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ABSTRACT

This thesis is concerned with understanding how oceanic crust is emplaced at mid-ocean
ridges. The emphasis is upon fast-spreading ridges, and the use of seismic techniques to
image the uppermost several hundred meters of the crust. We present the results of nine
on-bottom seismic refraction experiments carried out over young East Pacific Rise (EPR)
crust. The experiments are unusual in that both the source and receiver are located within a
few meters of the seafloor, allowing high-resolution determinations of shallow crustal
structure. Three experiments were located within the axial summit caldera (ASC), over
'zero-age' crust. The seismic structure at these three locations is fundamentally the same,
with a thin (<60 m) surficial low-velocity (<2.5 km/s) layer, a 100-150 m thick transition
zone with velocities increasing by approximately 2.5 km/s, and a layer with velocities of -5
km/s at a depth below the seafloor of 130-190 m. The surficial low-velocity layer and
transition zone are defined as seismic layer 2A, and the -5 km/s layer as layer 2B. Both the
surficial low-velocity layer and the transition zone double in thickness within - 1 km of the
rise axis, with the depth to the 2A/2B boundary increasing from -150 m to 300-350 m over
this range. The doubling of layer 2A thickness within 1-2 km of the rise axis is confirmed
by multi-channel seismic (MCS) and wide-angle profile (WAP) data, which also indicate
that there is no further systematic change in thickness with greater range from the rise axis.
Inversions for attenuation structure demonstrate that the layer 2A/2B interface is not only a
velocity boundary, but also an attenuation boundary, with Q increasing from 10-20 within
layer 2A to >70 in layer 2B.

The results of MCS and wide-angle experiments over plausible velocity structures are
predicted quantitatively, based on velocity models constructed from on-bottom seismic
refraction experiments and expanding spread profiles. We conclude that the accuracy of
correlating the prominent shallow reflector observed in MCS and WAP data with the layer
2A/2B boundary is strongly dependent on the structure within layer 2A. If layer 2A
consists of a surficial low-velocity layer overlying a steep velocity gradient (our gradient
model), then there is an excellent correspondence between the two-way travel times to the
shallow reflector and the base of layer 2A. However, the shallow reflector may follow
structure within layer 2A if the upper crust contains more than one high-gradient region
(our step model). A shallow structure similar to the step model is consistent with on-
bottom refraction experiments and expanding spread profiles located over zero-age EPR
crust. With distance from the rise axis, this step-like structure is apparently destroyed, and
is converted into a single steep gradient similar in appearance to our gradient model.



Layer 2A is interpreted to be composed of the extrusive section and transition zone, with
layer 2B consisting of the sheeted dike complex. This implies that the top of the dikes
subsides from 150-200 m to 250-450 m within 1-2 km of the rise axis, and then remains at
a relatively constant depth beneath the seafloor. The thickening of the extrusive layer is
interpreted to be due to lava that either overflows the ASC walls, is emplaced through
eruptions outside of the ASC, or travels laterally from the ASC through subseafloor
conduits. Off-axis sill emplacement also contributes to the thickening of layer 2A.
According to this model, the shallow crustal architecture is in place within 1-2 km of the
rise axis.

We suggest that the process of dike subsidence is controlled by the axial magma
chamber (AMC), which we define as the melt lens and underlying mush zone. Within the
neovolcanic zone, buoyancy forces associated with the AMC are supporting the extrusive
layer and sheeted dikes. With distance from the rise axis, the AMC solidifies, the crust
cools, the buoyancy forces are reduced, and the sheeted dike complex subsides.
Concurrently, the extrusive layer thickens resulting in significantly less subsidence of the
seafloor. The primary implication of this model is that dikes will subside to a greater depth
for a robust magma chamber than for a weak magma chamber. A prominent deval is located
at latitude 9035'N, and this is coincident with our observations of a 50% decrease in dike
subsidence as determined from MCS, WAP, conventional airgun refraction, and
tomography data. Our subsidence model would predict that a relatively weak magma
chamber is located at 90 35'N. A low magma supply at the deval location is compatible with
tomography and MCS seismic data. The decrease in layer 2A thickness suggests that the
localized region of low magma supply has persisted for 175,000-275,000 years.

Knowledge of shallow crustal structure is the key to understanding emplacement
processes at mid-ocean ridges. Seismic studies at the fast-spreading East Pacific Rise
indicate that each technique has advantages and disadvantages. On-bottom seismic
refraction experiments can provide high-resolution determinations of upper crustal
velocities, but only for limited areas. Conventional airgun refraction studies can extend the
velocity structure to a larger region, at the expense of resolution. Multi-channel seismic
and wide-angle profile data can map horizons in the shallow crust over large areas, but
require good velocity information to be properly interpreted. Future work can ground truth
seismic observations with observed lithology, and expand our knowledge of emplacement
processes to intermediate-spreading and slow-spreading ridges.

Thesis Supervisor: Dr. G.M. Purdy
Senior Scientist, WHOI
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CHAPTER 1

SHALLOW STRUCTURE OF OCEANIC CRUST

Introduction

This thesis -is concerned with increasing our understanding of how oceanic crust is

emplaced at mid-ocean ridges. The emphasis is upon fast-spreading ridges, and the use of

seismic techniques to image the uppermost several hundred meters of the crust. Although

knowledge of the velocity structure of the upper crust can help constrain models of the

emplacement of both the extrusive sequence and sheeted dike complex, it has for decades

been the least well-resolved section of the oceanic crust. Recent advances in seismic

sources, receivers, and processing techniques are helping to change this situation and to

improve our knowledge of shallow structure. This thesis focuses on nine on-bottom

refraction experiments carried out over young crust on the East Pacific Rise near 90 30'N, a

region that has been extensively studied by submersible [Fornari et al., 1992], near-bottom

imaging [Haymon et al., 1991], seismic tomography [Toomey et al., 1990], multi-channel

seismic studies [Detrick et al., 1987; Harding et al., 1993; Kent et al., 1993a], expanding

spread profiles [Vera et al., 1990], and attenuation tomography [Wilcock et al., 1992]. The

variety of experiments in the region allows the shallow velocity structure determined in this

thesis to be placed in context with both the seafloor morphology and the geometry of the

underlying magma chamber.

Seismic Terminology for the Shallow Crust

Early seismic studies produced a simple layered structure for the oceanic crust, with the

oceanic crust divided into layers 1 (sediments), 2 (extrusives and sheeted dikes), and 3

(gabbros) (e.g. [Raitt, 1963; Fox et al., 1973]). Layer 2 was further subdivided into layers



2A, 2B, and 2C according to seismic velocities of approximately 3.6 km/s, 5.2 km/s, and

6.1 km/s, respectively [Houtz and Ewing, 1976]. As seismic techniques improved, these

simple models were abandoned for a more complex structure composed of continuous

velocity gradients (e.g. [Spudich and Orcutt, 1980]); however, terminology from these

early layered models remains (with some confusion) in the literature today. In the work

presented here, the upper crust with average velocities <5 km/s is termed layer 2A. A

significant feature of layer 2A is a surficial low-velocity layer (SLVL), which typically has

a velocity <3 km/s and a low velocity gradient (Figure 1). At young locations a high-

gradient region or discontinuity to a layer with velocities >5 km/s underlies the SLVL; the 5

km/s material is referred to here as layer 2B. If an obvious change in velocity gradient to a

region with velocities of -6 km/s exists, then this layer with -6 km/s velocities is termed

2C; otherwise the depth interval between layer 2A (velocities <5 km/s) and layer 3

(velocities -6.8 km/s) will be referred to as layer 2B. This terminology is demonstrated in

Figure 1.1 for two velocity models.

Shallow Velocity Structure of Oceanic Crust

In a classic paper, Houtz and Ewing [1976] determined the shallow velocity structure at

locations in the Atlantic and Pacific from several hundred sonobuoy records. At young

locations, they observed a thick (0.7 km in the Pacific and 1.5 km in the Atlantic), low-

velocity (-3.3 km/s) layer 2A. The primary conclusion of their work was that this layer

thinned with age to ~-100 m at about 40 m.y., associated with an increase in velocity to

-5.2 km/s. However, a reexamination of the sonobuoy data suggests that many of the

layer 2A arrivals identified by Houtz and Ewing [1976] are diffractions or converted shear

arrivals [Diebold and Carlson, 1993]; thus, higher-resolution data is needed to test the

conclusions concerning the evolution of layer 2A with age.



Fast-spreading ridges

Recent seismic studies on the East Pacific Rise (EPR) have greatly increased our

knowledge of the shallow velocity structure of fast-spreading centers (>4.5 cm/yr half

rate). These studies include expanding spread profiles (ESPs), wide angle profiles

(WAPs), multi-channel seismic (MCS) data, and refraction tomography. The majority of

these seismic experiments were located on the EPR near 90 30'N, with additional

experiments near 130 N, and 20 0 S-13 0 30'S (Figure 1.2). The following section will

describe what these studies reveal about the shallow structure of the EPR near 90 30'N, and

then briefly describe the results from other study areas.

The experiments described in Chapters 2 and 3 provide detailed determinations of

velocity structure within the upper 500 m (e.g. Figures 2.4, 3.7, and 3.13) at several sites

on the EPR near 90 30'N (Figure 1.2). The resolution is lower, but the depth interval

greater, in the models produced from nearby ESPs [Vera and Diebold, 1993]. The four

ESP velocity models (Figure 1.3) include a surficial low-velocity layer, with an average

velocity of 2.3 km/s, and an average thickness of 140 m. This layer is underlain by a high-

gradient region, with layer 2B velocities obtained at an average depth of 500 m. The

thickness of layer 2A varies from 250-780 m. Refraction tomography, multi-channel

seismic (MCS) experiments, and wide-angle profiles (WAPs) provide constraints on the

lateral variability of seismic layer 2A. A tomography experiment centered at 90 30'N

(Figure 1.2) imaged a narrow (2-4 km), axis-parallel zone of high-velocities centered over

the rise axis, that was interpreted to be the result of rapid lateral thickening of layer 2A with

age [Toomey et al., 1990]. MCS and WAP experiments (Figure 1.2) both image a shallow

"reflector," interpreted to be formed by refracted energy that has turned in the steep gradient

at the base of layer 2A [Harding et al., 1993; Vera and Diebold, 1993]. In agreement with

the tomography image, this reflector deepens rapidly within 2-4 km of the rise axis, and

then remains approximately at a constant depth beneath the seafloor [Harding et al., 1993;

Vera and Diebold, 1993]. On five cross-axis MCS lines, layer 2A thickens from -200 m at



the rise axis to -400-600 m outside the neovolcanic zone [Harding et al., 1993]. The one

cross-axis WAP, which has a receiver aperture of 5 km (as compared to a receiver aperture

of 2.4 km for the MCS lines interpreted by Harding et al. [1993]), suggests a thinner layer

2A for both zero-age crust (-130 m) and for crust outside the neovolcanic zone (-200-300

m) [Vera and Diebold, 1993]. The along-axis WAP indicates only small changes in layer

2A thickness (thickness varies between 100-150 m) over a distance of 60 km [Vera and

Diebold, 1993]. It is interesting that even when the AMC reflector is offset beneath the rise

axis, the minimum thickness of layer 2A is centered at zero-age crust [Harding et al.,

1993].

Studies of the EPR at other locations (Figure 1.2) indicate similar seismic structures to

that observed near 90 30'N. Layer 2A has a minimum thickness at the rise crest, averaging

-185 m along an 800-km section of the EPR from 20OS-1330'S [Detrick et al., 1993], and

-200 m along 50 km of the EPR from 130 N-13 0 30'N [Kappus, 1991]. Layer 2A

approximately doubles in thickness within 2-4 km of the rise axis, reaching average depths

of -510-570 m at the EPR near 14'15'S [Kent et al., 1993b], and -300-400 m near 130 N

[Harding et al., 1989; Kappus, 1991]. (Note that these 2A thicknesses are greater than

stated by Kappus [1991], based on use of the terminology discussed previously.) Kappus

[1991] observes a slight increase in seafloor velocity with age near 130N, from -2.45 km/s

for zero-age crust to -2.75 km/s for crust located 9.5 km off-axis.

Intermediate-spreading ridges

The Juan de Fuca Ridge has been the location of several seismic experiments that help

constrain the shallow velocity structure of intermediate-spreading ridges (2.5-4.5 cm/yr

half rate). In contrast to the EPR, energy turning within the upper few hundred meters is

often observed with conventional refraction surveys (with close shot spacing at ranges <4

km), due to a surficial low-velocity layer that is thicker than modeled for the fast-spreading

ridge. A typical velocity model is shown in Figure 1.4, from a survey carried out over the



Endeavour Segment near 480 N [Cudrak and Clowes, 1993]. Layer 2A has an average

velocity of -2.5-2.7 km/s, and a thickness of 200-600 m (average = 400 m). A shallow

intermittent reflector observed on MCS data from the region suggests a slightly thicker 2A

(600±200-300 m) [Rohr et al., 1988; Rohr et al., 1992]. Both the MCS data and a seismic

refraction tomography study indicate that layer 2A is thicker under abyssal hills than

beneath inter-ridge valleys [White and Clowes, 1990; Rohr et al., 1992]. Unfortunately,

there are no constraints on layer 2A thickness for zero-age crust on the Endeavor Segment

from either MCS data or seismic refraction experiments. However, a seismic refraction

experiment located on the Cleft Segment near 450 N indicates that layer 2A is thinnest

(-200-300 m) within the axial valley, and thickens to -300-500 m outside the axial valley

[McDonald et al., 1993]. Plotted in Figure 1.4 are the average shallow velocity models for

the Endeavor and Cleft Segments.

Slow-spreading ridges

In contrast to fast-spreading and intermediate-spreading ridges, few seismic experiments

have resolved structure in the shallow crust of a slow-spreading center (0.5-2.5 cm/yr half

rate). The primary exceptions are the on-bottom seismic refraction experiments of Purdy

[1987], carried out over young crust created at the Mid-Atlantic Ridge near 23 0 N. With

both the source and receiver located close to the seafloor, Purdy [1987] could observe

energy directly turning in the upper crust. The data indicate an increase in seafloor velocity

with age, from -2.1 km/s for 0 m.y. crust to -4.1 km/s for 7 m.y. crust (Figure 1.5).

Additionally, the vertical velocity gradient decreases from -4 s-1 for the younger crust to 0-

0.5 s- 1 for the older crust. The on-bottom experiments resolve crustal structure in the

upper 250 m, with no constraints on the depth to the base of layer 2A. A conventional air

gun profile located close to the 0 m.y. on-bottom experiment is also plotted in Figure 1.5;

the 450 m thick surficial low-velocity layer was constrained by modeling a low-velocity

phase emerging tangentially from the water wave [Purdy and Detrick, 1986]. No obvious



layer 2A/2B boundary is observed in Figure 1.5, but velocities of 5 km/s are reached at a

depth of -1.5 km beneath the seafloor.

Geologic Interpretation

From submersible observations and camera tows, we know that the seafloor, and

therefore at least the upper portion of layer 2A, is composed primarily of sheet flows,

pillow lavas, and rubble layers (e.g. [Ballard and van Andel, 1977; Ballard et al., 1979;

CYAMEX scientific team, 1981; Choukroune et al., 1984]). Lithologic predictions for the

remainder of layer 2 typically rely on drilling results, submersible observations of seafloor

scarps, and the use of ophiolites as analogues for oceanic crust. Estimations of lithology

from drilling results are difficult because only four holes penetrate a significant portion of

layer 2. The deepest drill hole in oceanic crust is DSDP Hole 504B on 6 my old crust

south of the Costa Rica Rift [Anderson et al., 1982]. At this location the lithology consists

of a 575 m thick extrusive section, a 210 m thick transition zone, and 945 m of sheeted

dikes and massive units [Dick et al., 1992]. The crust at Hole 504B was emplaced at the

intermediate-spreading Costa Rica Rift, at a half spreading rate of -3.6-3.8 cm/yr. Drilling

at three locations in crust formed at the slow-spreading MAR (Holes 332B, 395A, 418A)

has encountered 300-580 m of extrusives [Aumento et al., 1977; Melson and et al., 1979;

Donnelly and et al., 1980], but has not reached the sheeted dike sequence. At present, no

drill hole has penetrated more than a few tens of meters into oceanic crust formed at a fast-

spreading center. Multichannel full waveform acoustic logs from Holes 418A, 395A, and

504B indicate that velocities of the extrusive layer vary from 3-6.5 km/s with an average

velocity of -5 km/s, and velocities of the sheeted dike complex from 5.8-6.5 km/s [Moos et

al., 1990]. The upper 100 m of basement at Hole 504B is marked by lower velocities and

higher porosities than the remainder of the extrusive section [Anderson et al., 1982]; no

comparable low-velocity layer is identified at Holes 418A or 395A [Moos et al., 1990],

although there is a sharp decrease in porosity at a depth of -350 m within the extrusives at



Hole 395A [Bryan and et al., 1988]. Based strictly on a comparison of logging velocities

and lithology with layer 2 definitions, the layer 2A/2B boundary corresponds to a

velocity/porosity boundary within the extrusive sequence, and layer 2C (or the lower

portion of layer 2B if no clear 2B/2C boundary exists) corresponds to the sheeted dike

complex.

Other estimates of layer 2 lithology can be obtained from submersible observations of

seafloor scarps. At the Vema fracture zone located on the slow-spreading Mid-Atlantic

Ridge, Cannat et al. [1991] observe a 280-420 m thick extrusive sequence, a 60-300 m

thick transition zone, and a 750-1000 m thick sheeted dike complex; however, the authors

state that true thicknesses cannot be determined because the observed sequences may be

faulted. If the section is unfaulted, the depth to the top of the sheeted dike complex is

-340-720 m. A similar lithology is found for the Blanco transform at the intermediate-

spreading Juan de Fuca Ridge, where a 475 m thick extrusive layer, 785 m thick transition

zone, and 635-685 m thick sheeted dike complex were mapped by the submersible Nautile

[Naidoo et al., 1992]. In contrast, a thin extrusive sequence (100-200 m) is observed

along the walls of Hess Deep, a section of crust emplaced at the fast-spreading EPR

[Francheteau et al., 1992]. The extrusive section is underlain by a 50-500 m thick

transition zone and a 1200 m thick sheeted dike complex [Francheteau et al., 1992]. The

average depth to the top of the sheeted dike sequence is -350 m. The extrusive sequence in

ophiolites is generally thicker (1000-2000 m [deWit and Stern, 1978; Alabaster et al.,

1982; Schmincke et al., 1983]) than at the Vema, Blanco, or Hess Deep scarps, and is

underlain by a 50-300 m thick transition zone [Alabaster et al., 1982; Moores, 1982;

Rosencrantz, 1983].

A comparison of the observed extrusive sequence and transition zone thicknesses (Table

1.1) with average layer 2A thicknesses (Table 1.2) suggests that the layer 2A/2B boundary

may either lie within the extrusive sequence, or correspond with the top of the sheeted dike



complex. The nature of the layer 2A/2B boundary will be examined in greater detail in later

thesis chapters.

Thesis Overview

In Chapters 2, 3, and 4, different interpretation techniques are applied to a data set

consisting of nine on-bottom seismic refraction experiments, located on young crust

formed at the East Pacific Rise near 90 30'N. Chapter 2 presents the results of one- and

two-dimensional ray tracing. Chapter 3 discusses forward modeling of the refracted

waveforms using the reflectivity technique. This not only provides a detailed velocity

structure, but also constrains the Poisson's ratio and attenuation structure of the shallow

crust. Chapter 4 applies a spectral method to the on-bottom refraction data to invert for the

shallow attenuation structure. Chapter 5 examines seismic techniques (multi-channel

seismic data and conventional airgun profiles) that help constrain lateral changes in shallow

structure over a larger region than sampled by the on-bottom experiments. Chapter 6

explores geological implications of the seismic results discussed in Chapters 2-5.

Several of these chapters have been published or submitted to journals as multi-author

papers. Chapter 2 was published in 1992 in Geophysical Research Letters, and Chapter 3

is submitted to the Journal of Geophysical Research. Both of these papers are co-written

with G.M. Purdy and Gerard Fryer. Chapter 4 is in press in Geophysical Research

Letters, with co-authors Will Wilcock and G.M. Purdy. I plan on submitting a revised

version of Chapters 5 and 6 to Journal of Geophysical Research; the co-authors on this

work are Graham Kent, Bob Detrick, and G.M. Purdy. For all chapters I did the primary

modeling of the data sets, with advice from my co-authors. I wrote the original and final

drafts of each manuscript, again with advice from my co-authors. The full citations for the

chapters published, in press, and submitted are listed below.



Christeson, G.L., G.M. Purdy and G.J. Fryer, Structure of young upper crust at the East

Pacific Rise near 9'30'N, Geophys. Res. Lett., 19, 1045-1048, 1992.

Christeson, G.L., G.M. Purdy and G.J. Fryer, Seismic constraints on shallow crustal

emplacement processes at the fast-spreading East Pacific Rise, J. Geophys. Res.,
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Table 1.1: Observed Lithology of Shallow Crust

Thickness of Thickness of Average Depth

Extrusive Transition To Top Of Sheeted

Location Sequence Zone Dike Complex

Hess Deep* 100-200 m 50-500 m 350 m

Blanco Scarp§ 475 m 785 m 1260 m

Vema Scarpt 280-420 m 60-300 m 530 m

Ophiolitest 1000-2000 m 50-300 m 1500 m

Hole 504BY 575 m 210 m 785 m

*Thicknesses from Francheteau et al. [1992].

§Thicknesses from Naidoo et al. [1992].

tThicknesses from Cannat et al. [1991].

Thicknesses from [deWit and Stem, 1978; Alabaster et al., 1982; Schmincke et al., 1983]

*Thicknesses from Anderson et al. [1982]

Table 1.2: Shallow Velocity Structure of Young Oceanic Crust

Surficial low- 2A thickness 2A thickness

Seafloor velocity layer (outside of neo- (within neo-

Spreading Rate velocity* thickness§ volcanic zone)t volcanic zone)$

fast 2.3 km/s 140 m 400 m 200 m

intermediate 2.6 km/s 400 m 400 m 250 m

slow 2.1 km/s 450 m 1500 m? ?

*Measurements from Vera et al. [1990] (fast), Cudrak and Clowes [1993] (intermediate),

and Purdy [1987] (slow).

§Thicknesses from Vera et al. [1990] (fast), Cudrak and Clowes [1993] (intermediate), and

Purdy and Detrick [1986] (slow).

tThicknesses from Harding et al. [1993] (fast), Cudrak and Clowes [1993] (intermediate),

and Purdy and Detrick [1986] (slow).
TThicknesses from Harding et al. [1993] (fast), and McDonald et al. [1993] (intermediate).
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Figure 1.1. Velocity models from two recent studies, illustrating terminology commonly

used in describing shallow oceanic crust. a) Average velocity model from Cudrak and

Clowes [1993] for young crust formed at the Juan de Fuca Ridge. This model is divided

into layers 2A, 2B, 2C, and 3 according to the definitions provided in the text. (Only the

upper portion of layer 3 is shown.) SLVL is the abbreviation for surficial low-velocity

layer. b) Velocity model from Vera et al. [1990] for their ESP 7, located over young crust

formed at the East Pacific Rise. There is no obvious change in gradient to a region with

velocities of -6 km/s, and thus this model is only divided into layers 2A, 2B, and 3. (Only

the upper portion of layer 3 is shown). The SLVL makes up only a portion of layer 2A.
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Figure 1.2. Location map for the seismic experiments carried out over crust formed at a

fast-spreading center discussed in the text. Solid lines mark the shiptracks of the five

cross-axis and two along-axis MCS experiments. These along-axis lines approximately

delineate the rise axis of the EPR. The dashed line shows the trackline of the cross-axis

WAP study. The center points of the ESPs are indicated by circles, and the locations of the

on-bottom refraction experiments by triangles. The rectangular region encloses the

tomography experiment of Toomey et al. [1990]. The inset map shows the regional

setting, with boxes designating the three EPR areas discussed in the text.
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Figure 1.3. Velocity models of Vera et al. [1990] from expanding spread profiles located

at the East Pacific Rise near 90 30'N. Annotations indicate the approximate age of each

profile, and whether the profile was located to the east or west of the rise axis. Arrows

indicate the base of seismic layer 2A for each model.
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Figure 1.4. Velocity models for two segments of the Juan de Fuca Ridge [Cudrak and

Clowes, 1993; McDonald et al., 1993]. Arrows indicate the base of seismic layer 2A for

each model.
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CHAPTER 2

STRUCTURE OF YOUNG UPPER CRUST AT THE EAST PACIFIC RISE

NEAR 9030'N

Abstract. Eight on-bottom seismic refraction experiments are analyzed in an effort to

resolve the structure of the emplacement zone of lavas and dikes at the fast-spreading East

Pacific Rise. The results suggest that the volcanic section doubles in thickness within -1

km of the axial summit caldera (ASC) due to the emplacement of lava that either overflows

the ASC or is transported through lateral tube conduits, and the depth to the top of the

sheeted dike complex increases from -160 m within the ASC to -340 m a kilometer away

on the flank.

Introduction

This chapter presents the preliminary results from eight on-bottom seismic refraction

experiments, located on young crust formed at the East Pacific Rise (EPR) near 90 30'N.

Traditional seismic refraction experiments with a source at the sea surface cannot resolve

the velocity structure of the shallow oceanic crust, because (with a few notable exceptions,

e.g. [Harding et al., 1989; Vera et al., 1990; Vera and Diebold, 1993]) the energy that

turns in this region generally cannot be distinguished from the signal associated with the

onset of the water wave. In contrast, on-bottom seismic refraction experiments allow direct

observation of the energy turning in the uppermost several hundred meters without the

interference of the water wave, providing high resolution determinations of the shallow

crustal velocity structure [Purdy, 1987].

The East Pacific Rise near 9030'N has been extensively studied with seismic methods,

but only a few experiments have resolved the structure of the shallow crust. Vera et al.



[1990] identified a surficial low-velocity layer, 100-200 m thick with velocities <2.5 km/s,

overlying a layer with a steep gradient where velocities >5 km/s are reached in a few

hundred meters. The surficial low-velocity layer has been interpreted to be either a lava

flow layer overlying the sheeted dike sequence [Herron, 1982], or a high-porosity layer

overlying a layer with lower porosities [Rohr et al., 1988; Harding et al., 1989; Vera et al.,

1990]. The depth to a shallow reflector, interpreted to be formed by wide-angle reflections

from the base of the surficial low-velocity layer [Harding et al., 1993; Vera and Diebold,

1993], increases from -100-200 m at the rise axis to -300-600 m within 1-3 km of the rise

axis, suggesting rapid variations in structure.

Knowledge of the structure of the shallow crust is needed because it is in this region that

the emplacement of lavas, and possibly sheeted dikes, occurs. Observations from the

ARGO imaging system indicate that the surficial expression of the emplacement zone, the

ASC, varies in width from 40-150 m [Haymon et al., 1991]. The on-bottom experiments

discussed in this letter were placed within and close to the ASC, in an effort to resolve the

structure of the emplacement zone at a fast-spreading ridge segment.

Data

On-bottom seismic refraction experiments were carried out using a unique source called

NOBEL (Near Ocean Bottom Explosives Launcher). The instrument is towed within a few

tens of meters of the seafloor, and upon command from the research vessel, first deploys

the recording instrument, and then deploys and detonates in turn each of 47 five or ten lb

(2.3 or 4.6 kg) PETN explosive charges [Purdy, 1987]. Figure 2.1 shows the location of

the experiments conducted at 90 30'N. Three experiments were located within the ASC,

two of which are labelled OS and ON in Figure 2.1; the third line, OF, was located on the

EPR at 12'50'N. Five lines were located outside of the ASC, labelled 10W, 20W, 20E,

70W, and 120W (their approximate age in kiloyears) in Figure 2.1. Additionally, one

reversed refraction experiment was carried out (labelled 0-20R in Figure 2.1), oriented



perpendicular to the rise axis using two receivers, one located within the ASC, and the

second -1 km to the west.

Typical record sections for on-bottom seismic refraction experiments located both within

the ASC (Line OS) and on the flanks of the rise axis (Line 20W) are shown in Figures 2.2

and 2.3. Both record sections clearly show first arrivals out to -1.6 kmin, but Line 20W

displays first arrival travel times that are -0.1 s greater than that for Line OS.

Interpretation

Figure 2.4 shows a summary of the velocity-depth models for the ridge parallel

experiments. The models were produced by fitting the first arrival travel times with one-

dimensional ray tracing, taking into consideration the location of the triplication points

observed on the record sections. The velocity structure of the three ASC lines differs

systematically from that of the four flank lines, with the ASC lines reaching higher

velocities at shallower depths. The model for the ASC lines consists of a surficial low-

velocity layer with seafloor velocities of -2.0-2.1 km/s and a gradient of -6-8 s-1 underlain

by a major boundary to a layer with velocities of -3.6-4.7 km/s; this layer is in turn

underlain by a boundary to a layer with velocities of -5.0-5.4 km/s. The travel time curve

for Line OS is overlain on the corresponding record section in Figure 2.2. There is an

excellent fit to the first arrival travel time picks and observed triplications, with the

discontinuities at depths of -0.05 km and -0.13 km in Figure 2.4 corresponding to the

triplications observed at ranges of -0.2 km and -0.4 km, respectively. The model for the

flank lines consists of a layer with a seafloor velocity of -2.1-2.6 km/s and several changes

in gradient to a velocity of -4.1-4.4 km/s, underlain by a major boundary to a layer with

velocities of -4.9-5.6 km/s. The travel time curve for Line 20W is overlain on the

corresponding record section in Figure 2.3. The high gradient region in the upper layer of

the velocity/depth model in Figure 2.4 is necessary to match the observed increase in first



arrival velocities at a range of -0.6-0.7 kmn, and the discontinuity at a depth of -0.37 km

corresponds to the observed triplication at a range of ~ 1.3 km.

The velocity-depth models in Figure 2.4 show a dramatic change in crustal structure

from the ASC to the flank lines, in a distance from the axis of < 1 km. In order to examine

more closely this change, two-dimensional ray tracing [Luetgert, 1988] was used to fit the

first arrival travel times for the one reversed on-bottom seismic experiment, Line 0-20R.

The initial velocity-depth model for this line was based on the models shown in Figure 2.4

for Lines OS, 10W, and 20W; depths to each boundary and velocities in each layer were

changed until the travel time curves adequately fit the error bars associated with the first

arrival travel times.

Figure 2.5 constitutes a well-constrained velocity/depth model for the region -1 km west

of the ASC to zero-age crust within the ASC. A comparison of this model with the one-

dimensional model for Line 120W suggests that only minor variations occur between the

shallow crust 1 km west of the rise axis and 6 km west of the rise axis.

The velocity structure discussed in this section is based entirely on ray tracing, and so

can be improved by modelling the waveforms. However, because the total errors in the

first arrival travel times and ranges were small (<+5-10 milliseconds and <5-10 m

respectively), and because consideration was made of the locations of the triplication points

observed in the record sections, the basic form of the velocity-depth models in Figures 2.4

and 2.5 is not expected to change with further modelling.

Discussion and Conclusions

The primary seismic results are: 1) A velocity contrast from -4.2 km/s to -5.0 km/s is

located at a depth below the seafloor of -0.16 km within the ASC and -0.34 km for the

crust -1 km to the west. This corresponds to a dip on this boundary of ~10', and is the

most probable explanation for the crestal high velocity anomaly identified by Toomey et al.

[1990]. 2) The seafloor velocity increases from -1.95 km/s within the ASC to -2.3 km/s



for the crust -1 km to the west. 3) There is a major boundary at a depth of -0.06 km

within the ASC which is gradually replaced by a steep gradient, at a depth below the

seafloor of -0.11 km for 20 kiloyear crust.

One hypothesis to explain the nature of the major boundary delineating the top of the 5

km/s layer is that it is formed by a change in lithology, from lavas and sills to sheeted

dikes. This has two important implications: the in situ velocity of the dikes must be

substantially reduced below that measured on laboratory samples (e.g. [Salisbury et al.,

1985]), perhaps due to thermally induced cracking; and the thickness of the volcanic

section is only -350 m. This is far less than the -800 m observed at DSDP Hole 504B

[Anderson et al., 1982], the only drill hole in normal oceanic crust that has penetrated the

top of the dikes. In contrast to the EPR, however, the crust at Hole 504B was emplaced at

an intermediate spreading center (half spreading rate of 36-38 mmlyr). Recent results from

submersible observations at Hess Deep, a section of crust emplaced at the fast-spreading

East Pacific Rise approximately 1 my ago (and thus perhaps more comparable to the

seismic results of Figures 2.4 and 2.5) suggest that the average depth to the top of the dikes

is only -300-400 m [Francheteau et al., 1992; Karson et al., 1992]. For the contact

between volcanics and sheeted dikes to be the origin of the seismic boundary, the transition

zone from -90% volcanics to -90% dikes must have a thickness of a few tens of meters.

This lithologic transition in the Samail [Pallister, 1981] and Bay of Islands ophiolites

[Rosencrantz, 1983] confirm that the transition zone can be of this thickness. If this

hypothesis for the origin of the seismic boundary is correct, then the dip of - 10' observed

within 1 km of the rise axis for this boundary could be the expression of the subsidence of

the dikes as they move away from the injection zone. This correlates relatively well with a

dip of- 15', predicted from measurements of dike attitudes, for the subsidence of the dikes

in the Bay of Islands ophiolite [Rosencrantz, 1983].

An alternative explanation of this major boundary is that it represents a large change in

porosity. The emplacement of a sill or massive flow would restrict the circulation of



seawater and allow high-temperature hydrothermal deposition, resulting in the sealing of

thin cracks, a decrease in porosity, and an increase in seismic velocity [Wilkens et al.,

1991]. At DSDP site 504B, a sharp decrease in porosities, corresponding to a change in

structure from predominantly pillow lavas and breccias to predominantly flows, was found

at a depth beneath the basement of -130 m [Anderson et al., 1982; Pezard, 1990]. It is

possible that this change in porosity correlates with the major seismic boundary at a depth

below the seafloor of -340 m for 20-120 kiloyear crust in Figures 2.4 and 2.5. However,

it is difficult to imagine how this process could create such a consistent boundary as

observed in Figure 2.5, as the region of high-temperature hydrothermal deposition, and

thus higher seismic velocities, would reach a shallower level with each subsequent massive

flow. Thus the first hypothesis is preferred.

Observations from the ARGO imaging system [Haymon et al., 1991] indicate that most

of the volcanic flows remain within the walls of the <200 m wide ASC, but that these

flows occasionally overflow the ASC walls and travel as far as 1.8 km off axis [Fornari et

al., in prep.; Edwards, 1991]. Additionally, lava may be transported outside of the ASC

through lateral tube conduits [Fornari et al., in prep.]. Thus, evidence exists to suggest

that the doubling of thickness of the 2.0-4.2 km/s material over a distance of ~ 1 km could

be caused by the emplacement of lava that either overflows the ASC or is transported

through lateral tube conduits. The drainback of this lava, as well as a small amount of low-

temperature alteration, could substantially modify the total porosity and be responsible for

the small increase of seafloor velocity shown in Figures 2.4 and 2.5.

In summary, the seismic results suggest that the thickness of the volcanic section

doubles in thickness over an across-axis distance of- 1 km due to the emplacement of lava

that either overflows the ASC or is transported through lateral tube conduits. The depth to

the top of the sheeted dike complex increases from - 160 m within the ASC to -340 m for

the crust -1 km to the west.
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Figure 2.1. Sea Beam bathymetry [Wilcock et al., 1993] contoured at 25 meter intervals

for a section of the East Pacific Rise located between the Siqueiros and Clipperton

transform faults. Shiptracks for the on-bottom seismic refraction experiments are indicated

with the heavy black lines; due to the undithered GPS during the cruise, the ship could be

accurately navigated within tens of meters. Each shiptrack is labelled with the approximate

age of the crust in kiloyears, based on a half spreading rate of 5.5 cm/yr [Klitgord and

Mammerickx, 1982], with an 'E' or 'W' appended to indicate relationship to the rise axis,

and an 'S' or 'N' appended to the southern and northern zero-age lines, respectively. The

zero-age lines will also be referred to as the 'ASC' lines, and lines 10W, 20W, 20E, 70W,

and 120W will also be referred to as the 'flank' lines in this chapter. An ocean bottom

hydrophone (OBH) was located at the southern end of each ridge parallel line, with an

OBH at both the eastern and western ends of the Line 0-20R. The inset map shows the

regional setting, with triangles indicating the locations of the experiments conducted at

90 30'N and 12'50'N.
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Fig. 2.2. Record section (corrected for shot height above seafloor) of the 2.3 kg (5 lb)

charges detonated to the OBH for Line OS. The recording instrument was a Woods Hole

Oceanographic Institution Ocean Bottom Hydrophone with sampling at 1200 hz. For

display purposes it was necessary to multiply the amplitudes of the seismograms by a

factor of R 2 .4 , where R is the distance of the shot from the receiver. The amplitude has

been set to zero at the onset of the water wave. The seismograms have been low-pass

filtered with a cosine-squared filter, with an upper taper interval of 100-110 hz. The first

breaks are shown with asterisks, with total errors in the first arrival travel times <+5-10

milliseconds, and range errors <+5-10 m. The seismograms are plotted with a reduction

velocity of 6.0 km/s, with compressional arrivals breaking left. The solid line is the travel

time curve from ray tracing of the velocity/depth model shown in Figure 2.4. The record

section shows low-velocity (<2.5 km/s) arrivals emerging ahead of the water wave out to a

range of -0.2 km. Triplications at ranges of -0.2 km and -0.4 km are associated with the

velocity discontinuities at 0.05 km and 0.13 km in Figure 2.4.
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Figure 2.3. As for Figure 2.2, except that the data are shown for Line 20W, and the range

scale factor is R2.6. The record section clearly shows low-velocity (<3 kmn/s) arrivals

emerging ahead of the water wave out to a range of -0.7 km. A triplication is apparent at

-1.3 km associated with the - 1 km/s velocity discontinuity at 0.35 km in Figure 2.4.
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Figure 2.4. Velocity/depth models for the unreversed on-bottom seismic refraction

experiments. The three lines shot within the axial summit caldera are shown as dashed

lines. The model for Line 70W is not shown due to the poor signal to noise ratio

associated with the first arrival travel times.
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Figure 2.5. Two-dimensional velocity/depth model for Line 0-20R with a velocity contour

spacing of 0.1 km/s. Distance is increasing away from the axial summit caldera, and the

seafloor is dipping -1 from east to west. The arrow points to the approximate location of

the ASC outer wall. The heavy dark line indicates the boundary where the velocity

increases from 4.2 km/s to 5.0 km/s; this boundary is dipping away from the ASC at -10'

from the horizontal. Note the closely spaced velocity contours in the depth range 0.05-0.2

km/s which indicate a high-gradient region in the western portion of the model and a

velocity discontinuity of - 1 km/s at the far eastern portion of the model.



CHAPTER 3

SEISMIC CONSTRAINTS ON SHALLOW CRUSTAL EMPLACEMENT

PROCESSES AT THE FAST-SPREADING EAST PACIFIC RISE

Abstract. We present the results of nine on-bottom seismic refraction experiments

carried out over young East Pacific Rise crust. The experiments are unusual in that both

the source and receiver are located within a few meters of the seafloor, allowing high-

resolution determinations of shallow crustal structure. Three experiments were located

within the axial summit caldera (ASC), over 'zero-age' crust. The seismic structure at

these three locations is fundamentally the same, with a thin (<60 m) surficial low-velocity

(<2.5 km/s) layer, an - 100-150 m thick transition zone with velocities increasing by -2.5

km/s, and a layer with velocities of -5 km/s at a depth beneath the seafloor of -130-190 m.

The surficial low-velocity layer and transition zone are defined as seismic layer 2A, and the

-5 km/s layer as the top of layer 2B. Both the surficial low-velocity layer and the transition

zone double in thickness within ~ 1 km of the rise axis, with the depth to the 2A/2B

boundary increasing from ~ 150 m to -300-350 m over this range. The seafloor velocities

increase from -2.1-2.35 km/s for zero-age crust to -2.4-2.85 km/s for 10,000 to 120,000

year old crust, consistent with a decrease in porosity from -27% to -20%. Amplitude

modeling of the on-bottom seismic refraction data determines that the Poisson's ratio at the

seafloor must be at least 0.43, suggesting that the shallow crustal porosity is largely due to

high-aspect ratio cracks. Our preferred seismic model includes high attenuation within

layer 2A (Qp-25), and lower attenuation (Qp-500) in layer 2B. We model layer 2A as the

extrusive sequence and transition zone, and the 2A/2B boundary as the top of the sheeted

dikes. The thickening of the extrusive layer is interpreted to be due to lava that either

overflows the ASC walls, is emplaced through eruptions outside of the ASC, or travels



laterally from the ASC through conduits. According to this model, the shallow crustal

architecture is in place within 1 km of the rise axis. A comparison with the structure

observed from drilling at DSDP Hole 504B suggests that the subsidence of the sheeted

dikes is more than double at intermediate-spreading centers (-800 m) than for the fast-

spreading EPR (-300-350 m). Additionally, this implies that the volume of magma

emplaced as extrusives at intermediate spreading centers is at least as great as that emplaced

at fast-spreading centers.

Introduction

We present results from nine on-bottom seismic refraction experiments, located on

young crust formed at the fast-spreading East Pacific Rise (EPR) near 90 30'N and 120 50'N

(Figure 3.1). By placing both the source and receiver close to the seafloor, we can observe

energy directly which has turned in the uppermost several hundred meters of the crust.

This allows us to provide high resolution determinations of the shallow compressional

wave velocity structure, and through amplitude modeling, to provide constraints on

Poisson's ratio and attenuation.

The northern EPR has been studied extensively with seismic methods, but only a few

experiments have resolved the structure of the shallow crust. High-quality expanding

spread profiles [Stoffa and Buhl, 1979], unlike traditional seismic refraction experiments,

can often identify energy that turns in the shallow crust and arrives after the onset of the

water wave. Both Vera et al. [1990] and Harding et al. [1989], using expanding spread

profile data, have identified a surficial low-velocity layer from experiments located near

9030'N and 130N respectively. This layer is 100-200 m thick, has velocities 2.6 km/s,

has a low velocity gradient, and overlies a layer with a steep gradient where velocities >5

km/s are reached in a few hundred meters. The depth to a shallow 'reflector', interpreted to

be formed by refracted energy which has turned in the steep gradient underlying the

surficial low-velocity layer [Harding et al., 1993; Vera and Diebold, 1993], increases from



~-100-200 m at the rise axis to ~300-600 m within 1-3 km of the rise axis. Rapid lateral

variations in shallow crustal structure are also suggested from the tomographic images of

Toomey et al. [1990] at 90 30'N and the refraction data of McClain et al. [1985] at

12050'N.

Knowledge of shallow crustal structure is useful because it is in this region that the em-

placement of the volcanic section occurs. The surficial low-velocity layer is attributed to a

layer of high-porosity pillows and flows [Houtz and Ewing, 1976; Purdy, 1987], with

porosities possibly greater than 20% [e.g. Hyndman and Drury, 1976; Wilkens et al.,

1991; Berge et al., 1992]. The higher-velocity material underlying the surficial low-

velocity layer has been interpreted to be either the top of the sheeted dike sequence [Herron,

1982; Christeson et al., 1992; Harding et al., 1993] or low-porosity pillow lavas and flows

[McClain et al., 1985; Rohr et al., 1988; Harding et al., 1989; Vera et al., 1990]. The

deepening of this layer within a few kilometers of the rise axis is attributed to either dike

subsidence [Toomey et al., 1990; Christeson et al., 1992; Harding et al., 1993] or in-

creased fracturing away from the emplacement zone [McClain et al., 1985]. In this paper

we describe a detailed modeling effort, primarily using the reflectivity method, to determine

the shallow velocity structure. The velocity structure is used to constrain a geological

model, which favors dike subsidence over increased fracturing as an explanation for the

rapid lateral variations in shallow crustal structure.

Eight of our experiments were located over young EPR crust near 9030'N (Figures 3.1

and 3.2), with one additional experiment located near 12050'N (Figure 3.3). The EPR near

90 30'N is broad and rectangular in cross-section, but is asymmetric with water depth

increasing more rapidly to the east than to the west [Macdonald et al., 1992; Wilcock et al.,

1993]. The axial summit caldera (ASC), interpreted as a syn- or post-volcanic collapse

feature in the 90 30'N region [Haymon et al., 1991], is present along the entire rise crest in

our study area [Figure 3.2]. The ASC widens to the north from an average width of ~-130

m to -275 m, and is less than 15 m deep [Fornari, Perfit, Haymon, Edwards, and O'Brien,



Morphology and structure of the ASC of the EPR between 90 -100 N: ARGO and Alvin

observations, in prep; hereafter referred to as Fornari et al., in prep]. The floor of the ASC

is dominated by young volcanism and active fissuring [Haymon et al., 1991]. A strong

axial magma chamber (AMC) reflector, associated with the top of a low-velocity zone, is

present in this region [Detrick et al., 1987]. The EPR at 90 30'N is the location of ODP Site

864, the first attempt to drill zero-age crust using the diamond drilling technology

demanded by bare rock [Shipboard Eng. and Sci. Parties, 1993]. In comparison, the EPR

near 120 50'N is domed in cross-section [Macdonald and Fox, 1988], and the ASC is on

average wider (200-400 m in width) and deeper (20-50 m deep) than observed near 90 30'N

[Gente et al., 1986]. An AMC reflector is imaged continuously along-axis in this region

[Detrick et al., 1987], but it is considerably narrower than observed near 90 30'N. The

experiments discussed in this paper were placed within and close to the ASC as located by

Fornari et al. [in prep] and Gente et al. [1986].

Experimental Procedure

The on-bottom seismic refraction experiments were carried out using NOBEL (Near

Ocean Bottom Explosives Launcher) [Koelsch et al., 1991], a unique deep-towed explo-

sive source. NOBEL (Figure 3.4) consists of a steel frame with 47 barrels, each of which

contains a five or ten lb (2.3 or 4.6 kg) PETN explosive charge. Each charge is

individually released from its barrel, and is suspended beneath NOBEL by 30.5 meters of

"Primacord"* (Trademark of Ensign Bickford Company). Hydrophones attached to the

frame allow confirmation of a successful release, and the charge is then electrically

detonated. The recording instrument is a Woods Hole Oceanographic Institution ocean

bottom hydrophone (OBH) [Peal et al., 1993]. The OBH has a dynamic range of 98 dB,

and during these experiments sampled at a rate of 1200 samples per second. The

experimental procedure for a typical experiment, with NOBEL firing shots to one OBH, is

depicted in Figure 3.5. For one experiment we deployed two OBHs, one located at each



end of the shooting line, with the experimental procedure identical to that shown in Figure

3.5 with the exception that the additional OBH was deployed at the start of the operation.

Data and Interpretation

In this paper we present results from nine on-bottom refraction experiments, the location

of which are shown in Figures 3.1 and 3.3. The preliminary processing for all

experiments was identical. We first calculated shot-receiver ranges for each shot using the

water wave, with the exception of the closest shots where the water wave arrivals exceeded

the dynamic range of the instrument; for these shots we used the transponder determined

ranges. We estimate that the transponder determined ranges are accurate to within 10

meters (due to the geometry), and the water wave determined ranges are accurate to within

5 meters. The travel times of first arrival refractions were picked from unfiltered seismic

traces, with an estimated picking error of ±1-4 ms at the closest ranges and <±-10 ms at the

furthest ranges. The travel-time effects of shot height variations were removed from the

first arrival travel times by calculating the ray entry point at the seafloor, assuming a flat

seafloor and constant ray parameter. The error in this correction is estimated to be ±2 ms

due to uncertainties in shot height of -2 m, and ±2 ms due to a non-constant ray parameter.

All shots were within 30 m of the seafloor, with the majority within 10 m. Errors due to

clock drift and detonation time are 1 ms.

We fit the first arrival travel times with one-dimensional ray tracing (with the exception

of Line 0-20R where we used two-dimensional ray tracing) to produce preliminary veloc-

ity-depth models for each experiment [Christeson et al., 1992]. These models were then

used as the starting point for reflectivity modeling [Fuchs and Miller, 1971], using the

code described in detail in Mallick and Frazer [1987]. The code is based on the Kennett

reflectivity algorithm [Kennett, 1983], uses the Filon method of quadrature of the slowness

integral, and includes attenuation by using complex frequency dependent velocities. Except

where stated otherwise, we used a constant Poisson's ratio of 0.3 [Christensen, 1972;



1978] (i.e., a Vp/Vs ratio of 1.9), set Qs = 0.5Qp, and computed densities using the

relationship for basalts of Christensen and Shaw [1970], p = 1.85 + 0.165Vp. We used a

water layer equal in thickness to the average water depth for each experiment, with the shot

heights and receiver height at 10 m and 1 m, respectively, above the seafloor. The source

signature for NOBEL was not known, and thus two sources for the reflectivity modeling

were generated. One source was based on short range unclipped refraction arrivals, and

the other on a longer range unclipped water wave arrival. The amplitudes of the resulting

synthetic seismograms were nearly identical, with the source based on the water wave

producing a slightly better fit to the waveforms. Therefore the water wave source was used

for our final reflectivity models. In the following sections, we will present the modeling

results from each line.

Line OS

Line OS was located within the ASC (Figure 3.2) on 'zero-age' crust; seismograms from

the 42 shots are plotted in Figure 3.6a. The record section shows low-velocity (phase

velocity -2.1 km/s) arrivals emerging ahead of the water wave out to a range of -0.2 km,

first arrivals with a phase velocity of ~4.0 km/s in the 0.2-0.4 km range, and with a phase

velocity of -5.1 km/s in the 0.4-1.6 km range. Indicated on the record section are three

sets of secondary arrivals with phase velocities <2.5 km/s. The frequency content of the

first arrivals is much higher than observed from conventional surface shots,. with first

arrivals at the closest ranges having frequencies of 150-200 Hz, and first arrivals at ranges

>1 km with frequencies of -60 Hz. The corresponding seismic wavelengths are -10-14 m

for 150-200 Hz energy turning in 2.1 km/s material, and ~85 m for 60 Hz energy turning

in 5.1 km/s material.

Variations in velocity gradients, Poisson's ratio, and the attenuation structure may have

similar effects on amplitude patterns. Therefore our strategy in modeling was to try first to

match the amplitude patterns using the reflectivity method with variations only in the



velocity gradients, with Qp= 100 and Poisson's ratio = 0.3 in each layer. The Qp of 100

was chosen as a conservative estimate of attenuation for young upper oceanic crust

[Jacobson and Lewis, 1990; Wilcock et al., 1992b]. Then we varied Qp and Poisson's

ratio in each layer to note their effects on the amplitudes, and only altered these values if

necessitated by the amplitude patterns in the data. With this method we were able to match

the primary features of the data, with the exception of the high amplitude secondary arrivals

immediately preceding the water wave in the 0.1-0.3 km range. The final velocity/depth

model is listed in Table 1 and plotted in Figure 3.7, and the synthetic seismograms for this

model are shown in Figure 3.6b.

The four primary features of the final velocity/depth model are: 1) There is a thin (<50

m thick) surficial low-velocity layer, with compressional-wave velocities <2.5 km/s and

shear-wave velocities <1 km/s. 2) The Poisson's ratio of the surficial low-velocity layer is

unusually high (0.48 for our best-fitting model). 3) Velocities of >5 km/s are reached

within 150 m of the seafloor. 4) The 5 km/s material is associated with a much higher Qp

(-500) than the lower-velocity material above it (Qp of -25). We will discuss the

constraints on each of these features in turn.

The compressional-wave velocity and thickness of the thin surficial low-velocity layer

are constrained primarily by matching the travel times of the first arrivals, but are also

influenced by the Qp chosen for this layer, due to the effect attenuation has on apparent

phase velocities (e.g. Strick [1970]). For a Qp of 25, a seafloor velocity of -2.33 ±0.15

km/s is needed to match the first arrival travel times in the 0-0.2 km range. Ray-tracing

suggests that energy that multiply turns in or is reflected from the base of this layer is

responsible for the low-velocity secondary arrivals indicated by the solid lines in Figures

3.6a and 3.6b. Although velocity gradients as high as 13 s- 1 in the surficial low-velocity

layer will adequately match the first arrival travel times and amplitudes, a velocity gradient

of 1.6±1.6 s- 1 is needed to correctly match the multiply turning energy, with the error

bounds determined by forward modeling. With no attenuation, reflectivity modeling



predicts a large triplication for velocity gradients of <3.2 s- 1, which is not observed in the

data. This is one of several reasons that we chose a low-Qp for the surficial low-velocity

layer.

The Poisson's ratio at the seafloor controls the fraction of energy that is transmitted,

reflected, or converted from compressional to shear or vice versa. The energy that multiply

turns in the surficial low-velocity layer will interact several times with the seafloor

interface, and thus variations in the Poisson's ratio will have a major effect on the

amplitudes of these phases. Reflectivity modeling suggests that increasing the Poisson's

ratio at the seafloor results in an increase in the amplitude of this energy. For a Qp of 100,

a Poisson's ratio of at least 0.43 (i.e., Vp/Vs >3) is needed to produce three sets of multiply

turning arrivals, and for a lower Qp of 25-37, a Poisson's ratio of 0.48 (Vp/Vs = 5) is

needed. These values correspond to seafloor shear wave velocities of <0.75 km/s.

Beneath the surficial low-velocity layer is a high-gradient region, where velocities

increase from -2.4 km/s to -5.0 km/s over a depth interval of -100 m, resulting in an

average gradient of -26 s-1. This region is constrained by the first arrival travel times and

amplitudes, and is needed to match the rapid increase in phase velocity of the first arrivals

from -2.1 km/s in the 0-0.2 km range to -5.1 km/s in the 0.4-1.6 km range. The small

change in gradient at a depth of -75 m (Figure 3.7) allows energy to arrive with a phase

velocity of -4 km/s in the 0.2-0.4 km range, and also produces the small triplication

observed in the data at -0.4 km range. Underlying the high-gradient layer is a layer with

velocities exceeding 5 km/s, that extends to a depth of -200 m. The average velocity in this

layer is 5.1+0.15 km/s. We have no constraints from our data beneath 200 m, as our

furthest shots are at a range of 1.6 km, and the corresponding seismograms have a low

signal to noise ratio. At ranges greater than 0.4 km, secondary energy associated with the

region beneath the surficial low-velocity layer is visible in the synthetics (Figure 3.6b) -50-

70 ms after the first arrivals; similar energy is not clearly seen in the observed data. A

model with a low Qp for the surficial low-velocity layer and high-gradient region is



preferred, since the amplitudes of this phase are lowered, but still does not provide a good

fit.

We can place constraints on the gradient and attenuation in the 5 km/s layer using the

amplitudes of the first arrivals beyond 0.4 km. Figure 3.8 shows the variation of the first

arrival amplitudes vs. range. This variation has a small dependency on the Poisson's ratio

in each layer, but is controlled mainly by the values of the velocity gradient and attenuation.

The amplitude of the first arrivals decreases rapidly with range out to -0.6 km, with a slight

flattening out at -0.3-0.4 km range associated with a triplication. The rate of amplitude

decrease with range is less in the 0.6-1.3 km range window. This amplitude pattern is

consistent with either an increase in gradient or a decrease in the amount of attenuation with

depth. The first arrival travel times in the 0.4-1.6 km range show no curvature as would be

observed with a large velocity gradient in the lowermost layer, and thus a decrease in

attenuation with depth is the preferred explanation for the change in slope beyond 0.6 km

range (Figure 3.8). Plotted in Figure 3.8 are the variations in first arrival amplitude with

range for three models, which differ only in the Qp value for the 5 km/s layer. Reflectivity

Smodeling indicates that a Qp of at least 100, and perhaps higher, in this layer will better

match the variation in first arrival amplitude with range in Figure 3.8. The synthetic

seismograms in Figure 3.6b were generated with a Qp value of 500 in the 5 km/s layer.

Line ON

Line ON was located within the ASC (Figure 3.2), with the OBH located approximately

5 km north of the OBH used in Line OS. The record section (Figure 3.9a) is very similar to

that of Line OS (Figure 3.6a), with low-velocity (phase velocity -2.0 km/s) arrivals

emerging ahead of the water wave out to a range of -0.3 km, first arrivals with a phase

velocity of -4.6 km/s in the 0.3-0.5 km range, and with a phase velocity of -5.2 km/s in

the 0.5-1.9 km range. Low phase-velocity (<2.5 km/s) secondary arrivals are also

observed.



We used the final velocity/depth model from reflectivity modeling of Line OS as the

starting model for synthetic seismogram modeling for Line ON, and varied the velocities

and layer thicknesses to match the amplitude patterns observed in the data (Figure 3.9a).

The final velocity/depth model for Line ON is listed in Table 1 and plotted in Figure 3.7,

and the synthetic seismograms for this model are shown in Figure 3.9b. The

velocity/depth model is similar to that for Line OS, with a thin (<75 m thick) surficial low-

velocity (Vp <2.5 km/s, and Vs < 1.0 km/s) layer, and reaches velocities exceeding 5 km/s

within 200 m of the seafloor. The surficial low-velocity layer is thicker (55 m vs. 32 m)

and may have a higher compressional velocity gradient (5.3±3 s-1 vs. 1.6±1.6 s-1) than in

the model for Line OS. The thicker surficial low-velocity layer is needed to match the first-

arrival travel times, and the higher gradient to correctly model the secondary energy that

multiply turns in or is reflected from the base of this layer. The model includes two

changes in gradient in the depth interval 137-192 m, which are needed to produce the

triplication observed at a range of approximately 0.5 km. The velocity in the depth interval

137-177 m is not well-constrained due to the small number of first arrival travel times in the

0.3-0.5 km range, but is at least 0.3 km/s faster than observed in the depth range 72-82 m

in the model for Line OS. The major difference between the velocity/depth models for Line

OS and Line ON (Figure 3.7) is that material with a velocity of -5 km/s is reached at a

greater depth (192 m vs. 129 m) for Line ON.

Line OF

Line OF was located near the western wall of the ASC (Figure 3.3), and was the only

experiment located in the 12050'N region. We had to make only minor changes to the final

velocity-depth model from Line OS to match the observed data, which were extremely

similar in appearance to Figures 3.6a and 3.9a. The final velocity-depth model is listed in

Table 1, and plotted in Figure 3.7.



Line 120W

Line 120W was located approximately 6 km west of the ASC in the 90 30'N area (Figure

3.1), over crust that is -120,000 years old. In contrast to the record sections for Line OS

(Figure 3.6a) and Line ON (Figure 3.9a) for which low-velocity (<3 km/s) arrivals were

observed to a range of -0.2-0.3 kmin, the record section for Line 120W (Figure 3.10a)

shows low-velocity arrivals emerging ahead of the water wave out to a range of -0.6-0.7

km. First arrivals with a phase velocity of -3.8 km/s are observed in the range window

0.7-1.2 km, and first arrivals with a phase velocity of -4.9 km/s in the 1.2-1.5 km range.

At a range of 1 km, the first arrival travel times are 80-100 ms greater than observed for the

lines located within the ASC. The frequency content of the first arrivals is lower than

observed for the zero-age lines, with arrivals at the closest ranges having frequencies of

100-125 Hz, and arrivals at ranges >1 km with frequencies of 30-40 Hz. The

corresponding seismic wavelengths are -20-25 m for 100-125 Hz energy turning in 2.5

km/s material, and -120-165 m for 30-40 Hz energy turning in 4.9 km/s material.

We followed the same procedure as for Line ON for synthetic seismogram modeling of

Line 120W. In contrast to the zero-age lines, there are no sets of secondary arrivals which

are clearly related to energy multiply turning within or reflected off the base of the surficial

low-velocity layer. Therefore we produced two models (Table 1) for Line 120W, which

differ in the velocity gradient and thickness assigned to the surficial low-velocity layer.

The first model has a zero gradient in the surficial layer; the synthetic seismograms for this

model are shown in Figure 3.10Ob. Energy multiply turning within or reflected twice off the

base of the surficial low-velocity layer (indicated by the dashed line in Figure 3.10b)

arrives in the 0.7-1.1 km range for this model. Coherent high amplitude secondary arrivals

are observed in this range window in the data (indicated by the solid line in Figure 3.10 a),

but this energy arrives -30 ms earlier than the modeled energy in Figure 3.10b. The first

arrivals at ranges >0.4 km are adequately modeled, with a triplication at 0.48 km producing

a large amplitude arrival similar to that observed in the data at this range. First arrival



amplitudes at ranges <0.4 km could be better fit with higher attenuation in the shallow

crust, but because of the sparsity of unclipped seismograms at the closest ranges we did not

alter the attenuation value from that determined for Lines OS. The second model has a

velocity gradient of 5.3 s- 1 in the surficial layer; the synthetic seismograms calculated from

this model are plotted in Figure 3.10 c. Energy multiply turning within or reflected twice

off the base of the surficial low-velocity layer (indicated by the dashed line in Figure 3.10 c)

arrives in the 1.2-1.6 km range for this model, as compared to the 0.7-1.2 km range

window for the zero-gradient model (Figure 3.10 b). Coherent high amplitude secondary

arrivals are observed in this range window in the data (indicated by the solid line in Figure

3.10a), but this energy arrives -30 ms later than the modeled energy in Figure 3.10b. In

contrast to the zero-gradient model, no triplication in the first arrival amplitudes is produced

from this model at the 0.48 km range; otherwise the first arrival amplitudes are adequately

modeled. The first arrival amplitudes at ranges <0.4 km are similar to those plotted in

Figure 3.10b from the zero-gradient model. Both models produce secondary arriving

energy that does not match the observed data. The zero-gradient model is slightly preferred

-because it produces a triplication in the first arrival amplitudes at the 0.48 km range (Figure

3.10 b) similar to that observed in the data (Figure 3.10 a), and this model is plotted in

Figure 3.7.

The preferred model for Line 120W (Figure 3.7) includes a surficial low-velocity layer

that is thicker and faster than in the zero-age models. The compressional-wave velocity and

thickness of this layer are constrained by matching the travel times of the first arrivals; for a

Qp of 25, a seafloor velocity of -2.63 ±0.15 km/s and a surficial low-velocity thickness of

107 m is needed to match the first arrival travel times in the 0-0.6 km range. The

amplitudes of the first arrivals decrease rapidly with range, a pattern that is consistent with

the shallow low-Qp values obtained for the zero-age models. The surficial low-velocity

layer is underlain by a high-gradient region, where velocities increase from -2.63 km/s to

-4.18 km/s over a thickness of -50 m. This region is in turn underlain by a region with



several changes in gradient, with velocities of -4.9 km/s reached at a depth of -300 m.

Due to the poor signal-to-noise ratio observed in the seismograms in the 0.9-1.6 km range,

the portion of the model in the depth range >200 m is not well-constrained, and the

velocities have uncertainties of ±0.5 km/s.

Line 20W

Line 20W was located -1 km west of the ASC, over -20,000 year old crust (Figures

3.1 and 3.2). Although this experiment is located within 1 km of Line OS, the first arrival

travel times for Line 20W (Figure 3.11) are systematically greater than for Line OS, and are

similar to those of Line 120W, located 5 km to the west. The record section shows low-

velocity (phase velocity <3.0 km/s) arrivals emerging ahead of the water wave out to a

range of -0.6-0.7 km, and a clear triplication at a range of -1.4 km. Arrivals in the 0.7-1.4

km range have a phase velocity of -4.0 km/s, and arrivals after the triplication, a phase

velocity of -5.0 km/s. There is no clear triplication in the 0.6-0.7 km range, where the

phase velocities increase rapidly from -2.6 km/s to -4.0 km/s.

We attempted to model the amplitudes observed in Line 20W, but all models that

matched the first arrival travel times produced a triplication in the 0.6-0.7 km range, a

feature not observed in the data. We conclude that the structure beneath Line 20W is two-

dimensional, and cannot be constrained by an unreversed refraction line. We have used

ray-tracing to approximate the structure with a one-dimensional model based on Line

120W; this model is listed in Table 1, and plotted in Figure 3.7.

Line lOW, Line 20E, Line 70W

Failures of old hydrophone sensors on the OBHs used for the remaining off-axis lines

(10OW, 20E, and 70W) resulted in low signal-to-noise data that are poorly suited for

amplitude modeling. We therefore used ray-tracing to fit the first arrival travel times, based

on the final model for Line 120W. These models are listed in Table 1, and plotted in



Figure 3.7. Lines 10W, 20W, 120W, and 20E have similar shallow crustal structures,

with a thin (-85-115 m) surficial low-velocity (-2.4-2.9 km/s) layer, underlain by a high

gradient region where velocities increase from <3 km/s to -4.5 km/s. The structure

beneath -200 m differs slightly for these four lines, but this portion of the models is poorly

constrained due to the large uncertainties in the first arrival travel times. A coherent set of

secondary arrivals are observed in the data for Line 10W, and these arrival times can only

be modeled with a low-gradient surficial low-velocity layer. No coherent secondary

arrivals are observed for Line 20E or Line 70W.

Line O-20R: Cross-axis structure

Figure 3.7 shows a summary of the velocity-depth models for the ridge parallel

experiments. The velocity structure of the three lines located within the ASC differs

systematically from that of the other five lines, with the zero-age lines reaching higher

velocities at shallower depths. Furthermore, the seafloor velocity is faster for the lines

located outside of the ASC. Christeson et al. [1992] examined this major change in crustal

structure by using two-dimensional ray tracing [Luetgert, 1988] to fit the first arrival travel

times for Line 0-20R. Two OBHs were used for Line 0-20R, with one OBH located

within the ASC, and the other located -1.2 km to the west (Figure 3.2). Record sections

from this line are plotted in Figure 3.12. Both record sections consist of low phase

velocity arrivals (<3 km/s) at the closest ranges, but these extend out to -0.6 km for the

seismograms recorded by the western OBH, and only to a range of -0.25 km for the

eastern OBH located within the ASC. In addition, the phase velocity recorded by the

western OBH for this set of arrivals is -0.35 km/s faster. The phase velocities of the

arrivals at the furthest ranges recorded by the eastern OBH are -1.6 km/s slower than the

phase velocities of similar arrivals recorded by the western OBH (-4.5 km/s vs. -6.1

km/s).



The velocity/depth model shown in Figure 3.13 is based on the model of Christeson et

al. [1992], but has been modified to be consistent with the models listed in Table 1. The

principal changes made to the model presented in Christeson et al. [1992] are in the nature

of the layer boundaries (the velocity discontinuities in Christeson et al. [1992] have been

replaced by high-gradient regions in Figure 3.13) and in the surficial low-velocity layer

velocities and velocity gradients (the surficial low-velocity layer of Figure 3.13 has lower

velocity gradients and higher seafloor velocities as compared to the model of Christeson et

al. [1992]). The four primary characteristics of the model are as follows: 1) The surficial

low-velocity layer thickens away from the ASC. 2) The depth to 5.0 km/s material deepens

away from the ASC. 3) The seafloor velocity increases away from the ASC. 4) The

seafloor velocities are consistently lower than observed by rise-parallel refraction

experiments at the same locations. We will discuss the constraints on each of these features

in turn.

The thickening of the surficial low-velocity layer away from the ASC is well-constrained

by the first arrival travel times. Low phase velocity (<3 km/s) arrivals are observed out to a

range of -0.25 km by the eastern receiver, and -0.5-0.6 km by the western receiver

(Figures 3.12 and 3.14). These observations are well-matched with a surficial low-

velocity layer thickness that increases from -30 m beneath the ASC to -90 m at a range

-1.2 km off-axis. The results from modeling of Line 10W suggest that the majority of this

thickening occurs within 500 m of the ASC. As previously mentioned, the phase velocities

of the first arrivals at the furthest ranges are greater for the western receiver than for the

eastern receiver. This is the classic indication of a dipping layer, and the first arrival travel

times are well-matched (Figure 3.14) with the depth to 5 km/s material thickening from

-150 m below the seafloor within the ASC to -310 m beneath the seafloor at a range of 1.2

km. This corresponds to a dip of -8.5' from the horizontal, much greater than the seafloor

dip of -1 .



Plotted in Figure 3.15 are the apparent phase velocities for first arrivals interpreted to be

turning within the surficial low-velocity layer for Lines OS, 20W, and 0-20R. The

apparent phase velocities of the arrivals observed by the receivers located within the ASC

(Line OS and the eastern receiver of Line 0-20R) are systematically slower than observed

for the receivers located -1 km west of the ASC (Line 20W and the western receiver of

Line 0-20R), consistent with an increase in velocity of the surficial low-velocity layer by

0.4±0.3 km/s away from the ASC. The velocities of the surficial low-velocity layer

indicated in Figure 3.13 are -0.25 km/s greater than the values shown in Figure 3.15, due

to the effect the high attenuation in this layer has on apparent phase velocities.

The western receiver for Line 0-20R and the receiver for Line 20W were positioned at

approximately the same location (Figure 3.2), but the apparent phase velocity for the cross-

axis line is slower (2.33+0.02 km/s vs. 2.59+0.05 km/s) than for the rise-parallel line

(Figure 3.15). These differences in phase velocities are consistent with a velocity

anisotropy in the surficial low-velocity layer of 7.5-12.5%, with the fast direction parallel

to the rise axis, although shallow velocity heterogeneities provide an alternate explanation.

Similarly, the eastern receiver for Line 0-20R and the receiver for Line OS were positioned

at approximately the same location (Figure 3.2), but at this location there is no evidence

from the apparent phase velocities (Figure 3.15) for velocity anisotropy in the surficial low-

velocity layer.

Observed in the record sections plotted in Figure 3.12 are several packets of coherent

energy, similar to the multiple arrivals successfully modeled with the reflectivity method for

Lines OS and ON (Figures 3.6 and 3.9). We have used ray-tracing to model the locations

of energy multiply reflecting off the base of the surficial low-velocity layer, and indicate on

Figure 3.12 (dashed lines) the secondary energy that is related to these multiples. For the

eastern receiver, most of the secondary energy (with the exception of the closest ranges)

can be explained by this multiple energy. For the western receiver, energy that is reflected

twice off the base of the surficial low-velocity layer is predicted to arrive at ranges >0.7



km, as indicated by the dashed line in Figure 3.12b. Large amplitude secondary arrivals

are also observed at ranges <0.7 km, and cannot be explained by this multiple energy. The

western receiver for Line 0-20R was located at approximately the same location as the

receiver used for Line 20W. The seismograms recorded for this rise-parallel experiment

(Figure 3.11) also have large amplitude secondary arrivals (in the 0.4-1.0 km range) that

cannot be explained by arrivals multiply turning within or reflecting off the base of the

surficial low-velocity layer. The amplitudes of the first arrivals for Line 20W had

previously suggested that there were lateral heterogeneities, which could perhaps result in

the secondary energy observed.

Comparison of the model for Line 0-20R with the model for Line 120W suggests that

only minor variations occur between the shallow crust 1 km west of the rise axis and 6 km

west of the rise axis. Similarly, a comparison with Line 20E suggests that the shallow

structure is approximately symmetrical about the rise axis.

Summary of modeling results

1. The velocity/depth models for all experiments include a surficial low-velocity layer.

The seafloor velocity of this layer varies from -2.1-2.35 km/s for zero-age crust to -2.4-

2.85 km/s for 10,000-120,000 year old crust.

2. Modeling of Lines OS, OF, 10W, and 120W constrains the velocity gradient for the

surficial low-velocity layer to be <3.5 s-1 at these locations. For Line ON, the velocity

gradient is -5.3±3 s-1

3. The presence of secondary arrivals associated with energy multiply turning within

and reflecting off the lowermost boundary of the surficial low-velocity layer for Lines OS,

ON, and OF requires Poisson's ratio at the seafloor to be >0.43. The preferred value is

-0.48.



4. Reflectivity modeling suggests that the shallow crust is highly attenuative, with a Qp

value of -25. First arrival amplitudes constrain the Qp value of the 5 km/s material to be

-500.

5. There is a major change in structure within -1 km of the rise axis. The surficial low-

velocity layer thickens from -30 m to -90 m at 9'30'N, and the depth to material with a

velocity of -5 km/s deepens from -150 m to -310 m below the seafloor.

6. The seismic observations are consistent with an anisotropy of 0-12.5% within the

surficial low-velocity layer, with the fast direction parallel to the rise axis.

DISCUSSION

Structure

In a classic paper, Houtz and Ewing [1976] divided the upper oceanic crust into layers

2A, 2B, and 2C according to seismic velocities. Layer 2A had an average refraction

velocity of -3.6 km/s, and was defined as "any low-velocity acoustic basement of probable

igneous origin." Layers 2B and 2C had average refraction velocities of -5.2 km/s and ~6.1

km/s, respectively. Based on the Houtz and Ewing [1976] definitions (which are indeed

the only formal definitions), we have labeled the 2.2-5.0 km/s material as layer 2A in

Figure 3.13, and the >5 km/s material as layer 2B; with this definition, significant structure

exists within layer 2A. It has been argued that the layer 2A/2B boundary is either a

boundary between the extrusive sequence and the sheeted dike complex [Herron, 1982;

Christeson et al., 1992; Harding et al., 1993], or a porosity boundary separating high- and

low-porosity extrusives [McClain et al., 1985; Rohr et al., 1988; Harding et al., 1989;

Vera et al., 1990]. In the following section, we will explore the evidence in support of

each of these hypotheses.

If the layer 2A/2B boundary represents the top of the sheeted dikes, then an important

implication is that the final thickness of the combined extrusive sequence and transition

zone is only -300-350 m at the EPR. At present, no drill hole has penetrated more than a



few tens of meters into oceanic crust formed at a fast-spreading center, and thus we cannot

directly compare the structure of the EPR at 9'30'N (half-spreading rate 5.5 cm/yr

[Klitgord and Mammerickx, 1982]) with drilling results. The only drill hole in normal

oceanic crust that we know to have definitely penetrated the top of the sheeted dike

sequence is DSDP Hole 504B. The crust at Hole 504B was emplaced at the intermediate-

spreading Costa Rica Rift (half spreading rate of -3.6-3.8 cmlyr), and at this location the

extrusive section is -575 m thick, and is underlain by a -210 m thick transition zone (a

region that consists of pillows, flows, dikes, and possibly sills) to the top of the sheeted

dike sequence at -785 m depth (Figure 3.16) [Anderson et al., 1982]. Other locations

where the depth to the top of the sheeted dike complex is known include ophiolite

complexes (600-2000 m, e.g. [deWit and Stern, 1978; Alabaster et al., 1982; Schmincke et

al., 1983]), the Vema fracture zone walls (-800 m [Auzende et al., 1989]), and the walls at

Hess Deep (-300-400 m, [Francheteau et al., 1992]). The crust at the Vema fracture zone

was emplaced at the slow-spreading Mid-Atlantic Ridge (half spreading rate of -1.2

cm/yr), and the crust crust exposed along the walls of Hess Deep was generated - 1 Ma ago

at the fast-spreading EPR (half spreading rate -6.5-6.7 cmlyr). Ophiolites pose a problem

as most are not of clear mid-ocean ridge provenance [Nicolas, 1989]. One of the few

ophiolites generally thought to be of mid-ocean ridge origin and for which a spreading rate

can be assigned with any confidence is the Semail ophiolite of Oman, which has an

extrusive thickness of 1500-2000 m [Alabaster et al., 1982]. But Semail was formed at a

half spreading rate of 3 cm/yr [Lippard et al., 1986], significantly slower than our EPR

site. Because of the growing evidence that oceanic crustal structure is spreading rate

dependent (e.g. [Purdy et al., 1992]), it is more appropriate to compare the results

presented in the paper with the structure observed at Hess Deep than that at Hole 504B, the

Vema fracture zone, or in ophiolite complexes.

Recent submersible dives at the walls of Hess Deep, a section of crust emplaced at the

EPR approximately 1 my ago, provide the first direct observations of fast-spreading crustal



structure. Four dives of the submersible Nautile reported a sequence of extrusives

overlying a mixed zone overlying a sheeted dike unit (Figure 3.16) [Francheteau et al.,

1992]. The extrusive sequence is only 100-200 m thick, and the top of this sequence at

two of the four locations displays clear EPR abyssal hill fabric [Searle and Francheteau,

1986; Lonsdale, 1988; Francheteau et al., 1992], suggesting that this is an intact unit. The

mixed zone is of variable thickness (50-500 m, averaging 200 m), and consists of

extrusives, dikes, and massive horizontally layered units which may represent sills

[Francheteau et al., 1992]. A comparison of the stratigraphy at Hess Deep with the

shallow seismic structure of the EPR (Figure 3.16) suggests that layer 2A consists of both

the extrusives and mixed zone, and the layer 2A/2B boundary represents the top of the

sheeted dike complex.

If this interpretation is correct, then the velocities of young EPR crust are systematically

lower than the velocities determined from geophysical experiments at Hole 504B. The

velocities determined from an oblique seismic experiment at this location increase from

-4.8 km/s in the extrusive section (0-570 m), to -5.5 km/s in the underlying transition zone

(570-780m), to -6.1 km/s in the upper few hundred meters of the sheeted dike complex

(Figure 3.16) [Little and Stephen, 1985; Collins et al., 1989]. Velocities determined from

sonic logging are similar, with the exception that the extrusive layer consists of a thin (-100

m) layer with an average velocity of -4.2 km/s, underlain by a 470 m thick region with

velocities rapidly increasing to an average of -5.2 km/s (Figure 3.16) [Becker et al., 1988].

The most detailed and reliable determinations of the deeper velocity structure at the fast-

spreading EPR at 90 30'N are from the expanding spread profiles of Vera et al. [1990]

(Figure 3.17). The similarity of the 0 kyr ESP solution with our 10W solution is

consistent with a location of the midpoint of the ESP experiment that was slightly outside

of the ASC. Velocities similar to the dike velocities recorded at 504B are not reached until

a depth of - 1100-1250 m both on zero-age and ~ 180 kyr crust, immediately above the low-

velocity zone (Figure 3.16b). Based strictly on a comparison of the velocity structure of



504B and the velocity structure of this study, the entire structure shown in Figure 3.13

could represent variations in velocity and structure within the extrusive section. Logging

has determined that variations in porosity are largely responsible for the velocity changes

within the extrusive section at 504B [Becker et al., 1982]. Thus the surficial low-velocity

layer of Figure 3.13 could represent a high-porosity layer similar in thickness to the 100 m

thick high-porosity layer of Hole 504B, underlain by an -300 m thick region of rapid

porosity decrease. Considering the data of Vera et al. [1990], this in turn could be

underlain by an -800 m thick low-porosity extrusive region and transition zone, and an

-100 m thick sheeted dike complex (based on a comparison of the Vera et al. [1990]

velocities of Figure 3.17 and the velocity structure of Hole 504B). Two important

implications of this interpretation are that the depth to the sheeted dike complex would be

several hundred meters greater, and the thickness of the extrusive section and transition

zone several hundred meters less on the EPR than observed at DSDP Hole 504B.

Hydrothermal vent fluids collected days after an eruption event on the EPR at 9045-52'N

[Haymon et al., 1993] can provide further information about the structure of the fast-

spreading EPR. Chemistry of vent fluids collected shortly after the eruption event and 11

months later suggest that the heat source for hydrothermal venting has deepened from -200

m to - 1500 m over the 11 month period [Von Damm et al., 1992]. Von Damm et al.

[1992] and Haymon et al. [1993] propose that intrusion of dikes during the eruption to

depths of -200 m resulted in phase separation of fluids near the tops of the dikes, and that

in the following 11 months these dikes were cooled so that the present day heat source is

now related to the underlying magma chamber. These results are consistent with the 2A/2B

boundary of Figure 3.13 representing a boundary between extrusives and the sheeted dike

sequence.

In summary, there are two hypotheses to explain the nature of the 2A/2B boundary of

Figure 3.13. The first hypothesis is that the boundary represents a change from high-

porosity extrusives in layer 2A to low-porosity extrusives in layer 2B. This model would



be consistent with the velocities and structure observed at DSDP Hole 504B, but would

infer the existence of an -1200 m thick extrusive layer and transition zone overlying a thin

(-100 m thick) sheeted dike complex (based strictly on a comparision of the 504B velocity

structure with the young EPR velocity structure). The second hypothesis is that the

boundary represents a change from extrusives to the sheeted dike complex. This is our

preferred hypothesis, and is consistent with the structure of fast-spreading EPR crust

observed at Hess Deep, and with the chemistry of hydrothermal vent fluids sampled at

90 45'-52'N. An important consequence of this interpretation is that the depth to the top of

the sheeted dikes is -300-350 m at the fast-spreading EPR and -800 m for the intermediate-

spreading crust at Hole 504B (Figure 3.16). In a later section, we will discuss this

implication further.

Physical properties

The best constrained portion of our seismic model (Figure 3.13) is the compressional

wave velocity structure of zero-age crust. This consists primarily of a thin surficial low-

velocity (<2.5 km/s) layer, a transition zone where velocities increase by -2.5 km/s over a

thickness of - 100-150 m, and a layer with velocities of >5 km/s. A surficial low-velocity

layer is not unique to young EPR crust, and has also been observed on the intermediate-

spreading Juan de Fuca Ridge [White and Clowes, 1990; Cudrak and Clowes, 1993] and

the slow-spreading Mid-Atlantic Ridge [Purdy and Detrick, 1986; Purdy, 1987]. Because

laboratory measured velocities for fresh oceanic basalts are typically -6 km/s, the low

seismic velocities have been attributed to high porosity on scales larger than the laboratory

samples [Hyndman and Drury, 1976; Schreiber and Fox, 1976; Wilkens et al., 1991].

Ludwig et al. [Ludwig, Fryer, Christeson, and Purdy, Evolution of porosity of the shallow

seafloor at the EPR, in prep; hereafter referred to as Ludwig et al., in prep] estimate a

porosity of 26-33% in the zero-age surficial low-velocity layer at 90 30'N and 120 50'N

based on the velocities reported here and a Poisson's ratio of 0.48. A decrease in porosity



of -6-8%, presumably due to a small amount of low-temperature alteration or modification

during lava drainback, can explain the increased velocities in this layer off-axis [Ludwig et

al., in prep].

Our amplitude modeling demands a Poisson's ratio at the seafloor of >0.43, with a

preferred value of -0.48 (i.e., Vp/Vs = 5). Other determinations of Poisson's ratio for

young oceanic crust are similar, falling in the range 0.39-0.46 [Diachok et al., 1984;

Harding et al., 1989; Vera et al., 1990]. These values are higher than the commonly

assumed Poisson's ratio for oceanic crust, 0.3 (Vp/Vs = 1.9), which is based on laboratory

measurements [Christensen, 1972; Christensen, 1978]. Theoretically, material dominated

by thin cracks (i.e., aspect ratios much less than one) will have a higher Poisson's ratio

than material with most of the porosity in void space much closer to unity, such as vesicles

or interpillow voids [Shearer, 1988]. The large Poisson's ratio we find here is therefore

diagnostic of a high population of thin cracks [Ludwig et al., in prep]. Nothing in the

seismic results gives any idea of the scale of the cracks. Ludwig et al. [in prep] assume

random cracks, consistent with the radial and tangential cracks of pillows, but there must

also be a contribution from fissures [Vera et al., 1990]. Since the fissures are oriented

predominantly in a rise parallel direction [Haymon et al., 1991; Wright, Haymon, and

Fornari, Crustal fissuring and its relationship to magmatic and hydrothermal processes on a

2nd-order ridge segment of the EPR (9012'-54'N), in prep] they are also consistent with

the 0-12% anisotropy observed in the surficial low-velocity layer. With time, alteration

processes would tend to infill all cracks, resulting in a lower Poisson's ratio. Indeed,

lower Poisson's ratios are observed for 6 Ma crust at Hole 504B (Poisson's ratios of 0.28-

0.40 [Moos et al., 1990]) and -15 Ma crust (Poisson's ratios of 0.33-0.34, [Spudich and

Orcutt, 1980]) in the Eastern Pacific.

An inversion for the attenuation structure across the EPR at 90 30'N [Wilcock et al.,

1992b] calculated an average Qp value in the uppermost crust of -35 off-axis, and -70 on-

axis; if the cross-axis variation is due to off-axis thickening of a low-Qp layer, then the Qp



in this layer must be -10-20 [Wilcock et al., 1992]. The results of our study also suggest

that a low Qp layer (Qp -25) that thickens away from the ASC provides the best fit to

seismic observations. Laboratory measurements of attenuation in oceanic basalts show a

positive correlation of attenuation with porosity and a negative correlation with

compressional wave velocity [Wepfer and Christensen, 1990], and because the young

basalts at the EPR are interpreted to have low velocities (<3 km/s) and high porosities (-26-

33% [Ludwig et al., in prep]) high attenuation would be expected.

We have interpreted the 5 km/s material as the top of the sheeted dike complex. Hole

504B is the only piece of oceanic crust where dike velocities at the scale of hundreds of

meters are unequivocally known, and at this location the estimated velocity at the top of the

sheeted dikes is -5.7-5.8 km/s (Figure 3.16) [Little and Stephen, 1985; Becker et al.,

1988]. Laboratory measured velocities on eight dike samples from Hole 504B are slightly

higher, 6.2-6.7 km/s [Christensen et al., 1989], but are consistent with the results of full-

waveform sonic logging [Moos et al., 1990]. The porosity of the dike core samples from

Hole 504B is very low, about 0.3% [Christensen et al., 1989], but in complete agreement

with electrical logs once corrections have been made to Archie's law [Pezard, 1990]. If we

accept the Poisson's ratio of 0.3 (Vp/Vs = 1.9) inferred from the full waveform logs at

Hole 504B [Moos et al., 1990], the seismic measurements at Site 504 would require a

large-scale porosity of about 2% [Ludwig et al., in prep]. (By chance, 2% porosity is what

would be inferred applying an uncorrected Archie's law to the electrical logs [Pezard,

1990]). If we believe the log measurements and their interpretation, we have to conclude

that at Site 504 there is large-scale porosity (fracturing) which influences the seismic

measurements but is not sampled at the scale of the logging. In reality, that 2% porosity

figure must be regarded as a maximum; with a slightly higher Poisson's ratio the porosity

could be as low as 1%, so the disagreement between seismic measurements and log results

is really quite small.



Using the same Poisson's ratio (0.3) which leads to an estimate of 2% porosity at the

top of the dikes at Site 504, Ludwig et al. [in prep] obtain a porosity of 5% for the top of

the dikes at the EPR rise crest. Again, this is a maximum porosity; if shear velocities were

a little lower (i.e. Poisson's ratio slightly higher) than what we assume, the porosity would

also be lower. We do not feel that the 3% difference in porosity between the EPR and Site

504 is adequate to invalidate our interpretation that the 5 km/s material represents the top of

the dikes, especially as that is a maximum difference. Site 504 and our EPR site are of

different ages, were formed at different spreading rates, and have undergone different

alteration histories. A slightly greater degree of fracturing at the EPR, or the same degree

of fracturing followed by subsequent crack sealing, could explain the difference. Better

constrained shear-wave velocities would go a long way to resolving these questions.

The on-bottom experiments give no constraints on Poisson's ratio or anisotropy in layer

2B, but they do suggest that the attenuation decreases from a Qp of ~25 in layer 2A to a Qp

of ~500 in layer 2B. The increase in Qp for the dikes is consistent with the lower porosities

[Ludwig et al., in prep] and higher velocities of this section.

Processes

Previously, we discussed two hypotheses which could explain the velocity model of

Figure 3.13. The first hypothesis is that the 2A/2B boundary is within the extrusive

section, and that layer 2A consists of high-porosity extrusives, overlying the lower-

porosity extrusives of layer 2B. Our preferred hypothesis is that seismic layer 2A on the

EPR represents the extrusive section and transition zone, and layer 2B represents the

sheeted dike complex. In the following section we will discuss the implications of each of

these hypotheses.

The primary support for the hypothesis that the shallow crust consists of a thin high-

porosity extrusive layer overlying a thicker layer of lower-porosity extrusives is from

geophysical logging of Hole 504B. The upper 100 m of basement at Hole 504B consists



of a fractured section of rubbly pillow basalts, breccia zones, and a few massive flows

[Anderson et al., 1982], with a bulk porosity of -12-14% [Becker et al., 1982]. This

high-porosity section is bounded at its base by a 14-m-thick massive flow [Pezard, 1990],

and is underlain by -475 m of extrusives with a bulk porosity of -7-10% [Becker et al.,

1982]. The high-porosity extrusive section is correlated with low-velocities of -4.2 km/s,

with velocities rapidly increasing to a mean of -5.2 km/s in the underlying lower-porosity

extrusives (Figure 3.16) [Becker et al., 1988]. The structure at Hole 504B is the basis for

several authors' interpretation that the surficial low-velocity layer at the EPR as a high-

porosity layer overlying lower-porosity extrusives [McClain et al., 1985; Harding et al.,

1989; Vera et al., 1990]. McClain et al. [1985] suggest that increased fracturing with

distance from the rise crest could form a high-porosity layer in the shallow crust that

thickens away from the rise axis. Toomey et al. [1990] disagreed with McClain et al.'s

[1985] interpretation, primarily because most faulting occurs outside of the narrow zone

where the thickening of the surficial low-velocity layer occurs [Macdonald, 1982;

Macdonald et al., 1984; Wilcock et al., 1992a]. An alternate explanation could be that the

high-porosity extrusives represent primarily pillow lavas, and the low-porosity extrusives,

primarily massive flows. Submersible observations suggest that the dominant

morphological flow types within and outside of the ASC are sheet flows and pillow flows,

respectively [Haymon et al., 1991; Fornari et al., 1992; Perfit et al., 1992; Haymon et al.,

1993]. The emplacement of a massive flow within the ASC would restrict the circulation

of seawater and allow high-temperature hydrothermal deposition [Christeson et al., 1992],

resulting in the sealing of thin cracks, a decrease in porosity, and an increase in seismic

velocity [Wilkens et al., 1991]. As the flow is transported off-axis, eruptions outside of

the ASC would emplace predominantly high-porosity pillow lavas on top of the flow,

resulting in a boundary from high-porosity extrusives to low-porosity extrusives that

thickens within 1-2 km of the ASC. Although we cannot disregard this hypothesis, we



prefer the alternate hypothesis, that the 2A/2B boundary at the EPR represents a change

from the extrusive section to the sheeted dike complex.

The primary implication of this model is that the depth to the top of the sheeted dikes

deepens from -150 m to -300 m within 1 km of the ASC (Figure 3.13). The rapid

subsidence of the sheeted dike layer at the rise axis has been predicted from ophiolite

studies [Cann, 1974; Dewey and Kidd, 1977; Kidd, 1977], and is the preferred

explanation for the crestal high velocity anomaly identified by Toomey et al. [1990] in this

region. Dewey and Kidd [1977] and Kidd [1977], based on ophiolite and submersible

observations, predicted that dike subsidence would occur primarily within 1-2 km of the

axis. This agrees remarkably well with the observations of this study.

In this interpretation, the rapid subsidence of the top of the sheeted dike complex is

accompanied by a thickening of both the extrusive section and transition zone within 1 km

of the rise axis. One mechanism that could contribute to the thickening of the extrusive

section is the outpouring of magma that overflows the ASC walls and travels laterally

[Lonsdale, 1977; Macdonald and Fox, 1988]. Along the EPR 9009'-54'N, Fornari et al.

[in prep], based on ARGO 100 kHz sonar backscatter data, observe several locations

where this process is apparent. Lava flows that erupt outside the ASC from fissures

throughout the crestal plateau could also contribute to the rapid off-axis thickening of the

extrusive layer. Recent submersible dives on five transects perpendicular to the rise axis in

the 9031 'N area confirm that a significant portion of the crestal plateau has been affected by

recent volcanism from eruptive vents located outside of the ASC [Fornari et al., 1992].

Additionally, Fornari et al. [in prep] and Haymon et al. [1993] report on observations at

several sites in the 9'30-5 1'N area where lava was transported from the ASC through

lateral tube conduits that emerge at the seafloor at distances of a few tens of meters to as

great as 100-200 m outside of the ASC. There is no control on how much each of these

three processes contributes to the thickening of the extrusive layer outside of the ASC.



We interpret that the transition zone, or what Francheteau et al. [1992] refer to as the

'mixed zone', also thickens off axis. Based on observations at 504B and Hess Deep, the

transition zone is composed of pillows, flows, dikes, and sills [Anderson et al., 1982;

Francheteau et al., 1992]. The most likely mechanism for the thickening of this layer is sill

emplacement. Beneath the ASC, the dikes penetrate within 100-200 m of the surface, and

thus melt transported by the dikes has a short vertical distance to travel to reach the

seafloor. Outside of the ASC, the dikes rapidly subside to a depth of -300-350 m beneath

the surface. Because of the greater vertical distance to travel, a significant portion of melt

might be emplaced as sills upon encountering the predominantly horizontal stratigraphy.

Additionally, a portion of the lava, that is transported laterally during the drainage process

creating the ASC, might also be emplaced as sills.

Another important implication of our interpretation is that half of the final thickness of

the extrusive and transition zone is emplaced within the narrow ASC. Submersible and

camera observations from within the ASC at both 9'30'N [Haymon et al., 1991; 1993;

Fornari et al., in prep] and 120 50'N [Hekinian et al., 1983; Ballard et al., 1984;

Choukroune et al., 1984; Gente et al., 1986] on the EPR report that the floor is covered

almost universally with fresh, unsedimented lava flows. These are predominantly sheet

flows, which are surmised to be more voluminous than eruptions that produce pillow flows

[Ballard et al., 1979], the dominant morphological flow type observed for the off-axis

eruptions in this area [Fornari et al., 1992; Perfit et al., 1992]. The ASC walls act as a

barrier to all but the most voluminous eruptions, constraining these flows to a narrow

emplacement region, and resulting in the emplacement of approximately half of the

extrusive layer within the ASC.

A cartoon summarizing the shallow crustal emplacement processes discussed above is

shown in Figure 3.18. The shallow crust is divided into three layers, consisting of the

extrusives, transition zone, and dikes. Approximately 150 m of extrusives plus transition

zone are emplaced within the narrow ASC, with both the extrusive section and the



transition zone doubling in thickness within - 1 km of the ASC. The depth to the top of the

dikes deepens to -300-350 m below the seafloor within 1 km of the ASC, and then remains

approximately at a constant distance below the seafloor. The thickening of the overlying

extrusive layer and transition zone may be accomplished by lavas which overflow the ASC

walls, lavas that are transported laterally from the ASC and either erupt at the surface or are

emplaced as sills, lavas that are emplaced as off-axis flows, and additional sill emplacement

from melt that does not reach the surface. The emplacement region is interpreted to be -2

km wide, centered about the ASC. This is similar in width to the 1-2 km wide

emplacement zone determined from a deep tow magnetic study of the EPR at 21 0N

[Macdonald et al., 1980], and slightly less than the 2-4 km wide zone determined from

MCS [Harding et al., 1993] and tomography studies [Toomey et al., 1990] along the EPR

at 90 30'N.

Assuming that the sheeted dikes penetrate close to the surface to deliver melt to the

seafloor at the rise axis and subsequently subside [Cann, 1974; Dewey and Kidd, 1977;

Kidd, 1977], a fundamental implication of this model is that the subsidence of the sheeted

dikes (and therefore the mechanism responsible for this subsidence) is more than double

for the crust at Hole 504B formed at an intermediate-spreading center (-800 m) than for the

fast-spreading EPR crust at 90 30'N (-300-350 m). The final extrusive section thickness is

determined by the width of lava emplacement processes (neovolcanic zone), the volume of

lava emplaced, and the amount of time a crustal section spends within the neovolcanic

zone. Sempere et al. [1987], based on a survey of polarity transition widths determined

from 3-D magnetic studies, argue that the neovolcanic zone width is narrow (1-4 km wide)

for both intermediate and fast-spreading centers. At intermediate spreading ridges, if we

assume a half-width of the neovolcanic zone of 1 km and a half-spreading rate of 3.7

cm/yr, then a 800 m thick extrusive section would require the emplacement of an -3 cm

thick lava layer per year. For the fast-spreading case, a half-width of the neovolcanic zone

of 1 km, a half-spreading rate of 5.5 cm/yr, and a 350 m thick extrusive section would



require the emplacement of an -2 cm thick lava layer per year. This suggests that the

volume per year of melt emplaced as extrusives at intermediate-spreading centers and fast-

spreading centers is comparable.

Summary of Conclusions

1. The seismic structure for zero-age crust at three locations along the fast-spreading

EPR, 9030'N, 9034'N, and 120 50'N is fundamentally the same, with a thin (<60 m)

surficial low-velocity (<2.5 km/s) layer, an -100-150 m transition zone with velocities

increasing by -2.5 km/s, and a layer with velocities of -5 km/s at a depth of- 130-190 m.

Within 1 km of the ASC both the surficial low-velocity layer and the transition zone

approximately double in thickness. The surficial low-velocity layer and transition zone

correspond to seismic layer 2A, and the -5 km/s material corresponds to the top of seismic

layer 2B. With this interpretation, there is significant structure within layer 2A.

2. Our preferred explanation for the shallow crustal structure is that seismic layer 2A

corresponds to the extrusive sequence and transition zone, and the 2A/2B boundary to the

top of the sheeted dike complex. According to this model, the shallow crustal architecture

is in place within 1 km of the rise axis. Primary implications of this model are that the

extrusive sequence at the fast-spreading EPR (-5.5 cm/yr) is thinner, and the seismic

velocities lower, than observed for the intermediate-spreading (-3.7 cmlyr) crust at DSDP

Hole 504B.

3. The extrusive sequence doubles in thickness over an across-axis distance of - 1 km,

due to lava that overflows the ASC walls, is transported laterally from the ASC through

lateral tube conduits, or is emplaced by eruptions that occur outside of the ASC.

4. The transition zone doubles in thickness over an across-axis distance of - 1 km. The

most probable cause of this thickening is sill emplacement outside of the ASC, either from

magma that does not reach the surface in an off-axis eruption, or magma that is transported

laterally during the drainage process creating the ASC.



5. A depth to the top of the sheeted dike complex of -300-350 m for the EPR vs. a

depth of -800 m for the crust at 504B suggests that dike subsidence at intermediate

spreading centers is more than double that at fast-spreading centers. Additionally, this

implies that the volume per year of magma emplaced as extrusives at intermediate spreading

centers is at least as great as that emplaced at fast-spreading centers.

6. The seafloor velocity for zero-age crust is -2.1-2.35 km/s, and increases to -2.4-

2.85 km/s for 10,000-120,000 year old crust. These low seafloor velocities are compatible

with a porosity of -27% for zero-age crust, decreasing to -20% off-axis due to crack

infilling by alteration and drainback processes.

7. Amplitude modeling requires a seafloor Poisson's ratio of at least 0.43, with a

preferred value of 0.48. This is consistent with a highly fractured material with a largely

high-aspect ratio crack population, most likely due to massive fissuring as observed in

submersible and side-scan sonar data.

8. Our preferred model includes high attenuation within the extrusives and transition

zone (Qp-25), and substantially less attenuation within the sheeted dike complex (Qp-500).

The high attenuation in the shallowmost crust is consistent with the interpreted high

porosities and highly fractured nature of this material.
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Table 3.1: Final Velocity-Depth Models

Depth VPVs V gp
(m) (kms) (km/s) (s-1)

Line OS
0-32 2.33-2.38 0.47-0.48 25 1.6

32-72 2.38-4.18 0.48-2.21 25 45
72-82 4.18-4.19 2.21-2.26 25 1.0

82-129 4.19-5.00 2.26-2.67 25 20
129-209 5.00-5.21 2.67-2.78 500 2.6

Line ON
0-55 2.11-2.40 0.42-0.48 25 5.3

55-137 2.40-4.90 0.48-2.65 25 30
137-177 4.90-4.97 2.65-2.68 25 1.8
177-192 4.97-5.17 2.68-2.79 25 10
192-322 5.17-5.21 2.79-2.81 500 0.3

Line OF
0-42 2.25-2.28 0.45-0.46 25 0.7

42-122 2.28-5.14 0.46-2.78 25 36
122-132 5.14-5.16 2.78-2.79 25 2
132-162 5.16-5.29 2.79-2.86 25 4.3
162-222 5.29-5.37 2.86-2.90 500 1.3

Line 120W (a)
0-107 2.63-2.63 0.53-0.53 25 0

107-157 2.63-4.18 0.53-2.26 25 31
157-287 4.18-4.50 2.26-2.43 25 2.5
287-307 4.50-4.90 2.43-2.65 25 20
307-357 4.90-5.02 2.65-2.71 500 2.4

Line 120W (b)
I Y -- I -

0-137
137-187
187-317
317-337
337-387

2.63-3.35
3.35-4.18
4.18-4.50
4.50-4.90
4.90-5.02

0.53-0.70
0.70-2.26
2.26-2.43
2.43-2.65
2.65-2.71

25
25
25
25

500

5.3
17

2.5
20
2.4



Table 3.1: Final Velocity-Depth Models (cont.)

Depth VP Vs Qp I gp
(m) (km/s) (km/s) (s-1)

Line 20W
0-112 2.85-2.85 0.57-0.57 25 0

112-162 2.85-4.30 0.57-2.32 25 29
162-367 4.30-4.60 2.32-2.48 25 1.5
367-387 4.60-5.00 2.48-2.70 25 20
387-437 5.00-5.10 2.70-2.75 500 2

Line 10W
0-87 2.43-2.43 0.49-0.49 25 0

87-137 2.43-4.25 0.49-2.30 25 36
137-217 4.25-4.45 2.30-2.40 25 2.5
217-257 4.45-5.30 2.40-2.86 25 21
257-307 5.30-5.40 2.86-2.90 500 2

Line 20E
0-102 2.46-2.46 0.49-0.49 25 0

102-152 2.46-4.30 0.49-2.32 25 37
152-282 4.30-4.60 2.32-2.48 25 2.3
282-302 4.60-5.20 2.48-2.81 25 30
302-352 5.20-5.30 2.81-2.86 500 2

Line 70W
0-6 ..2.6- . I .5 . 54. m 2-- m

25 10-65 1 2.68-2.681 0.54-0.54 1
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Figure 3.1. Sea Beam bathymetry [Wilcock et al., 1993] contoured at 25 meter intervals

for a section of the EPR located between the Siqueiros and Clipperton transform faults.

Shiptracks for the on-bottom seismic refraction experiments are indicated with the heavy

black lines; due to the undithered GPS during the cruise, the ship could be accurately

navigated within tens of meters. Each shiptrack is labeled with the approximate age of the

crust in kiloyears, based on a half spreading rate of 5.5 cm/yr [Klitgord and Mammerickx,

1982], with an 'E' or 'W' appended to indicate relationship to the rise axis, and an 'S' or

'N' appended to the southern and northern zero-age lines, respectively. An ocean bottom

hydrophone (OBH) was located at the southern end of each ridge parallel line, with an

OBH at both the eastern and western ends of the Line 0-20R. The inset map shows the

regional setting, with triangles indicating the locations of the experiments conducted at

90 30'N and 12'50'N.
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Figure 3.2. Expanded location map showing the shiptracks for the experiments located

within and close to the ASC. The contour interval is 10 m. The ASC, as mapped by

Fornari et al. [in prep], is shown in gray. The triangles indicate the positions of the OBHs

used in each experiment. The average width of the ASC is 130 m where Line OS was

located, and 275 m where Line ON was located.
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Figure 3.3. Detailed bathymetric map (modified from Gente et al., 1986) showing the

location of Line OF. The triangle indicates the position of the OBH used in the experiment,

and the gray line marks the location of the shiptrack. The contour interval is 5 m. Arrows

indicate the approximate location of the ASC walls, which are -250 m wide. We shifted

the bathymetric map of Gente et al. [1986] 80 m to the east based on a GPS navigated Sea

Beam swath collected in this region during our cruise.



Figure 3.4. Photograph of NOBEL upon recovery. Each of the 47 firing barrels was

loaded with either 2.3 or 4.6 kg of PETN, and is attached to two detonators. The first
detonator is used to release the charge from the barrel, and the second to fire the charge

upon confirmation of release.
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Figure 3.5. Cartoon of a typical on-bottom refraction experiment. (a) NOBEL is lowered

to the seafloor. Attached to NOBEL by 30 m of polypropelene is the OBH. (b) When

NOBEL is approximately 130 m above the seafloor (as determined from the 12 kHz pinger

record from a pinger attached to the NOBEL frame), the OBH is released. (c) The ship

starts to move along the shooting track at -0.5 knots. An acoustic system (represented by

the dashed lines) is used to determine the range between NOBEL and the OBH; when

NOBEL is at a safe distance from the OBH (at least 100 m) charges are released and fired at

a steady interval. (d) When all charges are fired, NOBEL and the OBH are recovered to the

ship.
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Figure 3.6. (a) Record section (corrected for shot height above seafloor) of the 2.3 kg (5

lb) charges detonated to the OBH for Line OS. The maximum shot height was -11 m

above the seafloor. For display purposes it was necessary to multiply the amplitudes of the

seismograms by a factor of R2.4, where R is the distance of the shot from the receiver. The

seismograms have been truncated at the onset of the direct water wave, and seismograms at

a range greater than 500 m have been low-pass filtered with a cosine-squared filter, with an

upper taper interval of 130-150 Hz. The seismograms are plotted with a reduction velocity

of 6.0 km/s, with compressional arrivals breaking left. The first breaks are shown with a

plus (+) sign, and the solid lines indicate the location of multiples discussed in the text. (b)

Record section of the synthetic seismograms for Line OS. The amplitudes have been range

scaled as for Figure 3.6a, and the reduction velocity is 6.0 km/s.
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Figure 3.7. Compressional velocity/depth models for the rise-parallel on-bottom seismic

refraction experiments. For Line 70W, only the seafloor velocity could be constrained due

to the poor signal-to-noise ratio associated with the first arrival travel times.
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Figure 3.8. First arrival amplitudes vs. range for Line OS. The observed data are

indicated by the solid line. The vertical scale is logarithmic. Amplitudes were measured as

the absolute value of the first peak of the arrival, and were normalized by the maximum

value. Amplitudes at ranges >1.3 km are not shown due to the low signal to noise ratio.

Notice the decrease in slope at -0.5-0.6 km range. Also plotted are amplitudes from

synthetic seismogram data for three different models, with Qp=25 above a depth of 130 m,

and Qp=500 (dashed line), 100 (dash-dot line), and 25 (dotted line) below a depth of 130

.
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and Qp=5O0 (dashed line), 100 (dash-dot line), and 25 (dotted line) below a depth of 130

m.
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Figure 3.9. (a) As for Figure 3.6a, for 2.3 kg (5 lb) charges detonated to the OBH for

Line ON. The maximum shot height was - 13 m above the seafloor. (b) As for Figure

3.6b, for the synthetic seismograms of Line ON.
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Figure 3.10. (a) As for Figure 3.6a, for 2.3 kg (5 lb) charges detonated to the OBH for

Line 120W. For display purposes, it was necessary to multiply the amplitudes of the

seismograms by a factor of R2-6 , where R is the distance of the shot from the receiver. The

amplitudes of the first two seismograms exceed the dynamic range of the instrument, and

have been clipped for plotting purposes. Seismograms at a range greater than 400 m have

been low-pass filtered with a cosine-squared filter, with an upper taper interval of 80-100

Hz. The solid lines indicate secondary energy discussed in the text. The maximum shot

height was -30 m above the seafloor. (b) As for Figure 3.6b, for the synthetic

seismograms for Line 120W. The velocity/depth model includes a zero gradient in the

surficial low-velocity zone. The solid lines indicate the secondary energy noted in Figure

3.10 Oa, and the dashed line indicates secondary energy discussed in the text. (c) As for

Figure 3.6c, for a velocity/depth model that includes a gradient of 5.3 s-1 in the surficial

low-velocity zone.
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Figure 3.11. As for Figure 3.6a, for 2.3 kg (5 lb) charges detonated to the OBH for Line

20W. For display purposes, it was necessary to multiply the amplitudes of the

seismograms by a factor of R2.6, where R is the distance of the shot from the receiver.

Seismograms at a range greater than 500 m have been low-pass filtered with a cosine-

squared filter, with an upper taper interval of 80-100 Hz. The maximum shot height was

-14 m above the seafloor.
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Figure 3.12. As for Figure 3.6a, for charges detonated to the OBHs for Line 0-20R. For

display purposes, it was necessary to multiply the amplitudes of the seismograms by a

factor of R3 .0, where R is the distance of the shot from the receiver. (a) Seismograms

recorded by the eastern OBH, located within the ASC (Figure 3.2). The two seismograms

at a range <0.2 km, and the four seismograms at a range >1.1 km are from 2.3 kg (5 lb.)

charges, and the remaining seismograms are from 4.6 kg (10 lb.) charges. Seismograms at

a range >0.31 km have been low-pass filtered with a cosine-squared filter, with an upper

taper interval of 80-100 Hz. The dashed lines indicate secondary arrivals discussed in the

text. b) Seismograms recorded by the western OBH, located -1.2 km west of the ASC

(Figure 3.2). The four seismograms at a range <0.15 km, and the two seismograms at a

range >1.05 km are from 2.3 kg (5 lb.) charges, and the remaining seismograms are from

4.6 kg (10 lb.) charges. Seismograms at a range >0.4 km have been low-pass filtered with

a cosine-squared filter, with an upper taper interval of 80-100 Hz. The dashed line

indicates secondary arrivals discussed in the text.
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Figure 3.13. Two-dimensional velocity/depth model for the EPR at 90 30'N. Distance is

increasing away from the ASC, and the seafloor is dipping - 1o from east to west. The

model in the 0-1.2 km range is based on Line 0-20R. Indicated on the model are the

velocities at the top and bottom of each layer, in units of km/s. The seafloor velocities in

parantheses are the values obtained for Line OS (at 0 km) and Line 20W (at 1.2 km). The

vertical exaggeration is 4:1. The data from Line 120W suggests that there is no resolvable

change in structure from 1.2-6 km, and the data from Line 20E suggests that this model is

symmetrical about the rise axis. The Q values and Poisson's ratio at the seafloor are from

reflectivity modeling of Line OS.
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Figure 3.14. (a) First arrival travel times (solid circles) with error bars for the eastern

receiver on Line 0-20R. Solid lines show the calculated travel time curves from two-

dimensional ray-tracing for the velocity/depth model of Figure 3.13. (b) As for Figure

3.14a, but for the western receiver on Line 0-20R.
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Figure 3.15. Apparent phase velocities for arrivals turning in the surficial low-velocity

layer for Lines OS, 20W, and 0-20R. Phase velocities were computed by a least squares

linear fit through the first arrival travel times (corrected for topography), with the linear fit

constrained to pass through the origin (0 km, 0 km/s). The error bars represent two

standard deviations. The phase velocities for the arrivals observed for the cross-axis line

(Line 0-20R) are consistently slower than observed by receivers located in approximately

the same locations for rise parallel lines (Line OS and Line 20W).
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Figure 3.16. Column 1) Stratigraphy observed at Hess Deep as reported by

Francheteau et al. [1992]. Column 2) Seismic structure of the EPR at 90 30'N. Structure in

the 0-310 m depth interval is from the western portion of Line 0-20R, and in the 310-1000

m depth interval from ESP 5 of Vera et al. [1990]. The dashed and solid lines are the

interpreted boundaries from extrusives to transition zone, and transition zone to sheeted

dikes, respectively. Velocities at 0, 150, 310, and 1000 m are indicated to the right of the

column. The Layer 2A/2B boundary is from the definition of Houtz and Ewing [1976] as

discussed in the text; there is no obvious 2B/2C boundary. Column 3) Stratigraphy

observed from drilling at DSDP Hole 504B, as reported by Anderson et al. [1982].

Column 4) Seismic structure at DSDP Hole 504B from the sonic log of Leg 111 (solid line)

[Becker et al., 1988] and an oblique seismic experiment (dashed line) [Little and Stephen,

1985]. The sonic log has been averaged over 20 m windows before plotting. Velocities

from the sonic log at 100, 570, 780, and 1000 m are indicated to the right of the column.

The 2A/2B and 2B/2C boundaries (solid lines) are defined primarily from resistivity

logging [e.g. Figure 5 of Becker et al., 1982]. The dash-dot lines indicate the upper and

lower boundaries of the transition zone as shown in Column 3. The heavy solid lines

between columns indicate the favored interpretation of this paper. Note that with the

favored interpretation the sheeted dike complex is more than twice as deep for Columns 3

and 4 vs. Columns 1 and 2.
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Figure 3.17. Velocity/depth profiles of Lines OS and 20W from this study, and from the

expanding spread profiles solutions of Vera et al. [1990] located at -zero-age (their ESP5)

and -180 kyr (their ESP1). Depth ranges shown are a) 0-500 m and b) 0-2000 m. The

dotted line in Figure 3.16b marks an isovelocity of 6 km/s.
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Figure 3.18. Cartoon depicting the emplacement process for lavas and dikes at the fast-

spreading EPR. The cartoon shows a snapshot in time, with the shaded areas showing the

most recent lava flows and sills. The extrusive layer doubles in thickness within 1 km of

the ASC due to lava that overflows the walls of the ASC, lava flows which are emplaced

outside of the ASC, and lava that travels laterally from the ASC through conduits. The

transition zone also doubles in thickness within 1 km of the rise axis, due to off-axis sill

emplacement. The shallow structure is approximately symmetrical about the rise axis, and

exhibits only minor thickness variations at distances greater than 1 km from the ASC. The

dashed lines show the 4.2 and 5.0 km/s isovelocity contours from Figure 3.13, which are

interpreted to be the upper and lower boundaries of the transition zone (equivalent to the

mixed zone described by Francheteau et al. [1992] at Hess Deep).
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CHAPTER 4

THE SHALLOW ATTENUATION STRUCTURE OF THE FAST-

SPREADING EAST PACIFIC RISE NEAR 9030'N

Abstract. Seven on-bottom seismic refraction experiments are analyzed in an effort to

resolve the shallow compressional wave attenuation structure of young crust at the fast-

spreading East Pacific Rise. All models depict a low-Q layer 2A (apparent Q=1 1-22), and

several models resolve a layer 2B with a much higher Q (apparent Q > 70). This structure

is consistent with a layer 2A composed of extrusives overlying a layer 2B composed of

sheeted dikes.

Introduction

The fast-spreading East Pacific Rise (EPR) at latitude 90 30'N has been the site of several

seismic experiments which have resolved substantial velocity variations in the upper crust,

most notably the lateral thickening of seismic layer 2A within 1-2 km of the rise axis

[Toomey et al., 1990; Christeson et al., 1992; Harding et al., 1993; Vera and Diebold,

1993]. In addition, Wilcock et al. [1992] estimate high attenuation (average Q=35-70) in

the upper 1 km; however, the vertical resolution of these conventional measurements is

poor in the shallow crust due to the lack of energy turning in this region. Jacobson and

Lewis [1990] have measured Q values for layer 2A directly. Their values of 20-50 for 0.4

my old oceanic crust formed at the intermediate-spreading Juan de Fuca Ridge are similar to

the average values for the upper 1 km measured by Wilcock et al. [1992].

This letter presents new attenuation measurements from data collected during seven

seismic refraction experiments over young crust at the EPR (Figure 4.1) carried out with

both the source and the receiver on the ocean floor. The purpose of this study is to
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ascertain if the 2A/2B boundary is an attenuation boundary as well as a velocity boundary

as suggested by previous studies [Wilcock et al., 1992; Christeson, Purdy, and Fryer,

'Seismic constraints on shallow crustal emplacement processes at the fast-spreading East

Pacific Rise', submitted to JGR, 1993; hereafter referred to as Christeson et al.,

submitted].

Method

The quality factor Q is related to PE, the power spectrum resulting from propagation

through the earth by

v dS = t* - dln[PE(f)] (1)

VQ 2t df

where V is the seismic velocity, f is the frequency, and s is the wavepath. PE is related to

P, the power spectrum of the recorded waveform by
_ P(f)

PE(f) = P(f) (2)
Ps(f) PI(f)

where Ps and PI are the power spectra of the source and the instrument response,

respectively.

For the seven on-bottom refraction lines, P was calculated for each shot from a 0.06 s

time window using the multiple-window spectral analysis technique [Thomson, 1982; Park

et al., 1987] with 2-t prolate tapers. The length of the time window was chosen to be long

enough to include the waveform of the first arrival, while short enough to preclude

secondary energy generated by multiples (as identified by Christeson et al., submitted).

The source signature of NOBEL (the source for the on-bottom seismic refraction

experiments), and thus the source-receiver correction, is poorly known. However, the

attenuation in the water column is extremely low (Q>100,000 for 100 Hz energy [Urick,

1967]), and the power spectrum of the water wave arrival can be used as a substitute for

the source-receiver correction if the assumption is made that this arrival has not interacted

with the earth. We calculated the spectrum from a 0.06 s time window for all water wave
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arrivals that did not exceed the dynamic range of the recording instrument, normalized each

spectrum by the maximum power, and determined the average water wave spectrum. This

spectrum was then used to correct for the source and receiver characteristics according to

Eq. (2), and a t* value was determined for each shot using a least-squares fit to Eq. (1).

Figure 4.2 shows a sample t* estimation. The lower frequency limit for all shots was 32

Hz., and the upper limit was determined by the signal to noise ratio for each shot, but was

a minimum of 130 Hz. There was no evidence for frequency dependent attenuation,

although the measurements are not particularly sensitive given the spectral resolution of

approximately ±33 Hz. The addition of the source-receiver correction changed the mean

correlation coefficient for the natural log of the power spectrum from -0.87 to -0.97, which

suggests the use of the water wave as a source-receiver correction is a satisfactory

approximation.

For the three zero-age lines (Lines OF, ON, and OS), the t* values were inverted for a

layered attenuation structure with a ln(Q -1) parameterization of Eq. (1) using an inversion

technique described in detail by Wilcock [1992] and Wilcock et al. [1992]. One-

dimensional ray-tracing using the velocity models of Christeson et al. [submitted] was used

to calculate the wave paths for the first arrivals. Inversions for each line were computed for

a 1-layer constant-Q model and a 2-layer Q model, with the boundary for the 2-layer model

placed at the 2A/2B boundary of Christeson et al. [submitted]. For Lines 20W, 120W, and

20E only 1-layer constant-Q models were solved for, as no t* values were obtained for

wave paths that turned within layer 2B due to poor spectral signal to noise ratios. For the

rise-perpendicular on-bottom refraction line (Line 0-20R) the t* data were inverted for a

two-dimensional attenuation structure.

Results

Estimates of t* are plotted in Figure 4.3a against shot range for one of the three zero-age

lines (Line ON). The five t* estimates at the shortest ranges are for raypaths which turn
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within seismic layer 2A, with the remaining t* estimates for raypaths that turn within

seismic layer 2B (Figure 4.3b). A 1-layer constant-Q model predicts an increase in t*

values with range (dash-dot line in Figure 4.3a) that is not observed. A 2-layer attenuation

model, with Q increasing from -13-15 in layer 2A to >120 in layer 2B (Figure 4.3b; Table

4.1) matches the data well (Figure 4.3a), with the low attenuation in layer 2B resulting in t*

values that are approximately independent of range for raypaths which turn in this layer.

An F-test shows that the decrease in variance between the 2-layer attenuation model and the

constant attenuation model is significant at the 99% confidence level. Similar models are

found for the two other on-axis lines (Table 4.1). Typical t* estimates for an off-axis line

(Line 20W) are plotted against range in Figure 4.4a. In contrast to the on-axis lines,

raypaths for the off-axis t* estimates turn entirely within layer 2A (Figure 4.4b). Constant-

Q models, with Q=12-22, provided good fits to the t* estimates (Figure 4.4a; Table 4.1).

The t* estimates for the rise-perpendicular line (Line 0-20R) are shown in Figures 4.5a

and 4.5b. Unlike the rise-parallel lines, the velocity structure for this reversed cross-axis

line is clearly two-dimensional [Christeson et al., submitted], with layer 2A thickening

from -150 m within the axial summit caldera (approximately zero-age crust) to -330 m 1.2

km to the west. An inversion for a 2-layer Q model, with the upper layer thickening away

from the rise axis, indicates that Q increases from 14-16 in layer 2A to >50 in layer 2B,

similar to the results of the rise-parallel lines (model 1 in Table 4.1). Because this line had

two receivers and close shot spacing, we performed two additional inversions with

different parametrizations. A model (Figure 4.5c and model 2 in Table 4.1) that allowed

Q- 1 to vary linearly in layer 2A between the two receivers (at x=0 km and x=1.2 km)

provided a better fit to the data at the 99% confidence level than the model without lateral

variation, with Q in layer 2A decreasing from 18-23 at x=0 km (zero-age crust) to 10-12 at

x=1.2 km (-20,000 year old crust). A third model that allowed further lateral variation in

Q with the addition of a node at x=0.6 km provided a better fit to the data at the 99%
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confidence level, with Q in layer 2A varying from -7-47 over the 1.2 km line (model 3 in

Table 4.1).

Table 4.1: Model Values

Layer 2A
Line thickness Q in Layer 2A t Q in Layer 2B

Line OF 160 m 14-16 (15) >115

Line ON 190 m 13-15 (14) >120

Line OS 130 m 16-19 (17) >70

Line 20W 390 m 12-16 (14)

Line 120W 310 m 11-16 (13)

Line 20E 300 m 18-22 (20)

Line 0-20R 150 m [0] § 14-16 (15) >50
(1) 330 m [1.2]

Line 0-20R 150 m [0] § 18-23 (20) [0] § >70
(2) 330 m [1.2] 10-12 (11) [1.2]

Line 0-20R 150 m [0] § 10-14 (12) [0] § >25
(3) 250 m [0.6] >24 (47) [0.6]

330 m [1.2] 6-8 (7) [1.2]

tRange of Q values to 95% certainty. Number in parantheses is the best-
fitting Q value.

tMinimum Q value to 95% certainty (maximum value not resolved by
inversion).

§Indicated in brackets is the node location (in km) for this thickness or Q
value. Range is measured from the eastern receiver, which is located on
the rise axis. Q-1 values are linearly interpolated between the nodes.

Discussion and Conclusions

The final attenuation models for all lines (Table 4.1) include a highly-attenuating layer

2A (Q=1 1-22 for the 1-D models). Wilcock et al. [1992] measured an average Q value in

the uppermost crust of -35 off-axis, and -70 on-axis; if the cross-axis variation is due to

off-axis thickening of a highly-attenuating layer 2A, then the Q in this layer must be ~ 10-

20. Our layer 2A Q values are consistent with the estimates of Wilcock et al. [1992], and
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are slightly lower than the measurements of Jacobson and Lewis [1990] (Q=20-50).

Inversions for our lines which included raypaths turning within layer 2B suggest that the

2A/2B transition is an attenuation boundary as well as a velocity boundary, with Q values

for layer 2B (Q>70 for the 1-D models) significantly higher than those measured for layer

2A.

Toksiz et al. [1987] suggest that Coulomb friction, fluid flow, and scattering are the

primary sources of seismic attenuation in continental rocks. Coulomb friction is caused by

the sliding of crack surfaces and grain boundaries during passage of a seismic wave

[Walsh, 1966]. Toksdz et al. [1987] argue that fluid flow is a principal source of

attenuation only at frequencies near 1 Hz, below the frequency range of this study.

Attenuation due to scattering is important for ka values between 1-2 [Frankel and Clayton,

1986], where k is the seismic wave number, and a is the heterogeneity length scale; for the

frequency range and velocities of this study, ka will fall between 1-2 for velocity

heterogeneities on the length scale of -5-100 m.

From submersible observations and camera tows, we know that the shallow EPR crust

is composed primarily of sheet flows, pillow lavas, and rubble layers [Choukroune et al.,

1984; Gente et al., 1986; Haymon et al., 1991]. Scattering will be an important source of

attenuation in the upper crust, as variability in lithology may form velocity heterogeneities

on a length scale of 5-100 m [Wilkens et al., 1991]. Cooling and contraction forms cracks

in both sheet flows and pillow lavas, and thus Coulomb friction could also be a principal

cause of seismic dissipation. Therefore the low Q values for layer 2A are not unexpected.

One hypothesis for the nature of the 2A/2B boundary is that it is a lithologic boundary

between the extrusive sequence and the sheeted dikes [Herron, 1982; Christeson et al.,

1992; Harding et al., 1993]. Based on ophiolite observations (e.g. [Pallister, 1981; Nehlig

and Juteau, 1988]), the sheeted dike complex is structurally homogeneous as compared to

the overlying extrusive sequence, and therefore we predict a decrease in attenuation due to

scattering across this boundary. In addition, crack density (and therefore attenuation due to
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Coulomb friction) decreases from the extrusive sequence to the dike unit [Nehlig and

Juteau, 1988]. Thus, a model of extrusives overlying sheeted dikes predicts an increase in

Q across the 2A/2B boundary, consistent with the results in Table 4.1. Rohr et al. [1988]

argue that the 2A/2B boundary is a metamorphic front within the extrusive section

generated by secondary mineralization. Laboratory measurements of basaltic rocks indicate

that attenuation increases with the volume of secondary minerals present [Wepfer and

Christensen, 1990]. Although it is not certain if the laboratory results are applicable on the

larger scale of seismic wavelengths, they do suggest that a 2A/2B boundary formed by a

metamorphic front should be associated with an increase in attenuation for layer 2B,

inconsistent with the results in Table 4.1. Within the resolution of our inversions, there is

no evidence for a systematic change in attenuation for layer 2A with distance from the rise

axis, although rapid lateral variability in attenuation is indicated by the models for Line 0-

20R (Table 4.1).

In summary, the attenuation structure for young oceanic crust consists of a highly

attenuating layer 2A (Q=1 1-22) overlying a layer 2B with a much higher Q (Q>70). This

structure is consistent with a layer 2A composed of extrusives and a layer 2B consisting of

sheeted dikes.
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Figure 4.1. Sea Beam bathymetry [Wilcock et al., 1993] contoured at 25 meter intervals

for a section of the East Pacific Rise located between the Siqueiros and Clipperton

transform faults. Shiptracks for the on-bottom seismic refraction experiments are indicated

with the heavy black lines. Each shiptrack is labelled with the approximate age of the crust

in kiloyears, based on a half spreading rate of 5.5 cm/yr [Klitgord and Mammerickx,

1982]. An ocean bottom hydrophone (OBH) was located at the southern end of each ridge

parallel line, with an OBH at both the eastern and western ends of the Line 0-20R. An

additional refraction line (Line OF) was located over zero-age crust at 12°50'N. The inset

map shows the regional setting, with triangles indicating the locations of the experiments

conducted at 90 30'N and 120 50'N.
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Figure 4.2. Sample t* estimation. a) Time series used for calculation. The dashed lines

indicate the 0.06 sec time window used for the power calculation, with the first dashed line

at the onset of the refracted arrival. b) The power spectrum obtained for the waveform

(solid) and noise (dotted). The noise spectrum was calculated for a 0.06 sec time window

located entirely before the onset of the refracted arrival. The dashed lines indicate the

frequency interval used for this t* estimation. c) Source-receiver correction obtained from

the average water-wave spectrum. The dashed lines indicate the frequency interval used for

the t* estimation. d) Natural log of the waveform power (corrected for the source-receiver

correction) vs. frequency (solid line). The dashed line shows the least squares straight line

fit used to obtain the t* estimate.
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Figure 4.3. Line ON. (a) t* vs. shot range for the data (circles with 1a error bars) and

calculated for the preferred two-layer attenuation model (solid line). The calculated t*

values for the best-fitting constant-Q model is shown by the dash-dot line. The dashed

lines indicate the t* values calculated for the error bounds on the preferred attenuation

model. Note that the t* values are to first-order constant vs. range. (b) Raypaths

calculated from the velocity model of Christeson et al. [submitted] for the t* values in

Figure 4.3a. Also indicated are the modeled Q values for layers 2A and 2B.
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Figure 4.4. Line 20W. (a) t* vs. shot range for the data (circles with 1l error bars) and

calculated for the best-fitting constant-Q model (solid line). The dashed lines indicate the t*

values calculated for the error bounds on the attenuation model. (b) Raypaths calculated

from the velocity model of Christeson et al. [submitted] for the t* values in Figure 4.3a.

Also indicated are the 2A/2B boundary and the modeled Q value for layer 2A.
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Figure 4.5. Line 0-20R. (a) t* vs. shot range for the data (circles with la error.bars)

recorded by the eastern receiver and for the preferred attenuation model (solid line). Range

is measured from the eastern receiver, which is located on the rise axis. Dashed lines

indicate the t* values calculated for the error bounds on the preferred attenuation model.

(b) As for Figure 4.5a, except for the western receiver which is located -1.2 km off-axis.

(c) One possible attenuation model for Line 0-20R. The model consists of two layers, with

the boundary at the seismic 2A/2B boundary. The zero range is located at the eastern

receiver on the rise axis. Q-1 in layer 2A was allowed to vary linearly between x=0 and

x= 1.2. Q in layer 2A decreases from - 18-23 for the zero-age crust at x=0 to ~ 10-12 for the

-20,000 year old crust located ~ 1.2 km to the west. Layer 2B was constrained to have a

constant attenuation; the best-fitting value was a Q >70. Also plotted are the raypaths from

the velocity model of Christeson et al. [submitted].
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CHAPTER 5

SEISMIC TECHNIQUES AND RESOLUTION IN THE SHALLOW CRUST

Introduction

On-bottom seismic refraction measurements provide high-resolution determinations of

shallow crustal velocities, but over only a limited area. In contrast, multi-channel seismic

(MCS) profiles are ideal for mapping regional variability in structure, but require

knowledge of crustal velocities to be properly interpreted. Harding et al. [1993]

reprocessed five cross-axis MCS lines in the 90 30'N region of the EPR (Figure 1.2), in

order to image lateral changes in depth to a shallow event, termed the layer 2A reflection.

The authors argue that if layer 2A consists of a surficial low-velocity layer overlying a

high-gradient region, then the shallow event is formed by refracted energy that has turned

in the steep gradient at the base of layer 2A, and corresponds in depth to the layer 2A/2B

boundary. On four of the cross-axis MCS lines, the depth to the reflector is a minimum at

the axial summit caldera, and deepens substantially within 1-2 km of the axis. No further

systematic increase in depth is observed. These results are similar to those obtained from

modeling the on-bottom refraction data, except that the average depth to the reflector

outside of the neovolcanic zone is 440-560 m [Harding et al., 1993], significantly greater

than the 300-390 m layer 2A thickness determined from the NOBEL experiments (Table

3.1). The depth to a shallow event imaged in the one cross-axis wide-angle profile (WAP)

shot in the region is 200-300 m [Vera and Diebold, 1993], which is substantially less than

the 440-560 m depth from MCS data, and is slightly less than the 300-390 m depth from

the NOBEL experiments. Either the shallow event in the MCS profiles is imaged 100-200

m deeper than the layer 2A/2B boundary, perhaps because layer 2A structure is more

complex than the simple structure assumed by the authors, or layer 2A is anomalously thin
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at the locations of the WAP and on-bottom seismic refraction experiments. The distinction

between these two hypotheses is important, because the layer 2A/2B boundary has been

interpreted to mark the top of the sheeted dike complex, and changes in layer 2A thickness

provide valuable information about temporal and spatial variability of volcanic emplacement

processes.

In this paper, we predict quantitatively MCS and wide-angle experiments over two

plausible velocity models. Layer 2A in the first model (which we will refer to as the

'gradient' model) consists of a surficial low-velocity layer overlying a steep gradient,

similar to the velocity structure assumed by Harding et al. [1993] in their interpretation of

reprocessed MCS data. The structure of layer 2A in the second model (which we will refer

to as the 'step' model) is more complex, and is based on the high-resolution velocity

models constructed from the on-bottom refraction experiments. We conclude that the

accuracy of correlating the shallow event observed in MCS and WAP data with the layer

2A/2B boundary is strongly dependent on the structure within layer 2A, and does not

depend significantly on the different source-receiver geometries of the MCS and WAP

techniques. In order to obtain independent estimates of layer 2A thickness, we also

analyze conventional airgun refraction data from the 90 30'N region. These results suggest

that the differences in depth to the shallow reflector imaged in the MCS and WAP data are

not due to structure within layer 2A, but represent true variability in layer 2A thickness of

several hundred meters over distances of less than 10 km.

Reflectivity Modeling

Plotted in Figure 5.1 are velocity profiles of the gradient and step models chosen as

contrasting representations of typical off-axis crust. The step model, with a layer 2A

thickness of 310 m, is taken from Figure 3.13 at a range of 2 km. To create the gradient

model, we kept the thickness of the surficial low-velocity layer identical to that of the step

model, and simplified the underlying structure to produce velocity gradients similar to
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those assumed by Harding et al. [1993]. Synthetic seismograms were calculated from the

two models with the reflectivity technique [Fuchs and Miller, 1971], using the code

described in detail in Mallick and Frazer [1987]. We used a Poisson's ratio of 0.48 and a

Qp of 25 in layer 2A, and a Poisson's ratio of 0.3 and a Qp of 500 in layer 2B. Qs was set

to 0.5Qp, and densities were computed from the relationship for basalts of Christensen and

Shaw [1970], p = 1.85 + 0.165Vp. The source-time function was derived from a near-

offset stack of the along-axis MCS data described in Kent et al. [1990]. A water depth of

2800 m was used, with shots and receivers located at the sea surface.

The synthetic seismograms for the gradient model are plotted in Figure 5.2a. Travel

time curves calculated from ray-tracing predict a triplication approximately 0.1 sec behind

the water wave at a range of -2.5 km (Figure 5.2b), formed by the sharp change in

velocity gradient at the base of layer 2A (Figure 5.1). This caustic is clearly observed in

the synthetic data, with large amplitudes in the range window 2.5-4.0 km associated with

energy turning within the steep gradient at the base of layer 2A. The low amplitude event

emerging from the water wave arrival at -3.5 km is energy refracted through layer 2B. A

second triplication is apparent in the synthetic data at a range of 3.5-5.0 km. Ray-tracing

suggests that this event is a multiple of the first triplication, with energy traveling twice

through layer 2A.

In comparison, the synthetic seismograms for the step model are plotted in Figure 5.3.

The events are not as clearly delineated as in Figure 5.2, due to the more complicated

shallow velocity structure. Ray-tracing indicates that the caustic is formed by a

combination of energy turning at the base of each of the two high-gradient regions within

layer 2A. The onset of the triplication in the synthetic data is not as sharp as for the

gradient model, and there appears to be pre-critical energy in the 0-2.5 km range window.

Similar to Figure 5.2, a multiple associated with the caustic and a low-amplitude layer 2B

refraction event are also observed.
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Harding et al. [1993] used constant velocity panels to select stacking velocities that best

imaged the layer 2A reflection. The identical process was performed on the synthetic data,

and is illustrated in Figures 5.4 and 5.5. For the gradient model, the caustic is nearly flat

when a normal moveout (NMO) velocity of 1600 m/s is applied, and thus this stacking

velocity produces a large amplitude layer 2A reflection (Figure 5.4c). The caustic is not

flattened for lower or higher NMO velocities, and consequently the event is not enhanced at

these velocities. The calculated rms velocity to the base of layer 2A is 1605 m/s, virtually

identical to the chosen stacking velocity. Harding et al. [1993] argue that although the

shallow event is not a true reflection, it will be located at a travel time equivalent to the

vertical incidence two-way travel time (TWTT) to the base of layer 2A. This is true for the

gradient model, as the TWTT of the shallow event, for a stacking velocity of 1600 m/s, is

nearly identical to the TWTT to the layer 2A/2B boundary (Figure 5.4c). For the step

model, the amplitude of the layer 2A reflector is greatest for a stacking velocity of 1550

m/s, and does not correspond with the base of layer 2A (Figure 5.5b). Instead, the TWTT

to the shallow event is 3.86 sec, and correlates with the TWTT to the base of the upper

high-gradient layer. A stacking velocity of 1650 rn/s does place the event at the layer

2A/2B horizon (Figure 5.5d), but produces an amplitude which is significantly less than

for a 1550 m/s stacking velocity. The waveforms in the final stacked sections for the two

models are similar, with the layer 2A reflector phase shifted with respect to the water wave

(Figure 5.6). If the shallow event is interpreted to correspond with depth to the layer

2A/2B boundary, then the calculated layer 2A thickness is correct for the gradient model,

but too thin for the step model.

The velocity models for the on-bottom refraction experiments located within the axial

summit caldera also indicate layer 2A structure more complex than a surficial low-velocity

layer overlying a steep gradient region. Therefore, we carried out an identical analysis of

on-axis gradient and step models. The step model is from Figure 3.13, at a range of 0 km.

The gradient model is identical to the step model, except that the transition from the



125

surficial low-velocity layer to the top of layer 2B takes the form of a single steep velocity

gradient (Figure 5.7). Layer 2A thickness for both models is 150 m.

Plotted in Figure 5.8 are synthetic seismograms calculated by the reflectivity method for

the on-axis gradient model with a water depth of 2625 m. The record section is similar to

that for the off-axis gradient model (Figure 5.2), and includes a triplication associated with

energy turning at the base of layer 2A. A comparison with Figure 5.2 indicates that the

onset of the caustic is located closer to the water wave and at a shorter range for the on-axis

gradient model than for the off-axis gradient model. In addition, more than one multiple of

this event is clearly observed in the synthetic data (Figure 5.8a). The synthetic

seismograms for the on-axis step model are plotted in Figure 5.9. As for the off-axis

sections, the caustic is a more complicated feature for the step model than for the gradient

model. The onset of the triplication is -0.5 km closer than predicted by ray-tracing (Figure

5.9b), and is apparently associated with pre-critical energy.

A series of constant velocity panels were compared for each model, and stacking

velocities chosen that produced the maximum amplitude for the shallow event. Plotted in

Figure 5.10 are the final stacked sections for the two on-axis models. For both models,

the layer 2A reflector is phase shifted with respect to the water wave, as previously

observed for the off-axis models. For the step model, the TWTT to the reflector is located

approximately halfway between the TWTTs to the base of the upper high-gradient region

and the base of layer 2A. In contrast, the TWTT to the shallow event for the gradient

model is almost identical to the TWTT to the layer 2A/2B boundary.

Harding et al. [1993] argue that the stacking velocity which produces the best image of

the layer 2A reflection is sensitive to the range window over which the data is stacked, in

part because the event is not a true reflection. In order to properly compare data sets

collected with different streamer lengths or processed with different mutes, it is necessary

to determine the effects the range windows used to stack the shallow event have on the

resulting TWTTs. Constant velocity panels were calculated from the off-axis gradient and
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step models for four different offset geometries, and stacking velocities chosen that

produced the maximum amplitude for the layer 2A reflector. The final stacks are

summarized in Figure 5.11. For the step model, varying the range window used to stack

the reflector has little effect, and the TWTTs to the shallow event are nearly identical

(Figure 5.11a-d). This is demonstrated in Figure 5.5b, where a NMO velocity of 1550

m/s flattens the caustic for offsets from 2-5 km. In contrast, varying the range window has

a significant effect on the time of the layer 2A reflector for the gradient model. For offsets

from 0-3.0 km, a NMO velocity of 1650 m/s flattens the caustic (Figure 5.4d) and

produces the best image of the reflector. The TWTT to the shallow event using this

stacking velocity is 20-30 ms greater than the TWTT to the layer 2A/2B boundary (Figure

5.11 le-f), corresponding to a depth discrepancy of -30-50 m. If greater offsets are

included, a lower NMO velocity of 1600 m/s constructs the largest amplitude event (Figure

5.4c), which aligns almost exactly with the TWTT to the base of layer 2A (Figure 5.1 ig-

h). For both the step and gradient models, including greater offsets increases the amplitude

of the shallow reflector (Figure 5.11).

In summary, one-dimensional synthetic modeling indicates that the accuracy of

correlating the shallow event observed in MCS and WAP data with the layer 2A/2B

boundary is strongly dependent on the structure within layer 2A. If layer 2A consists of a

surficial low-velocity layer overlying a steep velocity gradient (our gradient model), then

there is an excellent correspondence between the TWTT to the shallow reflector and the

TWTT to the base of layer 2A. However, if there is considerable structure within layer 2A

(our step model), such as suggested from on-bottom refraction experiments, then the

shallow event may correlate with the base of a steep gradient within layer 2A, and not with

the layer 2A/2B boundary. In addition, our modeling indicates that the source-receiver

geometry may effect the TWTT to the layer 2A reflector, in agreement with the results of

Harding et al. [1993]. However, this effect is not large enough to explain the 100-200 m
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discrepancy in depth to the layer 2A reflector between the WAP of Vera and Diebold

[1993] and MCS profiles of Harding et al. [1993] near 9030'N on the EPR.

Finite Difference Modeling

The two-dimensional nature of rise axis topography and layer 2A structure precludes the

direct comparison of our reflectivity synthetics with field data; therefore, we have used a

finite difference technique to address these effects over two-dimensional extensions of the

gradient and step models (Figure 5.12). The code utilized is the ProMAX® "acoustic_fd"

algorithm, a fourth order acoustic finite difference program, commercially available

through Advance Geophysical Corporation. We used the reflectivity technique to estimate

the validity of the finite difference results, since a primary limitation to the algorithm is the

inability to model elastic and attenuation effects. Synthetic seismograms were calculated,

with the reflectivity code in an acoustic mode, for the off-axis gradient and step model; the

results are referred to as the acoustic gradient and acoustic step models. The principal

difference between the acoustic gradient model (Figure 5.13a) and the off-axis gradient

model (Figure 5.2a) is in the amplitudes of the caustic and multiples. In Figure 5.13a, the

onset of the caustic and multiple are earlier, and the amplitudes greater, than in Figure 5.2a.

In addition, a second multiple is clearly observed with the acoustic gradient model. The

record section for the acoustic step model contains numerous high-amplitude events behind

the water wave (Figure 5.13b). The caustic and multiple identified for the off-axis step

model (Figure 5.3a) match two of these events in travel time, with the other arrivals

apparently formed by pegleg multiples both within the surficial low-velocity layer and the

entire layer 2A region. Although the synthetic seismograms for the acoustic models

(Figure 5.13) are different in amplitude character from those for the off-axis models

(Figure 5.2 and Figure 5.3), the location and shape of the caustic are similar. For each

model, we produced constant velocity panels, and chose a stacking velocity that maximized
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the amplitude of the layer 2A reflector. These velocities were identical to those chosen for

the off-axis gradient and step models.

The finite difference method requires the source pressure and displacement field at a

time shortly after explosion, and for this reason the source is often chosen to be an analytic

function. In our calculations, we used a zero phase Ricker wavelet with a center frequency

of 20 Hz to approximate the source-time function of a typical MCS airgun array. Figure

5.14 shows a comparison of stacked sections for the acoustic step model calculated with

the Ricker wavelet source (Figure 5.14a) and for the off-axis step model (Figure 5.14b).

Although the waveforms differ for the two sources, the time of the shallow event is nearly

identical. A comparison of stacked sections for the acoustic (Figure 5.14c) and off-axis

gradient (Figure 5.14d) models yields similar results. These comparisons indicate that use

of an acoustic approximation and Ricker wavelet source will have only a minor effect on

the travel time to the stacked layer 2A reflector.

The two-dimensional gradient and step models are shown in Figure 5.12. The seafloor

topography is taken from a Sea Beam profile across the EPR near 90 30'N. Layer 2A

thickens from 150 m to 300 m within 1 km of the rise axis, based on the results of the

cross-axis NOBEL profile (Figure 3.13). We allowed minor variations in the depth to the

layer 2A/2B boundary outside of the neovolcanic zone, with layer 2A thickening to 400 m

at CDP 1800 (3 km west of the rise axis), and thinning to 200 m at CDP 1720 (4 km west

of the rise axis). Observations at Hess Deep [Francheteau et al., 1992] suggest that the

greatest variability in shallow structure occurs within the transition zone, which we

interpret to be the steep gradient layer in the gradient model, and the basal gradient in the

step model. Therefore, the layer 2A thickness variations were at the expense or gain of

these regions in our models. The velocity structure extends to the east and west of the

models in Figure 5.12, with the base of layer 2A at a constant 300 m below the seafloor.

For each model, 361 shot gathers were calculated at 25 m spacing, from CDP 1360 (8

km west of the rise axis) to CDP 2080 (1 km east of the rise axis). The model grid spacing
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was 7.5 m, and the gridtime step was 0.79 ms. To save computational time, the synthetic

experiment was conducted 500 m above the rise axis. Shot and receiver gathers were

subsequently forward extrapolated to the sea surface (2100 m) using a phase shift operator

in FK space [Gazdag, 1978]. The forward extrapolation process was carried out in two-

steps: (1) the receiver wavefield was upward continued to the sea surface through

migration of individual shot gathers, (2) the source wavefield was then upward continued

to the sea surface through migration of individual common receiver gathers (Figure 5.15).

Finally, the data were gathered into common-mid-point (CMP) bins 12.5 m apart which

produced a nominal CMP fold of 80.

Constant velocity panels were created for the gradient and step models, stacking

velocities chosen every 200 m, and stacked sections produced (Figure 5.16a and Figure

5.17a). These sections were FK migrated [Stolt, 1978], with a constant velocity of 1500

m/s (Figure 5.16b and Figure 5.17b). The more cpu intensive finite difference migration,

with correct layer 2A rms velocities, produced nearly identical results. For the gradient

model, the reflector closely follows the base of layer 2A, as predicted by the one-

dimensional reflectivity modeling (Figure 5.16a). Over most of the stacked section, the

shallow event is within 5-10 ms of the actual travel time to the layer 2A/2B boundary, with

a maximum deviation of 25 ms. Stacking velocities for the reflector varied from 1575-

1675 m/s outside of the neovolcanic zone, and were within 25 m/s of the rms velocities to

the base of layer 2A. The stacking velocity at the rise axis was 1550 m/s, almost identical

to the calculated rms velocity of 1545 m/s. The event approximately 100 ms after the layer

2A reflector is a multiple, and is larger in amplitude than predicted from reflectivity

modeling (Figure 5.14) because the finite difference calculations do not account for

attenuation effects. The stacked and migrated sections for the step model are plotted in

Figure 5.17. As demonstrated previously by reflectivity modeling, the shallow reflector

images structure within layer 2A rather than the layer 2A/2B boundary. There is no

expression in the migrated section of the lateral thickness variations in the basal gradient
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region. The stacking velocity varied from 1550-1575 m/s, similar to the rms velocity to the

base of the upper high-gradient region, which averaged 1545 m/s.

In addition to processing the data with a 4.0 km aperture receiver array, we did identical

analyses for a 2.675 km aperture streamer length, similar to the experimental geometry

used to collect the MCS data of Harding et al. [1993]. The best image for the gradient

model was created with stacking velocities that were -25 m/s greater than for the larger

offset data, resulting in an increased TWTT to the layer 2A reflector. This difference

converts to an approximate 30-50 m increase in calculated layer 2A thickness. For the step

model, a shorter streamer length had a negligible effect.

In summary, the results from two-dimensional finite-difference calculations agree with

previous conclusions based on reflectivity modeling. Synthetic modeling indicates that the

accuracy of correlating the shallow event observed in MCS and WAP data with the layer

2A/2B boundary is strongly dependent on the structure within layer 2A, and does not

depend significantly on the different source-receiver geometries of the MCS and WAP

techniques. Therefore, the difference in layer 2A reflector depth between the WAP and

MCS data may represent either true layer 2A thickness changes in the 90 30'N region, or

variability in gradient structure within the shallow crust. In the following section, we

examine conventional airgun refraction profiles which can provide the independent

estimates of layer 2A thickness necessary to distinguish between these two possibilities.

Conventional Airgun Data

During the tomography experiment on the EPR near 90 30'N [Toomey et al., 1990],

several airgun lines were shot over young crust close to the locations of our on-bottom

seismic refraction experiments (Figure 5.19). The purpose of these profiles was to provide

the close shot spacing needed for determination of shallow crustal structure. The source

consisted of four guns (2 x 550 cu. in. and 2 x 300 cu. in.) totaling 1700 cu. in. in

volume. The receivers were seven Woods Hole Oceanographic Institution analog ocean
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bottom hydrophones (OBHs), and were located by Toomey [1990] using an inversion of

direct water-wave arrival time and navigational data [Creager and Dorman, 1982].

The data recorded by the OBHs was converted from analog to digital format, and shot-

receiver ranges were computed from the direct water wave arrival. Examples of the data

quality are shown in Figure 5.20; there is good signal-to-noise ratios out to ranges of -6-8

km. Travel time picks were made for all first arrivals, with picking errors approximately

±20 ms. Finally, corrections for topography were made using the water path correction

method [Purdy, 1982], which uses a cubic spline fit to the bathymetry profile beneath the

shooting line to compute ray entry points. The uncertainty in these corrections is estimated

to be approximately ±10 mins.

Plotted in Figure 5.21 are the first arrival travel times, corrected for topography, for an

on-axis (Figure 5.21a) and off-axis profile (Figure 5.21b and 5.21c). On the basis of the

on-bottom experiment results, the thickness of layer 2A should be greater, and the first

arrival travel times systematically later, along airgun lines A and C as compared to line B.

This is indeed observed in the data, with the travel time picks for the off-axis profiles -50-

S150 ms later than for the on-axis profile (Figure 5.21). Also plotted in Figure 5.21 are the

first arrival travel times for typical on-bottom refraction experiments. The major difference

between the two data sets is the range at which arrivals are observed emerging ahead of the

water wave; for the airgun shots this range is 1-2 km, and thus none of the first arrival

travel time picks are associated with energy turning within layer 2A. Additionally, the

scatter in the travel times for the airgun picks is greater than for the NOBEL picks.

The primary purpose for analyzing the conventional airgun data is to estimate regional

variations in shallow structure. The uppermost velocity structure will be poorly

constrained, because energy turning within layer 2A arrives after the water wave onset.

However, several of the receivers, both on-axis and off-axis, recorded airgun data that is in

excellent agreement with the NOBEL data (Figures 5.21a and 5.21b), suggesting that the

structure at these sites is consistent with that modeled from the on-bottom refraction
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experiments. For each OBH, we used ray-tracing to fit the first arrival travel times from

the airgun profiles, using a starting model based on the NOBEL results (Table 3.1). We

then varied the thickness of layer 2A to match the travel time picks. Several velocity

models could successfully fit the first arrival travel times, each with slightly different

structure within layer 2A. Therefore our strategy, when allowed by the data, was to alter

equally the thickness of both the surficial low-velocity layer and the -4 km/s low-gradient

region (Figures 3.7 and 3.13). No attempt was made to match the amplitude patterns

found in the data.

For on-axis profile B (Figure 5.19), Line ON was used as the starting model. There is

excellent agreement between the first arrival times of Line ON and the airgun shots to OBH

5 (Figure 5.21a) and OBH 3; thus, only minor thickness adjustments were needed to match

the observed data. We estimate layer 2A thicknesses of 180 m and 150 m near OBH 5 and

OBH 3, respectively, similar to the measurements in the region from on-bottom

experiments (Figure 5.22a). For off-axis profile A, there is good correspondence between

the travel time picks for OBH 1 and Line 20W (Figure 5.21b), suggesting a 340 m thick

layer 2A. However, the shots recorded by OBH 2 have first arrival times that are -50-80

ms later than for OBH 1 (Figure 5.21c), indicating two-dimensional structure along the

profile. For each receiver, a one-dimensional velocity model was obtained using Line 20W

as a starting model. Layer 2A thicknesses of 340 m and 490 m matched the first arrival

travel times corresponding to the shots recorded by OBH 1 and OBH 2, respectively.

From these models a two-dimensional model for the profile was produced, and

subsequently modified using ray-tracing [Luetgert, 1988]. A thickening of layer 2A from

310 m at OBH 1 to 490 m at OBH 2 provides the best fit to the data (Figure 5.23).

Only one OBH recorded the shots from profile C (Figure 5.19), so a two-dimensional

model along the profile is not feasible. However, the analysis of profile A suggests that

one-dimensional modeling adequately represents the shallow structure near each receiver,

as raypaths primarily sample upper crust within 1-2 km of each receiver (Figure 5.23).
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Since shots both north and south of OBH 7 were recorded (Figure 5.19), a one-

dimensional model was fit to each data set. The average layer 2A thickness of the two

models is 350 m. Three OBHs recorded the shots from cross-axis profile D (Figure 5.19),

and thus a two-dimensional model along the line is possible. However, the spacing of the

receivers is insufficient to constrain the rapid thickening of layer 2A known to occur near

the axial summit caldera (ASC). Therefore, one-dimensional models were fit to the first

arrival travel times corresponding to the shots east and west of OBH 4 and OBH 6, and

layer 2A thicknesses were estimated for each receiver (Figure 5.22a).

In most respects, the results obtained from analysis of the airgun data are consistent

with the NOBEL experiments (Figure 5.22a). Near OBHs 3 and 5, layer 2A thicknesses

of 150-180 m are estimated, compatible with the models for Lines ON and OS (130-180

m). Likewise, the depth to the base of layer 2A for OBHs 1 and 7 (310-350 m) and the

off-axis NOBEL lines (300-390 m) is similar. In contrast, a thicker layer 2A (490-580 m)

is estimated for OBHs 2, 4, and 6.

Discussion

The region of the fast-spreading EPR near 90 30'N provides an excellent opportunity to

compare the shallow structure determined from high-resolution on-bottom experiments

with the layer 2A reflector imaged along MCS profiles. In addition, the dense seismic

coverage in the area (Figure 6.24) allows the estimation of lateral changes in layer 2A

thickness, which can be interpreted in terms of temporal and spatial variability in the

volcanic emplacement process. According to the NOBEL profiles, the thickness of layer

2A increases from -130 m over zero-age crust to -300-390 m within 1 km of the rise axis

(Figure 5.24 and Table 3.1). The shallow event imaged on nearby MCS line 31 exhibits

similar behavior (Figure 5.25), with the depth to the layer 2A reflection increasing from

- 175 m at the ASC to -275-325 m at a range of 1 km from the ASC [Harding et al., 1993].

The close correlation between the depth to the base of layer 2A from the on-bottom profiles
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and the depth to the shallow event observed on the MCS line indicates that the reflector is

probably following the layer 2A/2B boundary, and not structure internal to layer 2A. At no

location is the reflector as shallow as 150 m, the average depth predicted from the step-like

features modeled within layer 2A from the NOBEL lines. However, the layer 2A event on

MCS profile 31 is unusual in that it has two distinct minima in depth at the rise axis, and

remains shallow over a total width of 3 km [Harding et al., 1993] (Figure 5.25). It is

possible that one of the depth minima does not represent a true thinning of layer 2A, but

instead a lateral change in gradient structure. The model for the on-bottom refraction

experiment shot 6 km west of the rise axis includes a 310 m thick layer 2A and a step-like

velocity structure, whereas a reflector is imaged at ~400 m depth at this same range from

the rise axis on MCS line 31. This indicates that there is both a change in gradient structure

and a 100 m change in layer 2A thickness over a distance of 1-2 km. Thickness variations

of this amplitude and wavelength are compatible with observed changes in depth to the

shallow reflector along the MCS profile.

The comparison of results from on-bottom refraction experiments and an adjacent MCS

line in this area suggests that a correlation can be made between the depth to a prominent

shallow reflector and the base of layer 2A. Summarized in Figure 5.24a are the average

layer 2A reflection depths in the 90 30'N region of the EPR from four cross-axis MCS

profiles and one cross-axis WAP. A thinning of layer 2A at the rise axis is observed on all

lines, as predicted from the on-bottom refraction profiles, conventional airgun data, ESPs

[Vera et al, 1990], and tomographic imaging [Toomey et al., 1990] (Figure 5.24b). Off-

axis, a striking feature of the data is a 150-200 m decrease in depth to the layer 2A reflector

at the WAP location. The longer offsets used in stacking the WAP data can account for the

minor difference in layer 2A thickness estimates at the rise axis, but for only a small

portion (-30-50 m) of the 150-200 m thickness decrease observed outside of the

neovolcanic zone. If the layer 2A reflector is imaging the layer 2A/2B boundary

throughout the entire region, then the decrease in depth at the WAP represents a 150-200 m
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thinning of layer 2A. Alternatively, the decrease in reflector depth might result from a

change to a gradient structure similar to the step model, with no decrease in layer 2A

thickness. Fortunately, both conventional airgun profiles and tomographic imaging have

been carried out in this area (Figure 5.24b), and can provide independent estimates of layer

2A thickness.

An increase in depth to the layer 2A/2B boundary from the north to south is required by

conventional airgun data in the region (Figures 5.22 and 5.23). The estimated depth to the

base of layer 2A is -300-350 m near the WAP, increasing to -500-600 m close to the MCS

line at 90 30'N (Figure 5.24). These values are slightly greater than the average reflector

depths on the MCS line and WAP, but within the observed variability. In fact, the layer

2A reflection in the MCS data deepens to -600 m in the range 7-11 km west of the rise axis

[Harding et al., 1993], consistent with the 580 m estimate at OBH 4 (Figure 5.25). A

lateral variation in layer 2A thickness is also suggested by tomography data [Toomey,

Solomon, and Purdy, Tomographic imaging of the shallow crustal structure of the East

Pacific Rise at 90 30'N, in prep]. The image at depths from 0-600 m indicates a decrease in

average velocity of 0.2 km/s from north to south on the flanks of the rise axis. Because

layer 2A has a lower velocity than layer 2B, a decrease in average velocity corresponds to

an increase in layer 2A thickness. The tomography data also suggest a decrease in average

velocity from the east to west, which is consistent with the asymmetry in layer 2A

reflection depth across the rise axis observed on both the WAP and MCS line 31 (Figure

5.24).

A 100-200 m decrease in layer 2A thickness outside of the neovolcanic zone at 90 35'N

is consistent with MCS, WAP, conventional airgun refraction, and tomography data

(Figure 5.24). On the cross-axis WAP near 90 35'N, the depth to the layer 2A reflector

outside of the neovolcanic zone is 200-325 m [Vera and Diebold, 1993], in contrast to a

depth of 350-700 m on four nearby MCS lines [Harding et al., 1993]. In previous

chapters, we have interpreted the layer 2A/2B boundary as the top of the sheeted dike
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complex. Therefore, the seismic data suggest that there is approximately a 50% decrease in

thickness of the extrusive layer and transition zone near 90 35'N, as compared to cross-axis

profiles near 90 20'N, 90 30'N, 90 40'N, and 90 50'N (Figure 5.24). The MCS and wide-

angle profiles extend to a distance of 10-15 km from the rise axis, and indicate that

consistently (at least for the past 175,000-275,000 years) fewer extrusives have been

emplaced in the 90 35'N area.

The rise axis at 90 35'N correlates with a deviation from axial linearity (deval) [Toomey

et al., 1990; Wilcock et al., 1993], a decrease in anomaly amplitude of the crustal low-

velocity volume [Toomey et al., 1990], a narrow AMC reflector [Kent et al., 1993], and an

absence of hydrothermal activity [Haymon et al., 1991]. These observations, and the local

thinning of extrusives, are consistent with a low axial magma supply. In contrast, there is

no expression in the cross-sectional area of the rise crest, an indicator of melt volume

within the crust and mantle [Macdonald and Fox, 1988; Scheirer and Macdonald, 1993], of

a decrease in magma chamber size near 90 35'N (Figure 5.19, 5.22). Devals are thought to

form by the misalignment of magma pulses travelling laterally along the rise axis

[Macdonald et al., 1984; Langmuir et al., 1986; Toomey et al., 1990], and are expected to

have a lifetime of <104-105 yr [Langmuir et al., 1986]. The 50% decrease in layer 2A

thickness along the entire wide-angle profile, as compared to nearby MCS lines, would

suggest that the 90 35'N deval has persisted for 175,000-275,000 yrs. The longevity of the

deval is perhaps related to asymmetry in the underlying magma chamber, which is offset to

the west of the rise axis south of 90 35'N [Toomey et al., 1990; Kent et al., 1993]. We

attribute the 50% decrease in layer 2A thickness near 90 35'N with a local minimum in axial

magma supply. It is interesting that there is no expression in the bathymetric data of the

substantial variability in layer 2A in this region (Figures 5.19 and 5.22). We will speculate

on this observation in detail in Chapter 6.

The reflectivity and finite difference analysis of shallow velocity models indicates that a

correlation between the depth to the layer 2A/2B boundary and to the reflection observed in
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MCS data is plausible for structure similar to the gradient model, but not the step model.

Therefore, the overall agreement between layer 2A thicknesses from on-bottom and

conventional airgun experiments with those determined from MCS and WAP images

suggests that velocity gradients similar in character to the step model are generally not a

component of the shallow crust in the 90 30'N region of the EPR. Several studies of young

EPR crust have been interpreted to require a structure similar to the step model. A

consistent feature in the two on-bottom seismic refraction lines located over zero-age crust

within the ASC near 90 30'N (Lines ON and OS) is the presence of a pair of triplications at

ranges of 200-300 m and 400-500 m (Figures 3.6 and 3.9); this amplitude pattern demands

a step-like shallow velocity structure. There is also evidence in the zero-age ESP data

located near 130 N, 90 30'N, and 17009'S for this type of model, where the presence of

precritical energy (the layer 2A reflection of Harding et al. [1989] and RA arrival of Vera et

al. [1990]) is used to define a high-gradient region within layer 2A [Harding et al., 1989;

Vera et al., 1990; Detrick et al., 1993]. At locations outside of the neovolcanic zone, the

amplitude of the precritical energy decreases, and the structure becomes closer in

appearance to the gradient model [Harding et al., 1989; Vera et al., 1990; Harding et al.,

1993]. A reexamination of the amplitudes on the off-axis NOBEL lines reveals no clear

triplication related to a sharp boundary within layer 2A on Lines 20E and 20W, although a

change in gradient is needed to match the travel times. On a rise-parallel WAP located over

40,000 yr crust near 130N, the structure varies along the profile from a gradient model to a

step model [Kappus, 1991]. It is probable that the gradient and step models represent end-

members of the velocity structures present at the EPR, with the gradients at zero-age crust

similar to the step model, and the gradients outside of the neovolcanic zone closer in shape

to the gradient model. The rapid thickening of layer 2A with distance from the rise axis is

believed to occur, in part, through off-axis sill and extrusive emplacement [Lonsdale,

1977; Macdonald and Fox, 1988; Fornari et al., 1992]. This process could also be
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responsible for the destruction, within a lateral distance of 1-2 km, of the step-like structure

as the crust is transported away from the ASC.

Summary of Conclusions

1. Synthetic modeling indicates that MCS studies can image the layer 2A/2B boundary,

if layer 2A consists of a surficial low-velocity layer overlying a simple high-gradient region

(our gradient model). However, the shallow reflector may follow structure within layer

2A, if the upper crust contains more than one high-gradient region (our step model). This

implies that independent estimates of layer 2A structure are needed to properly interpret

MCS images.

2. The depths to the shallow reflector imaged in MCS and WAP data in the 9-10 0 N

region of the EPR generally correlate with estimated layer 2A thicknesses from on-bottom

refraction profiles and conventional airgun refraction lines.

3. A shallow structure similar to the step model is consistent with on-bottom refraction

profiles and ESPs located over zero-age EPR crust near 13'N, 90 30'N, and 17009'S. With

distance from the rise axis, this step-like structure is apparently destroyed, perhaps through

the processes of off-axis sill and extrusive emplacement.

4. A 100-200 m decrease in layer 2A thickness outside of the neovolcanic zone at

90 35'N is consistent with MCS, WAP, conventional airgun refraction, and tomography

data, and correlates with the location of a deval at the rise axis. A low axial magma supply

at the deval location is compatible with tomography and MCS seismic data. The decrease

in layer 2A thickness, interpreted to consist of the extrusive section and transition zone,

suggests that the 90 35'N deval has persisted for 175,000-275,000 yrs.
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Figure 5.1. Compressional velocity/depth profiles for the off-axis gradient (dashed line)

and step (solid line) models.
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Figure 5.2. (a) Synthetic seismograms for the off-axis gradient model, for a water depth of

2800 m. For clarity, the source-time function is truncated at the onset of the bubble pulse.

(b) Theoretical travel time curves, calculated from ray-tracing, for the off-axis gradient

model.
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Figure 5.3. (a) Synthetic seismograms for the off-axis step model, for a water depth of

2800 m. For clarity, the source-time function is truncated at the onset of the bubble pulse.

(b) Theoretical travel time curves, calculated from ray-tracing, for the off-axis step model.
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Figure 5.4. (a) Normal moveout (NMO) correction, for a single moveout velocity of 1500

m/s, applied to the synthetic data for the off-axis gradient model. The two way travel time,

at vertical incidence, to the layer 2A/2B boundary is indicated by the dashed line at 3.91

sec. The plot on the right is a stack of the NMO corrected data, for ranges from 0.275-

4.250 km. For clarity, the stacked trace is plotted five times. (b-e) As for Figure 5.4a, for

moveout velocities of 1550 m/s, 1600 m/s, 1650 m/s, and 1700 m/s. The calculated rms

velocity to the layer 2A/2B boundary is 1605 m/s. Note that the caustic stacks best at 1600

m/s, and that the negative peak of the waveform aligns almost exactly at 3.91 sec.
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Figure 5.5. (a) Normal moveout (NMO) correction, for a single moveout velocity of 1500
m/s, applied to the synthetic data for the off-axis step model. The two way travel time, at
vertical incidence, to the base of the two high-gradient regions at 150 m and 300 in (depth
below seafloor) are indicated by the dashed lines at 3.85 and 3.92 sec. The plot on the
right is a stack of the NMO corrected data, for ranges from 0.275-4.250 km. For clarity,
the stacked trace is plotted five times. (b-e) As for Figure 5.5a, for moveout velocities of
1550 m/s, 1600 m/s, 1650 m/s, and 1700 m/s. The calculated rms velocities to the base of
the two high-gradient regions are 1545 m/s and 1639 m/s. Note that the caustic stacks best
at 1550 m/s, and that the negative peak of the waveform aligns at -3.85 sec. At a moveout
velocity of 1650 m/s, the waveform aligns at -3.92 sec, but the amplitude is significantly
less than for a moveout velocity of 1550 m/s.
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Figure 5.6. (a) Final stack of the synthetic data for the off-axis step model, for ranges

from 0.275-4.250 km. A stacking velocity of 1500 m/s was used from 0-3.78 sec, and

1550 m/s from 3.82-5.0 sec. From 3.78-3.82 sec, the stacking velocity linearly increased

from 1500 m/s to 1550 m/s. The dashed lines are as for Figure 5.5. Stacked sections

calculated with the entire source-time function (including the bubble pulse) are nearly

identical. (b) Final stack of the synthetic data for the off-axis gradient model, for ranges

from 0.275-4.250 km. A stacking velocity of 1500 m/s was used from 0-3.78 sec, and

1600 m/s from 3.83-5.0 sec. From 3.78-3.83 sec, the stacking velocity linearly increased

from 1500 m/s to 1600 m/s. The dashed line is as for Figure 5.4. Stacked sections

calculated with the entire source-time function (including the bubble pulse) are nearly

identical.
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Figure 5.7. Compressional velocity/depth profiles for the on-axis gradient (dashed line)

and step (solid line) models.
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Figure 5.8. (a) Synthetic seismograms for the on-axis gradient model, for a water depth of

2625 m. For clarity, the source-time function is truncated at the onset of the bubble pulse.

(b) Theoretical travel time curves, calculated from ray-tracing, for the on-axis gradient
model.
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Figure 5.9. (a) Synthetic seismograms for the on-axis step model, for a water depth of

2625 m. For clarity, the source-time function is truncated at the onset of the bubble pulse.

(b) Theoretical travel time curves, calculated from ray-tracing, for the on-axis step model.
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Figure 5.10. (a) Final stack of the synthetic data for the on-axis step model, for ranges

from 0.275-4.250 km. A stacking velocity of 1500 m/s was used from 0-3.50 sec, and

1525 m/s from 3.54-5.0 sec. From 3.50-3.54 sec, the stacking velocity linearly increased

from 1500 m/s to 1525 m/s. The two way travel time, at vertical incidence, to the base of

the two high-gradient regions at 70 m and 150 m (depth below seafloor) are indicated by

the dashed lines at 3.56 and 3.59 sec. Stacked sections calculated with the entire source-

time function (including the bubble pulse) are nearly identical. (b) Final stack of the

synthetic data for the on-axis gradient model, for ranges from 0.275-4.250 km. A stacking

velocity of 1500 m/s was used from 0-3.5 sec, and 1550 m/s from 3.54-5.0 sec. From

3.50-3.54 sec, the stacking velocity linearly increased from 1500 m/s to 1600 m/s. The

two way travel time, at vertical incidence, to the base of layer 2A is indicated by the dashed

line at 3.60 sec. Stacked sections calculated with the entire source-time function (including

the bubble pulse) are nearly identical.
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Figure 5.11. Final stacks of the synthetic data for the off-axis step model, for different

range windows. (a) Range window 0.275-2.675 km. (b) Range window 0.275-3.200

km. (c) Range window 0.275-4.250 km. (d) Range window 2.600-4.950 km. Final

stack of the synthetic data for the off-axis gradient model, for different range windows. (e)

Range window 0.275-2.675 km. (f) Range window 0.275-3.200 km. (g) Range window

0.275-4.250 km. (h) Range window 2.600-4.950 km.
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Figure 5.12. Two-dimensional velocity models used for the finite difference calculations.

Velocity contours are plotted every 200 m/s, and vary from 2100 m/s to 5300 m/s. The

thick black line marks the layer 2A/2B boundary. 80 CDPs are equivalent to 1 km. (a)

Gradient model. (b) Step model.
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Figure 5.13. (a) Gradient model: As for Figure 5.2a, except the synthetic seismograms

were calculated using a reflectivity code in an acoustic mode. (b) Step model: As for

Figure 5.3a, except the synthetic seismograms were calculated using a reflectivity code in

an acoustic mode.
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Figure 5.13. (a) Gradient model: As for Figure 5.2a, except the synthetic seismograms

were calculated using a reflectivity code in an acoustic mode. (b) Step model: As for

Figure 5.3a, except the synthetic seismograms were calculated using a reflectivity code in

an acoustic mode.
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Figure 5.14. (a) As for Figure 5.6a, except the source is a Ricker wavelet with a center

frequency of 20 Hz, and the synthetics were calculated using an acoustic reflectivity code

with no attenuation. (b) As for Figure 5.6a. (c) As for Figure 5.10Oa, except the source is a

Ricker wavelet with a center frequency of 20 Hz, and the synthetics were calculated using

an acoustic reflectivity code with no attenuation. (d) As for Figure 5.10a.
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Figure 5.15. (a) Shot gather, with source and receivers 500 m above the rise axis,

calculated with the finite difference technique for the gradient model (Figure 5.12a). The

source is at CDP 1680, and the receivers extend out to CDP 2040. (b) CDP gather at CDP

1680 after the data has been extrapolated to the sea surface. Synthetic modeling indicates

that all energy is correctly upward continued, with the exception of the direct water wave

(the event in the lower right hand corner).
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Figure 5.17. As for Figure 5.16, except for the step model. The thin solid lines mark the

theoretical depth to the seafloor and base of each of the high-gradient regions.
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Figure 5.19. (a) Sea Beam bathymetry [Wilcock et al., 1993] contoured at 75 meter

intervals for a section of the East Pacific Rise located between the Siqueiros and Clipperton

transform faults. Triangles mark OBH locations. (b) Experiment location map for the

region shown in Figure 5.19a. Dashed lines show the positions of the airgun shots, and

triangles mark the OBH locations. Shiptracks for the on-bottom seismic refraction

experiments are indicated with the thick solid lines, and Lines ON and 20W are labeled.

The thin solid line marks the location of the axial summit caldera (ASC) as mapped by

Fornari et al. [Fornari, Perfit, Haymon, Edwards, and O'Brien, Morphology and structure

of the ASC of the EPR between 90-10N: ARGO and Alvin observations, in prep]. The

along-axis airgun profiles are labeled A, B, and C, and the cross-axis profile is labeled D.

The OBHs are numbered from 1-7.
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Figure 5.20. (a) Record section for the airgun shots north of OBH 5. The data have been

filtered with a Butterworth filter. A high cut of 15 Hz, and a rolloff of 48 db/octave were

used. The amplitude scale has been increased linearly with range, and no topographic

correction has been applied. The seismograms are truncated at the water wave, and are

plotted with a reduction velocity of 6.0 km/s. First arrival travel time picks are indicated by

plus signs. (b) As for Figure 5.20a, for the airgun shots south of OBH 1.
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Figure 5.21. (a) First arrival travel time picks for the airgun shots north of OBH 5 (plus

signs) and for on-bottom refraction experiment Line ON (circles). Representative error bars

are shown for every fifth travel time pick, and are <10 ms for the on-bottom picks, and

>20 ms for the airgun picks. (b) As for Figure 5.21a, for the data south of OBH 1 (plus

signs) and for Line 20W (circles). (c) As for Figure 5.21a, for the data north of OBH 2

(plus signs) and for Line 20W (circles).
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Figure 5.22. (a) Estimated layer 2A thicknesses in the vicinity of the seven OBHs

(triangles) and for the NOBEL lines (circles). The solid and dashed lines mark the

locations of the bathymetry profiles shown in Figure 5.22b. (b) Northern (solid) and

southern (dashed) cross-axis bathymetry profiles across the study region. The thickening

of layer 2A to the south is not reflected in the topography.



164

S I I I

north south

0 2 4 6 8 10

8 100 2 4 6
Range (km)

b) 0.4

0.3

0.2

- 0.1

0.0

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0 2 4 6 8 10

0 2 4 6
Range (kin)

Figure 5.23. (a) Upper panel: Travel time picks for OBH 1 (circles) for shots south of the

receiver. Solid lines show the calculated travel time curves for the rays plotted in the

velocity model in the lower panel. Lower panel: Velocity model and rays traced south of

OBH 1. Indicated to the right of the model are the velocities at each interface. Raypaths

were calculated using the two-dimensional ray-tracing program of Luetgert [1988]. Note

the thickening of layer 2A from 310 m at the northern end of the profile to 490 m at the

southern end. (b) As for Figure 5.23a, except travel time picks and rays traced north of

OBH 2.
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Figure 5.24. (a) Average depth to the layer 2A reflector from Harding et al. [1993] for

four cross-axis MCS profiles (solid line), and from Vera and Diebold [1993] for one cross-

axis WAP (dashed line). The inset rectangle identifies the region shown in closer detail in

Figure 5.24b. (b) Summary figure of calculated layer 2A thicknesses in the 90 30'N EPR

region from on-bottom refraction experiments (circles), ESPs (squares, [Vera et al.,

1990]), conventional airgun data (triangles), MCS profiles (solid lines [Harding et al.,

1993]), and a WAP (dashed line [Vera and Diebold, 1993]). The rectangular region

encloses the tomography experiment of Toomey et al. [1990; in prep].
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CHAPTER 6

CONCLUSIONS

Review of Primary Results

On-bottom seismic refaction experiments located over young crust on the fast-spreading

East Pacific Rise (EPR) illustrate that there is a dramatic change in shallow structure within

1 km of the axial summit caldera (ASC). Within the ASC, the upper crust consists of a

thin (<60 m) surficial low-velocity (<2.5 km/s) layer, a 100-150 m thick transition zone

with velocities increasing by 2.5 km/s, and a layer with velocities of -5 km/s at a depth

beneath the seafloor of -130-190 m (Figure 3.7). The surficial low-velocity layer and

transition zone are defined as seismic layer 2A, and the -5 km/s layer as layer 2B. Both

the surficial low-velocity layer and the transition zone double in thickness within 1 km of

the rise axis, with the depth to the 2A/2B boundary increasing from -150 m to -300-350 m

over this range. The doubling of layer 2A thickness within 1-2 km of the rise axis is

confirmed by multi-channel seismic (MCS) and wide-angle profile (WAP) data, which also

indicate that there is no further systematic change in thickness with greater range from the

rise axis. However, there does appear to be along-axis variability in layer 2A thickness

outside of the ASC, with the depth to the base of layer 2A consistently thinner (250 m vs.

450 m) near 9035'N than for adjacent profiles at 90 20'N, 90 30'N, 90 40'N, and 90 50'N.

Inversions for attenuation structure demonstrate that the layer 2A/2B interface is not only a

velocity boundary, but also an attenuation boundary, with Q increasing from 10-20 within

layer 2A to >70 in layer 2B. Layer 2A is interpreted to be composed of the extrusive

section and transition zone, with layer 2B consisting of the sheeted dike complex. This

implies that the top of the dikes subsides from 150-200 m to 250-450 m within 1-2 km of

the rise axis, and then remains at a relatively constant depth beneath the seafloor. The
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thickening of the extrusive layer is interpreted to be due to lava that either overflows the

ASC walls, is emplaced through eruptions outside of the ASC, or travels laterally from the

ASC through subseafloor conduits. According to this model, the shallow crustal

architecture is in place within 1-2 km of the rise axis.

Dike Subsidence

The cross-axis distance over which dike subsidence occurs is similar to the lateral extent

(-1 km half-width) of the primary low-velocity volume imaged by the tomographic

inversions of Toomey et al. [1990], and slightly greater than the width of the axial magma

chamber (AMC) reflector (~250 m half-width) observed in MCS data [Kent et al., 1993a;

Kent et al., 1993b; Kent et al., 1993c]. We suggest that the process of dike subsidence is

controlled by the axial magma chamber. A possible explanation is that buoyancy forces

associated with the AMC are supporting the extrusive layer and sheeted dikes at the

neovolcanic zone. With distance from the rise axis, the AMC solidifies, the crust cools,

the buoyancy forces are reduced, and the sheeted dike complex subsides. Concurrently,

the extrusive layer thickens resulting in significantly less subsidence of the seafloor.

To test the validity of this model, we can determine if vertical columns through the crust

within and outside of the neovolcanic zone are in local isostatic equilibrium. This can

show whether thickening of the extrusive layer can balance the reduced buoyancy forces

associated with solidification of the magma chamber. Isostasy is a good approximation at

the EPR crest, based on the small elastic plate thicknesses (~0.1-0.5 km) needed to match

gravity and bathymetry profiles [Madsen et al., 1984; Kuo et al., 1986; Wang and

Cochran, 1993]. In order to carry out our calculations, assumptions had to be made

concerning the density contrasts introduced by the magma chamber and thickened extrusive

layer (Table 6.1). The magma chamber is based on the model of Sinton and Detrick

[1992], and consists of a thin layer of 100% melt, underlain by a larger crystal mush zone,

which is in turn underlain by a zone with a small amount of partial melt (Figure 6.1).
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Seismic studies at the EPR indicate that the thickness of the melt lens is -50 m [Kent et al.,

1993a], and the thickness of the mush zone does not exceed 1 km [Wilcock et al., 1992].

The amount of partial melt within the mush zone is not well constrained, but is probably

between 20-75% [Sinton and Detrick, 1992]. For our calculations, we assumed

thicknesses for the melt lens and mush zone of 50m and 1000m, respectively, and that the

mush zone contains 40% partial melt. In the upper crust, a 1350 m thick sheeted dike

complex, and an extrusive layer that thickened from 150 m at the rise crest to 300-450 m

outside the neovolcanic zone were assumed. In our model we used a layer 3 thickness of

5150-5300 m outside of the neovolcanic zone, in order to achieve a crustal thickness of

6950 m as measured by ESP data at the EPR [Vera et al., 1990]. We made the assumption

that layer 3 is formed at the rise axis, which requires a 150-300 m decrease in zero-age

crustal thickness to compensate for the thinner extrusive section within the neovolcanic

zone. Average seismic velocities for the extrusive section, dike complex, and layer 3 were

converted to densities using the relationship of Christensen and Shaw [1970], p = 1850 +

0.165Vp (for velocity in rn/s and density in kg/m 3). For an average layer 2A velocity of

3500 m/s and layer 2B/2C velocity of 5500 m/s, the resulting densities are 2420 kg/m 3 and

2760 kg/m 3 , respectively (Table 6.1). Near-bottom gravity measurements determined a

density of 2520 kg/m 3 for the upper 200 m of young crust on the Juan de Fuca Ridge,

which is slightly greater than our estimated extrusive density [Holmes and Johnson, 1993].

For layer 3 we assumed an average velocity of 6750 m/s [Vera et al., 1990], which results

in a density of 2950 kg/m3. We used a density of 2700 kg/m 3 for the melt lens [Stolper

and Walker, 1980; Hooft and Detrick, 1993], and 2850 kg/m 3 for the mush zone

(calculated assuming 40% partial melt and a matrix density of 2950 kg/m 3). We assumed a

density of 3270 kg/m 3 for the mantle [Wang and Cochran, 1993]. There are few

constraints on densities beneath the mush zone. Delay time and attenuation tomographic

inversions suggest that the maximum melt fraction in this region is <3-5%, but a narrow

zone of higher melt fraction would not be resolved by these techniques [Toomey et al.,
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1990; Caress et al., 1992; Wilcock, 1992]. We assumed a density contrast of 3-35 kg/m 3

between the AMC root and the surrounding layer 3 crust; this represents a 1-14% partial

melt fraction beneath the mush zone if the melt density is 2700 kg/m 3 and the matrix

density is 2950 kg/m 3. With the assumptions described above and summarized in Table

6.1 and Figure 6.1, we determined that the crust is in local isostatic equilibrium, with a

depth of compensation at the base of the crust.

Table 6.1: Values Used in Isostatic Calculation

'0 km' column: '1 km' column: density

layer thickness (m) thickness (m) (kg/m3)

extrusives 150 300-450 2420

dikes 1350 1350 2760

'normal' layer 3 0 5150-5300 2950

melt lens 50 0 2700

mush zone 1000 0 2850

AMC root 4100-4250 0 2915-2947

mantle 150-300 0 3270

total 6950 6950

The isostatic calculations suggest that a model with the magma chamber controlling the

amount of dike subsidence is not unreasonable, where we define the magma chamber as

the melt lens and underlying mush zone. The primary implication of this model is that

dikes will subside to a greater depth for a robust magma chamber than for a weaker magma

chamber. In addition, isostasy requires that the buoyancy forces associated with the

magma chamber must be balanced by either the addition of low-density material (i.e.

extrusives) to the crust, or seafloor subsidence, as the crust is translated laterally. Since

bathymetry profiles indicate that seafloor subsidence is only -20 m within 1 km of the

ASC, this suggests that extrusive thickening is associated with the dike subsidence. This
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in turn implies that a robust magma chamber will produce a thicker extrusive layer (and

transition zone) and greater dike subsidence than a weaker magma chamber.

With this model for dike subsidence, we can gain additional insight into the

emplacement processes at the EPR. A prominent feature of the shallow crust in the

90 20'N-90 50'N region is that layer 2A is -50% thinner (250 m vs. 450 m) on a cross-axis

WAP line near 90 35'N than on four adjacent MCS lines. This implies that there has

consistently been 50% less subsidence of the sheeted dikes in the 90 35'N region over at

least the past 175,000-275,000 yrs (based on the length of the MCS and wide-angle

profiles). The disparity in the amount of dike subsidence would therefore suggest that the

magma chamber near 90 35'N has been considerably weaker, for an extended period of

time, than for the rest of the rise axis in the 90 20'N-9 0 50'N area. This is consistent with

available MCS data, which indicates that the present-day width of the AMC reflector is

only 250 m near 90 35'N, as compared to 500-4150 m along the rest of the rise crest from

80 50'N-90 50'N [Kent et al., 1993a; Kent et al., 1993b]. Scheirer and McDonald [1993]

argue that variation in cross-sectional area of the axial ridge correlates with differences in

the volume of melt within the crust and mantle within about 10 km of the rise axis.

Therefore, a decrease in cross-sectional area might be expected near 90 35'N; however, no

significant variability is observed (Figure 5.22). This suggests that the volume of low-

density mantle material is essentially constant along the ridge segment, but that efficient

delivery of melt to a crustal magma chamber has been impeded near the 90 35'N deval for

the past 350,000 years. Along-axis MCS [Harding et al., 1993], WAP [Vera and Diebold,

1993], and conventional airgun refraction data show no significant variation in zero-age

layer 2A thickness near 90 35'N, in contrast to the 50% thickness decrease observed outside

of the neovolcanic zone from 90 30'N to 90 35'N. This implies that the extrusive volume

emplaced at zero-age crust along this ridge segment is relatively constant despite variability

in magma chamber dimensions. One possibility is that the plumbing system for a narrow
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melt lens directs dikes primarily into the ASC, while for a wider melt lens eruptions occur

both within and outside of the ASC (Figure 6.2).

The magma chamber along the EPR near 130N is generally believed to be smaller in

comparison to 90 N, based on the decrease in cross-sectional area [Macdonald and Fox,

1988] and gravity anomaly [Madsen et al., 1993] at the northern site. Thus we would

expect to observe a decrease in extrusive thickness and in the amount of dike subsidence

from the 9°N region to the 130N region. This hypothesis is not inconsistent with seismic

data, which indicates that the depth to the layer 2A/2B boundary is -300-400 m below the

seafloor near 130 N [Harding et al., 1989; Kappus, 1991], in contrast to a depth of -400-

500 m [Harding et al., 1993] near 90 N. Along-axis MCS and WAP data demonstrates that

the thickness of layer 2A for zero-age crust is -200 m in both regions [Kappus, 1991;

Harding et al., 1993], again suggesting that the volume of extrusives emplaced within the

ASC is largely independent of magma chamber dimension. Estimates of layer 2A

thicknesses have also been obtained on the EPR near 14015'S (-7.5 cmlyr half spreading

rate). Similar to the EPR at 90 N, the depth to the base of layer 2A at this location increases

from -200-250 m to -500-600 m within 1-2 km of the rise axis [Kent et al., 1993c],

implying that magma chamber dimensions are comparable for the two regions, even though

the spreading rates differ by 35%. Indeed, no systematic change in melt lens width is

observed between the two areas in MCS data [Kent et al., 1993c]. At the southern EPR,

there is little variability outside the neovolcanic zone in layer 2A thickness on cross-axis

MCS profiles, which would indicate that the magma chamber size has been relatively

constant for the past 130,000 years. In contrast, the depth to the base of layer 2A outside

of the neovolcanic zone varies by several hundreds of meters on cross-axis MCS profiles at

the northern EPR, suggesting that changes in magma chamber size occur more frequently

as spreading rate decreases.
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Intermediate-Spreading Ridges

The layer 2A/2B boundary at intermediate-spreading ridges has generally been

interpreted as a porosity boundary within the extrusive section, primarily because of the

discrepancy between the average thickness of layer 2A (-400-600 m) and the depth to the

top of the sheeted dike complex at Hole 504B (-800 m) [Rohr et al., 1988; White and

Clowes, 1990; Cudrak and Clowes, 1993]. Deeptow magnetic data indicate that

seismically defined layer 2A thicknesses correlate quite well with magnetic source layer

thicknesses at the Endeavour, Cleft, and Vance segments of the Juan de Fuca Ridge

[Tivey, 1993; Tivey and Johnson, 1993]. In addition, a study of the Blanco scarp (also

located on the Juan de Fuca Ridge) found excellent agreement between a decrease in

magnetization and the top of the sheeted dikes, suggesting that the extrusive section and

transition zone form the magnetic source layer [Naidoo et al., 1992; Tivey, 1992]. Thus

the magnetic data indicates a correlation between the magnetic source layer, seismic layer

2A, and the extrusive section and transition zone at the Juan de Fuca Ridge. If the layer

2A/2B boundary does represent the top of the sheeted dike complex at intermediate-

spreading ridges, then seismic refraction data argues that the average depth to the sheeted

dikes is 400±200 m [White and Clowes, 1990; Cudrak and Clowes, 1993; McDonald et

al., 1993]. The similarity in layer 2A thicknesses between the intermediate spreading Juan

de Fuca Ridge and the fast-spreading East Pacific Rise suggests that magma chamber

dimensions are similar at these two ridges. However, this is speculative, as there are few

constraints on the emplacement process at the rise axis. The layer 2A reflector in MCS data

is absent at the rise crest [Rohr et al., 1988], and the geometry of the seismic refraction

experiments shot to date have not been designed to resolve rapid variability in shallow

structure. Inversions of deep-tow magnetic data from two of three segments surveyed at

the Juan de Fuca Ridge indicate a thinning of the magnetic source layer, interpreted to be

the extrusive section [Tivey, 1993; Tivey and Johnson, 1993]. This is consistent with dike

subsidence at the rise axis. Kappel and Ryan [1986] have suggested that volcanic
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processes at intermediate spreading centers are episodic in nature, with a period of

accretion alternating with a period of extension. We speculate that during the accretion

cycle, a large volume of extrusives are emplaced from a robust magma chamber (Figure

6.3). This is followed by a cycle in which a large magma chamber is not present, and few

extrusives are emplaced.

Future Work

Recent seismic studies have greatly increased our understanding of the process of

volcanic emplacement at the fast-spreading East Pacific Rise. However, with the exception

of Hole 504B, there has been no correlation of seismic structure with lithology. The

primary disadvantage with using a drill hole to ground truth seismic velocities is that the

seismic wavelength is on the order of several hundred meters, but the lithology is only

observed in a small diameter core sample. Submersible observations at both the Blanco

scarp [Naidoo et al., 1992] and Hess Deep [Francheteau et al., 1992; Karson et al., 1992]

have mapped the top of the sheeted dike sequence, and thus seismic experiments at either

location could directly link velocity structure to lithology and determine the nature of the

layer 2A/2B boundary. These locations have the advantage that two-dimensional

variability can be followed for several kilometers. The thickness of the extrusive layer and

transition zone at Hess Deep and the Blanco scarp differ by more than a factor of three (350

m vs. 1250 m) [Francheteau et al., 1992; Naidoo et al., 1992], and a comparison of

velocity structure at the two locations could ascertain if layer 2B velocity is dependent on

the thickness of layer 2A.

The shallow structure of intermediate-spreading ridges is not as well resolved as at the

fast-spreading EPR. Seismic refraction and reflection data constrain the average extrusive

thickness at the intermediate-spreading Juan de Fuca Ridge to be ~400 m, and suggest that

thickness variability is greater than observed on the EPR. However, no study has mapped

the base of layer 2A across the rise axis, which would provide better understanding of
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emplacement processes within the neovolcanic zone. Rohr et al. [1988] have imaged the

layer 2A reflector in a cross-axis MCS line, but it is intermittent in nature at the rise crest.

The twin factors of streamer length and scattering from rough topography are probably

contributing to their inability to continuously image the base of layer 2A. Additional MCS

data, using the 4 km streamer presently available on the R/V Maurice Ewing, could

probably produce a better image of layer 2A, and constrain the geometry of dike

subsidence. Alternatively, a series of on-bottom refraction lines or a conventional airgun

survey to a dense grid of receivers could be used to map variability in the depth to the layer

2A/2B boundary.

In contrast to fast-spreading and intermediate-spreading ridges, there are virtually no

good constraints on the thickness of layer 2A at slow-spreading centers. At one location

Purdy and Detrick [1986] do measure a 450 m thick surficial low-velocity layer, but it is

underlain by no obvious layer 2A/2B boundary. Smith and Cann [1992] speculate that the

sheeted dike complex at slow-spreading centers could be almost non-existent if the

extrusive layer is built from a succession of small magma bodies, which might account for

the lack of a prominent layer 2A/2B boundary. However, it is not at all certain that the

shallow structure is fundamentally different from faster spreading-rate ridges. A series of

on-bottom refraction experiments, complemented with conventional airgun refraction data,

could test the Smith and Cann [1992] model by determining if a systematic stratigraphy is

present similar to that observed on intermediate- and fast-spreading ridges.

In summary, knowledge of shallow crustal structure is the key to understanding

emplacement processes at mid-ocean ridges. Seismic studies at the fast-spreading East

Pacific Rise indicate that each technique has advantages and disadvantages. On-bottom

seismic refraction experiments can provide high-resolution determinations of upper crustal

velocities, but only for limited areas. Conventional airgun refraction studies can extend the

velocity structure to a larger region, at the expense of resolution. Multi-channel seismic

and wide-angle profile data can map horizons in the shallow crust over large areas, but
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require good velocity information to be properly interpreted. Future work can ground truth

seismic observations with observed lithology, and expand our knowledge of emplacement

processes to intermediate-spreading and slow-spreading ridges.
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Figure 6.1. (a) Composite magma chamber model of Sinton and Detrick [1992], modified

to include rapid thickening of the volcanic layer. (b) Density values (in kg/m 3) associated

with the model pictured in Figure 6. l a. The location of the isostasy calculations are

indicated by the heavy vertical lines.
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Figure 6.2. Schematic illustrating emplacement processes associated with a robust and a

weak magma chamber. (a) Weak magma chamber. Dike injection primarily occurs in a

narrow zone centered over the melt lens. (b) Robust magma chamber. Dike subsidence is

greater than for (a). Compared to the weak magma chamber, dike injection occurs over a

wider region, emplacing a greater proportion of extrusives outside the axial summit caldera.
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Figure 6.3. Schematic illustrating episodic nature of emplacement processes at an

intermediate-spreading center, based on the model of Kappel and Ryan [1986]. (a) Robust

magma chamber, similar in dimension to that believed to exist at a fast-spreading center.

There is a considerable amount of dike subsidence. (b) Phase of volcanic inactivity. No

larger magma chamber is present. (c) Renewed cycle of accretion.
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