).

For a typical "production run", J-35000. Thus. the edge

effects in (4-8a) can be neglected, i.e.

Xl- Xo 1, -tE F ( )
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Generally speaking, no drastic long term trend would be expected for ~

Direct computations confirmed that 1 O-(7o). Consistency requires

that

F (4<-9)

(k,m)
for a typical value of F . But our computations failed to satisfy

this inequality for the untruncated equations. In the present usage,

untruncated means that the forbidden harmonics generated by products

like <u)(<rv or ('3 ') were not discarded. Of course the history

tape data,s i.e. <u>,(v>BA 13 , etc. that went into the above pro-

ducts were of truncated form.

Programming errors and roundoff errors were quickly ruled

out as causes of the inconsistency. Also, our estimations of the

F coefficients were probably not very biased because J is large

and the relevant characteristic periods are longer than one rotation.

4.h. Analysis of the "Correctly Truncated" Angular Momentum Balance.

The above inconsistency disappeared when the truncation

procedure used for the original numerical integrations was in effect

adopted here. First, the differential operator was applied

to an angular momentum equation, but term by term.' Second, the re-

sulting vorticity equation was orthogonally truncated term by termb

Third, the )coSaPdt operator was applied to the truncated vor-
- /2

ticity equation to obtain a "correctly truncated" angular momentum

balance. Our computations for the "correctly truncated" angular
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momentum balance provided an indirect check on the Lundquist trans-

2
formations. Further numerical and analytical investigation revealed

that the - g-7 and orthogonal truncation operators are not com-

mutative on the sphere.

We shall now analyze the truncation process. The various

terms in the time averaged balance at levels 1 or 3 were evaluated in

the Robert representation. Symbolically, the net angular momentum bal-

ance is given by

0- F s; -; t (4-10)

Here M(k).: 21 for all k, while, is the angular momentum in the space

domain at time t = to + JAt.

For the present analysis, the right hand side of equation

(4-10) is rewritten in equivalent spherical harmonic representation.

Accordingly, each array P ( k m ) , m = 0,1,.........M(k) of Robert spectral

coefficients is transformed into an array S(km), m=0,l, ... M(k) of

spherical harmonic coefficients. Without loss of generality, we set the

(k 9m)
radius a=l, M(k)=21 for all k, and S ( k m ) =S for one of the values

kR of k. Similarly, the orthogonal but unnormalized LeGendre polyno-

mials P found in Abramowitz and Stegun (1965) may be used. These
m

2 We also numerically integrated the standard hydromagnetic, equa-

tions for a few rotations. The results agreed to several decimal

places with those obtained by the Lundquist transformation method.

r L



-15?-

have the desirable property of being +1 or -1 at the poles, Just like

m
sin ce . In the spherical harmonic representation,

(k,m)
Now there are two constrints on the F and on the S .

coefficients as noted by Robert (1970), which hold even in the instan-

taneous case J=1. More specifically,

/0
Z F - 0 (4-12a)

( F'Zl)cl' - O (4-12b)

for all kw since each term in equations (4-1) and (4-2) vanishes to-

gether with (U>, , <A > , and <8 > at the poles. In turn,

the constraints

o fS, +S +S + S, = (4-13a)

S, S3  +5. S +r ~ -So (4-13b)

may be inferred from (4-12). Incidentally, if the Pm are normalized

LeGendre functions, Pm(0Z7f/2)*Sm replaces Sm in equations (4-13a) and

(4-13b). The actual numerical computations satisfied the contraints

(4-12).

Differentiating equation (4-11) yields the net rate of

change of zonally averaged vorticity, i.e.
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Jzt
- oo<a Cst? BO/

6 d / +
+o (4-14)20

r4=0 m

The -os polynomials have been expressed in terms of the P

polynomials in Table 4.2. With the aid of this table, the first set of

equalities in (4-15) are obtained below. Robert (1970) obtained the

second set of equalities by invoking the constraints (4-13a) and

(4-13b). They help to further clarify the effects of truncation upon

the angular momentum balance. Also, equation (4-16) below represents

the orthogonal truncation of equation (4-14). So

(4 -15a)To = -(S + s + s + ....... + S1) =
0 1 3 5 21

(4-15b)T = -3(S + S41 2 4

= -5(s + s 5
3 5

+ ....... + s1) = 5SI21 1

-7(s S + ...... + s ) 7( + s)4 6 20 0 2

T = -9(s + ...
4 5

+ 21) = 9(s +s )
21 1 3

= O, 5 m_ 21

(4 -15c)

(4-15d)

(4-15e)

(4-16)T
m
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Table 4.2 Useful Properties of Some Low Order LeGendre Polynomials

Po 1

P
1

sin(R

= ( 3sin2 -1 )/2

3
= ( 5sin 4 -3sinWt)/2

4 2
35sinW -30sin e +3 )/8

5 3
63sin 4 -TOsin q +15since )/8

6 4 2
P 6 231sin -315sinCt+lO5sin c _-5 )/16

l=P "

1

2
in = ( P +2P )/30 2

3
sin c ( 3P +2P )/5

1 3
4

sin cQ

5
sin LQ

6
sin (Q

= (8P +20P +7P
4 2 o

)/35

= (8P +28P +27 )163
5 3 2

= ( 33P +110P2 +72P 4 +16P6 )/231

3Based upon material in Abramowitz and Stegufn (1965), p. 798

P = (

P =(
5



I SP

cosc do?
I dfC

= o

SPo

= 3P1

C1. d-P = P +5P
cos V aJ= P o 2

/_ --- * = 3P +T7P
.Cosw da 1 .3

= P +5?.+gP

= 3P +7P +11P 5
1 3 5

= I' d +(jmj-1 ) P , ma 2
c=c d L m-1

LP cos do

J; PcospdtPa
. 2

R cos o di

P coswd 
7r/2

= P +P
10

= ( -P )/3

= ( P -P )/5
3 1

=( P -P2 )/7

= ( P -P )/9
5 3

= ( P -P )ll

= ( P, rn-I )/(2m+1) , m1

L 2
>2
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, dP

cos d,Ioc dJP

=

)r7~IIO

r
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We can integrate (4-15) and (4-16) to obtain the net rate of

change (r % cr ) /J t of the "correctly truncated" angular mo-

mentum balance. A boundary condition is needed to determine the constant

of integration. We require that no term in the truncated angular momen-

tum balance generates any angular momentum at = - 7T/2 (or tP=+Tr/z).

In effect, this restores a constraint previously satisfied by the trun-

cated angular momentum equations. Mathematically,

CT) (t) co-S Le Ch COS W cl

'r£ (T)

mco

- '~- "" +(J >> ) (4-17)

7/2

Obtaining the f cod~ integrals from Table 4.2 and utilizing
/Z n (T)

equations (4-15) and (4-16), the "correctly truncated" sm coeffi-

cients are given by

(T)
S = S , O m-_3 (4-18a)
m m

(T) = -( +s ) (4-18b)
4 0 2

(T) 5 = ( s + 3 ) (4-18c)

(T)
S = 0, 65m 521 (4-18d)
m

In contrast, if the angular momentum equations are truncated directly,

Cr)
the resulting S ' coefficients are

m

(T)
s ' = s , o:m:5 (4-19a)
m m

0 - a
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(T)
S ' = 0, 6 :5m:21 (4-19b)

Clearly (T) 4  (T) ' Sand (T)S # T)S ' in general.
4 4 5 5
This means that the linear operations of differentiation

and orthogonal truncation on spherical harmonics (LeGendre polynomials)

are not necessarily commutative. The recursion relationship

O d& _Cos L +(2-e) e v> Z of Table 4.2 is responsible.
CO.S-" -oSL Tj .

Conversely, differentiation and nonorthogonal truncation of the zonally

averaged angular momentum equations would be commutative, since .

is a function of only R and m, for m>l. However nonorthogonal trun-
m-1

cation is undesirable on other grounds as suggested in Chapter III.

Equations (4-18b) and (4-18c) have an interesting interpre-

tation. Now each nonlinear term in equations (4-1) and (4-2) involves

a factor which vanishes at the poles. Hence the untruncated nonlinear

products also vanish there, as is reflected by the constraints (4-13a)

and (4-13b). In essence, equations (4-18b) and (4-18c) are the anal-

ogous constraints for the "correctly truncated" angular momentum balance.

Physically, they enable the "correctly truncated" nonlinear products to

vanish at the poles. In return, up to two of the retained harmonics

are modified. Conversely, the directly truncated nonlinear products do

not automatically satisfy the correct boundary conditions at the poles.

The above results could be generalized of course for higher

resolution models. For example, if all harmonics are discarded for

m;M,
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(T)
S = S , O mM-2 ( 4 -20a)
m m

(T)
S =-(S +S + '..+S ), (M odd) (4-20b)

M-1 M-3 M-5 0

(T)
s = -(S +s, + ....+ ), (M odd) (4-20c)

M M-2 M-4 1

(T)
SM = 0, m>M (4-20d)

The constraints (4-20b) and (4-20c) do not uniquely determine the re-

tained S harmonics unless M_3, and if M = 0 or M = 1, only trivial
m

solutions are possible.

For our model, there is considerable distortion of the S4

and S harmonics. This affects all the Robert harmonics F CA>'M) for

m_5 but -F ~m F O 0 i.e. they satisfy the
nl=: )m=0

correct boundary conditions at the poles.

As an example, consider the distortion of the time averaged

coriolis torque f4v 3, as opposed to (v 3  itself, caused by the "correct

truncation" process. This term appears in equation (4-2) because the

motions are not strictly horizontally nondivergent. Multiplication of

<v 3 > by f = 2JAsinRq generates an S6 harmonic. Thus truncation is

necessary for only the even harmonics. But in addition to discarding

6 , S4 is replaced by -(S( +S2). The constraint S1 +S 3 +S 5 = 0 remains

Equivalently, in the vorticity equation, the terms

2.~L- A COS ce 4 Z( /R and 2 A S, o 2 41, would require

truncation unlike 2A C - z Var/,A.



in tact.

Both the untruncated and "correctly truncated" forms of

f (v3  are plotted vs. latitude for the two long production runs in

figures 4.1. and 4.2, respectively. The discrepancies between the two

forms could arise from the low order spectral resolution. The phase

distortion in latitude.caused by truncation is worse in Fig. 4.2 than in

Fig. 4.1. Observe that f <(cv attains a relative minimum (zero) in Fig.

4.2 at the equator if untruncated, but a relative maximum there if trun-

cated. That the P4 harmonic contributes to the thermal forcing profile

for Fig. 4.2 is not particularly desirable since P4 is the highest re-

tained even parity mode. In contrast, the highest degree harmonic, i.e.

P2 in the thermal forcing profile for Fig. 4.1 is at only half the reso-

lution limit. Now the run corresponding to Fig. 4.2 has a positive

equatorial jet at level 4(or 3) as depicted in Fig. 6.4a. However, it

is apparently being maintained by a spurious equatorial convergence of

angular momentum associated with the truncated f <v > term in Fig. 4.2b.

The situation is better for the other run. Incidentally, the coriolis

torque does not affect the vertically averaged angular momentum 04 2

Although the "correctly truncated" angular momentum balance

is locally distorted, the surface integral of the angular momentum

balance at any level is not affected by orthogonal truncation. More

specifically, application of the last integral formula in Table 4.2

yields the result

- /"21/ coZ CO -t aL //cosce dW &0 297 (4-21)
7r/2 -ra
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Figure 4.1. Effect of truncation on coriolis torque for P.R, 2.

A-"correctly truncated" coriolis torque.

B-untruncated coriolis torque.
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Fig. 4.2. Effect of truncation on coriolis torque for P.R. 1.

A-"correctly truncated" coriolis torque.

B-untruncated coriolis torque.
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obtained by Robert (1970). Equation (4-21) states that the untruncated

as well as the "correctly truncated" integrated angular momentum balances

should be self-consistent, and our numerical computations have confirmed

this.

But a self-consistent untruncated angular momentum balance

for each spectral harmonic would exist and coincide with the "correctly

truncated" and directly truncated balances, only if each F or

S coefficient vanished for m>M (M = 5 for our model). It would

certainly be desirable to show that the truncation has no significant

time averaged effect upon the model's large scale angular momentum bal-

ance. Our model resolution was too low to expect this. A consistency

check of the untruncated angular momentum balance for higher resolution

spherical harmonic models would be worthwhile.

Another constraint might be more easily satisfied by higher

resolution models. This is that the sums of even and odd discarded co-

efficients, e.g. SM+1 +M+ +-**- and SM+2 +SM+4 +... would be smaller

than typical individual discarded coefficients. Then SM_1 and SM would

approximately satisfy the same constraints, i.e. equations (4-20b) and

(4-20c) respectively, as SM-1 and (T)SM . Mathematically, truncation

and differentiation would be quasi-commutative. Physically, direct

truncation would not significantly upset the boundary conditions at the

poles, and "correct truncation" would not significantly distort the re-

tained harmonics.

It is interesting to consider the consequences of setting

M = 6 instead of M = 5, on the "correctly truncated" coriolis torque.
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One wopld discard S , set S- = -(S, +S3) and leave the other modes alone.

But since f( < is approximately an even function of latitude, trunca-

tion would barely distort the f <v3) profile. Meanwhile, f <u 3  is

approximately an odd function. Consequently, f£u3 and hence <v 3

itself could be as distorted if not somewhat more so than previously.

We did not conduct such an experiment however.
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CHAPTER V. FORMULATION OF THE ENERGY BALANCE

It is customary to formulate energy balances for general

circulation models. An energy balance serves two useful functions.

First its form reveals whether energetic consistency has been achieved

in the sense of Lorenz (1960b). Energetic consistency is a desirable

property. If the model contains spurious energy sources or sinks, modi-

fications should perhaps be made to eliminate them. Second, an energy

balance is another tool for interpreting the model results. In fact,

numerous observational studies of the energetics of the earth's atmo-

phere have been carried out.

An energy balance can also be formulated for an hydro-

magnetic model. This was done, for example, by Starr and Gilman (1966)

in cartesian geometry for a very general set of nonhydrostatic primi-

tive hydromagnetic equations. The energetics for Gilman's (1967)

linearized, magnetic model were much simpler. Finally, as previously

mentioned, Gilman (1968,1969) verified that his nonlinear numerical

dynamo model was energetically consistent, provided the kinetic and

magnetic energy were suitably defined. The energy balance for our

model most closely resembles that of Starr and Gilman (1966) in form.

One simplification is that we assume a vertical magnetohydrostatic bal-

ance instead of nonhydrostatic conditions. Conversely, the spherical

geometry of our model introduces complications.

The two layer model contains several forms of energy. The

kinetic energy is split up into the contributions ()t> from the



-165-

axisymmetric zonal flow, <KM) from the axisymmetric meridional flow, and

(EKE> from the eddy horizontal flow. Thus

<(KM> - D S : 2 5.) 2 (5-1b)

2 2 2

<(KE r <u + U3 3 S (5-lc)
2 

2"

The bracket < > still denotes the longitudinal average C(7)'f( )dA

of a quantity and °  the departure from that average. Since the in-

tegrands are all independent of latitude, the surface integral f dS

is equivalent to (2rf) CoS c Ie . Note that an integral over

height has been replaced by a summation over levels 1 and 3. The total

zonal kinetic energy is

< Z E > /I > < > (5-ld)

Likewise, the magnetic energy of the axisymmetric zonal field, the

axisymmetric meridional field, and the eddy horizontal field are re-

spectively

017D (<B, > <1 (5-2a)

fDJ.o (c8."r>_ ds (5-2b)
V 7 44* j

% W . A
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2 <Le
SEME) k 6 +8 +B 3 >)d' (5-2c)

whereas the total zonal magnetic energy is

(+ME) (Ml) /> <MM) (5-2d)

Both (KZ> and <MZ) are purely toroidal, while <KM> andqsM) are purely

poloidal.l But (EKE> , <ZKE> , <EME> and(ZME> are combinations of

poloidal and toroidal components. The electrical energy has been

filtered out by the MHD approximation.

Meanwhile, the zonal available potential energy is

< Z PE >)- (< cIS (5-3a)

and the eddy available potential energy is

<EPE> gJDJ SdA S (5-3b)

In these equations, the thermodynamic variable 40 is defined as

The usual approach for deriving the energy balance is

adopted here. The horizontal primitive hydromagnetic equationS

1The vertical components of motion and magnetic field do not

enter into <K14> or (MM) , as discussed in Chapter 2.
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(rather than the Lundquist equations) at levels 1 and 3 are first de-

composed into zonally averaged and eddy equations. The next step is to

form the energy density equations

+ <u ~< 3> + (5-5a)

>- . > (5-5b)

<YX3u + ,-a + , _ (5-5 )

<sB<,A + <~ 3> - .. (5-5d)

,/- '.4,',,4-- <83 > c (5-5e)

,of +-4- + (5-5f)

Note that the magnetic energy density equations are derived directly

from te magnetic induction equations in which the electric field E and

the current density J have been eliminated. Thus, qumatities such as

the Poynting vector E x B will not appear in the final energy equations.

Also, the energy density equations involving available potential energy

are

& _-, ,... (5-5g)

d/ a (5- h)

S * .
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The energy density equations are now multiplied by fD and integrated

over a sphere of radius "a". The integrands of the various energy

transformation integrals are not unique, but the integrals over the

entire fluid region are. Integrating by parts and using the results

of Starr and Gilman (1966) as a guide, we obtained a set of energy

integrals. The following equations and boundary conditions were re-

quired for this step: The equations of mass and magnetic continuity,

i.e. (3-21a) and (3-24a), the identity (2-43) governing magnetohy-

drostatic balance, the boundary condition that there are no singulari-

ties at the poles, and the boundary conditions (3-4) and (3-5) at

z=O,z 4 . Our results are consistent with the kinetic energy balance in

spherical geometry for the nonmagnetic case which .is: given in Saltzman

(1957).

The energy integrals appear on the right hand side of the

*energy balance equations (5- 6 a) through (5-8b):

. - [<kZ>->( EME>J 4-<F, > qf-< (5-6a)

____ - -I fyV[t14> ( >J 4 -)IE>4K N <<KM-le <A-4

f- k > - M> <E MIE>] + [ i A6> --)o <1<1o >j



E- > < WZ>J - f< EkE> 1.<k/vt>J- /(M>- <M iF->J

- [ -kjE>-)-<Al A44 - [KEMI5>->KEA4 E>] + <EPE> --;4(F-E:

(5-6c)<F KA(> 4- <EiA<->

+ < A47* (5-Ta)

( 5-Tb)

I(<kZ-> -> <EAf)E >] + [<KAI> -:4(-ElVIE>j +[1<E j Y
--+4<ECtE>

+ -<E M FE >

15KEE

L<14M.>,
a It

D<om -E o
1)c

(5-7c)

(5-8a)

c "k m Z >
B).e

4- <0 >/lfz

lom > 4 <M m j + [<E A-E> -) L <M M>j + <Om M> + <M M ">

+ <06me>

C) <-:% p 6 >
rD;t

- -&ZPE>-,p-<ffm>j -[<ZPL: 4<Epr>j +<( Pc >
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- (FEP -4 <eE- +[<PE>-+(EPE>] -(G> (5-8b)

These energy balance equations give the time rate of change of the

various types of energy in the model.

Terms with curly brackets are energy transformation inte-

grals. In order of appearance,

F- Pbf E@i C,:?: )<a
0'£) 11 t~

<a <o <L3  >CL COS ( 3
s;na dS (5-9)

L'"cZCA /J3 t &O'cuZo~s~
z a do

+

[<wKZ>-iO =

4. <
2twn-a =

<L 3U~
a~>0 ds (5-io)

gof~ ~ ~ 4? < 1 D(,!d (,) .< x,VE )dsDrc <8AN(65 ,<a>I_
W00 

0

(5-ll)-08, A <) -u,> dS
Sny~r

< .> < ,- > dS
A*r . *

(5-12)

atEPE)

cor ~P >. L A' 3 q), dS
00 0 OW14 co U ST~~ a awvx s oro-

[<kM>4<k'Z~j

+ De
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<EKE)4KA-I4>J -D f0 saaf o(s)

ta~ ffto 1 -
+ + < 9f <r,>U,

qpC

<__ *2 gf-S

+ F, DJf<"'; dS
s

Lt sDS

D M4,If
s7/o

_________ ~f' 3

(5-14)

:1. (5-15)

>46 3A- 0o1B*> A*2 
iZ 2..,Sry/ ~4~o5'u

S.f0 Ii7>ds (5-16)

vr4 p

5/- ST~~JL "

b iP E> - )<w >J

fI(Ek E> - m li>J

- SL8 '
fl[Olr 3 I r\>

-~ < > wgvt

<BA BA>

b

bdS.00i~Yjl 1

cosco) ds

(5-13)

+

(5-17)

ds

<qik Co + <TXhir , t ~aw (9) a 3 3 Dp(8"

tazn t e 'k A)'(Vl< < E +<1

as <,ur, ><cr-"> ds2

(5-18)

p C CC0541P~-~ e
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~KE>- (Mm>I = D~{v~1~ f ~~-O dSt~'f <<4, <o: V2
0'P

,"or - z dS (5-19)

-~~~~~~~Cu -.__ UI ,.<: _,.,-_.,,i( ~ 8k~~ < D~-B" ~~rI
Alf 'r 13 3 w.. K dXWo

SA 
-e + (8 0

,+ 3 - , A-p)

+,-- $ 0 -J o24 U Vt~r Yn c dS

Tra 3
___ _ 1- (133__20

+ID Jf uJB )( (-L~"-)s dS (5-20)
f4*r&of 2 2D

L PE> -><E(E>J 6ef*d
-2

- dS
$ac

(5-21)

(5-22)

The arrows denote the sign convention. Thus ZP>-3<EPE>J would indicate

a transformation of zonal into eddy available potential energy rather

than vice versa. The energy transformation terms are named as such be-

cause they .each appear with opposite signs in two energy balance equa-

tions.

For low Rossby number flows, the work done by the two



coriolis terms dominates in equation (5-9). Their sum, i.e.

oJ 2z4 Fn ;(< 3-, >dS does not vanish, unlike the net

coriolis torque in the angular momentum balance. According to equation

(5-10), the transport of angular momentum up the gradient of angular

velocity results in a. conversion of(.KEKt into <KEi. The last integral

of (5-10) which contains the product of the vertical eddy Reynolds

stress and the vertical shear of angular velocity cannot be neglected.

The first and third integrals in (5-13) are analogous to the first two

integrals in (5-10) with u replaced by v. Meanwhile, the second inte-

gral is associated with a curvature correction term introduced by the

spherical geometry.

A given form of magnetic energy cannot be transformed

directly into any other form of magnetic energy or into available

potential energy, and conversely. But kinetic (magnetic) energy can be

transformed into magnetic (kinetic) energy. In equation (5-11), the

first integral is the previously mentioned Babcock term. The horizon-

tal shear of the differential rotation stretches axieyinmetric poloidal

into axisymmetric toroidal magnetic fields. The second integral is

analogous, but involves the vertical as opposed to the horizontal shear

of angular velocity. Equation (5-12) resembles (5-11) except that eddy

Maxwell stresses replace the axisymmetric Maxwell stresses. This equa-

tion may be also be compared to (5-10) which has eddy Reynolds stresses

and opposite sign. Suppose that EKE><E*<()K were positive and that

the Reynoids and Maxvell atresses had the same sign. The Maxwell

stresses vould then act as a magnetic brake upon the differential



rotation as noted by Starr and Gilman (1965b).

Equation (5-14) is similar in form to (5-9), neglecting the

coriolis terms in the latter. Also, applying the mass continuity equa-

tion, (5-16) could be reduced to an integral expression analogous to

(5-13).

The integrands of equations (5-1) and (5-19) involve

*(V [<J>x. > while that of (5-20) involves (<x j >. These terms

may be interpreted as the work done by eddy fluid motions against the

magnetic body force. Note that the integrals in (5-20) implicitly con-

tain both double and triple eddy correlations. However, the triple

correlations vanish, because our model contains only the two zonal wave

numbers n=0O and n=6 .

Available potential energy is converted to kinetic energy

in (5-17) and (5-21) if fluid parcels systematically rise and cold par-

cels sink. Likewise,(ZPE> is transformed into(EPE> in (5-22) if heat

is transported down the meridional temperature gradient.

The terms

"3"<,q'> +. '0:34dS (5-23a)

J>u [K , > < _ > ]dS (5-23b)

-kE Q (5-23c)

A (5-24a)
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MMZ[V>3'+< )> (5-24b)

<EM F7r(u.8Aa, ( (u 1 3+I/U)JTUo 11d (5-24c)

represent energy fluxes of <KZ>, <KI4>, <EKE>, <MZ>, <MM>, and (EiE)> re-

spectively, measured positive downwards, across the upper boundary z=z 4 .

All flux terms at the upper boundary which contain w4, as well as all

fluxes at the lower boundary z=0, have been excluded due to the boundary

conditions. Equations (5-23a) and (5-23b) represent the work done on

the fluid at the upper boundary by the Maxwell stresses. Now<B4A=.0,

and from the discussion in section 4.2,< B > B B >0,

suggesting that only <(MM+> and <EME > need be retained. But in the

actual'numerical computations, all the energy fluxes were negligible,

although <MM) and <MENE> were slightly larger than the others. Clearly,

the dynamo is not maintained by a magnetic energy source in the non-

conducting region z z4 .

Zonal available potential energy is locally generated wher-

ever <,'>/c < I by

I co a& ahe e> (5-25a)

In contrast, the "generation" term

<G,,, = - 4,
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for eddy available potential energy is negative definite and hence re-

presents .an energy. sink.

The frictional dissipation of <KZ>, <KM>, and <EKE\ are

given respectively by

0 - it> * 2Q < ]dS

±g~fv~, A o + <L3 >AA (<L)6)dtfsD 10'A (<a,>, 0

1<
~DS V~)r J 2 > cisd

.Co ,<, +<>>Aco, <)dS
+ D < > A d

Sf

(5-26a)

(5-26b)

fs~Sf- *J 2If -g ]d
ZIP 3 r 2>14S

*A V(a ~ AfV ((I d S(5-26c)

and the ohmic -dissipation of <MZ>, <MM>, and <EME> by

Tr~o0'
o*

<A> B,> + A. A> + <1 ><6, -3,9

-I-mJ' [<GA>d A(<a

0< 6-
S <s^>A c .>o

-t<,3 > d(<A>o,)JdS

<a '> ,<A,"('>)+<>9 m(o, <o>) dS

>}ds

(5-27a)

+< s >,+- 3 213: ds

(5-27b)

If,

F F >

0 - .

-c S
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-B(8 38 +2s Jdas ,- A (3 + 8 ,,)

+4 ( ,a; , )( B ') O + A (5-27c)

Adding up the energy balance equations (5-6a) through (5-8b),

the energy transformation integrals (5-9) through (5-22) cancel in pairs.

Thus neglecting the energy flux terms, we have the energy balance equa-

tion

0<(-T <G >+<G >-<F><<

+ <O> > < ME> (5-28)

for the total energy

4- <EM >4 <ZPE> - <PE> (5-29)

The energy processes in our model are summarized in the

energy diagrams of Fig. 5.la and Fig. 5.1b, for the magnetic and non-

magnetic cases respectively. In both figures the insignificant energy.

fluxes and the brackets < > are discarded to improve legibility. .

•
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Energy transformations are symbolized by arcs or straight line segments

connecting any two dots (forms of energy). Arrows are drawn to indicate

the sign of terms in the energy balance, (mostly dissipation and genera-

tion terms) if known a priori. All arrows are included in the diagrams

constructed later for the two "production runs". Note how much more

complicated Fig. 5.1a is of the two diagrams.

We were unable to prove any of the anti-dynamo theorems

using the energy integrals as a starting point. However, it is still

interesting to compare the energy diagrams in Fig. 5.2a and Fig. 5.2b

for the toroidal motion and axisymmetric anti-dynamo cases with Fig.

5.1a. It is perhaps more than coincidental that only Fig. 5.1a has

closed, nonoverlapping paths (circuits) linking(MZ> and MM>. Such

paths could exist in Fig. 5.2a and Fig. 5.2b if wKZ+4-M) were a

valid energy transformation. But the kinetic energy of the axisymmetric

toroidal motion is never delivered directly to the axisymmetric poloidal

magnetic field.

An energy balance was also formulated for a model with con-

tinuous vertical variation. The appropriate integrals for the various

energy forms, energy transformations, and boundary value fluxes are

contained in Appendix C. There is an excellent correspondence between

the two layer and continous models. Thus the finite differencing

scheme apparently introduces no spurious energy sources or sinks. On

2Available potential energy cannot be released in this case any-

way, since w=O.

W 40
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FKM

I'GPE GEPE'

Fig. 5.10. Energy diagram for the
generalized magnetic case. The
symbols are defined in the text.

FEKE

'GEPE . GEPE

Fig. 5.lb. Energy diagram for the

nonmagnetic case .

FKZ

MM

OMM
FEKE FKM-

MM

IO M

ZPE - EPE

GZPE GEPE

Fig. 5.2ao. Energy diagram for
toroidal motion anti-dynamo.
Legend same as in Fig.5.la,b.

Fig. 5.2b, Energy diagram for oxi-
symmetric anti-dynamo.
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the basis -of equation (5-28) and the correspondence between the two

layer and continuous models, our model should be energetically con-

sistent.

A numerical check of energetic consistency was also made

over a short time interval for one of the "production runs". The in-

stantaneous rates of change of the various forms of energy were computed

(a) directly from equations (5-la) through (5-3b) and then (b) from

equations (5-6a) through (5-8b). As in all energy computations, tri-

linear terms were truncated only after the third factor was multiplied

by the product of the first two factors. The integrals were conserved

by the orthogonal truncation process. In any case, the percent differ-

ence between the results of method (a) and method (b) above was negli-

gible.

We are now ready to discuss some numerical experiments with

our model.

% 0 .0
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CHAPTER VI. NUMERICAL RESULTS

6.1. Introduction.

Computationally stable numerical solutions have been found.

Only a limited number of "test" runs and two lengthy production runs

could be made, however, due to the model's complexity and to the time

scale of the solar magnetic cycle.

A model simulation of the earth's atmosphere is discussed in

section 6.2, whereas section 6.3 lists parameters used in various solar

test and production runs. Qualitative results on the relationship between

angular velocity profiles and type of thermal forcing profile are presented

in section 6.4. It is found that an equatorial jet can develop for certain

simple 1 profiles. Magnetic fields can significantly alter the jet.

In section 6.5, general circulation statistics are presented,

mainly for both production runs. Magnetic fields greatly affect the angu-

lar momentum balance and nearly destroy the horizontal shear of the verti-

cally averaged angular velocity profile. A crude determination is made of

the Rossby-Hadley regime boundary for production run 2 (P.R. 2).

The dynamo maintenance aspects of the model are focused upon in

sections 6.6 through 6.8. Magnetic fields apparently can be sustained by

dynamo action if the magnetic Reynolds number R exceeds a certain criti-

cal value R . We estimate that R is somewhere around 250 for pro-

duction run 2. The structure and evolution of magnetic field patterns are

described, principally for the two production runs. Inferences about the

irregular magnetic reversals are made from a study of the energetics.

Our attempt to reproduce the solar equatorial jet and features <

Of-the magnetic cycle simultaneously has been only partially successful.

In P.R. 1 (P.R. 2), the equatorial acceleration at even the upper
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level is much too weak (fairly realistic) while the characteristic time

scale for magnetic reversals is reasonable (too rapid). The dimensions

and amplitudes of our vertical magnetic eddies correspond roughly to those

of the observed magnetic active regions of Bumba and Howard (1965b). At

low latitudes, the magnetic eddies of production run 1 generally tilt in

the same sense as the active regions for the first 12 years. Furthermore,

the poleward transport of vertical-eddy magnetic flux apparently leads to at

least the first few poloidal magnetic field reversals. The model does not

resolve sunspot scale phenomena.

6.2. Simulation of the Terrestrial Atmosphere - Test Run 1.

The nonmagnetic version of our model differs in many respects

from Robert's (1966) more sophisticated primitive equation atmospheric

model. Thus we did not attempt to reproduce his.solutions. A simulation

of the earth's atmosphere was still carried out though. The values of rel-

evant dimensional and nondimensional parameters are given in Table 6.1.

Most have been defined previously. We recall that - ~ -

is the Prandtl number and At the time step. Two new parameters are the

ratio: of specific heats and the stability parameter D( D l / .S

The precise definition of our thermal Rossby number is

RT/ (2_ _ siAn (, LQ (6-1)

where ( L )= 0, AU is the difference between (Q =O) and the

nearest relative extremum of '" and L is the corresponding meridional

distance. Given R. and R , the eddy viscosity is then V-cDlU R)j'

where AcL 21A Sin#L R is the externally imposed thermal wind.

Small random temperature eddies introduced initially were

baroclinically unstable, i.e., Rossby-regime type flow developed. The
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Table 6.1 Specified Parameters for the Earth and Sun

Parameter

S(gm/cm3)

T (oK)

(Y (0K)

S(cm/sec2)

J (sec "l)

R (ergs/gm deg)

CL (cm)

$S (cm)

AO (cm)

D (cm)y

At (sec)

47 (cm2/sec)

(cm2 /sec)

6' (cm2/sec)

(' (cm 2/sec)

1 (sec-1)

/ K)(9- (K)

Earth Value

6.70 x 10-4

2.60 x 102

2.84 x 102

9.81 x 102

7.27 x 10-5

2.87 x 106

6.36 x 108

7.60 x 105

1.00 x 108

3.8Y x 105

2.70 x 103

1.56 x 105

0

1.08 x 10
-6

20(1-3sin 2 )

0.0038

1.00

0.10

7/5

6.67

Pr

Re

or

Solar Value

3.88 x 10-4

8.60 x 104

1.03 x 105

2.73 x 104

,-6

2.86 x 10

1.50 x 108

6.80 x 1010

*4.72 x 108

1.50 x 1010

2.36 x 108

4.39 x 104

variable

variable

variable

variable

variable

variable

0.016

1.00

0.0001

5/3

variable

variable

variable0.099
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numerical integrations were terminated after 72 rotations. The flow was

then perhaps marginally quasi-steady, although rather noticeable fluctua-

tions were still present. As the model appeared to simulate the eatth's

atmosphere in its gross aspects, we refotused our attention on the solar

atmosphere. Later, a program was written for evaluating general circula-

tion statistics of the two production runs stored on a history tape. A

decision was then made to evaluate such statistics for some of the test

runs. However, as they had not been permanently stored on tape, the data

from the relevant computer printout had to be punched onto cards. Under

these circumstances, data were punched for only a small number of rotations.

But the computed statistics still should be fairly representative for test

run 1.

The results for the earth's atmosphere case are illustrated in

Fig. 6.1. The symmetry of the flow about the equator seems reasonable.

The zonal wind cross section (Fig. 6.1a) shows a band of equatorial easter-

lies, a mid-latitude upper level jet, a positive vertical wind shear, and

a very slight equatorward tilt with height of the jet axis. On the other

hand, the jet is too far poleward and its strength is too weak by at least

a factor of two. Lack of resolution is perhaps distorting the location and

strength of-the jet. Also, a flow at level 3 with energy density 3

might bp roughly 20% stronger if the Boussinesq approximation were relaxed

and pressure coordinates adopted.

In Fig. 6.1b, the actual equator to pole potential temperature

difference is ~34K and the LTE ( > profile introduces no net heating of

the model atmosphere. The meridional eddy heat transport in Fig. 6.1c has

the correct sign, but again, the extrema are displaced too far poleward.

Figure 6.1d implies a direct meridional cell in each hemisphere

0 1 .0
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from the equator to about 40 and an indirect cell poleward. Perhaps the

model is trying unsuccessfully to establish a three cell structure which

requires O_77 _6 minimum resolution. From figures 6.1d and 6.1e, one

can infer the phase distortion of the coriolis torque term (-2di Sil k

(I)>COS(f) due to truncation. Fortunately, this term does not affect the

"correctly truncated" angular -momentum balance illustrated in Figure 6.1f.

At each latitude, the frictional torque on the model atmosphere is almost

completely balanced by the eddy horizontal angular momentum transport. The

latitudinally integrated frictional torque is negligible.

Integrating the curves of Fig. 6.1f yields the "correetly

truncated" eddy and axisymmetric angular momentum transports, which are

everywhere poleward. But in the untruncated balance, the indirect meridi-

onal cell would produce a small equatorward axisymmetric transport. More

resolution is evidently needed.

Eig. 6.lg contains the zonal and eddy vertical heat transports

which have zero vertical convergence. But as they are directly proportional

to the integrands of f<PE>-,(1k>3 and <EPE>- (EE> , -these

transports do help elucidate the energetics. Thus, the conversion of eddy

available potential ento eddy kinetic energy, i.e., <EPE>-.-<EKE>Q3  >

is the more important process and occurs mainly in the 300-600 latitude

belt. From figures 6.1b and 6.1c, one can infer that <ZPE>-+(EPEE>J>O

while figures 6.1a and 6.1d suggest [<EIE>-+(!KE>3>O. Finally, since

S< in Fig. 6.lb, <G PE> >) at virtually all latitudes.

6.3. Summary of Runs and Parameters for the Solar Model.

A number of relatively short numerical integrations designated

as test runs were made for various purposes together with two long magnetic

production runs. The values of relevant dimensional and nondimensional

% . 4
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parameters held fixed throughout this study are given in Table 6.1. The

values for f and T are based on a numerical stellar evolution model of

iben (1966). The ratio Y = -5/3 is appropriate to a fully ionized gas.

The presence of helium (mass fraction r/ 0.1) is parameterized only by its

contribution to the mean molecular weight. The rotation rate /, of the

lower boundary is the Greenwich convention value, 14.184 deg long/day,

while % is very close to the currently accepted surface value of solar

gravity.

Some test runs plus the two production runs are listed in

Table 6.2, along with the values of the respective externally imposed

variable parameters. Future reference is made to this table.

6.4. The Effects of Thermal Forcing Profile Type and Magnetic Fields upon

the Angular Velocity Profile.

One objective was to find one or.more time independent thermal

forcing profiles e7 (Le) associated with an equatorial jet. Five basic

types of profiles were considered:

(a) 0 (1-3 sinep), 0

(c) -io s;n + 34/3 S rin ) o>0

(d) 6 (1-/0 sin t+33/3 Sin t) .o
(e) 1 (I1-,-sin +10/3 Sin f) 6, >

With the exception of (d), these profiles are illustrated in Fig. 6.2 for

the quasi-normalized case IP ~ 1 . Profiles (a) and (b) are directly
0 0

proportional to the LeGendre polynomial f ; (c) and (d) to . They

are all even functions of Iatitude and contribute no net hemispheric heating.

Profile (a) corresponds to the warm equator-cold pole, i.e.,

terrestrial atmosphere case and (b) to the warm pole-cold equator case.



Table 6.2. Catalogue of Test Runs and Production Runs for Solar Model.

Name R * Re Rm .' ' o  ) f(cm/lsec) (~C'/WseC) e(cm4c)
0or, (4

test.run 2

test run. 3

test runs 4

test

test

test

P.R.

test

test

test

test

run

run

run

1

run

run

run

run

-0.143

0.157

variable

0.077

0.116

.0.157

0.116

0.116

0,116

-0.052

-0.087

6

varir

test run 12 -0.121

test

test

runs 13-0.121

runs 14 variable var

.67 - -10.23(1-10sin ( + -sin4 )

2 35 4
2 - 24(1-10sin Lp + -sin 4 )

2 35 4
able - (1-10sin (2 + -3sin C )

owith o >O , variable

2 10 4
20 -,00 20(1- Ssin W + -- 3sin L# ).

5 -,100 100(1- 3sin2  )

2 35 4
20 -,100 24(1-1)sin (P + - sin Cg )

2 10 4
30 -,150 30(1-. 5sin W + -s3in4(f )

2 10 4
30 150 30(1- 5sin (Q + - sin (P )

100 2
25 - -(1- 3sin 2Q )

10 . 200 -15(1- 3sin.L )

20 -,100 -25(1- 3sin 2 )

25 variable -35(1- 3sin2 )

25 -,500 -35(1- 3sin2 P )

"iable - ((1- 3sin 2Q )
with O 0 ,variable

20 -,375 -35(1- 3sin2Q )

0 0

0 0

0 0

7.66x109 9.78x1012 4.89x1012P.R. 2 -0.121

8 I

3.42x109

3.91x101 0

variable

2.85x109.

3.04x10 1 0

3.91x109

2.85x10
9

2.85x10
9

6.07x109

6.84x109

5.70x10
9

6.38x10 9

6.38x10
9

variable

0

0

0

6.52x10 2

6.52x10
1 2

1 2

6.52x10

6.52x10 2

12
6.52x10
6.52x10 1 2

6.52x1012

6.52x1012

9.78x102

0

0

0

6. 52x10
12

6.52x10
1 2

6.52x10
2

6.52x10
12

126.52x10

6.52x10 12

3.26x10
1 1
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Thermal profiles (c) and (e) are intermediate between (a) and (b).

Extrapolation of Fultz's (1959) experimental results for a ro-

tating dishpan would suggest that profiles (b) and (c) are the most pro-

mising. In fact, Fultz (1959) recognized a possible analogy between his

experiments and certain aspects of the solar equatorial acceleration

problem. Of course, the sun and our model have spherical geometry and

lack sidewall boundaries, unlike the dishpan.

The chief difference between profiles (a) and (e) is that (e)

begins to flatten at a lower latitude. Since (a) gave a'mid-latitude jet

in section 6.2, neither (a) nor (e) would seem too realistic for the sun,

at least in the nonmagnetic case. Profile (d) represents a mid-latitude

heat source. Higher resolution profiles would be more ad hoc and could

not be resolved by our model anyway.

Table 6.3 summarizes our findings. Included is a qualitative

description of the horizoDntal and vertical gradients of the time-zonal

averaged absolute angular velocity

Aafis +  "IJ S;n C
as o yn (6-2)

and zonal wind

<U z (AbS- o)sC SL (6-3)

for each 0 profile. Secondly, the nonmagnetic (nm) and magnetic. (m)

cases may be compared in Table 6.3 for each £ profile except (d).

Thirdly, figures 6.8a, 6.3a, and 6.4a illustrate ,l profiles in the mag-abS
netic and nonmagnetic cases for 0 profiles (b), (c), and (e), respec-

tively. Corresponding potential temperature and @V profiles appear in

figures 6.8b, 6.3b, and 6.4b.



Table 6.3. Qualitative Effects of the ff Profile on Velocity Shear for lonmagnetic and Magnetic Cases.

S( - 3 s;n'C- )(1-3 sn2c) -s a3/3s ) - (-s;n '0 (o/1? s;,2 n)b
_,__>0 c_),_o <o (b) obo (c) 3 Sin ) (d) >o (e)

nm
at's -- - - - - - - - - - - - ----- - -

lower lat.m  still + + +
S+ nm

higher lat. still +

nm
nm -, strength compar- -, strength compar-

IA a /as able to solar obs. able to solar obs.
Lv.2: mostly -, but Lv.2: -, statisti. Lv.2: a,very weak

levels generally +, but weak. Lv.3: -, weak- residual. Lv.3: -, statis. residual.
2 and 3 weaker er, but still agrees but weak Lv.3: mostly -,

m qualitat. with obs. but rather weak

nm westerlies at all easterlies at all quasi-steady easterly jet westerlies at all
lat.,jet at 500-550 lat. For data sample westerly jet at at equator, lat. For data sam-upper level o

relative westerlies at all of 5, jet at 50 o-55 equator, weaker weaker west- ple of 5, jet at
winds lat.,mid-latitude - easterly jet at 65 erly jet at 400-45o'

winds jet usually easterlies at all these jets are no 600-650 westerlies at alljet usually lat., jet at 44 longer permanent westerlies at all
m features lat.,max.at equat.

nm weak westerlies at weak westerlies easter, at low lat. weak easter. westerlies at
lower level higher latitudes, (easterlies) at low wester. at high lat. (westerlies) higher latitudes,
relative weak easterlies at (high) latitudes - - -at low (high) easterlies at
winds lower latitudes these winds are no latitudes lower latitudesweak easterlies longer permanent

still true (westerlies) at low features
m (high) latitudes still true

nm test run 6: quasi- mainly P.R. 2, but test runs 3, 4, 7. test run 2 test run 5, P.R. i,
steady,weak eddies. also test runs 9, Hadley and quasi- Hadley regime other test runs in

data test run 9: strong 10, 11, 12, 13, 14 steady Rossby Rossby regime
source eddies regimes. no mgnetic

- -- - --. mainly P.R. 2, but runs made
also test run 12 mainly P.R. 1

test run 6 temt rpn 7

I
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In equation (6-2), the spectral coefficient VZ is a measure

of the horizontal shear averaged over both hemispheres, while JZ+ /Z0 is

the rotation rate at the equator. From Newton and Nunn's formula, i.e.,

equation (1-1), Lu+ + = 14.38 whereas f2 = -2.77 degrees longitude

per sideral day, for the sun.. In comparisons with solar observations, level

3 may be more appropriate, being closer to the visible surface, but level 2

is more representative df conditions in the model fluid as a whole.

Case (a).- 6/ B(-3Sin)2() c) >0

The latitude distribution of relative winds and the signs of

the horizontal and vertical gradients of absolute angular velocity are simi-

lar to those for the earth's atmosphere test run, i.e., there is no equator-

ial jet. Apparently, the horizontal shear of ab2 decreases, but remains

positive for the magnetic case. A shear reversal for a considerably larger

value of ',R cannot be ruled out though.

Case (b):I - in 0 <

This case is one of the two most successful. The horizontal

shear /. is negative. From the nonmagnetic angular velocity profiles for

production run 2 (P.R. 2), i.e., curves B and D in Fig. 6.8a, the ratios of

computed to observed negative shears at levels 2 and 3 are respectively 1.1

and 1.7. The apymmetry of curve B between hemispheres might disappear with

more data. The rates of rotation at the equator at levels 2 and 3 are 14.26

and 14.03 deg/day.

Other features for the nonmagnetic case which cannot be com-

pared with solar observations include the following. First the vertical

shear of (2 is everywhere negative, but strongest at high latitudes.

Second, in the rotating reference frame, easterlies prevail except for a low

latitude band of westerlies at Ievels : a'id 2 , The upper level easterly
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jet is centered at latitude 5 00-5 50

One indirect check of our model is Fultz's (1959) rotating

dishpan experiments previously mentioned. Heating the center of the

dishpan and cooling the rim produced an easterly regime at the top surface

and a predominance of anticyclones over cyclones for or = -0.10. An

easterly jet was located between the rim and center. In a laboratory

coordinate system, Jabs would decrease from the rim to the easterly jet

maximum rather- than all the way to the center. This discrepancy between

our model and the dishpan could be due to the different geometries and/or

to the absence of an AJ 4 harmonic in our model. Westerlies prevailed near

the rim adjacent to the bottom of the dishpan.

When we introduce magnetic fields, the horizontal shear at both

levels remains negative but decreases. In P.R. 2, the vertical shear re-

mains negative and grows -20% stronger. This is consistent with the

strengthening of the potential temperature gradient. Energetically, the

generation of <ZPE> also increases. The growth of strong magnetic fields

characterized by ~Z- (Y(1), rather than premature termination of the non-

magnetic runs, is apparently responsible. In general the magnetic model

solutions are not quasi-steady as discussed later. The asymmetry in the

magnetic curves in Fig. 6.8a is also probably a real model effect.

Case (c): Q (1-Osin4 + 3/3 Sind )& >0

This is another successful run. Quasi-steady solutions were ob-

tained for the nonmagnetic case. As for case (b), the horizontal shear of

JAa is negative from equator to pole. From the nonmagnetic angular vel-
abS

ocity profiles for test run 7 in Fig. 6.3a, the ratios of computed to ob-

served negative shears at levels 2 and 3 are respectively 0.89 and 1.98.

Meanwhile,the equatorial rotation rates at these levels are 15.43 and 16.79
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deg/day. In contrast to case (b), the vertical shear of JZ is positive

at low latitudes, as expected. An upper level westerly jet is now centered

at the equator and easterlxes are found at high latitudes. The streamlines

of the relative velocity field at level 2 are illustrated in Fig. 6.21.

Their tilt implies an equatorward angular momentum transport by eddy mo-

tions, which, with a little help from the surface frictional torque, com-

pletely balances the poleward transport by axisymmetric motions.

Fultz (1959) accidentally introduced heating in between profiles

(b) and (c). This occurred when the center of the dishpan was heated and

the rim not simultaneoubly cooled, because some heat was conducted along

the bottom to the rim. At the top surface, the observed flow patterns and

*eddy transports were similar to the center heating-rim cooling case except

for a narrow band of westerlies near the rim. These observations lend

credence to our findings above.

For test run 7, J% is weaker at level 3 but usually negative,

in the magnetic as compared to the nonmagnetic case. In contrast, at level

2, AZ is a small negative statistical remnant. In fact, curve A of Fig.

6.3a shows an excursion into the )I >0 regime. The profiles in Fig- 6.3

for the magnetic case are not very representative, being based on a data

sequence covering 10 rotations at intervals of two rotations. The qualita-

tive difference in Z)La / between the magnetic and nonmagnetic cases

is again consistent with the change in <& > in Fig. 6.3b. A magnetic pro-

duction run for case (c) would be highly desirable, particularly if more

resolution could be added to the model.

Case (d): 0 0 -o s;tn e -3/ s;in )A 0.

The results are nearly opposite to those for case (c) according to

Table 6.3. Profile (d) seems incapable of reproducing the solar equator-

% " . a
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ial jet, at least for the nonmagnetic case.

Case (e). -S sinfto +Io3 Sjin c) > o
The nonmagnetic solutions are rather similar to those for

case (a), with the following exceptions. At level 3, L is now weaker

than at level 2, but still positive. This is consistent with thermal wind

considerations and the kinematic constraints upon the spectral coefficients

of JL in equation (6-2), In any case, the westerly jet maximum is still

at level 3, and its more equatorward position coincides with a similar dis-

placement of the maximum gradient of and < > in Fig. 6.4b.

The introduction of dynamo-maintained magnetic fields .signifi-

cantly alters the situation in P.R. 1. The horizontal shear A. becomes

negative at level 3, but is small by a factor of six compared to observa-

tions. Meanwhile at level 2, J/L is only a very weak statistical

residual, as seen in Fig. 6.4a. At level 3, the J1 profile is about 20%

bs ab
265
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positive, (increasing a bit at the pble) along with the equator to pole

temperature difference. This increase seems to be associated with the

development of strong magnetic fields characterized by CZ a~- (1).

Comparisons between Model Results and Solar Observations

In the nonmagnetic case, CY profiles (b) and (c) give results

in best qualitative agreement with observations of the solar differential

rotation. With the addition of magnetic fields, the value of J./ is still

of the correct order of magnitude at level 3, e.g., L = -2.08 deg/day

for P.R. 2. But at level 2, C4. is only 23% of the observed value for

P.R. 2 and <10% for test run 7. Case (e) gives interesting results for the

magnetic case, but the negative shear is weak by a factor of nearly six at

level 3 where J1/ = -0.49 and negligible at level 2. The horizontal angu-

lar velocity profiles for magnetic production runs 1 and 2 may be compared

visually with Newton and Nunn-'s (1951) observed profile in figures 6.5 and

6.9. By varying , and ao respectively, AabS (-0) for cases (a)

through (e) and Jl. for nonmagnetic cases (b) and (c) probably could be

tuned at either level 2 or level 3 to the observed solar values.

If the baroclinic hypothesis is to be plausible, the model hori-

zontal temperature difference should not exceed - 40oK. But the maximum

differences in <'> are respectively 900K and 450K for case (b) and case

(c), while both gradients are about equal, due to the finer structure of

Cr profile (c). From equation (2-50) and Table 6.1, the temperature

range is about 85% of the potential temperature range. Thus the temper-

ature differences are too large By a factor P3 I r42.

There are however some mitigating circumstances. First, for the

nonmagnetic case, o could be conditionally decreased by nearly a factor

of two for either profile (b) or (c). The condition is that at level
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3 (as opposed to level 2) be used in computing the ratio. of model to

observed shear. Second, the thicker the baroclinic layer, the smaller

the required horizontal (potential) temperature difference, e.g.,

o
A <10 K if 20D -(R )CO.liJ . The baroclinic layer could be

considerably thicker than we have assumed. Third, it is not perfectly

clear that the observations of temperature on "horizontal surfaces" are

really surfaces of constant geopotential, or that horizontal temperature

differences are not larger beneath the solar surface. Of course, the

latter two arguments for not discarding the baroclinic approach are based

on our ignorance rather than knowledge of the sun.

In the magnetic case, the value of J at level 3 is weaker by a
2

factor of two, but still agrees qualtitatively with observations for

6 profile (b), Also, the thermal forcing appears to maintain the

vertical shear of Jl . However J, at level 2 is too weak. By de-
abE 2

creasing R , the Alfven number would possibly increase. Magnetic fields

would then have less impact upon the J7 profile and thus c ' could be
abS 0

decreased.

In-principle, one could infer characteristics of the horizontal

temperature structure from observations of aJ s /a . For our baro-

clinic model at least, a thermal wind relation is clearly operative. The

ac, / , data cited by Bumba (1967) is for a fluid layer only 200 km

thick located near the equator. Although case (c) fits this data better

than case (b) within the context of the baroclinic hypothesis, the data

sample is probably too small to conclude that (c) is the better profile.

Reliability of the Results,

In the experiments, R and R were not held exactly fixed
or e



-199-

while CY was varied, as can be seen from Table 6.2. Some of the test

runs involved served dual purposes and our main objective was to make one or

more production runs, before using up our alloted computer time. However,

the qualitative angular velocity results of Table 6.3 appeared to hold up

over the ranges (if any) of R and/or Fe encountered for given & .
or e

(Magnetic runs were restricted to the Rossby regime.)

An error was discovered in magnetic test runs 5,6, and 7 and later

corrected in run 7, but the qualitative magnetic results for & profile

(c) in Table 6.3 remained intact. The effect of the error upon test run 6

was not assessed, but the magnetic results for 0Y profile (a) seem

plausible.

The sample size used to compute the time averaged curves of

figures 6.3, 6.4, and 6.8 were small except for the magnetic case curves of

Fig. 6.4 (PR. 1) and Fig. 6.8 (P.R. 2). Thus the first group of curves

depart somewhat from the long term time average. They should still be

qualitatively correct, though. Of the nonmagnetic curves, those of figure

6.3 are the most accurate due to the quasi-steady nature of the solutions

for nonmagnetic test run 7. Subjective scrutiny.of the computer printout

of the angular velocity, confirmed the qualitative results of Table 6.3.

Increased resolution would probably cause some modifications of

the results, especially for the magnetic case. Therefore runs with more

resolution would clearly be desirable. But at least the indirect qualita-

tive confirmation of our nonmagnetic solutions for &' profiles (b) and

(c) by Fultz's (1959) dishpan experiments is encouraging.

6.5. General Circulation Statistics for Production Runs 1 and 2.

Enough computer time was available for two extended magnetic pro-

duction runs. Thermal forcing profiles (b) and (e) were selected for P.R. 1
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and P.R. 2, respectively. The other promising profile, i.e.;(c), is an

intermediate case. Since the fourth order harmonic is considerably more

dominant in this profile than in (e), the resolution difficulties could be

more acute. The angular velocity and potential temperature profiles for

P.R. 1 and P.R. 2 already have been discussed. The other statistics in-

clude the <l) and <(J> velocity.fields in meridional planes, the horizon-

tal eddy heat transport, the vertical eddy and axisymmetric heat transports,

the vertically averaged angular momentum balance, and the Reynolds and

Maxwell stresses.

The time averaged statistics are based on many values (700 at

intervals of one solar rotation) for the magnetic case, but on..only 5 for

the nonmagnetic case. From this standpoint, more confidence could be

placed in statistics for the magnetic case, while comparisons between the

magnetic and nonmagnetic cases should be regarded as qualitative. Of

course, in a broader sense, all the results are crude, since the model

resolution is so low.

6.5.1, Production Run 1. (O r 30(1- S sin tp + O/S S;~7 k

The statistics for P.R. I are illustrated in figures G.4, 6.5,

6.6, and 6.7. Tables 6.1 and 6.2 may be consulted for the values of the

relevant parameters. Figures 6.4c and 6.4d imply that the mean meridional

circulation consists of a direct cell at low latitudes and an indirect cell

at higlh latitudes1 (poleward of 450). The circulation pattern is very sim-

ilar to the one discussed in section 6.2 for the terrestrial atmosphere

case. For the magnetic case, the direct cell is somewhat stronger and the

Perhaps the term quasi-indirect is more appropriate in view of the

(weak) relative minimum in(<> at latitude 70o, for the nonmagnetic case.
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indirect cell somewhat weaker than for the nonmagnetic case. The maximum

value of <I*> is xauhIly 9 m/sec at L = 250, which does not contra-

dict Ward's (1964) results.(i.e., his confidence limits are larger).

The horizontal eddy heat transport depicted in Fig. 6.4g is com-

puted by truncating the tre scalar ,( ' integrating,

dividing by cos2 c , and finally multiplying by cos q . Meanwhile, <utlI *

and (kf;1 are truncated directly. For the nonmagnetic case, the three

heat transport curves resemble those of figures 6.lg and 6.1h. The curve

remains positive (negative) above latitude 700N (70oS), due perhaps to the

low model resolution.

There is a fairly dramatic change in heat transports for the mag-

netic case. The horizontal eddy heat transport and vertical eddy heat

transport are greatly reduced at mid-latitudes, while the vertical axisym-

metric heat transport is somewhat enhanced at low latitudes. Thus the

energy conversions jEPE>- <EPE)3 2 and <gPPE>-><EkE> are smaller,

whereas < ZPE> --( <M is larger. According to Gilman's (1967)

linearized normal mode analysis of a quasi-heliostrophic model, baroclinic

instability is totally suppressed if 4 < 4. The critical value ~

is apparently somewhat lower in our primitive equation model. But usually,
2 2

A >V, since significant but not total suppression of baroclinic insta-
cRit

bility occurs. Plots of Ur and & suggest that vertical motion eddies

1d are strongest where the axisymmetric toroidal magnetic field CB >

is locally weak. (See later discussion.)

The nonmagnetic "correctly truncated" angular momentum balance

(per unit mass) for P.R. 1 is illustrated in Fig. 6.4e. Curves A and B

represent the convergences of the horizontal eddy transport and meridional

2This conversion would be weaker except for the stronger meridional

gradient of <~ > .
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transport of angular momentum, respectively. Integration of these curves

leads to the actual angular momentum transports of Fig. 6.4f. Both the

eddies and the axisymmetric meridional cells transport angular momentum

from low to high latitudes. The equatorward transport by the indirect

meridional cell has been smoothed out by truncation. The eddy transport

is stronger by a factor of 2.5 -and reaches a maximum at 300-35o latitude.

The two transports are approximately balanced by the total frictional

torque.(Fig. 6.4e, curve C). The slight imbalance (curve D) is a mani-

festation of the small data sample.

Concerning the total frictional torque,an anisotropic eddy vis-

cosity has been included to help selectively damp the higher harmonics.

The horizontal eddy viscosity has a characteristic decay time of the lowest

order mod, of ^.Y (20 years). As the horizontal viscous dissipation term

contributes only ~ 10% to the total frictional torque, the latter is

essentially the torque exerted on the fluid by the rigidly rotating lower

boundary.

Figure 6.6 contains the "correctly truncated" angular momentum

balance for the magnetic case. The convergence of eddy and axisymmetric

transports of angular momentum are still negative at low latitudes and

positive poleward of 25o-30 latitude... However, with the partial sup-

pression of baroclinic instability by the magnetic fields, the horizontal

eddy transport is reduced by nearly a factor of five as seen from figures

6.4f and 6.7. Moreover, the eddies still transport angular momentum away

from the equator. Thus with or without magnetic fields, the horizontal

eddy transport for P.R. 1 is completely contrary to Ward's (1964) observa-

tional findings. The horizontal axisymmetric transport is little changed
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Fig. 6.4. Some general circulation statistics for P.R. 1.
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Fig. 6.6. Vertically averaged angular momentum balance of magnetic P.R. 1.

A-convergence of horizontal eddy transport (Reynolds stress).

B-convergence of horizontal axisymmetric transport (Reynolds

stress).
C-total frictional torque.
E-divergence of horizontal axisymmetric Maxwell stress.

F-divergence of horizontal eddy Maxwell stress.
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E2-fluctuating axisymmetric Maxwell stress.
F-eddy Maxwell stress.
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(only -20% larger) from the nonmagnetic case but is now the dominant trans-

port mechanism. The frictional torque term in the angular momentum balance

(curLC) is much smaller in the magnetic case. But it is similar in shape

to its nonmagnetic case counterpart except for a 50 phase shift.

Two new terms are the divergence of the horizontal eddy Maxwell

stress (curve F) and the divergence of the horizontal axisymmetric Maxwell

stress (curve E). The latter is the second largest term in the angular mo-

mentum balance and almost balances the convergence of the axisymmetric

transport. This is not inconsistent with the drastic change, i.e., almost

total destruction of J at level 2. The eddy magnetic term is half the

size of the corresponding eddy transport term but of opposite sign. It

gives almost an identical contribution as the frictional torque term.

The Maxwell stresses are obtained by integrating the two terms

3
above. They have the same sign as the Reynolds stresses , as indicated in

Fig. 6.7. Here, the axisymmetric stresses have each been split up into two

parts, i.e., (1) a product of time-zpnal means and (2) a time averaged pro-

duct of two time eddies of zonal quantities. Note that the steady axisym-

metric. Reynolds stress (curve B1 ) is much larger than its unsteady counter-

part (curve B2 ). Conversely, the steady axisymmetric Maxwell stress (curve

El) is negligible compared to the unsteady axisymmetric Maxwell stress

(curve E2 ), which is not unreasonable for a reversing dynamo.

Typical propagation speeds of disturbances are roughly +150 lon-

gitude (i.e., 1/4 wavelength) per rotation, in both the nonmagnetic and

magnetic cases. This value is comparable in order of magnitude to the

westerly zonal current. The 0 effect is evidently weak since Y = 6 and

At level 2, the total horizontal Maxwell and Reynolds stresses are re-

spectively +i(4T\l ) (8, B +8 3 AB )aCO and )+,L(+COStf, according to
our sign convention. The factor a-COSLR is really the torque arm length.
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Y f 2, generally speaking, for the wave disturbancss

6.5.2. Production Run 2. ( - 3 - 3 S2 ) K ).

General circulation statistics are summarized in figures 6.8,

6.9, 6.10, and-6.11. See tables 6.1 and 6.2 for values of parameters for

production run 2. Again the axisymmetric circulation in meridional planes

depicted in Fig. 6.8c and Fig. 6.8d contains both a direct and an indirect

cell. But the indirect cell is relatively weaker and is confined closer to

the pole for this run. The circulation of the northern hemisphere extends

about 50 into the southern hemisphere in the magnetic case. But the main

change which occurs after the magnetic fields have been introduced is an

increase in strength of the circulation. This is not inconsistent with the

increased temperature gradient in Fig. 6.8b. Once more, the development of

strong magnetic fields, and not the premature termination of the nonmagne-

tic runs probably is the cause. At any rate, the direct cell is about 50%

stronger in the magnetic case, and both the direct and indirect cells are

in phase with their nonmagnetic counterparts. The maximum values of <(lf

for the nonmagnetic and magnetic case are respectively 14 and 21 m/sec, at

about 25 -300 latitude. The latter value just falls outside of Ward's

(1964) confidence limits on < > .

Baroclinic instability is rather noticeably suppressed at mid-

latitudes by magnetic fields, as was found to occur in production run 1.

One change though in P.R. 2 is that the axisymmetric vertical heat trans-

port becomes positive at all latitudes in the magnetic case. Fig. 6.8h

indicates that [<PE-+(,KM J will be -%as large as <EPE>-+<EKE> .

Another change from P.R. 1 for both the nonmagnetic and magnetic cases is

that the horizontal eddy heat transport is now equatorward, which is no

surprise.



In P.R. 2, the decay time for horizontal viscous dissipation (of

the lowest order mode) is 15 years. As in P.R. 1, the horizontal dissipa-

tion contributes only . 10% to the total frictional torque.

The "correctly truncated" angular momentum balance for nonmagne-

tic P.R. 2 is illustrated in Fig. 6.8e and the horizontal transports

(Reynolds stresses) in .Fig. 6.8f. In the rotating coordinate system, the

winds are easterly except for a low latitude band of westerlies at level 1

hand level 2. Hence, according to figures 6.8e and 6.8f, the horizontal

eddies are maintaining the mid-latitude easterly jet whereas the total

frictional torque and axisymmetric meridional circulation work to destroy

it. The poleward transport of -easterly (i.e., negative) angular momentum

by the horizontal eddies is equivalent to an equatorward transport of

westerly (i.e., positive) angular momentum. The "correctly truncated" eddy

Reynolds stress reaches maximum values at +250, is roughly three times

larger than the axisymmetric Reynolds stress, and is of opposite sign.

Figure 6.8 was constructed from a small amount of data, as indicated pre-

viously. This may explain the imbalance (curve D).

Incidentally, Fultz (1959) observed horizontal eddies between

the rim and the center of his upper level easterly jet (discussed earlier),

which were tilted in the same sense as ours. Moreover, the required angu-

lar momentum transport was accomplished predominantly by these eddies.

The horizontal axisymmetric transport overshadows the horizontal

eddy transport of angular momentum in magnetic P.R. 2. But the phases of

both terms are not changed much from the nonmagnetic case. The reduction

of the eddy Reynolds stress by a factor of five is again attributed to the

partial suppression of baroclinic instability by magnetic fields. The

axisymmetric Reynolds stress increases by about a factor of two which is
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somewhat more than the increasc in strength of the axisymmetric meridional

circulation. This extra increase may reflect the greater relative domi-

nance of the direct cell in the magnetic case.

A peculiar phenomenon in the magnetic case is the reversal of the

regions of easterlies and westerlies at level 1. This may be analogous to

the reversal of the shear of Ja in P.R. 1 after large amplitude mag-
abs

netic fields were generated. (No programming errors were found.) Due to

the wind reversal, the frictional torque helps maintain rather than destroy

the mid-latitude easterly jet, as if the differential rotation were partly

friction-driven. The torque is considerably weaker in magnitude though

than in the nonmagnetic case. The phenomenon is apparently a reaction to

a magnetic drive. Kippenhahn's (1963) analysis is probably inapplicable

even though we have V ) 'V , because his circulation is frictionally-
CHN

driven in the nonmagnetic case and is not characterized by >> *. It

remains to be seen if the above result would hold up in a model with

greater horizontal (and vertical) resolution.

The convergence of the horizontal axisymmetric transport is now

the largest sink of westerly (easterly) angular momentum near (far from)

the equator. It is opposed by three terms: (1) the frictional torque, (2)

the convergence of the horizontal eddy transport, and (3) the divergence of

the eddy Maxwell stress. Of these, term (1) is a bit larger than (2) which

in turn is roughly three times larger than (3). The divergence of the axi-

symmetric Maxwell stress is rather nonsymmetric about the equator. Second-

ly, it is smaller here relative to the convergence of the axisymmetric Rey-

nolds stress, than in P.R. 1. These two terms tend to oppose each other,

but they work together at some latitudes. The sum of terms displayed in Fig..

1b W 8
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6.10 is gegligible compared to the magnitude of the individual terms, and

thus a long term "correctly truncated" angular momentum balance exists

for P.R. 2. A similar balance is achieved in Fig. 6.6 for P.R. 1.

The Reynolds stresses and Maxwell stresses themselves are il-

lustrated in Fig. 6.11 for magnetic P.R. 2. The nonfluctuating axisym-

metric Maxwell stress and the oscillating axisymmetric Reynolds stress are

again smallest. The two largest terms are the nonfluctuating axisymmetric

Reynolds stress and the eddy Reynolds stress, respectively. The horizontal

eddy Reynolds and Maxwell stresses now have opposite signs (cf. Fig. 6.7).

Typical propagation.speeds of disturbances are about -30 longi-

tude (i.e., 1/2 wavelength) per rotation. This value is -_twice as large

as for P.R. 1 and is comparable to the magnitude of the easterly zonal

current.

Comparison with Observations.

Ward's (1964) covariances in units of (deg/day)2 from his Table

7 may be compared to our horizontal eddy transports by multiplying his

values by -16) 5)( 8 ~ 6I O) (acosa') . Of interest here is

the north-south average for the 200-30o latitude belt for 1935-1944. For

Ward's cases with no cutoff, moderate cutoff and severe cutoff, the con-

18 18 17 3 2
verted values are -2.1 x 10 , -1.3 x 10 , and -3.2 x 10 cm 3/sec 2 ,

respectively. At latitude 250, where the maximum eddy transport of the

18 17 3 2
model occurs, we obtain -1.6 x 10 and -3.6 x 10 cm /sec , respectively,

for nonmagnetic P.R. 2 and magnetic P.R. 2. Thus our values fall within

the range of Ward's at 250, and agreement is attained.to within an order

of magnitude. From the standpoint of horizontal shears and horizontal eddy

transports of angular momentum, P.R. 2 is more realistic than P.R. 1. The
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reversal of the horizontal sh:r of /, in P.R. 1 by magnetic effects is
ab

interesting however.

The Rossby-Hadley Regime Boundary for P.R. 2.

By varying (Y and e , and keeping all other parameters

-the same as for P.R. 2, a crude determination of the Rossby-Hadley regime

boundary can be made for that run. The results for the nonmagnetic case

are presented in Fig. 6.12. The relevant group of experiments comprises

test run 14 in Table 6.2.

In Fig. 6.12, O O (R/'/ ) and o are logical dimensional
too*0

coordinates, since and R were the quantities actually varied.
o e

However, they may be converted to the more standard nondimensional coordi-

nates T and< , respectively where

T "- (1D)4 2 (6-4a)

defines .the Taylor number.

Now 1= L) I'JR ,' where A aAS/indP LU o

- 16i 0D AO /(rcdTO ) from equation (6-1), and *- / S1 .

But for P.R. 2, Ad 3- and S;L0 1-/ . Making the necessary

substitutuions, T. C (a/&, where (r C/z ). A Q ) R / I

During the above experiments, C . 2.6 x 104 (K)2 is held fixed.

Hence the abscissa in Fig. 6.12 may be transformed to

Ia; y 2-)] (6-4b)
to0

Similarly, in the definition (6-1) of R , all parameters are held

fixed except A' - 3 , so thatR is linearly proportional

ototoG
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In Fig. 6.12, a dashed line separates the Rossby and Hadley

regimes. This boundary is obviously only speculative, especially near the

top of the diagram, considering that it is based upon only 11 points. A

similar diagram for the profile o /0 --/0 m;cQ +35/3 M? c) is not

included because only 6 points were obtained from test runs 2, 3, and 7

(see Table 6.2). However, as in Fig. 6.12, the Rossby and Hadley regimes

seem to be separated.

In Fig. 6.12, the eddies are quite weak for the solution symbol-

ized by the black circle closest to the dashed line (this circle is also

the lowest black circle). The solutions corresponding to the white dot

inside.the Hadley regime and situated farthest from the dashed line con-

verge to axisymmetric-steady state the most rapidly. There is one point

on the dashed line. Here, the solutions show little tendency, to converge

to a steady state configuration after -50 rotations; the initial eddy

perturbations neither seem to grow nor die out. Finally we note that

within a particular regime (Rossby or Hadley) the solutions at the various

points differ from each other.

Not enough computer time remained to determine how magnetic fields

would affect the Rossby-Hadley regime boundary. We would not expect dynamo

solutions in the Hadley regime of Fig. 6.12 however, since magnetic fields

seem to suppress baroclinic instability and since axisymmetric dynamos are

impossible.

6.6. The .Search for. Dynamo Solutions..

We recall from Chapter III that each magnetic run was preceded

by an analogous nonmagnetic run in the Rossby regime. The latter was ter-

minated after large amplitude eddy disturbances and self-consistent (but

not necessarily quasi-steady) axisymmetric flow patterns appeared, e.g.,
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after -- 2000 time steps.

Small, random toroidal magnetic field eddies were then inserted,

such that a (/0 . Typically 4 remained of (io) or increased

slightly during the next 10 rotations (the adjustment phase) irrespective

2
of whether R was supercritical. Now if I? c , then ,r continued

to increase, i.e., the magnetic fields decayed to zero. Based on a small

number of runs, the rate of decay seemed slower for the smaller values

Of R -I.
YnC V".

In contrast, if f >R- , the magnetic fields grew (47

decreased) after the initial adjustment phase for all runs with resolution

O Y fL 4 ) , - 6 , A typical generation phase lasted for -'-40

to 60 rotations before giving way to the dynamo maintenance phase. Here

oscillated about its time-averaged value 4 . Approximate equipar-

tition of kinetic and magnetic energy occurred for both production runs,

but ca had somewhat different values for each. For example, / - was

slightly less than unity for P.R. 2, but between 2.0 and 2.5 for P.R. 1.

According to Table 6.2, F = 150 and 1 = 30, giving a value
e

of 5 for the magnetic Prandtl number P , while R = 0.116 for P.R..1.. The

horizontal Reynolds and magnetic Reynolds numbers may be defined by

2 2
VD) and R m(4,/a) ' ). For P.R. 1,

/?) - n . 1090, which is large compared to Re and R
ec")e

Dynamo action occurred for this run, but not for another run in which

R 125, I = 25, R = -0.121, ? = f? -'- 907, and
v T e oT e1C) mCH)

= -35(1 - 3 S Yfl ) . The most significant difference in

parameters between the two runs was the 5 profile. Setting R = 250,

4 ". first grew from (O (105) to (106), then decreased, leveling off
5

at 0(10 ). Thus J is close to 250 for a run similar to P.R. 2. Two
WAC

% 0 .
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other attempts with R- = 375 and R = 500 (and other parameters

similar to those in P.R. 2) succeeded in generating large amplitude mag-

netic fields. The above runs plus another with higher resolution are

summarized in Table 6.4.

We speculate from the data 6f Table 6.4 that R could be

affected.by the structure of the velocity field (in the nonmagnetic case)

associated with 0' /  (We are implicitly assuming here that R is not

a rapidly varying function of R or R .) It is not unreasonable that
e or

certain velocity profiles could be more favorable than others to the induc-

tion of magnetic fields.

Table 6.4. Dynamo Behavior for Different Runs.

Profile R R R R R Resol. Dynamo 4
or e ec) Yl MOO Action

(e), 9o= 30 0.116 30 1090 150 1090 0 < m < 4 yes 2 +
0

(e), o= 30 0.116 30 1090 150 1090 0 _ m _ 6 yes, but ~1xl04

weak

(b), O = -35 -0.121 25 907 125 907 0 m 4 no - oo

(b), ! = -35 -0.121 25 907 250 907 0 1 m S 4 marginal -2x10 5

(b), O = -35 -0.121 25 605 375 1360 0 4m 44 yes 0.9 +

(b), & - -35 -0.121 25 907 500 18140 0 S m 5 4 yes 0.7 -

Secondly, Table 6.4 suggests that /a decreases as R } and

increase over the ranges of values considered. Perhaps R - 250

would increase if R were decreased. The strong induction of poloidal

magnetic fields for R = 500 is illustrated in Fig. 6.23. Note the

large vertical eddy magnetic fields and the prominent regions of inflow

0 -. .
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and outflow in the horizontal magnetic field. Had we been able to vary

R m from 250 to 375, it is possible that 4, could have been tuned to

a(10) or to (100) for example.

In test run 8, all the parameters were identical to the ones in

P.R. 1 except that the resolution was increased to O. MW , yg O, 6

The computer time per numerical integration was twice that for the old

resolution. The run was terminated 114 rotations after insertion of the

magnetic eddies. But 45 had decreased only from cY(105) to (-164),

8 x 103 being the minimum value.

Although convergence is an important-question, we lacked the

computer resources to investigate it properly, and can only speculate on

the interpretation of the above result. One possibility is that R

and even 4, increase with resolution overa finite range of resolution.

Of course if i and A increased without bound, our model would not

act as a true dynamo.

6.7. Basic Structure of the Magnetic Field Solutions.

The structure of the magnetic field solutions is described below,

mainly for P..R. 1 and P.R. 2. Magnitudes of the vertical magnetic fields

are approximately of the correct order of magnitude, The toroidal magnetic

field is not persistently either an odd or even function of latitude. If

the solar magnetic cycle is (partially) controlled.by large scale processes,

then our model results should correspond somewhat to the cycle's large

scale aspects. Obviously, our model resolution is much too crude to simu-

late sunspot or smaller scale motions.

Loosely interpreting our vertical magnetic eddies as active re-

gions, the generalized Hale polarity laws for leading (following) regions

in opposing hemispheres are sometimes obeyed. But the following regions
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are more intense than the leading regions. The tilt of the bipolar magnetic

regions tends to be in the correct sense for only the first 12 years of P.R.

1 (especially at level 2) and not for P.R. 2. The level of magnetic activ-

ity differs between the two hemispheres, as is observed on the sun. The

generalized Sporer law governing the equatorward migration of the mean lati-

tude position of active'region formation does not hold.

The most substantive result is that magnetic field reversals oc-

cur for both production runs. In P.R. 1, the time scale for the reversals.

is of the correct order of magnitude. Conversely, it is too short in P.R. 2.

A detailed discussion of the reversal process is deferred until section 6.8.

6.7.1. Solutions for Production Run 1.

The evolution of the horizontal magnetic field 8 is illus-

trated in Fig. 6.13 for P.R. 1. This figure, like most of the others of

this section, was originally plotted on the NCAR DD80 device. Arrows

point in the direction of the local horizontal magnetic field, at 50 incre-

ments of latitude and longitude. Also, they are subdivided into several

standardized length-thickness categories to indicate .the local horizontal

field strength. The maximum field strength and the time relative to the

introduction of the inital magnetic perturbations, are written at the

bottom of each plot.

The sequence in Fig. 6.13 is for a 7.7 year epoch at intervals of

0.70 years (10 rotations). It begins at time X = 4.73 years, not long

after the completion of the generation phase. At first, toroidal (rota-

tional) magnetic eddies are prominent. We recall that the initial magnetic

field was of pure toroidal eddy type. Both the axisymmetric and eddy tor-

oidal fields are antisymmetric about the equator for most of the sequence.

After Z = 5.42 years, the eddy toroidal field is not too prominent. The
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axisymmetric toroidal field at first contains a mixture of Y q/dL and

; 1C(C toroidal vector spherical harmonics. Later, DX /deR is

dominant. At 11.68 years an eddy disturbance affects only the northern

hemispheric fields. Thereafter, the antisymmetry-of the axisymmetric tor-

oidal field basically disappears except for some short-lived recurrences.

At ; = 26.96 years, for example, 8 is symmetric about the equator as

shown in Fig. 6.14b. We do not know the cause of the pronounced asymmetry

of ( & between the two hemispheres. No solar observations of (SA) are

available as a guide, either. It would be interesting to investigate wheth-

er or not this asymmetry is related to either the strong magnetic feedback

upon the flow or to the low model resolution.

The characteristic instantaneous peak strength of the axisymmetric

toroidal field< < > varies from under 500 to over 1500 gauss. Although

these values are about half an order .of magnitude larger than Babcock (1961)

has suggested, no observations are available to substantiate Babcock's esti-

mate. However, the local twisting of Babcock's flux ropes is supposed to

generate small scale fields of sunspot amplitude, e.g., %* 0(2000 gauss).

The magnitude of our toroidal fields could be reduced by over a factor of

2, if 4 were -- 10. A similar reduction would occur if were set to

-. 4 x 10- 5 gm/cm3, which is closer to the photospheric density.

Figures 6.17a-6.17d show the V ., , , and 3

fields, respectively, at Z = 8.20 years, for P.R. 1. The horizontal wind

field is zonal and axisymmetric in character and the horizontal shear is

very small. The vertical motion field has a little more character but

basically reflects a dominant meridional circulation with two cells in each

hemisphere. Occasionally, the eddy structure of iJ is more prominent.

The B field reflects a nonvanishing horizontal divergence of
4
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8 and is perhaps more arnalogous than to the surface vertical

magnetic fields. We recall that the observed line of sight fields are a

composite, over one solar rotation, of fields detected near the central

meridian of the solar disk. The most direct comparison between our 8

(or $ ) fields and the observed line of sight fields can be made at
2.

low latitudes. Typical strengths of the 8 and B magnetic fields in2 4
P.R. 1 are both of &(5 gauss) in agreement with measurements made with

moderate resolution magnetographs, Dz  being somewhat strongpr than 4  .

In Fig. 6.17c,. the 8 contours equatorward of the closed con-

tours tilt in the same sense although not so steeply as. Bumba and Howard's

(1965b) observed field patterns. However, 8 is quasi-axisymmetric, i.e.

no regions of alternating polarity are found. In contrast, the eddies of

8Y are more pronounced and there are adjacent-regions of oppoSite polar-

ity between latitudes -60o and +600. But disturbances of one polarity

still dominate the regions of the opposite polarity in each hemisphere.

At ~t= 8.20 years, the dominant polarity of the B eddies is positive

in the southern hemisphere and negative in the northern hemisphere. Inci-

dentally, the eddy structure of B differs in.the two hemispheres. The

dominant eddies of each hemisphere could be characterized as being of

following polarity (i.e., opposite to the polarity at the pole).

The configurations of the B and 8 fields in Fig. 6.17
2 4

are not persistent, but are among the more typical ones. The magnetic

eddies tend to tilt towards the equator as shown, especially at level 2,

until ;C-/ 12 years. But Fig. 6.15 illustrates an example of magnetic

eddies having an opposite and more pronounced tilt. There is still a

predominance of one eddy polarity (i.e., of following type) over the ot;her

in each hemisphere. Also, the zonally averaged part of B has an octa-
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pole configuration at X = 6.12 and 8.20 years. Sometimes the configura-

tion is more dipole-like and at other times, is either an even function of

latitude or a mixture of.even and odd modes.

As stated in Chapter I, observed active magnetic regions of lead-

ing polarity tend to be located at lower latitudes and have stronger fields

than regions of following polarity. However, the latter are more spread

out in longitude. In addition, the leading (and following) polarity are

opposite for the two hemispheres. Thus the (3) pattern for the model

should probably have five nodes between the two poles. But the highest odd

number permitted by our resolution is three. Interpreting Fig. 6.15 and

6.17d, for example, in this light, a region of leading polarity is repre-

sented by the penetration of a region, of following polarity into the op-

posite hemisphere. But the regions of following polarity are stronger. In

this manner, the following regions could neutralize the polar field despite

the constraints imposed by the resolution. We also note that our longitu-

dinal resolution cannot simulate the "unipolar" and "ghost unipolar regions"

characterized by n - 1 and n - 2.

6.7.2. *Solutions for Production Run 2.

A 7.7 year evolutionary sequence of 8 at --0.70 year (10

rotation) intervals is illustrated in Fig. 6.18 for P.R. 2. The antisym-

metric character of 8 present at first in P.R..1 seemed to be lacking

in P.R. 2. The beginning of the time sequence is at 22.52 years. Note

that the fluctuations are much more rapid in Fig. 6.18 than in Fig. 6.13.

Nevertheless, some coherency is still present from one plot to the next in

the sequence. Two reversals in the hemispheric average sign of <6

occur in the northern hemisphere and one in the southern hemisphere between

.= 22.52 and 30.16 years. The configuration of <8 )basically changes
baia2 hne
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from odd to even symmetry with respect to the equator. But more often than

A
not, the hemispheric average 13 > fields for the two hemispheres are op-

posite in sign. Another feature is that for P.R. 2, the toroidal magnetic

eddies are more prominent than for P.R. 1. But when .and where the magnetic

energy is large, it is predominantly in the (:3 field.

The peak magnitude of the instantaneous <8 : field is typically

1 1000 gauss but occasionally may reach 2000 gauss.

Figures 6.19a-d contain the , ,and B fields,

respectively, at t = 24.60 years. In Fig. 6.19a, note the mid-latitude

easterly jet. Although the flow is predominantly zonal, the eddies are a

somewhat stronger than the arrow representation is capable of showing. The

darker areas indicate that the eddies tilt NW-SE in the northern hemisphere.

The vertical motion field has more eddy structure than in Fig. 6.17b. For

example, vertical motions of opposite sign are jUxtaposed at mid-latitudes.

The characteristic magnitudes of the vertical magnetic fields are

"10 to 20 gauss for 8 and - 1 to 2 gauss for 8 . Thus there is

frequently an order of magnitude difference between .8 and 13 in P.R
2 4

2, in contrast to the situation in P.R. 1. The values for 13 and S
2 %

are in best agreement with observations taken during the active and inac-

tive phases of the sunspot cycle, respectively.

The 13 and especially the .8 configurations in P R. 2 often
2 4

tilt in.the incorrect sense. However at t = 24.60 years, the tilt of the

B field in Fig. 6.19d is satistactory. Even 8 manages to tilt in

the correct sense at ;t = 28.10 years, but Fig. 6.20a is not really typical.

Magnetic eddies of opposite polarity are somewhat more readily juxtaposed

at level 4 in P.R. 2 than in P.R. 1. Regions of opposite polarity are still



.. ... ...... . ... ....

S . . .. .. . ... . . . .. ..

.. . . . . . . .. . . . .

-60 5-40-30-2010 10 20 30 40 50 60!

LONGITUDE

H.12 W. XR I W f aI: W un

30-30 . - ,, - ---- ,

-90-60-50-40-30-20-10 0 tO 20 S0 40 50 60'LON0GITU
LO G T D V Z ip' o

-90

.. . v . .. .. .. .. .. .. ... ,..

............... i..........

-.. .....

...-

0 0 4

600-50 -40 -30-20-10 0 10 20 30 40 b.0 60
LONGITUOE

sl Yras PR. I J.,,1g 1 .MUS

90 rO,.....................

-60-50-40-30-20-0 0 10 20 30 40 601
LONGOITUDE

S.IVE,. ,A • mt :,

..

. .. . . ,.. .. .. . . .. . ,. .. . . ..

10 -50-40 -30 -20 -10 0 10 20 30 40 50 60
LON I TUDE

90 . . . ...... . .... . .. ..

60
------- ---------------

50

-30-60-50 -40-30-20-10 0 10 20 30 40 50 60

LONGITUDE

Sf . •99 .P. 4 1% .X .a.w pas .------.----------- ,----.
- ,,,,,,.,, ,,, , ,, ,,,, ,

Fig. 6.18. Time evolution of horizontal magnetic field for P.R. 2 at intervals of 10
2

solar rotations. The fields are less coherent in time than those of Fig. 6.13.

-30

-60

_

...

.. ****.**.°°.****......

=======================*

,...,0.00........0.0.000.~

I I



60

.... ... , . .. . .. . . . ... .°. .

30 .. ...-. . " .......... -

-------------

-30 -- ~----------------------

-60-

...... . . .... . .

60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60i
LONGI TUDE

26.634 Wy. P* aD%, 3 s

60

30 . .. . . . . . . .

°......................

...... o. ..... 11°..........

..., , .. .., .

...... ,....

... °........ . e . , ,

.......................- . .. o......" 1.T'.... 7..r

-90. 1.............................
-60 -50 -40-30 -20 - 0 10 20 30 40 50 60

LONGITUOE

SIT. v tw . A. L I I : 7*L s .

90

60

30

-30

-60

-30

-60 . . . . . •

-90 "L 61A "" 6"""""" ""1 ""- '"1 A-, " "t

-60-o-40- - -0 0 10 20 30 40 50 601
LONGITUDE

t2.77 v rt A- 2 11". = 2o Pu

C C14- C(--- --- ---
----------------- e

--------... °.........-....°°

.. .. . . ............
,, C ,' ., .'. ,,; .' . ,' .' ..; ' .'

"-60-50-40-30-20-t0 a 10 20 30 40 50 60
LONGITUDE I

Fig. 6.18 continued,

91

6

30

-30

-60

-90

tow Y vr. P. z kl.' = nu pas

-30 I - '- '-"-----------~ . . . . . . . . . C30-----~~

0 " - --- - -
-C~ ~ / c4 ~~ ccv

-60

-60 -50 -40 -30 -20-0 0 10 20 30 40 50 60
LO ITUDE

3o16 yV. i* a Ikf. =isc e*s

------------- 55~~--- -

- ....... .. . . . + .. ....

. .... . ., . o. . . .

_ __

0-50 -40 -30 -20-10 0 10 20 30 40 50 6
LONGITUDE

~---- ---------- --
) ------ ------- --

S.

----- --------
.~------

------- -.----~-----

--- I

0

I(

=o

i

'



-235-

5:

30

0

-j

-30

-60

. . . . . . . . .. . . . . .. . . .

-9 0 a 1 1 t it *f

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60
LONG ITUDE

(a) Horiz. velocity 4 3  .

i %IM =2.54x10 cf/sec.

30

-30

-60

----- ~---- ----- ---- --------
- -- - - - -- - -- - - L - --

- --~- L------- --~ -- -----L

-J~ - - - - - - - - YL -Y-

63

30

-j

-60 -50-40-30-20-10 0 10 20 30 40 50 60 -60-50-40-30-20-10 0 10 20 30
LONG I TUDE LONG I TUDE

(c) Vert. mag. field 8 . Contour (d) Vert. mag, field 8
int.=0.25 gauss, rainge=-l.75 to int.=5.0 gauss, range
+1.00 gauss. +20.0 gauss.

Fig. 6.19. Sample solutions for P.R. 2 at t:24.60 yrs.

40 50 6.

, Contour
=-15.0 to

..-.. o .. ... - -*. . .. . .... ° -

\ +
-10

nt = 20 cm/secSLONGITUDE23

nt. = 20 cm/sec.

Stt.I SO YrS P.R I 8 .

-.0 " ..._......N, ... .., ,,2) ,4..t f r a ~?0

QCKS, c

jIi ~05,, (

% I



60

30

-30

-60

-90 I' I I * I .. . . .. . .

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50
LONGITUDE

(a) . Contour int. = 0.25 gauss,
range = -1.25 to +1.50 gauss.

53

-30

-60

- 9 0 1 1 i I I I I I I I I I I I I I I I I I I I

-60 -50 -40 -30 -20 -10 0 10 20 30 -40 50 60
LONGITUDE

(b) Ez Contour int. a 5.0 gauss,
range = -30.0 to +30.0 gauss.

Fig. 6,20. Vertical magnetic fields for P.R. 2 at t=28.08 yrs,



-237-

5.1 YRS. rest ra,&7 7

30

-60

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60
LONG I TUDE

Fig. 6.21. Stream function TY
for test run 7 at t=l.ll yrs.,I.e.
before significant dynamo
action occurs. Streamlines
tilt in the desired sense.

9-
.4
-j

-60 -50 -40 -50 -20 -10 0
(a) LONGIT

Fig. 6..23. Mag
(a)- Biu
(b)- 8V

2

y@ T 1r, i , , i , , , , r

60L- - -- - -- - - -,

30 a- 11

------ --------, - --- , - --.--

//for test run 7 at t3.89

yr5 <1,'> is symmetric aLout
the equator.
the equator,

ul

6-

.4
-J

-30

-60

10 20 330 40 50 60 -60-50-40-30-20-10 0 10 20 30 40 50 63
UDE . ( LONGITUDE

netic fields for test run 12 (RU=500) at t=21.75 yrs.
* Note horiz. converg. and diverg. of field lines.
" Contour int,=5 gauss, range=-35 to +45 gauss, which

is larger than in P.R. 2.

---- - - - - - - - -- 9 9 - /, \ 9 /

e,-, ,I,,l,. L,,lL~l. I, ll ll ll l.

~Th

Ii
I

}
r 1



-238-

juxtaposed at level 2. The eddy activity can be stronger in one hemisphere

than in the other, as indicated in Fig. 6.19d. Also, regions of leading and

following polarity may be identified in figures 6.19c, 6.19d, and 6.20a. In

the first two cases, the leader (or followet) regions in each hemisphere

have the same polarity, in disagreement with one of the phenomenological

laws of the sunspot cycle. There are three nodes for (8 but four for (8 k.

Meanwhile, in Fig. 6.20a, the leader (or:follower) regions of each hemis-

phere have opposite polarity and there are three nodes in the (B field.

6.8. Magnetic Field Reversals and Dyhamo Maintenance.

6.8,1. Observations and Other Theories of Solar Magnetic Reversals.

The net polarity of the line of sight field was observed by,

Babcock to reverse sign near the sun's north pole during 1959 at sunspot

maximum and possibly near the south pole about one year later. Babcock

suggested that polar reversals were another manifestation of the solar

magnetic sunspot cycle and that they should occur every 11 years on the

4
average . Using a low resolution magnetograph, Babcock did not find a zo-

nally averaged line of sight field <8 ) in polar regions as strong as 1

gauss. In contrast, Severny (1964) reported field strengths ranging from

- 2 gauss at L- +600 to >5 gauss at W +780, but again under 1 gauss in the

south polar cap. These observations were based on 1963 and 1964 data ob-

tained with a 9" are resolution magnetograph and suggest that the solar

reversals could be rather irregular.

Both the Babcock and Leighton models of the solar cycle, discussed

4Measurements of the sun's polar magnetic field made somewhat prior to
the invention of the magnetograph around 1952 are of questionable validity
bht they indicate reversals around 1929, 1938, and 1948 which were afjProcmti ly
years of maximum sunspot activity.

% % . .
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in Chapter I, include quasi-regular reversals of the poloidal magnetic

field. Similarly, Gilman(1969) obtains quasi-periodic reversals. His

successive peaks have the same amplitude, provided R / R mc4/3. In
m mc

contrast, irregular reversals of the poloidal (as well as of the toroidal)

magnetic field occur in our model. Considering the similarities between

our dynamo model and Gilman's, one may wonder why our magnetic reversals

are not quasi-periodic. Although we do not have the answer, it may be

pointed out that our model is more complex. For example, it has 127 deg-

rees as opposed to 18, includes both even and odd harmonics in the represen-

tation of each variable, and permits internal gravity waves. In fact, prior

to the generation of magnetic fields, the flow had not yet (and might never

have) reached a true quasi-steady state, especially in P.R. 2. Of course,

in the final analysis, a good model should not necessarily yield ir-

regular magnetic reversals unless these are found to occur on the sun'.

6.8.2. Simulation of Magnetic Reversals by our Model.

To illustrate our irregular magnetic reversals, a time history of

the(S > magnetic field at both the north and south poles is displayed in

Fig. 6.24 for P.R. 1 and in Fig. 6.25 for P.R. 2. Level 4 corresponds most

nearly to the solar surface. On the other,hand, a direct comparison with

solar observations cannot be made. For example, the true radial field

component near the pole could be stronger than the observed line of sight

field <~ ). We note,however, that the larger weighting factor forO<e > in

the formula for <8 > .s partly offset by the fact that lim <8 > = 0.

Furthermore, if we assume that the magnetic fields are more intense beneath

the surface, then a polarity reversal near the pole should affect both (8

and <08 , and hence (0'6

In P.R. 1, the first finite amplitude peak is very antisymmetric

% V I a
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about the equator. This is not true in P.R. 2. For both runs, we see that

not all oscillations in <8 > are large enough to produce a polarity rever-

sal. According to Fig. 6.24, six reversals at (Q =900 occur between t=2

years and t=76 years, in P.R. 1 at the pole. Another reversal also takes

place at t=79 years, while the run was terminated at t=84 years. This gives

an estimate for the mean reversal time of between 11 and 12 years, which

agrees favorably with the postulated solar value. The pure dipole harmonic

of (O > experiences only five reversals, the minireversals at t--25 and at

t,31 years in Fig. 6.24 being absent. There is a general tendency for the

vertical field at the two poles to have opposite polarity5 and for their

smoothed oscillations to be negatively correlated. In P.R. 1, <) > is

often, but not always unipolar at low latitudes, as previously mentioned.

As the following polarity is predominant there, the hemispheric averaged

<83> field can be opposite in sign to the polar value. Although the

reversals at the two poles are not synchronous, they usually occur within

about one year of each other. The main exceptions are the 4 year lags as-

sociated with the two minireversals cited above. The strength of the peak

4)> fields near the pole is - 4-5 gauss, which is not inconsistent with

Severny's values. Also the fields reach peak strength at the poles as in

Fig. 6.28, and a peak at one pole can be stronger than the (corresponding)

peak at the other pble. At level 2, the oscillations would be a bit more

irregular, the reversals would occur between 1/2 and 1 year earlier, and

the peaks would be about twice as strong.

The situation for P.R. 2 is somewhat different. We estimate the..

mean reversal time to be between 1 and 2 years, i.e., presumably about a

factor of 8 too small. The more rapid oscillations here as compared to

5The hemispheric averages of <8) must be equal and opposite for the
two hemispheres.
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P.R. 1 may reflect the greater ~hermal forcing (vertical wind shear). We

recall that the strength of the horizontal differential rotation at the

upper boundary is more realistic in P.R. 2. While thele is less tendency

than in P.R. 1 for the sign of <B4 to be opposite at the two poles, the

polar field is in general confined to a smaller polar cap. Finally, the

peaks are much stronger and the oscillations noisier at level 2.

6.8.3. The Energetics of the Model and its Implications for

Dynamo Maintenance.

An analysis of the energy integrals and energy transformation

integrals of Chapter V helps clarify the physical processes of the model,

ncluding the maintenance of the dynamo. The Robert spectral method is

applied in computing the above integrals, which are invariant under orthog-

onal truncation.

Some General Characteristics of the nergetics.

Energy diagrams corresponding to Fig. 5.la are presented for P.R.

1 and P.R. 2 in Fig. 6.26 and Fig. 6.27, respectively. The time averaged

values are based on roughly 35 years of data for P.R. 1 and on about 21

years of data for P.R. 2, time variations being more rapid for P.R. 2.

The energetics df both runs have many similarities. First, the

energy input (<Gp is over three orders of magnitude smaller than the solar

luminosity- L ( 3.9 x 1033 ergs/sec. Thus only a small fraction of the out-

ward going (convective plus radiative) energy flux would be required to

drive the model. Second, the transformation <fPE-4+(k'j is not small

compared to [(EPE>-~<EKE>J in the magnetic case. We recall that the

vertical heat transport curves of Fig. 6.4h and 6.8h implied (EPE>-><EE>J

was dominant in the nonmagnetic case. Third, (K>A)O ~ ( '(KE>) in P.R.

1 and (KA> is about 1.5 orders of magnitude smaller than ('K>) in P.R. 2,
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FK

FK M

300

6.76

Fig. 6.27.

0 4,8 X 10271 FEKE

OMM

1029 3,11X 1029
1.45 X 10 2 8

EP E EPE
3.78 

2 10 9 E

1029 6-72XIO28

GZPE GEPE

Energy Diagram for magnetic P.R. 2. Units are in ergs/sec.

Symbols are defined in text of Chapter V.



-24G-

whereas <'AfIM is C/0-' .*'>) in both runs. Thus, the (axisymmetric)

magnetic field is -less horizontally nondivergent than the (axisymmetric)

velocity field. In Fig. 6.26, only-~ 1% of the energy input to < KM> is

dissipated by friction, and most of the remainder is given up to axisym-

metric toroidal motions. In contrast, a much greater fraction of the

inputs to (Iff> , <Ff) , <4M) , (E E> , and <EIE> are dissipated.

Fourth, <E~E> which might have been transformed into <kZ) in the nonmag-

netic case, is transformed primarily into <(EME> instead. Corresponding

energy transformations in P.R. 1 and P.R. 2 have the same sign except for

, [<CiM>-s Kk'AI and j<EkE -_<M(3

which are not dominant anyway.

One difference between P.R. 1 and P.R. 2 is that the energy levels,

and rates of generation, transformation, and dissipation are about four

times greater in the latter. We note that the thermal forcing was greater

in P.R. 2.

Decomposing Ek>-<E)'( , we find that the vertical shear

term DU t(L a aJ< i>dS is somewhat more important than the hori-

zontal shear term, especially in P.R. 1. This can perhaps be attributed to

the inequality I S- 61 ) . In magnetic P.R. 1

(P.R. 2), the horizontal eddies transport angular momentum down (up) the

angular velocity gradient, the vertical eddies transport angular momentum

up (down) the gradient, and I<EIE)-4<K ] is positive (negative). Recall

.tthatthe equatorial. je _in magnetic P.R. 2 appeared to be partly friction-

driven. In both runs, fEKE (>-k-'>< >j+ f<E->-iW4<M> > 0. Also, the

coriolis term gives the largest contribution to ( -t, which

may reflect the low model resolution. This term might have been smaller if

an indirect cell had existed at mid-latitudes instead of at high latitudes.
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Finally, the contribution to <*K)-> (< Z which involves axisymmetric

Reynolds stresses is still larger than <KE >-><@> .

Production of Axisymmetric Toroidal Magnetic Fields

The transformation <~K-PrfiZM J represents the main source of

energy for the axisymmetric toroida) field. It is related to the stretching

of poloidal magnetic fields, by the differential rotation, into toroidal

magnetic fields. All variables in this interaction are axisymmetric.

Further analysis of this transformation reveals that the vertical shear

term A'(o8 . yu>-a- >S is largest and is nearly always positive.

5
This result is consistent with Leighton's (1969).results. In contrast,

Babcock's (1961) scheme relied upon the horizontal shear term. Although

that term: was also important in Gilman's (1969) model, he expressly ex-

cluded the vertical shear term. We attribute the dominance of the vertical

shear term in our model to the weakness of the averagehorizontally dif-fer-

ential rotation.

In P.R. 1, the (B) field at time t-t- is strongly positively

correlated with the <13 poloidal field at time 2 and with <13 > at
' at

approximately time t-J , where A 10 rotations. The strong correlation

between ( 3 and <8 > at rbughly zero time lag in P.R. 1 can be seen in

Fig. 6.28. In P.R. 2,.t is even smaller and as shown in Fig. 6.29, the

correlation' between < 8 ) and <6 > is negative. These differences are
4

consistent with the more rapid time scale and the negative vertical shear

of <a >, respectively. But in both runs, the stretching of (< ) fields

into <B> fields proceeds very rapidly.

Incidentally, oscillations in <MFi) lag behind those in (<AIM by

somewhat less than 900 on the average. This corresponds to a time lag

S • ,
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S', 0(10) rotations in P.R. 1 (shorter in P.R. 2).

We emphasize, however, that not all oscillations in (M/i1) are

associated with a reversal of the polar poloidal magnetic field. Meanwhile,

(K ) lags a few rotations behind (<PE and between 900 and 1800

(rather than 180 ) behind <MV > . Although <MMA4 is generally larger

than <KA4> ,</> experiences considerably greater fluctuations.

The transformation (EkE>-)-4<M has a time averaged value

only 10% as large as that of (f<K Z>-><M) ( in P.R. 2. The corresponding

value in P.R. 1 is even relatively weaker and is negative. In both runs,

ErE -oscillates between positive and negative values.

Lastly, <k1A4>---<M0> has a negligible effect upon <A4- .

The leading term. of <(EfE)>-4< £} is

f < 13 1 d ,A*,>A<.Acrg Those terms associated

with the vertical shear of <A > are smaller. In this connection, the

ratio of instantaneous horizontal to vertical shear of (OA) is not small,

unlike the case for <(Q> . Although the decomposition

3 33 4 3 a v 0 A~e3 3 3rj

was not carried out, we speculate that-< ( , m q )> should be
- A 3 M 3

important since the toroidal components of / and especially of V are

largest. This term has. been referred to as a mixed stress by Gilman (1966)

and may be interpreted as the advection of eddy toroidal magnetic flux by

eddy toroidal motions. The nonvanishing of Ju) implies that

the magnetic and velocity streamlines are not in phase. This term contains

no interaction with eddy poloidal fields. The last two terms inside the

brackets do, but these interactions are evidently not very important in our

model.
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Maintenance and Reversals of Axisymmetric Poloidal Magnetic Fields.

According to Fig. 6.26 and Fig. 6.27, the energy transformation

EK E>-4/IIMM) is the primary source of axisymmetric poloidal magnetic

energy. Axisymmetric poloidal magnetic fields may be directly regenerated

via the transport of toroidal magnetic eddies by poloidal eddy motions.

This involves the toroidal part of 8 in 2 1 > .

S
The total integral oscillates between positive and negative values, its

time averaged value being positive for P.R. I and negative for P.R. 2.

A more important term than the above integral, and hence than

direct regenerative feedback, is the horizontal transport at level 2, i.e.,

- d { <os . The positive time averaged value
D

of this integral is about a factor of five larger than that of the first

and roughly 75% of its values are positive in P.R. 1. Meanwhile, the,

horizontal transport term involving > is small in comparison.

Finally, j<8 M-y<AS T Q cn is of comparable magni-

tude to its eddy counterpart in EKE>-<MA4>3 , but iS not coupled to

the toroidal magnetic field.

In the horizontal transport integral at level 2, <1f may
a 2

be interpreted as the meridional transport of vertical magnetic eddies by

toroidal eddy motions, since V is purely toroidal. Gilman (1969) showed
2.

that the dominant term affecting his axisymmetric vertical magnetic field

< > (represented by a single harmonic) was a lJ' 8 eddy toroidal type

transport term. Moreover, the quasi-periodic oscillation of <1 lagged

that of <LQ t 8 by -- 90 . In contrast, Leighton (1964, 1969) invoked

a diffusion mechanism to account for polarity reversals of 13 > at high

latitudes. Finally, Babcock (1961), and Nakagawa and Swarztrauber (1969)

invoked an axisymmetric poloidal transport term eC <xr ( > ~

% -
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Analysis of the energetics, including the time variation of the

energy transformations affecting <(4A4I , does not reveal which term (or

terms) is responsible for the actual reversals of the polar (< )> or (

magnetic fields4 This information could be obtained with the aid of the

equations

-V L?+ (6-5a)

Here and represent ohmic dissipation, purely tooidal

horizontal advection, () -- horizontal twisting, and (f - horizontal

advection. Also,(XV)Z2'&b) is best interpreted as a vertical twisting

term. Note that no meridional transport is possible at level

2' 32, because < )<-O. One could evaluate (6-5a) and (6-5b) from history

tape data, once every rotation, say. This could be done in either the

space domain (using the Robert method) or the spectral domain (using a

spherical harmonic expansion). In this manner, the details of the rever-

sals of (2 >and (,8 could be ascertained. Considering the lack of

quasi-regularity and the greater number of interactions, the details of the

reversals are apt to be more complex than in Gilman's model.

Regenerative Feedback of Poloidal Eddy Magnetic Fields.

If the direct regeneration of axisymmetric poloidal magnetic

fields is relatively small on the average, as already implied, then eddy

poloidal fields must be regenerated from toroidal fields. Energetically,

the relevant transformations to be analyzed are , E'E5> -> E'M> ,

al>-4 <r M£ad£> , and [<'A4)>- (EME>3 . Of these,

ie6--ElE > is largest. Further analysis reveals that
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IX Ptl7O(<,P?;); ) and

f ( .(B -- ),>dS are respectively the first and second

largest terms of <E*E>--.><ME>3 . Both terms are generally positive in

P.R. 1 and their ratio is ,. 5. The remaining terms are individually 10% as

large, but their sum virtually cancels. In P.R. 2, the second termLis ---50%

as large as the first. However, the first terms is negative -'30% of the

time. Meanwhile, the other terms are negligible. Incidentally, oscillations

in (~E> and <EK1E> are highly correlated in time, and <EAME> lags behind

<E(kE) , but by only one or two rotations.

From Fig. 6.26 and Fig. 6.27, f<9>-4<EME>f 25% of <E)E>-T&1E>]

and f<k)4>)- >EAE- 10% of [<EME)-+<EME>}. The weak horizontal differen-

tial rotation is probably responsible.

Of course, what really interests us here is the eddy poloidal mag-

netic energy <0IE>Ip*P) c/S <gAE.> - <EA4ME>-r
f d. r $ 0

where.<(Er - I , is the eddy toroidal

magnetic energy. We speculate that the twisting of axisymmetric toroidal

magnetic fields by eddy vertical motions could be an important if not the

dominant regenerative feedback of eddy poloidal magnetic fields. It is

analogous to the mechanism found by Gilman (1969). Some heuristic arguments

are given below in support of this view.

.From the previous discussion, the three largest terms which build

up (1E> are, in order of size,

< A 2 * A
J, #Vo2 (> oC, < > + < oVX > <8

Now the third integral evidently -builds up only MW _ since it lacks

poloidal motions. Bullard and Gellman (1954) proved (for a somewhat differ-

ent model) that such motions are required to regenerate poloidal magnetic



energy. In fact, the third in grtal represents the magnetic eddy analogue of

the stretching of axisymmetric poloidal into toroidal fields by the vertical

shear.

The second integral is probably smaller than the first, because

the former contains only a poloidal velocity component whereas the latter

involves a larger toroidal velocity IT as well. However, the part of the

first integral associated with VIY should affect only <EAIf> . We also

note that the first integral contains no poloidal magnetic field harmonics

and that the poloidal magnetic field eddies in the second integral are

presumably not much smaller than their toroidal counterparts. Hence the

second integral could make at least a significant contribution to (EWE>
p

In this integral, lr and <8, can be traced back to the horizontal

induction equations, while B - 8 is related to the factors &

and in the energy balance 9quation for (EM) >
3 a;

6.8.4. Further Discussion of Dynamo Maintenance.

It was previously suggested that the development of strong mag-

netic fields characterized by 4 <0(10) partially suppressed baroclinic

instability. This could come about, for example, by a reduction of L . In

this connection, the vertical eddy motions are generally weakest in regions

of strong axisymmetric toroidal magnetic fields in P.R. 1 and in P.R. 2, as

illustrated in Fig. 6.30. There, the instantaneous untruncated standard

deviation e( t(,))t)) (u . >of UT at latitude(Q exceeds a specified

value ' inside the shaded regions. Although the values adopted for U'Sc Sc

are somewhat arbitrary, 6"(f(Q -)) usually would be greater than O in

the nonmagnetic case, within the mid-latitude zones of maximum baroclini-

city. The truncated values would be somewhat weaker due to smoothing

effects. Another property (not illustrated) is the tendency for strong
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Centers of -f[(JQ-t') and ( '(Let)) to overlap, where the lag t" is

small, e-g., 3 solar rotations or less.

The above results, like the energetics analysis, suggest that

the term < 8&> in equation (6-5a) could be important for the regen-
acoce 5V

erative feedback of eddy (vertical) poloidal magnetic fields. The product

is small if either ( > is locally small or very large. In the latter

case,Uf is small. The reduction of regenerative feedback ultimately

imposes an upper bound on <8) However, for a while, advection and verti-

cal twisting of vertical magnetic fields can cause a local buildup of (
2

fields and hence ofB <Afields. There is no regenerative feedback term

in equation (6-5b) involving toroidal fields.

Babcock (1961) cited two regenerative feedback mechanisms for the

formation of sunspots, which apparently have a rather different physical

basis than our feedback mechanism. More specifically, these are Parker's

magnetic buoyancy of locally intense toroidal magnetic fields and Lundquist's

magnetic loop instabilities in very strong toroidal flux ropes.

Recently, Leighton (1969) devised an axisymmetric magneto-

kinematic model of the solar cycle (see Chapter I) in which- the zonally

averaged effects of sunspots are parameterized. Wherever the axisymmetric

toroidal magnetic field exceeded a critical strength, he assumed that sun-

spots extracted magnetic flux from this field at a specified rate. If a

could have been larger in our model, the vertical eddy motions would not

A
bedrastically suppressed when (B >reached peak strength. Thus, in prin-

ciple, maximum regenerative feedback could occur at that time even in a

baroclinic hydromagnetic dynamo model.

6.8.5. Sporer's Law and Possibly.Related Phenomena.

According to Sporer's law for sunspots, the zone of maximum

% % 0
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sunspot activity drifts equatorward during the course of each 11 year

segment of the 22 year (double) sunspot cycle. The well known Maunder

butterfly diagrams reflect this behavior. Spbrer's law may also be gener-

alized to include active regions in which the sunspots are imbedded.

The most logical indices for magnetic activity in our model are

the variance (8 > of 13 and <V > of 8. These variances are found to be
S 2 4

considerably greater in one or the other hemisphere, at different times.

On;the other hand, maxima of (8 )do not systematically drift equator-

ward or poleward in either run, just as is the case for maxima of (T*>.

An equatorward drift in the maxima of(n) >could possibly lead to such a

drift in the maxima of (8>, if< ~ which is inherently weaker at
S52

low latitudes, were not further weakened there by strong(B8 fields.

Meanwhile, whereas (8 ) does not systematically drift either poleward or

equatorward in P.R. 1, there is a vague suggestion of an equatorwaxd drift

in P.R. 2. But the variance is too small by an order of magnitude in both

runs.

Leighton effectively takes the strength of <8 > as an index of

magnetic activity in his axisymmetric magneto-kinematic model of the solar

cycle. Despite the predominance of the leading polarity in bipolar magnetic

regions, it is not entirely clear that( las opposed to <8 ) should be much

larger there than at high latitudes, or is a-good index of magnetic activ-

ity. At any rate, 1<31>I drifts equatorward, followed byJ<I3(> M in

Leighton's model for the following two important cases: (a) observed

horizontal differential -rotation and zero vertical differential rotation;

(b) observed horizontal differential rotation and a negative differential

rotation proportional to r*cos L . But for his choice of amplitude of

a positive vertical shear leads to a poleward drift. Note that /dar
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drops off very sharply with Ititude.

Irrespective of the validity of Leighton's interpretation of his

results, it is interesting to compare our migrations of (h3 and <84
4

with his. We recall that these variables are well correlated in our model

at close to zero time lag. Referring again to Fig. 6.28, we see that there

is a tendency for poleward drifts in P.R. 1, especially during the first

13 years or so. Perhaps it is not a coincidence that the vertical differ-

ential rotation has a positive sign for this run. In other words, this

may be an important determining factor in Leighton's model runs, and even

more so in ours, since our horizontal differential rotation at level 2 is

so weak. Fig. 6.29 depicts the situation for P.R. 2 in which the vertical

shear of <U.> is negative. Probably the most realistic interpretation is

that magnetic regions of <13 > in the two hemispheres drift simultaneously,

either northward or southward, and similarly for <13 >. However, there is

some suggestion of an equatorward drift of <3 ), especially in the northern

hemisphere. Making such an interpretation, some drifts overshoot the equa-

tor and some wings of the butterfly configuration are out of phase. More

definitive equatorward drifts might occur in a higher resolution model with

a stronger vertically averaged horizontal differential rotation. Inciden-

tally, the magnetic related destabilization of the horizontal shear of <UC

is illustrated in Fig. 6.31 for P.R. 2. An analogous destabilization occur-

red in P.R. 1, except that the (UZ) contours and the 12 curve were much

smoother for this mid-latitude westerly jet case.

Another feature worthy of note in Fig. 6.28b is the drift of

a zero line of (8 4> towards each pole during the first reversal and

towards the south pole during a minireversal in P.R. 1. Most drifts assoc-

iated with reversals beyond t=30 years in P.R. 1 were also of this type.
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Fig. 6.29. Meridional-time cross section of axisymmetric toroidal and ver-

tical magnetic fields for P.R. 2. Solid contours interval = 1 gauss,

dashed contours = 0.4 gauss. Regions of positive field are shaded.
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Fig. 6.30a. Superposition of regions of strong vertical eddy motions upon

the meridional-time cross section of (<3> of Fig. 6.28a for P.R . 1.

The untruncated variance <Hkr >(Lj) exceeds 20 cm/sec and 40 cm/sec

respectively, in lightly and darkly shaded regions.
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Fig. 6.30b. Superposition of regions of strong vertical eddy motions upon

the meridional-time cross section of<GA of Fig. 6.29a for P.R. 2.
The untruncated variance exceeds 100 cm/se in shaded

regions.
regions,
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Fig. 6 .31a. Meridional-time cross section of the vertically averaged
zonal wind <tUL, in P.R. 2. Contours are in m/sec. Hatched regions

denote (weak) relative westerlies. Dotted regions denote relative

easterlies stronger than 100 m/sec.
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Fig. 6.31., k ime evolution of the square of the Alfven number. The
horizontal shear of <(> in Fig. 6.30(a) breaks down to a large
extent about the time that 41L becomes smaller than &'(10).
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In Fig. 6.29b, there is evidence of slight recurving, but not enough, of

the zero line of43>in polar regions. On the sun, the zero line of <8 >

usually delineates a solar quiescent prominence and both move poleward.

Finally, our zonally averaged vertical magnetic fields reach

peak strength at the poles, not at lower latitudes. This is true for both

runs. In contrast, the variance of 8 (and of what there is of ~ ) is2 4
generally confined to latitudes equatorward of ±600 in P.R. 1 and ±500 in

P.R. 2. The. magnetic eddies decay, of course, as cos6 L , since n=6 is

the only positive zonal wave number retained.

% . I
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CHAPTER VII. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

Although a primary objective was to test whether our baroclinic

model is plausible for the sun, a definitive test would require consider-

ably more model resolution than was currently feasible.' Nevertheless, the

results are encouraging in some respects, and indicate how to proceed

numerically when faster computers are available.

In applying the model to the sun, we have attempted to (1) gener-

ate and sustain magnetic fields by dynamo action, (2) simulate the observed

solar horizontal differential rotation and its maintenance, and (3) simu-

late the large scale features of the solar magnetic sunspot cycle including

reversals of the polar poloidal magnetic field and phenomenological laws

governing magnetic active regions.

We have demonstrated that magnetic fields can be generated and

sustained by dynamo action. Whereas either 4d L (104) or Z 3 in

our magnetic runs, intermediate values hopefully could be attained. This

should be verified numerically, e.g., by inserting more resolution and/or

by selecting a few values of R for P.R. 2 such that 250 < , C 325 and

estimating the steepness of the slope -d/d * . Our experiments did

suggest that R" varies with the pre-estabilshed (nonmagnetic) flow pat-

tern. The apparent increase of ?m in the one run with higher resolution

does not necessarily imply that R would be unbounded in the limit of
MC

infinite resolution.

Modest success is claimed in the simulation of the solar equator-

ial jet in the nonmagnetic case. For two different thermal forcing profiles

(i.e., (b) and (c) ), a horizontal differential rotation of the required

strength developed and was maintained by horizontal eddy transports.

• 8
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Fultz's dishpan experiments and Ward's suaspot statistics lend credence to

the above results,'despite the low dodel resolution.

Future systematic Doppler measurements on different spectral lines

could reveal information on D-lb/d C (in the photosphere) which could

favor one thermal forcing profile of (b) and (c) over the other. The large

equator to pole temperature difference for profile (b) in P.R, 2 does not

necessarily imply that the baroclinic hypothesis should be rejected. Thus,

a smaller horizontal temperature difference which extended over a deeper

layer could produce a vertical wind shear of the required magnitude.

One limitation of the model is that the highest permitted harmonic

of 4abs was A 3 (cf. formulas 1-1) and (1-2) ). Another possible limita-

tion is that only two meridional cells per hemisphere could be resolved.

Hence a qualitative confirmation of the above results with a higher resolu-

tion model would be recommended.

As a further improvement, the higher resolution nonmagnetic runs

should be integrated for (up to) several hundred rotations before introduc-

ing the seed magnetic field. This would give the solutions a better oppor-

tunity' to approach a quasi-steady state, if so inclined. Also, the general

circulation statistics for the nonmagnetic case would be more representative.

In the magnetic runswith iL 3 , the magnetic fields did not

reverse the tilt of the streamline patterns or the sign of the eddy trans-

port of angular momentum. Nevertheless, the magnetic feedback was very

large and was associated with a somewhat stronger meridional circulation,

partial suppression of baroclinic instability, reduced eddy transports, and

a rapid conversion of eddy kinetic into eddy magnetic energy. Consequently,

the pre-established zonal flow (barotropic mode) was also destabilized. It

% lb . 4
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remains to be seen whether the shear reversal at level 3 in P.R. 1 or at

level 1 in P.R. 2 are real effects or are due to the low resolution. We

also caution that the above results cannot be generalized throughout the

range &(101 ) -Y(10 3). For 4-1'(10 ),10 we verified that the magnetic

feedback was negligible.

In Gilman's quasi-heliostropic dynamo model,Zt remained of C9(10)

and the zonal velocity profile (barotropic mode) was not destabilized.

Curiously enough, his toroidaL magnetic fields could be produced from po-

loidal magnetic fields only by horizontal and not by vertical stretching.

Thus, his model may have a built-in mechanism which our model lacks for

increasing the lower bound on C. In addition, his quasi-heliostrophic

model excludes dynamically active axisymmetric Reynolds stresses, which

were very important in our magnetic production runs.

Concerning the simulation of the solar magnetic cycle, the

reversals in the poloidal magnetic field <8 >were encouraging For P.R. 1,

the mean reversal time was certainly of the correct order of magnitude,

although the reversals were more irregular than is presumed to occur on

the sun. The reversal time in P.R. 2 was much shorter. One possible cause

is the stronger vertical wind shear, hence more rapid stretching of poloidal

into toroidal field lines. Another is the more irregular character of the

solutions in P.R. 2 as compared to P.R. 1 (or test run 7) in the nonmag-

netic case. This could be related to the presence of a relative easterly

mid latitude jet in P.R. 2. With less magnetic feedback (24 >>), the

motion field should remain relatively quasi-steady, at least for thermal

forcing profile (c) and probably for (e). The result could be less

irregular reversals with a proper time scale. Profile (c) is probably the

more realistic since it yields a relative westerly equatorial jet in the

S .
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nonmagnetic case, which should persist in the magnetic case with.d >> 1.

One question mark is whether or not the positive vertical shear of (<() at

low latitudes would be unfavorable to the equatorward migration of the

zone of maximum magnetic activity.

From energetics considerations, some aspects of the dynamo main-

teneance were inferred. However, a more detailed analysis of the vertical

magnetic induction equations (6-5a) and (.6-5b) could further clarify the

reversal process.

The model vertical magnetic fields were comparable in strength. to

the observed line of sight fields, except for the variance of 1 . The in-
4

tense magnetic feedback upon the flow could be reduced without weakening the

vertical magnetic field strength by simultaneously increasing the vertical

length scale D and, if possible,4 2 . Even with D five times larger, S< 0.20.

Our vertical magnetic field patterns could be loosely interpreted

as magnetic active regions. Also, asymmetry in magnetic activity between

hemispheres was found. In other respects though, the simulation of the

solar magnetic cycle was not too good. This may reflect deficiencies in

the model other than the baroclinic drive. We speculate that the tilts of

the B eddy magnetic fields would be better in a run with >1. In that
4

case, the motions would essentially push the magnetic fields around and the

magnetic field patterns could be stretched out by a differential rotation

with more realistic horizontal shear.

The proper simulation of unipolar and ghost unipolar magnetic

regions at higher latitudes requires the n=l and n=2 harmonics. Also, to

capture the detail of moderate resolution magnetograms (as in Fig. 1.1),

much more resolution is a minimum requirement. Thirdly, with more resolu-

tion, e.g., 0 nS8 and O5 m'8, a meaningful comparison could be made

r
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between our potential magnetic field above level 4 and the "observed"

coronal magnetic field. The latter may be inferred from the observed

coronal density structure since material flows along the magnetic field

lines in the corona. Finally, a sector structure in the line of sight

component of the model potential magnetic field, characterized by zonal

wave number n-2 could be looked for.

In short, when computationally feasible, runs should be made

having (1) more horizontal resolution, e.g., 0- n<8, Oem- 8 and possibly

more layers, (2) a larger vertical length scale D (holding @iDt fixed),

and (3) a smaller value of R -R . This would provide a more definitive
m mc

test of the applicability of a baroclinic model to the sun. However, with

0 n58 and 0_Om<8 as the horizontal resolution, the number of harmonics

would increase 10 fold and the computation time per time step 100 fold.

The other modifications would cause no loss of efficiency.

One could also try different initial conditions on the magnetic

field. For example, a small axisymmetric dipole poloidal magnetic field

could be specified instead of toroidal field perturbations at t=0, to see

if the growth of antisymmetric harmonics of <)> and <3 > were favored.

Since the boundary conditions on V were rather ad hoc, a comparison of-H

results for various boundary conditions would also be useful. In particular,

the condition at the top boundary that 0a_:O could be applied to the

bottom boundary as well.

Kinematic dynamos (pseudQodXaYnaos):have beanstudie nue3rically as a

steady state (and/or axisymmetric) problem with the velocity field specified

in a rather ad hoc manner. A somewhat new twist would be to choose a

quasi-steady particular numerical solution of the nonmagnetic baroclinic

model (if one could be found) as the known velocity field in the magnetic



induction equations. Physically, the magnetic solutions to the kinematic

dynamo problem might be regarded as a sort of limiting case of hydromag-

netic solutions with large 42, assuming these exist. Computationally, of

course, the kinematic dynamo problem is more tractable. Approximately a 30%

savings of computer time would be gained for lengthy runs, reflecting a

30% reduction in the number of nonlinear terms to be evaluated. Even more

importantly, a substantially longer time step could probably be used with-

out the solutions becoming computationally unstable. Of physical interest

is whether magnetic reversals would still be present, and if so, whether

their character would remain basically unaltered from the hydromagnetic

case. Although reversals occurred in Leighton's(1969) magneto-kinematic

model, that model was not a true dynamo and the various phases of the cycle

were helped along. We also note that P.H. Roberts(1967) speculated that

in general, magnetic reversals might exist in only hydromagnetic type

dynamos.

Future work may demonstrate the need for treating the motions

and/or magnetic fields three-dimensionally. In principle, our Boussinesq

model could be modified to treat large scale convection explicitly. The

vertical hydromagnetic (or Lundquist) equations would have to be retained.

As in the Rayleigh convection problem, the bottom boundary would be heated

and the top boundary cooled. To eliminate the pressure, the aV'x and

.V'xVx operators could be applied to the equations of motion (after first

evaluating the right hand side), following Busse(1970). Computationally,

the number of nonlinear multiplications in each equation would not be

increased. However, at each level, there would be two more equations,and

many more levels would be required. Thus, the convection version of the

model is much more complicated than.,the original baroclinic version.
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Finally, the question arises: What are the prospects for numerical predic-

tion of the evolution of solar magnetic disturbances? As background, we

recall that line of sight velocities and magnetic fields can be determined

for photospheric (or chromospheric) lines at different levels. Thus, some

vertical resolution is even possible. Also, the line of sight velocity or

magnetic fields could be reduced to purely horizontal toroidal vector fielcd

as a first approximation. In fact, a scheme (the method of characteristics)

is being tested by H. Fischer on meteorological data. If the procedure

worked on line of sight velocity as well as on line bf sight magnetic field

data (which is not as obvious) 1 , then the magnetic flux equation

given by Gilman(1966) could be solved, in principle, for the magnetic

stream function . Finally, one could invert to obtain a predicted

line of sight field B . Since the characteristic time scale of Uc(1)

solar rotation is considerably larger than a day, magnetic features might

be predictable one solar rotation (.-25 days) later. One drawback even

here is that (for the present) data can be collected from only the visible

solar disk. Over longer time intervals, the twisting terms iQ3 +Y >(V <a9

which equation (7-1) lacks, could be important on the sun.

It is doubtful that our model would be of much predictive value

in the forseeable future. First, it was designed for a subphotospheric

layer. In applying it to a photospheric layer of fluid, some model assump-

tions would be violated. Second, the divergent parts of velocity and

magnetic fields would have to be accurately known or balanced initially.

The magnetic fields were significantly less horizontally nondivergent
than the velocity fields in our model and this might be true on the sun.



This is a formidable obstacle as neither of those fields is given by the

above method of characteristics. Third, temperature measurements on

horizontal (geopotential) surfaces have not yet been sufficiently perfected.



APPENDIX A. POLOIDAL AND TOROIDAL VECTOR

SPHERICAL HARMONICS

An arbitrary solenoidal, i.e. divergence-free, vector

A r
(A ,A ,A ) has the spectral decomposition

C C C C

c C C cS n (S) i()) "l s )A I S Tn n __ ,, C (9A I /m (A-lab)

€. CMntee n CS) (s), ) J4I n these formulae, T (Yr, S ( and Y are respectively a-lb)
Wcc

section 4. Also, YMt , and Ym+" are defined in equation (3-30).

As usual A,L , and r denote the longitude, latitude and radius.

The contribution to A that involves toroidal coefficients can

be expressed in terms of a horizontal stream function VA " Similarly

the contribution involving poloidal coefficients is related to a horizon-

tal potential 4A . We shall adhere to this usage of "toroidal" and

"poloidal" throughout the text, as in equations (2-46) and (2-47), for

example. We note that both V and B are solenoidal vectors in our model.

In the special case that A is axisymmetric, the poloidal part of A is con-

fined to meridional planes while the toroidal part of A is purely zonal.
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An arbitrary solenoidal cosine (or sine) toroidal vector spherical har-

monic has the representation

C / C C
13(5)J)

r coQ A

An arbitrary solenoidal cosine (or sine) poloidal vector spherical har-

nomic has the representation

C C C C C C
Ic'. $) ,. a c $ I

" ' j+n I iov I (A-2b)
-,,cS(+ 5' + M(-b

We may decompose the vector A into a toroidal part A and a
-r

poloidal part A by summing equations (A-,a) and (A-Zb) respectively,
-p

over n, m, and over both the cosine and sine harmonics. Finally, the

thin spherical shell approximation can be made by replacing r by "a"

dr by dz, and Ar by Az in the above equations, as in chapter III.
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APPENDIX B, PROGRAMMING THE NUMERICAL INTEGRATION

To simplify the debugging procedure, the basic program was split

up into a driver program (program MAIN) and several subroutines. There is

one version of MAIN for the nonmagnetic case and one for the magnetic case.

Addition, scalar multiplication and o differentiation are per-

formed in program MAIN. Each of the other basic transformation algorithms

is written as a subroutine. The transformed array of spectral coefficients

is returned to the main program. If needed, the input array is also re-

turned intact. Another group of subroutines carries out various other tasks.

To make our main program and subroutines as compatible as possible

with a variety of computers, incremented indexing was employed exclusively.

For example, given the variable q + the spectral

is s t r drn
coefficient ( ) is stored in location CYPl(n+l,m+l,1) of the 3x40x2

array CYP1 for +  while (f ) ' is stored in location CYPl(n+l,m+l,2).
n-1

Likewise, the values of the transformation coefficients
yn-1-2 (r-1) -

A , and A (where n,m,I l,k 1), are stored respec-

tively in locations y(n,m-2(I-l),m), A(n,m,m) and in A(n,m,m-2k+2). Final-

ly the binomial coefficient - (-I) (r-)i  is stored in2 - (I-)!(-) !
BINOM(I,J), where I>J 1.

Nonlinear multiplications originally required nearly 80% of the

computation time. This value was-reduced to about 50% by writing a

specialized, more efficient subroutine MLTPLY. It is applicable provided

the zonal wave number n has only two values, one of which is zero.

1
The computers we have used thus far accept the "zero" subscript.

k V
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APPENDIX C. ENERGY INTEGRALS FOR A CONTINUOUS, QUASI-BOUSSINESQ MODEL.

This appendix contains integrals of the various forms of

energy, of energy transformations, and of energy fluxes. In the fluxes,

all terms are formally retained even if they would vanish identically

due to our choice of boundary conditions. These terms formally appear

in the two layer model as well, but were omitted in Chapter V. Thermal

forcing, frictional dissipation, and ohmic dissipation integrals are

not included.

As in the text, the fluid is in vertical magnetohydrostatic

balance and s Also 0 / is still constant

and the advection of potential temperature by poloidal motions is still

neglected. Following Lorenz (19 6 0b), our model could be extended to the

case in which &9 is predicted at two levels, i.e. levels 1 and 3.

Although the static stability would then be variable, the available

potential energy could be defined in an energetically consistent manner.

The integrals in this appendix are valid for the quasi-

Boussinesq case in which , varies with z, as well as for the

Boussinesq case. Likewise, the integrals in Chapter V are also valid

in the quasi-Boussinesq case except for (5-14). (cf. with (c.5-14 )).

The labeling of equations corresponds to that in Chapter V.

On physical grounds, I is possible for
the sun.

• °
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Finally, Jdf denotes a volume integral over the spherical shell bounded

by O z: 4 .

The various energies are defined as follows:

< Wz > J <~2 ' d 7  (c.5-la)

Kg)> 7' (C.5-2b)

<KE(E)> --  dr (C.5-1c)

< -- .2 rd (c.5-c2b)EM><13 > d-r (c.5-2a)

<ZPE> (C.5-3a)

< ENE) :" "-2 aT' (C.5-3b)

where

/ 03 (c,5-4)
Fdd7M 5 AW &S

The energy transformation integrals are:
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, tM ',)<u ><r s;n e dr (c.5-9)

.1f< > a cosco

(0.5-10)

_f r <, a o cos 1

+ *-Ma 13 <L Rd (c.5-11)

.- '- d

+ J aosr 4' <c> N dT7a cos-el (C.5-12)

j ~ ~ ~ ~ t>L f-**)fd +L <r>J nA0
s ;T~r~7 a jift~- k~~f 41 ffs

_d'rkF> cl r
70-

+
JJSL O A (2)S

a,2

-- A l COS4

-frn" 3 Ar<v>dr + Tdr,
- 4rgea -1 d 

(C.5-14)

bCEKE>-oKkA>J

* > dr (0.5-13)

_ /__ <Ct> Nd 7

Sf ur3 a cosw ' c 2 dr

K-w -">j

= a9co Q
a cs ~>*

C ( <t )0c, aw \Cscp

" rr a d<eA~uT~d-
'KSr-Z(,

'A % .

f<K,,>- -<K,>j

I<EN E> 8

S[<X>4<A

S~~

a dw>dr11f>-.(Mz8
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[<V><-3<wrv - -dr

2

YcoS Ba*

81rc

J'+ fd7

i<vr>

, 29A XW a 30.
<8 ±13 (Wd

___,S

-j q-7r..-.e0

(c.5-19)1'\-

4+U Ur (N-S x )x( t dr( c .5-20)
47WO(, 1(14 I

f I r ' <V> dr

= <V '> _ dr'o.,at

The boundary value integrals for energy flux into the region 0 O z5 z 4

are:

(c.5-15)

(c.5-16)

(c.5-17)

I o c1LcosIeR(~ (<8 CD (c.5-18)J+f>

b:EkE>4b fA> J

[6c- +u

[<EPE>-*<E>

j<ZPE>-><E>}

(c.5-21)

(C.5-22)

(t XC\t~~n

j-
c,'> d-f

. a

c(-~-~

(:PE)+(K<A
[<EkE>-s.MZ

(1*13;I3Vjtcr~a^~Qe , U
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ze if 0 1A 0

K <J LC f f<*Y*><uJ i:
dS
a,

(C.5-23a)

*1 r.

-f f 4 5(V>) 0
S~ -

JI'E~0

- P) +-j [(<io
$s

JJ dY (c.5-23b)

cu 2>< r> d(C(<,wt/ cl&JI f

f) >f If >

0 1

OC[ A
STA dS

ds
0

(c.5-24b)

s 1- < w*B><'B > +<urseif* a>J/s

i
*2 I

L > > + < (e 4 )
IdS

(c.5-24c)

K<MM*>

(C.5-23c)

(C.5-24a)

+ w I T7L .1r 0 > -

<EAE> :f,

,(<r><135i -A

A~
"7r'1
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