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ABSTRACT

Computational experiments have been performed on seosmic data digitized
from the records obtained by the Air Force during the Logan and Blanca
underground nuclear shots, by Dr. Bruce Bogert in New Jersey and by the
Wichita Mountain Seismic Observatory.

The experiments indicate that microseismic noise of about .3 cps fre-
quency is associated with the oceans but the higher frequenoies are not.
Attempts to identify definite wave types, such as Rayleigh and Love waves,
and to follow wave packets from station to station failed, but the failure
illustrated the complexity of the microseisms and points out %he necessity
of a statistical study.

For the statistical studies the microseisms were considered to be
stochastic time series. It was found that the probability densitios of
the amplitudes wre Gaussian and were not independent. Spectral analysis
showed the typical microseism spectrum to have a maximum at about .3 cps
and often other strong bands at 1.4 and 2 cps.

The microseism time series are approximately *sationary and can be
described as a moving average operation. Thus they can be generated by
a convolution of a minimum phase wavelet with a white light series. The
wavelet is found for typical data by factorization of the power spectrum
and the white light series is obtained by convolution of the inverse
minimum phase wavelet with the noise data. Tests on the white light
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series indicate that its probability density is approximately Gaussian

and that it is approximately independent. Hence non-linear operators

or filters are not particularly useful in microseism studies.

Cross correlation and cross spectra between different components of

data at the same station, like components at different stations and

array data have been computed. It was not possible to identify indi-

vidual wave types or directions of travel with any degree of certainty.

Prediction studies of microseisms have been done to try to improve

the signal to noise ratio during the first motion interval. The mean

squared error technique and the spectrum factorization technique have

been used. The spectrum factorization is found to be superior because

long operators can be more readily obtained. However, one can predict

at best about 50% of the energy which is not sufficient to produce a

significant improvement in the signal to noise ratio. Indications are

that other prediction techniques will not give much better results.

Artificial microseisms generated by convolution of a typical microseism

wavelet with Gaussian white has been used in a computer simulation of a

detection system. The system is an energy detector which detects events

in microseismic noise. The system is studied in terms of false alarm

rate and failure to detect rate. Overall system effectiveness is given

in terms of false alarms per hour as function of signal to noise ratio

for a 95% probability of detection success. The system characteristics

are found to be essentially invariant when the inputs are band pass

filtered. The simple band pass filter can in some cases give signifi-

cant signal to noise ratio improvement.

Details of the statistical tests and computer programs are given

along with an approximate solution to a non-linear water wave problem

related to microseism generation. The solution, which uses DeVorkin's

representation scheme, is for arbitrary initial conditions and shows

that sum and difference frequencies of all the frequencies present

initially will be generated.

Thesis Supervisor: Stephen M. Simpson, Jr.

Title: Associate Professor of Geophysics
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INTRODUCTION

Need to Study Noise

The disarmament talks at Geneva and the need for a surveilance net-

work to detect and report the testing of nuclear devices, particularly

underground testing, have put new emphasis on the field of Seismology.

Government support in this area has made possible much research into

the nature of seismic disturbances and instrumentation for detecting

them. The present thesis was supported by the Advanced Research Projects

Agency under the Vela Uniform Project contract AF 19(604)7378. The con-

tract covers the digitization of the paper records from the Logan and

Blanca shots of the 1958 Hardtack series, investigation of ways to improve

the signal to noise ratio, particularly in the first motion interval, and

investigation of the properties of bomb and earthquake signals.

Definition of Microseisms

Essential to the problem of signal detection and signal to noise

ratio improvement is an understanding of the natures of both the signal

and the noise. This thesis will deal mainly with the properties of the

noise. A definition of what is meant by noise is necessary since in many

cases what is noise to one man is signal to another. In the context of

this thesis any ground motion not associated with definite bomb or earth-

quake signals, motion which is present at all times, will be considered

noise and will be called microseisms or microseismic noise.

The study of microseisms dates back about 100 years to the pendulum

measurements of an Italian monk, Bertelli (Haq, 1954). Only very



qualitative conclusions which generalized the data could be made, but

it was obvious from study of Bertelli and others that the surface of

the earth was in a state of oscillation. This "sea" of elastic waves

came under the scrutiny of other observers who were interested in the

causes of the disturbances. Wiechert (1905) suggested that microseisms

were generated by the impact of surf on a steep coast. Gutenburg (1912)

noted a correlation of microseisms with 4 to 8 second periods with surf

and wind direction. Ramirez (1940) studied the physical properties of

microseismic waves, the velocity, direction of travel and particle

motion, with a tripartate or triangular arrangement of three component

instruments. He found that the properties of these waves were fairly

consistent with those of Rayleigh and Love waves.

Sources of Microseisms

Observers noted that the microseisms and sea waves seemed to be

connected, and, in some cases, the periods of the sea waves were twice

the period of the microseisms. However, the idea that sea waves produced

microseisms was hard to justify theoretically since pressure variations

due to travelling water waves die out exponentually with depth and are

nearly zero within a wave length. Miche (1944) showed that there is a

pressure fluctuation under a standing wave which is unattenuated with

depth (for incompressible fluids), and its frequency is twice that of

the sea wave. Longuet-Higgins (1950) realized that this was what was

needed to explain the observations. He also showed that the mechanism

could account for the energy of the observed microseisms. The presence

of an unattenuated double frequency variation is demonstrated by Longuet-



Higgins in a small parameter expansion approximation to the solution of

the non-linear equations for the pressure variations at the bottom of

a layer of water with a rigid lower boundary and a standing wave on the

t6p. Another method of approximation for this type of problem using a

representation scheme for the solution of non-linear equations worked

out by DeVorkin (1963) is given in Appendix A. It illustrates that the

sum and difference frequencies of all frequencies present initially are

expedted to develop.

The microseisms with periods from 4 to 12 seconds are generally attri-

buted to ocean waves and recourse to the theory of Longuet-Higgins can

be made for their explanation although there is still controversy on

the matter. The data which has been used in this thesis was recorded

with a Benioff short period instrument so that only the shortest period

oceanic microseisms come through. Microseisms of higher frequency

than the oceanic band are usually attributed to wind and meteorological

factors or are thought to be cultural noise. Typical noise sources are

swaying trees and buildings, storms, city traffic, heavy machinery,

power plants, trains etc.

This brief allusion to the history of the study of microseisms does

not give a feeling for the enormous amount of work which has been done

in this area. (See Haq, 1954, for a fuller account and references.)

A great deal of the work has been concerned with microseism generation

mechanisms, surface wave propagation and particle motion, and studies

of the direction of propagations and their relation to storms. Nearly all

of these studies consider microseisms as a signal. This thesis for the most
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part considers microseisms as noise. The main object is to treat the

microseisms from a statistical point of view and try to describe them

so that something can be done about them rather than with them. To

this goal, the tools of statistical analysis have been brought forward

and applied with the aid of high speed digital computers.

We shall see that 4 few examples which treat the microseisms as sig-

nals will suffice to point out the nbed for a more general description

of the noise. It is obvious that that time series analysis can be applied

to the study of microseisms, but stronger and more useful statements

can be made about the time series if it can be shown that they are

stationary or, better still, ergodic. We must therefore test the micro-

seisms to see if they fall into one or more of these special categories

of time series. Spectral analysis, probability studies and independence

tests are some of the techniques which aid in the classification of

microseisms.

The proper mathematichl description of microseisms can also be the

key to the optimum prediction problem, and will permit the study of the

predictability of microseisms. We shall see that prediction can be

used in some cases to reduce the noise level and therefore, if a signal-

is also present, improve the signal to noise ratio. The amount of im-

provement is of course dependent on the predictability of the noise.

A good mathematical model of microseismic noise will also permit us

to generate the noise artificially. This artificial noise is extremely

useful when long sections of continuous noise are required, and is therefore

necessary when we simulate by computer a system to detect events in micro-

seismic noise.



Outline

The thesis is divided into four chapters. The first deals with the

basic statistics of the data on which the present studies are based.

It includes a description of the data and how it was recorded as well

as amplitude studies, auto and cross spectra, empirical probability

density functions, and a mathematical model for noise generation.

Chapter two discusses the prediction of the noise by different

methods and then applies this to the problem of the determination

of the direction of first motion of a signal in the noise. Improve-

ment with non-linear predictors is also considered.

In chapter three an automatic system for the detection of signals

in microseismic noise is proposed and the results of a computer simula-

tion of this system are given in terms of detection probabilities and

false alarm rates for filtered and unfiltered inputs.

Chapter four is a summary which restates the major conclusions.

Details of some analyses and the computer programs used are left

for the Appendices.



1. BASIC STATISTICAL STUDIES

1.1 Empirical Data

Data Sources - Noise before and Noise after Events

The data which forms the basis for most of the computational studies

described in this thesis are the seismic records of the Logan (5 KT)

and Blanca (19KT) underground nuclear shots of the 1958 Hardtack series

(Romney, 1959). These were recorded by the U. S. Air Force at 28

temporary stations set up across the United States as shown in Figure

1.1.1. The instruments used were short period Benioffs with galvanometer

periods (T ) of .20 seconds. Most stations were equipped with a ver-

tical instrument (up-down) and two horizontals,a "toward-away" and a

"right-left". These designations are with respect to an observer

standing at the shot point looking at the station. The vertical and

horizontal instrument responses are the same and are shown in Figures

1.1.2 and 1.1.3 (Geotechnical Corp., 1961). The paper records from

these shots were provided by the Air Force and were digitized at 20

samples per second. In no case were the paper records for an entire

drum revolution provided so that the greatest time interval of con-

tinuous record available was on the order of a few minutes. For this

reason the noise records which have been digitized are labeled "Noise

Before" and "Noise After" with the appropriate shot, distance from shot

and component. Noise before refers to the trace on the paper record

which is just above the signal trace, and is therefore one drum revolution



time before the shot. Noise after is the trace just below the signal

trace. A copy of one of the original paper records which was digitized

is shown in Figure 1.1.4, and a plot of the corresponding digitized

record is shown in Figures 1.1.5 to 1.1.7. Figures 1.1.5 to 1.1.7 have

been plotted by computer program using the oscilloscope attached to the

IBM 7090 computer at the M.I.T. Computation Center. These graphs, and

many of the others appearing in later sections, have been plotted as

histograms. In several cases, particularly the spectral computations,

the values plotted are averages or estimates over some range so that

there is no justification for interpolation and the histogram is the

predered method of presentation.

Logan and Blanca Digitization Procedure

The records were broken up into sections and each section was

digitized separately. This procedure can lead to some error since each

section could have a linear trend. This was compensated for by re-

moving the best fitting (in the least squares sense) segmented line

from the entire record, where each segment is the length of a section.

The digitization accuracy is good to a few percent, and the gain

values supplied with the original records are quite good, but the actual

ground motion values may be off by as much as 15 percent.

Other digitized data has been provided by Dr. Bruce Bogert of the

Bell Telephone Laboratories, who has a short period vertical Benioff' at

Cherry Hill Park, New Jersey, and by United Electro Dynamics, Inc., who

have digitized the records from the WMSO station in Oklahoma. Dr. Bogert's

Benioff has a response similar to that of the Hardtack instruments, but its
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low frequency cut off is somewhat higher (Bogert, 1961), Figure 1.1.8.

The WMSO station is a linear array of vertical Benioffs with the same

response as the Hardtack instruments.

A list of our record numbers appropos to this thesis and the event

and station to which they correspond, is given in Table 1.1.1.



TABLE 1.1.1

RECORD NUMBER

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1026

1027

1028

1029

1030

1031

204

233

301

303

305

307

309

DESCRIPTION

NOISE BEFORE

NOISE AFTER

NOISE BEFORE

NOISE AFTER

NOISE BEFORE

NOISE AFTER

NOISE BEFORE

NOISE AFTER

NOISE BEFORE

NOISE AFTER

NOISE BEFORE

NOISE AFTER

NOISE BEFORE

NOISE AFTER

NOISE BEFORE

NOISE AFTER

NOISE BEFORE

NOISE AFTER

CHERRY HILL

CHERRY HILL

WMSO L9 NOI

WMSO

WMSO

WMSO

WMSO

LOGAN

LOGAN

LOGAN

LOGAN

LOGAN

LOGAN

LOGAN

LOGAN

LOGAN

LOGAN

LOGAN

LOGAN

BLANCA

BLANCA

BLANCA

BLANCA

BLANCA

BLANCA

1902

1902

1902

1902

1902

1902

2111

2111

2111

2111

2111

2111

1610

1610

1610

1610

1610

1610

KM.,

KM.,

KMe

KMo,

KM.,

KM.,

KM.,

KM.,

KM,

KM.,

KM.,

KMe,

KM.,

KM.,

KM,9

KM,

KM.,

KM.,

PARK 4, NOISE

PARK 31, NOISE

SE BEFORE CALIF.

L7, NOISE BEFORE

L5 NOISE BEFORE

L39 NOISE BEFORE

L1, NOISE BEFORE

CALIF.

CALIF.

CALIF.

CALIF.

LEFT

LEFT

UP

UP

TOWARD

TOWARD

LEFT

LEFT

UP

UP

TOWARD

TOWARD

LEFT

LEFT

UP

UP

AWAY

AWAY

SAMPLES/SEC.

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

9.0909

9*0909

E*Q. JUNE 20, 1962 20

E.Q. JUNE 20, 1962 20

E.Q. JUNE 20, 1962 20

E*Q. JUNE 20o 1962 20

E*Q. JUNE 20, 1962 20
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1.2 Elementary Properties

We shall briefly consider the microseisms as a signal in a few

somewhat naive computational experiments which will suffice to make

apparent the need for a more general approach to the study of microseisms

which can be provided by statistical techniques.

The first experiment, which is concerned with microseism amplitudes,

has some bearing on microseism sources and the results are in agreement

with those obtained by others. The second set of experiments deals with

the identification of wave types, specifically Rayleigh and Love waves,

in the microseisms. As we shall see this set of experiments failed

badly because of the simplicity of the model which is used and the

complexity of the microseisms themselves.

Microseism Amplitude Studies

Some studies have been made on the amplitudes at two frequencies of

the noise from the Logan and Blanca records to determine the change in

amplitude with distance from an ocean. If the microseisms, at the fre-

quencies in question, are of oceanic origin, there should be a definite

decrease in amplitude with distance from the coast. The frequencies and

amplitudes were estimated directly from the paper records. The approxi-

mate frequency values were obtained by counting peaks over a minute or

more of record. On almost all the records, the noise appeared to have

two distinct frequencies, one at about .3 cycles/second, and the other

near 2 cycles/second. Approximate peak amplitudes were measured on the

records and averaged over several cycles of the frequency of interest.

An attempt was made to choose an average noise trace before the shot.

illl*Y III



A plot was then made of amplitude versus distance from the Atlantic or

Pacific coast (whichever was closer) for both frequencies. These graphs

appear in Figures 1.2.1 and 1.2.2 for Logan and Blanca respectively.

We can see from these figures that for low frequency the noise de-

creases for inland stations, but for the higher frequency there is no

systematic trend. The increase in amplitude of the low frequency com-

ponent at about 1400 km from a coast may be due to microseisms from

the Gulf of Mexico. These rather rough quantitative results are as

expected, since the low frequencies are usually assumed to be caused

by ocean waves and the high frequencies are attributed to local sources,

and are not correlated with the distance from the coast.

It is interesting to note that the rough computation of the fre-

quencies involved is supported by detailed spectral analysis. Figures

1.3.6 to 1.3.9 show spectra of some of the noise and it can be seen that

the important frequencies are at about .3 cps, 1.4 cps and 2 cps for

the Logan and Blanca records.

Rayleigh and Love Wave Experiments

Much of the energy in microseismic noise has been attributed to

surface waves of the Rayleigh and Love wave types. Studies by several

observers mentioned in the introduction have indicated the presence of

these waves in the 4 to 8 second period range. The spectrum of noise

from Logan, Blanca and Cherry Hill Park records which appear in Figures

1.3.6 to 1.3.9 show spectral lines with most of the energy concentrated

in fairly narrow bands. The low frequency peak, as was mentioned before,

is a bit artificial, since it is the high frequency end of the oceanic



microseism band with the low end cut off by the Benioff response. We

might well suppose that this peak is composed of Rayleigh waves. The

higher frequency lines may also be Rayleigh waves but of a non-oceanic

origin. The Cherry Hill Park records in Figure 1.3.9 are remarkably

similar, with rather narrow bands, even though they were taken three

months apart, and one would like to investigate the important fre-

quencies to identify wave types. Unfortunately, there are no horizontal

recordings available and thus no study of this nature can be done. How-

ever, the Logan and Blanca records are three component and some attempt

has been made at wave type identification. The spectra of these

records, Figures 1.3.6 to 1.3.9, show in general more energy in the

horizontal components at high frequency than in the vertical component.

This suggests that the higher frequency noise, 1.4 cps and 2 cps, may be

Love waves, and the possibility that the lower frequency energy is due

to oceanic microseisms is still present.

Rayleigh waves are a special combination of P waves and S-V waves

which confine all particle motion to a plane defined by the vertical

and the direction of travel of the waves. For a single frequency the

partical motion is retrograde elliptical. Assuming, therefore, that

we have a single Rayleigh wave of a single frequency, we can resolve the

horizontal components of motion into a new coordinate system which is

rotated with respect to the original seismometer coordinate systems such

that all horizontal motion is along one axis, the X" axis. This axis

then determines the direction of travel of the wave, but not the sense

of the direction. The sense can be determined from the resolved hori-

zontal, X", and the vertical, Z", components. Since the partical motion
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is retrograde elliptical, X" must lead Z" by 900 for the wave to be

travelling in the positive X" direction. A plot of X" against Z" should

be an ellipse with its X" intercept almost 2/3 of its Z" intercept.

Records 2000, 1002 and 1004, the noise before the Logan shot 1902 km

from the shot point, form a three component set and therefore can be

checked in the manner described for a Rayleigh wave component. All

three records were band pass filtered with a filter of width .08 cps

centered at .255 cps. This frequency corresponds to the maximum of the

spectrum and is possibly attributable to Rayleigh waves from oceanic

sources. The two horizontal components were plotted against each other

and a line fitted to the plot. The plot was fairly scattered so that

the fit of the line was quite poor. The horizontal to vertical

component power ratio after rotation was only 5 which is not correct for

Rayleigh waves. If the plot fell exactly on a straight line the ratio

after rotation would be zero. The indication is that the plot was not

even close to a straight line. The resolved horizontal component was

then plotted against the vertical and an ellipse was fitted to the

resulting curve. This plot was the best fitting ellipse superposed

is shown in Figure 1.2.7. The ellipse in this figure is a very poor

fit and it is not possible to reconcile these results with the single

Rayleigh wave hypothesis. This does not mean that the low frequency

peaks are not Rayleigh waves. Presence of two or more Rayleigh waves

from different sources could explain the lack of a linear relationship

between the horizontal components and the poorly fitting ellipse to the

horizontal versus vertical plot. We might note, however, that some of

the motions shown in Figure 4.2.1 are relatively elliptical, but with



tilted axes. Examination. of the spectra (Figures 1.3.6 to 1.3.8) shows

relatively more power in the vertical at .255 cps than we would expect

on the Rayleigh wave hypothesis, but this could be explained by a mis-

match of seismometer characteristics.

A test for the presence of Love waves was also performed on this

data. The peak at about 2 cps was of interest here, since there was

relatively more power in the horizontal than in the vertical. For a

single Love wave we would again expect that a plot of the horizontal

components would fall on a straight line. This was not the case, how-

ever, for a band width of about .08 cps centered at 2.05 cps. It is

most probable that either Love or Rayleigh waves from a single source

do not occur, or the band width used is too wide to see them. Cross

correlation experiments could be most useful here, since the equivalent

band width is the Daniell window width and the phase at each window

width may be easily checked. For Rayleigh waves, we expect the hori-

zontal to be in phase, but 900 out of phase with the vertical. For

Love waves the horizontal should again be in phase, but there should be

very little energy in the vertical component.

The failure of these two experiments does not eliminate the possibility

of the existence of Rayleigh and Love waves at the frequencies considered,

but it does illustrate the complicated nature of the noise. The suggestion

is, therefore, that the structure of the microseisms is too complex to be

handled by simple deterministic models. Rather than introduce more com-

plicated models which require an enormous amount of labor to fit to the

data, we shall consider the microseisms as stochastic time series and

treat them from the statistical point of view.

I



Apparent Stationarity

The majority of the results of time series analysis are applicable

to stationary time series, that is, series whose probability densities

are not dependent on absolute time. If in a time series the probability,

1,(Xj;t cX(I , that is in the interval (,)Xi-+, at time t

is the same for all t , and if the probability P (x. t t,j)tthat

at time tr , is in the interval ( MX.),+txJ and at time t2, 21

is in the interval (X X)X+cLXx.) is dependent only on the time separa-

tion -C t= -ti and not on absolute time, the time series is said

to be wide sense stationary. If all higher densities P X

t~,t ,,, are also independent of absolute time and dependent

only on t j -.t the series is strictly stationary.

It is obvious that microseism records are not stationary over long

periods of time since microseism activity is strongly influenced by

meteorological conditions. Over short periods of time, however, when

there have been no great changes in the generating mechanisms for

microseisms, the records can be considered stationary. For our pur-

poses we need only be concerned with stationarity over the few hours

necessary to record the shot signal and noise before and after the signal.

We now consider an ensemble or group of time series lined up one beneath

the other each with the same first and second probability densities.

We arbitrarily label time on these series so that a vertical line strikes

each time series at the same time. The ensemble can be constructed by

breaking up a long time series into smaller pieces and considering each

piece as a member of the ensemble. In the case of microseismic noise,

the noise before and the noise after the event can be considered as two

members of the ensemble. We wish then to see if the probability densities



are approximately the same for these ensemble members. We can do this

computing directly the probability densities, but this becomes a lengthy

process for the second density, (X, t 1) ) and it is

worse for the higher densities. If we are only interested in wide sense

stationarity we can consider time and ensemble averages and, assuming

that the ensemble is ergodic, equate these averages. The ensemble

average of at time ij and at time t, is

The time average is

T

Ave Lim (t y) <4't

-T

We note that the time average is the autocorrelation and that the

Fourier transform of the autocorrelation is the power density spectrum

(see section 1.3). Hence, under the ergodic hypothesis, the constancy

of the spectral density in time reflects the wide-sense stationarity

of the time series. Spectral density computations have been performed

on the noise before and noise after the shot and the results are shown

in Figures 1.3.6 to 1.3.8. One can easily see that the general character

of the spectrum does not change much over a period of time representing

two drum revolutions of the Benioff. This strongly suggests that the

microseisms are, for our purposes wide-sense stationary.



Mean and Variance

Time series analysis simplifies to some extent if the series have

zero mean and unit variance. The digitized records had the best least

squares fitting segmented mean line removed, but this does not guarantee

that the mean is zero. The mean is, however, quite small and can usually

be considered zero. It can easily be computed and subtracted off if

necessary. The variance of the records is not unity and no scaling has

been done to make it so.

Amplitude Distribution and Normality Test

The amplitude distribution of the records can easily be computed and,

given the mean and standard deviation (square root of the variance), the

corresponding normal distribution can be found and compared with the

empirical amplitude distribution. Appendix B gives a flow graph of the

necessary steps in tie comparison of the distributions and the programs

necessary. Appendix G contains listings of the programs. The comparison

is done by finding the values along the x axis which divide the appro-

priate normal density (given mean and standard deviation) into sections

of equal area (equal probability). A count is then made of the number

of amplitude values which fall into each section. The chi square com-

parison measure is then

L ( - Z "

where there are L sections and A/amplitude data points, P= IIL , and N1

is the number of points which fall in the section. There are L-3



degrees of freedom since the mean and standard deviation are used to

determine the appropriate Gaussian. The chi square measure thus de-

fined is chi square distributed and its expected value depends only on

(Cramer, 1946). The probability P () of exceeding V' is the

quantity of importance in comparison. Acceptance regions for X2 are

generally set so that P(X) > .1 or .01. Comparisons were made be-

tween empirical and normal probability densities for all the Logan and

Blanca noise records listed in Table 1.1.1. The chi square test was

used as a measure of goodness of fit and the results are shown in

Table 1.4.1 in section 1.4. The probability of exceeding X2 varies con-

siderably and for the records shown only six or seven can be considered

normally distributed for this test. Figures 1.2.3 and 1.2.4 show some

of the empirical frequency ratio plots and Figures 1.2.5 and 1.2.6

show typical computer output from the normalcy and independence tests.

It can be seen from these figures that even though some of the den-

sities fail the X2 test, they look fairly Gaussian and to a rough approx-

imation may be considered normal.

(Note: If the alternate method of test for normality which is given

in section 1.4 is used, all records are found to be Gaussian.)

The independence tests are discussed further in section 1.4 and in

Appendix C. It is sufficient to say here that the amplitudes are not

independent.
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Figure 1.2.3 Frequency Ratios of Microseism Amplitudes
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Figure 1.2.4 Frequency Ratios of Microseism Amplitudes
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ANALYSIS OF AMPLITUDE DISTRIBUTION FOR RECORD 1005

COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES= 57
LENGTH OF SERIES= 3321
DEGREES OF FREEDOM= 54
MEAN OF SERIESm -0.22500189E-05
STANDARD DEVIATION* 0.14274400E-02

HIGHER CENTRAL MOMENTS
THIRD MOMENT= -0o19685886E-09
FOURTH MOMENT= 0.12106580E-10
FIFTH MOMENT= -0.12533012E-14
SIXTH MOMENT= 0.11494952E-15

EXPECTED COUNT= 58.2632

CHI-SQUARE= 0O62046965E 02
PROBABILITY OF EXCEEDING CHI-SQUARE= 0.21316E-00

POKER COUNT TEST RESULTS

HAND TYPE ACTUAL COUNT EXPECTED COUNT

BUST
1 PAIR
2 PAIR
3 OF A KIND
FULL HOUSE
STRAIGHT
4 OF A KIND
5 OF A KIND

MEAN SQUARE CONTINGENCY=

DEPENDENCY MEASURE= 0

35
138
81
117
20
95
105
73

196*01280
334.65599
71.71200
47*80800
5.97600
4.78080
2*98800
0*06640

027838460E 01

.30931623E-00

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM
-0.47553504E-02 TO 0o45647645E-02. 3321 VALUES IN ALL*

1
4
7
8
7
2

0. 0. 1 0. 1s
?o 4s 4s 8. 12.
5. 16. 17o 24. 24.
8. 41. 43. 49. 51o
1. 66. 86. 74. 92.
9. 89. 79o 89. 73.
1. 63o 73o 60s 59.
6. 32. 28. 23. 15.
8. 7s 10. 4& 5.
3. 1* 1. 0. 1o

1.
11.
35.
65.
70.
88.
50.
15.
6.
2.

2.
9.

26.
63.
67o
76.
43.
17
4o
1.

4#
16.
32.
65.
98.
77a
44o
9.
4o
3.

Figure 1.2.5

1.
3.

19.
32o
73o
77s
88.
49s
15.
6.

1o
1o

14.
33
55.
74.
78o
33

6.
le



ANALYSIS OF AMPLITUDE DISTRIBUTION FOR RECORD 1026

COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES= 59
LENGTH OF SERIES= 3581
DEGREES OF FREEDOM= 56
MEAN OF SERIES= -0.37916552E-07
STANDARD DEVIATION= 0.13271835E-02

HIGHER CENTRAL MOMENTS
THIRD MOMENT= -0.84812047E-10
FOURTH MOMENT= 0O97164132E-11
FIFTH MOMENT= -0.29763772E-14
SIXTH MOMENT= 0.86117256E-16

EXPECTED COUNT= 60.6949

CHI-SQUARE* 010001674E 03
PROBABILITY OF EXCEEDING CHI-SQUARE= 0.15617E-03

POKER COUNT TEST RESULTS

HAND TYPE ACTUAL COUNT EXPECTED COUNT

BUST
1 PAIR
2 PAIR
3 OF A KIND
FULL HOUSE
STRAIGHT
4 OF A KIND
5 OF A KIND

MEAN SQUARE CONTINGENCY=

DEPENDENCY MEASURE= 0

38
159
133
111

8
84

112
71

211.36320
360.86399
77.32800
51.55200
6.44400
5.15520
3o22200
0.07160

0O23302333E 01

.25891481E-00

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM
-0o48722361E-02 TO 0.41697387E-02* 3581 VALUES IN ALL.

0.
4a
9.

29.
62.
97.
70o
36
21.
1

1
3
9
11
7
3
1

0. 0 0. 0. 3o
7. 1. 3. 5. 10.
2. 18. 11. 13o 9.
2. 38o 32. 48. 37.
4. 87. 101. 88. 81.
1. 127. 101. 117. 81.
7. 69. 63o 56. 54.
0* 34o 30. 42. 27.
1. 15. 8. 17. 2.
2. 4s 1 1. 3.

0.
1.

21.
54.
90.

115.
43s
30.
5s
1.I

0.
8.

31.
65.
91.
95.
67o
15.
5.
Il

Figure 1.2.6
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23o
51.

110.
60o
52.
23.
5.

2
2.

13.
27.
69.
94.
84.
52.
18.

So



Horizontal Motion

Figure 1.2.7 Results of Rayleigh Wave

Experiment on Records 1000, 1002 and

1004 with Best Fitting Ellipse.
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1.3 Correlation and Spectral Properties

Description of Random Functions - Correlation and Spectrum

The description of the spectrum of a random function, such as

microseismic noise as recorded on a seismogram, cannot be adequately

done by simple Fourier transformation since the Fourier transform

specifies the phase spectrum and immediately particularizes the function

thus setting it aside from all the other possible realizations of the

random process. In order to treat all the members of the ensemble

simultaneously we must make use of the Wiener theorem for autocorrelation.

The autocorrelation, , of a continuous time function

is defined as

GT

With a change of variables '= - we can see that (

The Wiener theorem then states that the power density spectrum (t) of

f(t) is the cosine transform of (t) (Lee, 1960).

We see that the autocorrelation has the effect of bringing all the phases

down to zero thus throwing away the phase information which pins down a

particular member of the ensemble.

The continuous infinite theory has its counterpart in discrete finite

time, but with some modification and some problems.



Digitization and Aliasing

Digitization or division into discrete time puts some restriction

on the description in the frequency domain. One must pay the price for

throwing away the information between the digitized points and that

price, as specified by the sampling theorem, is that one can only see

frequencies which are less than or equal to half the sampling rate.

If there are h samples per second we can only distinguish up to /2

cycles per second, the Nyquist frequency, which corresponds to a

radian frequency of J TI . If the data actually contain a frequency

higher than n/1 cps., say h/i +6, this frequency will be folded down

to h/ ',a , since cos(n-+) TCos(O-), and this process is called

aliasing. Thus if there are frequencies present higher than h/2 cps,

the spectral estimate at frequency f, (OC h/2)i s made up of fre-

quencies ) V(/2')f, (h) fl J'A (M/)1f M C Al A

and the spectrum loses meaning. One can avoid this problem by sampling

often enough to include all frequencies or by low pass filtering before

digitization.

Spectral Estimation - Daniell Window and Variance of Estimate

The fact that the data is known for a finite length of time requires

an assumption about the data outside of the interval in which it is known

since the autocorrelation ( ) involves this time. One usually

assumes that the data is zero outside this interval and the autocorrela-

tion must therefore go to zero when 'T equals the interval length.

This is the complete transient (Wiener) autocorrelation



t~ m IN X~ (-o)
L-O

where there are N data pointsj X,) ,., XN . Some methods of esti-

mating the autocorrelation such as the Tukey estimation try to compen-

sate for the fact that the data is zero outside L ib,., / by adding

weighting factors

where M is less than / (e.g. MfA /3'). The higher lag termS

( T large) are thus given more weight to compensate for the smaller

number of terms in the summation. This will, of course, result in a

biased estimate.

In any case the computed spectrum, c(l , is an estimate of

the true IuLw) and can be though of as a convolution of some weighing

function L\~W) with the true spectrum

where the asterisk denotes convolution. W(4) is then called the

spectral window (Blackman and Tukey, 1958). Ideally the spectral

window is rectangular and the convolution process will then move it

along the true spectrum and the estimate at W K 'g () L will be an

unweighted average of the true spectrum 1T ) from Kl44 to k/L4

OWN ~ ~ _ I



where 2A is the window width. Since convolution in one domain is

multiplication in the other, the Fourier transform of IT (

is T( /) f . ) where YT( ) is the true autocorrelation.

The spectral estimate which has been used to compute the spectra and

cross spectra shown in this thesis is the Daniell estimate. The Daniell

method uses the complete transient (Wiener) autocorrelation of the time

function Xt , t I Y,, Al

The Daniell spectral estimate (&.) is then

T: -(.-i)

where is the Daniell weighting function.

We note that the spectral window is not simply the Fourier transform

of the Daniell weight since ()is not the true autocorrelation. We

can, however, compute the spectral window if we choose a time function Xt

for which we know *rtW) (Simpson et al, 1961b). If the time func-

tion Xt is A/ points of a sine wave sin Wtt we know that I(w)

is a delta function (Cw) so that the spectral estimate becomes

~, ( tL ) A O / W) = \A/

Hence we compute the transient autocorrelation fIy) from the /I points



of the sine wave, weight this with the Daniell weighting function and

take the cosine transform as indicated in equation (1.3.1) to obtain

the overall spectral window for the computational process. This has

been done (Simpson et al 1961b, Appendix K) for LO,: 7T/~ which leads

to an X -, . ) and a correspondingly

simple autocorrelation function. It can be seen that the Daniell esti-

mate has parameters MA and IV , and therefore spectral windows were

computed for several different /V and Al values. A few examples of

the windows have been included in Figure 1.3.1 to 1.3.4 (Simpson et al,

1961b). These figures show that the windows are always non-negative,

they tend to get squarer as the MIN ratio decreases and they are

essentially non-oscillatory. The variance, go , of the Daniell

estimate has been worked out by E. A. Robinson (Simpson et al, 1961b,

1962a) and is

2.8 + 7TT S
where = \ and N is the number of data points. As an approximation

to this we have used

- VA



Figure 1.3.5 shows a plot of the Daniell spectrum (solid line) of a

typical noise record with dotted line denoting the approximate standard

deviation, cA , plotted above and below the solid line. The spectra are

plotted as histograms since the value at any one frequency is an estimate

averaged over the spectral window width. We note that / is the number

of spectral estimates between L3-O and 7T . One can then see that

the A//M ratio is an estimat of the number of cycles of a sine wave

which the data affords and therefore an increase in A//Al ratio (de-

crease in M/ ) means that one is looking at more cycles and can there-

fore make a better estimate of the frequency. This is, of course, just

the uncertainty principle.

Spectrum and Benioff Response

It is important to remember that the data was recorded on a Benioff

seismometer and that the spectrum we see is observed through the eye

of the Benioff. The apparent spike at low frequency, .25 cps, is

artificial since the Benioff cuts off the lows. The sharp cut off on

the low frequency side of the major low frequency feature in the spec-

trum of Figure 1.3.5 and other spectra in Figures 1.3.6 to 1.3.9 is a

result of the seismometer response and is not a real phenomenon. We

notice from Figure 1.3.2 that there is essentially no energy at frequencies

greater than 2.5 cps so that, with our sampline rate of 20 samples per

second, there is no problem with aliasing of frequencies.
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Figure 1.3 .4

Figure 1.3 **
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POWER DENSITY SPECTRUM OF RECORD 1000

0

E-4O

a4

Cd

Cycles Per Second Times 10

Figure 1.3.5

Spectrum of Record 1000 with standard deviation

plotted above and below the spectral estimate.
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Figure 1.3.9 Power Density Spectra of Records 204 and 233 (CHP 4 and CHP 31).
(Note: The spectra have different frequency scales.)
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1.4 Mathematical Generating Model for MicroseiRms

Stationary Time Series - Moving Summation and Decomposition

We have seen that microseismic noise can be considered at least as a

wide sense stationary time series. With an additional assumption of an

absolutely continuous spectral distribution (Doob, 1953) we can consider

that the time series is generated by a moving average or moving summation

which is written as a convolution. That is, the time series xcan be

generated by convolution of an uncorrelated or purely random series, T,

with a weighting function A/ .

= -CO

Since Tt is at least uncorrelated and may be purely random, it is

obvious that the autocorrelation of -t will simply be the autocorrelation

of W . Hence the spectral properties of Xt are defined by the wave-

let W/'. If the power density spectrum, (3 , of the time series

or, equivalently, of l/J can be factored

and %tu)has no poles or zeros in the lower half plane then

ao

and

\A./' k V./, J C X(o

I I I I j I 1 1, 11111-



(See Appendix E, Spectrum Factorization) b is one sided and invertable

and is called the minimum phase wavelet. The considerations

1. lw) -O0 almost nowhere

2. S (w) CIL,) 4 CO

IT

must be met for bk to exist (Robinson, 1956). These conditions are

discussed further in Appendix E.

If we assume that the above conditions are met for microseismic

noise, we can choose a simple mathematical model for microseism genera-

tion. We can consider that microseisms can be produced by passing a

train of white light (uncorrelated) impulses through a system whose trans-

fer function is In block diagram form:

Input System Output

White Light Microseismic

Series Noise

k~J) corresponds to a realizable system since bvK is a one sided wavelet.

Spectrum factorization computations using the method of Kolmogorov as
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described in Appendix E have been carried out on real microseismic noise.

Figures 1.3.6 to 1.3.8 show the spectra and Figures 1.4.1 to 1.4.5 show

some of the minimum phase wavelets and inverse minimum phase wavelets

for several of the Logan and Blanca noise records.

Autoregression, Probability Density and Edgeworth Series

Since the inverse minimum phase wavelet,QCI , exists, we can repre-

sent the noise Xt as the autoregressive process

where t is the white light series, and QK can be found from b.gby

polynomial division (See POLYDV in Appendix G).

Hence the white light series for the process can be found by con-

volution of ORP with k . This computation has been done for most of

the Logan and Blanca noise records and statistical tests have been made

on the resulting white light series, t. The probability density of a

for these records has been compared to the normal density using the steps

WINIIII



outlined in Appendix B. In most cases the comparison measure resulted

in the probability of exceeding chi-squared being so small that it was

very unlikely the density of t was exactly normal. The numerical

results summerized in Table 1.4.1 show that only four of the records

pass the yL test. The empirical densities, however, look so very nearly

Gaussian (see Figures 1.4.6 to 1.4.12) that it seems likely that they

can be expressed in terms of the Gaussian density with only small

correction terms. (Note that we use the terms "Gaussian" and "normal" in-

terchangeably throughout this section. Cramer (1951) gives the Edgeworth

series expansion for the probability density f~\

-COf R(e)+ +n '0f0 +

where fx)is the Gaussian, r (K) , and the superscripts

denote differentiation. The Cv depend on the moments. The details

of the applicability of the expansion and the computation of the moments

and the C n appear in Appendix C. The first seven &!, Co to C1 have

been computed and the corresponding densities have been compared with the

empirical density using the chi-squared measure of goodness of fit.

Normality - Chi-Squared Test

Table 1.4.2 shows the results of the Chi-squared test of the com-

parison of the probability density of the white light series with the

normal density and the higher approximations given by the Edgeworth

series. The method of computation of the Chi squared value used here

differs somewhat from the method mentioned in Appendix B. In Appendix B
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we ignore the fact that the series undergoing the test is bounded and,

after dividing up the normal density into N regions of equal area

(probability), we count the number of data points which fall into each

region. The approximation involving the terms in the Edgeworth series,

including the normal approximations were compared directly to the

empirical density, computed for V subregions over the interval in

which the data fell. There was not attempt at division into regions of

equal probability. For this case, where the chi squared value is com-

puted directly from the probabilities, chi squared is

r

where P is the probability that a value falls in the ith range

using the approximation given by the Edgeworth series, Pi'- is the

empirical probability density for the same range, N is the number of

data points which were used to compute the empirical density, and Y

is the number of sub-regions used in forming the empirical density.

There may be some bias in this method of computation if PA& and E,

are very small. For this reason the sub-regions are grouped together

so that for every grouping the quantities PA, N and PE I are both

at least five. (This rule of thumb is given in Wadsworth and Bryan,

1961). The grouping will reduce the number of degrees of freedom so

that it becomes

ND = S-i-

YII _~



where M is the highest moment used in the Edgeworth series and S is

the total number of sub-groupings, S is in general less than V . We

note that this method compares the empirical density and the approximation

about the normal density only over the region where the data actually

exists and does not assume that the data is unbounded.

In computing PAL it was necessary to calculate at least five equally

spaced points across the sub-region and integrate using Simpson's Rule.

The estimate of the integral using just the center point was not accurate

enough. (We note here that Pr ' is a probability density and thus

must be normalized such that its integral is equal to one.)

We see from Table 1.4.2 that, using the above method of comparison,

most of the white light series are actually Gaussian (first approximation

of Edgeworth series), and all can be fitted quite well using the third

approximation or less. It is not disturbing that the fit gets poorer

in some cases for higher approximations, since the series used is

asymptotic and may oscillate.

Figures 1.4.6 to 1.4.12 show the empirical density as a solid line

histogram and the Edgeworth approximation as a dotted line. The first

approximation is the normal, the second approximation involves the

third moment since Co=l) C o2C=@O, the third involves up to the fourth

moment, etc. We can therefore say that the probability density of

is,in most cases, Gaussian.

Independence Tests

The I are necessarily uncorrelated since the convolution of X with



has removed all the linear dependence. It is not necessary that the T

series be purely random or, equivalently, independent (unless the It

are normally distributed, see section 2.3). Independence tests are

somewhat difficult because one has to show that the joint probability

density for all Tt factors in order to prove independence.

Two tests for independence have been used on the t from microseismic

noise. The poker count test (Appendix D) is based on the fact that we

can compute the a priori probabilities of occurrance of poker hands of

various values from the assumption of independence of the series from

which the hands are drawn. In this case the hands are assumed drawn

from an infinite supply of integers with values 0 to 9 and hence the

removal of a number doed not change the probability of its occurrance.

In the performance of the poker count test, the Tt must be integers

from 0 to 9 with equal probability, so the series with nearly Gaussian

density must be mapped into a series with rectangular density. This

mapping will not make the series dependent if it is independent and

vice versa. Proof of this statement and the steps necessary for the

poker count test are given in Appendix D. We may note that the poker

count test is concerned with the joint density of up to five variables.

The other test, the dependence measure related to the mean square con-

tingence test, is also treated in Appendix D. It is simply a numerical

measure of the factorization of the joint density of two random variables.
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The measure, which we call the dependency, is zero is the variables are

independent, and non-zero otherwise. Tests of numerical data are somewhat

difficult since in almost no case will the dependency actually come out

zero although it may be quite small. In order to see how small the depen-

dency measure must be to indicate dependence, the test was run on the Rand

random digits (Rand Corporation,1~9S). These digits were generated by an

independent process and are therefore suitable for testing purposes. A

graph of the result of this test for different series lengths appears in

Appendix D. For a length of 2500 the average dependency was about .0035.

For dependent series such as the amplitude of the microseisms the depen-

dency was about .25. The dependency value for the white light series,

were between .0907 and .0039 and are tabulated along with the tests on the

amplitudes in Table 1.4.1. Some output from the tests is shown in Figures

1.4.13 and 1.4.15. In some cases the dependency value was as low as that

of the Rand digits and in others it was somewhat higher but not orders of

magnitude higher. The figures mentioned above also show the results of

the poker count test. In most cases a chi-squared comparison of the results

is in the .1 or .05 acceptance region. The poker count test was also run on

the Rand random digits. For these the chi-squared value was quite low and

well within the accptance region.

Mathematical Model

The independence tests performed on are certainly not exhaus-

tive since the poker test treats up to fifth joint density and the mean

square contingency treats only the second joint density. The results are



surprisingly good, however, particularly when we consider the error in

the computation of the Tt series introduced by the spectral estimation

procedure, spectrum factorization, polynomial division and convolution.

It is therefore claimed that the T series is essentially independent

and the microseism generating model is now an independent white light

series into a minimum phase system. '

A purely random series t is ergodic and stationary. Further,

the process of moving summation (convolution) is ergodic (Robinson, 1956,

p. 116). Ergodicity, for our purposes, means that the time averages and

ensemble averages are equal with probability one (see also Section 1.2).

Hence the estimation of the moments of the series by time averages for

the expansion of the density in terms of the Gaussian is justified.

In summary, we have shown that microseismic noise can be considered

stationary and ergodic with a nearly Gaussian probability distribution,

The model for the generation is an independent white light series convolved

with a minimum phase wavelet.

Input Minimum Phase System Output

Independent White Microseismic

Light Series - Nearly Noise
Gaussian
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Generation of Artificial Microseisms

We are now in a position to generate microseismic noise artificially.

The Rand random digits which are independent and equally likely were

summed in groups of ten and the mean subtracted out to give,by the central

limit theorem,zero mean normal variates. These variates are the Gaussian

white light input to the minimum phase system. They are Gaussian be-

cause of the central limit theorm as mentioned above, and white because

the independence of the variates guarentees that only the zero lag of the

autocorrelation has a non-zero value and hence insures that all frequencies

will be present in the same amount. The minimum phase system response,

can be computed from real data by spectrum factorization (Appendix E).

The artificial noise is then generated by convolution of the minimum phase

wavelet with the Gaussian white light series. Figure 1.4.16 shows real

and artificial microseismic noise with the same r.m.s amplitude plotted

one above the other. It is difficult, if not impossible, to tell the

difference between the two with the eye alone. The identification of the

two traces has been deliberately omitted from the figure. The upper trace

is actually the artificial noise. Since we have been able to show that

microseismic noise can be decomposed into a white light series and a

wavelet, and that the white light is fairly indpenedent and nearly Gaussian,

our mathematical model is quite good, and thus our artificial microseisms

are quite representative. In order to tell the difference between real

and artificial microseisms we would have to decompose the series into a

wavelet and white light and test the probability density against the normal

density. If it is normal and not just "nearly" normal, the noise is
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artificial. It is possible to overcome this difficulty by mapping the

Gaussian series into a series with a probability density representative

of the real noise, but this labor does not seem justified by the slight

variation of the probability density from the Gaussian.

The chief use of the generating model is in the detection simulation

studies in Chapter 3. Several hours of consecutive noise are needed for

these studies and only a few minutes of it is available from our records.

Using the model discussed above we can generate the necessary amount of

noise artificially and it will be typical of microseisms and nearly

indistinguishable from them.

It is also possible to generate three component artificial noise.

The bind here would appear to be in simulating the coherency between the

various components. However it has been shown (Simpson et al, 1962)

that one can generate pairs of white light series with controlled

coherency at zero phase. A simple extension of this to three series with

controlled coherencies is given in Appendix F. One can therefore specify

the coherencies between pairs of the three series, generate three white

light series with these coherencies, and convolve each of the series

with a different wavelet to obtain three component simulated coherent

microseismic noise.

" '' 110111161 i YY YY ~ -



TABLE 1.4.1

SUMMARY OF RESULTS OF NORMALITY AND DEPENDENCY TESTS
ON AMPLITUDE SERIES AND WHITE LIGHT SERIES.

PROB. EXCEED. CHI SQUARE
RECORD AMPLITUDE

.66435

.01293

.0000

.0000

.28699

.21316

.01426

.00289

.0000

.0000

.0000

.00113

.00015

.0000

.00051

.0000

.00252

.12048

WHITE LIGHT
.0000
.0000
.01522
.00305
.0000
.00004
.09632
*32880
.00004
.01919
*00350
.00048
.0000
.0000
.0000
.0000
.00197
.0000

DEPENDENCY
AMPLITUDE
*25336
*26546
.47489
.50919
.28226
.30931
.22233
*20035
o27856
*28603
*24385
.27526
*25891
*25699
.24425
*27333
.25838
*24759

WHITE LIGHT
.00976
.00935
*03863
.05031
*01525
.01378
*00820
.00397
.00830
.01051
,01144
.00731
*00483
*00677
.00520
.09075
*02333
.00618

LENGTH
AMPL.
3201
3201
3401
3401
3321
3321
3181
3181
3361
3351
3321
3321
3581
3581
3241
3241
3301
3301

OF SERIES
WHITE LIGHT

2702
2702
2902
2902
2822
2822
2682
2682
2862
2852
2822
2822
3082
3082
2742
2742
2802
2802

PROBABILITY OF EXCEEDING CHI SQUARE LISTED AS
.0000 IS ACTUALLY LESS THAN .000032, BUT NOT ZERO.

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1026
1027
1028
1029
1030
1031



TABLE 1.4.2

EDGEWORTH SERIES RESULTS

PROBABILITY OF
ONE TWO
.00063 *442
.0 *0
.0 *520
*87704 .999
.0 0
.0 o023
*93772 o046
*23902 *954
o99949 o345
.0 .099
099999 .322
.99999 .818
.0 .000
099995 .0
o02309 o043
.28383 .0
.77600 0999
*31825 0

EXCEEDING CHI-SQUARED

94

57
99

02
35
13
55
97
70
63
43

40

99

THREE
.99999
.43359
.98030
.51583
.99999
.99999
.0
.99999
.99999
099999
.99999
.0
.99999
.0
.99996
.0
.0
.0

FOUR
.99999
*80852
.99999
*99999
*99999
.99999
.0
.99999
.99999
.99999
*99999
.99986
.0
0
.0
.0
.0
.0

FOR APPROXIMATION
FIVE
.0
.0
*99999
.94568
.02469
.08298
.0
.99999
.99999
.99999
.99999
.0
.0
.0
.0
.0
.0
.0

DEGREES
39
37
46
57
52
53
30
56
59
54
63
44
40
9

50
17
43
31

DEGREES REFERS TO THE NUMBER OF DEGREES
APPROXIMATION NUMBER FOR WHICH THE PROB
IS GREATER THAN .01.

OF FREEDOM FOR THE LOWEST
ABILITY OF EXCEEDING CHI-SQUARED

RECORD

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1026
1027
1028
1029
1030
1031



Figure 1.4.1



Figure 1.4.2



Pigure 1.4.3



Figure 1.4.4



Pigure 1.4.5



Figure 1.4.6 Empirical Probability Density of White Light Series

of Record 1000 With First Five Bdgeworth Series Approximations.



Figure 1.4.7 Empirical Probability Density of White Light Series
of Record 1001 With First Five Bdgeworth Series Approximations.



Figure 1.4.8 Empirical Probability Density of White Light Series
of Record 1006 With First Five Bdgeworth Series Approximations.



Figure 1.4.9 Empirical Probability Density of White Light Series
of Record 1007 With First Five Bdgeworth Series Approximations.
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Pigure 1.4.10 Empirical Probability Density of White Light Series
Of Record 1008 With First Five Bdgeworth Series Approximations,



Figure 1.4.11 Empirical Probability Density of White Light Series
of Record 1026 With First Five Bdgeworth Series Approximations.



Figure 1.4.12 Bmpirical Probability Density of White Light Series
of Record 1027 With First Five Edgeworth Series Approximations.
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Figure 1.4.13
ANALYSIS OF WHITE LIGHT SERIES OBTAINED BY CONVOLVING THE INVERSE OF THE

MINIMUM PHASE WAVELET OF RECORD 1000 WITH THE ORIGINAL RECORD

COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DTSTRIBUTION

NUMBER OF RANGES= 51
LENGTH OF SERIES= 2702
DEGREES OF FREEDOM= 48
MEAN OF SERIESs -0s10384890E 03
STANDARD DEVIATION= 075864953E 05

HIGHER CENTRAL MOMENTS
THIRD MOMENT= 0.91304071E 14
FOURTH MOMENT= 0.17391028E 21
FIFTH MOMENT=- -010809396E 25
SIXTH MOMENT= 0.17594533E 32

EXPECTED COUNT= 52.9804

CHI-SQUARE= 0*11462693E 03
PROBABILITY OF EXCEEDING CHI-SQUARE IS LESS THAN 0100032

POKER COUNT TEST RESULTS

HAND TYPE ACTUAL COUNT EXPECTED COUNT

BUST
1 PAIR
2 PAIR
3 OF A KIND
FULL HOUSE
STRAIGHT
4 OF A KIND
5 OF A KIND

MEAN SOUARE CONTINGENCY=

DEPENDENCY MEASURE=

146
240

66
73

5
7
3
0

159.40800
272*16000
58.32000
38.88000
486000
3.88800
2.43000
0*05400

0*88167071E-01

0.97963411E-02

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM
-0.53663570E 06 TO 0.43644589E 06. 2702 VALUES IN ALL.

1s 0. 0. 0. 0. 0O
0. 0. 0. 0. 0 0.
00 0 O0 0. 1. 0.
2. 2* 2. 3. 3. 6.
1. 24. 29. 37. 54. 60.
9. 145. 164, 164. 159. 148.
0. 87 6 5 68 38. 44.
1. 17. 7a 11. 5S 12*
l 0. 2, 1. 1. l
0* 0, 0 1. O 0

0.
0.
0.Oo3.

72.
141.
38.
7s
00
0.

0.
0.
1,
9s

80.
145
30.

4.
2.to,

0.
0.
0.

12.
90.

131.
27.
2,

0sO,

1
12
13
2

0.
0.
2.

18.
95.

119.
13.

Io
1,

_I__i/CLLr jli_^i ___XCX --l_~i-^ iL_ _



8S+

Pigure 1.4.14

ANALYSIS OF WHITE LIGHT SERIES OBTAINED BY CONVOLVING THE INVERSE OF THE
MINIMUM PHASE WAVELET OF RECORD 1006 WITH THE ORIGINAL RECORD

COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES=
LENGTH OF SERIESw 2
DEGREES OF FREEDOM=
MEAN OF SERIES=
STANDARD DEVIATION=

48
0,17902389E 03

0o71888679E 05

HIGHER CENTRAL MOMENTS
THIRD MOMENT= -0O47103929E 14
FOURTH MOMENT= 0.22192675E 21
FIFTH MOMENT= -0o62127688E 26
SIXTH MOMENT= 0O67908355E 32

EXPECTED COUNTs 52.5882

CHI-SQUARE= 0.61046970E 02
PROBABILITY OF EXCEEDING CHI-SQUARE=

HAND TYPE

BUST
1 PAIR
2 PAIR
3 OF A KIND
FULL HOUSE
STRAIGHT
4 OF A KIND
5 OF A KIND

ACTUAL COUNT

130
263
69
46

8
13

EXPECTED COUNT

158o22720
270.14399
57.88800
38.59200
4o82400
3*85920
2.41200
0.05360

MEAN SQUARE CONTINGENCY= 0*73803157E-01

DEPENDENCY MEASURE= 0.82003506E-02

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM
-0o73412665E 06 TO 0o48402021E 06. 2682 VALUES IN ALL*

1. 0. 0. 0. 0. 0 .
O O. 0. 0. Oo_ 0.

0. 0. 0. 0. . 0. 0.
0° 0o Oo 0 0 Oi
0. 2. 4o 5. 2o 6.
5. 47o 87o 82o 98. 126.
5o 178. 172. 158. 143. 118.
.1. 31. 15. 12. 8o 7s
2. 0. O 0o 0. 0.
0. o. 0 0. 0 le

Oo O, Oo O°
0. 00 04 0.
0. 00 0. 00
0 0. 0. O0
14. 14o 22. 29.

149. 160. 206. 220.
98o 82. 55. 32.
2o 4# 3* 4o
lo 0. 0. O0
0. 0. 0. le

POKER COUNT TEST RESULTS

0.96320E-01

3
20

4
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Figure 1.4.15

ANALYSIS OF WHITE LIGHT SERIES OBTAINED BY CONVOLVING THE INVERSE OF THE
MINIMUM PHASE WAVELET OF RECORD 1026 WITH THE ORIGINAL RECORD

COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES=
LENGTH OF SERIES= I
DEGREES OF FREEDOM=
MEAN OF SERIES=
STANDARD DEVIATION=

52
0.29668643E 02

S 049980906E 05

HIGHER CENTRAL MOMENTS
THIRD MOMENT= 0.36927477E 14
FOURTH MOMENT= 0O41691343E 20
FIFTH MOMENT= 0.39579482E 25
SIXTH MOMENT= 0,22342489E 31

EXPECTED.COUNT= 56.0364

CHI-SQUARE= 0.15871704E 03
PROBABILITY OF EXCEEDING CHI-SQUARE IS LESS THAN 0.00032

POKER COUNT TEST RESULTS

HAND TYPE ACTUAL COUNT EXPECTED COUNT

BUST
1 PAIR
2 PAIR
3 OF A KIND
FULL HOUSE
STRAIGHT
4 OF A KIND
5 OF A KIND

MEAN SQUARE CONTINGENCY=

DEPENDENCY MEASURE= 0

143
307
90
53

4
12

6

181.84320
310*46399
66*52800
44.35200
5*54400
4*43520
2.77200
0.06160

0&43508112E-01

.48342347E-02

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM
-0.27321346E 06 TO 0.35513622E 06. 3082 VALUES IN ALL*

3
18
8
1

O0 0. 0. 0 0,
1. 0. 2. 0. 00
2. 5S 6. 6. 8o
6o 32o 55. 69. 99.
9. 154. 179. 186o 163.
9. 70. 56. 60. 29.
4s
0.
0.
0.

5.
4.
0.
0.

00
2.

12.
96.

172.
24,
5.
2
2.
0.

0*
14

180
117.
150.
12.
4.
0.
0.
0.

3.
2.

13o
155.
124.
15.
3.
0.
0.
1

1.
9.
24.

140.
108.
11*
2.
0.
0.
16

le1
00
2o

27.
175.
103.

50
30
00
00
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Figure 1.4.16

Real and Artificial Microseismic Noise



1.5 Cross-Series Properties

The availability of simultaneous three component seismic noise records

from different stations affords opportunity for cross correlation and

cross-spectral analyses. Techniques similar to those of autospectral

analysis have been worked out and programmed for high speed digital com-

puters. The major computational difference is the need for a sine trans-

form in addition to the cosine transform since the cross correlation is

not in general an even function. Knowing the sine and cosine transforms

of the cross correlation it is easy to compute the magnitude cross power

and phase spectra, and it is also useful to compute the coherency. The

development of the usual expression for coherency can be done quickly for

transients and then carried over to discrete time for our case.

Cross Correlation, Cross Power and Coherency

For two transients (it) and ( t) the cross correlation is

C

The cross power spectrum is then the Fourier transform

with the change of variables r t4~i this becomes

Ir e Ot
%a DRAW -00t



hence

1,3(WV=

where (u F() is the Fourier transform of )(+)

(1.5.1)

the Fourier trans-

form of (+) , and the bar denotes complex conjugation. The auto-power

spectra are found to be, by similar treatment,

) (7I F(c o F~w)

The coherency is then usually defined as

\ ( ,'ICOA,, c

i I;LIA F, w)
.. . . . .- - I I L. . ... _ . .. - I

This definition is not particularly useful since COkj(&v)is always

(, 5 -"'

Fycw) ry(4~

:X V. t L'J F

~,,w= 2n

~u Fx'c ) x (w



one. If the cross-correlation is weighted by some function, such as the

Daniell weighting function (Section 1.3), the coherency is not necessarily

one and has some meaning as a measure.

We define the normalized cross power vector N(o )

where (W now takes into consideration the weighting function L\/(-).

denotes convolution. X( is in general complex, hence N(W) is

truly a vector. The coherency is then defined

Daniell Window and M/N Ratio

The treatment is almost identical for discrete time. The complete

transient cross correlation for the two series 4* and jt each of

points is

Al _ _~
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and the cross power spectrum with the Daniell weighting function is

a (r IT

We shall take W4 WJ with ( O: 6/M7 where M is the Daniell parameter,

and h - 0, 1 2,, .,) IA~ . We have seen in Section 1.3 that, for A/l /

large, the Daniell window is nearly rectangular. With W - /TA* the

windows for neighboring spectral estimates K 0Wo and ( K~r)L4o

overlap by about 50%. The Daniell window averages the sine and cosine

transforms over the window width and consequently averages the cross

power vector, / Nw\ . We see, therefore, that I ( )I, the coherency,

is less than or equal to one. If the NtW) vector changes direction

rapidly over the band T r ± the vector averaging will tend to cancel

out and the coherency will be low, and if the vector direction is not

changing or changing only slightly, the coherency will be high. Thus the

coherency as we use it is a measure of how rapidly the cross power phase

is changing. If the records being cross correlated are identical, the

phase spectrum is zero and the coherency is one. (Actually the coherency

may be slightly less than one since the Daniell window is not quite
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rectangular.) If the records are different, the coherencies will be low

unless there are some bands of frequencies where the phase remains

relatively constant.

Cross Spectra of Different Components at the Same Station

Figures 1.5.1 to 1.5.3 show the results of the cross spectral compu-

tations between different components at the same station. The graphs

in the figures are identified individually with the two record numbers

of the data used, the indices of the first and last points of the data

for each record and the Daniell parameter,M . In most cases, no com-

putation has been done for frequencies above five cps. The recordings

at any one station were made within a fraction of a wavelength of any

wave of interest so that no compensation need be made for linear phase

shifts due to spatial separation.

Figure 1.3.1 shows the cross-spectra of the components of the noise

recorded before the Logan shot 1902 km from the shot (records 1000, 1002

and 1004). The only really prominent feature of this set of computations

is the low frequency spike which is the tail end of the well-known oceanic

microseisms. The Benioff instrument cuts off fairly sharply at low fre-

quencies so that this spike is somewhat artificial in that its low fre-

quency side is simply instrument cutoff, but that sharpness of the higher

frequency side must be a real phenomenon. The phase spectrum does not

show the expected 900 phase shift for Rayleigh waves, but this may be

explained by the fact that the instrument characteristics are changing

rapidly here and are hence possibly non-uniform from instrument to

instrument. None of the frequencies with fairly high coherency seem to

- "



have phases corresponding to any known wave type. We note that the phases

have been plotted to fall between +n and -- * .

Figure 1.5.2 shows the cross-spectra of the components of the noise

before the Logan shot 2111 km from the shot point (Records 1006, 1008

and 1010). The 1008-1010 set of graphs have high coherence and power

at 1.9 cps, but the phase is -% which does not pin down any wave type.

The peak at 2.1 cps has a phase closer to -900 which could conceivably

be a Rayleigh wave. The 1006-1010 set of graphs has reasonably coherent

peaks at .6, 1.4 and 1.9 cps. The .6 and 1.4 cps peaks are nearly in

phase and could, therefore, be Love waves. The 1.9 cps peak is another

of the many bands which are fairly coherent but have phase relationships

which are not indicative of any particular wave type.

Figure 1.5.3 shows the cross spectra of the noise recorded before the

Blanca shot 1610 km fyom the shot (records 1026, 1028 and 1030). There

are possible Rayleigh waves at 1 and 2 cycles per second, but the co-

herencies are somewhat low.

Figure 1.5.4 shows the auto spectra of the records used in the cross

spectral computations. They are included for convenient reference.

It seems that, in view of the above results, the model of a single

band of surface waves from one direction is entirely too simple. It is

much more likely that there are many surface waves of several frequencies

coming from several sources. For a few stations quite close to the coast

it may be possible to complicate the model to take care of surface waves

from a few directions, and produce some believable results. However,

the stations for which we have good noise data are very far inland, nearly

equi-distant from the Atlantic and Pacific coasts. Thus, sources from the



Atlantic, Pacific, Gulf and Great Lakes may produce microseisms which

will be recorded with nearly the same amplitude at these inland stations.

On top of this we have local sources which confuse the issue considerably.

The higher frequency bands at 1.4 and 2.0 cps were seen in the last two

sections to have no particular directional properties and to have no

simple amplitude dependence on distance from water wave sources. We

conclude that there are of local origin and may be isotropic. Even

a fairly complicated model taking into account many sources may not fit

the data too well, and would certainly require a lot of labor to use.

Cross Spectra of Like Components at Different Stations - Linear Phase Shifts

The coherency measure used causes some difficulty if the two series

are shifted in time, since a time shift will result in a linear phase

shift. For example, e has zero phase at time t=O but at a later time

the phase is Wt . If the time shift is large, the phase changes over

the small band of frequencies W±1 W/" will be large and will tend to

reduce the coherency estimate. If meaningful coherency values are to be

obtained one must line up the records properly in time before computing

the cross correlation. This procedure assumes that the relative time

shift is known and this is not always the case. For three component

records at one station there is no difficulty since a line up in absolute

time is all that is necessary. However, if one is trying to follow a wave

packet across considerable distance by cross correlation and coherency

measures, difficulties arise. If the records are lined up in absolute

time, the relative time of the maximum of the cross correlation may give

an idea of the arrival time differences, but the coherency will not

~



necessarily be large in the range of the frequencies which comprise the

wave packet. If the records are shifted the amount,T , indicated by

the maximum of the cross correlation and then cross correlated, the

coherency in the frequency region which caused the maximum will cer-

tainly become larger, but there may have been features in the original

record other than the wave packet which caused the maximum. Hence we

have still not identified the wave packet or its relative time shift.

The magnitude of the time shift for any particular wave packet will of

course depend on the velocity, V, of the packet, on the distance between

the stations, X , and on the direction of travel of the wave relative to

a line between the stations. The time shift can therefore vary from ta ,

if the waves are travelling perpendicular to the line between the stations,

to t = XV , if the waves are parallel to the line. The problem is

complicated by the existence of many waves of different frequency of

waves of the same frequency travelling in different directions. In even

the simple case of a single wave packet dispersion may disrupt the

coherence.

There is another scheme to find the appropriate time shifts which is

a bit more promising than the cross correlation method. If the cross

correlation is computed and not weighted by the Daniell factor, the

sine and cosine transforms will not average the cross power vector over

the Daniell window width. The cross power vectors can then be rotated

by phase shifts corresponding to known time shifts in the frequency

range of interest and averaged in this range. This is done for several

time shifts and one looks for the time shift corresponding to the largest

resultant of the averaged vectors. This should be close to the shift



necessary to maximize the coherency in the band of frequencies when the

Daniell window is used.

Some time shifting experiments have been done using data from two

different stations. Cross correlation and cross spectral computations

have been carried out on like components at different stations using the

methods described above. Figure 1.5.5 shows the complete cross correla-

tion of records 1000, the noise before the Logan shot 1902 km -from the

shot point, and record 1006, the noise before the Logan shot 2111 km

from the shot point. The two records were lined up in absolute time be-

fore the computation. If most of the energy was travelling in one direc-

tion we would expect the cross correlation to have a pronounced maximum,

but not necessarily for zero lag. There is no such maximum in Figure

1.5.5. (The correlation is the transient cross correlation and so dies

off to zero at the ends.) If the energy were coming directly from one

station to the other at about 3 km/sec it would take about 70 seconds

or 1400 data points. The correlation covers from minus to plus 2999

lags and should show a maximum if one were present. It is, of course,

possible that a maximum occurs for one frequency and that it is masked

by the presence of other frequencies. To check this for the more energetic

bands, the data was band pass filtered before correlation. Figures 1.5.6

and 1.5.7 show the cross correlation for pass bands centered at 1.4 cps

and 2.0 cps. The results are perhaps a bit disappointing but not totally

unexpected. The cross correlation for the 1.4 cps band is exceedingly

sinusoidal. This can, of course, happen if the band is too narrow, but

we expect something more like the figure for the 2 cps pass band which

" JAIYIIN I



shows a beating between the frequencies present. It is not possible to

pick a maximum on either of these figures with any certainty. If the

energy is contained in such a narrow band as the 1.4 cps correlation in-

dicates, the signal is not random enough for coherency to have any

meaning.

Some time shifting was also done to maximize the coherency by looking

for a linear trend in the phase. Figures 1.5.8 and 1.5.9 show cross spec-

tral results for records 1000 and 1006 for several different time shifts.

The frequencies about 1.4 and 2.0 cps were checked for a linear trend and

appropriate shift made. The coherency was increased at these frequencies

for the time shift indicated. The shifts were +1.5 seconds (that is,

record 1000 has been shifted such that its absolute time origin, T , lines

up with absolute time T+ 1.5 seconds on record 1006) and -2.5 seconds.

In view of the cross correlation results, it does not seem that these time

shifts, even though they increase the coherency, have any particular physical

interpretation in terms of velocity and direction of travel of particular

waves. If the 1.4 and 2.0 cps are from local sources (and there must be

many of these local sources across the country to explain the occurrance

of the spectral lines at different stations) we would not expect the time

shifts to have any significance since the lines are narrow and the sources

isotropic. With such narrow band signals we can expect the coherency to be

high for shifts which are integer multiples of the wave period. We can see

that time shifting experiments are not particularly fruitful for the narrow

band signals or for the bands when the instrument characteristics change so

rapidly with frequency that a mismatch between instruments is probable. The

experiments are more suitable for long period records where local sources

play a smaller part.



Some cross spectral computations were also done on some data from the

WMSO linear array. Simultaneous sections of noise were used with no time

shifting. The noise from the first instrument in the array was cross

correlated with the noise from several other instruments in the array.

The results are shown in Figures 1.5.10 to 1.5.15. Again we see that at

the frequencies with high coherence the phase is not changing rapidly.

Figures 1.5.10 and 1.5.11 have a Daniell parameter of 400 and a slightly

different frequency scale from Figures 1.5.13 and 1.5.14 which have a

Daniell parameter of 200. The smaller Daniell parameter will take averages

over wider bands and the resulting coherencies and phases will not be quite

as jagged as those for a Daniell parameter of 400. Auto spectra are shown

in Figures 1.5.12 and 1.5.15. When the coherency is high, we tend to say

that the waves at that frequency are travelling at right angles to the

array and there is no linear phase shift to disrupt the coherency computa-

tion. The phase spectra also show in some cases linear trends over bands

of frequencies which are of course accompanied by low coherencies. A time

shift would bring up the coherency and indicate the direction of travel of

the source waves for these bands.

A much more sophisticated analysis of array data is needed before any

reliable results can be stated. Simulation studies of the sort described

in Chapter 3 would be of interest with the array recordings time shifted

(delayed) to minimize the noise and thus utilize the directional properties

of the array. Similar studies could also be done with data from a two

dimensional array.



Records 1000 and 1004

Figure 1.5.1 Cross Spectra of Different Components at the Same Station

Re~ards 1000 and 1( Records 1002 and 100Lt



Figure 1.5.2 Cross Spectra of Different Components at the Same Station
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Figure 1.5.3 Cross Spectra of Different Components at the Same Station



Record 1026

Record 1002 Record 1008 Record 1028

Figure 1.5.4 Auto Spectra
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Complete Transient Cross Correlation of Records 1000 and 1006
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Figu~e 1.5.5



Figure 1.5.6 Complete Transient Cross Correlation of Records 1000 and 1006
Band Pass Filtered at 1.4 Cycles Per Second



Figure 1.5.7 Complete Transient Cross Correlation of Records 1000 and 1006
Band Pass Filtered at 2.0 Cycles Per Second



Zero Time Shift

Figure 1.5.8 Cross Spectra of Records 1000 and 1006 For Indicated Time Shifts

+~.5 Time Shift



-1. 5 Time Shift

p-a

Cross Spectra of Records 1000 and 1006 For Indicated Time Shifts

-2,5 T~me Shift

Figure 1,5 9



Records 301 and 305

Cross Spectra of Array Elements

Records 301 and 303

Figure 1,5,10



Records 301 and 309

Figure 1.5.11 Cross Spectra of Array Elements
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Figure 1.5.13 Cross Spectra of Array Elements



Figure 1.5.14 Cross Spectra of Array Elements
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2. PREDICTION OF MICROSEISMS

2.1 Prediction by Minimization of Mean Squared Error

Prediction and the First Motion Interval

Elementary considerations of the possible differences between the

signals from earthquakes and the signals from underground explosions

were based on the obvious differences in the source mechanisms. An ex-

plosion should give an initial compression whereas an earthquake, being

a shearing source, should give compressions or rarefactions depending

on the position of the observer relative to the fault plane and the direc-

tion of slip along the plane. A group of recording stations around a

source should therefore all record initial compressive first motion for

an explosion, but would vary if an earthquake were the source. Granting

the first motion criterian is legitimate, there is still the problem of

identifying the first motion on the record when the signal is corrupted

by noise. The problem is somewhat simplified by the fact that, even

though its pulse may be small, the first motion is followed by stronger

P waves which are easily discernible in the noise. These P waves there-

fore allow us to say approximately where in time the first motion pulse

arrived. If we could by some means predict what the noise would be in a

small interval preceeding the strong P waves and subtracted the predicted

noise from the signal plus noise, we would be left with the uncorrupted

signal and could make definite statements concerning the direction of

first motion. Figure 2.1.1 illustrates this idea with the assumption of

perfect prediction of the noise.

JAM11



112

In general, of course, we cannot predict perfectly, but a good pre-

diction could possibly increase the signal to noise ratio to a point

where there would no difficulty in picking out the first motion direction.

We will therefore wish to express the predictability of the noise in

terms of signal to noise ratio imprevement. Evaluation of the effective-

ness of the scheme can be done by prediction studies of the noise alone

without reference to any particular signal. The only parameter we need

is time length over which we must predict. This will be called the

prediction distance and it will be denoted by K in the following

analysis.

We wish to form a linear operatoi which will predict the "future"

of a record, XC , from its "past" and possibly from the past of other

related records (e.g. three components at one station). We note that

even though we are not necessarily operating in real time it is necessary

that we use only the past as a basis for prediction since the past is

noise alone and the future is signal plus noise. We shall present the

analysis for the formation of a linear operator operating on three records

to predict one of the three. The expressions will reduce simply to the

case of self prediction, the prediction of one record from itself. The

analysis has been done (Wadsworth et al, 1953) for the two dimensional

case and the simple extension to three dimensions is given here.

The requirement that the record XY be predicted from itself and

from and ? can be stated by the regression function (Wadsworth

et al, 1953). M

XC+ d -$a + Si-S t SS o SZo 5= 0
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where YX4k is the predicted value of the XL time series K time

units ahead. One time unit is simply the sampling period and is .05

seconds for the Logan and Blanca records. The X L are the actual noise

values and d', , bs and CS constitute the linear operator which

must be determined. The criterion used in this determination is the Wiener

mean squared error criterion where we wish to minimize the sum of the mean

squared error between the actual and predicted XL series. This means,

of course, that we have to know what the future is of the noise above.

Hence a long series of pure noise is arbitrarily divided into past and

future and the operator formed. The operator, under the assumption of

stationarity of the time series, can then be used on the portion of the

noise preceding the first motion to predict the noise in the first motion

interval.

Mean Squared Error Techniques for Three-Dimensional Case

The sum of the squared error is taken over the operator interval

length from fK to 1 I a duration of n time units.

Thus we minimize 1" where

. N+si-k

Sio So uo

L:A /-IC

81 1, , Y/YJVI I I iIY h j , " ,,iil i I I 1 1'' Yl I i I III IIY I I I I--" - __ _ _ .
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with respect to d , Cs , bS and CS . This is done by setting the partial

derivatives with respect to J, aI , bs and Cs equal to zero for all S

The resulting set of 3M+4 equations for the 3 M+4 operation coef-

ficients is

hZEE~C4 I:YK-jaS
hd+~j asc L CC 4 .+ ,c X,

Lt X _L .%

SEX -+CsEt' !S Z1, Xi+ W
i L

or r=o to M

where summations over i are from i= Nk

tions over S are from S =o to S= /:

equation

RA=8

to -/,4 -1- , and summa-

. We write this as the matrix

(2.1.1)

-sx.t +64 . ,t - - .
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where R is a 3M1 by 3 M+ symmetric correlation matrix, each

element depending essentially on different lags of the auto and cross

correlations of Xt , i and A . A is the 3MU by L solution

matrix where each column of A is the prediction operator (t . *

b.)~ b, CI, , CK V for different prediction distance Y,

and W takes on L different values. A is obtained by inversion of

the R matrix.

A- R 3

Bis an L by MLI matrix, where each column of 3 is the right hand

side of the equation for a different k. The matrix equation can be

partitioned as shown below

TiI -- - R , ,:R 11 S RIIA RI S . 1 4n

J i i "! I j

! 11c- tI R 5 :i Ij'Lt~h.S i

---- Px3 R*"I'

I iQ If

40~- - "

urn
I

cb ---

dK

i

A.

L

X+

,1111011 ^ --- -
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If we donote the auto correlation or Toeplitz matrix by

r, r ..... -

o ro .

where r- is the auto correlation for the j lag we see that the

diagonal submatrices of R in equation (2.1.1) are not quite auto

correlation matrices because the terms along diagonals of the sub-

matrices are summed over different intervals. If the operator interval

length, V , is large, the diagonal submatrices are only very slightly

different from auto correlation matrices and approach this as %- 00O

If we take the one dimensional zero mean case ( b S - C s -O :0O

with %f large, the problem becomes the same as that treated by

Levinson (1949).

Predictability and the Percent Reduction

A measure of how well the prediction operator performs its task is

the percent reduction, Rp . This quantity is defined (Wadsworth et al,

1953) as

1o

where L% is the value for I for the operator used and 1o is a

measure of the sample variance over the same interval.
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If we think of IL-Tm as a measure of the variance of the prediction

we can see that the percent reduction is a measure of the amount of power

which can be predicted. In terms of the signal to noise ratio, if we

take S as a general signal and I the noise, then before filtering

we have

EFoR7.

and after filtering

Hence

Prediction Computations

In order to test the predictability, then, one must take a section

of noise record, divide it into past and future and form the R and B

matrices given in equation (2.1.1). The R matrix is inverted and R "

is multiplied by B . The columns of the resulting A matrix are the

operators or filters for different prediction distance K . V predictions

for a given K are made by moving the operator along the real data for

successive points. The prediction error, I*% for this K can then be

i '1 1J I h ' I I I 1 1111 1111 1,10IIIIIIIYYIIIIII ^ " --
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formed and, with To for the same h points, the percent reduction can

be computed. This is done for each operator so that the percent reduc-

tion as a function of 1 can be obtained.

This procedure has been programmed for the IBM 709-7090 computers.

Computation has been done for one dimension with several M values with

S=I to30and for three dimensions with NM ~ 0 also for K =  to 30.

The results of the one dimensional experiments are shown in Figures 2.1.2 to

2.1.4. The percent reduction should increase with increasing length of

operator (M value) and does in all cases computed. For an infinite

length operator the percent reduction must decrease monotonely with

(Robinson 1954, p. 148) which does not occur in the cases shown. This

is obviously due to the short operator lengths used in the computations,

and we can be sure that higher percent reduction would be obtained with

longer operators. The spectra of the records (Figures 1.3.6 to 1.3.9)

show that most of the energy is crowded into a few narrow bands, the

lowest frequency being about 1 cps. It would be best to have operator

lengths covering a few wave lengths of the major frequency components

which in this case would be about three seconds or at least 60 terms.

The method of solution for the operators then involves inversion of a

60 by 60 matrix which starts to suffer from round off error.

We note that in all cases the percent reduction falls off rapidly

at first and then has one or more plateaus. The Cherry Hill Park records

remain fairly predictable out to three seconds, maintaining a percent

reduction of about 50. This is attributed to the narrowness of prominent

spectral lines of these records. (A spike in the frequency domain represents
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a sine wave and can be predicted exactly with a two term operator.)

If a typical wave length of the first motion is established at 1

second the corresponding prediction distance for the C.H.P. records would

be 10 units. This would give a signal to noise ratio improvements of

1.4 and 1.3 for C.H.P. 31 (record 237) and C.H.P. 4 (record 204) which

is not significant.

The Logan 1902 records show a plateau effect in the percent reduc-

tions but the initial fall is more pronounced than in the C.H.P. records.

The vertical is the most predictable component and a 20 term operator

gives a signal to noise improvement of only about 1.3 for 1 second

(20 units).

We have seen that the predictability in the one dimension or self

prediction case is not particularly significant. However, one might

expect that the use of information from more than one component would

do somewhat better if the components used are related. The analysis

for three components has been shown and was programmed for the IBM

709-7090 computers.

The precent reduction for M values of 5, 10, 15 and 20 (corresponding

to operator lengths of 16, 31, 46 and 61) for the prediction of the ver-

tical component, Logan 1902 km, record 1002 from itself and the two

horizontals is shown in Figure 2.1.5. Comparison of this figure with

Figure 2.1.3, the self prediction results, shows an almost imperceptable

improvement by using all components.

As mentioned above, the predictability is almost certain to be better

if longer operators are used. With the above method of solution the

II.
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increase of operator length becomes impossible because the machine core

is rapidly used up and significant additional time is needed for the com-

putation. Therefore another method must be applied to obtain the longer

operators or the idea of prediction must be discarded as impractical.

Such a method does, however, exist and is treated in the next section,

2.2.
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Figure 2.1.1 Concept Behind Least Squares Prediction
Operator Experiments.
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Predictability of Record 1004
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2.2 Prediction and Spectrum Factorization

Comparison of Prediction Techniques

We have seen in the last section that the mean squared error technique

was not a practical method of prediction in the form in which it was used

because of the large amount of computer space and time required. The

program for prediction using the mean squared error technique was written

almost entirely in FORTRAN and, due somewhat to the inefficiency of FORTRAN,

the time required to obtain a 60 term self-prediction operator was about

10 minutes on the IBM 7090. The spectrum factorization method requires

the spectrum as an input but the time needed to compute a 500 term wave-

let is only 2 minutes on the 7090. Since the timing of both methods

increases as the cube of the operator length, it is easy to see that there

are tremendous advantages to the spectrum factorization method. The

computation of the complete transient autocorrelation of 3000 data points

and Daniell spectrum of 500 terms takes only about 2 minutes if high speed

techniques are used (Simpson et al, 1961b). The Levenson (1949) technique

has been programmed for the 709-7090 computers by Ralph Wiggins, but the

work presented here was done before this program was available. The

timing of the Levenson technique program increases as the square of the

operator length but is about the same as the spectrum factorization pro-

gram for a 500 term operator. The factorization method yields the minimum

phase wavelet from which, as we shall see, the percent reduction can be

obtained directly. The Levenson technique, on the other hand, gives the

prediction operator directly, and we must compute this operator for unit

prediction distance and invert it to obtain the wavelet. The choice

1111EN ~ . . ...
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between the two methods might well depend on whether one wants to actually

do prediction or just find the percent reduction. An iteration technique

for the multi-dimensional problem has been worked out by E. A. Robinson

(personal communication), and it will be quite a bit faster than the three-

dimensional technique described in the last section. The program for this

has not been completed at the time of this publication.

Decomposition

The spectrum factorization method is much more fruitful than the mean

squared error technique and the theory behind it is intimately related

to the contents of section 1.4. In that section we showed that we could

consider microseismic noise as a stationary ergodic time series and that,

with a few additional considerations, we could assume that microseisms

were generated by a white light (essentially independent) series convolved

with a minimum phase wavelet. The importance of the minimum phase wavelet

is that it is one sided, and therefore the expression for the present

value of X~ , the microseismic noise, involves only the past values of t)

the white light series. That is

where 6j is the minimum phase wavelet. We have seen that if bi is

known we can easily find LL , the inverse minimum phase wavelet and can

therefore write

:o



130

so that all the past T can be found from all the past Xt . We can

therefore evaluate the expression for the minimum error for the mean squared

error criterion (Robinson, 1954).

The minimum error is

where is the true value of the series at time t4k ,Xt K

is the predicted value, and the E means expected value. The true value

is, from the above considerations,

,¥ 7 -r _C  (2.2.2)

But we know from equation (2.2.1), so that the error in pre-

diction must result from our lack of knowledge of ft-j from J- O to

K . Since t are uncorrelated the best prediction we can do for

them is to predict their mean, which is zero. Hence, our best prediction

of X , is given by equation (2.2.2) with

for t+ K.L . That is

This has been shown to be true by Wold (1938), (Robinson, 1954).

Minimum Error and Percent Reduction in Terms of the Wavelet

The minimum error is, therefore,

W1911_
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,IMI [Z b 't 4 KL -Tb t jt

If the expected value of Ft is one
L: 0

and we see that the minimum error and hence the percent reduction de-

creases monotonely with increasing prediction distance K . We can now

easily obtain an expression for the percent reduction, y , in terms

of • We recall thatS= Ioo(,-

where To is the variance of the sample,

Hence o

9:0
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where we have made no assumptions regarding the value of E( .)

Thus we see that if i is known we can find the value of Rp for

all K without actually computing the prediction, or even the prediction

operator. We saw in section 1.4 that it is possible to find bi , and

the process is called spectrum factorization. The derivation of the bi

from the power spectrum is given in Appendix E. We see also in Appendix E

that it is possible to find the first M terms exactly. This procedure

has been programmed for the IBM 709 and 7090 computers, and the program

listing, FACTOR, appears in Appendix G. Appendix E also explains most

of the program logic.

We note that the expression for T o requires all of the bL and the

program will only give us the first M . For long operators this is

not troublesome since the wavelet dies off fairly rapidly. However, the

estimate of To using just M terms will be a bit small, and therefore

the value of Rp will be a bit small. We could, of course, estimate T o

from the data without using the O since I. is just the variance,

Lio

where the mean is zero.

The computation of the minimum phase wavelet, , has been done

for 500 terms and the corresponding percent reductions are shown in

Figures 2.2.1 to 2.2.6. Included also are some of the minimum phase

wavelets and some of the inverse wavelets (Figures 1.4.1 to 1.4.5). The

minimum phase wavelets for all the records are quite similar, so it is not

W1111l1ll1llNl ONl 11_.
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necessary to include all of the graphs.

The percent reductions are now, of course monotonely decreasing and

are forced to zero at t = 25 seconds (not shown in graphs) because

is computed from the first 500 terms (25 seconds). Comparison of these

figures with the self-prediction of section 2.1 (Figures 2.1.2 to 2.1.4)

shows a marked increase in predictability using this technique, as much

as 10 in the percent reduction, but the increase is still not large enough

to improve the signal to noise ratio in the first motion interval by a

significant amount. Comparison of the estimate of I 0 from the 50 oterm

wavelet with the sample variance estimated from 3000 data points indicates

that the percent reductions obtained are off by less than one.



Figure 2.2.1 Percent reductions for prediction

distances up to 12 seconds for records 1000, 1002, 1004.
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Figure 2.2.2 Percent reductions for prediction

distances up to 12 seconds for records 1001, 1003, 1005.



Figure 2.2.3 Percent reductions for prediction

distances up to 12 seconds for records 1006, 1008, 1010.
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Figure 2.2.4 percent reductions for prediction

distances up to 12 seconds for records 
1007, 1009, 1011.



Figure 2.2.S Percent reductions for prediction

distances up to 12 seconds for records 1026, 
1028, 1030.



Figure 2.2.6 Percent reductions for prediction

distances up to 12 seconds for records 1027, 1029, 1031.
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2.3 Summary Comments on Prediction

We have seen in the last two sections that the optimum least squares

prediction for short operators and for one and three dimensions are not

good enough to improve the signal to noise ratio significantly. Further,

we saw that the best predictions possible using the wavelet obtained by

spectrum factorization did not yield results of any consequence. The

fact that we only had 500 terms of the infinite wavelet is not important

since the estimate of the standard deviation using the 500 terms was quite

good (within 0.1 percent). We have alternatives of increasing the operator

length of the three dimensional prediction, of going to non-linear pre-

diction models, or, of course, of rejecting the technique of prediction

of the microseisms in the first motion interval as a useful method of

improving the signal to noise ratio. The first alternative, increasing

the operator length for the three-dimensional case, does not seem worth

trying. The improvement in predictability of the three-dimensional case,

over self prediction was seen to be minescule. Further, the improvement

of predictability of long operators over short was not significant. We

therefore reject the first alternative.

Independence of White Light Series

It is possible, also, to reject the second alternative, that of non-

linear prediction models. We saw, in section 1.4, in the decomposition

of the microseisms to a white light series and a minimum phase wavelet,

that the white light series could be considered purely random. That is,

the were not only uncorrelated, but also statistically independent.

1~
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From elementary probability considerations we have

The joint probability of and is equal to the marginal pro-

bability of It times the conditional probability of given .

If I and 2 are independent

We can repeat this for many and obtain

Thus from the definition of independence we see that the knowledge of

IA)\ give no information about ,n+ . In a prediction

problem where T j) 2 ),. are the past values and h4I the future

values of a time series and the l:Itohn are independent, we have no

information about , except its probability density P (Xm4a)

which we kpow from the assumption of stationarity. Any prediction scheme

using any of the i) i( o will avail us nought, but P t(X*, 4).,

The best least squares prediction which one can do in the case of in-

dependence is to predict the expected value of fr41 , the mean,

which a linear predictor can do. Therefore, if random noise can be

considered as an independent white light series convolved with a minimum

phase wavelet, the best prediction one can do is linear prediction,

since the non-linear predictor will only bring in higher order correla-

tions which give no new information.
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Weiner (1946) states that linear prediction is optimum in the case

where the noise series can be reduced to a Gaussian white light series

by convolution with a operator. The reason for this can be seen from

the following analysis of the joint probability density for independent

and dependent variables.

Independence and Gaussian White Light - Example

Let T, and 9 be normally distributed independent random variables.

Then the joint density of , and T is

where 0" is the standard deviation of . Now we define , and ja

as a linear combination of , and X1

-:Z x, 4 bx,

4CX, 4< (2.3.1)

and therefore

or

ITI P ' (XI x,)

where I 7 , the magnitude of the Jacobian for this transformation, is

T=Solving (.3.1) for and b

Solving (2.3.1) for X and 2L

41 Mi IIll I W - ---- --- --- ~-I- --INIMMMIN



143

Hence joint density for the dependent variables and is

We note the expected values of the following quantities.

, = E(~ ) a;2+ b 2

A,,- E(,I = ac ( + bd"
Thus

p 171nur_ exp ... F 7

IfA,, the correlation of j, and z , is zero, the cross term in the

exponential is zero and PI x) factors. This can be extended

for JL( ,, and we see that in general if the correlation

coefficients are zero the joint density of h variables factors. Hence

for the Gaussian, linear independence implies statistical independence.

(Davenport and Root, 1950).
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Non-Linear Operators

We thus see the reason behind Wiener's statement that linear prediction

is optimum if it reduces the series to Gaussian White light. We need

actually only show, therefore, that the white light series, t is Gaussian

in order to reject the adoption of a non-linear predictor. We saw in sec-

tion 1.4 that, for microseisms, Tt was Gaussian in many cases, and was

in general nearly Gaussian. We can fall back on the independence tests

for these non-Gaussian cases which showed that we could consider r

independent. The independence of t forces us to drop the notion of

non-linear prediction and hence forces us to reject the technique of pre-

diction for signal to noise ratio improvement in the first motion interval.

11 1111IMININNIMI -
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3. AUTOMATIC DETECTION OF SIGNALS IN MICROSEISMIC NOISE

3.1 Detection System

Description - Inputs and Outputs

A detection system to automatically detect signals in microseismic

noise has been designed and a computer program has been written to

simulate the system. The system and programs have been developed by

S. M. Simpson, Jr., for Geoscience, Inc. A flow chart of the computer

simulation of the system appears in Figure 3.1.1. The signal plus noise

input is rectified by squaring or by taking the absolute value and this

rectified waveform is averaged. The averaged rectified wave form then

enters a network which decides if there is a signal present or not, and

sets an alarm if there is a signal. The system variables are the type of

rectification, the averaging time, the hesitation time and the alarm level.

The averaging time is the length of time over which the rectified wave-

form is averaged before going to the decision network. Averaging over

some length of time is necessary to reduce false alarms due to an occasional

high noise amplitude, but the length must not be much greater than the ex-

pected length of the signal, since the average would be too small to

trigger the alarm. The hesitation time is the length of time that the

rectified averaged input must remain above the alarm level before an alarm

is sounded. This also tends to cut down alarms which might be caused by

noise spikes. The alarm level is the ratio of the value which averaged

rectified wave must reach for an alarm to the r.m.s. amplutide of the noise.
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It is, therefore, the signal to noise ratio at which the system can operate.

For example, if the alarm level is 1.75, an alarm will not be sounded until

the average rectified waveform reaches 1.75 times the r.m.s. noise amplitude.

The system as it stands is an event detector. It tells whether or

not an event has occurred, but makes no statement as to the nature of the

signal which triggered the alarm. Such a system could be used in an auto-

matic nuclear surveilance network to control the collection of data.

Only data near the time of an alarm would be recorded, and these alarms

could be studied for source type. An alternate procedure would be to

collect all data and just study the portions corresponding to alarms.

In order to rate the effectiveness of this system, it is necessary

to study the false alarm rate and failure to detect rate as a function

of the system parameters. The next few sections give the results of

false alarm and failure rate studies on the computer simulated system

for raw and filtered signals and noise.
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Gain

Rectification:
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Figure 3.1.1 Computer Simulation Flow Chart
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3.2 False Alarm Rate - FALARA

Generation of Input Noise

The false alarm rate of the detection system can be obtained by using

a pure noise input rather than a signal plus noise input and counting the

number of times an alarm is sounded as a function of the system parameters.

A large amount of noise representing many hours of sequencial microseisms

is necessary to carry out the study. Since only a few minutes of consecu-

tive microseismienoise is available from our digitized noise library, the

microseisms must be generated artificially. We have seen in section 1.4

that this could be done to a good approximation using a minimum phase

wavelet from real data and Gaussian white noise. Thus, the artificial

microseisms, Xt , shown in the upper trace of Figure 1.4.16, are

generated by the convolution

where W4 is the wavelet and is the Gaussian white noise. The

wavelet used in these studies was computed from record 1002, the vertical

component of the noise before the Logan shot 1902 km from the shot point.

The Gaussian white noise is generated from the Rand random digits by

summing non-overlapping groups of ten digits. The central limit theorem

tells us that the resulting sequence will have an approximately normal

distribution.

A 500 term minimum phase wavelet was computed and every other point

was then deleted. This left a 250 point wavelet with an equivalent
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digitization rate of 10 points per second. The deletion is not unreasonable

since there is almost no power above 5 cps. This wavelet was then con-

volved with 85,249 points of Gaussian white noise to yield 85,000 points

of artificial microseisms which correspond to 2.22 hours of noise.

False Alarm Rate Studies

The computer program FALARA (FAlse Alaram RAte) has been written by

S. M. Simpson to simulate the detection system with pure microseismic

noise input. For each set of system parameters the simulation was continued

until either 100 alarms were sounded or all 85,000 points of noise were

used. A flow chart of the simulation for the false alarm rate is shown

in Figure 3.2.1 along with the system parameters used. As can be seen

from this figure, two different types of rectification were used with five

averaging times, ten alarm levels and five hesitation times. The false

alarm rate is computed in units of alarms per hour. The results are shown

in Figures 3.2.2 and 3.2.3 where the false alarm rate is plotted against

the alarm level for several averaging times and for both types of recti-

fication. Each figure is for a different hesitation time. Curves are

included for only part of the results, but these are sufficient to

indicate over-all trends in the system.

It is obvious that a desirable system should have very few false

alarms for a low alarm level. We see from the figures that the curves

with both low false alarm rate and low alarm level are relatively insen-

sitive to hesitation time. For a given hesitation time the curves show

that a long averaging time is desirable. These qualitative results are

just as expected. The noise amplitudes change fairly rapidly and the
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high noise values, which are of short duration, are what trigger the

alarm. Consequently the curves for short averaging time are affected

by the hesitation time whereas the curves for long averaging time are

only slightly changed. We note that for given averaging and hesitation

times the curves for rectification by squaring are always better. We also

see that the curves for high averaging times are fairly close together,

which indicates that very little improvement will be obtained with averaging

times greater than 10 seconds.

~1~~11~~ ~111 __ _^_IIXI___I____L_^X~l-*i-- -in~X~ X
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3.3 Failure Rate - FAILRA

Description of System

The failure rate of the detection system is somewhat more difficult

to obtain than the false alarm rate. Both signal and noise are required

along with several signal to noise ratios. In the simulation of the

system, the signal, scaled to give the required r.m.s. signal to noise

ratio, and a block of noise are added together to give the input wave-

form. This is rectified and averaged and sent to the decision network

where the alarm is announced if triggered. Figure 3.3.1 shows a flow

chart of the computer program FAILRA (FAILure RAte), written by S. M.

Simpson, with the system parameters used to obtain the failure rate.

The artificial microseismic noise used for the false alarm rate

determination was used for the failure rate studies. For the signal it

was necessary to pick out a representative bomb record with a fairly

high signal to noise ratio so that the noise occurring with the signal

was negligible compared to the microseismic noise added later. The record

chosen was the vertical component of the signal from the Blanca shot

recorded at 1398 km from the shot point (record 58, see Figure 3.3.2).

Every other point of the first 600 points of this record were used thus

giving 30 seconds of signal. The signal to noise ratios used were 1.78,

2.07, 2.37, 2.67, 2.97, 3.26, 3.56, 4.0, 4.45 and 5.34.

Failure Rate Studies

The system simulation was carried out for a hesitation time 1.5

seconds, both types of rectification, five averaging times, ten alarm
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levels and all above signal to noise ratios. For each set of system

parameters the detection was tried 101 times and the number of successes

and failures noted. In graphs showing the results, Figures 3.3.2 and

3.3.3, the success probability is plotted against alarm level for different

averaging times. Each figure give4 the curves for a different signal to

noise ratio. The complete set of results is not given since the success

probabilities for signal to noise ratios greater than 3.26 are nearly

all equal to one.

The curves show that the long averaging times are successful over

a smaller range of alarm levels than the short averaging times for a

given signal to noise ratio, and they stop being successful at an alarm

level approximately equal to the signal to noise ratio. This is not sur-

prising since the long averaging time will average the signal alarm but

the short averaging time will permit high amplitude pulses to trigger an

alarm.

The wider range of success for short averaging times is offset by

the unavoidably large false alarm rate which was noted in the last section.

The most generally effective system parameters must balance the false

alarm rate and the failure rate. In Figure 3.3.4 the overall system effec-

tiveness, taking into account both false alarms and failures, is shown as

a graph of signal to noise ratio versus false alarm rate for .95 success

probability. The curves were obtained, for a given averaging time, by

picking off the alarm levels for .95 probability of success for all signal

to noise ratiosand then turning to the false alarm rate curves and picking

the false alarm rates for the previously obtained alarm levels. The
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hesitation time was kept at 1.5 for these curves. We see that, for

smaller signal to noise ratios, rectification by squaring and use of long

averaging times are best. For a signal to noise ratio of 1.78 and 10

second averaging time gives about 10 false alarms per hour, and as the

signal to noise ratio increases the false alarm rate drops sharply so

that the system is quite good at high signal to noise ratios. The large

number of false alarms make the system relatively ineffective for signal

to noise ratios less than 1.78.
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3.4 Automatic Detectior with Filtering

Band Pass Filters and the Signal to oise Ratio

The last section showed the overall e.ifjct of the detection systenn

and indicated that it was not particularly good for signal to noise ratios

less than 1.78. If, however, the signal to noise ratio of the raw data

can be improved by filtering, the usefulness of the detection system may

be increased enormously. Examination of the spectra of the noise records

(Figures 1.3.6 to 1.3.9) show that most of the power is between 0 and about

.7 cps with a few spikes around 1.4 and 2.0 cps. The vertical records have

less energy at the higher frequencies than do the horizontals. If we look

at the noise spectra through a window from .7 to 1.8 cps we see only a very

small percentage of the total power. The signal, on the other hand, has

energy all through this band. If a reasonable percentage of the total signal

power appears in this range of frequencies, a simple band pass filter will

improve the signal to noise ratio quite a bit.

The programs FAILRA and FALARA can be used again to study the failure

and false alarm rates by pre-filtering the signal and noise and the proceeding

as in the last two sections. The flow charts in Figures 3.2.1 and 3.3.1 are

applicable if "Noise Tape" is changed to "Filtered Noise Tape", and "Signal

Tape" changed to "Filtered Signal Tape."

The signal to noise ratio improvelmeit obtained by band pass filtering

can be estimated from the spectra of the signal and the noise which are shown

in Figure 3.4.1. If the signal and noise were initially scaled to have a

one-to-one ratio, and were then band pass filtered to pass .8 to 1.7 cps

__ I _____II~_^^~ _ ̂  __ I~___
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we see that nearly all the signal would remain and nearly all the noise

would be removed. The signal to noise ratio improvement for this case

would be a factor of about 5.

Effect of Filter on System Characteristics

It is important to see if the detection system characteristics change

significantly when the filtered signal and noise both have band widths

which are narrow compared to the band widths of the raw signal and noise.

If the characteristics are relatively invariant with band width, the system

can be said to be an energy detector and its effectiveness can be measured

in terms of the signal to noise ratio improvement brought about by the

filtering, and the system response to unfiltered signals.

The constancy of the system to change in band width was studied by

band pass filtering the signal and noise separately and using the programs

FAILRA and FALARA to obtain the false alarm rates and failure rates. The

signal to noise ratios and alarm levels were computed from the amplitudes

of the filtered noise and signal. The results of the study are shown

in Figures 3.4.2 to 3.4.6. As in the last two sections, the false alarm

rate is shown as a graph of the number of false alarms per hour against

alarm level, the failure rate is given by the success probability as a

function of alarm level, and the system's effectiveness is shown in a

graph of the false alarm rate versus signal to noise ratio. In comparing

these graphs to the ones for unfiltered data we see only slight differences.

The trends are all the same and the actual curves, particularly those for

longer averaging time, are approximately the same. The overall system

effectiveness is also about the same for the filtered and unfiltered cases.
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In view of the findings from the filtered and unfiltered cases we

can say that the system is essentially an energy detector and that the

curves obtained for the unfiltered case can be used for the filtered case

if we can compute the signal to noise ratio improvement due to filtering.

We have seen that for the particular signal and noise used this improve-

.ment was enormous and results in an extremely low false alarm rate.

With the use of the curves which have been presented one can easily com-

pute the range of signal amplitudes which can be detected reliably if

the level of the background noise is known.
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Figure 3.4.1 Signal and Noise Auto Spectra
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4. SUMMARY

The seismic data from the Logan and Blanca underground nuclear shots,

which was provided by the Air Force, has been digitized and, along with

other data contributed by Dr. Bruce Bogert and by United Electro Dynamics,

Inc., has been subjected to many computational experiments. In the first

of these the microseism data was considered as a signal and the object

was to infer the nature of the sources and the wave types involved. We

saw that the amplitude of the microseisms at about .3 cps decreased with

increasing distance from the coast, but the higher frequency did not dis-

play any regular trend. The suggestion is that the low frequency noise is

of oceanic origin whereas the higher frequencies are more likely of local

origin. It was not possible to pin down Rayleigh and Love waves with any

degree of certainty, but their presence was not disproved. The failure of

the wave type experiments is attributed to the complex nature of the micro-

seisms. The model used cannot deal with many waves of the same frequency

but different directions of travel.

The inadequacy of a simple deterministic model motivated a statisti-

cal treatment of microseismic noise. The microseisms are considered as

a time series and, under the ergodic hypothesis, the relative constancy

of the power density spectrum suggests that the time series is at least

wide sense stationary. Studies on the microseism amplitudes show that

their probability distribution is Gaussian and that they are dependent.

The power density spectra have been computed using the Daniell tech-

nique. The spectra are quite similar in structure over distances of
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several hundred kilometers. There is a prominent peak at about .3 cps

and in some cases there are peaks at 1.4 and 2 cps. The low frequency

peak is interpreted as the high end of the oceanic microseism band which

is cut off on the low end by the seismometer response. The higher fre-

quencies are attributed to local causes.

Cross spectra of different components at the same station, like com-

ponents from different stations, and array data have been computed. Again

it is difficult to pick out individual wave types and it is not possible

to follow waves from one station to another. This is again attributed

to the complex structure of the noise.

Since the microseisms can be considered as a wide sense stationary

time series, a mathematical description is possible. The moving summation

and autoregressive representations are valid. With the assumption of

an absolutely continuous spectral density the spectra can be factored and

a minimum phase wavelet found for the moving average representation. The

generating model for microseisms is then a white light series into a minimum

phase system. Probability studies on the white light series obtained by

convolving the inverse minimum phase wavelet with the original data show

that the white light is essentially Gaussian and independent.

The minimum phase wavelet is also the predictive decomposition and can

be used to compute the predictability of the microseisms. This technique

of prediction is found to be faster and easier to handle than the mean

aquare error method, although the Levinson technique is quite good. The

predictability of the microseisms is not very great. About half the energy

(50 percent reduction) can be predicted for one or two seconds and then the
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decrease is fairly rapid. Multidimensional prediction does not give appre-

ciably better results than the one dimensional or self prediction. Thus

prediction as a method of noise reduction in the first motion interval

is not particularly promising. We can say, however, that our linear pre-

diction is the best we can do, and that non-linear operators will not help.

This is because the microseisms can be considered to be generated by Gaussian

white noise into a minimum phase system. In this case the white noise is

independent and higher correlations give no information about the noise.

The mathematical model enables us to generate artificial microseisms

so that long periods of continuous noise are- available. These long noise

series are required by the computer program which simulates a detection

system. Noise above is needed to compute the false alarm rate and signal

plus noise is needed for the failure rate. The system effectiveness is

plotted on a graph of false alarms per hour as a function of signal to

noise ratio for 95% detection probability (5% failure rate). The system

characteristics are found to remain approximately constant when a band

pass filter is introduced at the input. Thus the system will function

as an energy detector and band pass filters can be used to improve the

signal to noise ratio. Improvement of a factor of five was found for

the particular signal, noise, and filter used.

The emphasis has been on the statistical approach throughout this

thesis. There is, of course, plenty of room for additional work of both

statistical and deterministic nature on the available data in the same

general area as the present work. More complicated models which take

into account several wave types and many directions of travel may be

_ .__ _._ _____ I
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introduced and fitted to the data. New techniques will enable multi-

dimensional prediction studies with long operator lengths, and it would

be interesting to compare results of this sort of study with the long

operator studies of section 2.2.

The cross correlation results on the array data certainly do not

represent exhaustive study. Multi-dimensional prediction experiments

as well as summation of records with variable time lags would be quite

interesting. Three component and array detection system studies by com-

puter simulation would also prove useful.
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APPENDIX A

WATER WAVE PROBLEM

Longuet-Higgins (1950) has shown that a standing wave can produce

a second order pressure fluctuation which is unattenuated with depth

and which has twice the time frequency of the standing wave.. Hence

it is possible to show that microseisms could be produced in deep

water even though the linear theory tells us that the pressure fluc-

tuations die off exponentially with depth. In order that there be

enough energy transmitted to the bottom, there must be a "patch" of

standing waves which is coherent over a fairly large area and the

patch must not move because the motion will cause the pressure oscil-

lations to average out to zero. Therefore the standing waves must

meet nearly head on. In fact, it has been shown (Kenyon, 1961) that

if the travelling waves meet at an angle G ( =0 , head on), the

average pressure on the bottom must be multiplied by eX (-2h i9)

where ' is the depth of the water, 0* the wave number and e the

angle between the travelling wave fronts.

There is a special case of interest when the waves meet at such

an angle that the "patch" of standing waves moves with a velocity, \Is ,

equal to the velocity of propagation of Rayleigh waves, V- , in the

medium. The travelling waves, with velocity Vt , mpst meet at an angle 8

such that

In this case there is essentially a resonance and strong microseisms

.__ IL_ I
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could build up if the "patch" of water waves remains coherent for a

long enough time.

One of the problems considered by Longuet-Higgins was the two

dimensional compressible case of a layer of water with a rigid lower

boundary and a standing wave at the surface. His solution requires

the small parameter expansion technique of handling non-linear problems

and illustrates the frequency doubling effect as well as organ pipe

resonance. The problem which will be treated here is a good deal

simpler in that it considers the incompressible transient problem.

This is done to illustrate the energy swapping to the sum and dif-

ference frequencies of all frequencies present and uses a representa-

tion for non-linear problems devised by DeVorkin (1963). DeVorkin's

scheme is particularly useful in that the solution is in terms of

kernels which do not depend on the initial conditions. Therefore

once the kernels have been found for a given geometry the solution of

many problems with different initial conditions can readily be found.

The method is also useful for statistical initial conditions.

We consider the two dimensional transient problem of an incom-

pressible irrotational fluid layer of constant thickness, K , over a

rigid half space with arbitrary initial conditions on the velocity and

surface shape. We assume a velocity potential p . The velocity is

therefore V= - ~ . The continuity equation is then VZ74O and

the equation of motion is

-.17 4
DV N~



176

where f is the gravitational potential, is the density (assumed

constant) and p the pressure. We factor out a 7 and obtain

Bernoulli's equation

where W is negative downward and p =o

The free surface condition is

Dx~~~a9a

Bernoulli's equ(ation

at the surface - .

(A-l)

becomes at T=O

+ c~=O (A-2)

a9,1I, 0

The solution to

dition

the continuity equation which satisfies the con-

at :-h is

(A-3)

where we have assumed a discrete set of frequencies. DeVorkin's repre-

sentation scheme applies to total differential equations and hence to

the Fourier transform over the spacial frequencies of the boundary equations.

The initial conditions are

for ): F ) .f-i M to i

for /V( ) ) , z - M to

m~tll 04 40A eAel*

,t b=T("t)
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where Flr,i) and ,(1)t) are the Fourier transforms of ~(P)and I).

We combine these into a single variable

The representation scheme is then:

which can be combined to

where

l -) 2- C VC A . (A-5)

The R's are thus system functions independent of initial conditions.

The boundary equations (A-l) and (A-2) apply at :1 but since
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r is unknown the equations must be expanded in a Taylor series about

-0 in powers of . Expanding to second order only

b I t (A-6)

(A-7)

where the subscripts denote differentiation.

We take the Fourier transform of these equations to obtAoA

P P

for equation (A-6) and a similar expression for equation (A-7). In

this transformation we have used the fact that multiplication in one

domain is convolution in the other, and have set the transform of

equal to C(M) L) . The dots represent time differentiation.

We note that equation (A-8) contains more than one term with a time

derivative. Poincare's theorem on small parameter expansions does not

guarantee a solution unless the right-hand side contains not time

derivatives. We can, however, consider all the time derivative terms

as an operator, H ,operating on F'() and thep show that the operator

H - CL can be inverted if OL is small. That is, if the operator FH

cannot in general be inverted, we must demand that it can be expressed

---- I I - I-~-
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as f- Q where aL is small enough that the Neumann series resulting

from the inversion converges. Hence, for many cases we must impose

the restriction that the non-linear terms be small compared to the

linear ones.

Since H can be inverted we go ahead and use the representation

scheme equating terms of like order and remembering that the equations

must hold for arbitrary initial conditions k •

The first order equations are from equations (A-6), (A-7) and

(A-8), using the notation introduced in equations (A-4) and (A-5),

These can be solved to give

or 0 -Q+ exp() t] Q exp i )t

for octc, where
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where is the Kronecker delta, and

Rn+' - b+ exp[ ec ,,)t]+ b. 6 tp[. i eoi

for odA , where

For 1 = J , and are zero for all t .

The second order equations, obtained by equating the second order

terms in equations (A-6), (A-7) and (A-8) containing the second order

kernels and convolutions of the first order terms. The convolutions

may easily be performed and the ,equations can be con-

sidered as a matrix equation. However, due to the simple coupling of

the equations only a 2 x 2 matrix need be considered. The zero spacial

frequency, 1= J , must again be considered as a special case.

The second order equations are

(N-I
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where N: +4 M +and h and p are odd,

)3qpf C T7 RK

I '1% -P '1
The equations must hold for arbitrary a so that

'I--)C(Ct h1z

(A-10)

(A-1l)

The convolutions are not hard since R h is diagonal. The last two

equations may be written

-
4 1

* v~4'

We write this as a matrix equation

K L"

L

kr\4(
Kktz

B-I

and

h41

KAP

riCC R:
0(

2ScP-

N-P1

%- R

:z )C(

K'9

N-1

pzI

h- p+4 +

-"

1 OA
KI

t , +

R + ' p MP~r-P

-P
1 ii

i ~ j )Ci
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where A is the matrix

A (h -T) c

The solution to the equation is,

Since K ,O = 0 at t = 0

if A can be diagonalized. If

this diagonalization then R K

U +AL

multiplying by U'

where A U
where U-'A U = D
Then

s 1
"1+I

SkrQ

This is simplified considerably

U is the transformation matrix for

U 5 and

J i -

IcQr7

b -1U'"A U ,

is diagonal.

c(
OC

og
and

n]RY%4
VC 4

t 7nIC 1 TT ~

______ ---~ IYIIYIIIIIIIIYIIII

-t
o

h-h

TIK A

Tn+1



For the matrix A U

r

-t h-j~c _- 0 2.1(M )
4*~C

.-

the term e-)(t"T) becomes

O

and the solution for

0O
( lc~Ic ~J'X

(h-f-) C(7

O

' 1 \S then

Y)-

where

,- exp,

>exp(- #~

183

and U are

oC(

yc*)(t I~

T "41
II'V".

y -

"VI IT)
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For the zero spacial frequency, which is the frequency of interest

for deep water microseism generation, n. , 71i , we have from

equation (A-11)

In equation (A-10) we note a symmetry in k and - so that we

need only consider half of the right-hand side from which we determine

half the solution for CA . We call this half of the solution I'

and the entire solution is thus

We can determine CL,~ from equation (A-3) by setting jj= 0 after

differentiation.

The solution R x is then

where the are functions of X . We substitute in for the

and integrate to obtain terms of the form:
and integrate to obtain terms of the form:
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. -,r T + a.,, ( K -T.. .
-

i i2 i .

4- 0 b - __e &

±C- b- exp[:)(r emI4)) t J

(,-K-1

---- --- _J

. x( Vnk)Fs, +((T-)

a oMS+, 4 othew

S eM P Ih±-I ( r ( C) ± Y( J--

To see what frequencies are present we look at the frequency of one

term, e.g. the first term above. This term, 77 is

where ~ is

(K-5 k

We assume that h is large (deep water) and we have

- - -KT
2_

and

The frequencies present are then

~-J

2

T

L

W to,,

+ K4
X (7-K-1)
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which are the sum and difference frequencies of all frequencies present.

If we start with just a few frequencies we generate many more due to the

nonlinearity of the problem. A study of the energy flow from one fre-

quency to another is possible with the representation scheme used, but

is quite tedious. We have shown here only part of the second order

kernel, R which is itself quite cumbersome, and the higher order

kernels are even worse. The only saving grace is that once the kernels

are found the problem is solved for arbitrary initial conditions.
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APPENDIX B

NORMALITY TEST FLOW GRAPH

Input - X(I) series, I=1,LX

Compute mean

UL

I: I

Compute standard deviation

..T=, I

Define NRANGE

NRANGE =

(This is an arbitrary definition. NRANGE should be small

enough so that at least 5 values of X(I) fall in each range,)

Find the X values which divide the normal density with mean XMEAN

and standard deviation STDEV into NRANGE ranges of equal

probability. Use SUBROUTINE NOINT2.

Returns LRANGE(=NRANGE-1) values for range limits, RANGE(1).

First range is (-CO, RANGE(1)), ist range is (RANGE(LRANGE),00).

Count number of values falling in each range. Use SUBROUTINE FRQCT2.

Returns fixed point count of number in each range in vector

ICOUNT(I).
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Chi Square test

P=1/NRANGE-probability of falling in any range.

N R A MOC6 "

%gar CZ,(IroUNT(I~A/)~(P*LX)

Number of degrees of freedom=NRANGE-3. Use SUBROUTINE

CHISQR.

Compute probability of exceeding $3 . Use SUBROUTINE KIINT1.

See APPENDIX G for program listings

i11 l IIiIIIYY ill ,
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APPENDIX C

EXPANSION OF EMPIRICAL PROBABILITY DENSITY FUNCTIONS ABOUT THE

NORMAL DENSITY IN TERMS OF MOMENTS

It is possible to expand a probability density about the normal

density if the moments higher than the mean and variance are known. It

is not, however, guaranteed that the expansion will converge in all

cases. If Ffx) is the probability distribution, and (X)

ot Fx)

is the density and Y(x) is the normal density,

then the expansion in terms of the derivatives of the normal density,

the Edgeworth series, is

f _ , _ ( )+ ,, (c-=6)

and will converge if the integral

converges and if fu) is of bounded variation in (-o0000)

(Cramer, 1946). For our purposes we need not worry too much about the

convergence. We only wish to see if we can approximate the distribution

fairly well with just a few terms of the expansion.
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It is now possible to obtain the coefficient Cn

the moments. Remembering that the normal density, ((X)

erating function" for Hermite polynomials

A X

in terms of

is the "gen-

(C-2)

where ,,H() is the nth order Hermite polynomial, and that the

Hermite polynomials are orthagonal with respect to (xp

w, X1.,2.

fol-
fo b

W%= J1

MAHC

(C-3)

we can now solve for the C .

Substituting )- fI ( 9(X) into equation (C-l) we have

>(X)= Ca'UWKX),-C, ) x)  I (C-4)

Multiplying both sides by N 4  () and integrating we have, because of

(C-3),

0.4

m ) (C-5)
Since i olynmi nd is a probability density

Since H-f () is a polynomial and - ) is a probability density

- - *UM1,iiU IIIhImYIEUIIIY hJYI ,Irn,, i

OI )1
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the integral is simply a sum of moments. The moments (central moments)

are A K where

-00

and V is the mean. The unit normal density (zero mean,unit standard

deviation) was assumed in this derivation so that f(x) must be the

function of the standardized variable - where T is the

standard deviation. This means that the '-I moment of the

standardized variable is - Hence C0 - , C,-- 2

H )-- X3 - 3  , and so from (C-5), C - - The rest of the

C ~ may be obtained from the (Y) in the same manner. Thus

10 --3

S- -- + 3c

The moments may be estimated from the data by averaging so that the

integral (A-6) need not be performed.

The computation of the approximations using up to Cop has been

programmed by Roy Greenfield. (See SUBROUTINE PRBFIT in APPENDIX G.)

The expressions for the approximations which must be evaluated are



f, txL- '

c
('A)- c

Care must be taken that the XIS are the values of the standardized

variables.

192

Ali

[c; J

X,+ [(

(X3-3Xu] ?(x

$) (X I~ 6x +~ 3)] fiv)
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APPENDIX D

INDEPENDENCE AND DEPENDENCE MEASURES

Poker Count Test for Independence

Given a series of equally likely integers from zero to nine it is

possible, under the assumption that the numbers are independent, to

compute the probable number of non-overlapping groups of five numbers

which fall into each of eight categories. These categories are similar

to those of a poker game where each group of five is considered a hand and

each hand has a certain value. The analogy to the poker game is not com-

pletely accurate since the "card" values are 0 to 9 rather than ace to

king, and it is possible to have five of a kind. Also the series, which

takes the place of the card deck, has many more than 52 numbers in it,

and removal of a number does not decrease its later probability of

occurrence. The eight categories or hand types with their respective

probabilities are (Durand, 1962, personal communication):

Hand Probability

Bust .2952
1 pair .5040
2 pair .1080
3 of a kind .0720
Full house .0090
Straight .0072
4 of a kind .0045
5 of a kind .0001

These probabilities are exact. The decimals terminate at the

fourth place. In assigning a hand to one of the categories the order

of the digits within the group of five does not matter.
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If the series of numbers is independent, then it is expected that

the number of each type of hand will be approximately the probability

for that hand times the total number of hands. Both this test and the

mean square contingency test require a mapping of the given series into

an integer series. The poker count test requires that the ten digits have

equal probability. Hence the probability density of the original series

is transformed into a rectangular density and the original series is

mapped into an integer series with values from zero to nine with each

integer having probability .1. Figure D-4 shows the steps necessary

in the poker count test and APPENDIX G contains program listings.

Transformation of Probability Densities

Suppose P,(X) -(X) is the probability density (frequency

function) of a random variable T The distribution function is then

The change of variable, F(X) is known as the "probability

transformation" (Wadsworth and Bryan, 1960).

The probability density R can be found as follows:

R wa~=k

1 I I ON I in li llllllmullll milI m ilw lil ilmilu il IM I ,, 11lII Mllllu l ,
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The variable Y is thus rectangularly distributed and, since (y)

is defined from 0 to 1, O_! J I.

For the joint distribution, P .j(IX.X) ) using the same

transformation, we have

?TITix, ( XI) XY'Zil((XX

denotes the compound probability that

given that X, 4(

Usi-ng the same transformation, I : F(K) , we have

The Jacobian for this transformation, - , gives

dotb, C' -

j x

1IT1 dyJldd

I
- -

e,) & Tx2II
PM"

Y~lY~I)=pI(

where P I, d1 JX,)(k

I
NwAM

I

If (41 a i

PG~~k
12.1 T

X2. (< 1 < A+ x
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If TI and T are independent then

R ( X 2} Pg,(xt}) f <xj
and

The result is that if it and ' are independent, then , and 1.

are also independent, and if 1, and 2 are dependent, then , and 17

are also dependent. The compound probabilities will differ by a factor

equal to Ix)

If , and are independent, then all of the higher probability

densities for are rectangular. An extension of this can easily

be made for any number df random variables, and in particular for five

variables as is necessary for the poker count test.

Mean Square Contingency and Dependency Measure

The measure of the degree of dependence of two variables which has

been used is related to the mean square contingency (Cramer, 1951).

Suppose that two variables, r and7 have densities PT

and P ) and a joint density Pr where X and are

discrete and L : , )N I). ,

Hence

J PT I (X" P

P f PTF(XJ~
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The mean square contingency, is defined as

Le~

c:

i 1KY.

4

K'
P~(x) ,
(X-,

If and only if the variables are independent

, x, (x1) P

and all probabilities are less than or equal to one,

ppi7

thus

ZN
S4(X4')O

L

orv

= PT o ") P (j j

r
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and

where i is the smaller of N and I , the limits of the sumation.

Therefore the quantity /('|) , which we will call the de-

pendency, may be used as a standard measure of dependence since

2.

There is, of course, some difficulty in using this or any measured

dependence on numerical data. Numbers generated by independent random

processes will not in general give a zero value for the dependency. The

question arises, therefore, as to the interpretation of the number re-

sulting from the dependency test. Since it is uncertain how large the

dependency can be and the series still remain independent, a number of

tests were run on independent random numbers. The numbers were obtained

from the Rand Corporation on punched cards and are the same as the numbers

which appear in the book, 1,000,000 Random Digits (Rand Corporation 1958).

These numbers were generated by an independent process.

The numbers were run through both the poker count test and the de-

pendency test. Three different lengths of series were used, 3000, 2500

and 2000, and each was repeated 8 times so that a mean and cariance could

be computed. The results of the dependency test are shown in Figure D-1.

Straight lines have been dotted in to indicate the mean and standard de-

viation changes with series length. There is no reason to suspect that

- '1011411 MINIIIIIIIIA
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their values actually fall on a straight line, in fact one would suspect

that the line would curve off concave upward on the right and concave

downward to the left. These tests were carried out for a lag of one,

that is the random variables took on values of and Vn| of the series

of digits.

Since it is important that the denominator not be zero, the

series of real data were mapped into integer series from 1 to 10 with rec-

tangular densities. This was, of course, not necessary with the Rand

random digits, since they were already equally likely integerS. How-

ever, one was added to each Rand digit so that the series would be from

1 to 10 rather than 0 to 9. This was necessary only for ease and speed

of computation of the second probability density. Figures D-2 to D-5

show flow graphs of the steps necessary to compute the empirical proba-

bility density and perform the probability transformation, the poker count

test and the mean square contingency test. APPENDIX G contains the listings

of the programs used in these operations.
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Dependency of Rand Random Digits

Mean of Dependency Value With

\ Standard Deviation

For Different Data

Lengths. Eight

\%amples For Bach

\ Length.

N

.002-

.0011

2000 2500

Data Length

.Figure D-1

3000

.0061

.005ost

*.004

.003

1500 3500

-- L__.~__.._~ .. IIIYIYIY I' IIIYIYIIIIIIYIIII

1 ~ - --
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Empirical Probability Density Flow Graph

Inputs - X(I) series, I=1,LX

NDIV number of ranges

Find maximum, XMAX, and minimum, XMIN, of X series.

Compute range limits for NDIV equally spaced ranges from

XMIN to XMAX

RANGE(I)=XMIN+(I-1) (XMAX-XMIN)/NDIV, I=1, NDIV+1

NDIV is somewhat arbitrary. It should be much smaller than LX,

the length of the X series. We have used NDIV=100 with

LX 2500.

Count number of values of X(I) falling in each of the NDIV ranges.

Use SUBROUTINE FRQCT2.

NOTE - FRQCT2 assumes that the NDIV+1 range limits define

NDIV+2 ranges. The count vector, ICOUNT(I), I=1,NDIV+2, must

therefore be altered such that ICOUNT(2)=ICOUNT(2)+ICOUNT(1),

and ICOUNT(NDIV+1)=ICOUNT(NDIV+1)+ICOUNT(NDIV+2). The correct

counts are then in ICOUNT(2) to ICOUNT(NDIV+1). This may then

be normalized to give the frequency ratio or probability

density, PROB(I).

PROB(I)=ICOUNT(I) NDIV/(LX (XMAX-XMIN))

Figure D-2
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Probability Transformation Flow Graph

Rectangularize Probability Density

Inputs - PROB(I), I=1,NDIV, The probability density normalized such that

I PRO () Ax ; = XMA-XX'MN/LKY--I

XMIN = Minimum value of original time series

XMAX = Maximum value of original time series

NPROB =Number of ranges of equal probability desired.

Need not equal NDIV

X(I),I=1,LX, the time series

Find X limits which divide the empirical density into NPROB ranges

of equal probability, XLIMIT(I), I=1,NPROB+1.

(Linear interpolation where necessary) Use SUBROUTINE GRUP2

Map X(I) series into IX(I) series (integer series such that for

XLIMIT(J) X(I) XLIMIT(J+1), IX(I)=J-1+IXLO

where IXLO can be adjusted to give desired d.c. level.

Use SUBROUTINE MPSEQ1

Result is interger series IX(I), I=1,LX with NPROB different

values from IXLO to IXLO+NPROB-1 with equal probability, 1/NPROB

Figure D-3

~ __ 00 =011111111 1116 WHOMI U1 , J L
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Poker Count Test Flow Graph

Inputs - X(I),I=1,LX time series

LX length of series

Compute empirical probability density. See Figure D-2 for flow

graph of this procedure

Perform probability density transformation to map X(I) series

into IX(I) series with

0 < IX(I) < 9

See Figure D-3 for flow graph of this procedure with IXLO=O.

Take IX(I) series ?n non-overlapping groups of 5,IX(I), I=l, ...

5,IX(I), I=6,.....10, etc and consider these as poker hands.

Evaluate the poker hands and count number of each type.

(Types - bust, 1 pair, 2 pair, 3 of a kind etc.) Total

number of hands is LX/5 rounded down. USE SUBROUTINE POKCT1.

Compare with theoretical count for independent series.

(See a priori probabilities on first page of this APPENDIX.)

Figure D-4
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Mean Square Contingency and Dependency Test Flow Graph

Inputs - X(I), I=1,LX time series

LX length of series

Compute empirical probability density. See Figure D-2 for flow

graph of this procedure.

Perform probability density transformation to map X(I) series into

IX(I) series with 1 < IX(I) < JHIGH, where JHIGH < 25.

(Requirement of SUBROUTINE PROB2 used below.)

Note - If poker count test is also done the mapped series used

there can be used here if one is added to every IX value.

JIIGH will be 10 for this case.

(See Figure D-3 for transformation and mapping flow graph.)

Compute second probability density, P(I,J) for lag of one.

Use SUBROUTINE PROB2. (Gives joint probability that IX(I)=L

and IX(I+1)=M for I=1, LX-1, and M and L ; 1, < JHIGH.)

Compute mean square contingency and dependency.

where

DEPENDENCY=M.S.C./ (JHIGH-1)

USE SUBROUTINE MSCON1.

Figure D-5

~-~~YI IYYYIIIYIIIIYYY YIYII I IIUiiul------ ---- - ---
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APPENDIX E

FACTORIZATION OF THE POWER SPECTRUM

The problem of spectrum factorization in the frequency domain was

solved by Kolmogorov (1941). The treatment here is similar to Robinson

(1956).

Given a power density spectrum, (L ) , it is possible to factor

it such that

where

That this factorization is possible is quite obvious and, in fact, an

infinite number of such factorization exist. The trivial case is

S(WO'. There is, however, one important case, and that is when BC)

has no poles or zeros in the lower half of the X plane ( L +

(Lee, 1960). In this case B3L W) corresponds to the transfer function

of a physically realizable system, that is, a system which does not have

output before it has input. A pole in the lower half of the X plane

transforms to the negative time axis and can therefore be considered a

"source" for negative time. If 8LW) has poles in the lower half

plane, its Fourier transform () will only be non-zero for t)0 ,

and ) then said to be one-sided in positive time. If 13L W)

also has no zeros in the lower half plane, then its inverse I B( W)will

have no poles in the lower half plane and its Fourier transform will also
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be one-sided. B31t is then called the minimum phase wavelet. The

factorization problem is the problem of finding (+) from (w) and can

be solved as follows.

If we take the t transform, i.e. a e , of W5L) to obtain

Z1) , we have mapped the lower half of the place into the interior

of the unit circle and we now consider B(t) a polynomial in ? .

That is GkW is the Fourier transform of some time function i3(t) and

as such has the form 0)

and the 2 transform becomes

S- -00

and 3 must have no poles or zeros inside the unit circle,

There are certain restrictions on Ito) , namely

1. LW=

2.

which must be met if cZL)is to exist. If condition (1) is not met,

then the integral (2) will not converge. Condition (2) is equivalent to

the Paley-Wiener criterion (Robinson, 1954, p. 149) and is a requirement

for the existence of a moving average and an autoregressive representation
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of the time series. Condition (3) states that the power must be finite

and is just a stability requirement.

If these requirements are fulfilled, then the logarithm of D(tB will

be analytic for 1 1 ,

or

log 7t6 () + 1(3)

Hence the problem of obtaining the minimum phase wavelet is now one of

finding the imaginary part, V( T) , of a function analytic inside the

unit circle given the real part, A ( ) , on the circle. This is also

the potential theory problem of finding the field inside of a region

given the sources on the boundary. The function log 1( can be

expressed as a power (Taylor) series in its region of analyticity

Expanding log ( ) : log 5(Oe ) in a Fourier series

0- W(e"J &e w) 4 (eW)

s ReE w-4eos k. S k
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However

u~~ie'R 0j ? ll)

and b(W) is an even function, i.e.

since

Therefore 1/2 log i( W) is also even

and

Hence

and

and

cd raI

K J,,

Coos
I C. o K es w ~

The wavelet -s is then determined from

1 e n P[ fo
T3(a) bs - X _

- Cos kctw?

The following method,

the bs was first given

in Simpson et al (1962a).

The bS will have to

It is shown below that the

points in the wavelet) may

suitable for programming purposes, for getting

in MIT G.A.G. Report 9 (1956) and was repeated

be cut off after some S value, say S:="

first tl1 terms of bS (the first 4+1j

be obtained exactly from the first W% + I S,
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Expanding

6,s? I :5=I
5=0

Lu I! I n 3 ,

FCn t11- 1(1#c2 rr )
a!t 'I i

Matching like powers of Z we find

30b e1
b, T 4

etc.

In general, if we are interested in obtaining boe,,... , we may

drop terms in any polynomial with exponents ) K and we may drop all

polynomials whose first power of " is ) 1 . We also do not care about

any cross terms whose 2 exponents are .

We disregard 00 for the time being and consider the problem as

follows:

I I **

3"4
•: )' .' j
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S1 = (First vl terms of) P(,)P( Z)Pa (s)
S-o

(this is just another way of grouping the terms).

Where ; 14-) C  + Ci2 .

and

o for J'

Co'

K is a positive integer. Considering bS and CS as

time functions we may now consider the problem as one of partial convolu-

tion. Let F stand for "First w 4 I terms of." Then

b - F(c, C %i , ., )
and F(c, * F(Cc F(C3A , %( c,-,*= ,,

L e t b ' ) = C M6

b"' = ( c , ) (
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Examination shows that b may be obtained from b'() by

the following formula representing partial convolution

Further examination shows that , where

of ]/2. , may be written down by inspection

bt 0

t= I+ integral part

b(M) - C4+, M+I

This can be seen by noting first that for all L

and b( 0 for I< 4 L and that the CLS for

/Ii have only two terms in them. As the partial convolution

proceeds, the bo terms pickup the diagonal terms in the Qi matrix,

and there are no other contributions to the next b L )  until L 2 h112.

It can be seen that only one column of the C matrix is needed at a
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time.

A program has been written for the spectrum factorization problem

for 709 or 7090 computers. The program makes sure that (w)> by

setting any value of /( ) which is less than 10-6 of the msximum

value of ( W) equal to 10 - 6 of the maximum. The Daniell method of

spectral estimation guarantees L W)> 0 but other spectral window such

as the Turkey-Hamming window do not have the guarantee. The computation

of the 0 S in the computation of the cosine expansion of L P tW)

was done by trigonometric interpolation (Lanczos, 1956) so that the

integral need not be computed. The program FACTOR is listed in APPENDIX G.

1 IIY UIYY i Yi IIII1IIIYi III
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APPENDIX F

CONSTRUCTION OF THREE WHITE LIGHT SERIES WITH SPECIFIED COHERENCES

We wish to construct three unit variance white light series Xt

XZ, X with controlled coherencest "t

I L~eI
"q-- - 1 -

~,U 3(W)

: bX(34J)

The solution is an obvious extension of the Simpson et al (1962) treat-

ment of constructing a pair of series with controlled coherence. Since

X , , are unit variance white light their spectra are

'L1Y :7 a

(] -i)

= 2 C

CO,1(W)

cob,,(aw

Cal~ Ik))=23

.12. ~(U
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hence

8 '(W1I

i L U_

or for zero phase shift

IL (W)

We assume that , t and Xt are broken up to have common

and uncorrelated parts

I
X t

ti %+ xS 4 XA
- t -t t

C t R2

SC3 K44 )4Xt'Xt

where all cross correlations

jP
gc,)

1.; Zj

j (

ci I(w)

CiTr

(F-2)

fR-
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are zero. The autospectra of the Xt series are then

4f4 (w) li (

fc I ( +, F rz, w)

f 3 3 L) ' CA') -

The cross-spectra are

Zr

lc_ ( W

I'
lei -k-

We therefore have

I

111A

'a'

4st

0(1, ( W)

Z 7T

M23(~3)

~Z ~7P

~,,(~t H,,(w)

2.3( W) = IC 0 4 W) + f, ( "') =



2

rz3 ( W)

We must first construct the six mutually independent series , )(

i=1,2,3 with the power spectra t given above. We then con-

struct the X4 series with equations F-2. These series have the

coherences (O j( W) as shown in equations F-1.

216

01 3,W) -- .)
I, - de, a Ck AJ

zIIII .- II I . .. r'-

)+ ry I :L 2. C2.,3 L W)

2- -7
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APPENDIX G

PROGRAM LISTINGS

Listings, with descriptions and examples, of some of the more impor-

.tant programs used in the computations in this thesis. The listings are

in alphabetical order and include all subroutines appearing in the transfer

vectors with the exception of the FORTRAN System routines. An index of

these programs and other programs useful in time series analysis appears

in Scientific Report Number 4 of Contract AF 19(604)7378 (Simpson et al,

1962b) and complete listings will appear (Simpson, 1963, in press) in

book form in the near future. All the programs appearing here are

designed to operate under the FORTRAN-II system for the IBM 709-7090

computers.

Throughout the listings the terms FORTRAN INTEGER, FORTRAN II INTEGER,

and INTEGER are synonomous and refer to a fixed point integer in the

decrement. The terms MACHINE LANGUAGE INTEGER, MACHINE INTEGER and MLI

refer to a fixed point integer in the decrement. The terms LSTHN and

LSTHN = are equivalent to < and ( while GRTHN and GRTHN = are equivalent

to > amd >. It should be noted that expressions which appear in the

"ABSTRACT" section of the writeup may deviate from the usual FORTRAN

conventions.
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************************ PROGRAM LISTINGS *******************

CHISQR * * CHISQR

* CHISQR (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0084

* LABEL 0001

CCHISCR 0002

SUBROUTINE CHISQR(NBLOCS,ICOUNT,N,CHISQ,IANS) 0003

C 0004

C ---- ABSTRACT---- 0005

C 0006

C TITLE - CHISQR 0007

C COMPUTES CHI-SQUARE FOR EQUALLY LIKELY PROBABILITY CASE. 0008

C 0009

C CHISQR COMPUTES CHI SQUARE WHEN GIVEN THE DISTRIBUTION 0010

C COUNT AND THE NUMBER OF EQUALLY LIKELY BLOCKS INTO WHICH 0011

C THE DATA IS PUT. NUMBER OF BLOCKS = NBLOCKS, N = TOTAL 0012

C NUMBER OF OBSERVATIONS, ICOUNT = DISTRIBUTION COUNT. 0013

C 0014

C CHISQ=SUM((ICOUNT(I)-N/NBLOCKS)**2/(N/NBLOCKS)) 0015

C 0016

C SUMMED OVER NBLOCKS, WHERE FLOATING OPERATIONS ARE ASSUMED 0017

C RATHER THAN THE INDICATED INTEGER OPERATIONS. 0018

C 0019

C LANGUAGE - FORTRAN II SUBROUTINE 0020

C EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY) 0021

C STORAGE - 1C5 REGISTERS 0022

C SPEED - 0023

C AUTHOR - J.N. GALBRAITH 0024

C 0025

C ---- USAGE---- 0026

C 0027

C TRANSFER VECTCR CCNTAINS RCUTINES - NONE 0028

C AND FORTRAN SYSTEM ROUTINES - NONE 0029

C 0030

C FORTRAN USAGE 0031

C CALL CHISQR(NbLOCS,ICOUNT,N,CHISQ,IANS) 0032

C 0033

C INPUTS 0034

C 0035

C NBLCCKS IS NUMBER OF EQUALLY LIKELY BLOCKS. 0036

C MUST BE GRTHN 1. 0037

C 0038

C ICOUNT(I) I=1...NBLCCKS IS THE DISTRIBUTION COUNT. I.E. THE NUMdER 0039

C CF VALUES IN I-TH EQUALLY LIKELY BLOCK. 0040

C MUST BE NON-NEGATIVE 0041

C 042

C N IS TOTAL NUMBER OF OBSERVATIONS (=SUM(ICOUNT(I))). 0043

C MUST BE GRTHN=1. 0044

C 0045

C OUTPUTS 0046

C 0047

C CHISQ IS THE CHI-SQUARE VALUE 0048

C 0049

C IANS =0 NCRMAL 0050

C =1 ILLEGAL NBLOCS 0051

C =2 ILLEGAL N 0052
C 0053

C EXAMPLES 0054

C 0355

C 1. INPUTS - NBLOCS=3 ICOUNT(1...3)=1,3,5 N=9 0056

C OUTPUTS - CHISQ=2.666667 IANS=0 0057

C 0058

C 2. INPUTS - NBLOCS=1 ICOUNT(1)=1 N=9 0059

C OUTPUTS - ERROR IANS=1 0060

C 0061

C 3. INPUTS - NBLOCS=3 ICOUNT(1...3)=1,3,5 N=0 0062

C OUTPUTS - ERROR IANS=2 0063

C 0064

C 4. INPUTS - NBLOCS=5 ICOUNT(...5)=1,2,3,4,5 N=15 0065

C OUTPUTS - CHISQ=3.333333 IANS=O 0066

C 0067

CIMENSION ICOUNT(10O) 0068

IANS=O 0069

IF(NBLCCS-1) 990,990,5 0070

5 IF(N) 992,992,10 0071

10 P=1./FLOATF(NBLOCS) 0072

EXPNO=P*FLOATF(N) 0073

CHISQ=O 0074
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PROGRAM LISTINGS

* CHISQR •

(PAGE 2)

00 25 I=1,NBLCCS
DIF=FLOATF(ICOUNT(II)-EXPNO

25 CHISQ=CHISQ+DIF*DIF
CHISQ=CHISQ/EXPNO

26 RETURN
990 IANS=1

GO TO 26
992 IANS=2

GO TO 26
END

* CHISQR *

(PAGE 2)

0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
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* COSP *

*COSP

PROGRAM LISTINGS

COSP (SUBRCUTINE)
FAP

CCUNT
LBL
ENTRY
ENTRY
ENTRY

2/18/63 LAST CARD IN

1CCn
COSP
CCSP (SSX,ASX,L,COSTAB,M,JMINJMAX,TYPECOSTR)
SISP (SAXAAX,L,SINTAB,M,JMINJMAX, TYPESINTR)
CCSISP (SSX,ASX,SAX,AAX,L,COSTAi,SINTAB,M, JMINJ

CCSTR,SINTR)

---- ABSTRACT----

* TITLE - COSP WITH SECCNPARY ENTRY POINTS SISP AND COSISP
FAST COSINE AND/OR SINE TRANSFORMS FROM 2 OR 4 EVEN-ODD

* COSP CCMPUTES COSINE SUMS, CT(J) J=JMIN,...,JMAX
TWC INPUT SERIES, SS(I) AND AS(I) I=0,,...,L , A
TO L

CT(J) =

SUM ( SS(I)*COS(I*J*(PI/M)) )
I=0

L
SUM ( AS(I)*COS(I*J*(PI/M)) I

FCR J =JMINJMIN+1,... ,JMAX

PI = 3.14159265
M = INPUT PARAMETER
COS(I*(PI/M)) I=G,1,...,M IS AN INPUT T
SS(I),AS(I), MAY BE EITHER FIXED OR FLOATI

(THE COSINE TABLE MUST CORRESPOND IN 1
C LSTHN= JMIN LSTHN JMAX LSTHN= M

SISP CCMPUTES SINE SUMS, ST(J)
L

SUM ( AA(I)*SIN(I*J*(PI/M)) )
1=3

ST(J)
L
SUM ( SA(I)*SIN(I*J*(PI/M)) )
I=0

FCR J = JMIN,JMIN+1,...,JMAX
WhERE

SIN(I*(PI/M)) I=O,1,...,M IS AN INPUT TA
AA,SA, AND THE SINE TABLE ARE FIXED OR FL(

COSISP COMPUTES BOTH CT(J) AND ST(J) AS DEFINED AE

NOTE THAT THE FUNDAMENTAL FREQUENCY AS DEFINED BY
INPUT TABLES HAS PERIOD = EVEN NO. OF POINTS = 2M

* LANGUAGE - FAP SUBROUTINE (FORTRAN II COMPATIBLE)
* EQUIPMENT - 709 CR 709C (MAIN FRAME ONLY)
* STORAGE - 492 REGISTERS
* SPEED - 709-FIXED PT 709-FLOATING PT

COSP 34*K-(L+1) 37*K*(L+1)
SISP 39*K*(L+1) 43*K*(L+1)
CCSISP 67*K*(L+l) 72*K*(L+1)

WHERE K = JMAX-JMIN+1
(REDUCE ESTIMATES ABOUT IC PERCENT

* AUTHOR - S.M. SIMPSON, OCT 26, 61

---- USAGE----

* TRANSFER VECTOR CONTAINS ROUTINES - NONE
* AND FORTRAN SYSTEM ROUTINES - NONE

MACHIN
MACHIN
MACHIN

FOR 7090)

* FORTRAN USAGE OF COSP
* CALL COSP (SSX,ASX,LCOSTA8,MJMIN,JMAX,TYPECOSTR)

* INPUTS TO COSP

****** *****************

* COSP *
***********************

)ECK IS NO. 0844
0001
0002
0003
0004
0005
0006

MAX,TYPE, 0007
0008
0009
0010
0011
0012

PARTS 0013
0014

ON 0015
CCORDING 0016

0017
J EVEN 0018

0019
0020
0021

I ODD 0022
0023
0024
0025
0026
0027
0028

ABLE 0029
ING POINT 0030
TYPE) 0031

0032
0033
0034
0035

J EVEN 0036
0037
0038
0039

J ODD 0040
0041
0042
0043
0044

ABLE 0045
)ATING 0046

0047
OVE 0048

0049
THE 0050

0051
0052
0053
0054
0055
0056

IE CYCLES 0057
E CYCLES 0058
IE CYCLES 0059

0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073

J
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* COSP * * COSP *

(PAGE 2) (PAGE 2)

* SSX(I) I=1...L+1 CONTAINS SS(J) J=0O,1,...,L FIXED OR FLOATING 0074
0075

* ASX(I) I=1...L+1 CONTAINS AS(J) J=O,1,...,L FIXED OR FLOATING 0076
* EQUIVALENCE (SSX,ASX) IS PERMITTED 0077

0078
* L MUST EXCEED 0 0079

0080
* COSTAb(I) I=1...M+1 CONTAINS COS(J*PI/M) J= 0O,,...,M 0081
* CUSTAB IS FIXED OR FLOATING 0082

FOR FIXED POINT IT IS ASSUMED THAT THE BINARY POINT 0083
IS BETWEEN THE SIGN BIT AND SIT I SO THAT VALUES 0084
1.C ANC -1.0 SHOULD BE ENTERED AS OCTAL 377777777777 0085
AND 777777777777 RESPECTIVELY. THE BINARY POINT OF 0086

* SSX AND ASX IS IMMATERIAL, BUT OVERFLOW MAY ARISE. 0087
0088

• M MUST EXCEED 0 0089
0090

* JMIN DEFINES LOWEST MULTIPLE OF FUNDAMENTAL DESIRED 0091
MUST BE GRTHN= 0 AND LSTHN= JMAX 0092

• 0093
JMAX DEFINES HIGHEST MULTIPLE OF FUNDAMENTAL DESIRED 0094

• MUST BE GRTHN JMIN AND LSTHN= M 0095
* 0096
* TYPE = 0.0 SIGNIFIES SS,AS, AND COSTAB ARE FIXED PT. 0097
* NOT= 0.0 MEANS SSAS, AND COSTAB ARE FLTG. PT. 0098
• 0099
* OUTPUTS FRCM CCSP 0100

0101
• COSTR(I) I=I...JMAX-JMIN+1 CONTAINS CT(J) J=JMIN...JMAX AS 0102

DEFINED IN ABSTRACT. 0103
• 0104

(PROGRAM EXITS WITHOUT COMPUTATION IF L,MPJMIN, 0105
• CR JMAX ILLEGAL) 0106

0107
• FORTRAN USAGE CF SISP 0108

CALL SISP (SAX,AAX,LSINTAB,MJMINJMAXTYPE,SINTR) 0109
0110

INPUTS TO SISP 0111
0112

SAX(I) I=1...L+1 CONTAINS SA(J) J=0,l,...,L 0113
• 0114

AAX(I) I=1...L+1 CONTAINS AA(J) J=0;1,...,L 0115
• EQUIVALENCE (SAX,AAX) IS PERMITTED. 0116

0117
• L SAME MEANING AS FOR COSP 0118

0119
SINTAB(1) I=1...M+1 CONTAINS SIN(J*PI/M) J=O,I,...,M 0120

0121
V SAME MEANING AS FOR COSP 0122

0123
* JMIN SAME MEANING AS FOR COSP 0124

0125
• JMAX SAME MEANING AS FOR COSP 0126

0127
TYPE SAME MEANING AS FOR COSP 0128

0129
• OUTPUTS FROM SISP 0130

0131
SINTR(I) I=1...JMAX-JMIN+1 CONTAINS ST(J) J=JMIN...JMAX AS 0132

DEFINED IN ABSTRACT 0133
0134

* FORTRAN USAGE OF CCSISP 0135
* CALL COSISP(SSX,ASX,SAX,AAX,L,COSTABSINTAB,M,JMIN,JMAX, 0136
* 1 TYPECOSTRSINTR) 0137
* 0138
* WHERE ARGUMENTS ARE THE SAME AS FOR COSP AND SISP 0139
* EQUIVALENCE (SSX,ASX,SAX,AAX) IS PERMITTED. 0140
* 0141
* EXAMPLES 0142
* 0143
* 1. USE OF COSP, SISP, COSISP WHEN ALL INPUTS EQUATED, FIXED AND 0144
* FLOATING, ALL FREQUENCIES 0145
* INPUTS - X(1...4) = 1.,2.,3.,4. IX(1...4) = 100,200,300,400 L=3 0146
* COSTA8(1...3)=1.0,0.0,-1.0 SINTAB(1...3)=0.0I1.0,0.0 M=2 0147
* ICOSTB(1...3)=0CT377777777777,000000000000,777777777777 0148
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************************ PROGRAM LISTINGS ************************
* COSP * * COSP •

(PAGE 3) (PAGE 3)

ISINTt(1...3)=OCT000000000C00,377777777777,000000000000 0149
JMIN = 0 JMAX = 2 0150

* USAGE CALL COSP (X,X,L,COSTAB,M,JMIN,JMAX,1.,C1) 0151
* CALL COSP (IX,IXtL,ICOSTBM,JMINJMAXO.,ICI) 0152
* CALL SISP (X,X,L,SINTAB,M,JMIN,JMAXI1.,S1) 0153

CALL SISP (IX,IX,L,ISINTB,M,JMINJMAX,0.,IS1) 0154
CALL COSISP (X,X,X,X,L,COSTAB,SINTABM,JMININMAX, 0155

* 1.,C2,S2) 0156
CALL COSISP (IX,IX,IX,IX,L,ICOSTB,ISINTB,M,JMIN, 0157

JMAXC.,IC2,1S2) 0158
* OUTPUTS - C1(1...3) = C2(1...3) = 10.,-2.,-2. 0159
* Sl(1...3) = S2(1...3) = 0.,-2.,0. 0160
* IC1(1...3) = IC2(1...3) = 1000,-200,-200 0161
* ISI(...3) = IS2(1...3) = 0,-200,0 0162

0163
* 2. PARTIAL FREQUENCY COVERAGE 0164
* INPUTS - SAME AS EXAMPLE 1. EXCEPT JMIN = 1 0165
* USAGE - SAME AS EXAMPL E 1. 0166
* OUTPUTS - C1(1...2) = C2(1...2) = -2.,-2. 0167

SS1(1...2) = S2(1...2) = -2.,0. 0168
ICI(1...2) = IC2(l...2) = -200,-200 0169
ISI(1...2) = IS2(1...2) = -200,0 0170

* 0171
* 3. USE OF COSISP TC FIND COEFFICIENTS OF TRIGONOMETRICAL SERIES FOR 0172
* AN EVEN-LENGTH VECTOR 0173
* (SEE CARSLAW, 1930, FOURIER SERIES AND INTEGRALS, P324,325) 0174

GIVEN XX(I) I=1...2*M CONTAINING X(J) J=O,1,...,2*M-1 0175
FIND A(0),A(1),...A(M) AND B(1),B(2),...,B(M-1) SUCH THAT 0176

0177
* X(J)=A(O)+A(1)COS(J*D)+...+A(M-I)COS((J-1)*D)+A(M)COS(PI) 0178

+B(1)SIN(J*D)+...+B(M-1)SIN((J-1)*D) 0179
WHERE D=PI/M J=0,1,...,t2*M-1 0180

SOLUTION 0181
INPUTS - CCSTAB(1...M+1) = COS(J*PI/M) J = OI,...,M 0182

* SINTAB(1...M+1) = SIN(J*PI/M) J = OI,..I,M 0183
L = 2*M-1 0184

USAGE - CALL COSISP(X,X,X,X,LCOSTABSINTABSINTABM,O,M,.,AA,B8) 0185
AA(1) = AA(1)/FLOATF(2*M) 0186
AA(M+1) = AA(M+1)/FLOATF(2*M) 0187
SDO 10 I=2,M 0188
AA(I)=AA(I)/FLOATF(M) 0189

1 0 BB(I)=Bb(I)/FLOATF(M) 0190
S COUTPUTS - AA(1...M+1) WILL CONTAIN A(0),A(1),...A(M) AS REQUIRED 0191
* 88(2...M) WILL CONTAIN B(1),...B(M-1) AS REQUIRED 0192
* (BB(1)=BB(M+1)=O.) 0193
* 0194
* 4. USE OF COSISP TO INVERT COEFFICIENTS OF TRIG SERIES FOR AN EVEN- 0195
* LENGTH VECTOR 0196
* GIVEN A(O),...A(M) B(1)..B(M-1) AS DEFINED ABOVE 0197
* FIND X(J) = TRIG SERIES ABOVE J = 0,1,...,2*M-1 0198
* SOLUTION 0199
* INPUTS - AA(I) AND BB(I) ARE SAME AS OUTPUTS OF EXAMPLE 3. 0200
* USAGE - CALL COSISP(AAAABB,BBM,COSTAB,SINTAB, 0201

1 M,0,M,1.,XS,XA) 0202
• 12M=2*M 0203

DO 20 I=2,M 0204
J=12M+2-I 0205
XSIJ)=XS(I) 0206

20 XA(J)=-XA(I) 0207
S00 30 I=1,I2M 0208

30 XBAC(I)=XA(I)+XS(I) 0209
OUTPUTS - XBAC(1...2*M) WILL CONTAIN X(O,1,...,2*M-1) AS REQUIRED 0210

• 0211
* 5. ILLUSTRATION OF FINDING TRIG SERIES 0212
* INPUTS - SAME AS EXAMPLE 1. 0213
* USAGE - SAME AS EXAMPLE 3. 0214
S COUTPUTS - AA(1...3) = 2.5,-1.,-.5 0215
* BB(1...3) = 0.,-1.,0. 0216
* 0217
* 6. ILLUSTRATION OF INVERTING TRIG SERIES 0218
* INPUTS - SAME AS EXAMPLE 5. WITH AABB, SAME AS OUTPUTS FROM EX 5. 0219
* USAGE - SAME AS EXAMPLE 4. 0220
S COUTPUTS - XBAC(1...4) = 1.,2.,3.,4. 0221

* 0222
* 7. USE OF SYMMETRIES TO REDUCE TIME IN COMPUTING TRANSFORMS ABOUT 0223
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* COSP * . COSP

(PAGE 4) (PAGE 4)

* MIDPOINT OF AN ODD-LENGTH SERIES 0224

* GENERAL FCRM 0225

I=M 0226

* C(J) = SUM ( X(I)*COS(I*J*PI/M) ) 0227

* I=-M 0228

* AND 0229

* I=M 0230

* S(J) = SUM ( X(I)*SIN(I*J*PI/M) ) 0231

I=-M 0232

* J = JMIN...JMAX 0233

* SUPPOSE X(-6...6)=1.,3.,1.,2.,1.,1.
5 .

,
4
.,

3
.,

3
.t

5
.'
,4

.1. 0234

* FIRST SPLIT X ABOUT ITS MIDPOINT INTO ITS SYMMETRIC AND 0235

* ANTISYMMETRIC PARTS 0236

* SX(1...7) = .5.,4.,5.,6.,7.,7. 0237

* AX(1...7) = O.,3.,2.,1.,4.,1.,0. 0238

* THEN SPLIT EACH OF THESE ABOUT THEIR MIDPOINTS 0239

* SSX(1...4) 
= 

5.,10.,12.,7. ASX(1...4) 
= 
0.,2.,2.,-3. 0240

* SAX(1...4) = 1.,6.,4.,0. AAX(1...4) = 0.t2.,-2.,0. 0241

* INPUTS - THEN REVERSE ALL THE VECTORS AND CHANGE SIGNS OF ASX 0242

* AAX TC GIVE 0243

SSX(1...4) = 7.,12.,10.,5. ASX(1...4) = 3.,-2.,-2.,0. 0244

SAX(1...4) = 0.,4.,6.,1. AAX(1...4) = 0.,2.,-2.,0. 0245

L=3 M=b COSTAB(1...7)=COS(J*PI/6) 0246

SINrAB(1...7)=SIN(J*PI/6) J = 0...6 0247

• USAGE - CALL COSISP (SSX,ASX,SAXAAX,3,COSTABSINTAB,MO,,M, 0248

1.,COSTR,SINTR) 0249

CUTPUTS - CCSTR(1...7) = C(0...6) = 34.,.26795,3.,5.,1.,3.73205,0. 0250

SINTR(1...7) = S(G...b) = 0.,8.19615,0.,3.,3.46410, 0251

-2.19615,0. 0252
0253

* PROGRAM FOLLOWS BELOW 0254

* NCTATION OIFFERENCES IN PROGRAM NOTES ARE 0255

* RSS=SSX PAS=ASX RAA=AAX RSA=SAX 0256

* P=L 0257
0258
0259

HTR C 0260

8tCI ,CCSP 0261

CUSP SXD *-2,4 SET UP EXIT 0262

SXA LV+1,1 0263

SXA LV+2,2 0264

CLA K10 0265

STA EXIT 0266

*SET ARGUMENT TABLE 
0267

CLA 1,4 0268

STA Ti 0269

CLA 2,4 0270

STA T2 0271

CLA* 3,4 0272

STD T5 0273

CLA 4,4 0274

STA T6 0275

CLA* 5,4 0276

STD T8 0277

CLA* 6,4 0278

STO T9 0279

CLA* 7,4 0280

STD TIO 0281

CLA* 8,4 0282

STO T11 0283

CLA 9,4 0284

STA T12 0285

*SET COSP SWITCHES 
0286

CLA KA1I KA6 0287

STA Z3C 0288

CLA KA6 Z90 0289

STA Z33 0290

CLA KA15 Z107 0291

STA Z106 0292

CLA KA19 Z130 0293

STA Z1098 0294

CLA KTI TRA Z104 0295

STO Z114 0296

STO Z112 0297

CLA KT2 TRA Z102 0298



STO
STO
TRA

*SET EXIT
SISP SX0

SXA
SXA
CLA
STA

*SET ARGUMENT
CLA
STA
CLA
STA
CLA*
STD
CLA
STA

PROGRAM LISTINGS

L121A
Z122A
Z14

COSP-2,4
LV+l1,
LV+2,2
K10
EXIT
TABLE
1,4
T3
2,4

3,4
T5
4,4
T7

CLA* 5,4
STD T8
CLA* 6,4
STD T9
CLA*
STD)
CLA*
STO
CLA
STA

*SET SISP SWI
CLA
STA
CLA
STA
CLA
STA
STA
STA
STA
CLA
STA
CLA
STO
STO
CLA
STO
STO
TRA

7,4
TIO
8,4
TIl
9,4
T13

TCHES
KA14
Z3
KA9
Z33
KA7
256
Z66
176
Z86
KA16
Z106
KZ1
7114
Z112
KZ2
1121A
Z122A
Z14

KA9

Z50

Z 100

Z115

LET

*SET EXIT
COSISP SXD COSP-2,4

SXA LV+1,1
SXA LV+2,2
LLA K14
STA EXIT

*SET UP ARGUMENT TABLE
CLA 1,4
STA TI
CLA 2,4
STA T2
CLA 3,4
STA T3
CLA 4,4
STA T4
CLA* 5,4
STD T5
CLA 6,4
STA T6
CLA 7,4
STA T7
CLA* 8,4
STD T8
CLA* 9,4
STO T9
CLA* 10,4
STI) T10
CLA* 11,4

SWE

LET SWO

SET UP EXIT

S COSP

(PAGE 5)

* COSP
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0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0A36
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
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* COSP *
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STO
CLA
STA
CLA
STA

*SET COSISP
CLA
STA
CLA
STA
CLA
STA
STA
STA
STA
CLA
STA
CLA
STO
STO
CLA
STO
STO
CLA
STA
TRA

*MAKE COMMON
*FIRST FOR F
114 ZET

TRA
CLA
LDQ
TRA

Z15 CLA
LDQ

Z16 STO
STO
STO
STO
STO
STQ
STQ
STC
STC
STQ
STO
STO
STO
STO
STO
STQ
STQ
STQ
STQ
STQ
CLA
STA
STA
STA
STA
CLA
STA
STA
STA
STA
CLA
STA
CLA
STA

Tl
12,4
T12
13,4
T13

SWITCHES
KA14
Z3C
KA9
Z33
KA6
156
Z66
Z76
Z86
KA15
Z106
KZL
1114
Z112
KZ2
Z121A
Z122A
KA16
ZIC98
Z14

SETTINGS
IXED POINT

TIl
Z15
MPY
ADD
Z16
FMP
FAD
Z51
Z61
Z71
181
Z91
Z52
Z62
Z72
Z82
Z92
Z54
Z64
Z74
Z84
Z94

Z85
Z95
KA2
Z52
Z62
Z72
Z82
KA3
Z55
Z65
Z75
Z85
KA4
Z92
KA5
Z95

*THEN ADDRESSES
CLA T7
STA Z5
STA Z5
STA 16
STA Z6

KA9

Z50

Z90

1107

ZET SWE

ZET SWO

1115

FOR COSP, SISP, COSISP AS IF IT WERE COSISP
OR FlOATING POINT

FLOATING
FIXEC

FLOATING

SMSE

SMSO

SMCE

SINTAB (OR HASH)

0
3

0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
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STA
STA
STA
STA
CLA
STA
STA
STA
STA
CLA
STA
STA
STA
STA
CLA
STA
STA
CLA
STA
CLA
STA
CLA
TwI
TZE
STO
STO
ADD
STD
CLA
TMI
TZE
STIO
CLA
STA
STA
CLA
STA
STA

*FOR JMIN EVEN
JMIN 001

Z20 CLA
TMI
CAS
TRA
TRA
ARS

170
Z73
Z8C
Z3
T4
Z51
Z61
171
Z81
T3
Z54
Z64
Z74
Z84
T6
Z90
Z93
T1
Z91
T2
Z94
T8
LV
LV
1101
Z1C3
T8
2 W
T5
LV
LV

RAA (OR HASH)

RSA (OR HASH)

COSTAB (OR HASH)

RSS (OR HASH)

RAS (OR HASH)

M

2M

1105
T12 COSTR (OR HASH)
1108
Z109A
T13 SINTR (OR HASH)
Z116

SET JE=JMIN+1,JO=JMIN+1,ESTOR=O,OSTOR=1
SET JC=JMINJE=JMIN+1),OSTOR=0,ESTOR=1
T9 JMIN
LV
TIC
LV

LBT
TRA Z21
ALS 13
STD JC
ADD KDI
STD JF
STZ OSTOR
CLA K1
STA ESTOR
TRA Z23

Z21 ALS 18
STD JE
AD400D KO1
STD JO
STZ ESTOR
CLA KL
STA CSTOR

*CLEAR DUMMY SWITCHES
Z23 STZ DUME

STZ DUFC
*NOW BEGIN LOOPING
*INITIALIZE Z105 SWITCH,
* FORWARD
Z30 CLA **

STA Z105
STZ SMSE
ST1 SMSO
STZ SMCE
STZ SMCO

IS EVEN
IS 000

IS EVEN

CLEAR SUM REGISTERS, SET TRAVEL SWITCHES

(**=KA6 COSP, **=KA9 OTHERWISE)

* COSP *

(PAGE 7)
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0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
C480
0481
0482
0483
0484
C485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
C510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
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STZ SWE
STZ SWC
CLA JE
STO Z10-
CLA JC
STD Z102

*SET MINUS JE,JO

PROGRAM LISTINGS
* COSP *

(PAGE 8)

LOC JE,1
SXD MJEt
LOC JCO,
SXD VJC I

*XR4 WILL CONTROL MOTION FOR EVEN HARMONIC INDEX
*XR2 WILL CONTROL MOTION FOR ODD HARMONIC INDEX
*XR1 WILL CONTROL MOTION FOR DATA INDEX
*DATA INDEX=SINE INDEX=COSINE INDEX=O

AXT 0,7
Z33 TRA ** (**=Z90 FOR COSP, =Z50 OTHERWISE)

*LOOP FOR FORWARD MOTION ON SINE WAVE FOR BOTH HARMONICS
* THIS PART IS FOR EVEN HARMONICS (XR4) SUMMED IN SMSE
Z50 LDQ **,4 (**=SINTAB)
Z51 NOP (MPY OR FMP $$,1 WITH ** = RAA)
Z52 NOP (ADD OR FAD SMSE)

STO SMSE
* THIS PART IS FOR ODD HARMONICS (XR2), SUMMED IN SMSO
Z53 LDQ **,2 (**=SINTAB)
Z54 NOP (MPY OR FMP **,l WITH **=RSA)
Z55 NOP (ADD OR FAD SMSO

STO SMSO
*NOW GO TO COSINE SUMS IF COSISP, OR AVOID IF SISP
Z56 TRA ** (**=Z90 FOR COSISP, **=Z100 FOR

*LOOP FOR FORWARD MOTION ON SINE WAVE OF EVEN HARMONIC AND
* REVERSE MOTION ON SINE WAVE OF ODD HARMONIC
* FCR EVEN
Z60 LDQ **,4 (**=SINTAB)
Z61 NCP (MPY OR FMP **,1 WITH **=RAA)
162 NOP (ADD OR FAD SMSE)

STO SMSE
* FOR ODD

SISP)

Z63 CLS **,2 (**=SINTAB)
XCA

Z64 NOP (MPY OR FMP **,1 WITH **=RSA)
Z65 NOP (ADD OR FAD SMSO)

STO SMSO
Z66 TRA ** (**=Z90 IF COSISP, **=Z100 IF SISP)

*LOOP FOR REVERSE MOTION ON SINE WAVE OF EVEN HARMONIC AND
* FORWARD MOTION ON SINE WAVE OF ODD HARMONIC
* FCR EVEN
170 CLS **,4 (**=SINTAB)

XCA
Z71 NOP (MPY OR FMP **,1 WITH **=RAA)
172 NOP (ADD OR FAD SMSE)

STO SMSE
* FOR ODD
Z73 LDQ **,2 (**=SINTAB)
Z74 NOP (MPY OR FMP **,1 WITH **=RSA)
175 NOP (ADD OR FAD SMSO)

STO SMSO
Z76 TRA ** (**=Z90 COSISP9 **=Z100 IF SISP)

*LOOP FOR REVERSE MOTION ON SINE WAVE FOR BOTH HARMONICS
* THIS PART IS FOR EVEN HARMONICS
Z80 CLS **,4 (**=SINTAB)

XCA
Z81 NOP :MPY OR FMP **,1 WITH **=RAA)
Z82 NOP (ADD OR FAD SMSE)

STO SMSE
* THIS PART IS FOR ODD HARMONICS
Z83 CLS **,2 (**=SINTAB)

XCA
Z84 NOP (MPY OR FMP **,1 WITH **=RSA)
Z85 NOP (ADD OR FAD SMSO)

STO SMSO
*NOW GO TO COSINE SUMS IF COSISP, OR AVOID IF SISP
Z86 TRA ** (**=Z90 FOR COSISP, **=Z100 FOR SISP)

*LOOP FOR FORWARD OR BACKWARD MOTION ON COSINE WAVE
* THIS PART FOR EVEN HARMONICS SUMMED IN SMCE

0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
C570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
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Z90 LCQ
191 NCP
Z92 hOP

STO
* THIS PART
Z93 LDQ
Z94 NOP
195 NOP

SMCE
IS FOR
**,2

(**=COSTAB)
(MPY OR FMP **,l
(ADD OR FAD SMCE)

WITH **=RSS)

OUD HARMONICS SUMMED IN SMCO
(**=COSTAB)
(MPY OR FMP **l1 WITH **=RAS)
(ADD OR FAD SMCO)

STO SMCO
*INCREMENT INDEX FOR EVEN HARMONICS (BY +JE FOR FORWARD
* TRAVEL, BY -JE FOR REVERSE TRAVEL)
l100 TXI *+1,4,** (**=JE FORWARD) (**=-JE RI

*CHECK IF INDEX HAS RUN OFF END (GREATER THAN M FOR
* FORWARD TRAVEL, LFSS THAN ZERO FOR REVERSE)
* (HOWEVER FOR REVERSE TRAVEL XR4 GOING NEGATIVE MEANS
* XR4 GETS GREATER THAN N, SO SAME TEST APPLIES)
Z1Ci TXH Z120,4,** **=M

*INCREMENT INDEX FOR ODD HARMONICS tBY+JO OR -(JOl)
* AND MAKE SAPE KIND OF END TEST
Z1102 TXt *+1,2** (**=JO FORWARD) ("*=-JO REl
1ZC3 TXH ZIIOD,2,** l**=M)

*INCREMENT DATA INDEX BY 1 AND CHECK FOR END OF DATA
a LOOPING BACK TO PLACE DETERMINED BY WHETHER COSP OR
* SISP OR COSISP AND FORWARD OR BACKWARD AND EVEN OR ODD
2104 TXI *1+,1,1
1105 TXL **,t1** (TXL **A,1,**B **B=P)

1106 TRA **

EVERSE)

VERSE)

**A=Z90 FOR COSP
FOR SISP OR COSISP (INITIAL = 250)

**A=Z50 EVEN AND ODD HARMONICS FORWARD
**A=Z60 EVEN FORWARD, ODD REVERSE
**A=Z70 EVEN REVERSE DOD FORWARD
**A=Z80 EVEN AND ODD REVERSE
(**=1107 FOR COSP OR COSISP,

**=1115 FOR SISP)
*READJUSTMENTS WHEN CDD HARMONIC INDEX RUNS OFF END
*FORWARD OR BACKWARD
Z110 ZET SWC

TRA Z113 BACKWARD
CLA K1
STO SWC

*IF FCRWARD SET TO GC BACKWARD ON ODD
Zl1 SXD TEVP12

CLA
SUB
POX

2M
TEMP
0,2

CLA MJC
STO Z102

*IF CCSP GO BACK# IF

Z112 NOP
TRA
CLA
STA
TRA

Z112A
KA1O

2104
Z112A CLA KA12

STA 1105
TRA Z104

*IF BACKWARDS SET TO
2113 STZ SWC

PXA 0,2
PAC 02
CLA JC
STD 1102

*IF COSP GO BACK, IF

Z114 NOP
TRA
CLA
STA
TRA

Z114A CLA
STA

Z114A
KA9
Z1G5
1104
KAll
Z105

NOT REMAKE FORK AT 1105
COSP
(TRA 2104 OR

(KAO1 = PZE Z60)

(KA12=PZE Z80)

GO FORWARDS ON ODD

NOT REMAKE FORK AT 1105
COSP
(,TRA Z104

SISP OR COSISP
ZET SWE)

SISP OR COSISP
OR ZET SWE)

(KA9=PZE Z50)

(KA11=PZE 270)

TRA ZIC4
*READJUSTMENT WHEN EVEN HARMONIC INDEX RUNS OFF END
*WHICH WAY WERE WE GOING

* COSP

(PAGE 9)

') I) ,
or ia f

0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
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* COSP

1120 ZET SWE
TRA Z122 BACKWARDS

*IF FCRWARD, REVERSE SWE, READJUST IR4 AND DECREM OF TXI
Z121 CLA KI

STO SWE
SXD TEMP,4 RESET I*JE TO 2M-I*JE
CLA 2M
SUB TEPP
PDX 0,4
CLA MJE
STD Z1Co

*IS COSP GO BACK, IF NOT REMAKE FORK AT Z105
Z121A NOP (TRA Z102(COSP) ZET SWO (SISPCOSISP))

TRA
CLA
STA
TRA

Z1218 CLA
STA
TRA

* IF BACKWARDS
Z122 STZ

PXA
PAC
CLA
STD

*IF COSP GO BACI
Z122A NOP

TRA
CLA
STA
TRA

Z1218
KAll
Z105
7102
KAI2
Z1C5
Z102

(KA11=Z70)

(KA12=Z80)

SWE
0,4
0,4
JE
Z100
K, IF NOT REMAKE FORK AT Z105

(TRA 7102 (COSP),ZET SWO (SISPCOSISP))
Z1228
KA9
Z105
Z102

(KA9=Z50)

Z1228 CLA KA10 (KA10=Z60)
STA Z105
TRA Z102

*COSP OR COSISP RESULT STORAGE FOR COSINE TRANSFORMS
*WAS LAST EVEN HARMONIC A DUMMY
7107 ZET DUPE

TRA Z109 YES
*IF NOT STORE SMCE IN COSTR BLOCK

LXA
CLA

Z108 STO
*WAS LAST ODD
Z109 ZET

*IF NOT

ESTOR,4
SMCE
**,4 (**=COSTR)

HARMONIC A DUMMY
DUMO

TRA Z1098 YES
STORE SMCC IN COSTR BLOCK

LXA OSTOR,4
CLA SMCO

Z109A STO **,4 (**=COSTR)
Z1098 TRA ** (**=Z115 COSISP, **=Z130 COSP)

*COSISP OR SISP RESULT STORAGE FOR SINE TRANSFORMS
*WAS LAST EVEN HARMONIC A DUMMY
Z115 ZET DUPE

TRA Z117 YES
*IF NOT STORE SMSE IN SINTR BLOCK

LXA ESTOR,4
CLA SMSE

Z116 STO **,4 {**=SINTR)
*WAS LAST ODD HARMONIC A DUMMY
Z117 ZET DUMO

TRA Z130 YES
*IF NOT STORE SMSO IN SINTR BLOCK

LXA OSTOR,4
CLA SMSO

Z118 STO **,4
*RESET FOR NEXT LCOP STORAGE

Z130 CLA ESTOR
ADD K2
STO ESTOR
CLA OSTOR
ADD K2
STO OSTOR

(**=SINTR)

*INDEX JE BY TWO AND CHECK IF TOO BIG
CLA JE

(PAGE 10)

0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720
0721
0722
0723
0724
0725
0726
0727
0728
0729
0730
0731
0732
0733
0734
0735
0736
0737
0738
0739
0740
0741
0742
0743
0744
0745
0746
0747
0748
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ADn K02
STD JE
CAS
TRA
NOP

*IF NEW JE OK,
Z131 CLA

ADD
STD

TIC
Z135

INDEX
JO
KD2
JC

CAS T10
TRA Z133
NCP

*RETURN TO BEGINNING
Z132 TRA Z30

*IF JO TOO BIG SET SW
Z133 CLA KI

STO OUPO
*IS JE ALSO TOO BIG

ZET DUPE
TRA LV
TRA Z132

*IF JE TOO BIG SET SW
Z135 CLA K1

STO DUPE
TRA Z131

*FINAL EXIT
LV LXD

AXT
AXT

EXIT TRA
*CONSTANTS,

SWE PZE

SWO PZE

JE PZE
MJE PZE
JO PZE

MJO PZE
DUME PZE
DUMO PZE

ESTOR
OSTOR
MPY
FMP
ADD
FAD
SMSE
SMSO
SMCE
SMCO
2M
TEMP
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10O
TIl
T12
T13
KO
K1
K2
K10
K14
KT1

KT2
KZ1

KZ2

PZE
PZE
MPY
FMP
ADD
FAD
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
TRA
TRA
ZET
ZET

COSP-2
**,1

**,2
*4, 4

ITEMPORARIE

0,0,**
0,0,**
0,0,**
0,0,**

.r

** ,

.r

0,0,**

0,0,***

0,0 40,0,**
*.4

*.4

'40**

* COSP
** ***********(PAGE 11)*

(PAGE 11)

COMPARE WITH JMAX
TOO BIG
OK

JO BY TWO AND CHECK ITS SIZE

TOO BIG
OK

OF LOOP

ITCHI

YES - ALL FINISHED
NO - ONE MORE TO GO

ITCH

GO CHECK JO

,4
(**=IRI)
(**=IR2)
(**=10 FOR COSP OR SISP, **=14.FOR COSISP)

S, ETC
(**=0 WHILE EVEN HARMONIC GOING FORWARDS)
(**=1 WHILE EVEN HARMONIC GOING BACKWARD)
(**=0 WHILE OD HARMONIC FORWARDS)
(**=1 WHILE ODD HARMONIC BACKWARDS)
**=JE
**=25 COMP OF JE
**=JO
**=25 COMP OF JO
(**=0 FOR REAL EVEN,**=1 FOR DUMMY EVEN)
(**=0 FOR REAL 000D**=1 FOR DUMMY ODD)

(**=ZERO INDEX OF INITIAL EVEN HARMONIC STORAGE)
(**=ZERO INDEX OF INITIAL ODD HARMONIC STORAGE)

SUM FOR EVEN HARMONIC SINE TRANSFORM
SUM FOR ODD HARMONIC SINE TRANSFORM
SUM FOR EVEN HARMONIC COSINE TRANSFORM
SUM FOR ODD HARMONIC COSINE TRANSFORM
(**=2M)

(**=RSS)
(**=RAS)
(**=RSA)
(**=RAA)
t**=P)
(**=COSTAB)
(**=SINTAB)
(**=M)
(**=JMIN)
(**=JMAX)
(**=TYPE)
(**=COSTR)
(**=SINTR)

14
1104
Z102
SWE
SWO

********ooo+++********

* COSP
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0749
0750
0751
0752
0753
0754
0755
0756
0757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
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0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
0835
0836
0837
0838
0839
0840
0841
0842
0843
0844

* COSP *
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4 4

KD1
KD2
KA2
KA3
KA4
KA5
KA6
KA7
KA8
KA9
KALO
KAll
KA12
KA13
KA14
KA15
KA16
KAL7
KA18
KA19

PZE
PZE
PZE
PZE
PZE
PLE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
END

0,0,1
0,0,2
SMSE
SIASO
SMCE
SMCO
Z90
Z100
Z30
Z50
Z60
Z70
Z80
KA8
KA9
Z107
1115
Z120
K46
L130
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* COSTBL * * COSTBL *

* COSTBL (SUBROUTINE) 2/15/63 LAST CARD IN DECK IS NO. 0199
* FAP 0001
*COSTBL 0002

COUNT 200 0003
LBL COSTBL 0004
ENTRY COSTBL (N,COSTAB) 0005
ENTRY SINTBL (NSINTAB) 0006
ENTRY COSTBX (N,ICOSTB) 0007
ENTRY SINTBX (N,ISINTB) 0008

0009
* ---- ABSTRACT---- 0010
• 0011
* TITLE - COSTBL WITH SECONDARY ENTRY POINTS SINTBL, COSTBX, SINTBX C012
* GENERATE COSINE CR SINE HALF-WAVE TABLES, FIXED OR FLOATING 0013

0014
* COSTOL GENERATES A HALF-WAVE COSINE TABLE FLOATING POINT 0015
* SINTBL GENERATES A HALF-WAVE SINE TABLE FLOATING POINT 0016
* COSTBX GENERATES A HALF-WAVE COSINE TABLE FIXED POINT 0017
* SINTBX GENERATES A HALF-WAVE SINE TABLE FIXED POINT 0018
* WHERE 0019

THE HALF-WAVE LENGTH IS AN INPUT PARAMETER. 0020
FOR FIXED POINT TABLES THE BINARY POINT IS BETWEEN 0021

THE SIGN BIT AND BIT 1. 0022
0023

* LANGUAGE - FAP SUBROUTINE (FORTRAN II COMPATIBLE) 0024
* EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY) 0025
* STORAGE - 128 REGISTERS 0026
* SPEED - ABOUT 2N MILLISEC ON 709, WHERE N = HALF-WAVE LENGTH 0027
* AUTHOR - JON CLAERBOUT 0028
* 0029
* ---- USAGE---- 0030
* 0031
* TRANSFER VECTOR CONTAINS ROUTINES - (NONE) 0032
* AND FORTRAN SYSTEM ROUTINES - COSSIN 0033
* 0034
* FORTRAN USAGE OF CCSTBL 0035
* CALL COSTBL(N,COSTAB) 0036
* 0037
* INPUTS TO COSTBL 0038
* N DEFINES THE HALF-WAVE LENGTH TO BE N+1 0039
* MUST EXCEED ZERO (PROGRAM EXITS IF N IS NEGATIVE OR ZERO) 0040
* 0041
* OUTPUTS FROM CCSTBL 0042
* COSTAB(I) I=1...N+1 CONTAINS TABLE(J) = COS(J*PI/N) J=0,1i...,N 0043
* I.E. COSTAB(I) CONTAINS TABLE(I-1) 0044
* 0045
* FORTRAN USAGE CF SINTBL 0046
* CALL SINTBL(N,SINTAB) 0047
* INPUTS TO SINTBL 0048
* N SAME MEANING AS FOR COSTBL 0049
* OUTPUTS FROM SINTBL 0050
* SINTAB(I) I=1...N+1 CONTAINS TABLE(J) = SIN(J*PI/N) FOR J=O,1...N 0051
* 0052
* FORTRAN USAGE OF CCSTBX 0053
* CALL COSTBX(NYICOSTR) 0054
* INPUTS TO COSTBX 0055
* N SAME MEANING AS FOR COSTBL 0056
* OUTPUTS FROM COSTBX 0057
* ICOSTB(I) I=1...N+I IS SAME AS FOR COSTBL BUT DATA IS FIXED POINT 0058
* 0059
* FORTRAN USAGE OF SINTBX 0060
* CALL SINTBX(N,ISINTB) 0061
* INPUTS TO SINTBX 0062
* N SAME MEANING AS FOR COSTBL 0063
* OUTPUTS FROM SINTBX 0064
* ISINTB(I) I=1...N+1 IS SAME AS FOR SINTBL BUT DATA IS FIXED POINT 0065
* 0066
* EXAMPLES 0067
* 1. GENERAL BEHAVIOR FOR N=4 0068
* INPUTS - N=4 0069
* USAGE - CALL COSTBL(NCOSTAB) 0070
* CALL SINTBL(NSINTAB) 0071
* CALL COSTBX(N,ICOSTB) 0072
* CALL SINTBX(N,ISINTB) 0073
* OUTPUTS - NOTE - THESE NUMBERS ARE GOOD TO 8 OCTAL PLACES. 0074
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* COSTAe(1...5)
* SINTAB(1...5)
* ICCSTB(1...5)

ISINTB(1...5)

PROGRAM LISTINGS
* COSTBL

(PAGE 2)

= 1.0,.70711,0.0,-.70711,-1.0
= 0.0,.70711,1.0,.70711,0.0
= OCT 377777777777,265011714000,

000000000000,665011714000,777777777777
= OCT 000000000000,265011714000,

377777777777,265011714000,0000000000000

HTR 0
BCI 1,CCSTBL

COSTBI CLA *
STO FL
TRA

COSTBX STZ
STZ
SXD
SXA
CLA
STO
CLA
STA
ADO
STA
STA
STA
STA
STA
TRA

SINTBL CLA
STO
TRA

SINTBX STZ

*+3
FL
CCRS
COSTBL-2,4
SV,1
KCCS
AL
2,4
83
=1

(TSX $COS,4)

GET COSINS

COSINS+1

FL
*+4

CLA
STO CCRS
SXD CCSTBL-2,4
SXA SVI
CLA KSIN
STO AL

* SET UP FIXING LCOP
CLA 2,4
ADD =1
STA A
STA B
STA 81
STA 82
STA L2

* SET UP COMPUTATION LOOP
D CLA* 1,4

TZE SV
TMI SV
STD N
ADO KD1
STO AN
STD BN
CLA N
ARS 18
ORA ORF
FAD ORF
STO NFL
CLA =3.14159265
FDP NFL
STO INCR
STZ ARG

* LOOP
AXT 1,1
CLA ARG

AL NOP c-
A STO **,1

CLA ARG
FAD INCR
STO ARG
TXI *+1,11

AN TXL AL,1,**
ZET FL
TRA SV
AXT 1,1

(TSX $SIN,4)

GET SINS
SINS+1

GET N

FORM N+1

FLOAT N

FORM PI/N

COS

TSX $COS,4
**=COSINS+1

SIN

TSX $SIN,4
**=SINS+1

**=N+1
FIX IF ZERO
EXIT - NOT ZERO

0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
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**,1
8

=0200
RTSH
**,77777777

=0000777777777

BC CLM
8 LDQ

LLS
SSP
SUB
STA

81 CLA
LRS
ANA
ALS
LLS

RTSH ARS
82 STO

TXI
BN TXL

CLA
TNZ
CLA

83 STO
SSP
LXD

84 STO
TRA

L1 CLA
ARS
LIT
TRA
TRA
CLA
ARS
ADD
STD
CLA
LXD

L2 STO
SV AXT

LXD
TRA

N PZE
FL PZE
INCR PZE
ARG PZE
ORF OCT
NFL PZE
KD1 PZE
KCOS TSX
KSIN TSX
CORS PZE
MD PZE

END

**=COSINS+l

**=COSINS+1

** FROM 8+4
**=COSINS+1

**=N+1

**=COSINS
SET FIRST AND
LAST VALUES
IN TABLE = 1

**=COSINS+1

IF = O N EVEN - EXIT

N ODD - SET MDPT = 1
GET (N+1)/2

** = SINS+1

**=N IN DECR
**=O0FXD
**=PI/N.
**=I*PI/N, I=0,1,...,N

**=FLOATF(N)

**=0 IF COS
**=(N+1)/2

4*

*,1l
*+1,1,1el,**

CORS
L1
=0377777777777

BN,1
**,1
SV
N
18

*+2
SV
N
1
KOl
MD
=0377777777777

COSTBL-2,4
3,4
*

**

*4

*

233000000000
*

00,1
SCOS,4
SSIN,4

0,0,**rr+
OOt*"I

0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
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* FACTOR (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0480
* FAP 0001
*FACTCR 0002

COUNT 450 0003
LBL FACTOR 0004
ENTRY FACTOR (SPECT,NL,WAVE,B1,B2,C,TRANWORK,COST) 0005

0006
---- ABSTRACT---- 0007

0008
* TITLE - FACTOR 0009
* FACTOR POWER SPECTRUM TO FIND MINIMUM PHASE WAVELET 0010

0011
* FACTOR USES THE METHOD OF KOLMOGOROV (REF.- 1. ROBINSONrE. 0012
* A., M.I.T. PH.D. THESIS,GEOPHYSICAL ANALYSIS GROUP REPORT 0013
* 7,1954. 2. SIMPSON ET AL., SCIENTIFIC REPORT NO. 2 OF 0014
* CONTRACT AF 19(6C4)7378.) TO FACTOR THE POWER SPECTRUM 0015
* AND THUS PRODUCE THE MINIMUM PHASE WAVELET. 0016
* THE RESTRICTIONS ON APPLICABILITY OF THE METHOD REQUIRE 0017
* THAT THE INPUT SPECTRUM BE NON-NEGATIVE AND NON-ZERO. 0018
* HENCE SPECT(I), THE INPUT SPECTRUM, IS CHECKED AND ANY 0019
* VALUES WHICH ARE LESS THAN 10**(-6) OF THE MAXIMUM VALUE 0020
* OF SPECT(I) ARE SET EQUAL TO 10**(-6) OF THE MAXIMUM.(THIS 0021
* FEATURE PAY EASILY BE REMOVED FROM THE SYMBOLIC DECK). 0022
* 0023
* ONE HALF OF THE NATURAL LOG OF THE SPECTRUM IS COMPUTED 0024
* AND EXPANDED IN A COSINE SERIES. THE COEFFICIENTS OF THE 0025
* EXPANSIONSION ARE COMPUTED BY TRIGONOMETRIC INTERPOLATION 0026
* (REF. LANCZOS, APPLIED ANALYSIS) RATHER THAN BY INTEGRA- 0027
* TIOh. SUBRCUTINE COSP IS USED FOR THE CALCULATION, BUT THE 0028
* FIRST AND LAST TERMS OF THE SPECTRUM MUST BE WEIGHTED BY 0029
* 1/2 SO THAT THE COSINE PRODUCTS PRODUCED BY COSP WILL BE 0030
* ORTHOGCNAL UNDER SUMMATION. THE COEFFICIENTS OF THE COSINE 0031

EXPANSION ARE TRAN(I),I=1,L. THE EXPONENTIAL 0032
* 0033

L 0034
EXP**(TRAN(1)+ SUM(TRAN(I)*(Z**(I-I)))) 0035

I=2 0036
0037

* MUST BE EXPANDED IN A CONTINUED PRODUCT OF POLYNOMIALS IN 0038
S1Z. THE POLYNOMIALS ARE THEN MULTIPLIED OUT AND GROUPED IN 0039

* THE FORM 0040
0041

L 0042
P = SUM (W(I)*(Z**(I-1))) 0043

* 1=1 0044
0045

* WHERE L IS THE LENGTH OF THE WAVELET, AND W(I) IS THE 0046
* DESIRED WAVELET. 0047
* 0048
* PROGRAM NOTES - 0049
* THE EXPANSION OF THE EXPONENTIAL AND MULTIPLICATION OF 0050
* THE RESULTING POLYNOMIALS MAY BE SIMPLIFIED BY THE 0051
* FOLLOWING CONSIDERATIONS - THE EXPONENTIAL MAY BE 0052
* REPRESENTED AS A CONTINUED PRODUCT OF POLYNOMIALS 0053

WHERE THE ITH POLYNOMIAL IS OF THE FORM 0054
* 0055

L-1 0056
P(I)=(SUM( C(I,J)*(Z**I))+ 1)*EXP**(TRAN(1)) 0057

SI=1 0058
* WHERE 0059
* C(IJ)= (TRAN(1)/1)*(TRAN(2)/2)*.....*(TRAN(I)/(JII)) 0060
* FOR J=K*I 0061
* C(I,J)= 0 FOR J NOT =K*I 0062
* THE C(110) TERMS ARE 1 FOR ALL I. 0063
* 0064
* WE ARE ONLY INTERESTED IN THE FIRST L TERMS OF THE WAVELET 0065
* SO WE KEED ONLY CONSIDER TERMS IN THE POLYNOMIALS WITH 0066
* EXPONENTS LESS THAN OR =M,M=L-1. WE CAN THEN COMPUTE THE 0067
* WAVELET COEFFICIENTS BY PARTIAL CONVOLUTION OF THE 0068
*POLYNOMIAL COEFFICIENTS. THAT IS, 0069
* 0070
* WAVE(I)= C(1,J)*C(2,J)*...C(MJ) 0071
* WHERE WAVE(I) IS THE WAVELET, M=L-1, AND THE * SYMBOL 0072
* DENOTES CONVOLUTION. 0073
* IT WILL BE NOTED THAT IF THE CONVOLUTION IS REPRESENTED 0074
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* IN STEPS BY 0075
e B(M-1)= C(M-1,J)*C(M,J), B(K)=C(KtJ)*B(K+1) 0076
* BY CAREFUL INSPECTION OF THE FORM OF THE C(IJ) ONE CAN 0077
* WRITE DOWN THE B(N) BY INSPECTION FOR N=L/2 (ROUNDED DOWN) 0078
* +1. THIS CUTS DOWN THE TOTAL LABOR BY NEARLY 1/2. 0079
* B(N)= 1,0,0.....,O,C(N,N),C(N+1N+ 11.... ,C(M,M) 0080
* FACTOR SETS UP B(N) AND THEN USES AN INTERNAL SUBROUTINE 0081
* TO SET UP C(N-t1J) FOR J=0,M. THE INTERNAL SUBROUTINE 0082
* PARCON COMPUTES THE PARTIAL CONVOLUTION WHICH IS B(N-1). 0083
* THE NEXT C(I,J) IS SET UP BY CCOM AND THE NEXT B(I-1) 0084
* COMPUTED BY PARCON. THIS IS REPEATED UNTIL ALL THE PARTIAL 0085
* CONVOLUTIONS HAVE BEEN DONE. THE RESULTING WAVELET IS THEN 0086
* SCALED BY EXP**(TRAN(1)). 0087
* THE CUTPUT OF PARCON FOR ONE STAGE IS THE INPUT FOR THE 0088
* NEXT STAGE SO THAT THE ADDRESSES 81 AND B2 IN THE PARCON 0089
* ROUTINE ARE REVERSED BETWEEN STAGES. 0090
* 0091

* LANGUAGE - FAP, SUBROUTINE (FORTRAN II COMPATIBLE) 0092

* EQUIPMENT - 709,7090 (MAIN FRAME ONLY) 0093

* STORAGE - 303 DECIMAL REGISTERS 0094
* SPEED - 2200+94L+16L**2+3L**3+270N+37L*N MACHINE CYCLES 0095

* AUTHOR - J.N. GALBRAITH NOV. 1, 1961 0096
* 0097
* ---- USAGE---- 0098
* 0099

* TRANSFER VECTOR CONTAINS ROUTINES - MAXAB, COSTBL, COSP 0100
* AND FORTRAN SYSTEM ROUTINES - LOG, EXP 0101
* 0102
* FORTRAN USAGE 0103
* CALL FACTOR(SPECT,NtL,WAVEtBI,B2,CTRANWORKCOST) 0104
* 0105

* INPUTS 0106
* 0107

* SPECTII) I=1,N SPECTRUM FROM ZERO TO PI 0108
* 0109

* N NUMBER OF POINTS IN SPECTRUM 0110
* MUST BE GRTHN 0. 0111
* 0112
* L LENGTH OF DESIRED WAVELET. 0113

* MUST BE GRTHN 0, LSTHN= No 0114
* 0115

* 81(I) I=IL SPACE FOR PARTIAL CONVOLUTION 0116
* 0117

* B2(1) I=1,L SPACE FOR PARTIAL CONVOLUTION 0118
* 0119

S C(I) I=1,L SPACE FOR COLUMN OF C(I,J) MATRIX 0120
* 0121

* TRAN(I) I=1,L SPACE FOR COSINE TRANSFORM 0122
* 0123

* WORK(I) I=1,N SPACE FOR COMPUTATION OF 1/2*LOG(SPECT).MAY BE THE 0124
* SAME AS SPECT IF SPECT CAN BE DESTROYED. 0125
* 0126

* COST(I) I=19L SPACE FOR COSINE TABLE FOR COSINE SERIES EXPAN- 0127
* SICN. 0128

* NOTE- 0129

* COST MAY BE THE SAME AS EITHER Bl,B2,OR C IF THE LENGTH IS L+1 0130

* INSTEAD OF L AS NOTED ABOVE. 0131

* THE OUTPUT WAVELET MAY ALSO BE THE SAME AS 81 B2,OR C. HENCE 0132

* THE MINIMUM STCRAGE FOR DATA USING ALL POSSIBLE EQUIVALENCES IS 0133
* N+4*L+1 , AND FACTOR COULD BE CALLED BY 0134

* CALL FACTOR(SPECTNLBItBIB2,CTRANSPECT81) 0135
* WHERE 81 IS OF LENGTH L+1 SINCE IT MUST DO DOUBLE DUTY FOR COST. 0136

* NO CHECKS ARE MADE ON THE VALUES OF N AND L. BOTH MUST BE GREATER 0137

* THAN 0, AND L MUST BE LESS THAN OR =N. ILLEGAL VALUES MAY RESULT 0138

* IN INCORRECT WAVELETS OR PROGRAM LOOPS. 0139
* 0140

* OUTPUTS 0141
r 0142

* WAVE(I) I=1,L OUTPUT MINIMUM PHASE WAVELET 0143
* 0144

* SEE NOTE ABOVE FOR EQUIVALENCE ALLOWANCES. 0145

* IF THE COSINE TABLE CAN BE USED LATER BY THE CALLING PROGRAM, 0146
* FACTOR CAN BE CALLED WITH SEPARATE SPACE FOR COST, AND THE TABLE 0147

* WILL BE RETURNED ALSO. 0148
0149
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* EXAMPLES

PROGRAM LISTINGS
* FACTOR *
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* 1. INPUTS -
* FOR A CONTINUOUS SPECTRUM
* SPECT= 1.25+COS(W), W=0,PI
* THE WAVELET IS
* WAVE= 1.,.5,O........,O.
* FOR THE DISCRETE CASE THE NUMBERS WILL NOT COME OUT
* EXACTLY THE SAME DUE TO ROUND OFF AND APPROXIMATION.
* FOR A TEST CASE THE INPUT SPECTRUM CAN BE SET UP WITH A
* FORTRAN LOOP. SPECT(I)=1.25 +COSF(FLOATF(I-1)*W) tl=l,N
* W =PI/FLOATF(N-1)
* WHERE N IS THE LENGTH OF THE SPECTRUM.
* RESULTS ARE GIVEN BELOW FOR N=500

* CUTPUTS - WAVE(1...6)= 1.0,0.4999t-0.00025,0.0004,-0.00001,0.000003

PZE
BCI

FACTOR SXA
SXA
SXA
SXD
CLA
STA
STA
STA
STA
CLA
STA
CLA
STA
ADD
STA
CLA
STA
CLA
STA
STA
STA
STA
ADD
STA
STA
STA

MAX TSX
PZE
PZE
PZE
PZE
LDQ
FMP
STO
LXA
CLA
CLA*
STD
STO
LRS
ORA
FAD
STO
AXT

LOOPL CLA
CAS
TRA
TRA
CLA
TSX
FDP
STQ
TXI

THE HIGHER
10**(-8)

1,FACTOR
RETURNl
RETURN+1,2
RETURh+2,4
FACTOR-2,4
5,4
PAR+1
BFST
LCCP2
LOCP3+1
6,4
PAR+2
1,4
MAX+2
ONE
LOCP
2,4
MAX+1
9,4
WGT+3
WGT+5
CSP+1
CSP+2
CNE
ENED1-2
WGT
WGT+2
$MAXAe,4
0*

BIGSP
INDEX
BIGSP
DEC
BIGSP
RETURN+2 4
1,4
2,4
ENCI
N

CONST
CONST
NF
1Il

BIGSP
*+3
*+2
BI GSP
SLCG,4
NF

**,1
*+1,l,1

TERMS ARE EVEN SMALLER WITH WAVE(20) LESS THAN

SAVE IRI
SAVE IR2
SAVE IR4

GET LOCATION OF 81

GET LOCATION OF B2

GET LOCATION OF SPECTRUM

GET LOCATION OF N

GET WORK SPACE FOR SPECTRUM

FIND MAXIMUM OF SPECTUM
LOCATION OF N
LOCATION OF SPECTUM

MAX. OF SPECTUM
10**(-6) OF MAX

RESET IR4

GET N (IN DECREMENT)

N IN ADDRESS

FLOATING N

**=SPECT+1

SPECT LARGER
SPECT EQUAL
SPECT LESS
LOG(SPECT)

1/2 LOG(SPECT)(WEIGHTED)
**=WORK+1

0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
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ENDI TXL
TXI

WGT CLA
FCP
STQ
CLA
FDP
STQ
LXA
CLA*
STO
SUB
STO
CLA
STA
STA
CLA
SUB
STO
CLA
STA

CST TSX
PZE
PZE

CSP TSX
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
PZE
LXA
CLA
ARS
ANA
ADD
STO
CLA

BFST STO
AXT
CLA
SUB
STD

LOOP2 STZ
TXI

END2 TXL
CLA
STA
STA
CLA
STD
LXD

LOOP3 CLA
STO
TXI

END3 TXL
AXT
CLA
STO
SUB
STD
AXT
CLA
STA
STA

CONV CLA
SUB
STO
SXD

COM TSX
PZE
PZE

LOOPl,**
*+1,1,-1I

TWOD
•**I

TWCD

RETURN+2,4
3,4
L
DONE
LL
10,4
CST+2
CSP+4
N
DONE
NN
8,4
CSP+9
SCCSTBL,4
NN
**

SCOSP,4

**

NN

NN
ZERO
LL
ONED

RETURN+2,4
L
1
MASK
DONE
M
ONED

1,1

DONE
END2
**,1I
*+1,1,1

4-2l,**

8,4
LOOP3
COM+2
L
END3

**,1

*+1,1,1
LOCP3 1,**
1,2
M
P
DONE
END23
1,l
7,4
PAR+3
COM+1
P
DONE
P
K,2
CCOMv4

**

PROGRAM LISTINGS

**=WORK+1. WEIGHT LAST
TERM IN SPECTRUM BY 1/2
**=WORK+1
**=WORK. WEIGHT FIRST
TERM IN SPECTRUM BY 1/2
**=WORK

GET L

L-1

N-1

LOCATION OF TRAN

GO TO COSINE TABLE

COST
GO TO COSINE TRANSFORM
WORK SPACE FOR SPECTRUM
WORK SPACE FOR SPECTRUM
N-1
COST
N-i
JMIN=O
JMAX=L-1
1.0
TRAN(COSTR)

L/2

L/2+1
M=L/2+1
1.0

**=Bl. Bl(0)=l.0

M
M-1

CLEAR BI

**=M-1
GET LOC. OF TRAN.

IRI=M
TRAN
B1

L IN DECREMENT

GET LOCATION OF C

TRAN

* FACTOR
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0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
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PAR TSX
PZE
PZE
PZE
CLA
LOQ
STO
STQ
TXI
TXI

END23 TXL
LXA
CLA
ARS
L8T
TRA
CLA
STA
TRA
CLA
STA
CLA
STA
LDQG
FMP
TSX
STO
CLA
STD
AXT

LOOP4 LDQ
FMP
STO
TXI

END4 TXL
RETURN AXT

AXT
AXT
TRA

L PZE
LL PLE
K PZE
N PZE
NN PZE
M PZE

PARCON,4

PAR+1
PAR+2
PAR+2
PAR+1
*+1,2,1
*+1,1,l
CONVl,**
RETURN+2,4

18

*+4

5,4
LOCP4
*+3
6,4
LOOP4
4,4
LOCP4+2
894

$EXP,4
NORM
LL
END4

NORM
**,1
*+1,1,1
LOOP4,1 ,
**,1
**,2
**,4
11,4
0
O0

P PZE 0
NF PZE 0
NORM PZE 0
BIGSP PZE 0
INDEX PZE 0
CONST OCT +233000000000
MASK OCT 777777000000
ZERO PZE 0
ONE PZE 1,0,0
DONE PZE 0,0,1
ONED DEC 1.0
TWOD DEC 2.0
DEC DEC .000001

*CCOM -COMPUTES C(P,J) FOR J=O TO L-1
*CALLING SEQUENCE
* TSX CCCM,4
* PZE LOCATION OF C(PO)
* PZE LOCATION OF TRAN
* RETURN
CCOM SXA BACK,1 SAVE IR1

SXA BACK41,2 SAVE IR2
SXA BACK+2,4 SAVE IR4
CLA L GET L
STD ADDR2+2
CLA P GET P
ARS 18 L IN ADDI
CHS
ADD 1,4 ADDRESS
STA ADOR3
STA ADDR4
CLA 1,4 LOCATION

LOCATION OF
LOCATION OF
LOCATION OF
EXCHANGE
LOCATIONS
OF 81
AND 82

**=M-1
RESET IR4
GET M
M IN ADDRESS
LOW BIT TEST
M EVEN, 82 CONTAINS WAVELET
M ODD, BI CONTAINS WAVELET

GET ADDRESS OF A (STORAGE FOR WAVELET)

TRAN(1)

SCALE FOR WAVELET

82 OR B1
SCALE FOR WAVELET

WAVELET

**=L-1
RESTORE IRI
RESTORE IR2
RESTORE IR4

RESS

OF C(P,P)

OF C(O)

0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322

323A
3238

0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
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STA ADDRI
ADD ONE
STA ADDR2
CLS P
ARS 18
ADO 2,4
STA STCI
CIA ONED

ADDRI STO **
AXT 2,1

ADDR2 STZ **,1
TXI *+1,111
TXL ACR2,1t**

STO1 CLA **
ADDR3 STO **

STO TEMPI
STO TEPP2
CLA LL
LRS 35
DVP P
LLS 53
SUB DCNE
TZE BACK
STO END
CLA P
PDX ,2
SXD END-2,2
AXT 1,1
CLA TWCD
STO R

LOOP LDQ TEMPI
FMP TEMP2
FDP R

ADDR4 STQ **,2
STO TEPIL
CLA R
FAD ONED
STO R
TXI *+1,2,**
TXI *+1,1,1

END TXL LOOP,1,**
BACK AXT **,I

AXT **,2
AXT **,4
TRA 3,4

TEMPI PZE 0,0,0
TEMP2 PZE O,0O
R PZE

*PARCCN CCMPUTES A PARTIAL
*CALLING SEQUENCE
* TSX PARCC,4
* PZE LOCATION CF
* PZE LUCATICN CF
* PZE LOCATION OF
PARCON SXA EXTI

SXA EXT+I,2
SXA EXT+2,4
CLA 2,4
STA REGI
STA REG3
STA REG3+1
ADD ONE
STA REG2
CLA 3,4
STA REG5
CLA ONED

REG1 STO **
AXT 2,1
CLA L
STD REG2+2
SUB DONE
STD REG8

REG2 STZ **,1
TXI *+1,1,1
TXL REG2,1,**

TRAN

1.0
C(O)
CLEAR
C(I) TO
C(L)
**=L

TRAN(P)
C(P,P)

INTO MQ
(L-1)/P
INTO AC
(L-I)/P-1
IF ZERO,NO MORE TO 00
NOT ZERO, SET TO DO (L-1)/P-1 TIMES

P IN IR2

GET 2.0
INITIALIZE R

TRAN( 1)

**=C. C(R+1) COMPUTED.
SAVE FOR NEXT C
GET R
INCREMENT BY 1.0
RE-SET R
**=P. INCREMENT C STORAGE INDEX
INCREMENT LOOP COUNTER
**=L-1/P-L. END LOOP CHECK.
RESTCRE IRI
RESTORE IR2
RESTORE IR4
RETURN
WILL CONTAIN PARTIAL SUM FOR C(P)
WILL CONTAIN TRAN(P)

CONVOLUTION OF C AND 81

1B
82
C(X,O)

SAVE IRI
SAVE IR2
SAVE IR4
GET LOCATION OF 82

LOCATION OF C

1.0
82(0)=1.0

GET L

CLEAR 82(1) TO 82(L)

DECREMENT=L

0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
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* FACTOR

(PAGE 7)

PROGRAM LISTINGS
* FACTOR a

(PAGE 7)

K GOES FROM
IRI=M-K

1 TO M-1. SET BY CALLING LOOP.
CLA
SUB
PDX
SXD
PDC
SXD
SXD

REG7 AXT
LXA
CLA
STO
CLS
ARS
ADD
STA
AXT

REG5 LDQ
REG4 FMP
REG3 FAD

STO
TXI
TXI

REG6 TXL
TXI

REG8 TXL
EXT AXT

AXT
AXT
TRA

S PZE
END

M
K
,1
REG3+2 1
,2
REG3+3,2
Sol
0,2
EXT+2,4
S
REG6
S
18
1,4
REG4
0,4
**,4
.*,2
tt,1

*+1,4,**
*+1,2,**

REG5,4,**
*+1,1,1
REG7-11,0**
**,1

**,2
**94
4,4
0

S=IRI=M-K
ZERO IR2
RESET IR4
GET S

LOCATION OF BItS)

C(O)
B1(S)
82
B2
(M-K) IN DECREMENT
-(M-K) IN DECREMENT
**=S

**=L-1
RESTORE IRI
RESTORE IR2
RESTORE IR4
RETURN

0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
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PROGRAM LISTINGS

* FROCTI (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO.
* LABEL
CFRQCT1

SUBROUTINE FRQCTI(IXNXIXLOIXHIICTIANS)
C
C ---- ABSTRACT----
C
C TITLE - FRQCT1
C FREQUENCY DISTRIBUTION OF A FIXED POINT VECTOR
C
C FRQCTI MAKES A FREQUENCY COUNT OF AN INTEGER SEQUENCE WITH
C VALUES IN A SPECIFIED RANGE. FOR EACH INTEGER VALUE IN
C THE INCLUSIVE RANGE IXLO TO IXHI, THE NUMBER OF
C OCCURRENCES OF THIS VALUE IN THE INTEGER SEQUENCE IS
C COUNTEC.
C
C LANGUAGE - FORTRAN II SUBROUTINE
C EQUIPMENT - 709 OR 709C (MAIN FRAME ONLY)
C STORAGE - 117 REGISTERS
C SPEED -
C AUTHOR - S. P. SIMPSON
C
C ---- USAGE----
C
C TRANSFER VECTOR CONTAINS ROUTINES - NONE
C AND FORTRAN SYSTEM ROUTINES - NONE
C
C FORTRAN USAGE
C CALL FRQCT1(IXNXIXLOIXHIICTIANS)

C INPUTS
C
C IX(
C
C
C NX
C
C
C IXL
C
C

IXHI

[) I=1,..NX IS THE GIVEN INTEGER SEQUENCE
IXLO LSTHN OR = IX(I) LSTHN OR = IXHI.

IS THE NUMBER OF IX VALUES IN THE SEQUENCE.
MUST BE GRTHN O.

IS AN INTEGER
LSTHN OR = ALL IX(I)
IXLO MAY BE NEG.

IS AN INTEGER
GRTHN OR = ALL IX(I)
IXHI MAY BE NEG.

C OUTPUTS

ICT(I) I=1...NCT IS THE FREQUENCY COUNT WHERE
ICT(1) = NUMBER OF MEMBERS OF THE INPUT SEQ = IXLO
ICT(2) = NUMBER OF MEMBERS OF THE INPUT SEQ = IXLO+1

ETC.
ICT(NCT) = NUMBER OF MEMBERS OF THE INPUT SEQ = IXHI
WHERE NCT = IXHI-IXLO+1

IANS = 0
= 1
= 2

NORMAL
ILLEGAL NX
ILLEGAL IXLO

C EXAMPLES OF FRQCT1
C
C 1. INPUTS - IXLO=3 IXHI=10 NX=3
C OUTPUTS - ICT(1...8) = 0,3,0,0,0 0,0,0
C
C 2. INPUTS - IXLO=5 IXHI=12 NX=7
C CUTPUTS - ICT(1...8) = 1,1,1,,ltl1,1,0

3. INPUTS - IXLO=5
OUTPUTS - ERROR

4. INPUTS - IXLO=13
CUTPUTS - ERROR

IXHI=12
IANS=1

IXHI=12
IANS=2

IX(1...3)=4,4,4
IANS=O

IX( ... Tl=5,6,7,8,9,10,11
IANS=O

NX=0O

NX=7

DIMENSION IX(2),1CT(2)
SET UP AND CLEAR ICTII).

0094
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074

* FRQCT1 
******************t*****

* FRQCT1I

I
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* FRQCTI * * FRQCT1 *

(PAGE 2) (PAGE 2)

IANS=O 0075
NCT=IXHI-IXLO+1 0076
NSHIFT=IXLO-1 0077
IF (NX) 9991,9991,10 0078

10 IF (NCT) 9992,9992,15 0079
15 DO 20 I=1,NCT 0080
20 ICT(I)=O 0081

C SCAN IX(I) TO MAKE COUNTS (PUT EACH IX IN RANGE 1 TO NCT FIRST). 0082
DO 35 I=1,NX 0083
IXI=IX(I)-NSHIFT 0084
IF (IXI) 9992,9992,30 0085

30 IF (IXI-NCT) 35,35,9992 0086
35 ICT(IXI)=ICT(IXI)+1 0087

GO TO 9999 0088
9999 RETURN 0089
9991 IANS=1 0090

GO TO 9999 0091
9992 IANS=2 0092

GO TO 9999 0093
END 0094



* FRQCT2

2PROGRAM LISTINGS1
PROGRAM LISTINGS

* FRQCT2
*****ftft ****** * * *fttt

* FRQCT2 (SUBROUTINE)
* FAP

2/18/63 LAST CARD IN DECK IS NO.

*FRQCT2
COUNT 20C
LBL FRQCT2
ENTRY FRCCT2 (X,LX,B,LB,ICOUNT,IANS)

* ---- ABSTRACT----

* TITLE - FRQCT2
* FREQUENCY COUNT OF NUMBER OF VALUES OF A SERIES IN GIVEN RANGES.

* FRQCT2 MAKES A FREQUENCY COUNT OF A FLOATING POINT,
* FORTRAN INTEGER, OR MACHINE LANGUAGE INTERGER SERIES FOR
* THE NUMBER OF VALUES LYING IN SPECIFIED RANGES. IT IS
* USEFUL IN COMPUTING EMPIRICAL PROBABILITY DENSITIES.

* THERE ARE LB RANGE LIMITS, B(I), I=1, LB, AND HENCE LB+1
* RANGES. A NUMBER9 X(J), IS SAID TO BE IN THE I-TH RANGE
* IF B(I-1) LSTHN OR EQUAL X(J) LSTHN B(I). A NUMBER IS IN
* THE FIRST RANGE IF IT IS LSTHN B(1), AND IN THE LB+1
* RANGE IF GRTHN OR EQUAL B(LB). THE INPUT SERIES X(I) MUST
* BE THE SAME MODE (FLOATING, INTEGER, ETC.) AS THE RANGE
* LIMITS BECAUSE THE METHOD USES CAS INSTRUCTIONS.

LANGUAGE -
EQUIPMENT -
STORAGE -
SPEED -
AUTHOR -

FAP SUBROUTINE (FORTRAN II COMPATIBLE)
709 OR 7090 (MAIN FRAME ONLY)
117 REGISTERS

J. N. GALBRAITH

* ---- USAGE----

* TRANSFER VECTOR CONTAINS ROUTINES - NONE
* AND FORTRAN SYSTEM ROUTINES - NONE

* FORTRAN USAGE
* CALL FRQCT2(X,LXB,LBICOUNT,IANS)

* INPUTS

X(I)

LX

B(I)

LB

I=1...LX IS THE GIVEN SERIES.
MAY BE FLOATING, FORTRAN INTEGER, OR MACH INE INTEGER.

IS THE LENGTH OF THE X SERIES.
MUST BE GRTHN 0.

I=1...LB IS VECTOR OF RANGE LIMITS. B(I) LSTHN 8(1+1).
RANGES INTO WHICH THE SERIES IS DIVIDED ARE (-INFINITY,
LSTHN B(l)),(GRTHN OR =B(1),LSTHN B(2)) ETC.
MAY BE FLOATING, FORTRAN INTEGER, OR MACHINE INTEGER,

BUT MUST BE THE SAME AS XII)

NUMBER OF RANGE LIMITS.
MUST BE GRTHN 0.
NOTE - NUMBER OF RANGES =1+ NUMBER OF RANGE LIMITS.

*

* OUTPUTS

* ICOUNT(I) I=1...LB+1=NUMBER OF X VALUES IN EACH RANGE OF B.
* ICOUNT(1)=NO. X LSTHN 8(1). ICOUNT(2)=NO. X LSTHN 8(2),
t* GRTHN OR =B(1).
* ICOUNT(LB)=NO. X LSTHN B(LB),GRTHN OR=B(LB-1).
* ICOUNT(LB+1)=NO. X GRTHN OR =B(LB).

IANS

* EXAMPLES

* 1. INPUTS

ft

IANS=0, NORMAL
IANS=1, ILLEGAL LX
IANS=2, ILLEGAL LB
IANS=3, WEIRD ERROR

X(l...15) = -21.t-20.9-15.9-14.9-12.,-11.#-8.#-7.o0.,1.,
2.1,3.,4.,5.,6. LX=15 B(1...5)= -20.,-16.,-7.5,0.,.9
LB=5

0211
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
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PROGRAM LISTINGS

* OUTPUTS - ICCUNT(1...6) = 1,1,5,11,6, IANS=O

* INPUTS - SAME AS EXAMPLE 1. EXCEPT B1L...5)=-21.,-1
* OUTPUTS - ICCUNT(1...6) =0,5,3,5,1,1 IANS=O

* 3. INPUTS - SAME AS EXAMPLE 1. EXCEPT B(1...5)=-21.,-1
S COUTPUTS - ICCUNT(1...6) =0,5,3,5,2,0 IANS=O

* 4. INPUTS - SAME AS EXAMPLE 1. EXCEPT B(1)=0. B(2)=.5
* CUTPUTS - ICCUNT(1...3) =8,1,6 IANS=O

* 5. INPUTS - SAME AS EXAMPLE 4. EXCEPT LB=O
* OUTPUTS - ERROR IANS =2

* 6. INPUTS - SAME AS EXAMPLE 4. EXCEPT LX=O
* OUTPUTS - ERROR IANS = I

* SAVE IRS AND
PZE
BCI

FRQCT2 SXA
SXA
SXA
SXD
STZ*
CLA*
TZE
TMI
STO
CLA*
TZE
TMI
ARS
STO
ARS
STO
CLA
ADD
STA
STA
CLA
ADD
STA
STA
SUB
STA
CLA
ADD
STA
STA
STA
LXA
TXI
SXD
AXT
AXT

STZCNT STZ
TXI

END1 TXL
AXT

LOOP CLA
STO
CLA
STO
CLA
STO
AXT

TESTLO CLA
BTEST1 CAS

TRA
TRA
TRA

TESTHI CAS
TRA
TRA

* FRQCT2

(PAGE 2)

1.5,0.,4.5,6.

1.5,0,4.5,6.1

LB=2

LB=2

CHECK FOR ILLEGAL PARAMETERS

1,FRQCT2
RETURhNl
RETURN+1,2
RETURK+2,4
FRCCT2-24
6,4
2,4
ERRI
ERR1
ENC
4,4
ERR2
ERR2
18
LB
I
L8HALF
1,4
K1iLI
XACD
TESTLC
3,4
KlMLI
BTEST1
BACD
LB
TESTHI
5,4
KILI
STZCNT
EQUAL
STCCNT

*+1,1,1
ENCII
1,4
1,1II
**,I
*+1,l1
STZCNT,1,**
1,1
KIMLI
LBLO
LB
LBHI
LBHALF
LBCCM
1,2
**,1

**,4
TESTHI
NEXINO
EQUAL

HIEST
HIEST

IANS=O
GET LX

GET LB

LB IN ADDRESS

LB/2 (IN ADDRESS)

ADDRESS OF X
A(X+1)

ADDRESS OF 8
A(B+1)

ADDRESS OF ICOUNT
A(ICOUNT+1)

ZERO ICOUNT(I)tI=[,LB+1

**=LB+I

INITIAL LBLO=1

INITIAL LBHI=LB

INITIAL LBCOM=LB/2

GET X. (**=A(X+1))
8(1) SEE IF IN LOWEST RANGE

**=A(B(LB)). SEE IF IN HIGHEST RANGE

0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
C094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
013C
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149

* FRQCT2

(PAGE 2)
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* FRQCT2 *

(PAGE 3)

PROGRAM LISTINGS fy44 *44********4*4****

* FRQCT2 *

(PAGE 3)

SEARCH LXA
XADD CLA
BADD CAS

TRA
TRA

LESS PXA
SUB
CAS
TRA
TRA
TRA
ARS
ADD
LDQ
STQ
STO
TRA

GRATER PXA
SUB
SSP
CAS
TRA
TRA
TRA
ARS
ADD
LDQ
STO
ST
TRA

NEXIND TXI
EQUAL CLA

ADD
STCCNT STO

TXI
END TXL

RETURN AXT
AXT
AXT
TRA

HIEST LXA
TRA

ERR1 CLA
STO*
TRA

ERR2 CLA
STO*
TRA

ERROR CLA
STO*
TRA

* CONSTANTS
K1FX PZE
K2FX PZE
K3FX PZE
KIMLI PZE
LB PZE

LBHALF PZE
LBLO PZE
LBCOM PZE
LBHI PZE

END

LBCCM,2
**,1

**,2
GRATER
NEXIND
0,2
LELC
KIMLI
*+3
EQUAL
ERROR
1
LBLO
LbCOM
LEHI
LeCCM
SCARCH
0,2
LbHI

KlMLI
*+3
NEXINC
ERROR
I
LBCOM
LBCCV
LRCOV
LBLO
SEARCH
*+1,2,1
**92
KLFX
**,2
*+1, 1,1
LCCP,1,**

**,2
7v,4
7,4
L[,2
NEXINC
K1FX
6,4
7,4
K2FX
6,4
7,4
K3FX
6,4
7,4

AND TEMPCRARIES
0,0,11

OC,3
1,0,0
0
0
3

GET X(IR1)
COMPARE WITH 8(LBCOM)
X GREATER, NEW LBLO (=LBCOM)
GOT IT, INDEX ICOUNT(IR2+1)
X LESS, NEW LBHI (=LBCOM)
LBCOM-LRLO=DIF

DIF GREATER THAN ONE
DIF=1, GOT IT, INDEX ICOUNT(IR2)

IMPOSSIBLE
DIF/2
NEW LBCOM

LBCOM-LBHI=-OIF
DIF

GOT IT, INDEX ICOUNT(IR2+1)
IMPOSSIBLE

**=A(ICOUNT+1)

**=A(ICOUNT+1)

0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
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* GETROD * * GETRD1I

* GETRDOL (SUBROUTINE) 2/15/63 LAST CARD IN DECK IS NO. 0172
* LABEL 0001
CGETRCD 0002

SUBROUTINE GETRCI(ITAPENX,IX,IANS) 0003
C 0004
C ---- ABSTRACT---- 0005
C 0006
C TITLE - GETRD1 0007
C ACCESS ROUTINE FOR RAND CORP. MILLION RANDOM DIGITS FROM TAPE 0008
C 0009
C GETROD FURNISHES THE NEXT NX SEQUENTIAL RANDOM DIGITS 0010
C AS FIXED POINT INTEGERS FROM A SPECIFIED TAPE UNIT. 0011
C 0012
C THE TAPE UNIT CONTAINS THE MILLION DIGITS IN BCD FORM 0013
C AS LOADED OFF-LINE FROM THE 20000 CARDS CONTAINING THEM, 0014
C EACH CARD WITH FORMAT(5011). GETRD1 KEEPS A BUFFER OF 0015
C LENGTH 50 TO PREVENT MISSING ANY DIGITS, BUT DOES NOT 0016
C CHECK FOR THE POSSIBILITY THAT THE SUPPLY IS EXHAUSTED. 0017
C 0018
C LANGUAGE - FORTRAN II SUBROUTINE 0019
C EQUIPMENT - 709 OR 7090 (MAIN FRAME PLUS 1 TAPE UNIT) 0020
* STORAGE - 229 REGISTERS 0021
C SPEED - SLOW, SINCE TAPE IS BCD 0022
C AUTHOR - S.M.SIVPSON JR. 0023
C 0024
C ---- USAGE---- 0025
C 0026
C TRANSVER VECTOR CCNTAINS ROUTINES - (NONE) 0027
C AND FORTRAN SYSTEM ROUTINES - (TSI-), (RTN) 0028
C 0029
C FORTRAN USAGE 0030
C CALL GETRD0(ITAPE,NX,IX,IANS) 0031
C 0032
C INPUTS 0033
C 0034
C ITAPE IS THE LOGICAL TAPE NO. OF THE RANDOM DIGITS TAPE 0035
C MUST LIE BETWEEN 1 AND 12 INCLUSIVE 0036
C 0037
C NX IS THE DESIRED NO. OF DIGITS 0038
C MUST EXCEED ZERO 0039
C 0040
C CUTPUTS 0041
C 0042
C IX(I) I=1...NX WILL CONTAIN THE NEXT NX DIGITS AS FORTRAN 0043
C FIXED POINT INTEGERS 0044
C 0045
C IANS = 0 NORMAL 0046
C = -1 FOR ILLEGAL ITAPE 0047
C = 2 NX 0048
C 0049
C EXAMPLES 0050
C 0051
C 1. ILLUSTRATING EFFECTS OF SUCCESSIVE CALLS 0052
C INPUTS - THE FIRST THREE RAND DIGITS CARDS ARE AS FOLLOWS 0053
C 0054
C C CCLUMN NUMBERS 0055
C A 0056
C R 00000000011111111112222222222333333333344444444445 0057
C D 12345678901234567890123456789012345678901234567890 0058
C 0059
C 1 10097325337652013586346735487680959091173929274945 0060
C 2 37542048056489474296248052403720636104020082291665 0061
C 3 08422689531964509303232090256015953347643508033606 0062
C ASSUME THE CARDS ARE LOADED ON LOGICAL TAPE 9 0063
C 0064
C USAGE - REWIND 9 0065
C CALL GETRD1(9,10IX1,IANS1) 0066
C CALL GETRD1(9,10,IX2,IANS2) 0067
C CALL GETRD1(9, IlX3,IANS3) 0068
C CALL GETRD1(9,29,IX4,IANS4) 0069
C CALL GETRD1(9, 1,IX5,IANS5) 0070
C CALL GETRD1(9,55,IX6,IANS6) 0071
C REWIND 9 0072
C CALL GETRD1(9, 3,IX7,IANS7) 0073
C 0074
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PROGRAM LISTINGS
* GETRD1 *

(PAGE 2)

CUTPUTS - IANSI=IANS2 = ETC = IANS7 = 0 (NO ILLEGALITIES)
IX(1....10) = 1,0,0,9,7,3,2,5,3,3
IX2(1...10) = 7,6,5,2,0,1,3,5,8,6
IX3(1...1) = 3
IX4(1...29) = 4,6,7,3,5,4,8,7,6,8,0,9,5,9,0,9,1,1,7,3,

9,2,9,2,7,4,9,4,5
IX5(1...1) = 3
IX6(1...55) = 7,5,4,2,0,4,8,0,5,6,4,8,9,4,7,4,2,9,6,2,

4,8,0,5,2,4,0,3,7,2,0,6,3,6,1,0,4,02,0,
0,8,2,2,9,1,6,6,5,0,8,4,2,2,6

IX7(1...3) = 8,9,5 (NOT = 1,0,0 SINCE GETRD1 STILL
HAS 44 DIGITS IN ITS BUFFER TO
USE UP BEFORE READING FROM TAPE
AGAIN)

2. ILLUSTRATING ILLEGAL USAGE

USAGE - CALL GETRD1(O,1,IX,IANS1)
CALL GETRD1(13,lIX,IANS2)
CALL GETRD1(9,-3,IX,IANS3)

OUTPUTS - IANSI = IANS2 = -1
IANS3 = -2

PROGRAM FOLLOWS BELOW

DUMMY DIMENSION STATEMENT
DIMENSION IX(2)

TRUE DIMENSION STATEMENT
DIMENSION INP(50)

CHECK LEGALITIES OF ITAPE,NX
IANS=-1
IF (ITAPE) 9999,9999,2

2 IF (ITAPE-12) 4,4,9999
4 IANS=-2

IF (NX) q99999999,10
10 IOUT=O

IANS=O
MORE=NX

C ANY DIGITS LEFT IN BUFFER FROM
C 50 DIGITS).

(ILLEGAL ITAPE)
(ILLEGAL NX)

PREVIOUS CALL (IF NO, GO READ

IF (NBUF) 20,40,20
C
C IF YES, CHECK IF REQUEST CAN BE FILLED FROM BUFFER.
C

20 IF (NX-NBUF) 30,30,24
C
C IT CANT. EMPTY BUFFER AND THEN GO READ MORE DIGITS.
C

24 DO 26 I=1,NBUF
26 IX(I)=INP(I)

IOUT=NBUF
MORE=MORE-NBUF
GO TO 40

C
C IT CAN BE FILLED FROM BUFFER. SET UP TO DO SO AND EXIT.
C

30 NBLOK=NBUF
GO TO 66

C
C READ 50 DIGITS
C

40 READ INPUT TAPE ITAPE,42,(INP(I),I=I150)
42 FORMAT(5011)

C
C CHECK IF THIS IS LAST BLOCK OF 50 NEEDED.
C

IF (MORE-50) 60,60,50
C
C NO. MOVE BLOCK OF 50 AND GO BACK FOR ANOTHER.
C

50 DO 54 I=1,50
II=I+IOUT

0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149

* GETRD1 *

(PAGE 2)
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PROGRAM LISTINGS

* GETRD1 *

(PAGE 3)

54 IX(II)=INP(I)
ICUT=IOUT+5C
MCRE=P'RE-50
GO TO 40

YES. SET FOR FINAL MOVE.

60 NBLOK=50

MOVE FINAL BLOCK AND SET UP BUFFER FOR NEXT CALL

66 DO 68 I=1,FORE
II=I+IOUT

68 IX(II)=INP(I)
NBUF=NBLOK-PCRE
IF (NBUF) 70,9999,70

70 MRPI=MORE+1
DC 74 I=MRPIhBLOK
II=I-~ORE

74 INP(II)=INP(I)
GC TO 9999

9999 RETURN
END

* GETRD1 *

(PAGE 3)

0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
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GRUP2 * * GRUP2 *

* GRUP2 (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0139
* LABEL 0001
CGRUP2 0002

SUBROUTINE GRUP2 (PNDELX,DELX,XLOYLIM,NWANTIANS) 0003
C 0004
C ---- ABSTRACT---- 0005
C 0006
C TITLE - GRUP2 0007
C DIVIDES THE X AXIS INTO EQUALLY PROBABLE RANGES 0008
C 0009
C GRUPI PERFORMS A PROCESS KNOWN AS THE PROBABILITY 0010
C TRANSFORMATION WHEREBY A GIVEN PROBABILITY DENSITY IS 0011
C TRANSFCRMED INTO A RECTANGULAR DENSITY. 0012
C 0013
C THE PRINCIPAL INPUT IS A HISTOGRAM-TYPE PROBABILITY 0014
C DISTRIBUTICN FUNCTION P(I),I=1...NDELX, WHERE P(l) = 0015
C PROBABILITY DENSITY FOR THE RANDOM VARIABLE X FALLING IN 0016
C THE ITH RANGE OF X VALUES, WHERE ALL RANGES ARE OF EQUAL 0017
C LENGTH DELX, AND THE LOWEST RANGE IS FROM XLO TO XLO+DELX. 0018
C 0019
C GRUP2 DIVIDES THE X AXIS INTO NWANT RANGES FROM XLO TO 0020
C NDELX*CELX+XLO, EACH RANGE HAVING EQUAL PROBABILITY DELP. 0021
C DELP=1./FLOATF(NWANT). GRUP2 RETURNS THE X VALUES 0022
C CORRESPONDING TO THE RANGES. THE DIVISION IS MADE BY 0023
C INTEGRATING THE PROBABILITY DISTRIBUTION ALONG THE X AXIS. 0024
C LINEAR INTERPOLATION IS MADE WHEN AN INTEGER MULTIPLE OF 0025
C 1/NWANT LIES BETWEEN SUM UP TO J AND J+1 OF (P(I)*DELX). 0026
C 0027
C LANGUAGE - FORTRAN II SUBROUTINE 0028
C EQUIPMENT - 709 CR 7090 (MAIN FRAME ONLY) 0029
C STORAGE - 198 REGISTERS 0030
C SPEED - 0031
C AUTHOR - J.N. GALBRAITH 0032
C 0033
C ---- USAGE---- 0034
C 0035
C TRANSFER VECTOR CONTAINS ROUTINES - NONE 0036
C AND FORTRAN SYSTEM ROUTINES - NONE 0037
C 0038
C FORTRAN USAGE 0039
C CALL GRUP2 (PNDELX,DELX,XLO,YLIMNWANTIANS) 0040
C 0041
C INPUTS 0042
C 0043
C P(I) I=1...NDELX IS THE PROBABILITY DISTRIBUTION DEFINED 0044
C FRCM XLO TO NDELX*DELX+XLO AND NORMALIZED SUCH THAT 0045
C THE SUM FROM I=1 TO NDELX OF P(I)*DELX =1. IF P(I) 0046
C IS NORMALIZED SUCH THAT SUM (P1I)) LESS THAN 1. AN ERROR 0047
C MAY OCCUR WITH IANS=-4. IF P(I) IS NORMALIZED SUCH THAT 0048
C SUM (P(l)) GRTHN 1., THE YLIM WILL BE COMPUTED IN THE 0049
C USUAL MANNER WITH NORMALIZATION ASSUMED =1. 0050
C 0051
C XLO IS LOWEST VALUE OF X FOR WHICH P(I) IS DEFINED. 0052
C 0053
C DELX IS THE INCREMENT IN X. 0054
C MUST BE GRTHN 0. 0055
C 0056
C NDELX IS THE NUMBER OF INCREMENTS, 0057
C MUST BE GRTHN 1. 0058
C 0059
C NWANT IS THE NUMBER OF EQUALLY LIKELY DIVISIONS WANTED. 0060
C MUST BE GRTHN 1. 0061
C 0062
C OUTPUTS 0063
C 0064
C YLIM(I) I=1...NWANT+1 IS THE VECTOR OF X VALUES WHICH 0065
C CORRESPOND TO EQUALLY LIKELY PROBABILITY DIVISIONS. 0066

C (YLIM(1)=XLO), (YLIM(NWANT+1)=XLO+FLOATF(NDELX)*DELX). 0067
C 0068
C IANS = 0 NORMAL 0069
C = -1 ILLEGAL NDELX 0070
C = -2 ILLEGAL DELX 0071
C = -3 ILLEGAL NWANT 0072
C = -4 WEIRD ERROR (P PROBABLY NOT PROPERLY NORMALIZED) 0073
C 0074
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* GRUP2
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C EXAMPLES
C
C 1. INPUTS - ALL P=O. NDELX=1
C OUTPUTS - ERROR IANS = -1
C
C 2. INPUTS - SAME AS EXAMPLE 1. EXCEPT
C CUTPUTS - ERROR IANS= -2
C
C 3. INPUTS - SAME AS EXAMPLE 2 EXCEPT
C CUTPUTS - ERROR IANS= -3

4.

C 5.
C
C
C
C 6.
C
C
C 7.
C
C

INPUTS - P(1...20) = 1.,.7,.5,1.3,
1.5,1.5,1.5,1.5,.5,.5,2.
XLC=C. NWANT=5

OUTPUTS - YLIM(1,...,6) = 0.,.2125,

INPUTS - SAME AS EXAMPLE 4. EXCEPT
OUTPUTS - YLIM(1,...,6) = 20.,20.?1

IANS=0

INPUTS - SAME AS EXAMPLE 5. EXCEPT
OUTPUT - ERROR IANS=-4

INPUTS - SAME AS EXAMPLE 5. EXCEPT
OUTPUTS - YLIMII,...,6) = 20.,20.2,

DIMENSION P(2CC),YLIM(201)
C CHECK NDELX

IANS=-1
IF(NDELX-1) 9999,9999,5

C CHECK DELX
5 IANS=-2

IF(DELX) 9999,9999,10
10 NUMI=NWANT-1

IANS=-3
IF(NUMI) 9999,9999,20

20 YLIM(1)=XLO
YLIM(NWANT+1)=XLO+FLOATF(NDELX)*DE
DELP=1./FLOATF(NWANT)
PTEST=DELP
ISTART=1
SUM=O
IANS=0
DC 100 J=1,NUM1
DO 50 I=ISTART,NDELX
DELTA=P(I)*DELX
SUM=SUM+DELTA
IF(SUM-PTEST) 50,60,70

50 CONTINUE
C ERROR- USED ALL P WITHOUT FINDING

GC TO 9777
60 YLIM(J+1)=FLCATF(I)*DELX+XLO

ISTART=I+1
GO TO 90

C INTERPOLATE
70 SUM=SUM-DELTA

FRACTX=(PTEST-SUM)/DELTA
YLIM(J+1)=(FLOATF(I-1)+FRACTX)*DEL
ISTART=I

90 PTEST=PTEST+OELP
100 CONTINUE
9999 RETURN
9777 IANS=-4

GO TO 9999
END

* GRUP2
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0075
0076

DELX=O. XLO=O. NWANT=O 0077
0078
0079

NDELX=20 0080
0081
0082

DELX=.05 NWANT=1 0083
0084
0085

2.,1.9,.6,.5,.4,.3,.2,.1,1.5 0086
NDELX=20 DELX=.05 0087

0088
.35,.68333,.81666,1. IANS=O 0089

0090
XLO=20. 0091

25,20.35,20.68333.7n.86666.,21. 0092
0093
0094

DELX=.0005 0095
0096
0097

DELX=100. 0098
20.4,20.6,20.8,20.20 IANS=0O 0099

0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111

LX 0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123

ALL YLIM. 0124
0125
0126
0127
0128
0129
0130
0131

X+XLO 0132
0133
0134
0135
0136
0137
0138
0139
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* KIINT1 * * KIINTI

* KIINTI (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0128

LABEL 0001

CKIINT1 0002

SUBROUTINE KIINT1 (CHISQ,NDF,PROBIANS) 0003

C 0004

C ---- ABSTRACT---- 0005

C 0006

C TITLE - KIINT1 0007

C PROBABILITY THAT A CHI-SQUARED VARIATE EXCEEDS A VALUE. 0008

C 0009

C KIINTI PRODUCES THE PROBABILITY THAT A CHI-SQUARED VARIATE 0010

C WILL EXCEED A GIVEN VALUE. THIS PROBABILITY IS COMPUTED BY 0011

C EQUATIONS GIVEN BY YULE AND KENDALL, 1950, THEORY OF 0012

C STATISTICS, PAGE 464 (FOOTNOTE) FOR NDF LESS THAN 31, 0013

C WHERE NDF = NO. DEGREES OF FREEDOM. 0014

C FOR HIGHER NDF THE NORMAL APPROXIMATION IS USED. 0015

C WHEN THE NORMAL APPROXIMATION IS USED A TABLE OF THE 0016

C NORMAL DISTRIBUTION WHICH APPEARS IN SUBROUTINE NOINTI IS 0017

C USED AND, SINCE THIS TABLE HAS ONLY 201 VALUES 0018

C CORRESPONDING TO VALUES OF X (UNIT NORMAL) FROM 0019

C 0.0 TO 4.0, PROBABILITIES LESS THAN .00032 ARE SET TO ZERO 0020

C AND THCSE GREATER THAN 99968 ARE SET EQUAL TO ONE. THIS 0021

C DOES NCT OCCUR IF THE EQUATIONS ARE USED. 0022

C 0023

C LANGUAGE - FORTRAN II SUBROUTINE 0024

C EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY) 0025

C STORAGE - 191 REGISTERS 0026

C SPEED - 0027

C AUTHOR - S.M. SIMPSON 0028

C 0029

C ---- USAGE---- 0030

C 0031

C TRANSFER VECTOR CONTAINS ROUTINES - NOINT1 0032

C AND FORTRAN SYSTEM ROUTINES - SQRT, EXP(3 0033

C 0034

C FORTRAN USAGE 0035

C CALL KIINT1(CHISQ,NDFPROBIANS) 0036

C 0037

C INPUTS 0038

C 0039

C CHISQ IS THE PARTICULAR VALUE OF A CHI-SQUARED VARIATE. 0040

C MUST BE GRTHN=0. 0041

C 0042

C NDF IS THE NUMBER OF DEGREES OF FREEDOM OF THE VARIATE. 0043

C MUST BE GRTHN 0. 0044

C 0045

C OUTPUTS 0046

C 0047

C PROB IS THE PROBABILITY THAT THE VARIATE GRTHN=CHISQ. 0048

C 0049

C IANS =0 NCRMAL 0050

C =1 ILLEGAL CHISQ 0051

C =2 ILLEGAL NDF 0052

C 0053

C EXAMPLES 0054

C 0055

C THE AGREEMENT BETWEEN THE PROB VALUE IN THE EXAMPLES AND THE 0056

C COMPUTED PROB VALUE IS TO 3 OR FOUR PLACES SINCE 4 PLACE TABLES 0057

C WERE USED TO MAKE UP THE EXAMPLES. 0058

C 0059

C 1. INPUTS - NDF=1 CHISQ=-1. 0060

C OUTPUTS - ERROR IANS=1 0061

C 0062

C 2. INPUTS - NDF=O CHISQ=1. 0063

C OUTPUTS - ERROR IANS=2 0064

C 0065

C 3. INPUTS - NDF=l CHISQ=I. 0066

C OUTPUTS - PROB=.3179 IANS=O 0067

C 0068

C 4. INPUTS - NDF=8 CHISQ=2.7330 0069

C OUTPUTS - PROB=.95 IANS=O 0070

C 0071

C 5. INPUTS - NDF=21 CHISQ=38.932 0072

C OUTPUTS - PROB=.01 IANS=O 0073
r 0074
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* KIINT1 * * KIINTI *
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C 6. INPUTS - NDF=30 CHISQ=43.773 0075
C CUTPUTS - PROR=.05 IANS=O 0076
C 0077
C 7. INPUTS - NOF=31 CHISQ=17. 0078
C CUTPUTS - PROB8=.98 IANS=O 0079
C 0080
C 8. INPUTS - NDF=3 CHISQ=2.366 0081
C CUTPUTS - PRCB=.50 IANS=O 0082
C 0083
C 0084
C INITIALIZE AND CHECK IF NORMAL CURVE APPROXIMATION IS TO BE USED. 0085

IANS=l 0086
IF(CHISQ)9999,O 910 0087

1C IANS=2 0088
IF(NDF) 9999,9999,12 0089

12 IANS=C 0090
15 CHI=SQRTF(CHISC) 0091

IF (NDF-30) 20,20,70 0092
C PROB IS COMPUTED IN THE FORM PROB = PI+P2*P3. CHECK NDF FOR EVEN, ODD. 0093

20 P2=(2.71828183)**(-CHISQ/2.0) 0094
NDFH=NOF/2 0095
IF (NDF-2*NDFH) 25,25,30 0096

C EVEN. SET P1=3, AND P3=1.0 IF NDF=2. 0097
25 Pl=3.C 0098

IF (NOF-2) 27,27,50 0099
27 P3=1.C 0100

GO TO 60 0101
C ODD. COMPUTE P1, MODIFY P2 AND SET P3=0.0 IF NDF=1. 0102

30 CALL NOINTI(CHI,PI) 0103
Pl=2.0*(1.0-Pl) 0104
P2=CHI*P2*.7978848C 0105
IF (NDF-1) 35,35,50 0106

35 P3=0.0 0107
GO TO 60 0108

C EVALUATE P3 AS A POLYNOMIAL FOR NDF GREATER THAN 2. 0109
50 NLCCPS=NDFH-1 0110

P3=1.C 0111
C IF NDF=3 (NLOPS=O), P3=1. 0112

IF(NLOOPS) 60,60,52 0113
52 DIV=NDF-2 0114

DO 55 I=I,NLOCPS 0115
P3=P3*CHISC/DIV+1.0 0116

55 DIV=DIV-2.0 0117
GO TO 60 0118

C COMBINE PIECES TO FORM PROB. 0119
60 PROR=Pl+P2*P3 0120

GO TO 9999 0121
C USE NORMAL APPRCXIMATION FOR NDF GREATER THAN 30. 0122

70 CHIMOD=CHI*1.414214-SQRTF(FLOATF(NDF)*2.0-1.0) 0123
CALL NOINTI(CHIMOD,PI) 0124
PROB=1.0-P1 0125
GO TO 9999 0126

9999 RETURN 0127
END 0128
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* LINTRI *

* LINTR1 (SUHRCUTINE) 2/18/63 LAST CARD IN DECK IS NO.
* LABEL
CLINTR1

SUBROUTINE LINTRI(XXLODELXTABLE,NTABLE,YOFX)
C
C ---- ABSTRACT----

C TITLE - LINTR1
C LINEAR INTERPOLATION IN A TABLE

LINTR1 INTERPOLATES LINEARLY IN A TABLE TO FIND A VALUE
WHICH LIES BETWEEN THE TABULATED VALUES. XLO IS THE
ARGUMENT CCRRESPONDING TO THE LOWEST TABULATED VALUE. DELX
IS THE ARGUMENT DIFFERENCE BETWEEN TABULAR VALUES.
THE TABLE IS LOCATED IN TABLE(I). X IS THE ARGUMENT AND
YOFX IS THE INTERPOLATED VALUE. HENCE

XTRA
YOFX = TABLE(L) + (TABLE(L+1) - TABLE(L))

DELX

WHERE L IS SUCH THAT
XLO+(L-1)*DELX LSTHN= X LSTHN XLO+L*DELX

AND XTRA = X-XLO-(L-1)*DELX

DELX IS CONSTRAINED TO BE POSITIVE
X MUST LIE IN THE ARGUMENT RANGE OF THE TABLE.

LANGUAGE
EQUIPMENT
STORAGE
SPEED
AUTHOR

- FORTRAN II SUBROUTINE
- 709 OR 709C (MAIN FRAME ONLY)
- 96 REGISTERS

- S. P. SIMPSON

---- USAGE----

TRANSFER VECTOR CCNTAINS ROUTINES - NONE
AND FORTRAN SYSTEM ROUTINES - NONE

FORTRAN USAGE
CALL LINTRI(X,XLODELXTABLENTABLE,YOFX)

INPUTS

X IS ARGUMENT FOR WHICH INTERPOLATION IS DESIRED.
XLC LSTHN OR = X LSTHN OR = XLO+(NTABLE-1)*DELX.

XLC IS THE ARGUMENT CORRESPONDING TO THE FIRST TABULAR
ENTRY.

DELX IS THE ARGUMENT DIFFERENCE BETWEEN TWO SUCCESSIVE
TABULAR ENTRIES.
MUST EXCEED C.0, BUT THIS CONSTRAINT IS NOT CHECKED.

TABLE(I) I=1...NTABLE IS A GIVEN ARRAY IN WHICH TABLE(J)
CONTAINS Y(XLO+DELX*(J-1)).

NTABLE IS THE LENGTH OF THE TABLE.

C OUTPUTS
C
C YOFX
C
C EXAMPLES
C
C 1. INPUTS -
C
C CUTPUTS -

WILL CONTAIN THE LINEARLY INTERPOLATED VALUE

X=7.5 XLO=5. DELX=2.5 TABLE(1...9)=1.,4.,9.,
16.,25.,36.,49.,64.,81. NTABLE=9
YOFX=4.

C 2. INPUTS - SAME AS EXAMPLE 1. EXCEPT X=21.3
C OUTPUTS - YOFX=56.8
C
C 3. INPUTS - SAME AS EXAMPLE 1. EXCEPT X=25.
C OUTPUTS - YOFX=81.

0092
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0312
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
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* LINTR1
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C 4. INPUTS - SAVE AS EXAMPLE 1. EXCEPT X=13.
C OUTPUTS - YOFX=17.8
C

* LINTKI *

(PAGE 2)

DIMENSION TABLE(2)
C SET UP.

XVXLO=X-XLO
20 ILO=XMXLO/DELX+1.0

C INTERPOLATE ONLY IF ILO DOESNT CORRESPOND TO LAST TABULAR ENTRY.
IF (ILO-NTABLE) 30,40,30

30 FLILO=ILO-1
DIFX=XMXLO-FLILO*DELX
IHI=ILO+l
YOFX=TABLE(ILO)+(TABLE(IHI)-TABLE(ILO))*DIFX/DELX
GC TO 9999

40 YOFX=TABLE(NTAELE)
GC TO 9999

9999 RETURN
END

0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
C092



* MAXSN (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0169
* FAP 0001
*MAXSN 0002

COUNT 150 0003
LBL MAXSN 0004
ENTRY MAXSN (LXgXXMAX1I) 0005
ENTRY MINSN (LX,XXMIN1,I) 0006
ENTRY MAXAB (LX,X,XMAX2,I) 0007
ENTRY MINAB (LX,X,XMIN29I) 0008

* 0009
* ---- ABSTRACT---- 0010
* 0011
* TITLE - MAXSN , WITH SECONDARY ENTRY POINTS MINSN, MAXAB, AND MINAB 0012
* FIND SIGNED OR UNSIGNED EXTREMAL VALUES OF A VECTOR. 0013
* 0014
* MAXSN FINDS THE MAXIMUM SIGNED NUMBER, AND ITS INDEX, IN 0015
* A VECTOR OF NUMBERS (EITHER FIXED OR FLOATING POINT). 0016
* 0017
* MINSN FINDS THE MINIMUM SIGNED NUMBER. 0018
* 0019

* MAXAB FINDS THE MAXIMUM OF THE ABSOLUTE VALUES. 0020
* 0021
* MINAB FINDS THE MINIMUM OF THE ABSOLUTE VALUES. 0022
* 0023

* LANGUAGE - FAP SUBROUTINE (FORTRAN II COMPATIBLE) 0024
* EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY) 0025
* STORAGE - 54 REGISTERS 0026
* SPEED - APPROX. 14N MACHINE CYCLES, N = LENGTH OF VECTOR 0027
* AUTHOR - J.F. CLAERBOUT 0028
* 0029
* ---- USAGE---- 0030
* 0031
* TRANSFER VECTOR CONTAINS ROUTINES - NONE 0032
* AND FORTRAN SYSTEM ROUTINES - NONE 0033
* 0034
* FORTRAN USAGE FOR MAXSN 0035
* CALL MAXSN (LXX,XMAX1,I) 0036
* 0037

* INPUTS 0038
. 0039
* X(I) I=1...LX IS A VECTOR OF NUMBERS. 0040
* MAY BE FIXED OR FLOATING POINT. 0041
* 0042

* LX IS FORTRAN II INTEGER. 0043
* MUST BE GRTHN=1. 0044
* 0045
* OUTPUTS 0046
t* 0047
* XMAX1 IS THE MAXIMUM SIGNED VALUE IN THE X VECTOR. 0048
* 0049

* I IS THE INDEX OF THE MAXIMUM SIGNED VALUE. Q050
* I.E. X(I) = XMAX1 0051

* 0052
* FORTRAN USAGE FOR MINSN 0053
* CALL MINSN (LXX,XMIN1,I) 0054
* 0055

* INPUTS SAME AS FOR MAXSN 0056
* 0057

* OUTPUTS 0058
. 0059

S XMIN1 IS THE MINIMUM SIGNED VALUE IN THE X VECTOR 0060



* I IS THE INDEX OF THE MINIMUM SIGNED VALUE.

* FORTRAN USAGE FOR MAXAB
* CALL MAXAB (LX,X,XMAX2,I)

* INPUTS SAME AS FOR MAXSN

* OUTPUTS

S XMAX2 IS THE MAXIMUM ABSOLUTE VALUE IN THE X VECTOR.
* NOTE THAT XMAX2 MAY BE NEGATIVE.

* I IS THE INDEX OF THE MAXIMUM ABSOLUTE VALUE,

* FORTRAN USAGE FOR MINAB
* CALL MINAB (LXXXMIN2tI)

* INPUTS SAME AS FOR MAXSN

* OUTPUTS

* XMIN2 IS THE MINIMUM ABSOLUTE VALUE IN THE X VECTOR.
NOTE THAT XMIN2 MAY BE NEGATIVE.

S I IS THE INDEX OF THE MINIMUM ABSOLUTE VALUE.

* EXAMPLES

1. INPUTS - X(1.o10) = -11.,-8.,-5.,-2.,1.,4=, 71,100,13.,169
LX = 10

USAGE - CALL MAXSN

CALL MINSN
CALL MAXAB
CALL MINAB

OUTPUTS - XMAX1 = 16,

XMIN1 =-11.
XMAX2 = 16,

XMIN2 = 1.

2. INPUTS

USAGE
OUTPUTS

3. INPUTS
USAGE
OUTPUTS

HTR
BCI

MAXSN CLA
STO
TRA

MINSN CLA

(LX,X,XMAX1,II)
(LX,XXMIN1.12)
(LX,X,XMAX2,13)
(LX,XXMIN2,14)
Il = 10
12 = 1
13 = 10
14 = 5

- X(1..10) = -16.,-13.*,-10.,-7.,-4.,-1.2.*5.,8.,11i
LX = 10

- SAME AS EXAMPLE 1.
- XMAX1 = 11. Il = 10

XMIN1 =-16. 12 = 1
XMAX2 =-16. 13 = 1
XMIN2 = -1. 14 = 6

- X(lo..10) = -16t-139-10,-79-4,-1,2,5,8,11 LX = 10
- SAME AS EXAMPLE 1.

XMAX1 = 11 11 = 10
XMIN1 =-16 12 = 1
XMAX2 =-16 13 = 1
XMIN2 = -1 14 = 6

0
1,MAXSN
MX
USE
*+3
MN

0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121



ARRAY LENGTH TO IR1

STO
CLA
STO
CLA
STO
TRA

MAXAB CLA
STO
TRA

MINAB CLA
STO
CLA
STO
CLA
STO

START SXA
SXD
CLA*
PDX
CLA
ADD
STA
STA
CLA*
STO*
CLA
ALS
STO

LOOP CLA*
HTR

A HTR
USE HTR

CLA
STO*
SXD

B TIX
CLA
STO*

SV AXT
TRA

NOP NOP
SUB SUB
SSP SSP
SBM SBM
MX TPL
MN TMI
INDEX BSS

END

EITHER NOP OR SSP
EITHER SUB OR SBM
EITHERTPL OR TMI

USE
NOP
A-1
SUB
A
START
MX
USE

USE
SSP
A-i
SBM
A
SV, 1
MAXSN-2,4
1,4
,1
2,4

A+2

GET TRIAL
EXTREMUM
SET CORRECT INDEX FOR TRIAL EXTREMUN

0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169

2,4
3,4
=1
18
INDEX
3,4
0
**,1
B
**91

3,4
INDEX,1
LOOP, 1 1
INDEX
4,4
**,1
5,4

0,1

0,1
B
B
1

25
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* MPSEQ1 * * MPSEQ1

* MPSEQ1 (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0196
* FAP 0001
*MPSEC1 0002

COUNT 2C0 0003
LBL MPSEQ1 0004
ENTRY MPSEQ1 (XLXBtLBtIXIXLOIANS) 0005

* 0006
* ---- ABSTRACT---- 0007
* 0008
* TITLE -,MPSEQ1 0009
* MAPS A SEQUENCE OF NUMBERS INTO AN INTEGER SERIES 0010
* 0011
* MPSEQ1 MAPS A SEQUENCE X(I), I=1,...,LX INTO AN INTEGER 0012
* SEQUENCE IX(I), I=1,...,LX. THE MAPPING IS CONTROLLED BY 0013
* A GIVEN VECTOR OF RANGE LIMITS B(I), I=1,...LB, WHERE 0014
* B(I) IS MONOTONELY INCREASING FROM B(1) TO B(LB), THUS 0015
* SPECIFYING LB-i SEPARATE RANGES. EACH RANGE IS CONSIDERED 0016
* CLOSED ON THE LOWER END, OPEN ON THE HIGH END AND THE 0017
* RANGES ARE INDEXED FROM IXLO+1 TO IXLO+LB-1, WHERE IXLO 0018
* IS A PARAMETER. IX(I) IS THEN SET EQUAL TO THE INDEX OF 0019
* THE RANGE TO WHICH X(I) BELONGS, WITH THE FOLLOWING 0020
*TREATMENT CF EXTREMAL X VALUES 0021
* IF X(I) IS LSTHN B( 1), IX(I) = IXLO+1 0022
* IF X(I) IS GRTHN= B(LB), IX(I) = IXLO+LB-1 0023
* NOTE- THE LOGIC USED IS ALMOST IDENTICAL TO THAT OF FRQCT2 0024
* 0025
* LANGUAGE - FAP SUBROUTINE WITH FORTRAN II CALLING SEQUENCE 0026
* EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY) 0027
* STORAGE - 110 REGISTERS 0028
* SPEED - 0029
* AUTHOR - J. N. GALBRAITH 0030
* 0031
* ---- USAGE---- 0032
* 0033
* TRANSFER VECTOR CONTAINS ROUTINES - NONE 0034
* AND FORTRAN SYSTEM ROUTINES - NONE 0035
* 0036
* FORTRAN USAGE 0037
* CALL MPSEQI(XLXLBIX*IXLOIANS) 0038
* 0039
* INPUTS 0040
* 0041
* X(I) I=1...LX IS THE INPUT SERIES TO BE MAPPED. 0042
* MAY BE FLOATING, FORTRAN INTEGER, OR MACHINE LANGUAGE 0043
* INTEGER, BUT MUST BE THE SAME MODE AS B(J). 0044
* 0045
* LX IS LENGTH OF X VECTOR. 0046
* MUST BE GRTHN=1. 0047

0048
* 8(I) I=1...LB GIVES INPUT RANGES OF MAPPING INTERVALS. 0049
* MUST BE SAME MODE AS X(I). 0050
* B(I) MUST INCREASE MONOTONELY, IE B(I+1) GRTHN B(I) 0051
* 0052
* LB IS LENGTH OF RANGE VECTOR. 0053
* MUST BE GRTHN=I. 0054
* 0055
* IXLO IS LOWER LIMIT OF OUTPUT MAPPING. IXLO+1 = INDEX OF 0056
* LOWEST RANGE. 0057
* 0058
* OUTPUTS 0059
* 0060
* IX(I) I=1...LX IS THE INTEGER MAPPING OF X(I). 0061
* 0062
* IANS =0 NORMAL 0063
* =1 ILLEGAL LX 0064
* =2 ILLEGAL LB 0065
* =3 WEIRD ERROR 0066

* 0067
* EXAMPLES 0068
* 0069

* 1. INPUTS - LX=O X(1...16)=-5.,-4.,-3.2,-3.1-2.,-2.10.,-1.1, 0070
* -.5,5.,4.,3.5,3.,2.9,1.1,1. LB=16 B(1...9)=-4.,-3., 0071
* -2.,-1.,0.,1.,2.,3.,4.v IXLO=0 0072
* CUTPUTS - ERROR IANS=1 0073
• 0074
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* MPSEQ1 *
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PROGRAM LISTINGS
* MPSEQ1 *

(PAGE 21

* 2. INPUTS - X AND B SAME AS EXAMPLE 1 LX=16 LB=O IXLO=0
* OUTPUTS - ERROR IANS=2

* 3. INPUTS - X AND B SAME AS EXAMPLE 1 LX=16 LB=9 IXLO=O

* OUTPUTS - IX(ll,...,16)=0,0,0O,,2,1,4,2,3,7,7,7,7,6,5,5 IANS=O

* 4. INPUTS - X, 8, LX, AND LB SAME AS EXAMPLE 3 IXLO=12
* OUTPUTS - IX(1,...,16)=12,,12,12,12,14,13,16,14,15t19,19,19,1918,
* 17,17 IANS=O

PZE
BCI

MPSEQ1 SXA
SXA
SXA
SXD
STZ*
CLA*
TZE
TMI
STD
CLA*
TZE
TMI
ARS
STO
ARS
STO
CLA
ADD
STA
STA
CLA
ADD
STA
STA
SUB
STA
CLA*
SUB
STO
CLA
ADD
STA
AXT
AXT

LOOP CLA
STO
CLA
STO
CLA
STO
AXT

TESTLO CLA
BTEST1 CAS

TRA
TRA
TRA

TESTHI CAS
TRA
TRA

SEARCH LXA
XADD CLA
BADD CAS

TRA
TRA

LESS PXA
SUB
CAS
TRA
TRA
TRA
ARS
ADD
LDQ

0
1,MPSEQI
RETURN,1
RETURN+1,2
RETURN+2,4
MPSEQI-2,4
7,4
2,4
ERR1
ERR1
END
4,4
ERR2
ERR2
18
LB
1I
LBHALF
1,4
KlPLI
XADD
TESTLe
3,4
KIMLI
BTEST1
BACD
LB
TESTHI
6,4
K2FX
XLOW
5,4
KIPLI
IXSTO
1,1
1,4
KILLI
LBLO
LB
LBHI
LBHALF
LBCOM
1,2
**,
*094

TESTHI
NEXIND
NEXINO

HIEST
HIEST
LBCOMn2

**,2
GRATER
NEXIND
0,2
LBLO
K1MLI
*+3
EQUAL
ERROR
1
LBLO
LBCOM

IANS=O
GET LX

GET LB

LB IN ADDRESS

LB/2 (IN ADDRESS)

ADDRESS OF X
A(X+I)

ADDRESS OF B
A(B+1)

GET IXLO
IXLO-2

ADDRESS OF IX
A(IX+1)

INITIAL LBLO=1

INITIAL LBHI=LB

INITIAL LBCOM=LB/2

GET X. (**=A(X+1))
8(1) SEE IF IN LOWEST RANGE

*e-A(B(LB)). SEE IF IN HIGHEST RANGE

GET X(IR1)
COMPARE WITH B(LBCOM)
X GREATER, NEW LBLO (=LBCOM)
GOT IT, SET IX(IR1+I)
X LESS, NEW LBHI (=LBCOM)
LBCOM-LBLO=DIF

DIF GREATER THAN ONE
DIF=1, GOT IT, SET IX(IR1+1)

IMPOSSIBLE
DIF/2
NEW LBCOM

0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
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PROGRAM LISTINGS

STQ
STO
TRA

GRATER PXA
SUB
SSP
CAS
TRA
TRA
TRA
ARS
ADD
LDQ
STO
STQ
TRA

NEXIND TXI
EQUAL PXD

ADD
IXSTO STO

TXI
END TXL

RETURN AXT
AXT
AXT
TRA

HIEST LXA
TRA

ERRI CLA
STO*
TRA

ERR2 CLA
TRA

ERROR CLA
TRA

* CONSTANTS
KIFX PZE
K2FX PZE
K3FX PZE
KLMLI PZE
LB PZE

LBHALF PZE
LBLO PZE
LBCOM PZE
LBHI PZE
XLOW PZE

END

LBHI
LBCOM
SEARCH
0,2
LBHI

KLMLI
*+3
NEXIND
ERROR
1
LBCOM
LBCOCM
LBCOM
LBLO
SEARCH
*+1,2,1
,2
XLOW
**,1

*+1,1,1

LOOP,1,**
**,1
**,2
**,4
8,4
LB,2
EQUAL
K1FX
7,4
8,4
K2FX
ERR 1+1
K3FX
ERR1+1

AND TEMPCRARIES
0,0,1
0,0,2
0,0,3
1,0,c
0
0

Ccc

* MPSEQ1

(PAGE 3)

* MPSEQ1
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0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196

LBCOM-LBHI=-DIF
DIF

DIF=1, GOT IT, SET IX(IRI+1)
IMPOSSIBLE

**= ADDRESS OF IX+1

**=LX

STORE IANS
RETURN



PROGRAM LISTINGS
* MSCON1 *
****i*********t*********

* MSCON1 *
************************

* MSCONI (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO.
* LABEL
CMSCON1

SUBROUTINE MSCCN1 (NORDER,P,PHIDEPEND,IANS)
C
C ---- ABSTRACT----
C
C TITLE - MSCONI
C MEAN SQUARE CONTINGENCY AND DEPENDENCY FROM PROBABILITY DENSITY.
C
C MSCCNI COMPUTES THE MEAN SQUARE CONTINGENCY AND A
C DEPENDENCY MEASURE AS DEFINED ON PAGE 282 OF CRAMER,
C MATHEMATICAL METHODS OF STATISTICS, PRINCTON UNIV. PRESS,
C 1951. THE COMPUTATION REQUIRES THE SECOND PROBABILITY
C DENSITY WHICH CAN BE COMPUTED WITH SUBROUTINE PROB2 (SEE
C WRITE-UP OF PROB2). IF PHI IS THE MEAN SQUARE CONTINGENCY,
C DEPEND IS THE DEPENDENCY MEASURE, AND NORDER IS THE ORDER
C OF THE SECCND PROBABILITY MATRIX, P(I,J), THEN

LANGUAGE
EQUIPMENT
STORAGE
SPEED
AUTHOR

DEPEND = PHI/(NORDER-1)

- FORTRAN II SUBROUTINE
- 709, 7090 (MAIN FRAME ONLY)
- 238 REGISTERS

- J.N. GALBRAITH

---- USAGE---

C TRANSFER VECTOR CONTAINS ROUTINES - NONE
C AND FORTRAN SYSTEM ROUTINES - NONE
C
C FORTRAN USAGE
C CALL MSCON1(NORDER,P,PHI,DEPEND,IANS)
C
C INPUTS
C
C NORDER INTEGER. THE ORDER OF THE P(IJ) PROBABILITY DENSITY
C MATRIX. GRTHN ONE, LSTHN OR EQUAL 25.
C
C P(I,J) I=1,..,NORDER, J=1,..,NORDER. PROBABILITY DENSITY MATRIX
C NORMALIZED SUCH THAT THE SUM OVER I AND J IS = TO 1.
C P(I,J) HAS DIMENSION (25,25), P(I,J) MUST NOT HAVE AN
C ENTIRE ROW OR COLUMN SUM EQUAL TO ZERO, OR NEGATIVE.
C
C OUTPUTS
C
C PHI THE MEAN SQUARE CONTINGENCY.
C
C DEPEND THE DEPENDENCY MEASURE.

C IANS
C
C
C
C
C EXAMPLES
C

ERROR INDICATOR
=0 NORMAL
=-1 ILLEGAL NORDER. LSTHN 1 OR GRTHN 25
=-2 ILLEGAL P MATRIX. ROW OR COLUMN SUM ZERO OR NEGATIVE.

INPUTS - P(1,i=.2 ,P(I I),I=2,5 =.1, P(lI),I=2,5 =.1
ALL OTHER P(I,J)=0.
NORDER=O

OUTPUTS - PHI=O. DEPEND=0O. IANS=-1

INPUTS

OUTPUTS

- SAME AS EXAMPLE 1 EXCEPT
NORDER=26

- PHI=O. DEPEND=0. IANS=-1

3. INPUTS - SAME AS EXAMPLE 1 EXCEPT
NORDER=5

OUTPUTS - PHI=1.6666666 DEPEND=.41666666 IANS=O

4. INPUTS - SAME AS EXAMPLE 1 EXCEPT
P(1,5)=0., P(5S1)=.l NORDER=5

OUTPUTS - PHI=1.7333333 DEPEND=.43333333 IANS=O

0107
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074

C 1.
C
C
C
C
C 2.
C
C
C
C
C
C
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C 5. INPUTS - SAME AS EXAMPLE 4 EXCEPT 0075
C P(5,5)=0. 0076
C CUTPUTS - IAKS=-2 0077
C 0078

DIMENSION P(25,25),PSROW(25),PSCOL(25) 0079
C CHECK NORDER 0080

IANS=-1 0081
IF(NORDER-1) 9999,9999,5 0082

5 IF(NORDER-26) 6,9999,9999 0083
C FIND ROW AND CCLUMN SUMS 0084
6 DC 10 J=1,NCRDER 0085

PSROW(J)=O. 0086
PSCOL(J)=O. 0087
00 10 I=1,NCRDER 0088
PSROW(J)=PSROW(J)+P(JI) 0089

1t PSCOL(J)=PSCCL(J)+P(I,J) 0090
C CHECK ROW AND COLUMN SUMS 0091

IANS=-2 0092
DO 15 I=1,NCRDER 0093
IF(PSROW(I)) 9999,9999,12 0094

12 IF(PSCOL(I)) 9999,9999,15 0095
15 CONTINUE 0096

C COMPUTE MEAN SCUARE CONTINGENCY 0097
PHI=O. 0098
DC 20 I=I,NCRDER 0099
DO 2C J=1,NCRDER 0100

20 PHI=PHI+P(IJ)*P(I,J)/(PSROW(I)*PSCOL(J)) 0101
PHI=PHI-1. 0102

C COMPUTE DEPENDENCY MEASURE 0103
DEPEND=PHI/(FLOATF(NORDER-1)) 0104
IANS=O 0105

9999 RETURN 0106
END 0107
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**a***********,********* PROGRAM LISTINGS ************************
* NOINT1 * * NOINT1 a

* NGINT1 (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0374
a FAP 0001
*NOINTI 0002

COUNT 370 0003
LFL NOINTI 0004
ENTRY NOINTI (XPROB) 0005
ENTRY NOINT2 (XMEANXSDNDIVXDIVIANS) 0C06

* 0007
* ---- ABSTRACT---- 0008
a 0009
* TITLE - NOINTI WITH SECONDARY ENTRY NOINT2 0010
a NORMAL DISTRIBUTION AND DIVISION INTO EQUALLY LIKELY SECTIONS 0011
* 0012
* NOINTI FINDS THE INTEGRAL OF THE ZERO MEAN, UNIT VARIANCE, 0013
* NORMAL PROBABILITY DENSITY FUNCTION FROM MINUS INFINITY 0014
* TO X. THIS IS DONE BY TABLE LOOK UP IN A TABLE OF 201 0015
SVALUES OF THE NORMAL DISTRIBUTION WHICH CORRESPOND 0016

a TO VALUES OF X FROM 0.0 TO 4.0 IN INCREMENTS OF .02 0017
* LINEAR INTERPOLATION IS USED FOR VALUES OF X LYING 0018
SBETWEEN TABULATED VALUES. THE PROGRAM RETURNS ZERO FOR X 0019
* VALUES LESS THAN -4.0, AND RETURNS 1.0 FOR X VALUES 0020
a GREATER THAN 4.0. 0021
a 0022
* NOINT2 DIVIDES UP THE ENTIRE X AXIS INTO AN ARBITRARY 0023
a NUMBER, NDIV, OF RANGES WHICH ARE EQUALLY LIKELY WITH 0024
* RESPECT TO A GIVEN NORMAL DISTRIBUTION SPECIFIED BY 0025
* ITS MEAN AND STANDARD DEVIATION. 0026
a 0027
* THE INTEGRAL OF THE NORMAL DISTRIBUTION GIVES THE 0028
a PRCBABILITY THAT X LIES IN A CERTAIN RANGE. NOINT2 0029
* REVERSES THE PROCESS BY FINDING THE X RANGES WITH 0030
a A GIVEN PROBABILITY. 1/NDIV 

= 
PROBABILITY FOR EACH 0031

* DIVISICN. FOR K-TH DIVISION, XAXIS LIMITS CORRESPOND 0032
a TO THE PROBABILITIES (K-1)/NDIV, K/NDIV. STORED VALUES 0033
* CF THE ANTISYMMETRIC INTEGRAL OF THE UNIT NORMAL 0034
* DISTRIBUTION FOR X VALUES ZERO TO 4 IN INCREMENTS OF .02 0035
• ARE SEARCHED FOR PROBABILITY VALUES GIVEN BY K/NDIV. 0036
* INTERPCLATION WHERE NECESSARY IS LINEAR. I.E. FIND NEAREST 0037
• VALUE CF X TO CORRESPONDING TO P WHEN P DOES NOT APPEAR 0038
a IN TABLE EXACTLY. IF R-TH VALUE IN TABLE IS LESS THAN Pt 0039
a AND (R+1) TH VALUE IS GREATER, THEN X VALUE = ((P-RTH 0040
a VALUE)/((R+1)TH-RTH VALUE))*.02+R*.02. THIS VALUE IS 0041
* THEN SCALED FOR THE PARTICULAR NORMAL DISTRIBUTION SUCH 0042
* THAT THE OUTPUT X = X*XSD+MEAN. SINCE ONLY HALF OF THE 0043
a NORMAL INTEGRAL IS STORED, THE X VALUES CORRESPONDING TO 0044
a P1 GREATER THAN .5 ARE COMPUTED FIRST AND THE VALUES 0045
* FOR P2 LESS THAN .5 ARE SYMMETRIC AND EQUAL TO 1-P1. 0046

a 0047
a NOTE - NOINTI AND NOINT 2 ARE INDEPENDENT EXCEPT FOR 0048
a THEIR MUTUAL NEED OF THE DISTRIBUTION FUNCTION TABLE. 0049
* 0050
* LANGUAGE - FAP SUBROUTINE (FORTRAN II COMPATIBLE) 0051
* EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY) 0052
* STORAGE - 369 REGISTERS 0053
* SPEED - 0054
* AUTHOR - S.M. SIMPSON AND J.N. GALBRAITH 0055

0056
* ---- USAGE---- 0057

0058
* TRANSFER VECTOR CONTAINS ROUTINES - LINTRI 0059
a AND FORTRAN SYSTEM ROUTINES - NONE 0060
a 0061
* FORTRAN USAGE OF NOINTI 0062
* CALL NCINT1(XtPROB) 0063
* 0064
* INPUTS TO NOINT1 0065
a 0066
* X = UPPER LIMIT OF THE INTEGRAL (FLT PT.). 0067
a 0068
a OUTPUTS FROM NGINT1 0069

* 0070
* 1 X 2 0071
* PROB =-------- INTEGRAL (EXP(-X /2)DX). 0072
a SQRT(2PI) -INFINITY 0073
a 0074
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* NOINT1 4 * NOINT1 *
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* IS FLOATING POINT 0075
0076

* FORTRAN USAGE OF NCINT2 0077

* CALL NCINT2(XPEANtXSD,NDIVtXDIV,IANS) 0078
* 0079

* INPUTS TO NOINT2 0080
* 0081

* XMEAN = MEAN OF X SERIES 0082
0083

XSD = STANDARD DEVIATION OF X SERIES. 0084

MUST BE GRTHN 0. 0085
0086

* NDIV = NUVBER OF EQUALLY LIKELY DIVISIONS INTO WHICH XSERIES 0087

* IS TO BE PLACED. 0088

* MUST BE GRTHN 1 0089
* 0090

* OUTPUTS FROM NOINT2 0091
0092

4 XDIV(I) I=1...NDIV-1 ARE THE X VALUES FOR EQUALLY LIKELY 0093

* DIVISIONS. FIRST DIVISION IS FROM -INFINITY TO XDIV(1)t 0094

* THE SECOND IS FROM XDIV(1) TO XDIV(2) ETC. THE LAST 0095

4 DIVISION IS FROM XDIV(NDIV-1) TO +INFINITY. 0096
* 0097

S IANS =0 NCRMAL 0098

4 =1 ILLEGAL XSD 0099

S=2 ILLEGAL NDIV 0100
* 0101

4 EXAMPLES OF NOINT1 0102
4 0103

* 1. INPUTS - X=-5. 0104

CUTPUTS - PROB=0. 0105
* 0106

* 2. INPUTS - X=-4. 0107

* OUTPUTS - PRCB=.32 E-04 0108
* 0109

* 3. INPUTS - X=.013 0110

* OUTPUTS - PRCB=.5052 0111

* 0112

* 4. INPUTS - X=4. 0113

* OUTPUTS - PRCB=.999968 0114

* 0115

* 5. INPUTS - X=4.1 0116

* OUTPUTS - PRCB=1. 0117
0118

* EXAMPLES OF NOINT2 0119
0120

* 1. INPUTS - XMEAN=O. XSD=l. NDIV=3 0121

CUTPUTS - XDIV(1)=-.430722 XDIV(2)=.430722 IANS=O 0122
, 0123

* 2. INPUTS - XMEAN=0. XSD=2. NDIV=3 0124

* OUTPUTS - XDIV(1)=-.861444 XDIV(2)=.861444 IANS=O 0125
4 0126

* 3. INPUTS - XMEAN=1. XSD=2. NDIV=3 0127

* OUTPUTS - XDIV(1)=.1385185 XDIV(2)=1.861444 IANS=O 0128
0129

* 4. INPUTS - XMEAN=O. XSD=l. NDIV=2 0130

* OUTPUTS - XDIV(1)=O. IANS=O 0131
• 0132

* 5. INPUTS - XMEAN=3.5 XSD=1. NDIV=2 0133

* OUTPUTS - XDIV(1)=3.5 IANS=O 0134

* 0135

* 6. INPUTS - XMEAN=3.5 XSD=I. NDIV=1 0136

* OUTPUTS - ERROR IANS=2 0137
4 0138

* 7. INPUTS - XMEAN=3.5 XSD=0. NDIV=2 0139

* OUTPUTS - ERROR IANS=1 0140
0141

* 8. INPUTS - XMEAN=0O. XSD=1. NDIV=4 0142

4 OUTPUTS - XDIV(1...3)=-.674602,0.,+.674602 IANS=O 0143
0144

• 9. INPUTS - XMEAN=0. XSD=1. NDIV=5 0145

* OUTPUTS - XDIV(1...4)=-.8417856,-.2533341.25333
4
,.

84
1
7 8 5 6  

IANS=0O 0146
0147

*INITIALIZE. 0148

PZE 0 0149
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PROGRAM LISTINGS

BCI I,NOINTI
NOINTI SXA LV,4

SXD NOINTI-2,4
CLA 1,4
STA GETX
CLA 2,4
STA STORE

*GETSTORE X AND ITS SIZE. COMPARE SIZE WITH 4.0.
GETX CLA ** **=ADDRESS OF X

STO XX
SSP
STO SX
CAS K4FL
TRA BIGGER
TRA INTRP
TRA INTRP

*(OR ZERO FOR NEG X).
BIGGER CLA KIFL

STO TEMP
TRA CHECK

*INTERPOLATE IF SIZE LESS THAN OR = 4.0.
*NOTE LINTRI MUST BE USED BACKWARDS SINCE OUR
*TABLE IS FORWARDS.
INTRP CLA K4FL

FSB SX
STO SXMOD
TSX $LINTRI,4
TSX SXMOD SXMOD=4.0-SX
TSX KO XLO=0.0
TSX KDELX KDELX=0.02
TSX Y+200 TABLE IS FORTRAN VECT
TSX KD201 NTABLE=201
TSX TEMP ANSWER

*IF X WAS MINUS WE NEED 1.0 MINUS THE INTERPOLATE
*VALUE.
CHECK

* NOINTI
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0150
0151
0152
0153
0154
0155
0156
0157
0158
0159

OR

D

CLA XX
TPL STORE-1
CLA KIFL
FSB
TRA

TEMP
STORE

CLA TEMP
STORE STO ** **=ADDRESS OF PROB

LV AXT **,4 **=XR4
TRA 3,4

*TEMPORARIES
XX PZE ** **=X
SX PZE ** **=MAGNITUDE OF X

SXMOD PZE ** **=4.0-SX
TEMP PZE ** **=OUTPUT FROM LINTI

*CONSTANTS
KO PZE 0

KD201 PZE 0,0,201
KIFL DEC 1.0
K4FL DEC 4.0

KDELX DEC 0.02
* ENTRY NOINT2 (XMEANXSDNDIV,XDIV,IANS)
* SAVE IRS AND INITIALIZE IANS

PZE 0
BCI 1,NOINT2

NOINT2 SXA RETURN,1
SXA RETURN+1,2
SXA RETURN+2,4
SXD NOINT2-2,4
STZ* 5,4 IANS=O

* CHECK XSD AND NDIV.
CLA* 2,4 GET XSD
TZE ERRI TRANSFER IF ILLEGAL
TMI ERRI TRANSFER IF ILLEGAL
CLA* 3,4 GET NDIV
SUB KlFX NDIV-1
TZE ERR2 TRANSFER IF ILLEGAL
TMI ERR2 TRANSFER IF ILLEGAL
PARAMETERS OK. SET UP MEAN LOOP AND GET X
STD END2 SET UP MEAN LOOP
CLA 4,4 ADDRESS OF XDIV

R1

SD AND XMEAN ADDRESSES.

0160
0161
0162
0163
016.4
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
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ADD
STA
STA
CLA
STA
LDQ*
FMP
STO
CLA
CLA*
LRS
ORA
FAD
STO
CLA
FDP
STQ
CLA*
LGR
NDIV/2
PAX
SXD
SSM
ADD
ADD
STA
STA
TQP
CLA
FOP
XCA
FAD
STC
AXT
AXT
AXT
TRA

EVEN AXT
CLA
STO
STL*
AXT
AXT
AXT

LOOP CLA
FAD
STO

SEARCH CAS
TXI
TRA
FSB
STO
CLA
FSB
STO
CLA
FDP
FMP
STO
TRA

SKINT STZ
TXI
SXA
PXA
PAC
PXA
ORA
FAD
XCA
FMP
FAD

STO1 STO
SS

ST02 STO
LXA

KMLI I
LOOP2
1EAN+1
1,4
MEAN
2,4
KDELX
SCALE
4,4
3,4
18
CONST
CONST
NDIVFL
KIFL
NDIVFL
DELP
3,4

PROGRAM LISTINGS

ADDRESS OF XMEAN

A(XDIV)
GET NDIV
FLOAT IT

NDIVFL=FLOATF(NDIV)

GET NDIV
19
WITH REMAINDER IN SIGN OF MO
,1
ENC,I

4,4
KMLI1
STOL
STC2
EVEN
DELP
K2FL

Y
P
C,1
1,2
0,4
SEARCH
0,2
Y
P
STC1
1,2
-1,4
0,1
P
DELP
P
Y,1
SEARCH,1,-1
SKINT
Y-1,l
XTEMP1
Y,1
Y-I1
XTEPP2
XTEMP1
XTEMP2
SCALE
XTEMP1
SKINT+1
XTEMP1
*+1,1,1
XTEMP2,1

,1
,1

CONST
CONST

SCALE
XTEMP1

*,4

XTEMP2 1l

* NOINT1 *

(PAGE 4)

0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246

(ADDRESS OF XDIV)-NDIV/2
ADDRESS OF XDIV(NDIV/2)

TRANSFER IF NDIV EVEN

P=(.5+DELP/2)

.5

P IS IN AC
TRY AGAIN

GOT IT. SKIP INTERPOLATION
INTERPOLATE. P-RTH VALUE

(R+1)TH
RTH

ZERO INTERPOLATION
COMPLEMENT OF INDEX QF RTH VALUE IN IRI

GET IR1
2 COMPLEMENT
INDEX FOR RTH VALUE =N
FLOAT

FLOATF(N)=FLN IN MQ
FLN*.02*XSD=X

**=A(XDIV)-NDIV/2+1

**=A(XDIV)-NDIV/2+1

0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
ozs3
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
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TXI *+1,4,-1 0300
TXI *+1,2,1 0301

END TXL LOCP,2,** **=NDIV/2 ROUNDED DOWN 0302
* FINISHED SEARCH AND SCALING FOR ALL BLOCKS. ADD MEAN 0303

AXT 1,2 0304
LOOP2 CLA **,2 **=A(XDIV)+1 0305
MEAN FAD * XMEAN 0306

STO **,2 0307
TXI *+1,2,1 0308

END2 TXL LOCP22,,** **=NDIV-1 0309
RETURN AXT **1 0310

AXT **,2 0311
AXT **,4 0312
TRA 6,4 0313

ERRI CLA KlFX 0314
STO* 5,4 0315
TRA 6,4 0316

ERR2 CLA K2FX 0317
STO* 5,4 0318
TRA 6,4 0319

CONST OCT 23300C000000 0320
KIFX PZE OtO0l 0321
K2FX PZE 0,0,2 0322
KPLIl PZE 1 0323
K2FL DEC 2.0 0324

XTEMP1 PZE 0 0325
XTEMP2 PZE 0 0326

P PIE 0 0327
DELP PZE 0 0328
NDIVFL PZE 0329
SCALE PZE 0 0330

*TABLE (YULE AND KENDALL, THEORY OF STATISTICS, 0331
*1950, PAGE 664.) 0332

Y DEC .5000,.5080,.5160 .5239,.5319 0333
DEC .5398,.5478,.5557,.5636,.5714 0334
DEC .5793,.5871,.5948,.6026,6103 0335
DEC .6179,.6255,.6331,.6406,.6480 0336
DEC .6554,.6628,.67009.6772,.6844 0337
DEC .6915Y.6985,.7054,.7123#,719C 0338

DEC .7257,.7324,.7389,.7454,.7517 0339
DEC .7580,.7642,.7704,.7764,.7823 0340
DEC .7881,.7939,.7995,.8051,.8106 0341
DEC .8159,.8212,.8264,.8315,.8365 0342
DEC .8413,.8461,.8508,.8554,.8599 0343
DEC .8643,.8686,.8729,.8770,.8810 0344
DEC .8849,.8888,.8925,.8962,.8997 0345

DEC .9032,.9066,.9099,.9131,.9162 0346
DEC .9192,.9222t.9251,.9279t.9306 0347
DEC .9332t.9357,.9382,.9406,.9429 0348

DEC .9452,.9474,.9495,.9515,.9535 0349

OEC .9554,.9573,.9591,.9608t.9625 0350
DEC .9641,.9656,.9671,.9686,.9699 0351

DEC .9713,.9726,.9738,.9750v.9761 0352
DEC .9772,.9783t.9793,.9803,.9812 0353

DEC .9821,.9830,.9838,.9846,.9854 0354

DEC .9861t.9868,.9875,.9881,.9887 0355
DEC .9893,.9898,.9904,.9909,.9913 0356

OEC .9918,.9922,.9927,.9931,.9934 0357
DEC .99379,.99413,.99446,.99477t.99506 0358
DEC .99534,.99560,.99585,.99609,.99632 0359
DEC .99653,,99674,.99693,.99711,.99728 0360
DEC .99744,.997609.99774,.99788,.99801 0361

DEC .99813,.99825,.99836,.99846,.99856 0362
DEC .99865,.99874,.99882,.99889,.99897 0363

DEC .99903,.99910,.99916,.99921,.99926 0364
DEC .99931,.99936,.99940.99944,.99948 0365

DEC .99952,.99955,.99958,.999619.99964 0366
DEC .99966,.99969,.99971,.99973,.99975 0367

DEC .99977,.99978,.99980,.99981,.99983 0368

DEC .99984,.99985,.99986,.99987,.99988 0369

DEC .99989,.99990,.999908,.9999159.999922 0370

DEC .999928,.999933,.999939,.999943,.999948 0371

DEC .999952,.999956,.999959,.999963,.999966 0372

DEC .999968 0373
END 0374
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~* ~~****************** PROGRAM LISTINGS .*****************o***
* POKCTI * * POKCT1

* PCKCTI (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0131
LABEL 0001

CPOKCTI 0002
SUBROUTINE POKCTI (IX,NHANDS,ICT,IANS) 0003

C 0004
C ---- ABSTRACT---- 0005
C 0006
C TITLE - POKCT1 0007
C EVALUATION OF INTEGER SEQUENCE IN GROUPS OF FIVE AS POKER HANDS. 0008
C 0009
C POKCT1 BREAKS UP A FORTRAN II INTEGER SEQUENCE INTO NON- 0010
C OVERLAPPING GROUPS OF FIVE DIGITS WHICH IT TREATS AS POKER 0011
C HANDS. THE HANDS ARE EVALUATED AND A TABULATION OF THE 0012
C NUMBER OF DIFFERENT TYPES OF HANDS IS PRODUCED. THE A 0013
C PRICRI PROBABILITIES OF DIFFERENT HAND TYPES ARE KNOWN FOR 0014
C THE CASE OF INDEPENDENT EQUALLY LIKELY DIGITS FROM ZERO TO 0015
C NINE. HENCE A POKER COUNT IS USEFUL IN DETERMINING THE 0016
C INDEPENDENCE OF A SEQUENCE. THE A PRIORI PROBABILITIES 0017
C ARE GIVEN BELOW AND ARE EXACT. THE DECIMALS TERMINATE AT 0018
C THE FOURTH PLACE. 0019
C BUST .2952 0020
C 1 PAIR .5040 0021
C 2 PAIR .1080 0022
C 3 CF A KIND .0720 0023
C FULL HOUSE .0090 0024
C STRAIGHT .0072 0025
C 4 CF A KIND .0045 0026
C 5 OF A KIND .0001 0027
C 0028
C LANGUAGE - FORTRAN II SUBROUTINE 0029
C EQUIPPENT - 709 OR 7090 (MAIN FRAME ONLY) 0030
C STORAGE - 219 REGISTERS 0031
C SPEED - 0032
C AUTHOR - S.M. SIMPSCN 0033
C 0034
C ---- USAGE---- 0035
C 0036
C TRANSFER VECTOR CCNTAINS ROUTINES - FRQCT1 0037
C AND FORTRAN SYSTEM ROUTINES - NONE 0038
C 0039
C FORTRAN USAGE 0040
C CALL POKCT1(IX,NHANDSICT,IANS) 0041
C 0042
C INPUTS 0043
C 0044
C IX(I) I=1;..5*NHANDS IS THE DIGIT SEQUENCE 0045
C ZERO LESS THAN OR = IX LESS THAN OR = 9 0046
C 0047
C NHANDS IS THE NUMBER OF HANDS TO BE FORMED FROM THE IX SEQUENCE. 0048
C NHANDS MUST BE GREATER THAN ZERO. 0049
C 0050
C CUTPUTS 0051
C 0052
C ICT(I) I=1...8 IS THE COUNT OF TYPES OF HANDS FOUND WHERE 0053
C ICT(1) = NO. OF HANDS OF NO VALUE 0054
C ICT(2) = NO. OF HANDS WITH 1 PAIR 0055
C ICT(3) = NO. OF HANDS WITH 2 PAIRS 0056
C ICT(4) = NO. OF HANDS WITH 3 OF A KIND 0057
C ICT(5) = NO. OF STRAIGHTS 0058
C ICT(6) = NO. OF FULL HOUSES 0059
C ICT(7) = NO. OF HANDS WITH 4 OF A KIND 0060
C ICT(8) = NO. OF HANDS WITH 5 OF A KIND 0061
C WHERE HAND NO. 1 =(IX(1),IX(2),IX(3),IX(4),IX(5)) 0062
C HAND NO. 2 =(IX(6),IX(7),IX(8),IX(9)IlX(10)) 0063
C ETC. 0064
C AND SUM OF ICT(I) = NHANDS. 0065
C 0066
C IANS =0 NCRMAL 0067
C =1 ILLEGAL HANDS 0068
C =3 ERROR RETURN FROM FRQCT1 0069
C 0070
C EXAMPLES 0071
C 0072
C 1. INPUTS - NHANDS = 0 0073
C IX(I) I=1,280 BROKEN INTO GROUPS OF FIVE FOR EASY CHECKING. 0074
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* POKCT1 * * POKCT1 *
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C 40123 43125 23456 52643 76543 87654 95867 0075
C 97654 02345 98762 14327 02678 86430 63142 0076
C 01230 18741 32024 99413 08628 54531 07499 0077
C 01220 42246 45999 94977 82238 77335 55060 0078
C 10020 23334 06033 88381 74877 06006 15113 0079
C 11222 21212 80808 94449 55454 61116 06006 0080
C 90000 66866 44644 88883 21111 00700 09999 0081
C 99999 00000 11111 22222 66666 33333 36410 0082
C OUTPUTS - ICT(1..8) = 0,0,0,1010,0,0,O IANS=1 0083
C 0084
C 2. INPUTS - SAME AS EXAMPLE 1. EXCEPT NHANDS=56 0085
C OUTPUTS - ICT(1...8) = 8,7,7,6,7,8,7,6 IANS=O0 0086
C 0087

DIMENSION IX(2),ICT(2),ICI(10),1C2(6) 0088
C CLEAR THE OUTPUT VECTOR. THEN WORK THRU DATA HAND BY HAND. 0089

IANS=I 0090
IF(NHANDS) 9999,9999,10 0091

10 IANS=O 0092
DO 15 1=1,8 0093

15 ICT(I)=O 0094
DO 90 II=1,NHANDS 0095

C FOR EACH HAND FIRST MAKE A FREQUENCY COUNT OF THE DIGITS (VALUES 0-9). 0096
C NOTE RESTRICTION 1 VIOLATION IS CAUGHT BY FRQCT1. 0097

J=(II-1)*5+1 0098
CALL FRQCT1(IX(J),5,0,9,IC1,IANS) 0099
IF(IANS) 9991,21,9991 0100

C AND THEN MAKE A FREQUENCY COUNT OF THE FREQUENCY COUNT (VALUES 0 TO 5) 0101
21 CALL FRQCTI(IC,10,0,5, IC2,IANS) 0102

IF(IANS) 9991,22,9991 0103
C THE HAND VALUE, IVAL (1 TO 8), IS DETERMINABLE FROM IC2(1),IC2(3), 0104
C IC2(2) EXCEPT FOR STRAIGHTS. 0105
22 IVAL=1 0106

IF (IC2(1)-6) 60,92,50 0107
50 IF (IC2(3)-1) 55,96,93 0108
55 IF (IC2(2)-1) 98,97,94 0109

C CHECK FOR POSSIBLE STRAIGHT WHEN ALL DIGITS ARE DIFFERENT. 0110
60 I=0 0111
62 I=I+1 0112

IF (ICl(I)) 70,62,70 0113
70 IF (IC1(I+1)) 71,91,71 0114
71 IF (IC1(I+2)) 72,91,72 0115
72 IF (IC1(I+3)) 73,91,73 0116
73 IF (IC1(I+4)) 95,91,95 0117

C SET THE HAND VALUE. 0118
98 IVAL=IVAL+1 0119
97 IVAL=IVAL+1 0120
96 IVAL=IVAL+1 0121
95 IVAL=IVAL+1 0122
94 IVAL=IVAL+1 0123
93 IVAL=IVAL+1 0124
92 IVAL=IVAL+1 0125
91 ICT(IVAL)=ICT(IVAL)+1 0126
90 CONTINUE 0127

9999 RETURN 0128
9991 IANS=3 0129

GOCTO 9999 0130
END 0131
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PROGRAM LISTINGS

* P

* L
CPOLYDV

C
C
C
C
C

OLYDV (SUBROUTINE)
ABEL

2/18/63 LAST CARD IN DECK IS N

SUBROUTINE PCLYDV (N,DVS,M,DVD,L,Q)

---- ABSTRACT----

TITLE - POLYDV
PERFORM LCNG DIVISION OF TWO POLYNOMIALS

PCLYDV COMPUTES THE FIRST L COEFFICIENTS OF THE QUOTIENT
CF TWO POLYNOMIALS. THE POLYNOMIALS ARE SPECIFIED BY THEIR
COEFFICIENTS.SOME OF THE LAST COEFFICIENTS MAY TURN OUT TO
BE ZERC IF THE QUOTIENT IS AN EXACT POLYNOMIAL OF ORDER
LESS THAN L. THE REMAINDER IS NOT COMPUTED. AN EXPLAN-
ATICN AS TO HOW THE SYMBOLIC DECK MAY BE ALTERED SO THAT
THE REMAINDER WILL BE COMPUTED IS GIVEN IN THE SYMBOLIC
DECK. THE COMPUTATION IS...

LANGUAGE
EQUIPMENT
STORAGE
SPEED
AUTHOR

2 3 (L-1)
Q(1)+Q(2)*X+Q(3)*X +Q(4)*X +...+Q(L)*X +REMAINDER =

(M+1)
=DVD(1)+DVD(2)*X+...DVD(M)*X /DVS(1)+...DVS(N)*X

WHERE X IS UNSPECIFIED SINCE ALL OPERATIONS ARE ON THE
COEFFICIENTS,

C IS THE QUOTIENT VECTOR,
CVD IS THE DIVIDEND VECTOR,
CVS IS THE DIVISOR VECTOR.

- FORTRAN II SUBROUTINE
- IBM 709, 7090 (MAIN FRAME ONLY)
- 135 REGISTERS

- J. CLAERPOUT

C ---- USAGE----
C
C TRANSFER VECTCR CCNTAINS ROUTINES - NONE
C AND FORTRAN SYSTEM ROUTINES - NONE
C
C FORTRAN USAGE
C CALL PCLYDVN,DVS,M,DVD,L,Q)
C
C INPUTS

N NUMBER OF COEFFICIENTS IN
MUST BE GRTHN=1.

DVSIl) I=1,N COEFFICIENTS OF
DVS(1) MUST BE NON ZERO

M NUMBER OF COEFFICIENTS IN
MUST BE GRTHN=1.

DIVISOR POLYNOMIAL

DIVISOR POLYNOMIAL

DIVIDEND POLYNOMIAL

CVD(I) I=l,M COEFFICIENTS OF DIVIDEND POLYNOMIAL

NUMBER OF COEFFICIENTS IN
MUST BE GRTHN=1.

C OUTPUTS
C
C Q(I)
C
C EXAMPLES
C
C 1. INPUTS
C
C
C OUTPUTI

2. INPUTS -

QUOTIENT POLYNOMIAL

I=1,L COEFFICIENTS IN QUOTIENT POLYNOMIAL

- M=1 DVD(1)=1.
N=2 DVS(1...2)=1.,-.5
L=4

S - Q(1...4)=1.,.5,.25,.125

M=3 , DVD(1...3)= 1.,2.,1.
N=2 , DVS(1...2)= 1.,1.
L=10

O. 0100
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021

N-1 0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074

* POLYDV *
I***********************

* POLYDV
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C OUTPUTS - Q(1...10)=1.,1.,0.,0.,00..,O.O.0.,0. 0075
C 0076
C THIS COULD BE REPROGRAMMED TO ALLOW EQUIVALENCE(DVDQ), NOT ALLOW 0077

DIMENSION DVS(10), DVD(1O), Q(10) 0078
NM = N-1 0079

5 00 8 I=1,L 0080
8 Q(I) = 0. 0081

C MOVE THE USED PORTION OF DVD TO Q 0082
MML=XMINOF(P,L) 0083
DC 10 I=I,PML 0084

10 Q(I) = DVD(I) 0085
DO 50 I = 1,L 0086
Q(I) = Q (I)/DVS(1) 0087
IF (I-L)30,2v,30 0088

20 RETURN 0089
30 K = I 0090

C IF THE FOLLOWING CARD IS CHANGED TO (ISUB=NM) THEN THE REMAINDER 0091
C WILL BE COMPUTED AND STORED AT Q(L+1) TO Q(L+N. 0092

ISUB = XMINOF(hMtL-I) 0093
DO 40 J = 1,ISUB 0094
K = K+1 0095
Q(K)=Q(K)-Q(I)*DVS(J+l) 0096

40 CONTINUE 0097
50 CCNTINUE 0098

C PROGRAP NEVER GETS HERE 0099
END 0100



************************ PROGRAM LISTINGS ************************
* PRBFIT * PRBFIT

PRBFIT (SUBROUTINE) 2/15/63 LAST CARD IN DECK IS NO. 0186
* LABEL 0001
CPRBFIT 0002

SUBROUTINE PRBFIT(NORXMOMNOUT,XtFPHIIANS) 0003
C 0004
C ---- ABSTRACT---- 0005
C 0006
C TITLE - PRBFIT 0007
C GENERATE PROBABILITY DISTRIBUTION WITH SPECIFIED MOMENTS 0008
C 0009
C PRBFIT GENERATES A ZERO-MEAN DISTRIBUTION FUNCTION, F(X)t 0010
C WHOSE HIGHER MOMENTS (2ND,3RDj...,NTH WHERE N IS LESS 0011
C THAN GR EQUAL 6) ASSUME GIVEN VALUES. F(X) HAS THE FORM 0012
C OF A NCRMAL DISTRIBUTION TIMES A POLYNOMIAL IN X, AND 0013
C CONSEQUENTLY IS USEFUL FOR APPROXIMATING EMPIRICAL 0014
C DISTRIBUTICNS WHICH ARE ROUGHLY NORMAL IN APPEARANCE, 0015
C BUT FOR WHICH THE NORMAL APPROXIMATION IS INADEQUATE. 0016
C IT SHOULD BE NOTED THAT THE PROCEDURE CAN YIELD NEGATIVE 0017
C VALUES FOR THE DISTRIBUTION IN CASES WHERE THE DEVIATION 0018
C FROM NCRMALITY IS SEVERE. 0019
C AN ANALYSIS OF THE PROCEDURE USED MAY BE FOUND IN 0020
C CRAVER, H., 1951, MATHEMATICAL METHODS OF STATISTICS, 0021
C PRINCETON UNIVERSITY PRESS, PRINCETON, PAGE 222. 0022
C 0023
C THE FORM OF THE CALCULATION IS 0024
C 0025
C C(3) D D D(PHI(U)) 0026
C F(X) = PHI(U) + --- * --*-----------) 0027
C 1*2*3 DU DU DU 0028
C 0029
C C(4) D D D D(PHI(U)) 0030
C + ---- * (----------- ) +...+ 0031
C 1*2*3*4 DU DU DU DU 0032
C 0033
C C(NOR) 0 D(PHI(U)) 0034
C ----------- * (--*...* -------- ) 0035
C 1*2*...*NOR DU DU 0036
C 0037
C EVALUATED FOR A GIVEN SET OF X VALUES 0038
C X=X(1),X(2)v...,X(NOUT) 0039
C WHERE 0040
C D 0041
C -- DENOTES DIFFERENTIATION WITH RESPECT TO U 0042
C DU 0043
C 0044
C U = X/SIG 0045
C 0046
C PHI(U) = EXP(-.5*U*U)/(SQUARE ROOT(2*PI)) 0047
C (I.E. NORMAL CURVE) 0048
C 0049
C PI = 3.14159265 0050
C 0051
C K XMOM(L) 0052
C C(K) = SUM ( ------- * A(K,L) ) 0053
C L=O SIG 0054
C 0055
C A(KqL) = COEFFICIENT OF LTH POWER OF X IN THE KTH 0056
C HERMITE POLYNOMIAL IX) 0057
C 0058
C XMCM(L) = LTH PROBABILITY MOMENT 0059
C (INPUT PARAMETER VECTOR) 0060
C 0061
C SIG = SQUARE ROOT(XMOM(2)) 0062

C I.E. STANDARD DEVIATION 0063
C 0064

C LANGUAGE - FORTRAN II SUBROUTINE 0065
C EQUIPMENT - 709, 7090 (MAIN FRAME ONLY) 0066
C STORAGE - 366 REGISTERS 0067
C SPEED - 0068
C AUTHOR - R.J. GREENFIELD, JAN 1963 0069
C 0071

C ---- USAGE---- 0072
C 0073
C 0074
C TRANSFER VECTOR CONTAINS ROUTINES - NONE
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C AND FORTRAN SYSTEM ROUTINES - SQRT, EXP(2, EXP 0075
C 0076
C FORTRAN USAGE 0077
C CALL PRBFIT(NOR,XMOM,NOUT,X,F,PHIIANS) 0078
C 0079
C INPUTS 0080
C 0081
C KOR IS THE ORCER OF THE HIGHEST ORDER MOMENT GIVEN 0082
C MUST BE GRTHN= 2 AND LSTHN = 6 0083
C 0084
C XMOM(I) I=1...NOR CONTAINS THE MOMENTS WHICH WILL BE USED TO 0085
C DEVELOP THE EXPANSION. THE FIRST MOMENT, XMOM(1), 0086
C IS NOT ACTUALLY USED, BUT IS ASSUMED TO BE =0. 0087
C (I.E. ZERO MEAN ASSUMPTION). 0088
C 0089
C NOUT IS THE NUMBER OF X VALUES AT WHICH THE EXPANSION WILL BE 0090
C EVALUATED C091
C 0092
C X(I) I=1...NOUT IS THE LIST OF VALUES AT WHICH THE EXPANSION 0093
C WILL BE EVALUATED 0094
C 0095
C PHI(I) USED FOR STORAGE 0096
C MUST BE DIMENSIONED AT LEAST AS LARGE AS NOUT 0097
C 0098
C OUTPUTS 0099
C 0100
C F(I) I=1...NOUT ARE THE VALUES OF THE EXPANSION FOR THE 0101
C NOUT VALUES OF X, I.E. F(I) = F(X(I)) AS DEFINED 0102
C IN ABSTRACT 0103
C 0104
C IANS = 0 NORMAL 0105
C = 1 ILLEGAL NOR 0106
C 0107
C 0108
C EXAMPLES 0109
C 0110
C 1. (NCRMAL APPROXIMATION) 0111
C INPUTS - NOR = 2 XMUD(1...4) = 0.,4.,8.,10. NOUT = 4 0112
C X(1...4)= 0.,5.,.8,-.8 0113
C CUTPUTS ' F(1...4)= .39894,.017528,.36828,.36828 IANS= 0 0114
C 0115
C 2. INPUTS SAME AS IN EXAMPLE 1. EXCEPT NOR= 3 0116
C OUTPUTS - F(1...4)= .39894,.041265,.29854,.43800 IANS= 0 0117
C 0118
C 3. INPUTS - SAME AS IN EXAMPLE 1. EXCEPT NOR= 4 0119
C CUTPUTS - F(1...4)= .28051,.0333501,.22328,.36272 IANS= 0 0120
C 0121
C 4. INPUTS - SAME AS EXAMPLE 1. EXCEPT NOR= 0 0122
C CUTPUTS - ERROR IANS= 1 0123
C 0124
C 5. INPUTS - SAME AS IN EXAMPLE 1. EXCEPT NOR=10 0125
C CUTPUTS - ERROR IANS = 1 0126
C 0127

DIMENSION A(7,7),C(7),PHI(100),XMOM(7),X(100),XMUD(7) 0128
DIMENSION XMU(7) F(2) 0129
NCRDER = NOR +1 0130

C TEST INPUT DATA 0131
IF (NORDER-2) 31,31,32 0132

31 IANS=1 0133
RETURN 0134

32 IF(NORDER-7) 33,33,31 0135
33 IANS=O 0136

XMU(1)= 1. 0137
XMU(2)= 0. 0138
DG 50 K=2,NCR 0139

50 XMU(K+1)=XMCM(K) 0140
C SET UP A TABLE 0141

DO 1 J=1,7 0142
1 A(J,J)=1. 0143

A(3,1)=-1. 0144
A(4,2)=-3. 0145
A(5,1)=3. 0146
A(5,3)=-6. 0147
A(6,2)=15. 0148
A(6,4)=-10. 0149
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A(7,1)=-15. 0150
A(7,3)=45. 0151
A(7,5)=-15. 0152

C ALL SUBSCRIPTS ADVANCED BY 1 0153
C X(I) INPUT NORMALIZED BY CALLING PROG (ZERO MEAN) 0154
C XMU ARE NOT NORMALIZED BUT ARE FOR ZERO MEAN 0155
C SEC TO COMP C 0156

SIG= SQRTF(XMU(3)) 0157
DO 51 I=1,NCUT 0158

51 X(I)= X(I)/SIG 0159
FACT=1. 0160
DC 5 K=1NOCRDER 0161
C(K)=O. 0162
IF(K-1) 41,41,40 0163

40 FACT=FACT*FLOATF(K-1) 0164
41 DO 4 L=1,K 0165
4 C(K)=C(K)+(XMU(L)/(SIG**(L-1)))*A(K,L) 0166
5 C(K)=C(K)/FACT 0167

C SET UP TABLE OF PHI 0168
DO 6 I=1,NCUT 0169

6 PHI(I)=EXPF(-X(I)*X(I)..5)*.3989423 0170
C COPPUTE F(I) FOR NORMAL DISTRIBUTION 0171

DO 7 I=1,NOUT 0172
7 F(I)=C(1)*PHI(I) 0173

IF(NORDER-4) 99,8,8 0174
C COPPUTES OTHER ORCER F 0175
8 00 19 K=4,NORDER 0176

DO 12 I=1,NOUT 0177
HER=A(K,1) 0178
DO 10 L=2,K 0179

10 HER=HER+A(KL)*X(I)**(L-1) 018Q
12 F(I)=F(I)+PHI(I)*C(K)*HER 0181

19 CCNTINUE 0182
99 DC 98 I=1,NOUT 0183
98 X(I)= X(I)*SIG 0184

RETURN 0185
END 0186



27 7"
*. .******************** PROGRAM LISTINGS ************************
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* PROB2 (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0174
* LABEL 0001
CPROB2 0002

SUBROUTINE PROB2 (IXLXNIPPIXHIIANS) 0003
C 0004
C ---- ABSTRACT---- 0005
C 0006
C TITLE - PROB2 0007
C SECOND PRCBABILITY DENSITY OF INTEGER SERIES AT GIVEN LAG. 0008
C 0009
C PROB2 COMPUTES THE SECOND PROBABILITY DENSITY FOR AN 0010
C INTEGER SERIES BY A FREQUENCY COUNT METHOD. THE SECOND 0011
C PROBABILITY DENSITY, P(ML), OF A SERIES IX(K) IS THE 0012
C PRCBABILITY THAT X(K) = M AND X(K+N)=L, WHERE N IS THE 0013
C LAG. PROB2 COMPUTES THIS QUANTITY FOR A GIVEN N. THE 0014
C INTEGER SERIES MUST BE SCALED SUCH THAT THE LOWEST VALUE 0015
C OF IX(K) =1 AND THE HIGHEST VALUE IS IXHI. IXHI MUST BE 0016
C LESS THAN CR EQUAL TO THE DIMENSION OF THE P(I,J) MATRIX. 0017
C THE PRCGRAM BELOW DIMENSIONS P(I,J) TO P(25,25). 0018
C 0019
C PROB2 COUNTS INTO AN INTEGER MATRIX, IP(IJ), THE NUMBER 0020
C OF TIMES IX(K)=M AND IX(K+N)=L OVER ALL INDEX PAIRS 0021
C K, K+N SUCH THAT BOTH K AND K+N LIE IN THE INCLUSIVE 0022
C RANGE 1 TO LX WHERE LX IS THE SERIES LENGTH. N MAY 0023
C BE NEGATIVE. 0024
C 0025
C THE INTEGER FREQUENCY COUNT MATRIX IS FLOATED INTO P(I,J) 0026
C AND NORMALIZED SUCH THAT SUM OVER I AND J OF P(I,J) IS 1. 0027
C THIS IS DONE BY DIVIDING EACH ELEMENT BY R, WHERE 0028
C R=LX-XABSF(N). P(I,J) AND IP(I,J) MAY BE EQUIVALENT IF THE 0029
C FREQUENCY COUNT IS NOT NEEDED. (THIS CAN BE RECONSTRUCTED 0030
C SINCE LX AND N ARE KNOWN.) 0031
C 0032
C LANGUAGE - FORTRAN II SUBROUTINE 0033
C EQUIPMENT - 709,7C90 (MAIN FRAME ONLY) 0034
C STORAGE - 229 CECIMAL REGISTERS 0035
C SPEED - 0036
C AUTHOR - J.N. GALBRAITH 0037
C 0038
C ---- USAGE---- 0039
C 0040
C TRANSFER VECTOR CONTAINS ROUTINES - NONE 0041
C AND FORTRAN SYSTEM ROUTINES - NONE 0042
C 0043
C FORTRAN USAGE 0044
C CALL PROB2 (IX,LX,N,IPPIXHIIANS) 0045
C 0046
C INPUTS 0047
C 0048
C IX(I) I=1,..,LX INTEGER SERIES. IX(I) GRTHN O0 LSTHN OR = IXHI 0049
C 0050
C LX INTEGER. LENGTH OF IX SERIES. GRTHN ZERO 0051
C 0052
C N INTEGER. LAG OR SEPARATION FOR COUNT. CAN BE +,-, OR 0. 0053
C XABS(N) LSTHN OR = IXHI 0054
C 0055
C IP(IJ) I=1,..tIXHIJ=1,..,IXHI SPACE FOR COMPUTATION OF 0056
C FREQUENCY RATIOS. MAY BE EQUIVALENT TO P(I,J). WILL 0057
C CONTAIN FREQUENCY RATIOS WHEN RETURN IS MADE IF NO 0058
C EQUIVALENCE HAS BEEN MADE. 0059
C 0060
C IXHI INTEGER. LARGEST VALUE IX TAKES ON. PROGRAM ASSUMES 0061
C IXHI LSTHN OR = 25. MUST BE LSTHN OR EQUAL DIMENSION OF 0062
C P(I,J) MATRIX. 0063
C 0064
C OUTPUTS 0065
C 0066
C P(I,J) I=1,..,IXHIJ=1,..,IXHI. PROBABILITY DENSITY FOR LAG OF N 0067
C NORMALIZEC SUCH THAT SUM OVER I AND J OF P(I,J) IS 1. 0068
C 0069
C IANS INTEGER. ERROR INDICATOR 0070
C =0 NORMAL 0071
C =-1 ILLEGAL IX VALUE. SOME IX LSTHN I OR GRTHN IXHI. 0072
C =-2 ILLEGAL LX. LX LSTHN 1 0073
C =-3 ILLEGAL N. XABSF(N) GRTHN LX. 0074
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C =-6 ILLEGAL IXHI. IXHI GRTHN 26 OR LSTHN 1. 0075
C =3 JCB DONE BUT N=O AND ONLY CONTRIBUTIONS TO P(I,J) ARE 0076

C ON THE DIAGONAL. 0077
C 0078

C EXAMPLES 0079
C 0080
C 1. INPUTS - IX(I)=0, LX=5, N=v1 IXHI=5 0081

C CUTPUTS - IP(IJ)=O , P(I,J)=O , IANS=-1 0082
C 0083
C 2. INPUTS - SAME AS EXAMPLE 1 EXCEPT IX(I)=l,2,3,4y6 0084
C CUTPUTS - SAME AS EXAMPLE 1 0085
C 0086
C 3, INPUTS - SAME AS EXAMPLE 2 EXCEPT LX=O 0087
C CUTPUTS - IANS=-2 0088
C 0089

C 4. INPUTS - SAME AS EXAMPLE 2 EXCEPT IXHI=O 0090
C CUTPUTS - IAKS=-6 0091
C 0092
C 5. INPUTS - SAME AS EXAMPLE 4 EXCEPT IXHI=26 0093
C CUTPUTS - IANS=-6 0094
C 0095
C 6. INPUTS - SAME AS EXAMPLE 2 EXCEPT IX(5)=5, N=-6 0096

C CUTPUTS - IANS=-3 0097
C 0098
C 7. INPUTS - IX(I)=1,1,2,2,3,3,4,4,5,5,1,2,2,3,45,5,1,1,1,1,1,1,1 0099
C IXHI=5, LX=21, N=1 0100
C CUTPUTS - IANS=O 0101
C 4 2 0 0 0 .2 .1 .0 .0 .0 0102
C 0 2 2 0 0 .C .1 .1 .0 .0 0103

C IP(I,J)
= 

0 0 1 2 0 P(I,J)= .0 .0 .05 .1 .0 0104
C 0 0 0 1 2 .0 .0 .0 .05 .1 0105
C 2 0 0 0 2 .1 .0 .0 .0 .1 0106
C 0107

C 8. INPUTS - SAME AS EXAMPLE 7 EXCEPT N=-1 0108
C OUTPUTS - IANS=O 0109

C 0110
C 4 0 0 0 2 .2 .0 .0 .0 .1 0111

C 2 2 0 0 0 .1 .1 .0 .0 .0 0112
C IP(I,J)= 0 2 1 0 0 P(I,J)= .0 .1 .05 .0 .0 0113

C 0 0 2 1 0 .0 .0 .1 .05 .0 0114
C C 0 0 2 2 .0 .0 .0 .1 .1 0115

C 0116

C 9. INPUTS - SAME AS EXAMPLE 7 EXCEPT LX=24, N=3 0117

C CUTPUTS - IANS=0O 0118
C 3 1 2 0 0 .15 .05 .1 .0 .0 0119

C 0 0 1 2 1 .0 .0 .05 .1 .05 0120

C IP(I,J)= 0 0 0 1 2 P(I,J)= .0 .0 .0 .05 .1 0121
C 2 0 0 0 1 .1 .0 .0 .0 .05 0122

C 2 2 0 0 0 .1 .1 .0 .0 .0 0123

C 0124
C10. INPUTS - SAME AS EXAMPLE 7 EXCEPT LX=20, N=O 0125
C OUTPUTS - IANS=3 0126
C 0127

C 6 0 0 0 0 .3 .0 .0 .0 .0 0128

C 0 4 0 0 0 .0 .2 .0 .0 .0 0129

C IP(I,J)= 0 0 3 0 0 P(IJ)= .0 .0 .15 .0 .0 0130
C 0 0 0 3 0 .0 .0 .0 .15 .0 0131

C 0 0 0 0 4 .0 .0 .0 .0 .2 0132
C 0133

DIMENSION IX(1000),IP(25,25),P(25,25) 0134
C CHECK LX 0135

IANS=-2 0136

IF(LX) 9999,9999,2 0137

2 IANS=-6 0138

C CHECK IXHI 0139

IF(IXHI) 9999,9999,3 0140

3 IF(IXHI-25) 4,4,9999 0141

C CHECK IX SERIES 0142

4 IANS=-l 0143

DO 1 I=1,LX 0144

IF(IX(I)) 9999,9999,11 0145

11 IF(IX(I)-IXHI) 1,1,9999 0146

1 CONTINUE 0147

IANS=-3 0148

C CHECK N 0149
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IF(XABSF(N)-LX) 41,9999,9999 0150
41 IANS=O 0151

C CLEAR IP(IvJ) 0152
DO 5 I=1,25 0153
DO 5 J=1,25 0154

5 IP(I,J)=O 0155
IF(N) 6,7,8 0156

6 LFRST=-N+1 0157
LLAST=LX 0158
GO TO 9 0159

7 IANS=3 0160
8 LFRST=1 0161

LLAST=LX-N 0162
9 00 10 I=LFRST,LLAST 0163

J=IX(I) 0164
KK=I+N 0165
K=IX(KK) 0166

10 IP(J,K)=IP(J,K)+1 0167
L=LLAST-LFRST+1 0168
TOTAL=L 0169
00 15 I=1,IXHI 0170
DO 15 J=I,IXHI 0171

15 P(IJ)=FLOATF(IP(IJ))/TOTAL 0172
9999 RETURN 0173

END 0174
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