COMPUTER STUDIES OF MICROSEISM STATISTICS WITH

APPLICATIONS TO PREDICTION AND DETECTION

by JAMES NELSON GALBRAITH, Jr. S.B., Massachusetts Institute of Technology (1958)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June, 1963

MTHDRAWN ATTURNA MITLIPRAFIES

COMPUTER STUDIES OF MICROSEISM STATISTICS WITH APPLICATIONS TO PREDICTION AND DETECTION

by

James Nelson Galbraith, Jr.

Submitted to the Department of Geology and Geophysics on 17 May 1963 in partial fulfillment of the requirement for the Degree of Doctor of Philosophy

ABSTRACT

Computational experiments have been performed on seismic data digitized from the records obtained by the Air Force during the Logan and Blanca underground nuclear shots, by Dr. Bruce Bogert in New Jersey and by the Wichita Mountain Seismic Observatory.

The experiments indicate that microseismic noise of about .3 cps frequency is associated with the oceans but the higher frequencies are not. Attempts to identify definite wave types, such as Rayleigh and Love waves, and to follow wave packets from station to station failed, but the failure illustrated the complexity of the microseisms and points out the necessity of a statistical study.

For the statistical studies the microseisms were considered to be stochastic time series. It was found that the probability densities of the amplitudes were Gaussian and were not independent. Spectral analysis showed the typical microseism spectrum to have a maximum at about .3 cps and often other strong bands at 1.4 and 2 cps.

The microseism time series are approximately stationary and can be described as a moving average operation. Thus they can be generated by a convolution of a minimum phase wavelet with a white light series. The wavelet is found for typical data by factorization of the power spectrum and the white light series is obtained by convolution of the inverse minimum phase wavelet with the noise data. Tests on the white light series indicate that its probability density is approximately Gaussian and that it is approximately independent. Hence non-linear operators or filters are not particularly useful in microseism studies.

Cross correlation and cross spectra between different components of data at the same station, like components at different stations and array data have been computed. It was not possible to identify individual wave types or directions of travel with any degree of certainty.

Prediction studies of microseisms have been done to try to improve the signal to noise ratio during the first motion interval. The mean squared error technique and the spectrum factorization technique have been used. The spectrum factorization is found to be superior because long operators can be more readily obtained. However, one can predict at best about 50% of the energy which is not sufficient to produce a significant improvement in the signal to noise ratio. Indications are that other prediction techniques will not give much better results.

Artificial microseisms generated by convolution of a typical microseism wavelet with Gaussian white has been used in a computer simulation of a detection system. The system is an energy detector which detects events in microseismic noise. The system is studied in terms of false alarm rate and failure to detect rate. Overall system effectiveness is given in terms of false alarms per hour as function of signal to noise ratio for a 95% probability of detection success. The system characteristics are found to be essentially invariant when the inputs are band pass filtered. The simple band pass filter can in some cases give significant signal to noise ratio improvement.

Details of the statistical tests and computer programs are given along with an approximate solution to a non-linear water wave problem related to microseism generation. The solution, which uses DeVorkin's representation scheme, is for arbitrary initial conditions and shows that sum and difference frequencies of all the frequencies present initially will be generated.

Thesis Supervisor: Stephen M. Simpson, Jr. Title: Associate Professor of Geophysics

ACKNOWLEDGEMENTS

I wish to express my sincere thanks to Professor S. M. Simpson, Jr., for his help, ideas and computer programs which were so necessary in the preparation of this thesis. Valuable aid and criticism were also freely given by Professor Theodore R. Madden, Dr. Enders A. Robinson and Dr. Donald DeVorkin.

I am also grateful to R. A. Wiggins, R. Greenfield, J. F. Claerbout and Mrs. Jacqueline Simpson for their assistance and the use of their computer programs.

I wish to thank Mrs. Elizabeth Studer, Mrs. Irene Hawkins, Joseph Procito and Karl Gentili for their assistance in performing innumerable tasks necessary for the completion of this thesis. I am grateful to Mrs. Myrna Kasser and my wife, Joan, for typing the preliminary copy of the thesis, and owe especial thanks to Mrs. Jane McNabb for the preparation of the final copy.

The data was digitized with the aid of Wolf Research and Development Corporation and Research Calculations. The computation was done in part at the M.I.T. Computation Center with the help and cooperation of Michael Saxton of the IBM Liasion Office and in part at the M.I.T. Cooperative Computing Laboratory with the valuable assistance of Anthony Sacco.

Acknowledgement is extended to Geoscience, Inc. for the use of computer programs for detection simulation studies. I wish to acknowledge the Advanced Research Projects Agency who sponsored this work as part of contract AF 19(604)7378.

TABLE OF CONTENTS

INTRODUCTION					
		Need to study noise			
		Definition of microseisms			
		Source of microseisms			
		Outline			
1.	BASI	C STATISTICAL STUDIES	12		
	1.1	Empirical Data	12		
		Data sources - noise before and noise after events			
		Logan and Blanca digitization procedure			
	1.2	Elementary Properties	25		
		Microseism amplitude studies			
		Rayleigh and Love wave experiments			
		Apparent stationarity			
		Mean and variance			
		Amplitude distribution and normality test			
	1.3	Correlation and Spectral Properties	40		
	100	Description of random functions - correlation and spectrum			
		Digitization and aliasing			
		Spectral estimation - Daniell window and variance of estimation	ate		
		Spectrum and Benioff response			
	1.4	Mathematical Generating Model for Microseisms	56		
		Stationary time series - moving summation and decomposition	n		
		Autoregression, probability density and Edgeworth series			
		Normality - chi-squared test			
		Independence test			
		Mathematical model			
		Generation of artificial microseisms			
	1.5	Cross-Series Properties	85		
		Cross-correlation, cross power and coherency			
		Daniell window and M/N ratio			
		Cross spectra of different components at the same station			
		Cross spectra of like components at different stations -			
		linear phase shifts			
2.	PREI	OICTION OF MICROSEISMS	111		
	2.1	Prediction by Minimization of the Mean Squared Error	111		
		Prediction and the first motion interval			

		Mean squared error technique for three dimensional case Predictability and the percent reduction Prediction computations	
	2.2	Prediction and Spectrum Factorization Comparison of prediction techniques Decomposition Minimum error and percent reduction in terms of the wavelet	128
	2.3	Summary Comments on Prediction Independence of white light series Independence and Gaussian white light - example Non-linear operators	140
3.	AUT	OMATIC DETECTION OF SIGNALS IN MICROSEISMIC NOISE	145
	3.1	Detection System Description - inputs and outputs	145
	3.2	False Alarm Rate - FALARA Generation of input n oise False alarm rate studies	148
	3.3	Failure Rate - FAILRA Description of system Failure rate studies	154
	3.4	Automatic Detection with Filtering Band pass filters and the signal to noise ratio Effect of filter on system characteristics	161
4.	SUM	MARY	170
APP	ENDI	CES	
	А. В. С.	Water Wave Problem Normality Test Flow Graph Expansion of Empirical Probability Density Functions about	174 187
		the Normal Density in Terms of Moments	189
	D. F	Independence and Dependence Measures	205
	E. F.	Construction of Three White Light Series with Specified	200
	G.	Coherencies Program Listings	213 217

BIBLIOGRAPHY

BIOGRAPHICAL NOTE

INTRODUCTION

Need to Study Noise

The disarmament talks at Geneva and the need for a surveilance network to detect and report the testing of nuclear devices, particularly underground testing, have put new emphasis on the field of Seismology. Government support in this area has made possible much research into the nature of seismic disturbances and instrumentation for detecting them. The present thesis was supported by the Advanced Research Projects Agency under the Vela Uniform Project contract AF 19(604)7378. The contract covers the digitization of the paper records from the Logan and Blanca shots of the 1958 Hardtack series, investigation of ways to improve the signal to noise ratio, particularly in the first motion interval, and investigation of the properties of bomb and earthquake signals.

Definition of Microseisms

Essential to the problem of signal detection and signal to noise ratio improvement is an understanding of the natures of both the signal and the noise. This thesis will deal mainly with the properties of the noise. A definition of what is meant by noise is necessary since in many cases what is noise to one man is signal to another. In the context of this thesis any ground motion not associated with definite bomb or earthquake signals, motion which is present at all times, will be considered noise and will be called microseisms or microseismic noise.

The study of microseisms dates back about 100 years to the pendulum measurements of an Italian monk, Bertelli (Haq, 1954). Only very

qualitative conclusions which generalized the data could be made, but it was obvious from study of Bertelli and others that the surface of the earth was in a state of oscillation. This "sea" of elastic waves came under the scrutiny of other observers who were interested in the causes of the disturbances. Wiechert (1905) suggested that microseisms were generated by the impact of surf on a steep coast. Gutenburg (1912) noted a correlation of microseisms with 4 to 8 second periods with surf and wind direction. Ramirez (1940) studied the physical properties of microseismic waves, the velocity, direction of travel and particle motion, with a tripartate or triangular arrangement of three component instruments. He found that the properties of these waves were fairly consistent with those of Rayleigh and Love waves.

Sources of Microseisms

Observers noted that the microseisms and sea waves seemed to be connected, and, in some cases, the periods of the sea waves were twice the period of the microseisms. However, the idea that sea waves produced microseisms was hard to justify theoretically since pressure variations due to travelling water waves die out exponentually with depth and are nearly zero within a wave length. Miche (1944) showed that there is a pressure fluctuation under a standing wave which is unattenuated with depth (for incompressible fluids), and its frequency is twice that of the sea wave. Longuet-Higgins (1950) realized that this was what was needed to explain the observations. He also showed that the mechanism could account for the energy of the observed microseisms. The presence of an unattenuated double frequency variation is demonstrated by Longuet-

Higgins in a small parameter expansion approximation to the solution of the non-linear equations for the pressure variations at the bottom of a layer of water with a rigid lower boundary and a standing wave on the top. Another method of approximation for this type of problem using a representation scheme for the solution of non-linear equations worked out by DeVorkin (1963) is given in Appendix A. It illustrates that the sum and difference frequencies of all frequencies present initially are expedited to develop.

The microseisms with periods from 4 to 12 seconds are generally attributed to ocean waves and recourse to the theory of Longuet-Higgins can be made for their explanation although there is still controversy on the matter. The data which has been used in this thesis was recorded with a Benioff short period instrument so that only the shortest period oceanic microseisms come through. Microseisms of higher frequency than the oceanic band are usually attributed to wind and meteorological factors or are thought to be cultural noise. Typical noise sources are swaying trees and buildings, storms, city traffic, heavy machinery, power plants, trains etc.

This brief allusion to the history of the study of microseisms does not give a feeling for the enormous amount of work which has been done in this area. (See Haq, 1954, for a fuller account and references.) A great deal of the work has been concerned with microseism generation mechanisms, surface wave propagation and particle motion, and studies of the direction of propagations and their relation to storms. Nearly all of these studies consider microseisms as a signal. This thesis for the most

part considers microseisms as noise. The main object is to treat the microseisms from a statistical point of view and try to describe them so that something can be done about them rather than with them. To this goal, the tools of statistical analysis have been brought forward and applied with the aid of high speed digital computers.

We shall see that a few examples which treat the microseisms as signals will suffice to point out the need for a more general description of the noise. It is obvious that that time series analysis can be applied to the study of microseisms, but stronger and more useful statements can be made about the time series if it can be shown that they are stationary or, better still, ergodic. We must therefore test the microseisms to see if they fall into one or more of these special categories of time series. Spectral analysis, probability studies and independence tests are some of the techniques which aid in the classification of microseisms.

The proper mathematical description of microseisms can also be the key to the optimum prediction problem, and will permit the study of the predictability of microseisms. We shall see that prediction can be used in some cases to reduce the noise level and therefore, if a signalis also present, improve the signal to noise ratio. The amount of improvement is of course dependent on the predictability of the noise.

A good mathematical model of microseismic noise will also permit us to generate the noise artificially. This artificial noise is extremely useful when long sections of continuous noise are required, and is therefore necessary when we simulate by computer a system to detect events in microseismic noise.

Outline

The thesis is divided into four chapters. The first deals with the basic statistics of the data on which the present studies are based. It includes a description of the data and how it was recorded as well as amplitude studies, auto and cross spectra, empirical probability density functions, and a mathematical model for noise generation.

Chapter two discusses the prediction of the noise by different methods and then applies this to the problem of the determination of the direction of first motion of a signal in the noise. Improvement with non-linear predictors is also considered.

In chapter three an automatic system for the detection of signals in microseismic noise is proposed and the results of a computer simulation of this system are given in terms of detection probabilities and false alarm rates for filtered and unfiltered inputs.

Chapter four is a summary which restates the major conclusions.

Details of some analyses and the computer programs used are left for the Appendices.

1. BASIC STATISTICAL STUDIES

1.1 Empirical Data

Data Sources - Noise before and Noise after Events

The data which forms the basis for most of the computational studies described in this thesis are the seismic records of the Logan (5 KT) and Blanca (19KT) underground nuclear shots of the 1958 Hardtack series (Romney, 1959). These were recorded by the U. S. Air Force at 28 temporary stations set up across the United States as shown in Figure 1.1.1. The instruments used were short period Benioffs with galvanometer periods (Tg) of .20 seconds. Most stations were equipped with a vertical instrument (up-down) and two horizontals, a "toward-away" and a "right-left". These designations are with respect to an observer standing at the shot point looking at the station. The vertical and horizontal instrument responses are the same and are shown in Figures 1.1.2 and 1.1.3 (Geotechnical Corp., 1961). The paper records from these shots were provided by the Air Force and were digitized at 20 samples per second. In no case were the paper records for an entire drum revolution provided so that the greatest time interval of continuous record available was on the order of a few minutes. For this reason the noise records which have been digitized are labeled "Noise Before" and "Noise After" with the appropriate shot, distance from shot and component. Noise before refers to the trace on the paper record which is just above the signal trace, and is therefore one drum revolution time before the shot. Noise after is the trace just below the signal trace. A copy of one of the original paper records which was digitized is shown in Figure 1.1.4, and a plot of the corresponding digitized record is shown in Figures 1.1.5 to 1.1.7. Figures 1.1.5 to 1.1.7 have been plotted by computer program using the oscilloscope attached to the IBM 7090 computer at the M.I.T. Computation Center. These graphs, and many of the others appearing in later sections, have been plotted as histograms. In several cases, particularly the spectral computations, the values plotted are averages or estimates over some range so that there is no justification for interpolation and the histogram is the predered method of presentation.

Logan and Blanca Digitization Procedure

The records were broken up into sections and each section was digitized separately. This procedure can lead to some error since each section could have a linear trend. This was compensated for by removing the best fitting (in the least squares sense) segmented line from the entire record, where each segment is the length of a section.

The digitization accuracy is good to a few percent, and the gain values supplied with the original records are quite good, but the actual ground motion values may be off by as much as 15 percent.

Other digitized data has been provided by Dr. Bruce Bogert of the Bell Telephone Laboratories, who has a short period vertical Benioff at Cherry Hill Park, New Jersey, and by United Electro Dynamics, Inc., who have digitized the records from the WMSO station in Oklahoma. Dr. Bogert's Benioff has a response similar to that of the Hardtack instruments, but its

low frequency cut off is somewhat higher (Bogert, 1961), Figure 1.1.8. The WMSO station is a linear array of vertical Benioffs with the same response as the Hardtack instruments.

A list of our record numbers appropos to this thesis and the event and station to which they correspond, is given in Table 1.1.1.

TABLE 1.1.1

RECORD NUMBER	DESCRIPTION	SAMPLES/SEC.
1000	NOISE BEFORE LOGAN 1902 KM., LEFT	20
1001	NOISE AFTER LOGAN 1902 KM., LEFT	20
1002	NOISE BEFORE LOGAN 1902 KM., UP	20
1003	NOISE AFTER LOGAN 1902 KM., UP	20
1004	NOISE BEFORE LOGAN 1902 KM., TOWARD	20
1005	NOISE AFTER LOGAN 1902 KM., TOWARD	20
1006	NOISE BEFORE LOGAN 2111 KM., LEFT	20
1007	NOISE AFTER LOGAN 2111 KM., LEFT	20
1008	NOISE BEFORE LOGAN 2111 KM., UP	20
1009	NOISE AFTER LOGAN 2111 KM., UP	20
1010	NOISE BEFORE LOGAN 2111 KM., TOWARD	20
1011	NOISE AFTER LOGAN 2111 KM., TOWARD	20
1026	NOISE BEFORE BLANCA 1610 KM., LEFT	20
1027	NOISE AFTER BLANCA 1610 KM., LEFT	20
1028	NOISE BEFORE BLANCA 1610 KM., UP	20
1029	NOISE AFTER BLANCA 1610 KM., UP	20
1030	NOISE BEFORE BLANCA 1610 KM., AWAY	20
1031	NOISE AFTER BLANCA 1610 KM., AWAY	20
204	CHERRY HILL PARK 4, NOISE	9.0909
233	CHERRY HILL PARK 31, NOISE	9.0909
301	WMSO L9, NOISE BEFORE CALIF. E.Q. JUNE 20,	1962 20
303	WMSO L7, NOISE BEFORE CALIF. E.Q. JUNE 20,	1962 20
305	WMSO L5, NOISE BEFORE CALIF. E.Q. JUNE 20,	1962 20
307	WMSO L3, NOISE BEFORE CALIF. E.Q. JUNE 20,	1962 20
309	WMSO L1, NOISE BEFORE CALIF. E.Q. JUNE 20,	1962 20

Figure 1.1.2

-

. LOGAN 1902 Km TEarth Up Gain 173K TEarth Up 66 03:49.2 والمارجة والمسترية المركبة المسترية المسترية المراجع والإستاني والمسترية والمراجعة المتروجين والمراجع المركبة ا 1111115 05:03:49.2 LOGAN 1902 Km 1 Toward Gain 200 K minnin LOGAN 1902 Km ALeft Gain 148K ALeft 06:03:49.2

Figure 1.1.4

FIG. 1.1.5

FIG. 1.1.6

FIG. 1.1.7

Figure 1.1.8

1.2 Elementary Properties

We shall briefly consider the microseisms as a signal in a few somewhat naive computational experiments which will suffice to make apparent the need for a more general approach to the study of microseisms which can be provided by statistical techniques.

The first experiment, which is concerned with microseism amplitudes, has some bearing on microseism sources and the results are in agreement with those obtained by others. The second set of experiments deals with the identification of wave types, specifically Rayleigh and Love waves, in the microseisms. As we shall see this set of experiments failed badly because of the simplicity of the model which is used and the complexity of the microseisms themselves.

Microseism Amplitude Studies

Some studies have been made on the amplitudes at two frequencies of the noise from the Logan and Blanca records to determine the change in amplitude with distance from an ocean. If the microseisms, at the frequencies in question, are of oceanic origin, there should be a definite decrease in amplitude with distance from the coast. The frequencies and amplitudes were estimated directly from the paper records. The approximate frequency values were obtained by counting peaks over a minute or more of record. On almost all the records, the noise appeared to have two distinct frequencies, one at about .3 cycles/second, and the other near 2 cycles/second. Approximate peak amplitudes were measured on the records and averaged over several cycles of the frequency of interest. An attempt was made to choose an average noise trace before the shot.

A plot was then made of amplitude versus distance from the Atlantic <u>or</u> Pacific coast (whichever was closer) for both frequencies. These graphs appear in Figures 1.2.1 and 1.2.2 for Logan and Blanca respectively.

We can see from these figures that for low frequency the noise decreases for inland stations, but for the higher frequency there is no systematic trend. The increase in amplitude of the low frequency component at about 1400 km from a coast may be due to microseisms from the Gulf of Mexico. These rather rough quantitative results are as expected, since the low frequencies are usually assumed to be caused by ocean waves and the high frequencies are attributed to local sources, and are not correlated with the distance from the coast.

It is interesting to note that the rough computation of the frequencies involved is supported by detailed spectral analysis. Figures 1.3.6 to 1.3.9 show spectra of some of the noise and it can be seen that the important frequencies are at about .3 cps, 1.4 cps and 2 cps for the Logan and Blanca records.

Rayleigh and Love Wave Experiments

Much of the energy in microseismic noise has been attributed to surface waves of the Rayleigh and Love wave types. Studies by several observers mentioned in the introduction have indicated the presence of these waves in the 4 to 8 second period range. The spectrum of noise from Logan, Blanca and Cherry Hill Park records which appear in Figures 1.3.6 to 1.3.9 show spectral lines with most of the energy concentrated in fairly narrow bands. The low frequency peak, as was mentioned before, is a bit artificial, since it is the high frequency end of the oceanic

microseism band with the low end cut off by the Benioff response. We might well suppose that this peak is composed of Rayleigh waves. The higher frequency lines may also be Rayleigh waves but of a non-oceanic origin. The Cherry Hill Park records in Figure 1.3.9 are remarkably similar, with rather narrow bands, even though they were taken three months apart, and one would like to investigate the important frequencies to identify wave types. Unfortunately, there are no horizontal recordings available and thus no study of this nature can be done. However, the Logan and Blanca records are three component and some attempt has been made at wave type identification. The spectra of these records, Figures 1.3.6 to 1.3.9, show in general more energy in the horizontal components at high frequency than in the vertical component. This suggests that the higher frequency noise, 1.4 cps and 2 cps, may be Love waves, and the possibility that the lower frequency energy is due to oceanic microseisms is still present.

Rayleigh waves are a special combination of P waves and S-V waves which confine all particle motion to a plane defined by the vertical and the direction of travel of the waves. For a single frequency the partical motion is retrograde elliptical. Assuming, therefore, that we have a single Rayleigh wave of a single frequency, we can resolve the horizontal components of motion into a new coordinate system which is rotated with respect to the original seismometer coordinate systems such that all horizontal motion is along one axis, the X" axis. This axis then determines the direction of travel of the wave, but not the sense of the direction. The sense can be determined from the resolved horizontal, X", and the vertical, Z", components. Since the partical motion

is retrograde elliptical, X" must lead Z" by 90° for the wave to be travelling in the positive X" direction. A plot of X" against Z" should be an ellipse with its X" intercept almost 2/3 of its Z" intercept.

Records 2000, 1002 and 1004, the noise before the Logan shot 1902 km from the shot point, form a three component set and therefore can be checked in the manner described for a Rayleigh wave component. All three records were band pass filtered with a filter of width .08 cps centered at .255 cps. This frequency corresponds to the maximum of the spectrum and is possibly attributable to Rayleigh waves from oceanic sources. The two horizontal components were plotted against each other and a line fitted to the plot. The plot was fairly scattered so that the fit of the line was quite poor. The horizontal to vertical component power ratio after rotation was only 5 which is not correct for Rayleigh waves. If the plot fell exactly on a straight line the ratio after rotation would be zero. The indication is that the plot was not even close to a straight line. The resolved horizontal component was then plotted against the vertical and an ellipse was fitted to the resulting curve. This plot was the best fitting ellipse superposed is shown in Figure 1.2.7. The ellipse in this figure is a very poor fit and it is not possible to reconcile these results with the single Rayleigh wave hypothesis. This does not mean that the low frequency peaks are not Rayleigh waves. Presence of two or more Rayleigh waves from different sources could explain the lack of a linear relationship between the horizontal components and the poorly fitting ellipse to the horizontal versus vertical plot. We might note, however, that some of the motions shown in Figure 4.2.1 are relatively elliptical, but with

tilted axes. Examination of the spectra (Figures 1.3.6 to 1.3.8) shows relatively more power in the vertical at .255 cps than we would expect on the Rayleigh wave hypothesis, but this could be explained by a mismatch of seismometer characteristics.

A test for the presence of Love waves was also performed on this data. The peak at about 2 cps was of interest here, since there was relatively more power in the horizontal than in the vertical. For a single Love wave we would again expect that a plot of the horizontal components would fall on a straight line. This was not the case, however, for a band width of about .08 cps centered at 2.05 cps. It is most probable that either Love or Rayleigh waves from a single source do not occur, or the band width used is too wide to see them. Cross correlation experiments could be most useful here, since the equivalent band width is the Daniell window width and the phase at each window width may be easily checked. For Rayleigh waves, we expect the horizontal to be in phase, but 90° out of phase with the vertical. For Love waves the horizontal should again be in phase, but there should be very little energy in the vertical component.

The failure of these two experiments does not eliminate the possibility of the existence of Rayleigh and Love waves at the frequencies considered, but it does illustrate the complicated nature of the noise. The suggestion is, therefore, that the structure of the microseisms is too complex to be handled by simple deterministic models. Rather than introduce more complicated models which require an enormous amount of labor to fit to the data, we shall consider the microseisms as stochastic time series and treat them from the statistical point of view.

Apparent Stationarity

The majority of the results of time series analysis are applicable to stationary time series, that is, series whose probability densities are not dependent on absolute time. If in a time series the probability, $P_{\xi_1}(X_1;t_1) \quad dX_1$, that ξ_1 is in the interval $(X_1, X_1 + dX_1)$ at time t_1 is the same for all t, and if the probability $P_{\xi_1\xi_2}(X_1, X_2; t_1, t_2)$ that at time t_1 , ξ_1 is in the interval $(X_1, X_1 + dX_1)$ and at time t_2 , ξ_2 is in the interval $(X_1, X_1 + dX_1)$ and at time t_2 , ξ_3 is in the interval $(X_1, X_2 + dX_2)$ is dependent only on the time separation $\tau = t_2 - t_1$ and not on absolute time, the time series is said to be wide sense stationary. If all higher densities $P_{\xi_1\xi_2,\dots,\xi_n}(X_1, X_2 \dots X_n)$ $t_1, t_2, \dots, t_n)$ are also independent of absolute time and dependent only on $\tau_K = t_1 - t_1$ the series is strictly stationary.

It is obvious that microseism records are not stationary over long periods of time since microseism activity is strongly influenced by meteorological conditions. Over short periods of time, however, when there have been no great changes in the generating mechanisms for microseisms, the records can be considered stationary. For our purposes we need only be concerned with stationarity over the few hours necessary to record the shot signal and noise before and after the signal. We now consider an ensemble or group of time series lined up one beneath the other each with the same first and second probability densities. We arbitrarily label time on these series so that a vertical line strikes each time series at the same time. The ensemble can be constructed by breaking up a long time series into smaller pieces and considering each piece as a member of the ensemble. In the case of microseismic noise, the noise before and the noise after the event can be considered as two members of the ensemble. We wish then to see if the probability densities are approximately the same for these ensemble members. We can do this computing directly the probability densities, but this becomes a lengthy process for the second density, $P_{\xi_1\xi_2}(X_1, X_2; t_1, t_2)$ and it is worse for the higher densities. If we are only interested in wide sense stationarity we can consider time and ensemble averages and, assuming that the ensemble is ergodic, equate these averages. The ensemble average of ξ_1 at time t_1 and ξ_2 at time t_2 is

Ave =
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) dx_1 dx_2 = \int_{-\infty}^{\infty} x_1 x_2 P_{\mathbf{x}_1, \mathbf{x}_2}(x_$$

The time average is

Ave =
$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(t) f(t+\tau) dt$$

We note that the time average is the autocorrelation and that the Fourier transform of the autocorrelation is the power density spectrum (see section 1.3). Hence, under the ergodic hypothesis, the constancy of the spectral density in time reflects the wide-sense stationarity of the time series. Spectral density computations have been performed on the noise before and noise after the shot and the results are shown in Figures 1.3.6 to 1.3.8. One can easily see that the general character of the spectrum does not change much over a period of time representing two drum revolutions of the Benioff. This strongly suggests that the microseisms are, for our purposes wide-sense stationary.

Mean and Variance

Time series analysis simplifies to some extent if the series have zero mean and unit variance. The digitized records had the best least squares fitting segmented mean line removed, but this does not guarantee that the mean is zero. The mean is, however, quite small and can usually be considered zero. It can easily be computed and subtracted off if necessary. The variance of the records is not unity and no scaling has been done to make it so.

Amplitude Distribution and Normality Test

The amplitude distribution of the records can easily be computed and, given the mean and standard deviation (square root of the variance), the corresponding normal distribution can be found and compared with the empirical amplitude distribution. Appendix B gives a flow graph of the necessary steps in the comparison of the distributions and the programs necessary. Appendix G contains listings of the programs. The comparison is done by finding the values along the x axis which divide the appropriate normal density (given mean and standard deviation) into sections of equal area (equal probability). A count is then made of the number of amplitude values which fall into each section. The chi square comparison measure is then

$$\chi^2 = \sum_{i=1}^{L} \frac{\left(N_i - pN\right)^2}{pN}$$

where there are L sections and N amplitude data points, P = 1/L, and N_i is the number of points which fall in the *i*-th section. There are L-3

degrees of freedom since the mean and standard deviation are used to determine the appropriate Gaussian. The chi square measure thus defined is chi square distributed and its expected value depends only on (Cramer, 1946). The probability $P(\chi^2)$ of exceeding χ^2 is the quantity of importance in comparison. Acceptance regions for X^2 are generally set so that $P(X)^2 \ge .1$ or .01. Comparisons were made between empirical and normal probability densities for all the Logan and Blanca noise records listed in Table 1.1.1. The chi square test was used as a measure of goodness of fit and the results are shown in Table 1.4.1 in section 1.4. The probability of exceeding χ^2 varies considerably and for the records shown only six or seven can be considered normally distributed for this test. Figures 1.2.3 and 1.2.4 show some of the empirical frequency ratio plots and Figures 1.2.5 and 1.2.6 show typical computer output from the normalcy and independence tests. It can be seen from these figures that even though some of the densities fail the X^2 test, they look fairly Gaussian and to a rough approximation may be considered normal.

(Note: If the alternate method of test for normality which is given in section 1.4 is used, all records are found to be Gaussian.)

The independence tests are discussed further in section 1.4 and in Appendix C. It is sufficient to say here that the amplitudes are not independent.

Figure 1.2.3 Frequency Ratios of Microseism Amplitudes

ANALYSIS OF AMPLITUDE DISTRIBUTION FOR RECORD 1005 COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

> NUMBER OF RANGES= 57 LENGTH OF SERIES= 3321 DEGREES OF FREEDOM= 54 MEAN OF SERIES= -0.22500189E-05 STANDARD DEVIATION= 0.14274400E-02

HIGHER CENTRAL MOMENTS THIRD MOMENT= -0.19685886E-09 FOURTH MOMENT= 0.12106580E-10 FIFTH MOMENT= -0.12533012E-14 SIXTH MOMENT= 0.11494952E-15

EXPECTED COUNT= 58.2632

CHI-SQUARE= 0.62046965E 02 PROBABILITY OF EXCEEDING CHI-SQUARE= 0.21316E-00

POKER COUNT TEST RESULTS

HAND TYPE	ACTUAL COUNT	EXPECTED COUNT
BUST	35	196.01280
1 PAIR	138	334•65599
2 PAIR	81	71.71200
3 OF A KIND	117	47.80800
FULL HOUSE	20	5•97600
STRAIGHT	95	4•78080
4 OF A KIND	105	2•98800
5 OF A KIND	73	0.06640

MEAN SQUARE CONTINGENCY= 0.27838460E 01

DEPENDENCY MEASURE= 0.30931623E-00

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM -0.47553504E-02 TO 0.45647645E-02. 3321 VALUES IN ALL.

1.	1.	0.	0.	1.	0.	1.	1.	2•	4.
2	1.	2	4	4.	8.	12.	11.	9.	16.
19.	14	15.	1.6	17.	24.	24.	35.	26.	32.
32	33	48.	41.	43.	49.	51.	65.	63.	65.
73.	55.	71.	66.	86.	74.	92.	70.	67.	98•
77.	74	89.	89.	79.	89.	73.	88.	76.	77.
88.	78.	71.	63.	73.	60.	59.	50.	43.	44.
40	33.	26	32 •	28.	23.	15.	15.	17.	9.
15.	6.	8.	7.	10.	4.	5.	6.	4 •	4.
6.	1.	3.	1.	1.	0.	1.	2.	1.	3.

ANALYSIS OF AMPLITUDE DISTRIBUTION FOR RECORD 1026 COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

> NUMBER OF RANGES= 59 LENGTH OF SERIES= 3581 DEGREES OF FREEDOM= 56 MEAN OF SERIES= -0.37916552E-07 STANDARD DEVIATION= 0.13271835E-02

HIGHER CENTRAL MOMENTS THIRD MOMENT= -0.84812047E-10 FOURTH MOMENT= 0.97164132E-11 FIFTH MOMENT= -0.29763772E-14 SIXTH MOMENT= 0.86117256E-16

EXPECTED COUNT= 60.6949

CHI-SQUARE= 0.10001674E 03 PROBABILITY OF EXCEEDING CHI-SQUARE= 0.15617E-03

POKER COUNT TEST RESULTS

HAND TYPE	ACTUAL COUNT	EXPECTED COUNT
BUST	38	211.36320
1 PAIR	159	360 • 86399
2 PAIR	133	77.32800
3 OF A KIND	111	51.55200
FULL HOUSE	8	6 • 4 4 4 0 0
STRAIGHT	84	5 • 15520
4 OF A KIND	112	3.22200
5 OF A KIND	71	0.07160

MEAN SQUARE CONTINGENCY = 0.23302333E 01

DEPENDENCY MEASURE= 0.25891481E-00

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM -0.48722361E-02 TO 0.41697387E-02. 3581 VALUES IN ALL.

1.	2.	0.	0.	0.	0.	0.	3.	0.	0.
1.	2.	4.	7.	1.	3.	5.	10.	1.	8.
9.	13.	9.	12.	18.	11.	13.	9.	21.	31.
23.	27.	29.	32 •	38.	32.	48.	37.	54.	65.
51.	69.	62.	94 •	87.	101.	88.	81.	90.	91.
110.	94•	97.	111.	127.	101.	117.	81.	115.	95.
60.	84 .	70.	77.	69.	63.	56.	54.	43.	67.
52.	52.	36.	30.	34.	30.	42.	27.	30.	15.
23.	18.	21.	11.	15.	8.	17.	2.	5.	5.
5.	5.●	1.	2•	4.	1.	1.	3.	1.	1.

Horizontal Motion Figure 1.2.7 Results of Rayleigh Wave Experiment on Records 1000, 1002 and 1004 with Best Fitting Ellipse.

1.3 Correlation and Spectral Properties

Description of Random Functions - Correlation and Spectrum

The description of the spectrum of a random function, such as microseismic noise as recorded on a seismogram, cannot be adequately done by simple Fourier transformation since the Fourier transform specifies the phase spectrum and immediately particularizes the function thus setting it aside from all the other possible realizations of the random process. In order to treat all the members of the ensemble simultaneously we must make use of the Wiener theorem for autocorrelation. The autocorrelation, $\Psi(\tau)$, of a continuous time function f(t)is defined as

$$\Psi(\tau) = \frac{1}{T \to \infty} \frac{1}{2T} \int_{T}^{T} f(t) f(t+\tau) dt$$

With a change of variables $r = t \cdot \gamma$ we can see that $\Psi(\gamma) = \Psi(-\gamma)$. The Wiener theorem then states that the power density spectrum $\overline{\Phi}(\omega)$ of f(t) is the cosine transform of $\Psi(\gamma)$ (Lee, 1960).

$$\Phi(w) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(r) \cos w r \, dr$$

We see that the autocorrelation has the effect of bringing all the phases down to zero thus throwing away the phase information which pins down a particular member of the ensemble.

The continuous infinite theory has its counterpart in discrete finite time, but with some modification and some problems.

Digitization and Aliasing

Digitization or division into discrete time puts some restriction on the description in the frequency domain. One must pay the price for throwing away the information between the digitized points and that price, as specified by the sampling theorem, is that one can only see frequencies which are less than or equal to half the sampling rate. If there are h samples per second we can only distinguish up to n/2cycles per second, the Nyquist frequency, which corresponds to a radian frequency of $W=\pi$. If the data actually contain a frequency higher than n/2 cps., say $h/2 \neq \Delta$, this frequency will be folded down to $n/2 - \Delta$, since $\cos(\pi + \zeta) = \cos(\pi - \zeta)$, and this process is called aliasing. Thus if there are frequencies present higher than h/2 cps. the spectral estimate at frequency $f_{,}(o < f < n/2)_{,is}$ made up of frequencies f, $2(n/2)\pm f$, $4(n/2)\pm f$, $\dots M(n/2)\pm f$, m even, and the spectrum loses meaning. One can avoid this problem by sampling often enough to include all frequencies or by low pass filtering before digitization.

Spectral Estimation - Daniell Window and Variance of Estimate

The fact that the data is known for a finite length of time requires an assumption about the data outside of the interval in which it is known since the autocorrelation $\varphi(\gamma)$ involves this time. One usually assumes that the data is zero outside this interval and the autocorrelation must therefore go to zero when γ equals the interval length. This is the complete transient (Wiener) autocorrelation

$$f(\tau) = \frac{1}{N} \sum_{i=0}^{N-1\tau i} X_i X_i + \tau , \quad \tau = 0, \pm 1, \pm 2, \dots, \pm (N-1)$$

where there are N data points, $\chi_{1}, \chi_{2}, \dots \chi_{N}$. Some methods of estimating the autocorrelation such as the Tukey estimation try to compensate for the fact that the data is zero outside $i = 1, \dots N$ by adding weighting factors

$$\varphi(\tau) = \frac{1}{N-1\tau} \sum_{i=0}^{M} X_i X_{i+\tau}, \quad \tau=0, \dots \pm M$$

where M is less than N (e.g. M = N/5). The higher lag terms (T large) are thus given more weight to compensate for the smaller number of terms in the summation. This will, of course, result in a biased estimate.

In any case the computed spectrum, $\Phi_{c}(\omega)$, is an estimate of the true $\Phi(\omega)$ and can be though of as a convolution of some weighing function $W(\omega)$ with the true spectrum

$$\Phi_{\mathfrak{c}}(\omega) = \Phi_{\mathfrak{r}}(\omega) * \mathcal{W}(\omega)$$

where the asterisk denotes convolution. $\mathcal{W}(\omega)$ is then called the spectral window (Blackman and Tukey, 1958). Ideally the spectral window is rectangular and the convolution process will then move it along the true spectrum and the estimate at $\omega_{\mathbf{k}}$, $\overline{\Phi}_{\mathbf{c}}(\omega_{\mathbf{k}})$ will be an unweighted average of the true spectrum $\overline{\Phi}_{\mathbf{r}}(\omega)$ from $\omega_{\mathbf{k}+\mathbf{h}}$ to $\omega_{\mathbf{k}+\mathbf{h}}$ where 2h is the window width. Since convolution in one domain is multiplication in the other, the Fourier transform of $\Phi_{\tau}(\omega) * W(\omega)$ is $\Psi_{\tau}(\tau) W(\tau)$ where $\Psi_{\tau}(\tau)$ is the true autocorrelation.

The spectral estimate which has been used to compute the spectra and cross spectra shown in this thesis is the Daniell estimate. The Daniell method uses the complete transient (Wiener) autocorrelation of the time function X_t , $t = I_1 \dots N$

$$\begin{aligned} & \underbrace{\mathcal{N}}_{(\tau)} \stackrel{\sim}{=} \frac{1}{N} \sum_{t=1}^{N-1} \underbrace{X_t X_{t+\tau}}_{t=1}, \quad \mathcal{T} = o_{2} \pm 1, \dots \pm (N-1) \end{aligned}$$

The Daniell spectral estimate $\Phi_{\mathfrak{d}}(\omega)$ is then

We note that the spectral window is not simply the Fourier transform of the Daniell weight since $\Psi(\tau)$ is not the true autocorrelation. We can, however, compute the spectral window if we choose a time function X_{τ} for which we know $\Phi_{\tau}(\omega)$ (Simpson et al, 1961b). If the time func-

tion X_t is N points of a sine wave $\sin \omega_r t$ we know that $\overline{\Phi}_{\tau}(\omega)$ is a delta function $\int(\omega_{\mathbf{k}})$ so that the spectral estimate becomes

$$\Phi_{D}(\omega) = \Phi_{T}(\omega) * W(\omega)$$

$$\Phi_{D}(\omega) = \delta(\omega_{r}) * W(\omega) = W(\omega - \omega_{r})$$

Hence we compute the transient autocorrelation $\mathcal{P}_{l} \gamma$ from the N points

of the sine wave, weight this with the Daniell weighting function and take the cosine transform as indicated in equation (1.3.1) to obtain the overall spectral window for the computational process. This has been done (Simpson et al 1961b, Appendix K) for $\omega_r = \pi/2$ which leads to an λ_t of $\lambda_t = \dots, 1, 0, -1, 0, 1, \dots$ and a correspondingly simple autocorrelation function. It can be seen that the Daniell estimate has parameters \bigwedge and \aleph , and therefore spectral windows were computed for several different \bigwedge and \aleph values. A few examples of the windows have been included in Figure 1.3.1 to 1.3.4 (Simpson et al, 1961b). These figures show that the windows are always non-negative, they tend to get squarer as the \aleph/N ratio decreases and they are essentially non-oscillatory. The variance, σ_b^2 , of the Daniell estimate has been worked out by E. A. Robinson (Simpson et al, 1961b, 1962a) and is

$$\sigma_{D}^{2} = \frac{\pi}{2Nh^{2}} \int_{w_{0}-h}^{w_{0}+h} \Phi_{T}^{2}(w) dw$$

where $h = \pi/M$ and N is the number of data points. As an approximation to this we have used

Figure 1.3.5 shows a plot of the Daniell spectrum (solid line) of a typical noise record with dotted line denoting the approximate standard deviation, \mathcal{T}_{Λ} , plotted above and below the solid line. The spectra are plotted as histograms since the value at any one frequency is an estimate averaged over the spectral window width. We note that \mathcal{M} is the number of spectral estimates between $\omega_{\pm 0}$ and π . One can then see that the \mathcal{N}/\mathcal{M} ratio is an estimate of the number of cycles of a sine wave which the data affords and therefore an increase in \mathcal{N}/\mathcal{M} ratio (decrease in \mathcal{M}/\mathcal{N}) means that one is looking at more cycles and can therefore make a better estimate of the frequency. This is, of course, just the uncertainty principle.

Spectrum and Benioff Response

It is important to remember that the data was recorded on a Benioff seismometer and that the spectrum we see is observed through the eye of the Benioff. The apparent spike at low frequency, .25 cps, is artificial since the Benioff cuts off the lows. The sharp cut off on the low frequency side of the major low frequency feature in the spectrum of Figure 1.3.5 and other spectra in Figures 1.3.6 to 1.3.9 is a result of the seismometer response and is not a real phenomenon. We notice from Figure 1.3.2 that there is essentially no energy at frequencies greater than 2.5 cps so that, with our sampline rate of 20 samples per second, there is no problem with aliasing of frequencies.

Figure 1.3.2

POWER DENSITY SPECTRUM OF RECORD 1000

Cycles Per Second Times 10

Figure 1.3.5

Spectrum of Record 1000 with standard deviation plotted above and below the spectral estimate.

Power Density Spectra of Records 1000 to 1005

ħg

Figure 1.3.9 Power Density Spectra of Records 204 and 233 (CHP 4 and CHP 31). (Note: The spectra have different frequency scales.) ნ ე

1.4 Mathematical Generating Model for Microseisms

Stationary Time Series - Moving Summation and Decomposition

We have seen that microseismic noise can be considered at least as a wide sense stationary time series. With an additional assumption of an absolutely continuous spectral distribution (Doob, 1953) we can consider that the time series is generated by a moving average or moving summation which is written as a convolution. That is, the time series x_t can be generated by convolution of an uncorrelated or purely random series, f_t , with a weighting function W_i .

$$X_t = \sum_{i=-\infty}^{\infty} w_i \xi_{t-i}$$

Since ξ_t is at least uncorrelated and may be purely random, it is obvious that the autocorrelation of X_t will simply be the autocorrelation of w_i . Hence the spectral properties of X_t are defined by the wavelet w_i . If the power density spectrum, $\Phi(\omega)$, of the time series or, equivalently, of w_i can be factored

$$\Phi(\omega) = B(\omega) \overline{B(\omega)}$$

and $\mathcal{B}(\omega)$ has no poles or zeros in the lower half plane then

$$B(\omega) = \sum_{\kappa=0}^{\infty} b_{\kappa} e^{i\omega\kappa}$$

and

(See Appendix E, Spectrum Factorization) b_{κ} is one sided and invertable and is called the minimum phase wavelet. The considerations

1.
$$\Phi(\omega) = 0$$
 almost nowhere
2. $\int_{-\pi}^{\pi} \log \Phi(\omega) d\omega > -\infty$
3. $\int_{-\pi}^{\pi} \Phi(\omega) d\omega < \infty$

must be met for b_{k} to exist (Robinson, 1956). These conditions are discussed further in Appendix E.

If we assume that the above conditions are met for microseismic noise, we can choose a simple mathematical model for microseism generation. We can consider that microseisms can be produced by passing a train of white light (uncorrelated) impulses through a system whose transfer function is $\mathcal{B}(\omega)$. In block diagram form:

 $\mathfrak{k}(\omega)$ corresponds to a realizable system since $\mathfrak{b}\kappa$ is a one sided wavelet. Spectrum factorization computations using the method of Kolmogorov as

described in Appendix E have been carried out on real microseismic noise. Figures 1.3.6 to 1.3.8 show the spectra and Figures 1.4.1 to 1.4.5 show some of the minimum phase wavelets and inverse minimum phase wavelets for several of the Logan and Blanca noise records.

Autoregression, Probability Density and Edgeworth Series

Since the inverse minimum phase wavelet, $\mathbf{Q}_{\mathbf{K}}$, exists, we can represent the noise $X_{\mathbf{L}}$ as the autoregressive process

$$f_t = \sum_{k=0}^{\infty} a_k X_{t-k}$$

where ξ_t is the white light series, and Q_{κ} can be found from b_{κ} by polynomial division (See POLYDV in Appendix G).

$$A(\omega) = \sum_{K=0}^{\infty} a_{K} e^{i\omega K} = B(\omega) = \frac{1}{\sum_{k=0}^{\infty} b_{K} e^{i\omega K}}$$

Taking the Z transform, $Z = e^{i\omega}$

$$\sum_{k=0}^{\infty} a_k z^k = \frac{1}{\sum_{k=0}^{\infty} b_k z^k}$$

Hence the white light series ξ_t for the process can be found by convolution of a_R with χ_t . This computation has been done for most of the Logan and Blanca noise records and statistical tests have been made on the resulting white light series, ξ_t . The probability density of ξ_t for these records has been compared to the normal density using the steps outlined in Appendix B. In most cases the comparison measure resulted in the probability of exceeding chi-squared being so small that it was very unlikely the density of ξ_L was exactly normal. The numerical results summerized in Table 1.4.1 show that only four of the records pass the χ^2 test. The empirical densities, however, look so very nearly Gaussian (see Figures 1.4.6 to 1.4.12) that it seems likely that they can be expressed in terms of the Gaussian density with only small correction terms. (Note that we use the terms "Gaussian" and "normal" interchangeably throughout this section. Cramer (1951) gives the Edgeworth series expansion for the probability density f(x)

$$f(x) = C_0 \quad \varphi(x) + \frac{C_1}{1!} \quad \varphi^{(1)}(x) + \frac{C_2}{2!} \quad \varphi^{(2)}(x) + \dots + \frac{C_n}{n!} \quad \varphi^{(n)}(x) + \dots$$

where $\Psi(\mathbf{x})$ is the Gaussian, $\Psi(\mathbf{x}) = \frac{1}{\sqrt{2\pi}} e^{-\mathbf{x}^2/2}$, and the superscripts denote differentiation. The C_n depend on the moments. The details of the applicability of the expansion and the computation of the moments and the C_n appear in Appendix C. The first seven CS, C_0 to C_6 have been computed and the corresponding densities have been compared with the empirical density using the chi-squared measure of goodness of fit.

Normality - Chi-Squared Test

Table 1.4.2 shows the results of the Chi-squared test of the comparison of the probability density of the white light series with the normal density and the higher approximations given by the Edgeworth series. The method of computation of the Chi squared value used here differs somewhat from the method mentioned in Appendix B. In Appendix B we ignore the fact that the series undergoing the test is bounded and, after dividing up the normal density into \mathbb{N} regions of equal area (probability), we count the number of data points which fall into each region. The approximation involving the terms in the Edgeworth series, including the normal approximations were compared directly to the empirical density, computed for $\mathbf{\hat{r}}$ subregions over the interval in which the data fell. There was not attempt at division into regions of equal probability. For this case, where the chi squared value is computed directly from the probabilities, chi squared is

$$\chi^{2} = \sum_{i=1}^{r} \frac{\left(P_{A_{i}} - P_{E_{i}}\right)^{2}}{P_{A_{i}}} N$$

where $P_{A_{i}}$ is the probability that a value falls in the ith range using the approximation given by the Edgeworth series, $P_{E_{i}}$ is the empirical probability density for the same range, N is the number of data points which were used to compute the empirical density, and γ is the number of sub-regions used in forming the empirical density. There may be some bias in this method of computation if $P_{A_{i}}$ and $P_{E_{i}}$ are very small. For this reason the sub-regions are grouped together so that for every grouping the quantities $P_{A_{i}} N$ and $P_{E_{i}} N$ are both at least five. (This rule of thumb is given in Wadsworth and Bryan, 1961). The grouping will reduce the number of degrees of freedom so that it becomes

$$NDF = S - I - m$$

where m is the highest moment used in the Edgeworth series and S is the total number of sub-groupings. S is in general less than r. We note that this method compares the empirical density and the approximation about the normal density only over the region where the data actually exists and does not assume that the data is unbounded.

In computing P_{A_i} it was necessary to calculate at least five equally spaced points across the sub-region and integrate using Simpson's Rule. The estimate of the integral using just the center point was not accurate enough. (We note here that P_{F_i} is a probability density and thus must be normalized such that its integral is equal to one.)

We see from Table 1.4.2 that, using the above method of comparison, most of the white light series are actually Gaussian (first approximation of Edgeworth series), and all can be fitted quite well using the third approximation or less. It is not disturbing that the fit gets poorer in some cases for higher approximations, since the series used is asymptotic and may oscillate.

Figures 1.4.6 to 1.4.12 show the empirical density as a solid line histogram and the Edgeworth approximation as a dotted line. The first approximation is the normal, the second approximation involves the third moment since $C_{o=1}$, $C_{1}=C_{2}=0$, the third involves up to the fourth moment, etc. We can therefore say that the probability density of is, in most cases, Gaussian.

Independence Tests

The f_{\star} are necessarily uncorrelated since the convolution of X_{\star} with

has removed all the linear dependence. It is not necessary that the ξ_t series be purely random or, equivalently, independent (unless the ξ_t are normally distributed, see section 2.3). Independence tests are somewhat difficult because one has to show that the joint probability density for all ξ_t factors in order to prove independence.

$$P_{F_1F_2\cdots F_n}(x_1, x_2, \dots, x_n) = P_{F_1}(x_1) P_{F_2}(x_2) \dots P_{F_n}(x_n)$$

Two tests for independence have been used on the γ_t from microseismic noise. The poker count test (Appendix D) is based on the fact that we can compute the a priori probabilities of occurrance of poker hands of various values from the assumption of independence of the series from which the hands are drawn. In this case the hands are assumed drawn from an infinite supply of integers with values 0 to 9 and hence the removal of a number does not change the probability of its occurrance. In the performance of the poker count test, the \int_t must be integers from 0 to 9 with equal probability, so the series with nearly Gaussian density must be mapped into a series with rectangular density. This mapping will not make the series dependent if it is independent and vice versa. Proof of this statement and the steps necessary for the poker count test are given in Appendix D. We may note that the poker count test is concerned with the joint density of up to five variables. The other test, the dependence measure related to the mean square contingence test, is also treated in Appendix D. It is simply a numerical measure of the factorization of the joint density of two random variables.

The measure, which we call the dependency, is zero is the variables are independent, and non-zero otherwise. Tests of numerical data are somewhat difficult since in almost no case will the dependency actually come out zero although it may be quite small. In order to see how small the dependency measure must be to indicate dependence, the test was run on the Rand random digits (Rand Corporation, 1955). These digits were generated by an independent process and are therefore suitable for testing purposes. A graph of the result of this test for different series lengths appears in Appendix D. For a length of 2500 the average dependency was about .0035. For dependent series such as the amplitude of the microseisms the dependency was about .25. The dependency value for the white light series. were between .0907 and .0039 and are tabulated along with the tests on the amplitudes in Table 1.4.1. Some output from the tests is shown in Figures 1.4.13 and 1.4.15. In some cases the dependency value was as low as that of the Rand digits and in others it was somewhat higher but not orders of magnitude higher. The figures mentioned above also show the results of the poker count test. In most cases a chi-squared comparison of the results is in the .1 or .05 acceptance region. The poker count test was also run on the Rand random digits. For these the chi-squared value was quite low and well within the accptance region.

Mathematical Model

The independence tests performed on are certainly not exhaustive since the poker test treats up to fifth joint density and the mean square contingency treats only the second joint density. The results are

surprisingly good, however, particularly when we consider the error in the computation of the ζ_t series introduced by the spectral estimation procedure, spectrum factorization, polynomial division and convolution. It is therefore claimed that the ζ_t series is essentially independent and the microseism generating model is now an independent white light series into a minimum phase system.

A purely random series f_{t} is ergodic and stationary. Further, the process of moving summation (convolution) is ergodic (Robinson, 1956, p. 116). Ergodicity, for our purposes, means that the time averages and ensemble averages are equal with probability one (see also Section 1.2). Hence the estimation of the moments of the series by time averages for the expansion of the density in terms of the Gaussian is justified.

In summary, we have shown that microseismic noise can be considered stationary and ergodic with a nearly Gaussian probability distribution, The model for the generation is an independent white light series convolved with a minimum phase wavelet.

Independent White Light Series - Nearly Gaussian

Microseismic Noise

$$X_t = \sum_{k=0}^{\infty} b_k \, \xi_{t-k}$$

Generation of Artificial Microseisms

We are now in a position to generate microseismic noise artificially. The Rand random digits which are independent and equally likely were summed in groups of ten and the mean subtracted out to give, by the central limit theorem, zero mean normal variates. These variates are the Gaussian white light input to the minimum phase system. They are Gaussian because of the central limit theorm as mentioned above, and white because the independence of the variates guarentees that only the zero lag of the autocorrelation has a non-zero value and hence insures that all frequencies will be present in the same amount. The minimum phase system response, can be computed from real data by spectrum factorization (Appendix E). The artificial noise is then generated by convolution of the minimum phase wavelet with the Gaussian white light series. Figure 1.4.16 shows real and artificial microseismic noise with the same r.m.s amplitude plotted one above the other. It is difficult, if not impossible, to tell the difference between the two with the eye alone. The identification of the two traces has been deliberately omitted from the figure. The upper trace is actually the artificial noise. Since we have been able to show that microseismic noise can be decomposed into a white light series and a wavelet, and that the white light is fairly indpenedent and nearly Gaussian, our mathematical model is quite good, and thus our artificial microseisms are quite representative. In order to tell the difference between real and artificial microseisms we would have to decompose the series into a wavelet and white light and test the probability density against the normal density. If it is normal and not just "nearly" normal, the noise is

artificial. It is possible to overcome this difficulty by mapping the Gaussian series into a series with a probability density representative of the real noise, but this labor does not seem justified by the slight variation of the probability density from the Gaussian.

The chief use of the generating model is in the detection simulation studies in Chapter 3. Several hours of consecutive noise are needed for these studies and only a few minutes of it is available from our records. Using the model discussed above we can generate the necessary amount of noise artificially and it will be typical of microseisms and nearly indistinguishable from them.

It is also possible to generate three component artificial noise. The bind here would appear to be in simulating the coherency between the various components. However it has been shown (Simpson et al, 1962) that one can generate pairs of white light series with controlled coherency at zero phase. A simple extension of this to three series with controlled coherencies is given in Appendix F. One can therefore specify the coherencies between pairs of the three series, generate three white light series with these coherencies, and convolve each of the series with a different wavelet to obtain three component simulated coherent microseismic noise.

TABLE 1.4.1

SUMMARY OF RESULTS OF NORMALITY AND DEPENDENCY TESTS ON AMPLITUDE SERIES AND WHITE LIGHT SERIES.

	PROB. EXCEE	ED. CHI SQUARE	DEPE	NDENCY	LENGTH	OF SERIES
RECORD	AMPLITUDE	WHITE LIGHT	AMPLITUDE	WHITE LIGHT	AMPL.	WHITE LIGHT
1000	•66435	•0000	•25336	•00976	3201	2702
1001	•01293	•0000	•26546	•00935	3201	2702
1002	•0000	•01522	•47489	•03863	3401	2902
1003	•0000	•00305	•50919	.05031	3401	2902
1004	•28699	•0000	•28226	•01525	3321	2822
1005	•21316	•00004	•30931	•01378	3321	2822
1006	•01426	•09632	•22233	•00820	3181	2682
1007	•00289	•32880	•20035	•00397	3181	2682
1008	•0000	•00004	•27856	•00830	3361	2862
1009	•0000	•01919	•28603	•01051	3351	2852
1010	•0000	•00350	•24385	•01144	3321	2822
1011	.00113	•00048	•27526	•00731	3321	2822
1026	.00015	•0000	•25891	•00483	3581	3082
1027	•0000	•0000	•25699	•00677	3581	3082
1028	.00051	•0000	•24425	•00520	3241	2742
1029	•0000	•0000	•27333	•09075	3241	2742
1030	.00252	•00197	•25838	•02333	3301	2802
1031	12048	•0000	•24759	•00618	3301	2802

PROBABILITY OF EXCEEDING CHI SQUARE LISTED AS .0000 IS ACTUALLY LESS THAN .000032, BUT NOT ZERO.

TABLE 1.4.2

EDGEWORTH SERIES RESULTS

RECORD	PROBABILI	TY OF EXCL	EEDING CHI	-SQUARED	FOR APPROXI	MATION
	ONE	TWO	THREE	FOUR	FIVE	DEGREES
1000	.00063	•44294	•99999	•99999	• 0	39
1001	• 0	• 0	•43359	•80852	• 0	37
1002	• 0	•52057	•98030	•99999	• 99999	46
1003	•87704	•99999	•51583	•99999	•94568	57
1004	• 0	• 0	•99999	•99999	•02469	52
1005	• 0	•02302	•99999	•99999	• 08298	53
1006	•93772	•04635	• 0	• 0	• 0	30
1007	•23902	•95413	•99999	.99999	•99999	56
1008	•99949	•34555	•99999	• 99999	.99999	59
1009	• 0	•09997	•99999	•99999	• 99999	54
1010	•99999	•32270	•99999	•99999	•99999	63
1011	•99999	•81863	• 0	• 99986	• 0	44
1026	• 0	•00043	•99999	•0	• 0	40
1027	•99995	• 0	• 0	• 0	• 0	9
1028	•02309	•04340	•99996	• 0	• 0	50
1029	•28383	• 0	• 0	•0	• 0	17
1030	•77600	•99999	• 0	• 0	• 0	43
1031	•31825	• 0	• 0	• 0	• 0	31

DEGREES REFERS TO THE NUMBER OF DEGREES OF FREEDOM FOR THE LOWEST APPROXIMATION NUMBER FOR WHICH THE PROBABILITY OF EXCEEDING CHI-SQUARED IS GREATER THAN .01. 89

.

Figure 1.4.1

Figure 1.4.2

Figure 1.4.3

Figure 1.4.4

Figure 1.4.5

Figure 1.4.6 Empirical Probability Density of White Light Series of Record 1000 With First Five Edgeworth Series Approximations.

Figure 1.4.7 Empirical Probability Density of White Light Series of Record 1001 With First Five Edgeworth Series Approximations.

~] 50

Figure 1.4.8 Empirical Probability Density of White Light Series of Record 1006 With First Five Edgeworth Series Approximations.

Figure 1.4.9 Empirical Probability Density of White Light Series of Record 1007 With First Five Edgeworth Series Approximations.

2.2

Figure 1.4.10 Empirical Probability Density of White Light Series Of Record 1008 With First Five Edgeworth Series Approximations.

Figure 1.4.11 Empirical Probability Density of White Light Series of Record 1026 With First Five Edgeworth Series Approximations.

Figure 1.4.12 Empirical Probability Density of White Light Series of Record 1027 With First Five Edgeworth Series Approximations.

Figure 1.4.13

ANALYSIS OF WHITE LIGHT SERIES OBTAINED BY CONVOLVING THE INVERSE OF THE MINIMUM PHASE WAVELET OF RECORD 1000 WITH THE ORIGINAL RECORD

COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES= 51 LENGTH OF SERIES= 2702 DEGREES OF FREEDOM= 48 MEAN OF SERIES= -0.10384890E 03 STANDARD DEVIATION= 0.75864953E 05

HIGHER CENTRAL MOMENTS THIRD MOMENT= 0.91304071E 14 FOURTH MOMENT= 0.17391028E 21 FIFTH MOMENT= -0.10809396E 25 SIXTH MOMENT= 0.17594533E 32

EXPECTED COUNT= 52.9804

CHI-SQUARE: 0.11462693E 03 PROBABILITY OF EXCEEDING CHI-SQUARE IS LESS THAN 0.00032

POKER COUNT TEST RESULTS

HAND TYPE	ACTUAL COUNT	EXPECTED COUNT
BUST	146	159.40800
1 PAIR	240	272.16000
2 PAIR	<u>6,</u> 6	58.32000
3 OF A KIND	73	38.88000
FULL HOUSE	5	4.86000
STRAIGHT	7	3.88800
4 OF A KIND	3	2 43000
5 OF A KIND	0	0.05400

MEAN SQUARE CONTINGENCY= 0.88167071E-01

DEPENDENCY MEASURE= 0.97963411E-02

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM -0.53663570E 06 TO 0.43644589E 06. 2702 VALUES IN ALL.

1.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	1.	0.	0.	1.	0.	2.
2.	2.	2.	3.	3.	6.	3.	9.	12.	18.
11.	24.	29.	37.	54.	60.	72.	80.	90.	95.
129.	145.	164.	164.	159.	148.	141.	145.	131.	119.
130.	87•	65.	68.	38.	44.	38.	30.	27.	13.
21.	17.	7∙	11.	5.	12.	7.	4.	2.	1.
1.	3.	2.	1.	1.	1.	0.	2.	0.	0.
0.	0.	0.	1.	0.	0.	0.	0.	0.	1.

Figure 1.4.14

ANALYSIS OF WHITE LIGHT SERIES OBTAINED BY CONVOLVING THE INVERSE OF THE MINIMUM PHASE WAVELET OF RECORD 1006 WITH THE ORIGINAL RECORD

COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES= 51 LENGTH OF SERIES= 2682 DEGREES OF FREEDOM= 48 MEAN OF SERIES= 0.17902389E 03 STANDARD DEVIATION= 0.71888679E 05

HIGHER CENTRAL MOMENTS THIRD MOMENT= -0.47103929E 14 FOURTH MOMENT= 0.22192675E 21 FIFTH MOMENT= -0.62127688E 26 SIXTH MOMENT= 0.67908355E 32

EXPECTED COUNT= 52.5882

CHI-SQUARE= 0.61046970E 02 PROBABILITY OF EXCEEDING CHI-SQUARE= 0.96320E-01

POKER COUNT TEST RESULTS

HAND TYPE	ACTUAL COUNT	EXPECTED COUNT
BUST	130	158.22720
1 PAIR	263	270.14399
2 PAIR	69	57.88800
3 OF A KIND	46	38.59200
FULL HOUSE	8	4.82400
STRAIGHT	13	3 • 85920
4 OF A KIND	7	2.41200
5 OF A KIND	0	0.05360

MEAN SQUARE CONTINGENCY= 0.73803157E-01

DEPENDENCY MEASURE= 0.82003506E-02

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM -0.73412665E 06 TO 0.48402021E 06. 2682 VALUES IN ALL.

1.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	Q.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	0.	0.
0.	2•	4.	5.	2.	6.	14.	14.	22.	29.
35.	47.	87.	82.	98.	126.	149.	160.	206.	220.
205.	178.	172.	158.	143.	118.	98.	82.	55.	32.
41.	31.	15.	12.	8.	7∙	2.	4.	3.	4.
2.	0.	0.	0.	0.	0.	1.	0.	0.	0.
0.	0.	0.	0.	0.	1.	0.	0.	0.	1.

Figure 1.4.15

ANALYSIS OF WHITE LIGHT SERIES OBTAINED BY CONVOLVING THE INVERSE OF THE MINIMUM PHASE WAVELET OF RECORD 1026 WITH THE ORIGINAL RECORD

COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES= 55 LENGTH OF SERIES= 3082 DEGREES OF FREEDOM= 52 MEAN OF SERIES= 0.29668643E 02 STANDARD DEVIATION= 0.49980906E 05

HIGHER CENTRAL MOMENTS THIRD MOMENT= 0.36927477E 14 FOURTH MOMENT= 0.41691343E 20 FIFTH MOMENT= 0.39579482E 25 SIXTH MOMENT= 0.22342489E 31

EXPECTED .COUNT= 56.0364

CHI-SQUARE= 0.15871704E 03 PROBABILITY OF EXCEEDING CHI-SQUARE IS LESS THAN 0.00032

POKER COUNT TEST RESULTS

HAND TYPE	ACTUAL COUNT	EXPECTED COUNT
BUST	143	181.84320
1 PAIR	307	310.46399
2 PAIR	90	66•52800
3 OF A KIND	53	44.35200
FULL HOUSE	4	5.54400
STRAIGHT	12	4•43520
4 OF A KIND	6	2.77200
5 OF A KIND	1	0.06160

MEAN SQUARE CONTINGENCY= 0.43508112E-01

DEPENDENCY MEASURE= 0.48342347E-02

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM -0.27321346E 06 TO 0.35513622E 06. 3082 VALUES IN ALL.

1.	0.	0.	0.	0.	0.	0.	0.	3.	1.
0.	1.	0.	2•	0.	0.	2.	1.	2.	9.
2.	2.	5.	6.	6.	8.	12.	18.	13.	24.
27.	36 •	32.	55.	69.	99.	96.	117.	155.	140.
175.	189.	154.	179.	186.	163.	172.	150.	124.	108.
103.	89.	70.	56.	60.	29.	24.	12.	15.	11.
5.	14•	5.	8.	3.	3.	5.	4.	3.	2.
3.	0.	4.	0.	2.	2.	2.	0.	0.	0.
0.	0.	0.	0.	0.	0.	2.	0.	0.	0.
0.	0.	0.	0.	0.	0.	0.	0.	1.	1.

1.5 Cross-Series Properties

The availability of simultaneous three component seismic noise records from different stations affords opportunity for cross correlation and cross-spectral analyses. Techniques similar to those of autospectral analysis have been worked out and programmed for high speed digital computers. The major computational difference is the need for a sine transform in addition to the cosine transform since the cross correlation is not in general an even function. Knowing the sine and cosine transforms of the cross correlation it is easy to compute the magnitude cross power and phase spectra, and it is also useful to compute the coherency. The development of the usual expression for coherency can be done quickly for transients and then carried over to discrete time for our case.

Cross Correlation, Cross Power and Coherency

For two transients $\chi(t)$ and $\chi(t)$ the cross correlation is

$$\varphi_{xy}(\tau) = \int_{-\infty}^{\infty} x(t) y(t+\tau) dt$$

The cross power spectrum is then the Fourier transform

$$\oint_{xy}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{xy}^{\infty} (\tau) e^{i\omega\tau} d\tau = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{xy}^{\infty} (x) e^{i\omega\tau} d\tau d\tau$$

with the change of variables $r = t + \tau$ this becomes

$$\overline{\Phi}_{xy}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt \int_{-\infty}^{\infty} y(r) e^{i\omega r} dr$$

hence

$$\overline{\Phi}_{xy}(\omega) = 2\pi \overline{F_{x}(\omega)} F_{y}(\omega) \qquad (1.5.1)$$

where $F_{\chi}(\omega)$ is the Fourier transform of $\chi(+)$, $F_{J}(\omega)$ the Fourier transform of J(+), and the bar denotes complex conjugation. The auto-power spectra are found to be, by similar treatment,

$$\Phi_{xx}(\omega) = 2\pi F_{x}(\omega) \overline{F_{x}(\omega)}$$
$$\Phi_{yy}(\omega) = 2\pi F_{y}(\omega) \overline{F_{y}(\omega)}$$

The coherency is then usually defined as

$$Coh_{xy}(\omega) = \frac{\left| \overline{\Phi}_{xy}(\omega) \right|}{\sqrt{\Phi}_{xx}(\omega) \Phi_{yy}(\omega)}$$
$$= \frac{\left| \overline{F_{x}(\omega)} F_{y}(\omega) \right|}{\sqrt{F_{x}(\omega)} F_{y}(\omega)} = 1$$

This definition is not particularly useful since $Coh_{XY}(\omega)$ is always

one. If the cross-correlation is weighted by some function, such as the Daniell weighting function (Section 1.3), the coherency is not necessarily one and has some meaning as a measure.

We define the normalized cross power vector $N(\omega)$

$$\mathcal{N}(\omega) = \frac{\Phi'_{xy}(\omega)}{\sqrt{\Phi_{xx}(\omega) \Phi_{yy}(\omega)}}$$

where $\oint_{\alpha, \gamma} (\omega)$ now takes into consideration the weighting function $W(\gamma)$.

$$\Phi_{xy}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(t) y(t+\tau) dt e^{i\omega\tau} W(\tau) d\tau$$

$$\Phi_{xy}(\omega) = F_{x}(\omega) F_{y}(\omega) * W(\omega)$$

where $\mathcal{W}(\omega)$ is the Fourier transform of $\mathcal{W}(\mathcal{X})$ and the asterisk denotes convolution. $\mathbf{\Phi}'_{\mathbf{X}\mathbf{Y}}(\omega)$ is in general complex, hence $\mathcal{N}(\omega)$ is truly a vector. The coherency is then defined

$$coh_{xy}(\omega) = |N(\omega)|$$

Daniell Window and M/N Ratio

The treatment is almost identical for discrete time. The complete transient cross correlation for the two series X_t and Y_t each of points is

$$\Psi_{xy}(\tau) = \frac{1}{2N-1} \sum_{t=-(N-1\tau_1)}^{N-1\tau_1} X_t Y_{t+\tau}, \tau = 0, \pm 1, ..., \pm (N-1)$$

and the cross power spectrum with the Daniell weighting function is

$$\Phi_{xy}(\omega) = \frac{1}{2\pi} \sum_{\tau=-(N-1)}^{N-1} \varphi(\tau) \left(\frac{\sin \frac{\pi \tau}{M}}{\frac{\pi \tau}{M}} \right) e^{i\omega\tau}$$

We shall take $\omega = n\omega_0$ with $\omega_0 = \pi/M$ where M is the Daniell parameter, and n = 0, 1, 2, ..., M. We have seen in Section 1.3 that, for N/Mlarge, the Daniell window is nearly rectangular. With $\omega_0 = \pi/M$ the windows for neighboring spectral estimates $\kappa \omega_0$ and $(\kappa + i)\omega_0$ overlap by about 50%. The Daniell window averages the sine and cosine transforms over the window width and consequently averages the cross power vector, $N(\omega)$. We see, therefore, that $|N(\omega)|$, the coherency, is less than or equal to one. If the $N(\omega)$ vector changes direction rapidly over the band $\omega \pm \frac{\pi}{M}$ the vector averaging will tend to cancel out and the coherency will be low, and if the vector direction is not changing or changing only slightly, the coherency will be high. Thus the coherency as we use it is a measure of how rapidly the cross power phase is changing. If the records being cross correlated are identical, the phase spectrum is zero and the coherency is one. (Actually the coherency may be slightly less than one since the Daniell window is not quite rectangular.) If the records are different, the coherencies will be low unless there are some bands of frequencies where the phase remains relatively constant.

Cross Spectra of Different Components at the Same Station

Figures 1.5.1 to 1.5.3 show the results of the cross spectral computations between different components at the same station. The graphs in the figures are identified individually with the two record numbers of the data used, the indices of the first and last points of the data for each record and the Daniell parameter, M. In most cases, no computation has been done for frequencies above five cps. The recordings at any one station were made within a fraction of a wavelength of any wave of interest so that no compensation need be made for linear phase shifts due to spatial separation.

Figure 1.3.1 shows the cross-spectra of the components of the noise recorded before the Logan shot 1902 km from the shot (records 1000, 1002 and 1004). The only really prominent feature of this set of computations is the low frequency spike which is the tail end of the well-known oceanic microseisms. The Benioff instrument cuts off fairly sharply at low frequencies so that this spike is somewhat artificial in that its low frequency side is simply instrument cutoff, but that sharpness of the higher frequency side must be a real phenomenon. The phase spectrum does not show the expected 90° phase shift for Rayleigh waves, but this may be explained by the fact that the instrument characteristics are changing rapidly here and are hence possibly non-uniform from instrument to instrument. None of the frequencies with fairly high coherency seem to

have phases corresponding to any known wave type. We note that the phases have been plotted to fall between $+\pi$ and $-\pi$.

Figure 1.5.2 shows the cross-spectra of the components of the noise before the Logan shot 2111 km from the shot point (Records 1006, 1008 and 1010). The 1008-1010 set of graphs have high coherence and power at 1.9 cps, but the phase is $-\pi$ which does not pin down any wave type. The peak at 2.1 cps has a phase closer to -90° which could conceivably be a Rayleigh wave. The 1006-1010 set of graphs has reasonably coherent peaks at .6, 1.4 and 1.9 cps. The .6 and 1.4 cps peaks are nearly in phase and could, therefore, be Love waves. The 1.9 cps peak is another of the many bands which are fairly coherent but have phase relationships which are not indicative of any particular wave type.

Figure 1.5.3 shows the cross spectra of the noise recorded before the Blanca shot 1610 km from the shot (records 1026, 1028 and 1030). There are possible Rayleigh waves at 1 and 2 cycles per second, but the coherencies are somewhat low.

Figure 1.5.4 shows the auto spectra of the records used in the cross spectral computations. They are included for convenient reference.

It seems that, in view of the above results, the model of a single band of surface waves from one direction is entirely too simple. It is much more likely that there are many surface waves of several frequencies coming from several sources. For a few stations quite close to the coast it may be possible to complicate the model to take care of surface waves from a few directions, and produce some believable results. However, the stations for which we have good noise data are very far inland, nearly equi-distant from the Atlantic and Pacific coasts. Thus, sources from the

Atlantic, Pacific, Gulf and Great Lakes may produce microseisms which will be recorded with nearly the same amplitude at these inland stations. On top of this we have local sources which confuse the issue considerably. The higher frequency bands at 1.4 and 2.0 cps were seen in the last two sections to have no particular directional properties and to have no simple amplitude dependence on distance from water wave sources. We conclude that there are of local origin and may be isotropic. Even a fairly complicated model taking into account many sources may not fit the data too well, and would certainly require a lot of labor to use.

Cross Spectra of Like Components at Different Stations - Linear Phase Shifts

The coherency measure used causes some difficulty if the two series are shifted in time, since a time shift will result in a linear phase shift. For example, $e^{i\omega t}$ has zero phase at time t=0 but at a later time the phase is ωt . If the time shift is large, the phase changes over the small band of frequencies $\omega \pm \pi/m$ will be large and will tend to reduce the coherency estimate. If meaningful coherency values are to be obtained one must line up the records properly in time before computing the cross correlation. This procedure assumes that the relative time shift is known and this is not always the case. For three component records at one station there is no difficulty since a line up in absolute time is all that is necessary. However, if one is trying to follow a wave packet across considerable distance by cross correlation and coherency measures, difficulties arise. If the records are lined up in absolute time, the relative time of the maximum of the cross correlation may give an idea of the arrival time differences, but the coherency will not

necessarily be large in the range of the frequencies which comprise the wave packet. If the records are shifted the amount, τ , indicated by the maximum of the cross correlation and then cross correlated, the coherency in the frequency region which caused the maximum will certainly become larger, but there may have been features in the original record other than the wave packet which caused the maximum. Hence we have still not identified the wave packet or its relative time shift. The magnitude of the time shift for any particular wave packet will of course depend on the velocity, V, of the packet, on the distance between the stations, X , and on the direction of travel of the wave relative to a line between the stations. The time shift can therefore vary from t = 0, if the waves are travelling perpendicular to the line between the stations, to $t = \times / v$, if the waves are parallel to the line. The problem is complicated by the existence of many waves of different frequency of waves of the same frequency travelling in different directions. In even the simple case of a single wave packet dispersion may disrupt the coherence.

There is another scheme to find the appropriate time shifts which is a bit more promising than the cross correlation method. If the cross correlation is computed and not weighted by the Daniell factor, the sine and cosine transforms will not average the cross power vector over the Daniell window width. The cross power vectors can then be rotated by phase shifts corresponding to known time shifts in the frequency range of interest and averaged in this range. This is done for several time shifts and one looks for the time shift corresponding to the largest resultant of the averaged vectors. This should be close to the shift necessary to maximize the coherency in the band of frequencies when the Daniell window is used.

Some time shifting experiments have been done using data from two different stations. Cross correlation and cross spectral computations have been carried out on like components at different stations using the methods described above. Figure 1.5.5 shows the complete cross correlation of records 1000, the noise before the Logan shot 1902 km from the shot point, and record 1006, the noise before the Logan shot 2111 km from the shot point. The two records were lined up in absolute time before the computation. If most of the energy was travelling in one direction we would expect the cross correlation to have a pronounced maximum, but not necessarily for zero lag. There is no such maximum in Figure 1.5.5. (The correlation is the transient cross correlation and so dies off to zero at the ends.) If the energy were coming directly from one station to the other at about 3 km/sec it would take about 70 seconds or 1400 data points. The correlation covers from minus to plus 2999 lags and should show a maximum if one were present. It is, of course, possible that a maximum occurs for one frequency and that it is masked by the presence of other frequencies. To check this for the more energetic bands, the data was band pass filtered before correlation. Figures 1.5.6 and 1.5.7 show the cross correlation for pass bands centered at 1.4 cps and 2.0 cps. The results are perhaps a bit disappointing but not totally unexpected. The cross correlation for the 1.4 cps band is exceedingly sinusoidal. This can, of course, happen if the band is too narrow, but we expect something more like the figure for the 2 cps pass band which

shows a beating between the frequencies present. It is not possible to pick a maximum on either of these figures with any certainty. If the energy is contained in such a narrow band as the 1.4 cps correlation indicates, the signal is not random enough for coherency to have any meaning.

Some time shifting was also done to maximize the coherency by looking for a linear trend in the phase. Figures 1.5.8 and 1.5.9 show cross spectral results for records 1000 and 1006 for several different time shifts. The frequencies about 1.4 and 2.0 cps were checked for a linear trend and appropriate shift made. The coherency was increased at these frequencies for the time shift indicated. The shifts were +1.5 seconds (that is, record 1000 has been shifted such that its absolute time origin, T, lines up with absolute time T + 1.5 seconds on record 1006) and -2.5 seconds. In view of the cross correlation results, it does not seem that these time shifts, even though they increase the coherency, have any particular physical interpretation in terms of velocity and direction of travel of particular waves. If the 1.4 and 2.0 cps are from local sources (and there must be many of these local sources across the country to explain the occurrance of the spectral lines at different stations) we would not expect the time shifts to have any significance since the lines are narrow and the sources isotropic. With such narrow band signals we can expect the coherency to be high for shifts which are integer multiples of the wave period. We can see that time shifting experiments are not particularly fruitful for the narrow band signals or for the bands when the instrument characteristics change so rapidly with frequency that a mismatch between instruments is probable. The experiments are more suitable for long period records where local sources play a smaller part.

Some cross spectral computations were also done on some data from the WMSO linear array. Simultaneous sections of noise were used with no time shifting. The noise from the first instrument in the array was cross correlated with the noise from several other instruments in the array. The results are shown in Figures 1.5.10 to 1.5.15. Again we see that at the frequencies with high coherence the phase is not changing rapidly. Figures 1.5.10 and 1.5.11 have a Daniell parameter of 400 and a slightly different frequency scale from Figures 1.5.13 and 1.5.14 which have a Daniell parameter of 200. The smaller Daniell parameter will take averages over wider bands and the resulting coherencies and phases will not be quite as jagged as those for a Daniell parameter of 400. Auto spectra are shown in Figures 1.5.12 and 1.5.15. When the coherency is high, we tend to say that the waves at that frequency are travelling at right angles to the array and there is no linear phase shift to disrupt the coherency computation. The phase spectra also show in some cases linear trends over bands of frequencies which are of course accompanied by low coherencies. A time shift would bring up the coherency and indicate the direction of travel of the source waves for these bands.

A much more sophisticated analysis of array data is needed before any reliable results can be stated. Simulation studies of the sort described in Chapter 3 would be of interest with the array recordings time shifted (delayed) to minimize the noise and thus utilize the directional properties of the array. Similar studies could also be done with data from a two dimensional array.

Figure 1.5.1 Cross Spectra of Different Components at the Same Station

Figure 1.5.2 Cross Spectra of Different Components at the Same Station

Figure 1.5.3 Cross Spectra of Different Components at the Same Station

Figure 1.5.4 Auto Spectra

Figure 1.5.5 Complete Transient Cross Correlation of Records 1000 and 1006

Figure 1.5.6 Complete Transient Cross Correlation of Records 1000 and 1006 Band Pass Filtered at 1.4 Cycles Per Second

Figure 1.5.7 Complete Transient Cross Correlation of Records 1000 and 1006 Band Pass Filtered at 2.0 Cycles Per Second

Figure 1.5.9 Cross Spectra of Records 1000 and 1006 For Indicated Time Shifts

2. PREDICTION OF MICROSEISMS

2.1 Prediction by Minimization of Mean Squared Error

Prediction and the First Motion Interval

Elementary considerations of the possible differences between the signals from earthquakes and the signals from underground explosions were based on the obvious differences in the source mechanisms. An explosion should give an initial compression whereas an earthquake, being a shearing source, should give compressions or rarefactions depending on the position of the observer relative to the fault plane and the direction of slip along the plane. A group of recording stations around a source should therefore all record initial compressive first motion for an explosion, but would vary if an earthquake were the source. Granting the first motion criterian is legitimate, there is still the problem of identifying the first motion on the record when the signal is corrupted by noise. The problem is somewhat simplified by the fact that, even though its pulse may be small, the first motion is followed by stronger P waves which are easily discernible in the noise. These P waves therefore allow us to say approximately where in time the first motion pulse arrived. If we could by some means predict what the noise would be in a small interval preceeding the strong P waves and subtracted the predicted noise from the signal plus noise, we would be left with the uncorrupted signal and could make definite statements concerning the direction of first motion. Figure 2.1.1 illustrates this idea with the assumption of perfect prediction of the noise.

In general, of course, we cannot predict perfectly, but a good prediction could possibly increase the signal to noise ratio to a point where there would no difficulty in picking out the first motion direction. We will therefore wish to express the predictability of the noise in terms of signal to noise ratio imprevement. Evaluation of the effectiveness of the scheme can be done by prediction studies of the noise alone without reference to any particular signal. The only parameter we need is time length over which we must predict. This will be called the prediction distance and it will be denoted by K in the following analysis.

We wish to form a linear operator which will predict the "future" of a record, χ_{i} , from its "past" and possibly from the past of other related records (e.g. three components at one station). We note that even though we are not necessarily operating in real time it is necessary that we use only the past as a basis for prediction since the past is noise alone and the future is signal plus noise. We shall present the analysis for the formation of a linear operator operating on three records to predict one of the three. The expressions will reduce simply to the case of self prediction, the prediction of one record from itself. The analysis has been done (Wadsworth et al, 1953) for the two dimensional case and the simple extension to three dimensions is given here.

The requirement that the record χ_i be predicted from itself and from y_i and z_i can be stated by the regression function (Wadsworth et al, 1953).

$$\hat{X}_{i+K} = d + \sum_{s=0}^{m} a_s X_{i-s} + \sum_{s=0}^{m} b_s Y_{i-s} + \sum_{s=0}^{m} c_s Z_{i-s}$$

where \hat{X}_{i+K} is the predicted value of the X_i^{i} time series K time units ahead. One time unit is simply the sampling period and is .05 seconds for the Logan and Blanca records. The X_i^{i} are the actual noise values and d, a_S , b_S and C_S constitute the linear operator which must be determined. The criterion used in this determination is the Wiener mean squared error criterion where we wish to minimize the sum of the mean squared error between the actual and predicted X_i^{i} series. This means, of course, that we have to know what the future is of the noise above. Hence a long series of pure noise is arbitrarily divided into past and future and the operator formed. The operator, under the assumption of stationarity of the time series, can then be used on the portion of the noise preceding the first motion to predict the noise in the first motion interval.

Mean Squared Error Techniques for Three-Dimensional Case

The sum of the squared error is taken over the operator interval length from $i + \kappa = N$ to $i + \kappa = N + n - 1$ a duration of n time units. Thus we minimize \mathbf{I} where

$$I = \sum_{i=N-K}^{N+n-i-K} (X_{i+K} - \widehat{X}_{i+K})^{2}$$

$$I = \sum_{i=N-k}^{N+n-1-k} \left[X_{i+k} - \left(d + \sum_{s=0}^{M} a_{s} X_{i-s} + \sum_{s=0}^{M} b_{s} y_{i-s} + \sum_{s=0}^{M} c_{s} z_{i-s} \right) \right]^{2}$$

with respect to d, a_s , b_s and c_s . This is done by setting the partial derivatives with respect to d, a_s , b_s and c_s equal to zero for all S. The resulting set of 3M+4 equations for the 3M+4 operation coefficients is

$$nd + \sum_{s} \left[a_{s} \sum_{i} \chi_{i-s} + b_{s} \sum_{i} y_{i-s} + c_{s} \sum_{i} \mathbb{Z}_{i-s} \right] = \sum_{i} \chi_{i+\kappa}$$

$$d\sum_{i} \chi_{i-r} + \sum_{s} \left[a_{s} \sum_{i} \chi_{i-s} \chi_{i-\kappa} + b_{s} \sum_{i} y_{i-s} \chi_{i-\kappa} + c_{s} \sum_{i} \mathbb{Z}_{i-s} \chi_{i-\kappa} \right] = \sum_{i} \chi_{i-r} \chi_{i+\kappa}$$

$$d\sum_{i} y_{i-r} + \sum_{s} \left[a_{s} \sum_{i} \chi_{i-s} y_{i-r} + b_{s} \sum_{i} y_{i-s} y_{i-r} + c_{s} \sum_{i} \mathbb{Z}_{i-s} y_{i-\kappa} \right] = \sum_{i} y_{i-r} \chi_{i+\kappa}$$

$$d\sum_{i} \mathbb{Z}_{i-r} + \sum_{s} \left[a_{s} \sum_{i} \chi_{i-s} \mathbb{Z}_{i-r} + b_{s} \sum_{i} y_{i-s} \mathbb{Z}_{i-r} + c_{s} \sum_{i} \mathbb{Z}_{i-s} \mathbb{Z}_{i-r} \right] = \sum_{i} \mathbb{Z}_{i-r} \chi_{i+\kappa}$$

for r=0 to M. where summations over i are from $i=N-\kappa$ to $i=N+n-1-\kappa$, and summations over S are from S=0 to S=M. We write this as the matrix equation

$$\mathsf{R} \mathsf{A} = \mathsf{B} \tag{2.1.1}$$

where R is a 3^{M+4} by 3^{M+4} symmetric correlation matrix, each element depending essentially on different lags of the auto and cross correlations of X_i , Y_i and Z_i . A is the 3^{M+4} by L solution matrix where each column of A is the prediction operator $(Q_0^{\kappa}, \ldots, Q_{M_0}^{\kappa})$ $b_0^{\kappa}, \ldots, b_{M_0}^{\kappa}, C_0^{\kappa}, \ldots, C_{M_0}^{\kappa}, d^{\kappa})$ for different prediction distance κ , and κ takes on L different values. A is obtained by inversion of the R matrix.

$$A = R^{-1} B$$

B is an L by 3M+4 matrix, where each column of B is the right hand side of the equation for a different K. The matrix equation can be partitioned as shown below

R" <u>ns</u> =	R'2=	$R_{rs}^{13} =$	R'+ =	[a]		B"=
∑xi-rXi-s	I Xi-r yr-s	12xi-+Z+-5	$\sum_{i} X_{i-r}$	a		∑Xi-rXi+r i
	R_{rs}^{22}	R ²³ =	$R_{rs}^{24} =$	b%		B ²¹ =
	<u>[</u> yi-+ yr-s i	Eyir Zris	∑yi-r i	b%	11	$\sum_{i}^{i} \Im_{i-r} \chi_{i+\kappa}$
	1 — — — · I	$R_{rs}^{33} =$	$R_{rs}^{34} =$	cő		$B_{r\kappa}^{3i} =$
		$\sum_{i=1}^{n} Z_{i-r} Z_{r-s}$	$\sum_{i} \mathbf{z}_{i-r}$	cm		$\sum_{i} Z_{i-r} \chi_{i+r}$
			$R_{rs}^{44} =$	d k		$\sum_{i} \chi_{i+\kappa}$

If we donote the auto correlation or Toeplitz matrix by

where r_j is the auto correlation for the j th lag we see that the diagonal submatrices of R in equation (2.1.1) are not quite auto correlation matrices because the terms along diagonals of the submatrices are summed over different intervals. If the operator interval length, n, is large, the diagonal submatrices are only very slightly different from auto correlation matrices and approach this as $n \rightarrow \infty$ If we take the one dimensional zero mean case ($b_S = C_S = d = 0$) with n large, the problem becomes the same as that treated by Levinson (1949).

Predictability and the Percent Reduction

A measure of how well the prediction operator performs its task is the percent reduction, R_p . This quantity is defined (Wadsworth et al, 1953) as

$$R_{p} = 100 \left(1 - \frac{I_{m}}{I_{o}} \right)$$

where I_m is the value for I for the operator used and I_o is a measure of the sample variance over the same interval.

$$I_{o} = \sum_{i} (X_{i+\kappa} - \overline{X})^{2}$$

If we think of $I_o - I_M$ as a measure of the variance of the prediction we can see that the percent reduction is a measure of the amount of power which can be predicted. In terms of the signal to noise ratio, if we take S as a general signal and N the noise, then before filtering we have

$$\left(\frac{S}{N}\right)_{BEFORF} = \frac{S}{\sqrt{\frac{1}{h} I_0}}$$

and after filtering

$$\left(\frac{S}{N}\right)_{AFTER} = \frac{S}{\sqrt{\frac{1}{n} Im}}$$

Hence

$$\left(\frac{S}{N}\right)_{AFTER} = \sqrt{\frac{1}{1-\frac{R_p}{100}}} \left(\frac{S}{N}\right)_{BEFORE}$$

Prediction Computations

In order to test the predictability, then, one must take a section of noise record, divide it into past and future and form the R and Bmatrices given in equation (2.1.1). The R matrix is inverted and R^{-1} is multiplied by B. The columns of the resulting A matrix are the operators or filters for different prediction distance $K \cdot N$ predictions for a given K are made by moving the operator along the real data for successive points. The prediction error, **Im** for this K can then be formed and, with Io for the same \aleph points, the percent reduction can be computed. This is done for each operator so that the percent reduction as a function of κ can be obtained.

This procedure has been programmed for the IBM 709-7090 computers. Computation has been done for one dimension with several $\mathcal M$ values with K = i to 30 and for three dimensions with M: 30 also for K = i to 30. The results of the one dimensional experiments are shown in Figures 2.1.2 to The percent reduction should increase with increasing length of 2.1.4. operator (A value) and does in all cases computed. For an infinite length operator the percent reduction must decrease monotonely with κ (Robinson 1954, p. 148) which does not occur in the cases shown. This is obviously due to the short operator lengths used in the computations, and we can be sure that higher percent reduction would be obtained with longer operators. The spectra of the records (Figures 1.3.6 to 1.3.9) show that most of the energy is crowded into a few narrow bands, the lowest frequency being about 1 cps. It would be best to have operator lengths covering a few wave lengths of the major frequency components which in this case would be about three seconds or at least 60 terms. The method of solution for the operators then involves inversion of a 60 by 60 matrix which starts to suffer from round off error.

We note that in all cases the percent reduction falls off rapidly at first and then has one or more plateaus. The Cherry Hill Park records remain fairly predictable out to three seconds, maintaining a percent reduction of about 50. This is attributed to the narrowness of prominent spectral lines of these records. (A spike in the frequency domain represents

a sine wave and can be predicted exactly with a two term operator.)

If a typical wave length of the first motion is established at 1 second the corresponding prediction distance for the C.H.P. records would be 10 units. This would give a signal to noise ratio improvements of 1.4 and 1.3 for C.H.P. 31 (record 237) and C.H.P. 4 (record 204) which is not significant.

The Logan 1902 records show a plateau effect in the percent reductions but the initial fall is more pronounced than in the C.H.P. records. The vertical is the most predictable component and a 20 term operator gives a signal to noise improvement of only about 1.3 for 1 second (20 units).

We have seen that the predictability in the one dimension or self prediction case is not particularly significant. However, one might expect that the use of information from more than one component would do somewhat better if the components used are related. The analysis for three components has been shown and was programmed for the IBM 709-7090 computers.

The precent reduction for M values of 5, 10, 15 and 20 (corresponding to operator lengths of 16, 31, 46 and 61) for the prediction of the vertical component, Logan 1902 Km, record 1002 from itself and the two horizontals is shown in Figure 2.1.5. Comparison of this figure with Figure 2.1.3, the self prediction results, shows an almost imperceptable improvement by using all components.

As mentioned above, the predictability is almost certain to be better if longer operators are used. With the above method of solution the

increase of operator length becomes impossible because the machine core is rapidly used up and significant additional time is needed for the computation. Therefore another method must be applied to obtain the longer operators or the idea of prediction must be discarded as impractical. Such a method does, however, exist and is treated in the next section, 2.2.

Figure 2.1.1 Concept Behind Least Squares Prediction Operator Experiments.

Figure 2.1.6

2.2 Prediction and Spectrum Factorization

Comparison of Prediction Techniques

We have seen in the last section that the mean squared error technique was not a practical method of prediction in the form in which it was used because of the large amount of computer space and time required. The program for prediction using the mean squared error technique was written almost entirely in FORTRAN and, due somewhat to the inefficiency of FORTRAN, the time required to obtain a 60 term self-prediction operator was about 10 minutes on the IBM 7090. The spectrum factorization method requires the spectrum as an input but the time needed to compute a 500 term wavelet is only 2 minutes on the 7090. Since the timing of both methods increases as the cube of the operator length, it is easy to see that there are tremendous advantages to the spectrum factorization method. The computation of the complete transient autocorrelation of 3000 data points and Daniell spectrum of 500 terms takes only about 2 minutes if high speed techniques are used (Simpson et al, 1961b). The Levenson (1949) technique has been programmed for the 709-7090 computers by Ralph Wiggins, but the work presented here was done before this program was available. The timing of the Levenson technique program increases as the square of the operator length but is about the same as the spectrum factorization program for a 500 term operator. The factorization method yields the minimum phase wavelet from which, as we shall see, the percent reduction can be obtained directly. The Levenson technique, on the other hand, gives the prediction operator directly, and we must compute this operator for unit prediction distance and invert it to obtain the wavelet. The choice

between the two methods might well depend on whether one wants to actually do prediction or just find the percent reduction. An iteration technique for the multi-dimensional problem has been worked out by E. A. Robinson (personal communication), and it will be quite a bit faster than the threedimensional technique described in the last section. The program for this has not been completed at the time of this publication.

Decomposition

The spectrum factorization method is much more fruitful than the mean squared error technique and the theory behind it is intimately related to the contents of section 1.4. In that section we showed that we could consider microseismic noise as a stationary ergodic time series and that, with a few additional considerations, we could assume that microseisms were generated by a white light (essentially independent) series convolved with a minimum phase wavelet. The importance of the minimum phase wavelet is that it is one sided, and therefore the expression for the present value of χ_t , the microseismic noise, involves only the past values of χ_t , the white light series. That is

$$x_t = \sum_{i=0}^{\infty} b_i \xi_{t-i}$$

where b_i is the minimum phase wavelet. We have seen that if b_i is known we can easily find a_i , the inverse minimum phase wavelet and can therefore write

$$f_t = \sum_{i=0}^{\infty} a_i \chi_{t-i}$$
 (2.2.1)

so that all the past ξ_t can be found from all the past X_t . We can therefore evaluate the expression for the minimum error for the mean squared error criterion (Robinson, 1954).

The minimum error is

$$I_{\min} = E(X_{t+\kappa} - \hat{X}_{t+\kappa})$$

where $\chi_{t+\kappa}$ is the true value of the series at time $t+\kappa$, $\chi_{t+\kappa}$ is the predicted value, and the E means expected value. The true value is, from the above considerations,

$$X_{t+\kappa} = \sum_{i=0}^{\infty} b_i F_{t+\kappa-i}$$
 (2.2.2)

But we know f_{t-i} from equation (2.2.1), so that the error in prediction must result from our lack of knowledge of f_{t+j} from j=0 to κ . Since f_t are uncorrelated the best prediction we can do for them is to predict their mean, which is zero. Hence, our best prediction of $\chi_{t+\kappa}$, $\hat{\chi}_{t+\kappa}$, is given by equation (2.2.2) with $f_{t+\kappa}-i=0$ for $t+\kappa-i$. That is

$$\widehat{X}_{t+\kappa} = \sum_{i=\kappa}^{\infty} b_i \, \xi_{t+\kappa-i}$$

This has been shown to be true by Wold (1938), (Robinson, 1954).

Minimum Error and Percent Reduction in Terms of the Wavelet

The minimum error is, therefore,

$$I_{MIN} = E\left[\sum_{i=0}^{\infty} b_i \xi_{t+\kappa-i} - \sum_{i=\kappa}^{\infty} b_{i-\kappa} \xi_{t+\kappa-i}\right]^2$$
$$= E\left[\sum_{i=0}^{\kappa-1} b_i \xi_{t+\kappa-i}\right]^2$$
$$= \sum_{i=0}^{\kappa-1} b_i^2 E\left[\xi_i\right]^2$$

If the expected value of \int_t^2 is one

$$I_{MiN} = \sum_{l=0}^{K} b_{l}^{2}$$

and we see that the minimum error and hence the percent reduction decreases monotonely with increasing prediction distance κ . We can now easily obtain an expression for the percent reduction, $R\rho$, in terms of b_i . We recall that

$$R_{p} = 100 \left(1 - \frac{I_{min}}{I_{o}} \right)$$

where I_o is the variance of the sample, $I_o = E[X_t]^2 = E[\sum_{i=0}^{\infty} b_i \xi_{t-i}]^2$ $= \sum_{i=0}^{\infty} b_i^2 E[\xi_t]^2$

Hence

$$R = 100 \left(1 - \frac{\sum_{i=0}^{K-1} b_i^2}{\sum_{i=0}^{\infty} b_i^2} \right)$$

where we have made no assumptions regarding the value of $E(f_{\tau})^2$

Thus we see that if b_i is known we can find the value of \mathbb{R}_P for all \mathbb{K} without actually computing the prediction, or even the prediction operator. We saw in section 1.4 that it is possible to find b_i , and the process is called spectrum factorization. The derivation of the b_i from the power spectrum is given in Appendix E. We see also in Appendix E that it is possible to find the first \mathbb{M} terms exactly. This procedure has been programmed for the IBM 709 and 7090 computers, and the program listing, FACTOR, appears in Appendix G. Appendix E also explains most of the program logic.

We note that the expression for I_o requires all of the b_i and the program will only give us the first M. For long operators this is not troublesome since the wavelet dies off fairly rapidly. However, the estimate of I_o using just M terms will be a bit small, and therefore the value of R_p will be a bit small. We could, of course, estimate I_o from the data without using the b_i since I_o is just the variance,

$$I_{o} = \frac{1}{N} \sum_{i=0}^{N-1} (x_{i} - \overline{x})^{2}$$

where the mean is zero.

The computation of the minimum phase wavelet, \mathbf{D}_{i} , has been done for 500 terms and the corresponding percent reductions are shown in Figures 2.2.1 to 2.2.6. Included also are some of the minimum phase wavelets and some of the inverse wavelets (Figures 1.4.1 to 1.4.5). The minimum phase wavelets for all the records are quite similar, so it is not necessary to include all of the graphs.

The percent reductions are now, of course monotonely decreasing and are forced to zero at t = 25 seconds (not shown in graphs) because is computed from the first 500 terms (25 seconds). Comparison of these figures with the self-prediction of section 2.1 (Figures 2.1.2 to 2.1.4) shows a marked increase in predictability using this technique, as much as 10 in the percent reduction, but the increase is still not large enough to improve the signal to noise ratio in the first motion interval by a significant amount. Comparison of the estimate of I_0 from the 500 term wavelet with the sample variance estimated from 3000 data points indicates that the percent reductions obtained are off by less than one.

Figure 2.2.1 Percent reductions for prediction distances up to 12 seconds for records 1000, 1002, 1004.

Figure 2.2.2 Percent reductions for prediction distances up to 12 seconds for records 1001, 1003, 1005.

Figure 2.2.3 Percent reductions for prediction distances up to 12 seconds for records 1006, 1008, 1010.

Figure 2.2.6 Percent reductions for prediction distances up to 12 seconds for records 1027, 1029, 1031.

2.3 Summary Comments on Prediction

We have seen in the last two sections that the optimum least squares prediction for short operators and for one and three dimensions are not good enough to improve the signal to noise ratio significantly. Further, we saw that the best predictions possible using the wavelet obtained by spectrum factorization did not yield results of any consequence. The fact that we only had 500 terms of the infinite wavelet is not important since the estimate of the standard deviation using the 500 terms was quite good (within 0.1 percent). We have alternatives of increasing the operator length of the three dimensional prediction, of going to non-linear prediction models, or, of course, of rejecting the technique of prediction of the microseisms in the first motion interval as a useful method of improving the signal to noise ratio. The first alternative, increasing the operator length for the three-dimensional case, does not seem worth trying. The improvement in predictability of the three-dimensional case, over self prediction was seen to be minescule. Further, the improvement of predictability of long operators over short was not significant. We therefore reject the first alternative.

Independence of White Light Series

It is possible, also, to reject the second alternative, that of nonlinear prediction models. We saw, in section 1.4, in the decomposition of the microseisms to a white light series and a minimum phase wavelet, that the white light series could be considered purely random. That is, the ξ_{t} were not only uncorrelated, but also statistically independent.

From elementary probability considerations we have

$$P_{f_1f_2}(x_1, x_2) = P_{f_1}(x_1) P_{f_2|f_1}(x_2|x_1)$$

The joint probability of ζ_1 and ζ_2 is equal to the marginal probability of ζ_1 times the conditional probability of ζ_2 given ζ_1 . If ζ_1 and ζ_2 are independent

$$P_{\xi_1,\xi_2}(x_1,x_2) = P_{\xi_1}(x_1)P_{\xi_2}(x_2) \quad ; \quad P_{\xi_2|\xi_1}(x_2|x_1) = P_{\xi_2}(x_2)$$

We can repeat this for many Fi and obtain

$$P_{f_{n+1}|f_1,f_2...,f_n}(X_{n+1}|X_{i},X_2,...,X_n) = P_{f_{n+1}}(X_{n+1})$$

Thus from the definition of independence we see that the knowledge of $\{i_1, i_2, ..., i_n\}$ give no information about $\{i_{n+1}\}$. In a prediction problem where $\{i_1, i_2, ..., i_n\}$ are the past values and $\{i_{n+1}\}$ the future values of a time series and the $\{i_1, i_2: t \text{ fo } h \text{ are independent}, we have no information about <math>\{i_{n+1}\}$ except its probability density $P_{i_{n+1}}(X_{n+1})$ which we know from the assumption of stationarity. Any prediction scheme using any of the $\{i_1, i_2: t \text{ to } n\}$ will avail us nought, but $P_{i_{n+1}}(X_{n+1})$. The best least squares prediction which one can do in the case of independence is to predict the expected value of $\{i_{n+1}\}$, the mean, which a linear predictor can do. Therefore, if random noise can be considered as an independent white light series convolved with a minimum phase wavelet, the best prediction one can do is linear prediction, since the non-linear predictor will only bring in higher order correlations which give no new information.

Weiner (1946) states that linear prediction is optimum in the case where the noise series can be reduced to a Gaussian white light series by convolution with a operator. The reason for this can be seen from the following analysis of the joint probability density for independent and dependent variables.

Independence and Gaussian White Light - Example

Let f_1 and f_2 be normally distributed independent random variables. Then the joint density of f_1 and f_2 is

$$P_{F_1,F_2}(X_1,X_2) = P_{F_1}(X_1) P_{F_2}(X_2) = \frac{1}{2\pi\sigma_1\sigma_2} e_{XP} \left[-\frac{X_1^2}{2\sigma_1^2} - \frac{X_2^2}{2\sigma_2^2} \right]$$

where ∇_i is the standard deviation of f_i . Now we define Y_i and Y_2 as a linear combination of X_i and X_2

$$y_1 = a x_1 + b x_2$$

 $y_2 = c x_1 + d x_2$
(2.3.1)

and therefore

 \mathbf{or}

$$P_{\eta_1\eta_2}(y_1, y_2) dy_1 dy_2 = P_{g_1g_2}(x_1, x_2) dx_1 dx_2$$

$$P_{\eta_1\eta_2}(y_1, y_2) = |J| P_{g_1g_2}(x_1, x_2)$$

where |J|, the magnitude of the Jacobian for this transformation, is J = ad - bc

Solving (2.3.1) for χ , and χ_{χ} :

$$X_{1} = \frac{d}{J} Y_{1} - \frac{b}{J} Y_{2}$$

 $X_{2} = \frac{a}{J} Y_{2} - \frac{c}{J} Y_{1}$

Hence joint density for the dependent variables η_{i} and η_{2} is $P_{\eta_{i}}\eta_{2}(y_{i}, y_{2}) = \frac{1 J I}{2 \pi \sigma_{i} \sigma_{2}} eXP \left[-\left(\frac{\sigma_{i}^{2} d^{2} + \sigma_{2}^{2} c^{2}}{2 \sigma_{i}^{2} \sigma_{2}^{2} J^{2}} \right) y_{i}^{2} - \left(\frac{\sigma_{i}^{2} a^{2} + \sigma_{2}^{2} b^{2}}{2 \sigma_{i}^{2} \sigma_{2}^{2} J^{2}} \right) y_{i}^{2} + \left(\frac{\sigma_{2}^{2} b d + \sigma_{i}^{2} a c}{\sigma_{i}^{2} \sigma_{2}^{2} J^{2}} \right) y_{i}^{3} y_{i}^{2}$

 W_e note the expected values of the following quantities.

$$\mathcal{M}_{1} = E(y_{1}^{2}) = \alpha^{2} \sigma_{1}^{2} + b^{2} \sigma_{2}^{2}$$
$$\mathcal{M}_{2} = E(y_{2}^{2}) = c^{2} \sigma_{1}^{2} + d^{2} \sigma_{2}^{2}$$
$$\mathcal{M}_{12} = E(y_{1}y_{2}) = \alpha c \sigma_{1}^{2} + b d \sigma_{2}^{2}$$

Thus

$$P_{\eta_1 \eta_2}(y_1, y_2) = \frac{|J|}{2\pi \pi \sigma_2} \exp\left[\frac{-\mathcal{U}_1 y_1^2 - \mathcal{U}_2 y_2^2 + 2\mathcal{U}_{12} y_1 y_2}{2 \sigma_1^2 \sigma_2^2 J^2}\right]$$

If μ_{12} , the correlation of y_1 and y_2 , is zero, the cross term in the exponential is zero and $P_{\eta_1\eta_2}(y_1,y_2)$ factors. This can be extended for $P_{\eta_1\eta_2\cdots\eta_n}(y_1,y_2\cdots y_n)$ and we see that in general if the correlation coefficients are zero the joint density of η variables factors. Hence for the Gaussian, linear independence implies statistical independence. (Davenport and Root, 1950).

Non-Linear Operators

We thus see the reason behind Wiener's statement that linear prediction is optimum if it reduces the series to Gaussian White light. We need actually only show, therefore, that the white light series, ξ_t is Gaussian in order to reject the adoption of a non-linear predictor. We saw in section 1.4 that, for microseisms, ξ_t was Gaussian in many cases, and was in general nearly Gaussian. We can fall back on the independence tests for these non-Gaussian cases which showed that we could consider ξ_t independent. The independence of ξ_t forces us to drop the notion of non-linear prediction and hence forces us to reject the technique of prediction for signal to noise ratio improvement in the first motion interval.
3. AUTOMATIC DETECTION OF SIGNALS IN MICROSEISMIC NOISE

3.1 Detection System

Description - Inputs and Outputs

A detection system to automatically detect signals in microseismic noise has been designed and a computer program has been written to simulate the system. The system and programs have been developed by S. M. Simpson, Jr., for Geoscience, Inc. A flow chart of the computer simulation of the system appears in Figure 3.1.1. The signal plus noise input is rectified by squaring or by taking the absolute value and this rectified waveform is averaged. The averaged rectified wave form then enters a network which decides if there is a signal present or not, and sets an alarm if there is a signal. The system variables are the type of rectification, the averaging time, the hesitation time and the alarm level. The averaging time is the length of time over which the rectified waveform is averaged before going to the decision network. Averaging over some length of time is necessary to reduce false alarms due to an occasional high noise amplitude, but the length must not be much greater than the expected length of the signal, since the average would be too small to trigger the alarm. The hesitation time is the length of time that the rectified averaged input must remain above the alarm level before an alarm is sounded. This also tends to cut down alarms which might be caused by noise spikes. The alarm level is the ratio of the value which averaged rectified wave must reach for an alarm to the r.m.s. amplutide of the noise.

It is, therefore, the signal to noise ratio at which the system can operate. For example, if the alarm level is 1.75, an alarm will not be sounded until the average rectified waveform reaches 1.75 times the r.m.s. noise amplitude.

The system as it stands is an event detector. It tells whether or not an event has occurred, but makes no statement as to the nature of the signal which triggered the alarm. Such a system could be used in an automatic nuclear surveilance network to control the collection of data. Only data near the time of an alarm would be recorded, and these alarms could be studied for source type. An alternate procedure would be to collect all data and just study the portions corresponding to alarms.

In order to rate the effectiveness of this system, it is necessary to study the false alarm rate and failure to detect rate as a function of the system parameters. The next few sections give the results of false alarm and failure rate studies on the computer simulated system for raw and filtered signals and noise.

Figure 3.1.1 Computer Simulation Flow Chart

3.2 False Alarm Rate - FALARA

Generation of Input Noise

The false alarm rate of the detection system can be obtained by using a pure noise input rather than a signal plus noise input and counting the number of times an alarm is sounded as a function of the system parameters. A large amount of noise representing many hours of sequencial microseisms is necessary to carry out the study. Since only a few minutes of consecutive microseismic noise is available from our digitized noise library, the microseisms must be generated artificially. We have seen in section 1.4 that this could be done to a good approximation using a minimum phase wavelet from real data and Gaussian white noise. Thus, the artificial microseisms, χ_t , shown in the upper trace of Figure 1.4.16, are generated by the convolution

$$X_t = \sum w_i \gamma_{t-i}$$

where W_1 is the wavelet and X_T is the Gaussian white noise. The wavelet used in these studies was computed from record 1002, the vertical component of the noise before the Logan shot 1902 km from the shot point. The Gaussian white noise is generated from the Rand random digits by summing non-overlapping groups of ten digits. The central limit theorem tells us that the resulting sequence will have an approximately normal distribution.

A 500 term minimum phase wavelet was computed and every other point was then deleted. This left a 250 point wavelet with an equivalent digitization rate of 10 points per second. The deletion is not unreasonable since there is almost no power above 5 cps. This wavelet was then convolved with 85,249 points of Gaussian white noise to yield 85,000 points of artificial microseisms which correspond to 2.22 hours of noise.

False Alarm Rate Studies

The computer program FALARA (FAlse Alaram RAte) has been written by S. M. Simpson to simulate the detection system with pure microseismic noise input. For each set of system parameters the simulation was continued until either 100 alarms were sounded or all 85,000 points of noise were used. A flow chart of the simulation for the false alarm rate is shown in Figure 3.2.1 along with the system parameters used. As can be seen from this figure, two different types of rectification were used with five averaging times, ten alarm levels and five hesitation times. The false alarm rate is computed in units of alarms per hour. The results are shown in Figures 3.2.2 and 3.2.3 where the false alarm rate is plotted against the alarm level for several averaging times and for both types of rectification. Each figure is for a different hesitation time. Curves are included for only part of the results, but these are sufficient to indicate over-all trends in the system.

It is obvious that a desirable system should have very few false alarms for a low alarm level. We see from the figures that the curves with both low false alarm rate and low alarm level are relatively insensitive to hesitation time. For a given hesitation time the curves show that a long averaging time is desirable. These qualitative results are just as expected. The noise amplitudes change fairly rapidly and the

high noise values, which are of short duration, are what trigger the alarm. Consequently the curves for short averaging time are affected by the hesitation time whereas the curves for long averaging time are only slightly changed. We note that for given averaging and hesitation times the curves for rectification by squaring are always better. We also see that the curves for high averaging times are fairly close together, which indicates that very little improvement will be obtained with averaging times greater than 10 seconds.

Figure 3.2.1 False Alarm Rate Flow Chart

3.3 Failure Rate - FAILRA

Description of System

The failure rate of the detection system is somewhat more difficult to obtain than the false alarm rate. Both signal and noise are required along with several signal to noise ratios. In the simulation of the system, the signal, scaled to give the required r.m.s. signal to noise ratio, and a block of noise are added together to give the input waveform. This is rectified and averaged and sent to the decision network where the alarm is announced if triggered. Figure 3.3.1 shows a flow chart of the computer program FAILRA (FAILure RAte), written by S. M. Simpson, with the system parameters used to obtain the failure rate.

The artificial microseismic noise used for the false alarm rate determination was used for the failure rate studies. For the signal it was necessary to pick out a representative bomb record with a fairly high signal to noise ratio so that the noise occurring with the signal was negligible compared to the microseismic noise added later. The record chosen was the vertical component of the signal from the Blanca shot recorded at 1398 km from the shot point (record 58, see Figure 3.3.2). Every other point of the first 600 points of this record were used thus giving 30 seconds of signal. The signal to noise ratios used were 1.78, 2.07, 2.37, 2.67, 2.97, 3.26, 3.56, 4.0, 4.45 and 5.34.

Failure Rate Studies

The system simulation was carried out for a hesitation time 1.5 seconds, both types of rectification, five averaging times, ten alarm

levels and all above signal to noise ratios. For each set of system parameters the detection was tried 101 times and the number of successes and failures noted. In graphs showing the results, Figures 3.3.2 and 3.3.3, the success probability is plotted against alarm level for different averaging times. Each figure gives the curves for a different signal to noise ratio. The complete set of results is not given since the success probabilities for signal to noise ratios greater than 3.26 are nearly all equal to one.

The curves show that the long averaging times are successful over a smaller range of alarm levels than the short averaging times for a given signal to noise ratio, and they stop being successful at an alarm level approximately equal to the signal to noise ratio. This is not surprising since the long averaging time will average the signal alarm but the short averaging time will permit high amplitude pulses to trigger an alarm.

The wider range of success for short averaging times is offset by the unavoidably large false alarm rate which was noted in the last section. The most generally effective system parameters must balance the false alarm rate and the failure rate. In Figure 3.3.4 the overall system effectiveness, taking into account both false alarms and failures, is shown as a graph of signal to noise ratio versus false alarm rate for .95 success probability. The curves were obtained, for a given averaging time, by picking off the alarm levels for .95 probability of success for all signal to noise ratiosand then turning to the false alarm rate curves and picking the false alarm rates for the previously obtained alarm levels. The

hesitation time was kept at 1.5 for these curves. We see that, for smaller signal to noise ratios, rectification by squaring and use of long averaging times are best. For a signal to noise ratio of 1.78 and 10 second averaging time gives about 10 false alarms per hour, and as the signal to noise ratio increases the false alarm rate drops sharply so that the system is quite good at high signal to noise ratios. The large number of false alarms make the system relatively ineffective for signal to noise ratios less than 1.78.

Figure 3.3.1 Failure to Detect Flow Chart

3.4 Automatic Detectior with Filtering

Band Pass Filters and the Signal to Moise Ratio

The last section showed the overall *effect* of the detection system and indicated that it was not particularly good for signal to noise ratios less than 1.78. If, however, the signal to noise ratio of the raw data can be improved by filtering, the usefulness of the detection system may be increased enormously. Examination of the spectra of the noise records (Figures 1.3.6 to 1.3.9) show that most of the power is between 0 and about .7 cps with a few spikes around 1.4 and 2.0 cps. The vertical records have less energy at the higher frequencies than do the horizontals. If we look at the noise spectra through a window from .7 to 1.8 cps we see only a very small percentage of the total power. The signal, on the other hand, has energy all through this band. If a reasonable percentage of the total signal power appears in this range of frequencies, a simple band pass filter will improve the signal to noise ratio quite a bit.

The programs FAILRA and FALARA can be used again to study the failure and false alarm rates by pre-filtering the signal and noise and the proceeding as in the last two sections. The flow charts in Figures 3.2.1 and 3.3.1 are applicable if "Noise Tape" is changed to "Filtered Noise Tape", and "Signal Tape" changed to "Filtered Signal Tape."

The signal to noise ratio improvement obtained by band pass filtering can be estimated from the spectra of the signal and the noise which are shown in Figure 3.4.1. If the signal and noise were initially scaled to have a one-to-one ratio, and were then band pass filtered to pass .8 to 1.7 cps

we see that nearly all the signal would remain and nearly all the noise would be removed. The signal to noise ratio improvement for this case would be a factor of about 5.

Effect of Filter on System Characteristics

It is important to see if the detection system characteristics change significantly when the filtered signal and noise both have band widths which are narrow compared to the band widths of the raw signal and noise. If the characteristics are relatively invariant with band width, the system can be said to be an energy detector and its effectiveness can be measured in terms of the signal to noise ratio improvement brought about by the filtering, and the system response to unfiltered signals.

The constancy of the system to change in band width was studied by band pass filtering the signal and noise separately and using the programs FAILRA and FALARA to obtain the false alarm rates and failure rates. The signal to noise ratios and alarm levels were computed from the amplitudes of the filtered noise and signal. The results of the study are shown in Figures 3.4.2 to 3.4.6. As in the last two sections, the false alarm rate is shown as a graph of the number of false alarms per hour against alarm level, the failure rate is given by the success probability as a function of alarm level, and the system's effectiveness is shown in a graph of the false alarm rate versus signal to noise ratio. In comparing these graphs to the ones for unfiltered data we see only slight differences. The trends are all the same and the actual curves, particularly those for longer averaging time, are approximately the same. The overall system effectiveness is also about the same for the filtered and unfiltered cases.

In view of the findings from the filtered and unfiltered cases we can say that the system is essentially an energy detector and that the curves obtained for the unfiltered case can be used for the filtered case if we can compute the signal to noise ratio improvement due to filtering. We have seen that for the particular signal and noise used this improvement was enormous and results in an extremely low false alarm rate. With the use of the curves which have been presented one can easily compute the range of signal amplitudes which can be detected reliably if the level of the background noise is known.

Figure 3.4.1 Signal and Noise Auto Spectra

4. SUMMARY

The seismic data from the Logan and Blanca underground nuclear shots, which was provided by the Air Force, has been digitized and, along with other data contributed by Dr. Bruce Bogert and by United Electro Dynamics, Inc., has been subjected to many computational experiments. In the first of these the microseism data was considered as a signal and the object was to infer the nature of the sources and the wave types involved. We saw that the amplitude of the microseisms at about .3 cps decreased with increasing distance from the coast, but the higher frequency did not display any regular trend. The suggestion is that the low frequency noise is of oceanic origin whereas the higher frequencies are more likely of local origin. It was not possible to pin down Rayleigh and Love waves with any degree of certainty, but their presence was not disproved. The failure of the wave type experiments is attributed to the complex nature of the microseisms. The model used cannot deal with many waves of the same frequency but different directions of travel.

The inadequacy of a simple deterministic model motivated a statistical treatment of microseismic noise. The microseisms are considered as a time series and, under the ergodic hypothesis, the relative constancy of the power density spectrum suggests that the time series is at least wide sense stationary. Studies on the microseism amplitudes show that their probability distribution is Gaussian and that they are dependent.

The power density spectra have been computed using the Daniell technique. The spectra are quite similar in structure over distances of

several hundred kilometers. There is a prominent peak at about .3 cps and in some cases there are peaks at 1.4 and 2 cps. The low frequency peak is interpreted as the high end of the oceanic microseism band which is cut off on the low end by the seismometer response. The higher frequencies are attributed to local causes.

Cross spectra of different components at the same station, like components from different stations, and array data have been computed. Again it is difficult to pick out individual wave types and it is not possible to follow waves from one station to another. This is again attributed to the complex structure of the noise.

Since the microseisms can be considered as a wide sense stationary time series, a mathematical description is possible. The moving summation and autoregressive representations are valid. With the assumption of an absolutely continuous spectral density the spectra can be factored and a minimum phase wavelet found for the moving average representation. The generating model for microseisms is then a white light series into a minimum phase system. Probability studies on the white light series obtained by convolving the inverse minimum phase wavelet with the original data show that the white light is essentially Gaussian and independent.

The minimum phase wavelet is also the predictive decomposition and can be used to compute the predictability of the microseisms. This technique of prediction is found to be faster and easier to handle than the mean aquare error method, although the Levinson technique is quite good. The predictability of the microseisms is not very great. About half the energy (50 percent reduction) can be predicted for one or two seconds and then the

decrease is fairly rapid. Multidimensional prediction does not give appreciably better results than the one dimensional or self prediction. Thus prediction as a method of noise reduction in the first motion interval is not particularly promising. We can say, however, that our linear prediction is the best we can do, and that non-linear operators will not help. This is because the microseisms can be considered to be generated by Gaussian white noise into a minimum phase system. In this case the white noise is independent and higher correlations give no information about the noise.

The mathematical model enables us to generate artificial microseisms so that long periods of continuous noise are available. These long noise series are required by the computer program which simulates a detection system. Noise above is needed to compute the false alarm rate and signal plus noise is needed for the failure rate. The system effectiveness is plotted on a graph of false alarms per hour as a function of signal to noise ratio for 95% detection probability (5% failure rate). The system characteristics are found to remain approximately constant when a band pass filter is introduced at the input. Thus the system will function as an energy detector and band pass filters can be used to improve the signal to noise ratio. Improvement of a factor of five was found for the particular signal, noise, and filter used.

The emphasis has been on the statistical approach throughout this thesis. There is, of course, plenty of room for additional work of both statistical and deterministic nature on the available data in the same general area as the present work. More complicated models which take into account several wave types and many directions of travel may be

introduced and fitted to the data. New techniques will enable multidimensional prediction studies with long operator lengths, and it would be interesting to compare results of this sort of study with the long operator studies of section 2.2.

The cross correlation results on the array data certainly do not represent exhaustive study. Multi-dimensional prediction experiments as well as summation of records with variable time lags would be quite interesting. Three component and array detection system studies by computer simulation would also prove useful.

APPENDIX A

WATER WAVE PROBLEM

Longuet-Higgins (1950) has shown that a standing wave can produce a second order pressure fluctuation which is unattenuated with depth and which has twice the time frequency of the standing wave. Hence it is possible to show that microseisms could be produced in deep water even though the linear theory tells us that the pressure fluctuations die off exponentially with depth. In order that there be enough energy transmitted to the bottom, there must be a "patch" of standing waves which is coherent over a fairly large area and the patch must not move because the motion will cause the pressure oscillations to average out to zero. Therefore the standing waves must meet nearly head on. In fact, it has been shown (Kenyon, 1961) that if the travelling waves meet at an angle Θ ($\Theta = O$, head on), the average pressure on the bottom must be multiplied by $\exp(-2h \times \sin \Theta)$ where h is the depth of the water, \aleph the wave number and Θ the angle between the travelling wave fronts.

There is a special case of interest when the waves meet at such an angle that the "patch" of standing waves moves with a velocity, V_S , equal to the velocity of propagation of Rayleigh waves, V_r , in the medium. The travelling waves, with velocity V_t , must meet at an angle Θ such that

$$V_t = V_F / sin(\theta/2)$$

In this case there is essentially a resonance and strong microseisms

could build up if the "patch" of water waves remains coherent for a long enough time.

One of the problems considered by Longuet-Higgins was the two dimensional compressible case of a layer of water with a rigid lower boundary and a standing wave at the surface. His solution requires the small parameter expansion technique of handling non-linear problems and illustrates the frequency doubling effect as well as organ pipe resonance. The problem which will be treated here is a good deal simpler in that it considers the incompressible transient problem. This is done to illustrate the energy swapping to the sum and difference frequencies of all frequencies present and uses a representation for non-linear problems devised by DeVorkin (1963). DeVorkin's scheme is particularly useful in that the solution is in terms of kernels which do not depend on the initial conditions. Therefore once the kernels have been found for a given geometry the solution of many problems with different initial conditions can readily be found. The method is also useful for statistical initial conditions.

We consider the two dimensional transient problem of an incompressible irrotational fluid layer of constant thickness, h, over a rigid half space with arbitrary initial conditions on the velocity and surface shape. We assume a velocity potential φ . The velocity is therefore $\vec{\nabla} = -\vec{\nabla} \cdot \vec{\varphi}$. The continuity equation is then $\nabla^2 \cdot \vec{\varphi} = 0$ and the equation of motion is

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{v})\vec{v} + g\vec{n} + \dot{\vec{v}} \vec{\nabla} P = 0$$

where Λ is the gravitational potential, β is the density (assumed constant) and β the pressure. We factor out a ∇ and obtain Bernoulli's equation

$$-\frac{\partial e}{\partial q} + \nabla \psi \cdot \nabla \psi + g \mathcal{F} + \frac{\partial e}{P} = 0$$

where \mathcal{F} is negative downward and p=o at the surface $\mathcal{F}^{=} \mathcal{J}^{-}$. The free surface condition is

$$\frac{\partial \Psi}{\partial x} \frac{\partial \eta}{\partial x} - \frac{\partial \Psi}{\partial y} + \frac{\partial \eta}{\partial t} = 0$$
 at $y = \eta(x, t)$ (A-1)

Bernoulli's equation becomes at 7=0

$$-\frac{\partial \varphi}{\partial t}\Big|_{z=\eta} + \left(\frac{\partial \varphi}{\partial x}\right)^{2}\Big|_{z=\eta} + \left(\frac{\partial \varphi}{\partial z}\right)^{2}\Big|_{z=\eta} + g\eta = 0 \quad (A-2)$$

The solution to the continuity equation which satisfies the condition $\frac{\partial f}{\partial z} = 0$ at z = -h is $f(x, z, t) = \sum_{m=-M}^{M} \Phi_m(t) [e^{-mz} + e^{amh}e^{mz}] e^{-imx}$ (A-3)

where we have assumed a discrete set of frequencies. DeVorkin's representation scheme applies to total differential equations and hence to the Fourier transform over the spacial frequencies of the boundary equations.

The initial conditions are

for
$$\varphi$$
: $F(m, 0)$, $m = -M$ to M
for γ : $N(m, 0)$, $m = -M$ to M

where F(m,t) and N(m,t) are the Fourier transforms of f(t) and $\gamma(t)$. We combine these into a single variable

$$\Psi_1 = F(-m, 0), \Psi_2 = N(-m, 0), \Psi_3 = F(-m+1, 0), \Psi_4 = N(-m+1, 0), etc.$$

The representation scheme is then:

.

$$F(m,t) = \sum_{\alpha} K_{\alpha}^{m} \Psi_{\alpha} + \sum_{\alpha \beta} K_{\alpha \beta}^{m} \Psi_{\alpha} \Psi_{\beta} + \sum_{\alpha \beta \delta'} K_{\alpha \beta \delta'} \Psi_{\alpha} \Psi_{\beta} \Psi_{\beta'} + \dots$$

$$N(m,t) = \sum_{\alpha} L_{\alpha}^{m} \Psi_{\alpha} + \sum_{\alpha \beta} L_{\alpha \beta}^{m} \Psi_{\alpha} \Psi_{\beta} + \sum_{\alpha \beta \delta'} L_{\alpha \beta \delta'} \Psi_{\alpha} \Psi_{\beta} \Psi_{\delta'} + \dots$$

which can be combined to

$$\Psi_{n}(t) = \sum_{\alpha} R_{\alpha}^{n} \Psi_{\alpha} + \sum_{\alpha \beta} R_{\alpha\beta}^{n} \Psi_{\alpha} + \sum_{\alpha \beta} R_{\alpha\beta}^{n} \Psi_{\alpha} + \sum_{\alpha \beta} R_{\alpha\beta}^{n} \Psi_{\alpha} + \sum_{\alpha\beta} R_{\alpha\beta}^{n} \Psi_{\alpha} + \sum_{\alpha$$

where

$$\Psi_{n}(t) = F(\frac{n-2m-1}{2}, t) \quad \text{for } n \text{ odd}, \ge 1$$

$$\Psi_{n}(t) = N(\frac{n-2m-2}{2}, t) \quad \text{for } n \text{ even}, \mathbb{Z}_{2} . \quad (A-5)$$

The R's are thus system functions independent of initial conditions.

The boundary equations (A-1) and (A-2) apply at 3 = 7 but since

 η is unknown the equations must be expanded in a Taylor series about $\eta = 0$ in powers of η . Expanding to second order only

$$- f_{t} - \frac{\partial f_{t}}{\partial y} \eta + f_{x}^{2} + f_{y}^{2} + q \eta = 0 \qquad (A-6)$$

$$\Psi_{x} \gamma_{x} - \Psi_{z} - \frac{\partial \Psi_{z}}{\partial z} \gamma - \gamma_{t} = 0 \qquad (A-7)$$

where the subscripts denote differentiation.

We take the Fourier transform of these equations to obtain

$$\dot{F}(m) = i \sum_{p} P(p) \dot{F}(p) N(m-p) - \sum_{p} PF(p) (m-p) F(m-p) + -\sum_{p} P(p) F(p) (m-p) C(m-p) F(m-p) + q N(m) = 0 \quad (A-8)$$

for equation (A-6) and a similar expression for equation (A-7). In this transformation we have used the fact that multiplication in one domain is convolution in the other, and have set the transform of $\frac{\partial \Psi}{\partial \chi}$ equal to C(m) F(m). The dots represent time differentiation. We note that equation (A-8) contains more than one term with a time derivative. Poincare's theorem on small parameter expansions does not guarantee a solution unless the right-hand side contains not time derivatives. We can, however, consider all the time derivative terms as an operator, H , operating on F(m) and thep show that the operator $H = J - \alpha$ can be inverted if α is small. That is, if the operator H cannot in general be inverted, we must demand that it can be expressed as J-Q where Q is small enough that the Neumann series resulting from the inversion converges. Hence, for many cases we must impose the restriction that the non-linear terms be small compared to the linear ones.

Since H can be inverted we go ahead and use the representation scheme equating terms of like order and remembering that the equations must hold for arbitrary initial conditions, Ψ_{A} .

The first order equations are from equations (A-6), (A-7) and (A-8), using the notation introduced in equations (A-4) and (A-5),

$$\dot{R}_{\alpha}^{n} - g R_{\alpha}^{n+1} = 0$$

$$\dot{R}_{\alpha}^{n+1} + \left(\frac{n-J}{2}\right) C\left(\frac{n-J}{2}\right) R_{\alpha}^{n} = 0 \qquad ; J = 2M + 1$$

These can be solved to give

$$R_{x}^{n} = Q_{+} \exp[i\gamma(n, J)t] + Q_{-} \exp[-i\gamma(n, J)t]$$

for n odd, where

$$\begin{split} & \mathcal{X}(n, J) = \sqrt{q} \left(\frac{n-J}{2} \right) \mathbb{C} \left(\frac{n-J}{2} \right) \\ & \mathcal{Q}_{+} = \frac{q+i \mathcal{X}(n, J)}{2 \mathcal{X}(n, J)} \int_{n \times I} \\ & \mathcal{Q}_{-} = \frac{-q-i \mathcal{X}(n, J)}{2 \mathcal{X}(n, J)} \int_{n \times I} \\ \end{split}$$

where $\int_{n_{N}}$ is the Kronecker delta, and

$$R_{\alpha}^{n+1} = b_{+} exp[i\delta(n,j)t] + b_{-} exp[-i\delta(n,j)t]$$

for h odd , where

$$b_{+} = \frac{-\frac{n-j}{2}C(\frac{n-j}{2}) - \gamma(n, j)}{2\gamma(n, j)} \int_{n+j, \alpha}^{\infty} d_{n+j, \alpha}$$

$$b_{-} = \frac{h-J}{2} C(\frac{n-J}{2}) + \delta(h,J)}{2 Y(h,J)} \int_{n+i,N}$$

The above equations for R_{α}^{n} and R_{α}^{n+1} are correct for $n \neq J$. For n = J, R_{α}^{n} and R_{α}^{n+1} are zero for all t.

The second order equations are

$$\sum_{kl} \hat{R}_{kl}^{n} \Psi_{k} \Psi_{l} - q \sum_{kl} \hat{R}_{kl}^{n+1} \Psi_{k} \Psi_{l} = \sum_{p=1}^{N-1} \frac{p-J}{2} \left(\frac{p-J}{2}\right) \sum_{k} \hat{R}_{k}^{p} \Psi_{k} \sum_{k} \hat{R}_{k}^{n-p} \Psi_{k}$$

$$+ \sum_{p=1}^{N-1} \left(\frac{n-J}{2}\right) \left(\frac{n-p}{2}\right) \left(1 - C\left(\frac{n-p}{2}\right)\right) C\left(\frac{n-J}{2}\right) \sum_{k} \hat{R}_{k}^{p} \Psi_{k} \sum_{k} \hat{R}_{k}^{n-p+1} \Psi_{k}$$
(A-9)
where N: 4M + 2 and N and P are odd,

$$\sum_{k,j} \dot{R}_{k,j}^{n+i} \dot{\mathcal{Y}}_{k} \dot{\mathcal{Y}}_{l} + \frac{n-J}{2} C\left(\frac{n-J}{2}\right) \sum_{k,l} R_{k,l}^{n} \dot{\mathcal{Y}}_{l} \dot{\mathcal{Y}}_{l} = -\sum_{p=1}^{N-j} \left(\frac{p-J}{2}\right) \left(\frac{n-J}{2}\right) \sum_{k} R_{k}^{p} \dot{\mathcal{Y}}_{k} \sum_{k} R_{k}^{n-p} \dot{\mathcal{Y}}_{k}$$

The equations must hold for arbitrary \mathcal{Y}_{N} so that

$$\dot{R}_{\kappa,\ell}^{n} - q \cdot R_{\kappa,\ell}^{n+1} = \sum_{P=1}^{N-1} \left(\frac{P-J}{2} \right) C \left(\frac{P-J}{2} \right) \left[\dot{R}_{\kappa}^{P} R_{\ell}^{n-P} + \dot{R}_{\ell}^{P} R_{\kappa}^{n-P} \right] + \sum_{P=1}^{N-1} \left(\frac{n-J}{2} \right) \left(\frac{n-P}{2} \right) \left(1 - C \left(\frac{n-P}{2} \right) \right) C \left(\frac{P-J}{2} \right) \left[R_{\kappa}^{P} R_{\ell}^{n-P+1} + R_{\ell}^{P} R_{\kappa}^{n-P+1} \right]$$

and

$$\hat{R}_{\kappa,l}^{n+1} + \left(\frac{n-J}{2}\right) C \left(\frac{n-J}{2}\right) R_{\kappa,l}^{n} = -\sum_{P=1}^{N-1} \left(\frac{P-J}{2}\right) \left(\frac{n-J}{2}\right) \left[\hat{R}_{\kappa}^{P} R_{p}^{n-P} + \hat{R}_{l}^{P} R_{\kappa}^{n-P}\right]$$
(A-11)

The convolutions are not hard since R^h_q is diagonal. The last two equations may be written

$$\dot{R}_{\kappa\ell}^{n} - g R_{\kappa\ell}^{n+1} = T_{\kappa\ell}^{n}$$

$$\dot{R}_{\kappa\ell}^{n+1} + \left(\frac{n-J}{2}\right) C\left(\frac{n-J}{2}\right) R_{\kappa\ell}^{n} = T_{\kappa\ell}^{n+1} \qquad n \quad odd$$

We write this as a matrix equation

$$\begin{bmatrix} \mathbf{R}_{\kappa \ell}^{n} \\ \mathbf{R}_{\kappa \ell}^{n+1} \end{bmatrix} + \mathbf{A} \begin{bmatrix} \mathbf{R}_{\kappa \ell}^{n} \\ \mathbf{R}_{\kappa \ell}^{n+1} \end{bmatrix} = \begin{bmatrix} \mathbf{T}_{\kappa \ell}^{n} \\ \mathbf{T}_{\kappa \ell}^{n+1} \\ \mathbf{T}_{\kappa \ell}^{n+1} \end{bmatrix}$$

where A is the matrix

$$A = \begin{bmatrix} 0 & -9\\ \left(\frac{n-1}{2}\right) C\left(\frac{n-1}{2}\right) & 0 \end{bmatrix}$$

The solution to the equation is, then, +

$$\begin{bmatrix} R_{\kappa\ell}^{n} \\ R_{\kappa\ell}^{n+1} \end{bmatrix} = \int e^{-A(t-\tau)} \begin{bmatrix} T_{\kappa\ell}^{n} \\ T_{\kappa\ell}^{n+1} \end{bmatrix} d\tau$$

Since $R_{\kappa_l}^n$, $R_{\kappa_l}^{n+1} = 0$ at t = 0. This is simplified considerably if A can be diagonalized. If U is the transformation matrix for this diagonalization then $R_{\kappa_1}^n = \bigcup S_{\kappa_1}^n$ and

$$\bigcup \begin{bmatrix} \dot{S}_{\kappa\varrho}^{n} \\ \dot{S}_{\kappa\varrho}^{n+i} \end{bmatrix} + A \bigcup \begin{bmatrix} S_{\kappa\varrho}^{n} \\ S_{\kappa\varrho}^{n+i} \end{bmatrix} = \begin{bmatrix} T_{\kappa\varrho}^{n} \\ T_{\kappa\varrho}^{n+i} \\ T_{\kappa\varrho}^{n+i} \end{bmatrix}$$

multiplying by
$$U^{-1}$$

$$\begin{bmatrix} \dot{S}_{\kappa,l}^{n} \\ \dot{S}_{\kappa,l}^{n+1} \end{bmatrix} + U^{-1}A \cup \begin{bmatrix} S_{\kappa,l}^{n} \\ S_{\kappa,l}^{n+1} \end{bmatrix} = U^{-1}\begin{bmatrix} T_{\kappa,l}^{n} \\ T_{\kappa,l}^{n+1} \\ T_{\kappa,l}^{n+1} \end{bmatrix}$$

where $U^{-1}AU = D$ is diagonal.

Then

$$\begin{bmatrix} S_{\kappa,l}^{n} \\ S_{\kappa,l}^{n+1} \end{bmatrix} = \int_{0}^{t} e^{-D(t-\tau)} U^{-1} \begin{bmatrix} T_{\kappa,l}^{n} \\ T_{\kappa,l}^{n+1} \end{bmatrix} d\tau$$

and

$$\begin{bmatrix} \mathsf{R}_{\kappa q}^{n} \\ \mathsf{R}_{\kappa q}^{n+1} \end{bmatrix} = \int_{0}^{t} \bigcup e^{-D(t-\tau)} \bigcup^{-1} \begin{bmatrix} \mathsf{T}_{\kappa q}^{n} \\ \mathsf{T}_{\kappa q}^{n+1} \end{bmatrix} d\tau$$

For the matrix AU and U⁻¹ are

$$U = \begin{bmatrix} -i\sqrt{\frac{(n-T)C(\frac{n-T}{2})}{\frac{n}{2}}} & i\sqrt{\frac{(n-T)C(\frac{n-T}{2})}{\frac{n}{2}}} \\ -i\sqrt{\frac{(n-T)C(\frac{n-T}{2})}{\frac{n}{2}}} & i\sqrt{\frac{(n-T)C(\frac{n-T}{2})}{\frac{n}{2}}} \end{bmatrix}$$
the term $e^{-D(t-T)}$ becomes

$$\begin{bmatrix} exp(-D_{n,h}(t-T)) & O \\ O & exp(-D_{n+1,n+1}(t-T)) \\ O & exp(-D_{n+1,n+1}(t-T)) \end{bmatrix}$$
and the solution for $R_{n_{\ell}}^{n}$, $n \neq J$, $J+1$ is then

$$\begin{bmatrix} R_{n_{1}}^{n} \\ -i\sqrt{\frac{n}{(n-T)C(\frac{n-T}{2})}} (x+y) & -x-y \end{bmatrix} \begin{bmatrix} T_{n_{\ell}}^{n} \\ T_{n_{\ell}}^{n} \end{bmatrix} d\tau$$

where

$$X = exp(i Y(n)(t - \tau))$$

$$Y = exp(-i Y(n)(t - \tau))$$

For the zero spacial frequency, which is the frequency of interest for deep water microseism generation, $n: J, J \in I$, we have from equation (A-11)

$$\dot{R}_{\kappa\ell}^{J+1} = 0$$
 , $R_{\kappa\ell}^{J+1} = 0$

In equation (A-10) we note a symmetry in k and l so that we need only consider half of the right-hand side from which we determine half the solution for $R^T k l$. We call this half of the solution $R^{'J}_{k} l$ and the entire solution is thus

$$R_{\kappa l}^{J} = R_{\kappa l}^{\prime J} + R_{l \kappa}^{\prime J}$$

We can determine C(m) from equation (A-3) by setting z=0 after differentiation.

$$C(m) = tanh(mh)$$

The solution
$$\mathbf{R}'_{\mathbf{K}}$$
 is then

$$\mathbf{R}'_{\mathbf{K}} = \int_{0}^{1} \left\{ \frac{\mathbf{K} - \mathbf{J}}{2} \tanh\left(\frac{\mathbf{K} - \mathbf{J}}{2} \mathbf{h}\right) \left[\mathbf{R}'_{\mathbf{K}} \mathbf{R}'_{\mathbf{J}} \right] \int_{\mathbf{J}, \mathbf{J} - \mathbf{K}} + \frac{\mathbf{K} - \mathbf{J}}{2} \left(\left[(1 + \tanh\left(\frac{\mathbf{K} - \mathbf{J}}{2} \mathbf{h}\right)\right) \tanh\left(\frac{\mathbf{J} - \mathbf{K}}{2} \mathbf{h}\right) \right] \left[\mathbf{R}'_{\mathbf{K}} \mathbf{R}'_{\mathbf{J}} \right] \int_{\mathbf{J}, \mathbf{J} - \mathbf{K} + 1} \left\{ d\mathcal{T} \right\} d\mathcal{T}$$

where the R_{N}^{s} are functions of γ . We substitute in for the and integrate to obtain terms of the form:

$$R_{\kappa,l}^{'J} = \frac{\kappa - J}{2} \tanh\left(\frac{\kappa - J}{2}h\right) \int_{J, J-\kappa}^{\gamma} \frac{\chi(\kappa)}{2} \left\{ \frac{\alpha + b_{-} \exp\left[i\left(\delta(\kappa) + \delta(J-\kappa-i)\right)t\right]}{\chi(\kappa) + \delta(J-\kappa-i)} + \frac{\alpha - b_{+} \exp\left[i\left(\delta(\kappa) + \chi(J-\kappa-i)\right)t\right]}{\chi(\kappa) - \chi(J-\kappa-i)} + \frac{\alpha - b_{+} \exp\left[i\left(\delta(\kappa) + \chi(J-\kappa-i)\right)t\right]}{\chi(\kappa) - \chi(J-\kappa-i)} + \frac{\alpha - b_{+} \exp\left[i\left(\delta(\kappa) + \chi(J-\kappa-i)\right)t\right]}{\chi(\kappa) - \chi(J-\kappa-i)} + \frac{\alpha - b_{+} \exp\left[i\left(\delta(\kappa) + \chi(J-\kappa-i)\right)t\right]}{\chi(\kappa) - \chi(J-\kappa-i)}$$

$$+ \frac{a - b_{-} \exp[i(\delta(\kappa) + \delta(J - \kappa - i)/t]]}{\delta(\kappa) - \delta(J - \kappa - i)} + \operatorname{const.} + other$$

$$+ \operatorname{const.} + other$$

$$+ \operatorname{const.} + other$$

$$+ \operatorname{const.} + other$$

To see what frequencies are present we look at the frequency of one term, e.g. the first term above. This term, \mathcal{T}_{i} is

$$T_{i} = f_{i} \exp \left[i \left(Y(\kappa) - Y(J-\kappa-i) \right) \right] t$$

where $\chi(\kappa)$ is

$$\chi(\kappa) = \sqrt{\frac{\kappa - J}{2}} g \tanh\left(\frac{\kappa - J}{2}h\right)$$

We assume that ${f h}$ is large (deep water) and we have

$$Y(\kappa) \simeq \pm \frac{\kappa - J}{2} \sqrt{gh}$$

and

$$\gamma(J-\kappa-1) \simeq \pm \frac{\kappa+1}{2}\sqrt{2h}$$

The frequencies present are then

$$\omega_{\kappa} = \chi(\kappa) - \chi(J - \kappa - i) = \left(\pm \frac{\kappa - J}{2} \pm \frac{\kappa + i}{2}\right) \sqrt{gh}$$

which are the sum and difference frequencies of all frequencies present. If we start with just a few frequencies we generate many more due to the nonlinearity of the problem. A study of the energy flow from one frequency to another is possible with the representation scheme used, but is quite tedious. We have shown here only part of the second order kernel, $R^{n}_{\alpha\beta}$ which is itself quite cumbersome, and the higher order kernels are even worse. The only saving grace is that once the kernels are found the problem is solved for arbitrary initial conditions. APPENDIX B

NORMALITY TEST FLOW GRAPH

Input - X(I) series, I=1,LX

Compute mean

$$\chi MEAN = \sum_{I=1}^{LX} \dot{\chi}(I) / LX$$

Compute standard deviation

STDEV =
$$\left[\sum_{I=1}^{LX} (X(I) - X MEAN)^2 / LX\right]^{1/2}$$

Define NRANGE

NRANGE = \sqrt{LX}

(This is an arbitrary definition. NRANGE should be small enough so that at least 5 values of X(I) fall in each range,) Find the X values which divide the normal density with mean XMEAN and standard deviation STDEV into NRANGE ranges of equal probability. Use SUBROUTINE NOINT2. Returns LRANGE(=NRANGE-1) values for range limits, RANGE(1).

First range is (-00, RANGE(1)), 1st range is (RANGE(LRANGE),00).

Count number of values falling in each range. Use SUBROUTINE FRQCT2. Returns fixed point count of number in each range in vector ICOUNT(I). Chi Square test

P=1/NRANGE=probability of falling in any range.

$$\chi^{2} = \sum_{I=1}^{NRANGF} (ICOUNT(I) - P + LX)^{2} / (P + LX)$$

Number of degrees of freedom=NRANGE-3. Use SUBROUTINE CHISQR.

Compute probability of exceeding χ^2 . Use SUBROUTINE KIINT1.

See APPENDIX G for program listings

APPENDIX C

EXPANSION OF EMPIRICAL PROBABILITY DENSITY FUNCTIONS ABOUT THE NORMAL DENSITY IN TERMS OF MOMENTS

It is possible to expand a probability density about the normal density if the moments higher than the mean and variance are known. It is not, however, guaranteed that the expansion will converge in all cases. If F(x) is the probability distribution, and f(x),

$$f(x) = \frac{dF(x)}{dx}$$

is the density and $\psi(x)$ is the normal density,

$$\psi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

then the expansion in terms of the derivatives of the normal density, the Edgeworth series, is

$$f(x) = C_0 f(x) + \frac{C_1}{1!} f'(x) + \frac{C_2}{2!} f'(x) + \dots \qquad (c-1)$$

and will converge if the integral

$$\int_{-\infty}^{\infty} e^{-\chi^2/4} dF(x)$$

converges and if f(x) is of bounded variation in $(-\infty, \infty)$ (Cramer, 1946). For our purposes we need not worry too much about the convergence. We only wish to see if we can approximate the distribution fairly well with just a few terms of the expansion. It is now possible to obtain the coefficient C_n in terms of the moments. Remembering that the normal density, $\Psi(x)$ is the "generating function" for Hermite polynomials

$$\left(\frac{d}{dx}\right)^{n} e^{-\frac{x^{2}/2}{2}} = (-1)^{n} H_{n}(x) e^{-\frac{x^{2}}{2}}$$
(C-2)

where $H_n(x)$ is the nth order Hermite polynomial, and that the Hermite polynomials are orthagonal with respect to $\Psi(x)$

$$\int_{-\infty}^{\infty} H_{n}(x) H_{n}(x) \Psi(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} H_{m}(x) H_{n}(x) e^{-\frac{x^{2}}{2}} dx$$
$$= \begin{cases} n! & \text{for } m=n \\ 0 & \text{for } m\neq n \end{cases}$$
(C-3)

we can now solve for the Cn . Substituting $\Psi_{(X)}^{(n)} = (-1)^n H_n(X) \Psi(X)$ into equation (C-1) we have

$$f(x) = C_0 H_0(x) + C_1 \frac{(-1)}{1!} H_1(x) + C_2 \frac{(-1)^2}{2!} H_2(x) + \dots + \frac{C_n(-1)^7}{n!} H_n(x)$$
(C-4)

Multiplying both sides by $H_m(x)$ and integrating we have, because of (C-3),

$$C_{m} = (-1)^{m} \int_{-\infty}^{\infty} H_{m}(x) f(x) dx$$
 (C-5)

Since $H_m(x)$ is a polynomial and f(x) is a probability density

the integral is simply a sum of moments. The moments (central moments) are $\mathcal{M}_{\mathbf{K}}$ where

$$\mathcal{M}_{\kappa} = \int_{-\infty}^{\infty} (\gamma - m)^{\kappa} f(\gamma) d\gamma \qquad (c-6)$$

and m_1 is the mean. The unit normal density (zero mean, unit standard deviation) was assumed in this derivation so that f(x) must be the function of the standardized variable $\frac{\int -m_1}{\nabla}$ where \mathcal{T} is the standard deviation. This means that the $r - \tau h$ moment of the standardized variable is $\frac{\mathcal{M}_r}{\nabla r}$. Hence $C_0 = 1$, $C_1 = C_2 = 0$, $H_3(x) = x^3 - 3x$, and so from (C-5), $C_3 = -\frac{\mathcal{M}_3}{\mathcal{T}^3}$ The rest of the C_n may be obtained from the $H_n(x)$ in the same manner. Thus

$$C_{4} = \frac{\mathcal{M}_{4}}{\sigma^{4}} - 3$$

$$C_{5} = -\frac{\mathcal{M}_{5}}{\sigma^{5}} + 10 \frac{\mathcal{M}_{3}}{\sigma^{3}}$$

$$C_{6} = \frac{\mathcal{M}_{6}}{\sigma^{6}} - 15 \frac{\mathcal{M}_{4}}{\sigma^{4}} + 30$$

The moments may be estimated from the data by averaging so that the integral (A-6) need not be performed.

The computation of the approximations using up to C_0 has been programmed by Roy Greenfield. (See SUBROUTINE PRBFIT in APPENDIX G.) The expressions for the approximations which must be evaluated are

$$f_{1}(x) = \left[1 + \frac{\mathcal{M}_{3}}{6\sigma^{3}} (x^{3} - 3x) \right] \Psi(x)$$

$$f_{2}(x) = f_{1}(x) + \left[\left(\frac{\mathcal{M}_{4}}{24\sigma^{4}} + \frac{1}{8} \right) (x^{4} - 6x^{2} + 3) \right] \Psi(x)$$

$$f_{n}(x) = f_{n-1}(x) + \left[\frac{C_{n}}{n!} (-i)^{n} H_{n}(x) \right] \Psi(x)$$

Care must be taken that the χ^{1} s are the values of the standardized variables.

APPENDIX D

INDEPENDENCE AND DEPENDENCE MEASURES

Poker Count Test for Independence

Given a series of equally likely integers from zero to nine it is possible, under the assumption that the numbers are independent, to compute the probable number of non-overlapping groups of five numbers which fall into each of eight categories. These categories are similar to those of a poker game where each group of five is considered a hand and each hand has a certain value. The analogy to the poker game is not completely accurate since the "card" values are 0 to 9 rather than ace to king, and it is possible to have five of a kind. Also the series, which takes the place of the card deck, has many more than 52 numbers in it, and removal of a number does not decrease its later probability of occurrence. The eight categories or hand types with their respective probabilities are (Durand, 1962, personal communication):

Hand	<u>Probability</u>
Bust	.2952
l pair	•5040
2 pair	.1080
3 of a kind	•0720
Full house	•0090
Straight	•0072
4 of a kind	.0045
5 of a kind	.0001

These probabilities are exact. The decimals terminate at the fourth place. In assigning a hand to one of the categories the order of the digits within the group of five does not matter.

193

If the series of numbers is independent, then it is expected that the number of each type of hand will be approximately the probability for that hand times the total number of hands. Both this test and the mean square contingency test require a mapping of the given series into an integer series. The poker count test requires that the ten digits have equal probability. Hence the probability density of the original series is transformed into a rectangular density and the original series is mapped into an integer series with values from zero to nine with each integer having probability .1. Figure D-4 shows the steps necessary in the poker count test and APPENDIX G contains program listings.

Transformation of Probability Densities

Suppose $P_{\mathcal{F}}(X) = f(X)$ is the probability density (frequency function) of a random variable \mathcal{F} . The distribution function is then

$$Q(x) = \int_{-\infty}^{x} f(y) dy = F(x)$$

The change of variable, y = F(x) is known as the "probability transformation" (Wadsworth and Bryan, 1960).

The probability density $P_{a}(y)$ can be found as follows:

$$P_{y}(y) dy = P_{g}(x) dx$$

$$P_{y}(y) = P_{g}(x) \frac{dx}{dy} = \frac{f(x)}{f(x)} = 1$$

The variable \int is thus rectangularly distributed and, since F(x) is defined from 0 to 1, $O \leq y \leq I$.

For the joint distribution, $P_1, q_2(X_1, X_2)$, using the same transformation, we have

$$P_{f_1,f_2}(x_1,x_2) = P_{f_1}(x_1) P_{f_2}(x_1,x_2)$$

where $P_{\gamma_2|\gamma_1}(X_2|X_1)dX_1dX_2$ denotes the compound probability that $X_2 \langle \gamma_2 \langle X_2 + dX_2 \rangle$ given that $X_1 \langle \gamma_1 \langle X_1 + dX_1 \rangle$. Using the same transformation, Y = F(X), we have

$$P_{\eta,\eta_2}(y_1,y_2) dy_1 dy_2 = P_{\xi_1}(x_1) P_{\xi_2}(x_2|x_1) dx_1 dx_2$$

The Jacobian for this transformation, ${\bm J}$, gives

$$J = \begin{bmatrix} \frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}} \\ \frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{f(x)} & 0 \\ 0 & \frac{1}{f(x)} \end{bmatrix}$$
$$J = \begin{bmatrix} \frac{1}{f(x)} \end{bmatrix}^{2}$$
$$F_{\eta,\eta_{2}}(y_{1},y_{2}) = \frac{P_{f_{1}}(x_{1})P_{f_{2}}(f(x_{2}|x_{1}))}{[f(x)]^{2}}$$
$$P_{\eta,\eta_{2}}(y_{1},y_{2}) = \frac{P_{f_{2}}(f(x_{2}|x_{1}))}{[f(x)]^{2}}$$

If
$$f_1$$
 and f_2 are independent then
 $P_{f_2}|f_1(X_2|X_1) = P_{f_2}(X_2) = f(X)$
and
 $P_{\gamma_1}\gamma_2(y_1, y_2) = 1$

The result is that if γ_1 and γ_2 are independent, then γ_1 and γ_2 are also independent, and if γ_1 and γ_2 are dependent, then γ_1 and γ_2 are also dependent. The compound probabilities will differ by a factor equal to $\left|\frac{1}{f(x)}\right|$

$$P_{\eta_{2}|\eta_{1}}(y_{2}|y_{1}) = P_{\eta_{2}|\eta_{1}}(x_{2}|x_{1}) \left| \frac{1}{f(x)} \right|$$

ł

If \int_{1}^{7} and \int_{2}^{7} are independent, then all of the higher probability densities for η are rectangular. An extension of this can easily be made for any number of random variables, and in particular for five variables as is necessary for the poker count test.

Mean Square Contingency and Dependency Measure

The measure of the degree of dependence of two variables which has been used is related to the mean square contingency (Cramer, 1951).

Suppose that two variables, f and γ have densities $P_{r}(X_{i})$ and $P_{r}(Y_{j})$ and a joint density $P_{r}\gamma(X_{i}, Y_{j})$ where X_{i} and Y_{j} are discrete and $i = 1, ..., N_{j} = 1, ..., M_{i}$

Hence

$$\sum_{i} P_{\xi} \gamma(x_i, y_j) = P_{\gamma}(y_j)$$
$$\sum_{j} P_{\xi} \gamma(x_i, y_j) = P_{\xi}(x_i)$$

The mean square contingency, φ^2 is defined as

$$\varphi^{2} = \sum_{i} \sum_{j} \frac{\left(P_{f} \gamma(x_{i}, y_{j}) - P_{f}(x_{i}) P_{\gamma}(y_{j})\right)^{2}}{P_{f}(x_{i}) P_{\gamma}(y_{j})}$$

$$= \sum_{i} \sum_{j} \frac{\left[P_{\xi\gamma}(x_{i}, y_{j})\right]^{2}}{P_{\xi}(x_{i}) P_{\gamma}(y_{j})} - 1$$

If and only if the variables are independent

$$P_{f\gamma}(x_i, y_j) = P_{f}(x_i) P_{\gamma}(y_j)$$

and $\psi^2 = 0.$

Since

$$P_{q}\eta(x_i, y_i) = P_{q}(x_i) P_{\eta|q}(y_i|x_i) = P_{\eta}(y_i) P_{q|\eta}(x_i|y_j)$$

and all probabilities are less than or equal to one,

$$P_{g\gamma}(x_i, y_j) \leq \begin{cases} P_{\gamma}(y_j) \\ P_{g}(x_i) \end{cases}$$

thus

$$\sum_{i,j}^{N,M} \frac{P_{i}^{2} \gamma(x_{i}, y_{j})}{P_{i}(x_{i}) P_{i}(y_{j})} \leq q$$

and

where Q_{i} is the smaller of N and M, the limits of the sumation. Therefore the quantity $\frac{q^2}{(q-1)}$, which we will call the dependency, may be used as a standard measure of dependence since

$$0 \leq \frac{\psi^2}{q-1} \leq 1$$

There is, of course, some difficulty in using this or any measured dependence on numerical data. Numbers generated by independent random processes will not in general give a zero value for the dependency. The question arises, therefore, as to the interpretation of the number resulting from the dependency test. Since it is uncertain how large the dependency can be and the series still remain independent, a number of tests were run on independent random numbers. The numbers were obtained from the Rand Corporation on punched cards and are the same as the numbers which appear in the book, 1,000,000 Random Digits (Rand Corporation 1958). These numbers were generated by an independent process.

The numbers were run through both the poker count test and the dependency test. Three different lengths of series were used, 3000, 2500 and 2000, and each was repeated 8 times so that a mean and cariance could be computed. The results of the dependency test are shown in Figure D-1. Straight lines have been dotted in to indicate the mean and standard deviation changes with series length. There is no reason to suspect that their values actually fall on a straight line, in fact one would suspect that the line would curve off concave upward on the right and concave downward to the left. These tests were carried out for a lag of one, that is the random variables took on values of χ_{η} and $\chi_{\eta+1}$ of the series of digits.

Since it is important that the denominator not be zero, the series of real data were mapped into integer series from 1 to 10 with rectangular densities. This was, of course, not necessary with the Rand random digits, since they were already equally likely integers. However, one was added to each Rand digit so that the series would be from 1 to 10 rather than 0 to 9. This was necessary only for ease and speed of computation of the second probability density. Figures D-2 to D-5 show flow graphs of the steps necessary to compute the empirical probability density and perform the probability transformation, the poker count test and the mean square contingency test. APPENDIX G contains the listings of the programs used in these operations.

Empirical Probability Density Flow Graph

```
Inputs - X(I) series, I=1,LX
```

NDIV number of ranges

Find maximum, XMAX, and minimum, XMIN, of X series.

Compute range limits for NDIV equally spaced ranges from

XMIN to XMAX

RANGE(I)=XMIN+(I-1) (XMAX-XMIN)/NDIV, I=1, NDIV+1

NDIV is somewhat arbitrary. It should be much smaller than LX, the length of the X series. We have used NDIV=100 with LX 2500.

Count number of values of X(I) falling in each of the NDIV ranges. Use SUBROUTINE FRQCT2.

NOTE - FRQCT2 assumes that the NDIV+1 range limits define NDIV+2 ranges. The count vector, ICOUNT(I), I=1,NDIV+2, must therefore be altered such that ICOUNT(2)=ICOUNT(2)+ICOUNT(1), and ICOUNT(NDIV+1)=ICOUNT(NDIV+1)+ICOUNT(NDIV+2). The correct counts are then in ICOUNT(2) to ICOUNT(NDIV+1). This may then be normalized to give the frequency ratio or probability density, PROB(I).

PROB(I)=ICOUNT(I) NDIV/(LX (XMAX-XMIN))

Figure D-2

Probability Transformation Flow Graph

Rectangularize Probability Density

Inputs - PROB(I), I=1,NDIV, The probability density normalized such that

$$\sum_{I=1}^{NDIV} PROB(I) \Delta x = 1; \quad \Delta x = (xmax - xmin)/Lx$$

XMIN = Minimum value of original time series

XMAX = Maximum value of original time series

NPROB = Number of ranges of equal probability desired.

Need not equal NDIV

X(I),I=1,LX, the time series

Find X limits which divide the empirical density into NPROB ranges of equal probability, XLIMIT(I), I=1,NPROB+1.

(Linear interpolation where necessary) Use SUBROUTINE GRUP2

Map X(I) series into IX(I) series (integer series such that for XLIMIT(J) X(I) XLIMIT(J+1), IX(I)=J-1+IXLO

where IXLO can be adjusted to give desired d.c. level.

Use SUBROUTINE MPSEQ1

Result is interger series IX(I), I=1,LX with NPROB different values from IXLO to IXLO+NPROB-1 with equal probability, 1/NPROB

Poker Count Test Flow Graph

Inputs - X(I), I=1, LX time series

LX length of series

Compute empirical probability density. See Figure D-2 for flow graph of this procedure

Perform probability density transformation to map X(I) series into IX(I) series with

$0 \leq IX(I) \leq 9$

See Figure D-3 for flow graph of this procedure with IXLO=0.
Take IX(I) series in non-overlapping groups of 5,IX(I), I=1, ...
5,IX(I), I=6,....10, etc and consider these as poker hands.
Evaluate the poker hands and count number of each type.
(Types - bust, 1 pair, 2 pair, 3 of a kind etc.) Total
number of hands is LX/5 rounded down. USE SUBROUTINE POKCT1.
Compare with theoretical count for independent series.

(See a priori probabilities on first page of this APPENDIX.)

Figure D-4

Mean Square Contingency and Dependency Test Flow Graph

Inputs - X(I), I=1,LX time series

LX length of series

Compute empirical probability density. See Figure D-2 for flow graph of this procedure.

Perform probability density transformation to map X(I) series into

IX(I) series with $1 \leq IX(I) \leq JHIGH$, where JHIGH ≤ 25 .

(Requirement of SUBROUTINE PROB2 used below.)

Note - If poker count test is also done the mapped series used there can be used here if one is added to every IX value. JHIGH will be 10 for this case.

(See Figure D-3 for transformation and mapping flow graph.) Compute second probability density, P(I,J) for lag of one.

Use SUBROUTINE PROB2. (Gives joint probability that IX(I)=L

and IX(I+1)=M for I=1, LX-1, and M and L \geq 1, \leq JHIGH.)

Compute mean square contingency and dependency.

$$M, S, C := \sum_{\mathbf{I}=1}^{J} \sum_{\mathbf{J}=1}^{J} \left[\left(P(\mathbf{I}, \mathbf{J}) \right)^2 / \left(P(\mathbf{I}) \ast P(\mathbf{J}) \right) \right] - 1$$

where

$$P(I) = \sum_{\mathcal{J}=1}^{\mathcal{J} \to IGH} P(I,\mathcal{J}) \neq 0 \quad \mathcal{P}(\mathcal{J}) = \sum_{\mathcal{J}=1}^{\mathcal{J} \to IGH} P(I,\mathcal{J}) \neq 0$$

DEPENDENCY=M.S.C./ (JHIGH-1)

USE SUBROUTINE MSCON1.

Figure D-5

APPENDIX E

FACTORIZATION OF THE POWER SPECTRUM

The problem of spectrum factorization in the frequency domain was solved by Kolmogorov (1941). The treatment here is similar to Robinson (1956).

Given a power density spectrum, $\oint(\omega)$, it is possible to factor it such that

$$\Phi(\omega) = B(\omega) \overline{B(\omega)}$$

where

$$B(\omega) = \sqrt{\Phi(\omega)} e^{i\Theta(\omega)}$$

That this factorization is possible is quite obvious and, in fact, an infinite number of such factorization exist. The trivial case is $\Theta(\omega) = 0$. There is, however, one important case, and that is when $B(\omega)$ has no poles or zeros in the lower half of the λ plane ($\lambda = \omega + \iota \sigma$ (Lee, 1960). In this case $B(\omega)$ corresponds to the transfer function of a physically realizable system, that is, a system which does not have output before it has input. A pole in the lower half of the λ plane transforms to the negative time axis and can therefore be considered a "source" for negative time. If $B(\omega)$ has poles in the lower half plane, its Fourier transform B(t) will only be non-zero for $t \ge 0$, and B(t) then said to be one-sided in positive time. If $B(\omega)$ will have no poles in the lower half plane and its Fourier transform will also

be one-sided. B(t) is then called the minimum phase wavelet. The factorization problem is the problem of finding B(t) from $\oint(\omega)$ and can be solved as follows.

If we take the Z transform, i.e. $Z = e^{i\omega}$, of $B(\omega)$ to obtain B(Z), we have mapped the lower half of the place into the interior of the unit circle and we now consider B(Z) a polynomial in Z. That is $B(\omega)$ is the Fourier transform of some time function B(t) and as such has the form $\underline{\infty}$

$$B(\omega) = \sum_{S=-\infty}^{\infty} b_{S} e^{-i\omega S}$$

and the Z transform becomes

$$B(z) = \sum_{S=-\infty}^{\infty} b_{S} z^{S}$$

and B(z) must have no poles or zeros inside the unit circle, There are certain restrictions on $\overline{\Phi}(\omega)$, namely

1.
$$\Phi(w) = 0$$

2. $\int_{-\pi}^{\pi} \log \Phi(w) dw > -\infty$
3. $\int_{-\pi}^{\pi} \Phi(w) dw < \infty$

which must be met if $\beta(z)$ is to exist. If condition (1) is not met, then the integral (2) will not converge. Condition (2) is equivalent to the Paley-Wiener criterion (Robinson, 1954, p. 149) and is a requirement for the existence of a moving average and an autoregressive representation of the time series. Condition (3) states that the power must be finite and is just a stability requirement.

If these requirements are fulfilled, then the logarithm of $\mathcal{B}(\mathbf{z})$ will be analytic for $|\mathbf{z}| \leq l$.

$$\log B(w) = \frac{1}{2} \log \overline{\Phi}(w) + i \Theta(w)$$
or
$$\log B(z) = u(z) + i \mathbf{v}(z)$$

Hence the problem of obtaining the minimum phase wavelet is now one of finding the imaginary part, $\mathcal{V}(\mathbf{k})$, of a function analytic inside the unit circle given the real part, $\mathcal{U}(\mathbf{k})$, on the circle. This is also the potential theory problem of finding the field inside of a region given the sources on the boundary. The function log $\mathcal{G}(\mathbf{k})$ can be expressed as a power (Taylor) series in its region of analyticity

$$\log B(z) = \sum_{r=-\infty}^{\infty} d_r Z^r$$

Expanding log $B(z) = \log B(re^{i\omega})$ in a Fourier series log $B(re^{i\omega}) = U(re^{i\omega}) + i v(re^{i\omega})$ $= \sum k_R e^{i\omega_R}, \quad \forall_R = c_R + i d_R$ $U(re^{i\omega}) = Re\left[\sum (c_R + i d_R)rRe^{i\omega_R}\right]$ $= Re\left[\sum c_R cos_R w + i d_R cos_R w + i c_R sin_R w - d_R sin_R w\right]r^R$ $= \sum (c_R cos_R w - d_R sin_R w)r^R$ 208

However

$$u(re^{i\omega}) = \frac{1}{2} \log \tilde{P}(\omega)$$
 at $r=1$

and $\overline{\Phi}(\omega)$ is an even function, i.e. $\overline{\Phi}(\omega) = \overline{\Phi}(-\omega)$

since

$$\overline{\Phi}(\omega) = \sum_{s} \varphi_{s} cos \omega s$$

Therefore $1/2 \log \Phi(\omega)$ is also even

NK =CK

and $d_{\kappa} = 0$

Hence

$$\frac{1}{2} \log \overline{\Phi}(w) = \sum \alpha \kappa \cos \kappa w$$

$$\alpha \kappa = \frac{1}{\pi} \int_{-\pi}^{\pi} \log \overline{\Phi}(w) \cos \kappa w dw$$

and

and

The wavelet b_S is then determined from

$$B(z) = \sum_{s=0}^{\infty} b_s z^s = exp\left[\sum_{k=-\infty}^{\infty} a_k z^k\right] = exp\left[\sum_{k=-\infty}^{\infty} \frac{1}{\sqrt{n}} \int_0^{\pi} \frac{1}{\sqrt{n}}$$

The following method, suitable for programming purposes, for getting the b_S was first given in MIT G.A.G. Report 9 (1956) and was repeated in Simpson et al (1962a).

The \flat s will have to be cut off after some S value, say S = mIt is shown below that the first m + i terms of \flat s (the first m + ipoints in the wavelet) may be obtained exactly from the first m + i $\aleph'S$,

Expanding

$$\sum_{S=0}^{\infty} b_{S} Z^{S} = e^{N_{0}} \left[1 + \frac{2N_{1}}{1!} Z + \left(\frac{2N_{1}}{2!}\right)^{2} Z^{2} + \dots \right] \left[1 + \frac{2N_{2}}{1!} Z^{2} + \left(\frac{2N_{2}}{2!}\right)^{2} Z^{4} \dots \right] \right] \\
\times \left[1 + \frac{2N_{3}}{1!} Z^{3} + \left(\frac{2N_{3}}{2!}\right)^{2} Z^{6} + \dots \right] \left[\dots \right] \dots \\
\times \left[1 + \frac{2N_{m}}{1!} Z^{m} + \left(\frac{2N_{m}}{2!}\right)^{2} Z^{2m} + \dots \right] \left[\dots \right] \dots$$

Matching like powers of \mathbf{Z} we find

 $b_{0} = e^{\alpha_{0}}$ $b_{1} = e^{\alpha_{0}} \left(2 \alpha_{1} \right)$ $b_{2} = e^{\alpha_{0}} \left[\left(\frac{2 \alpha_{1}}{2!} \right)^{2} + \frac{2 \alpha_{2}}{1!} \right]$

In general, if we are interested in obtaining b_0, \ldots, b_m , we may drop terms in any polynomial with exponents $\geq m$ and we may drop all polynomials whose first power of Ξ is $\geq M$. We also do not care about any cross terms whose Ξ exponents are $\geq M$.

We disregard $\mathbf{e}^{\mathbf{x}_{\mathbf{o}}}$ for the time being and consider the problem as follows:

 $\sum_{s=0}^{m} b_s \mathbf{Z}^s = (\text{First } m+1 \quad \text{terms of}) P_1(\mathbf{z}) P_2(\mathbf{z}) \dots P_m(\mathbf{z})$ (this is just another way of grouping the terms).

Where
$$P_{i} = 1 + C_{i1} + C_{i2} + C_{i2} + \dots + C_{im} = 1$$

and

$$C_{ij} = \begin{cases} \left[\left(\frac{2\alpha_i}{1} \right) \left(\frac{2\alpha_i}{2} \right) \left(\frac{2\alpha_i}{3} \right) \cdots \left(\frac{2\alpha_i}{j/i} \right) & \text{for } j = \kappa_i \\ 0 & \text{for } j \neq \kappa_i \end{cases} \end{cases}$$

Cio=1

K is a positive integer. Considering b_s and Cis as time functions we may now consider the problem as one of partial convolution. Let F stand for "First m+1 terms of." Then

$$b = F(c_1 * c_2 * c_3 ... * c_m)$$

and

$$b = F(c_1 * F(c_2 * F(c_3 * ..., F(c_{m-1} * c_m)))...)$$

Let
$$b^{(m)} = Cm$$

 $b^{(m-1)} = F(C_{m-1} * C_m) = F(C_{m-1} * b^{(m)})$
 $b^{m-2} = F(C_{m-2} * F(C_{m-1} * C_m)) = F(C_{m-2} * b^{m-1})$
 $b^{(1)} = F(C_1 * b^2) = b$

Examination shows that $b^{(l-1)}$ may be obtained from $b^{(l)}$ by

the following formula representing partial convolution

$$b_{s}^{(l-1)} = \sum_{i=0}^{s} C_{l-1,s-1} b_{i}^{(l)}$$

S=0,1,2,...,m

Further examination shows that $b^{(m)}$, where M = 1 + integral part

of m/2 , may be written down by inspection

$$b_{0}^{(m)} = 1$$

$$b_{1}^{(m)} = 0$$

$$b_{2}^{(m)} = 0$$

$$b_{M}^{(m)} = C_{M,M}$$

$$b_{M+1}^{(m)} = C_{M+1,M+1}$$

$$b_{M}^{(m)} = C_{m,M}$$

This can be seen by noting first that $b_0^{(L)} = 1$ for all L and $b_s^{(L)} = 0$ for $1 \le \le L$ and that the C_{LS} for $M/2 \le L \le m$ have only two terms in them. As the partial convolution proceeds, the **b**₀ terms pickup the diagonal terms in the C_{ij} matrix, and there are no other contributions to the next $b_s^{(L)}$ until $L \ge M/2$. It can be seen that only one column of the C_{ij} matrix is needed at a time.

A program has been written for the spectrum factorization problem for 709 or 7090 computers. The program makes sure that $\Phi(\omega) > 0$ by setting any value of $\Phi(\omega)$ which is less than 10^{-6} of the maximum value of $\Phi(\omega)$ equal to 10^{-6} of the maximum. The Daniell method of spectral estimation guarantees $\Phi(\omega) > 0$ but other spectral window such as the Turkey-Hamming window do not have the guarantee. The computation of the α 'S in the computation of the cosine expansion of $\frac{1}{2} l_{09} \Phi(\omega)$ was done by trigonometric interpolation (Lanczos, 1956) so that the integral need not be computed. The program FACTOR is listed in APPENDIX G. APPENDIX F

CONSTRUCTION OF THREE WHITE LIGHT SERIES WITH SPECIFIED COHERENCES

We wish to construct three unit variance white light series X_t^i , X_t^2 , X_t^3 with controlled coherences

$$\operatorname{Coh}_{12}(\omega) = \frac{\left| \overline{\Phi}_{12}(\omega) \right|}{\sqrt{\overline{\Phi}_{11}(\omega) \overline{\Phi}_{22}(\omega)}} = \chi_{12}(\omega)$$

$$Coh_{3}(\omega) = \frac{\left| \overline{\Phi}_{3}(\omega) \right|}{\sqrt{\overline{\Phi}_{1}(\omega)} \overline{\Phi}_{33}(\omega)} = \alpha_{13}(\omega) \qquad (E-1)$$

$$Coh_{23}(\omega) = \frac{\left| \Phi_{23}(\omega) \right|}{\sqrt{\Phi_{22}(\omega) \Phi_{33}(\omega)}} = \alpha_{23}(\omega)$$

The solution is an obvious extension of the Simpson et al (1962) treatment of constructing a pair of series with controlled coherence. Since X_t^4 , X_t^2 , X_t^3 are unit variance white light their spectra are

$$\Phi_{11}(\omega) = \Phi_{22}(\omega) = \Phi_{33}(\omega) = \frac{1}{2\pi}$$

hence

$$\left| \Phi_{ij}(\omega) \right| = \frac{\alpha_{ij}(\omega)}{2\pi}$$
, $1 \le i \le j \le 3$

or for zero phase shift

$$\overline{\Phi}_{ij}(\omega) = \frac{\alpha_{ij}}{2\pi}$$

We assume that χ_t^{\prime} , χ_t^2 and χ_t^3 are broken up to have common and uncorrelated parts

$$X_{t}^{1} = X_{t}^{c_{1}} + X_{t}^{c_{3}} + X_{t}^{R_{1}}$$

$$X_{t}^{2} = X_{t}^{c_{1}} + X_{t}^{c_{2}} + X_{t}^{R_{2}}$$

$$X_{t}^{3} = X_{t}^{c_{1}} + X_{t}^{c_{2}} + X_{t}^{C_{3}} + X_{t}^{R_{3}}$$
(F-2)

where all cross correlations

$$\varphi_{c_i c_j}, \varphi_{R_i R_j}; i \neq j$$

 $\varphi_{c_i R_j}; i = 1, 2, 3; j = 1, 2, 3$

are zero. The autospectra of the χ_t^{\prime} series are then

$$\begin{split} & \Phi_{11}(\omega) = \Phi_{c_1}(\omega) + \Phi_{c_3}(\omega) + \Phi_{R_1}(\omega) = \frac{1}{2\pi} \\ & \Phi_{22}(\omega) = \Phi_{c_1}(\omega) + \Phi_{c_2}(\omega) + \Phi_{R_2}(\omega) = \frac{1}{2\pi} \\ & \Phi_{33}(\omega) = \Phi_{c_1}(\omega) + \Phi_{c_2}(\omega) + \Phi_{c_3}(\omega) + \Phi_{R_3}(\omega) = \frac{1}{2\pi} \end{split}$$

The cross-spectra are

$$\begin{split}
\bar{\Phi}_{12}(\omega) &= \bar{\Phi}_{c_1}(\omega) = \frac{\alpha_{12}(\omega)}{2\pi} \\
\bar{\Phi}_{13}(\omega) &= \bar{\Phi}_{c_1}(\omega) + \bar{\Phi}_{c_3}(\omega) = \frac{\alpha_{13}(\omega)}{2\pi} \\
\bar{\Phi}_{23}(\omega) &= \bar{\Phi}_{c_1}(\omega) + \bar{\Phi}_{c_2}(\omega) = \frac{\alpha_{23}(\omega)}{2\pi}
\end{split}$$

We therefore have

215

$$\begin{split}
\overline{\Phi}_{c_{2}}(\omega) &= \frac{\alpha_{23}(\omega) - \alpha_{12}(\omega)}{2\pi} \\
\overline{\Phi}_{c_{3}}(\omega) &= \frac{\alpha_{13}(\omega) - \alpha_{12}(\omega)}{2\pi} \\
\overline{\Phi}_{R_{1}}(\omega) &= \frac{1 - \alpha_{13}(\omega)}{2\pi} \\
\overline{\Phi}_{R_{2}}(\omega) &= \frac{1 - \alpha_{23}(\omega)}{2\pi} \\
\overline{\Phi}_{R_{3}}(\omega) &= \frac{1 + \alpha_{12}(\omega) - \alpha_{23}(\omega) - \alpha_{13}(\omega)}{2\pi}
\end{split}$$

We must first construct the six mutually independent series $\chi_t^{c_i}$, $\chi_t^{R_i}$, i=1,2,3 with the power spectra Φ_{c_i} , Φ_{R_i} given above. We then construct the χ_t^{i} series with equations F-2. These series have the coherences $\alpha_{i,j}(\omega)$ as shown in equations F-1.
APPENDIX G

PROGRAM LISTINGS

Listings, with descriptions and examples, of some of the more important programs used in the computations in this thesis. The listings are in alphabetical order and include all subroutines appearing in the transfer vectors with the exception of the FORTRAN System routines. An index of these programs and other programs useful in time series analysis appears in Scientific Report Number 4 of Contract AF 19(604)7378 (Simpson et al, 1962b) and complete listings will appear (Simpson, 1963, in press) in book form in the near future. All the programs appearing here are designed to operate under the FORTRAN-II system for the IBM 709-7090[°] computers.

Throughout the listings the terms FORTRAN INTEGER, FORTRAN II INTEGER, and INTEGER are synonomous and refer to a fixed point integer in the decrement. The terms MACHINE LANGUAGE INTEGER, MACHINE INTEGER and MLI refer to a fixed point integer in the decrement. The terms LSTHN and LSTHN = are equivalent to \leq and \leq while GRTHN and GRTHN = are equivalent to > amd \geq . It should be noted that expressions which appear in the "ABSTRACT" section of the writeup may deviate from the usual FORTRAN conventions.

```
218
```

+ CHISQR	****	PROGRAM LISTINGS		+ CHISQR	•••••
+ CHISQR (S + LABEL	UBROUTINE)	2/18/63	LAST CARD	IN DECK IS NO.	0084 0001
CCHISCR Subroutin	E CHISQR (NBLOCS	,ICOUNT,N,CHISQ,IA	NS)		0002 0003
C					0004
C	ABSTR/	\C1			0006
C TITLE - CHISQ	R				0007
C COMPUTE	S CHI-SQUARE FO	R EQUALLY LIKELY P	ROBABILITY C	ASE.	0008
C		CUT COUNDE MUEN CIT		O TRUTION	0009
	HISGR CUMPUTES	UNDER OF FOHALLY IT	KELY BLOCKS	INTO WHICH	0011
с т	HE DATA IS PUT	NUMBER OF BLOCKS	= NBLOCKS, N	= TOTAL	0012
Č N	IUMBER OF OBSERV	ATIONS, ICOUNT = D	ISTRIBUTION	COUNT.	0013
C		T / T) _ N / NDI OCKS) ##2	/ IN ANDI OCKS)	1	0014
	H126=20w((1000		/ W/ NDEOCKS/		0016
c s	UMMED OVER NBL	CKS, WHERE FLOATIN	G OPERATIONS	ARE ASSUMED	0017
C R	ATHER THAN THE	INDICATED INTEGER	OPERATIONS.		0018
C					0019
C LANGUAGE - F	TORIRAN II SURA	IN FRAME ONLY)			0021
C STORAGE - 1	C5 REGISTERS				6022
C SPEED -					0023
C AUTHOR - J	I.N. GALBRAITH				0024
C					0025
	USAGE				0027
C TRANSFER VECT	CR CONTAINS RO	ITINES - NONE			0028
C AND FOR	TRAN SYSTEM RO	JTINES - NONE			0029
C					0030
	: CORTNEL DOS - TOOLI	NT.N.CHISQ.IANS)			0032
C					0033
C INPUTS					0034
C			c		0035
C NBLCCKS	IS NUMBER UP E	QUALLY LIKELY BLUCK	3.		0037
C C	POST DE ORTAN				0038
C ICOUNT(I)	I=1NBLCCKS	IS THE DISTRIBUTION	COUNT. I.E.	THE NUMBER	0039
C	CF VALUES IN I	-TH EQUALLY LIKELY	BLOCK.		0040
C	MUST BE NUN-NE	JALIVE			0042
	IS TOTAL NUMBE	R OF OBSERVATIONS (=SUM(ICOUNT(I))).	0043
č	MUST BE GRTHN=	1.			0044
C					0045
C OUTPUTS					0040
C CHISO	IS THE CHI-SQU	ARE VALUE			0048
c					0049
C IANS	=0 NCRMAL	0.00			0050
C	=1 ILLEGAL NB				0052
C					0053
C EXAMPLES					0054
C	NOL 000-2 100	INT / 1 21-1 2.5	N = Q		0056
	CHISQ=2.666667				0057
C 2011-013	0.1134 2000000				0058
C 2. INPUTS -	NBLOCS=1 ICO	UNT(1)=1 N=9			0059
C CUTPUTS -	ERROR IANS=1				0061
C 3. INPHTS -	NBLOCS=3 ICO	UNT(13)=1,3,5	N=0		0062
C CUTPUTS -	ERROR IANS=2				0063
C			5 No.15		0064
C 4. INPUTS -	NBLOCS=5 ICO	UNT(15)=1,2,3,4,	5 N=15		0065
C CUTPUIS -	CHI2#=3.333333	LAN2-0			0067
DIMENSIO	N ICOUNT(100)				0068
IANS=0					0069
IF (NBLCCS	5-1) 990,990,5				0070
5 IF(N) 99	92,992,10				0072
10 P=1./FLU/ FXPNO=P#1	FLOATF(N)				0073
CHISQ=0					0074

*********	***********	PROGRAM LISTINGS	**********	**********
+ CHISQ	R #		CHISQR	*
*********	*******		*********	**********
(PAGE 2)				(PAGE 2)
	DO 25 I=1,NBLCCS			0075
	DIF=FLOATF(ICOUNT(I))-EXPNO		0076
25	CHISQ=CHISQ+DIF+DIF			0077
	CHISQ=CHISQ/EXPND			0078
26	RETURN			0079
990	IANS=1			0080
	GO TO 26			0081
992	IANS=2			0082
	GO TO 26			0083
	END			0084

220

*******	*********	*****	PROGR	AM LISTINGS		**********	*********
* COSI) 	*				+ COSP	+
		****				**********	
•	COSP (S	UBRCUTINE)		2/18/63	LAST CA	RD IN DECK IS NO.	0844
+C05	гае SP						0002
	CCUNT	1060					0003
	LBL	COSP					0004
	ENTRY	CUSP (SSX,AS)	X . L . CUSTAB	9M9JMIN9JMA) - M. IMIN, IMA)	X, IYPE, CU X, TYPE, SI		0005
	ENTRY	COSISP (SSX,	ASX, SAX, AA	K,L,COSTAB,	SINTAB,M,	JMIN, JMAX, TYPE,	0000
*		COST	R,SINTR)				0008
+							0009
*		AB2	IRACI				0010
+ T)	ITLE - COSP	WITH SECOND	ARY ENTRY I	POINTS SISP	AND COSI	SP	0012
+	FAST C	OSINE AND/OR	SINE TRANSI	FORMS FROM 2	OR 4 EV	EN-ODD PARTS	0013
*			COCTNE EN		- 1.4.7.5.		0014
*		TWC INPUT SER	LUSINE SU	"S, CIIJ) J= ΔΝΠ Δς(Ι) Ι	= JMIN;	JMAX, UN	0015
*		TO	L 50 11		,.,		0017
•			SUM (SS	(I)#COS(I#J+	*(PI/M))) JEVEN	0018
*		67(1)	I=0				0019
*		CI(J) =					0020
+			SUM (ASI	(I)*COS(I+J+	+(PI/M))	J ODD	0022
*			I =0				0023
*		5CD 1 - 1					0024
+		WHERE	"114 9 J "I 14 T 1	···· · JMAA			0026
*		PI = 3	3.14159265				0027
*		1I = M	PUT PARAME	ETER			0028
*			*(P1/MJ) AS(T), MAY	l=0,1,,M / RF FTTHFR	IS AN II	FIGATING POINT	0029
*		(1	THE COSINE	TABLE MUST	CORRESPO	ND IN TYPE)	0031
+		C LST	HN= JMIN LS	STHN JMAX LS	STHN= M		0032
*			CTNE CUME	57/11			0033
*	•	SISP CLEPUIES	SINC SUMS	51(3)			0035
*			SUM (AAI	I)#SIN(I#J+	+(PI/M))) JEVEN	0036
*		CT (1)	I=0				0037
*		51(3) =	1				0038
•			SUM (SA	I)#SIN(I#J+	+(PI/M))	J 00D	0040
•			I =0				0041
*		FC8 =	INTN. INTN+1				0042
*		WHERE					0044
+		SIN(I	+(PI/M))	[=0,1,,M	IS AN II	NPUT TABLE	C045
*		AA, SA	, AND THE S	SINE TABLE #	ARE FIXED	OR FLOATING	0046
-		COSISP COMPUTE	ES BOTH CT	(J) AND ST(J	I) AS DEF	INED ABOVE	0048
*							0049
*		NUTE THAT THE	FUNDAMENTA	L FREQUENCY	AS DEFIN	NED BY THE	0050
*		INFUL LADLES P	TAS PERIOD	- EVEN NU.	OF PUINTS	5 - 28	0052
* LA	NGUAGE -	FAP SUBROUTINE	E (FORTRAN	II COMPATIE	BLE)		0053
* EC	UIPMENT -	709 CR 7090 (N	AIN FRAME	ONLY)			0054
+ SI + SP	URAGE -	492 REGISTERS 709-FI	EN PT 7		PT		0055
*		COSP 34+K+((L+1) 3	37#K#(L+1)		MACHINE CYCLES	0057
+		SISP 39*K*((L+1) 4	3#K#(L+1)		MACHINE CYCLES	0058
*		CUSISP 6/#K#1 WHERE K =	L+L) (.IMAXIMTNA	/2#K#(L+1) -1		MACHINE CYCLES	0059
•		IREDUCE E	ESTIMATES A	BOUT 1C PER	CENT FOR	7090)	0061
* Al	ITHOR -	S.M. SIMPSON,	OCT 26, 6	51			0062
*		115 +					0063
*		USAL	,				0065
# TR	ANSFER VEC	TOR CONTAINS P	ROUTINES -	NONE			0066
*	AND FO	RTRAN SYSTEM F	ROUTINES -	NONE			0067
*	TRAN LICAS	E NE COSP					8000
* ru *	CALL COS	P (SSX,ASX,L	COSTAB.M.J	MIN, JMAX. TY	PE,COSTR)	0070
+							0071
+ IN	IPUTS TO CO	SP					0072
+							0015

`

```
221
```

**************************************	***** PROGRAM LISTINGS *	* COSP *
**************************************	****	(PAGE 2)
* SSX(I)	I=1L+1 CONTAINS SS(J) J=0,1,,L FIXED 0	R FLOATING 0074
* * ASX(I) *	I=1L+1 CONTAINS AS(J) J=0,1,,L FIXED O EQUIVALENCE (SSX,ASX) IS PERMITTED	0075 R FLOATING 0076 0077
# ₩ L	MUST EXCEED O	0078 0079
# # COSTAB(I)	I=1M+1 CONTAINS COS(J*PI/M) J= 0.1M	CO80 0081
*	CUSTAB IS FIXED OR FLOATING	0082 PX POINT 0083
*	IS BETWEEN THE SIGN BIT AND BIT 1 SO THAT VI	ALUES 0084
*	AND 77777777777 RESPECTIVELY. THE BINARY P	OINT OF 0086
*	SSX AND ASX IS IMMATERIAL, BUT OVERFLOW MAY	ARISE 0087 0088
₩ ₩ ₩	MUST EXCEED 0	0089 0090
+ JMIN +	DEFINES LOWEST MULTIPLE OF FUNDAMENTAL DESIRE	D 0091
	OFFICE ALCORET MULTIPLE OF CONDAMENTAL DESID	0093
₩ JMAA	MUST BE GRTHN JMIN AND LSTHN= M	0094 0095
* * TYPE	= 0.0 SIGNIFIES SS,AS, AND COSTAB ARE FIXED	0096 PT• 0097
*	NOT= 0.0 MEANS SS,AS, AND COSTAB ARE FLTG.	PT. 0098 0099
# OUTPUTS FRCM #	CCSP	0100
<pre># COSTR(I)</pre>	I=1JMAX-JMIN+1 CONTAINS CT(J) J=JMINJMAX	AS 0102
+	DEFINED IN ADSTRACT.	0103
*	(PROGRAM EXITS WITHOUT COMPUTATION IF L,M,JMIN CR JMAX ILLEGAL)	, 0105 0106
+ + FORTRAN USAG	E CF SISP	0107 0108
<pre># CALL SIS #</pre>	P (SAX,AAX,L,SINTAB,M,JMIN,JMAX,TYPE,SINTR)	0109 0110
* INPUTS TO SI *	SP	0111
* SAX(I)	I=1L+1 CONTAINS SA(J) J=C,1,,L	0113
↔ ★ AAX(I) ★	I=1L+1 CONTAINS AA(J) J=0;1,,L EQUIVALENCE (SAX,AAX) IS PERMITTED.	0115
# # L	SAME MEANING AS FOR COSP	0117 0118
* SINTAB(I)	I=1M+1 CONTAINS SIN(J*PI/M) J=0,1,,M	0119 0120
+ ± μ	SAME MEANING AS FOR COSP	0121 0122
# ₩ .IMTN	SAME MEANING AS FOR COSP	0123
# #	SAME MEANING AS EOD COSP	0125
* JEAA *		0127
	SAPE PEANING AS FUR CUSP	0128
* UUTPUIS FRUM	\$150	0130 0131
* SINTR(I) * *	I=1JMAX-JMIN+1 CONTAINS ST(J) J≃JMINJMAX DEFINED IN ABSTRACT	AS 0132 0133 0134
<pre># FORTRAN USAG # CALL COS # 1</pre>	E OF CCSISP ISP(SSX,ASX,SAX,AAX,L,COSTAB,SINTAB,M,JMIN,JMAX TYPE,COSTR,SINTR)	, 0135 , 0136 , 0137
*	WHERE ARGUMENTS ARE THE SAME AS FOR COSP AND S EQUIVALENCE (SSX,ASX,SAX,AAX) IS PERMITTED.	ISP 0139 0140
* * EXAMPLES		0141 0142
* * 1. USE OF CO	SP, SISP, COSISP WHEN ALL INPUTS EQUATED, FIXE	0143 D AND 0144
* * INPUTS -	FLOATING, ALL FREQUENCIES $X(14) = 1., 2., 3., 4.$ IX(14) = 100,200,3	0145 00,400 L=3 0146
*	COSTAB(13)=1.0,0.0,-1.0 SINTAB(13)=0.0, ICOSTB(13)=OCT37777777777,0000000000000,777	1.0,0.0 M=2 0147 777777777 0148

```
222
```

**************************************	PROGRAM LISTINGS	**************************************
****************		*********
(PAGE 3)		(PAGE 3)
<pre># ISINTB(1.</pre>	3)=0CT000000000000,377777777777,00	0000000000 0149
# JMIN = 0	JMAX = 2	0150
# USAGE - CAL	L COSP (X,X,L,COSTAB, M, JMIN, JMAX, 1.,	C1) 0151
* CAL	L COSP (IX, IX, L, ICOSTB, M, JMIN, JMAX, C	0.,IC1) 0152
	L SISP (X,X,L,SINIAB,M,JMIN,JMAX,1.,	SI) 0153
	L SISP (IX,IX,L,ISINIB,M,JMIN,JMAX,U I COSTSP (V V V V I COSTAP STATAP M	10151 U154
* CAL	1(2.52)	0155 0155
* CAL	L COSISP (IX, IX, IX, IX, L, ICOSTB, ISINT	B.M.JMIN. 0157
*	JMAX, C., IC2, IS2)	0158
 OUTPUTS - C1(13) 	= C2(13) = 10., -2., -2.	0159
# S1(13)	= S2(13) = 0., -2., 0.	0160
	J = 1(2(13) = 1000, -200, -200)	0161
• 131(1•••)	1 = 132(15) = 0 = 200 = 0	0162
# 2. PARTIAL FREQUENCY C	OVERAGE	0164
INPUTS - SAME AS E	XAMPLE 1. EXCEPT JMIN = 1	0165
	XAMPLĘ 1.	0166
* CUTPUTS - C1(12)	= C2(12) = -2., -2.	0167
* S1(12)	= S2(12) = -20.	0168
	Y = 1(2(12) = -200, -200)	0169
* 131(1+++2	7 = 132(12) = -20000	0170
# 3. USE OF COSISP TO FIL	ND COEFFICIENTS OF TRIGONOMETRICAL S	ERIES FOR 0172
+ AN EVEN-L	ENGTH VECTOR	0173
# (SEE CARSLAW, 193)	O, FOURIER SERIES AND INTEGRALS, P32	4,325) 0174
GIVEN XX(I) $I=12*M$ CONTAINING X(J) $J=0,1$,,2#M-1 0175
+ FINUA(O)	,A(1),A(M) AND B(1),B(2),,B(M-	1) SUCH THAT 0176
- + X(.))=Δ(Ω)-	+A(1)COS(.I+D)++A(M-1)COS((.I-1)+D)	+A(M)COS(PI) 0178
*	+B(1)SIN(J+D)++B(M-1)SIN((J-1)+D)	0179
* WHER	E D=PI/M J=0,1,,2*M-1	0180
SOLUTION		0181
INPUTS - COSTAB(1.	M+1) = COS(J*PI/M) J = 0,1,,M	0182
* SINIABUL.	$\bullet \bullet M + L$ = SIN(J*PI/M) J = 0, L, $\bullet \bullet \bullet \bullet M$	0183
# USAGE - CALL	COSTSPIX.X.X.X.L.COSTAB.SINTAB.M.O	-M.1AA.BB) 0185
* AA()	1) = AA(1)/FLOATF(2+M)	0186
* AA(I	M+1) = AA(M+1)/FLOATF(2*M)	0187
* DO :	10 I=2,M	0188
* AA()	I)=AA(I)/FLOATF(M)	0189
# ΩυΤΡυτς - ΔΔ(1M+)	1) WILL CONTAIN (0) A()) A. A(M)	
* BB(2M)	WILL CONTAIN B(1)B(M-1) AS RE	QUIRED 0192
* (BB(1)=BB	(M+1)=0.)	0193
*		0194
+ 4. USE OF COSISP TO IN	VERT COEFFICIENTS OF TRIG SERIES FOR	AN EVEN- 0195
+ LENGIN VEC	UTUK 1. A/M1 P/11 P(M_11) AS DEETNED	0196 ABOVE 0107
+ FIND X(.I)	= TRIG SERIES ABOVE $J = 0.12$	*M-1 0198
+ SOLUTION		0199
# INPUTS - AA(I) AND	BB(I) ARE SAME AS OUTPUTS OF EXAMPL	E 3. 0200
* USAGE - CALI	L COSISP(AA, AA, BB, BB, M, COSTAB, SINTAB	, 0201
* 1	MyUyMy <u>l</u> oyXSyXA] -2=N	0202
• 00 3	-2*11 20 I=2.M	0205
1=L +	2M+2-I	0205
* XS.(.	J)=XS(I)	0206
* 20 XA(.	J) = -XA(I)	0207
	30 1=1,12M ~/T\-YA(T\+YS(T)	0208
	2+M WILL CONTAIN X(0.12+M-1)	
*		0211
# 5. ILLUSTRATION OF FINE	DING TRIG SERIES	0212
INPUTS - SAME AS E)	CAMPLE 1.	0213
USAGE - SAME AS EXAMPLES AND	KAMPLE 3.	0214
	$= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 1 \cdot 2 = 2 \cdot 2$ = 0 - + = 1 - 0 -	0215
- DD(1++))	,,	0217
# 6. ILLUSTRATION OF INVE	ERTING TRIG SERIES	0218
INPUTS - SAME AS EX	(AMPLE 5. WITH AA,BB, SAME AS OUTPUT	S FROM EX 5. 0219
USAGE - SAME AS EX	CAMPLE 4.	0220
CUTPUIS - XBAC(14	+1 = 1.,2.,3.,4.	0221
* 7. USE OF SYMMETRIES TO	REDUCE TIME IN COMPUTING TRANSFORM	S ABOUT 0223

43	\mathbf{O}	1
/	. *	- 1
~	64	

		~~~ (~ ()	
**************	*******	PROGRAM LISTINGS	**************************************
* CUSP ************************************	*******		**************************************
PAGE 4)			0224
*	MICPOINT C	DF AN ODD-LENGIH SERIES	0225
*	ULICENSE TO	I = M	0226
*	C(J	<pre>j) = SUM ( X(I)*COS(I*J*PI/M) )</pre>	0227
*	AND	1 M	0229
*			0230
*	5()	]) = SUM ( X(1)=SIN(1=J=P1/P1/ ) I=-M	0232
*		J = JMINJMAX	0233
+		((-66)=1.,3.,1.,2.,1.,1.,5.,4., IT Y ABOUT ITS MIDPOINT INTO ITS S	3., 3., 5., 4., 1. 0234 YMMETRIC AND 0235
*	ANTISYMM	ETRIC PARTS	0236
*	SX(1	[7] = 5., 5., 4., 5., 6., 7., 7.	0237
*	AXII THEN SPIII	[a + a - 7] = 0 + 3 + 3 + 2 + 3 + 3 + 4 + 3 + 3 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5	NTS 0239
*	SSX(1	(4) = 5., 10., 12., 7. ASX(14) =	0.,2.,2.,-3. 0240
*	SAX(1	(4) = 1., 6., 4., 0. AAX(14) = 0.	92•9-2•90• 0241 NS ΩF ΔSX 0242
+ INPUTS	S - THEN REVEN	VE ALL THE VECTORS AND CHANGE STO	0243
•	SSX(1	(4) = 7., 12., 10., 5. ASX $(14) =$	3.,-2.,-2.,0. 0244
*	SAX(1	•4) = 0•94•96•91• AAX(1•••4) = 0• 5 COSTAB(1•••7)=COS(J#PI/6)	0246
# #	L-3 M-C	SINTAB(17) = SIN(J*PI/6) J =	06 0247
✤ USAGE	- CALI	L COSISP (SSX,ASX,SAX,AAX,3,COSTAB	ISINTAB, M, 0, M, 0248 0249
* • CLITPH	TS = COSTR(1,,	1.00318,01187 -7) = C(0.06) = 34.026795,3.05.0	1.,3.73205,0. 0250
# 00170 #	SINTR(1	(7) = S(06) = 0., 8.19615, 0., 3.	3.46410, 0251
*		-2.19615,0.	0252
# # PRΩGRAM	FCLLOWS BELOW		0254
* NCT	ATION DIFFERENC	CES IN PROGRAM NOTES ARE	0255
# RSS	=SSX PAS=/	ASX KAA=AAX KSA=SAX	0257
* F-L *			0258
*	~		0259
HIR BCI	L 1,CCSP		0261
COSP SXD	<b>*-</b> 2,4	SET UP EXIT	0262
SXA	LV+1,1		0264
CLA	K10		0265
STA			0266
*SEI ARGUM CLA	1,4		0268
STA	T1		0269
CLA STA	2,4 T2		0271
CLA	* 3,4		0272
STD	T5		0273
CLA STA	4+4 T6		0275
CLA	* 5,4		02 <b>76</b> 02 <b>77</b>
STD	T8		0278
STD	T9		0279
CLA	* 7,4		0280 0281
STD	i ∔1,0 (# 3,4		0282
STO	TII		0283
CLA	9,4 T12		0285
STA SET COSP	SWITCHES		0286
CLA	KA18	КАб	0287 0288
STA	Z3C KA6	2.90	0289
STA	Z33		0290
CLA	KA15	Z 107	0291 0292
STA	Δ Ζ106 ΚΔ19	Z 1 3 C	0293
STA	Z1098		0294
CLA	КТ1	TRA Z104	0295 0296
STO	J Z114		0297
CLA	KT2	TRA Z102	0298
0.0.7	· · · · · <del>-</del>		

	PROGRAM LISTINGS	*****************
+ COSP +		* COSP *
*********************		**************************************
(PAGE 5)		(PAGE 37
STO 2121A		0299
STO Z122A		0300
TRA Z14		0301
+SET EXIT		0302
SISP SXD COSP-2,	4	0303
SXA LV+1,1		0304
		0306
STA FYIT		0307
#SET ARGUMENT TABLE		0308
CLA 1.4		0309
STA T3		0310
CLA 2,4		0311
STA T4		0312
CLA# 3,4		0313
STD 15		0314
ULA 414 STA T7		0316
CIA+ 5.4		0317
STD T8		0318
CLA# 6,4		0319
STD T9		0320
CLA# 7,4		0321
STD T10		0322
CLA# 8,4		0323
		0324
		0326
ASET SISP SWITCHES		0327
CLA KA14	KA9	0328
STA Z3C		0329
CLA KA9	250	0330
STA Z33		0331
CLA KA7	2100	0332
SIA 256		0336
STA 200		0335
STA 210		0336
CLA KA16	Z 1 1 5	0337
STA Z106		0338
CLA KZI	ZET SWE	0339
STO Z114		0340
STO 2112	767 000	0341
CLA KZZ	ZEI SWU	0342
STU 2121A STO 7122A		0345
TRA 714		0345
#SET EXIT		0346
COSISP SXD COSP-2,	4 SET UP EXIT	0347
SXA LV+1,1		0348
SXA LV+2,2		0349
CLA K14		0350
		0351
		0353
STA TI		0354
CLA 2,4		0355
STA T2		0356
CLA 3,4		0357
STA T3		0358
CLA 494		0359
51A 14 CLA# 5-4		0361
STD T5		0362
CLA 6,4		0363
STA T6		0364
CLA 7,4		0365
STA T7		0366
CLA# 8,4		0367
STD T8		0368
CLA* 9,4		U 207 0270
STU 19		0371
STD T10		0372
CLA* 11.4		0373

**************	*****	PROGRAM LISTINGS	******
+ COSP	*		* COSP *
(PAGE 6)	*****		(PAGE 6)
STO	T11		0374
CLA	12,4		0375
SIA	112		0376
	13,4		0378
SET COSTSP SW	TTCHES		0379
CLA	KA14	КА9	0380
STA	236		0381
CLA	КА9	Z 50	0382
STA	Z33		0383
ULA STA	KA6	290	0384
51A 51A	766		0386
STA	276		0387
STA	Z86		0388
CLA	KA15	2107	0389
STA	Z106		0390
	KZ1 7114	ZEI SWE	0391
510	7117		0393
CLA	KZ2	ZET SWO	0394
STO	Z121A		0395
STO	Z122A		0396
CLA	KA16	2115	0397
SIA	Z1C9B		0398
#MAKE COMMON SI	ETTINGS FOR	COSP. SISP. COSISP AS IF IT WERE CO	00400 92120
+FIRST FOR FIX	ED POINT OR	FLOATING POINT	0401
Z14 ZET	T11		0402
TRA	Z15	FLOATING	0403
CLA	MPY	FIXED	0404
LDQ	ADD		0405
1KA 715 CLA	210 EMD	EL DAT ING	0406
109	FAD		0408
ZI6 STC	Z51		0409
STO	Z61		0410
STO	271		0411
STU	281		0412
510	291 752		0415
STQ	262		0415
STC	272		0416
STC	Z82		0417
STQ	Z92		0418
510	164		0419
510 STN	774		0421
STO	Z84		0422
STO	Z94		0423
STQ	Z55		0424
STQ	165 776		0425
514 STO	275 785		0420
STQ	295		0428
CLA	KA2	SMSE	0429
STA	Z52		0430
STA	Z62		0431
51A 674	L [ Z 782		U432 A433
51A CLA	KA3	SMSO	0434
STA	255		0435
STA	265		0436
STA	275		0437
STA	Z85	CNCC.	0438
CLA	KA4 702	SMUE	0439
51A CL 4	292 KA5	SHCO	0440
ULA Sta	795	31.40	0442
+THEN ADDRESSE	s		0443
CLA	т7	SINTAB (OR HASH)	0444
STA	Z50		0445
STA	Z53		0446
STA	260 743		0447
STA	103		V448

••••••••••••••••••••••••••••••••••••••	*****	PROGRAM LISTINGS	
■ CO25	- *****		≠ CUSP ≠
(PAGE 7)			(PAGE 7)
	17.0		
51A 57A	L10 173		0449
STA	Z8C		0451
STA	Z83		0452
CLA	Τ4	RAA (OR HASH)	0453
STA	251		0454
SIA	261 771		0455
	781		0450
CLA	T3	RSA (OR HASH)	0458
STA	Z54		0459
STA	Z64		0460
STA	274		0461
SIA	204 T4		- U462 0443
STA	790	COSTAD (UN HASH)	0463
STA	293		0465
CLA	T1	RSS (OR HASH)	0466
STA	291		0467
CLA	T2	RAS (OR HASH)	0468
STA	294 To		0469
	18	M	0470
T7E	LV		0472
STD	Z101		0473
STD	Z1C3		0474
ADD	T8	2 M	0475
STD	2	2	0476
ULA TMI	15	Υ	0477
TZE			0479
STU	2105		C480
CLA	T12	COSTR (OR HASH)	0481
STA	Z1C8		0482
SIA	Z109A	STATA (OD HACH)	0483
61A 57A	7116	SINIK (UK HASHI	0484 C485
STA	Z118		0486
+FOR JMIN EVEN	SET JE=JMIN+	1,JO=JMIN+1,ESTOR=0,OSTOR=1	0487
<ul> <li>JMIN ODD</li> </ul>	SET JC=JMIN₁	JE=JMIN+1),OSTOR=0,ESTOR=1	0488
220 CLA	T9	JMIN	0489
			0490
TRA			0492
TRA	Ĺv		0493
ARS	18		0494
LBT			0495
TRA	221	IS EVEN	0496
ALS	10	13 000	5497 6498
210	KDI		0490
STD	JF		0500
STZ	OSTOR		0501
CLA	K1		0502
STA	ESTOR		0503
18A 721 ALS	18	IS EVEN	0504
STD	JE		0506
ADD	KD1		0507
STD	JC		0508
STZ	ESTOR		0509
CLA	K1 OSTOP		C510
STA STA	USIUR WITCHES		0512
Z23 STZ	DUME		0513
STZ	DUMC		0514
<b>#NOW BEGIN LOOP</b>	PING		0515
+INITIALIZE Z10	05 SWITCH, CL	EAR SUM REGISTERS, SET TRAVEL SWITC	CHES 0516
+ FORWARD			0517
230 CLA 674	**	(**=KAO CUSP) **=KAY UIHEKWISE)	0518
51A 577	SMSE		0520
STZ	SMSD		0521
STZ	SMCE		0522
STZ	SMCO		0523

+ COSP +	PROGRAM LISTINGS	* COSP *
*****************		***************
(PAGE 8)		(PAGE 8)
ST7 S¥F		0524
STZ SWC		0525
CLA JE		0526
STD Z100		0527
CLA JC		0528
STD Z102		0529
<b>#SET MINUS JE,JO</b>		0530
LDC JE,1		0531
SXD MJE,L		0532
LDC JC,1		0533
SXD MJC,1		0534
#XR4 WILL CUNIRUL MU	TION FOR EVEN HARMONIC INDEX	0535
- XR2 WILL CONTROL MC	TION FOR OUD HARMONIC INDEX	0535
#DATA INDEX=SINE IND	EY=COSINE INDEX=0	0538
		0539
733 TRA ##	(**=790 FOR COSP. =750 OTHER	(WISE) 0540
#LOOP FOR FORWARD MO	TION ON SINE WAVE FOR BOTH HARMONICS	0541
+ THIS PART IS FD	R EVEN HARMONICS (XR4) SUMMED IN SMSE	0542
Z50 LDQ **,4	(**=SINTAB)	0543
251 NOP	(MPY OR FMP \$\$,1 WITH ** = RA	A) 0544
Z52 NOP	(ADD OR FAD SMSE)	0545
STO SMSE		0546
# THIS PART IS FOR	ODD HARMONICS (XR2), SUMMED IN SMSO	0547
253 LUQ ##,2	(**=SINTAB)	0548
254 NUP	(MPY UR FMP ###1 WITH ##=RSA	0549
200 NUP	LAUD UK FAD SMSU	0550
		0551
756 TRA ++	-3 11 00313F# OK MV010 11 313F [##=7100 FOR COSISP. ##=7100 F	OR STSP) 0553
#LOOP FOR FORWARD MO	TION ON SINE WAVE OF EVEN HARMONIC AND	0554
REVERSE MOTION	ON SINE WAVE OF ODD HARMONIC	0555
+ FCR EVEN		0556
Z60 LDQ **,4	(**=SINTAB)	0557
Z61 NCP	(MPY OR FMP ++,1 WITH ++=RAA)	0558
Z62 NOP	(ADD OR FAD SMSE)	0559
STO SMSE		0560
FCR DDD		0561
263 LLS ##,2	(**=SINIAB)	0562
XUA 766 NOD		0503
765 NOP	(ADD 00 FAD SMSA)	0565
		0566
Z66 TRA ##	(**=Z90 IF COSISP. **=Z100 IF	SISP) 0567
*LOOP FOR REVERSE MO	TION ON SINE WAVE OF EVEN HARMONIC AND	0568
# FORWARD MOTION	ON SINE WAVE OF ODD HARMONIC	0569
+ FCR EVEN		0570
Z70 CLS ##,4	( **=SINTAB )	0571
XCA	••••••	0572
271 NOP	(MPY OR FMP ++,1 WITH ++=RAA	0573
LIZ NOP	(ADD UK HAD SMSE)	05/4
510 SPSE		UD 1 D 0576
773 ID0 ++-2	(##=SINTAB)	0577
Z74 NOP	(MPY OR FMP ##+1 WITH ##=RSA)	0578
Z75 NOP	(ADD OR FAD SMSO)	0579
STO SMSO		0580
Z76 TRA ##	(**=Z90 COSISP; **=Z100 IF SI	SP) 0581
+LOOP FOR REVERSE MO	TION ON SINE WAVE FOR BOTH HARMONICS	0582
* THIS PART IS FO	R EVEN HARMONICS	0583
280 CLS ##,4	(**=SINIAB)	0584
781 NOD	(MDV NO EMD as 1 LITH AS-DAA	0000 0686
782 NOP	(ADD OR FAD SMSF)	0587
202 NUF STA SMSE	ADD UN THU STIDE?	0588
THIS PART IS FO	R ODD HARMONICS	0589
283 CLS ##.2	(++=SINTAB)	0590
XCA		0591
Z84 NOP	(MPY OR FMP ++,1 WITH ++=R	SA) 0592
Z85 NOP	(ADD OR FAD SMSO)	0593
STO SMSO		0594
<b>#NOW GO TO COSINE SU</b>	PS IF COSISP, OR AVOID IF SISP	0595
286 TRA ++	(**=Z90 FOR COSISP, **=Z100 FD	R SISP) 0596
+LOOP FOR FORWARD OR	BACKWARD MOTION ON COSINE WAVE	0597
+ THIS PART FOR E	VEN HARMUNICS SUMMED IN SMCE	0598

	PROGRAM LISTINGS	***
	(**=COSTAB) {MPY OR FMP **,1 WITH **=RSS} {ADD OR FAD SMCE)	
סטכ	HARMCNICS SUMMED IN SMCO (**=COSTAB) (MPY OR FMP **,1 WITH **=RAS) (ADD OR FAD SMCO)	
VEN	HARMONICS (BY +JE FOR FORWARD	

STO SMCE 0602 THIS PART IS FOR O 0603 Z93 LDQ 0604 **,2 294 NOP 0605 295 NOP 0606 STO SMCD 0607 ***INCREMENT INDEX FOR EV** 0608 TRAVEL, BY -JE FOR REVERSE TRAVEL) 0609 2100 TXI (**=-JE REVERSE) (##=JE FORWARD) *+1,4,** 0610 *CHECK IF INDEX HAS RUN OFF END (GREATER THAN M FOR 0611 FORWARD TRAVEL, LESS THAN ZERO FOR REVERSE) (However for reverse travel XR4 going negative means 0612 0613 . XR4 GETS GREATER THAN M, SO SAME TEST APPLIES) 0614 Z101 TXH Z120,4,** * * = M 0615 *INCREMENT INDEX FOR ODD HARMONICS (BY+JO OR -(JO)) 0616 AND MAKE SAME KIND OF END TEST 0617 Z102 TXI Z103 TXH *+1,2,** (**=JO FORWARD) (**=-JD REVERSE) 0618 2110,2,## { ++=M } 0619 .INCREMENT DATA INDEX BY 1 AND CHECK FOR END OF DATA 0620 LOOPING BACK TO PLACE DETERMINED BY WHETHER COSP OR 0621 SISP OR COSISP AND FORWARD OR BACKWARD AND EVEN OR ODD 0622 Z104 TXI **1,1,1 0623 2105 TXL ##8=P1 **,1,** (TXL ++A,1,++B 0624 **A=Z90 FOR COSP 0625 FOR SISP OR COSISP (INITIAL = 250) . 0626 **A=Z50 EVEN AND ODD HARMONICS FORWARD 0627 . #+A=Z60 EVEN FORWARD, DDD REVERSE EVEN REVERSE, DDD FORWARD 0628 **A=Z70 0629 **A=Z80 EVEN AND ODD REVERSE 0630 (**=Z107 FOR COSP DR COSISP, Z106 TRA 0631 ++=Z115 FOR SISP) 0632 ***READJUSTMENTS WHEN COD HARMONIC INDEX RUNS OFF END** 0633 **#FORWARD OR BACKWARD** 0634 2110 ZET SWC 0635 TRA 2113 BACKWARD 0636 CLA K1 0637 SWC STO 0638 +IF FCRWARD SET TO GC BACKWARD ON ODD 0639 TEMP,2 Z111 SXD 0640 CLA 2 M 0641 ТЕ₩Р SUB 0642 PDX 0,2 0643 CLA MJC 0644 STO Z102 0645 *IF COSP GU BACK, IF NOT REMAKE FORK AT 2105 0646 COSP SISP OR COSISP 0647 NOP ZET SWE) Z112 (TRA 2104 0R 0648 TRA Z112A 0649 CLA (KA10 = PZE 260)KA10 Q650 2105 STA 0651 TRA Z104 0652 Z112A CLA **KA12** (KA12=PZE Z80) 0653 STA 2105 0654 TRA 0655 Z104 ***IF BACKWARDS SET TO GO FORWARDS ON ODD** 0656 SWC 2113 STZ 0657 PXA 0,2 0658 PAC 0659 J.2 CLA JC 0660 STD Z102 0661 *IF COSP GU BACK, IF NOT REMAKE FORK AT Z105 0662 SISP OR COSISP COSP 0663 Z114 NOP (TRA Z104 OR ZET SWE) 0664 TRA Z114A 0665 CLA KA9 (KA9=PZE Z50) 0666 STA Z105 0667 0668 TRA Z104 (KA11=PZE Z70) 0669 Z114A CLA KA11 0670 STA 7105 TRA Z1C4 0671 **#READJUSTMENT WHEN EVEN HARMONIC INDEX RUNS OFF END** 0672 ***WHICH WAY WERE WE GOING** 0673

********

.

(PAGE 9)

0599

0600

0601

COSP

.......

***********************

LCQ

NCP

NOP

**,4

COSP

Z 90

Z91

Z92

* COSP *	PROGRAM LISTINGS	**************************************
<pre>####################################</pre>		(PAGE 10)
7100 7ET CHE		0674
TRA 7122	BACKWARDS	0675
<b>#IF FCRWARD</b> REVERS	E SWE, READJUST IR4 AND DECREM OF TXI	0676
Z121 CLA K1		0677
STO SWE		0678
SXD TEMP	94 RESET I#JE TO 2M-I#JE	0679
CLA 2M		0680
SUB TEMP		0681
PDX 0,4		0682
		0683
	E NOT DEMAKE FORK AT 7105	0695
7121A NOP	(TRA 7102(COSD) 7FT SWD (STSP)	6860 ((92120)
TRA 7121	B	0687
CLA KA11	(KA11=Z70)	0688
STA Z105		0689
TRA 2102		0690
Z1218 CLA KA12	(KA12=Z80)	0691
STA Z1C5		0692
TRA Z102		0693
* IF BACKWARDS		0694
ZIZZ SIZ SWE		0695
		0076 Ara7
		0698
STD 2100		0699
#IF COSP GO BACK, I	F NOT REMAKE FORK AT Z105	0700
Z122A NOP	(TRA Z102 (COSP),ZET SWO (SIS	P,COSISP)) 0701
TRA Z122	В	0702
ELA KA9	(KA9=Z50)	0703
STA Z105		0704
TRA ZICZ	(24)0-7(0)	0705
ZIZZB CLA KATO	(KA10=260)	0706
5TA 2103 TPA 2103		0708
	ULT STORAGE FOR COSINE TRANSFORMS	0709
#WAS LAST EVEN HARM	ONIC A DUMMY	0710
Z107 ZET DUME		0711
TRA Z109	YES	0712
<b>*IF NOT STORE SMCE</b>	IN COSTR BLOCK	0713
LXA ESTO	R,4	0714
		0715
	NTC A DUMMY	0717
7109 7FT DUMO		0718
TRA Z109	B YES	0719
<b>*IF NOT STORE SMCO</b>	IN COSTR BLCCK	0720
LXA OSTO	R,4	0721
CLA SMCO	1	0722
Z109A STO ++,4	(##=COSTR)	0723
Z1098 TRA **	(##=Z115 COSISP, ##=Z130 COSP)	0724
#UUSISP UK SISP KES	ULI SIUMAGE FUK SING IKANSPUKAS	0724
THAS LAST EVEN MAKE	UNIC A DUNHI	0720
TRA 7117	YES	0728
<b>#IF NOT STORE SMSE</b>	IN SINTR BLOCK	0729
LXA ESTO	R,4	0730
CLA SMSE		0731
Z116 STO ++,4	(++=SINTR)	0732
+WAS LAST ODD HARMO	NIC A DUMMY	0733
ZILY ZEY DUMO	VEC	U134 A725
	TES IN SINTE BLOCK	0736
IYA NOT	R.4	0737
	····	0738
Z118 STO ++.4	( ++=SINTR )	0739
<b>*RESET FOR NEXT LCO</b>	P STORAGE	0740
Z130 CLA ESTO	R	0741
ADD K2	_	0742
STO ESTO	R	0743
CLA OSTO	ĸ	0/44
AUU K2	D	U140 0744
	D CHECK IE TOD BIG	0747
		0748

*********	*******	****	PROGRAM LISTINGS	********************
COSP		•		* COSP *
********	*******	*****		****************
(PAGE 11)				(PAGE 11)
	ADO	KD2		0749
	510	JE	CONDADE NATUL INAV	0750
		110	CUMPARE WITH JMAX	0751
	IKA	2135		0752
TE NO			UK	0753
#1F NE	W JE UK	INDEX JU BY II	NU AND CHECK ITS SIZE	0755
2151		JU		0756
	AUU CTD	KUZ		0755
	510	JU T10		0759
		7122	TOD 810	0750
	NCD	2133		0759
#PETIID	N TO BEC	INNING OF LOOP	UK	0761
7132		730		0762
#TE_10		SET SWITCH		0763
7133		K1		0764
2133	STO	DUMO		0765
#TS JE		D BIG		0766
	7FT			0767
	TRA		YES - ALL EINISHED	0768
	TRA	7132	NO - ONE MORE TO CO	0769
+TE IE	TOO BIG	SET SWITCH		0770
7135	CI A	V1		0771
2132	STO	NINC		0772
	TPA	7121	CO CHECK ID	0772
* E T N A I	EVIT	2151	SU CHECK JU	0776
=FINAL		COSD-2 4		0775
L V		CU3P-294	(	0776
	4 A I 4 V T	****	(==1NI)	0777
EVIT		** ; {	(##=10 EDD CDCD DD EICD ##=16 E	
		***** 000040155 510	(**-10 FOR COSP OR SISP; **-14.P	0770
EUCH31	07C	MPORARIES; ETC	AREA MULTIE EVEN MADNONTO COTNO	
3 110	PZE	**	(**-0 WHILL EVEN HARMONIC GUING	PACKWARDS) 0700
* sun	075	**	(##=1 WHILE EVEN HARMONIC GOING	0101 0792
340	FLL		(**-0 WHILE ODD HARMONIC TORWARD	0702
<b>,</b> 1E	D7E	0.0.**	++= 15	0784
JE Mic	P2C D7C		**-JE **-25 COMD OF 15	0785
	F 2 C	0.0.**	##~25 CUMP OF JE	0786
10	P 2 C	0,0,++	**-JU **-JE COND OF 10	0700
	72C		(ARTO EOD DEAL EVEN. ARTI EOD DUA	INV EVEN) 0799
DUME	D7C		(AREA END DEAL OND AREA END DUMA	
ECTOP	075		TINEY OF THITIAL EVEN HAPMONIC	STOPACE) 0790
	076	AA (AA-7E)	O INDEX OF INITIAL EVEN HARMONIC	STORACE) 0791
MPY	NPV	**.1	the mean of infine out manoure	0792
EMP	EMP	**.1		0793
<b>ADD</b>		**		0794
FAD	FAD	**		0795
SMSE	P7F	**	SUM FOR EVEN HARMONIC SINE TRANS	EORM 0796
SHOL	P76	**	SUM FOR ODD HARMONIC SINE TRANSP	ORM 0797
SHUE	076		SUM FOR OUD HARMONIC COSINE TO	NSEDRM 0798
SHOL	076		SUM FOR ODD HARMONIC COSINE TRAN	ISEORM 0799
2M	PZE	0.0.**	(##=2M)	0800
TEMP	P7F	**	• =	0801
TI	PZE	**	(**=RSS)	0802
T2	PZE	**	( **= RAS )	0803
T3	PZE	**	( ===RSA )	0804
T4	PZE	**	(##=RAA)	0805
T5	PZE	0.0.**	(**=P)	0806
T6	PZE	**	(##=COSTAB)	0807
17	PZE	**	(##=SINTAB)	0808
T8	PZE	0,0,##	(**=N)	0809
T9	PZE	0,0,**	(##=JMIN)	0810
T10	PZE	0,0,**	( **=JMAX )	0811
T11	PZE	**	(**=TYPE)	0812
T12	PZE	**	(**=COSTR)	0813
T13	PZE	**	(**=SINTR)	0814
KO	PZE	0		0815
K1	PZE	1		0816
K2	PZE	2		0817
K10	PZE	10		0818
K14	PZE	14		0819
KT1	TRA	Z104		0820
KT2	TRA	Z102		0821
KZ1	ZET	SWE		0822
KZ2	ZET	SWO		0823

*********	******	*****	PROGRAM LISTINGS	******************
COSP		*		* COSP *
*********	*****	*****		*****************
(PAGE 12)				(PAGE 12)
KD1	PZE	0,0,1		0824
KD2	PZE	0,0,2		0825
KA2	PZE	SMSE		0826
KA3	PZE	SMSO		0827
KA4	PZE	SMCE		0828
KA5	PZE	SMCO		0829
KA6	PZE	Z90		0830
KA7	PZE	Z100		0831
KA8	PZE	Z30		0832
KA9	PZE	250		0833
KA10	PZE	Z60		0834
KA11	PZE	270		0835
KA12	PZE	Z80		0836
KA13	PZE	KA8		0837
KA14	PZE	KA9		0838
KA15	PZE	Z107		0839
KA16	PZE	Z115		0840
KA17	PZE	Z120		0841
KA18	PZE	K46		0842
KA19	PZE	Z130		0843
	END			0844

**************************************	OGRAM LISTINGS	*****	**************
• COSTBL •		#	COSTBL .
		*****	***************
<ul> <li>COSTBL (SUBROUTINE)</li> </ul>	2/15/63	LAST CARD IN DEC	K IS NO. 0199
+ FAP +COSTRI			0001
			0002
			0004
ENTRY COSTBL (N.COSTAB)			0005
ENTRY SINTBL (N.SINTAB)			0006
ENTRY COSTBX (N, ICOSTB)			0007
ENTRY SINTBX (N, ISINTB)			0008
*			0009
*ABSTRACT			0010
*			0011
* TITLE - COSTBL WITH SECONDARY EN	TRY POINTS SINT	BL, COSTBX, SINTB	X C012
<ul> <li>GENERATE COSINE OR SINE HAI</li> </ul>	LF-WAVE TABLES,	FIXED OR FLOATIN	G 0013
*			0014
COSTBL GENERATES A H	ALF-WAVE COSINE	TABLE FLOATING P	DINT 0015
* SINIBL GENERALES A H	ALF-WAVE SINE I	ABLE FLUATING PUT	NI 0016
CUSIBA GENERALES A HI     CINTRY CENERALES A HI	ALF-WAVE CUSINE	TABLE FIXED PUIN	
SINIDA GENERALES A FI/ A DUEDE	ALF-WAVE SINE I	ABLE FIXED PUINT	0018
	ENCTH IS AN IN	DIIT DADAMETER	0019
FOR FIXED POIN	T TARIES THE RI	NARY POINT IS BET	WEEN 0021
* THE SIGN B	IT AND BIT 1.		0022
*			0023
* LANGUAGE - FAP SUBROUTINE (FORTI	RAN II COMPATIB	LE)	0024
* EQUIPMENT - 709 OR 7090 (MAIN FR	AME ONLY)		0025
* STORAGE - 128 REGISTERS			0026
# SPEED - ABOUT 2N MILLISEC ON	709, WHERE N =	HALF-WAVE LENGTH	0027
# AUTHOR - JON CLAERBOUT			0028
*			0029
*USAGE			0030
	(1.0)(5)		0031
* TRANSFER VECTUR CUNTAINS RUUTINES	S - (NUNE)		0032
AND FURIRAN SYSTEM RUUTINE:	S = CUS, SIN		0033
* ENDTRAN USACE DE COSTRI			0035
CALL COSTBL (N.COSTAR)			0036
* GREE COSTBE(N)COSTAD/			0037
INPUTS TO COSTBL			0038
* N DEFINES THE HALF-WAY	VE LENGTH TO BE	N+1	0039
# MUST EXCEED ZERO (PI	ROGRAM EXITS IF	N IS NEGATIVE OR	ZERO) 0040
•			0041
* OUTPUTS FROM COSTBL			0042
COSTAB(I) I=1N+1 CONTAINS	TABLE(J) = COS	(J*PI/N) J=0,1,	,N 0043
<pre># I.E. COSTAB(I)</pre>	CONTAINS TABLE	(1-1)	0044
# 			0045
* FUKIKAN USAGE LE SINIBL			0048
TNDUTS TO STATE	•		0348
N SAME MEANING AS FOR	COSTRI		0049
OUTPUTS FROM SINTBI			0050
SINTAB(I) I=1N+1 CONTAINS	TABLE(J) = SIN	(J*PI/N) FOR J=0,	LN 0051
•			0052
FORTRAN USAGE OF CCSTBX			0053
# CALL COSTBX(N,ICOSTB)			0054
INPUTS TO COSTBX			0055
* N SAME MEANING AS FOR	COSTBL		0056
OUTPUTS FRUM CUSTBX     TOOSTD(I) IS SAME AS			
# 100518(1) 1=1N+1 15 SAME A:	S FUR CUSIBL BU	I DATA IS FILED PO	0059
• EDRTRAN USAGE OF STNTRY			0060
* CALL SINTBX(N.ISINTB)			0061
* INPUTS TO SINTBX			0062
* N SAME MEANING AS FOR	COSTBL		0063
OUTPUTS FROM SINTBX			0064
ISINTB(I) I=1N+1 IS SAME AS	S FOR SINTBL BU	T DATA IS FIXED PO	DINT 0065
*			0066
* EXAMPLES			0067
# 1. GENERAL BEHAVIOR FOR N=4			0068
INPUTS - N=4			0069
<ul> <li>USAGE - CALL COSTBLIN</li> </ul>	CUSIAB)		0070
CALL SINTBL(N	SINIAB)		0071
	ICUSID/		0072
UALE SINIDAIN CALE SINIDAIN CALE SINIDAIN CALE SINIDAIN CALE SINIDAIN CALE SINIDAIN	S ARE GOOD TO A	OCTAL PLACES.	0074

• • •	· )
÷.	\$
	3.

COSTBL	-	*****	PRUGRAM LISTIN	+ 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	COSTBL +
PAGE 2)	******	*****		***	(PAGE 2)
		COSTAR(15)	= 1.070711.0.0.		0075
#		SINTAB(15)	= 0.070711.1.0	.70711.0.0	0076
		ICCSTB(15)	= OCT 37777777777	7,265011714000,	0077
+			000000000000	665011714000,77777	7777777 0078
+		ISINTB(15)	= 0CT 0000000000000000000000000000000000	0,265011714000,	0079
*			377777777777	265011714000,00000	0800 000000
#		•			0081
	HIK BCT				0082
COSTRI		*			0085
000101	STO	FL			0085
	TRA	*+3			0086
COSTBX	STZ	FL			0087
	STZ	CCRS			0088
	SXD	CUSTBL-2,4			0089
	SXA	SV,1	(10) 1000 ()		0090
		KULS	(ISX \$LUS;4)		0091
		AL 2.4	CET COSINS		0092
	STA	83	BET COSTAS		0095
	ACD	= 1	COSINS+1		0095
	STA	A			0096
	STA	в			0097
	STA	81			0098
	STA	82			0099
	STA	B4			0100
CINTOL		D			0101
SINIBL	STO	# El			0102
		FL #+4			0103
SINTBX	STZ	FL			0105
	CLA	*			0106
	ST0	CCRS			0107
	SXD	CCSTBL-2,4			0108
	SXA	SV,1			0109
	CLA	KSIN	(TSX \$SIN,4)		0110
					0111
- 3E1		2.4	GET SINS		0113
	ADD	=1	SINS+1		0114
	STA	A			0115
	STA	B			0116
	STA	81			0117
	STA	B2			0118
	STA				0119
* SE I	UP CUMP	UTATION LOUP	CET N		0120
U		194 CV	GET N		0122
	TMI	SV			0122
	STD	N			0124
	ADD	KD1	FORM N+1		0125
	STD	AN			0126
	STD	BN			0127
	CLA	N	FLOAT N		0128
	ARS	18			0129
					0130
	STO	NEL			0132
	CLA	=3.14159265	FORM PI/N		0133
	FDP	NFL			0134
	STO	INCR			0135
	STZ	ARG			0136
<b>₽</b> LOOP					0137
	AXT	1,1	CUS	SIN	0138
	ULA NCD	AKG	TCV CCOC 4	TCV CTN 4	0139
AL	STO	₩₩ ₩₩.1	I3A ₽6U314 ##=CU6IN6™1	13A 331N94 ##=CINC11	U140 A141
А		ARG		1 TOTIC	0142
	FAD	INCR			0143
	STO	ARG			0144
	TXI	++1,1,1			0145
AN	TXL	AL,1,##	**=N+1		0146
	ZEŤ	FL	FIX IF ZERO		0147
	TRA	sv	EXIT - NOT ZERO		0148
	AXT	1,1			0149

IPAGE 3)       (PAGE 3)         BC       CLM         B       LDQ         SSP       0150         SSP       0151         SSP       0153         SUB       =0200         STA       RTSH         B1       CLA         LRS       =0000777777777         ALS       8         STA       =0000777777777         ALS       8         RTSH       =00007777777777         ALS       8         RTSH       #**11         B2       STO         TXI       #*1,1,1         B3       CLA         TXI       #*1,1,1         B4       B2         STO       **1,1         B5       1164         B7       STO         TXI       #*1,1,1         B7       1164         B7       STO         B7       **1,1         B7	+ COSTBL		******	PROGRAM LIS	TINGS	COSTBL +
IPAGE 3)       (PAGE 3)         BC       CLH       0150         BC       CLH       0151         LLS       8       0153         SSP       0153       0154         SUB       =0200       0154         STA       RTSH       0155         B1       CLA       ***1       **=COSINS*1       0156         LRS       0157       0158       0157         ANA       =0000777777777       0158       0159         LLS       8       0160       0164         B2       STO       **1,1       **=COSINS*1       0164         B2       STO       **1,1       **=COSINS*1       0164         B2       STO       **1,1       **=COSINS*1       0164         B3       STO       **1,1       **=COSINS       0167         B4       STA       0164       0164       0164         CLA       =03777777777777       SET FIRST AND       0166         CLA       =037777777777777777       SET FIRST AND       0166         LXD       BN,1       **=COSINS LAST VALUES       0168         LXD       BN,1       **<=COSINS LAST VALUES       0166	*********	******	******			******************
BC CLM → 0150 B LDQ + 1 → 1 + +=COSINS+1 0151 SSP 0153 SUB =0200 STA RTSH 0155 B1 CLA + +,1 +=COSINS+1 0156 LRS 0157 ANA =0000777777777 ALS 0159 LLS 0159 LLS 0160 RTSH ARS + ++1,1 +=COSINS+1 0161 B2 STO ++1,1 +=COSINS+1 0163 BN TXL BC,1,++ ++1,1 0163 BN TXL BC,1,++ ++1,1 0165 CLA CORS 0166 CLA =0377777777777 SET FIRST AND 0167 B3 STO ++ +++COSINS+1 0166 B3 STO ++ +++COSINS+1 0166 B3 STO ++ ++++1 0166 B4 STO ++ ++++1 0166 B4 STO ++ ++++1 0166 B5 SSM 0166 CLA =0377777777777 SET FIRST AND 0167 B4 STO ++ ++++COSINS+1 0176 B4 STO +++ ++++COSINS+1 0177 TRA SV 0177 CLA N 0173 L1 CLA N 0177 L1 CLA N 0177 TRA ++2 0177 CLA N 0100 - SET MOPT = 1 0176 TRA ++2 0177 CLA N 0100 - SET MOPT = 1 0176 STD MD COSINS+1 0177 CLA N 0100 - SET MOPT = 1 0176 STD MD COSINS+1 0176 TRA ++2 0177 CLA N 1000 - SET MOPT = 1 0176 STD MD COSINS+1 0177 CLA N 1000 - SET MOPT = 1 0176 STD MD COSINS+1 0176 TRA ++2 0177 CLA N N 000 - SET MOPT = 1 0176 STD MD COSINS+1 0176 STD MD COSINS+1 0177 CLA N N 000 - SET MOPT = 1 0176 STD MD COSINS+2,4 0177 CLA N N 000 - SET MOPT = 1 0176 STD MD COSINS+2,4 0177 CLA N N 000 - SET MOPT = 1 0176 STD MD COSINS+2,4 0177 CLA N N 000 - SET MOPT = 1 0176 STD MD COSINS+2 +	(PAGE 3)					(PAGE 3)
B         L00         **,1         ***=COSINS+1         0151           LLS         B         0152         0153           SUB         =0200         0154           STA         RTSH         0155           B1         CLA         **,1         ***=COSINS+1           LS         8         0157           AAA         =0000777777777         0157           ALS         8         0160           RTSH         ARS         **         FROM B*4         0161           B2         STO         **         FROM B*4         0161           B2         STO         **         FROM B*4         0161           B2         STO         **         **         FROM B*4         0161           B2         STO         **         **         0163         0164           CLA         =037777777777         SET FIRST AND         0167         0164           CLA         =03777777777777777         SET FIRST AND         0167           B3         STO         **=COSINS         LAST VALUES         0166           LXD         BN,1         **=COSINS+1         0170           B4         STO         **=CO	BC	CLM				0150
LLS 8 0152 SSP 0200 0153 SUB =0200 0155 STA RTSH 0155 B1 CLA **,1 **=COSINS+1 0156 AAA =000C777777777 ALS 8 0159 LLS 0159 LLS 0159 LLS 0160 RTSH ARS ** ** FROM B+4 0161 B2 STO **,1 **=COSINS+1 0162 TXI *+1,1,1 0165 BN TXL BC,1,** **=N+1 0165 CLA CORS 0166 CLA CORS 0166 LXO BN,1 0172 L1 CLA N 0172 L1 CLA N 0172 L1 CLA N 0172 L1 CLA N 0174 LST 1FF = 0, N EVEN - EXIT 0175 TRA SV 0177 L1 CLA N N 00D - SET MDPT = 1 0176 ARS 1 GET (N+1)/2 0176 ARS 1 GET (N+1)/2 0186 STO **,1 **=COSINS+1 0177 CLA N N 00D - SET MDPT = 1 0176 ARS 1 GET (N+1)/2 0186 LXO COSTBL-2,4 **=N IN DECR 0186 LXO COSTBL-2,4 **=N IN DECR 0186 LXO COSTBL-2,4 **=PI/N, 1=0,1,,N 0193 AFE **=PI/N, 1=0,1,,N 0193 AFE **=COSTAF **=FLOATF(N) 0193 AFE **=PI/N, 1=0,1,,N 0194 AFE **=PI/N, 1=0,1,,N 0195 AFE **=PI/N, 1=0,1,,N 0194 AFE **=PI/N, 1=0,1,,N 0194 AFE **=PI/N, 1=0,1,,N 0194 AFE **=O FCOS 0197 AFE **=O	8	LDQ	<b>**,1</b>	<pre>**=COSINS+1</pre>		0151
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		LLS	8			0152
SUB         =0200         0154           STA         RTSH         0155           B1         CLA         **,1         **=COSINS+1         0156           LRS         =000077777777         0158         0157           ANA         =000077777777         0158         0157           ALS         8         0160         0157           LLS         ** FROM B*4         0161         0162           RTSH         ARS         ** ** FROM B*4         0161           B2         STO         **,1         **=COSINS+1         0162           TXI         #*1,1,**         0163         0164         0165           TXI         #*1,1,**         0163         0166         0166           CLA         CORS         0164         0166         0166           STO         ***=COSINS         LAST VALUES         0166           SSTO         ***=COSINS*1         0170         0172           L1         CLA         N         0170         0172           L1         CLA         N         0170         0172           L1         CLA         N         0173         0176           ARS         IF<=0, NEV		SSP				0153
STA       RTSH       0155         B1       CLA       **,1       **=COSINS+1       0156         LRS       0157       0158       0157         ANA       =0000777777777       0158       0159         ALS       8       0159       0159         LLS       0160       0161       0162         RTSH       ARS       **       **=COSINS+1       0163         B2       STO       **,1       **=COSINS+1       0163         B3       STO       **,1       **=COSINS+1       0164         CLA       CCRS       0165       0167         B3       STO       **       **=COSINS       LAST VALUES       0166         CLA       =0377777777777       SET FIRST AND       0167       0167         B3       STO       **       **=COSINS       LAST VALUES       0169         LXD       BN1       IN TABLE = 1       0169       0170         B4       STO       **=COSINS+1       0171       0172         L1       CLA       N       0100 - SET MDPT = 1       0174         ARS       1       GET (N+1)/2       0179       0176         ADD       K		SUB	=0200			0154
B1 CLA **,1 **=COSINS+1 0156 LRS 0157 ANA =0000777777777 ALS 8 0159 LLS ** FROM B+4 0160 RTSH ARS ** ** FROM B+4 0161 B2 STO **,1 *=COSINS+1 0162 TXI **1,1,1 BC,1,** **=COSINS+1 0166 CLA CORS 0166 CLA =037777777777 SET FIRST AND 0167 B3 STO ** **=COSINS LAST VALUES 0168 SSM IN TABLE = 1 0170 LXD BN,1 0171 TRA SV 0167 LBT IF = 0, N EVEN - EXIT 0176 TRA +22 0177 CLA N ACD - SET MDPT = 1 0176 TRA SV 0177 CLA N N 0DD - SET MDPT = 1 0176 TRA SV 0177 CLA N N 0DD - SET MDPT = 1 0176 TRA **2 TRA **1 0176 TRA SV 0177 CLA N N 0DD - SET MDPT = 1 0178 ARS 1 GET (N+1)/2 0180 STD M0 STD M0 S		STA	RTSH			0155
LRS ANA =00:0777777777 ALS B LLS B RTSH ARS TXI #+1,1,1 BN TXL BC,1,** **=N+1 CLA CORS TXI #+1,1,1 BN TXL BC,1,** **=N+1 CLA CORS TNZ L1 CLA =0377777777777 L1 CLA B3 STO LXD BN,1 B4 STO LXD B+,1 B4 STA LB7 IF = 0, N EVEN - EXIT TRA SV L1 CLA N ARS 18 LB7 IF = 0, N EVEN - EXIT TRA ++2 TRA SV L1 CLA N ARS 18 LB7 IF = 0, N EVEN - EXIT TRA SV L1 CLA N ARS 18 LB7 IF = 0, N EVEN - EXIT TRA SV L1 CLA N ARS 18 LB7 IF = 0, N EVEN - EXIT CLA N ARS 10 CLA =03777777777777777777777777777777777777	81	CLA	**,1	++=COSINS+1		0156
ANA       =000077777777       0158         ALS       8       0159         RTSH       ARS       *** FROM B*4       0160         BZ       STO       ***,1       **=COSINS+1       0162         TXI       **1,1,1       0163       0166         DN       TXI       BC1,1**       **=N*1       0164         CLA       CORS       0166       0166         CLA       CORS       0166       0167         B3       STO       **=COSINS       LAST VALUES       0166         SXD       BN,1       0167       0167       0167         B4       STO       **=COSINS+1       0170       0171         TRA       SV       0171       0171       0172         L1       CLA       N       0173       0171         TRA       SV       0173       0177         L1       CLA       N       0100 - SET MDPT = 1       0176         TRA       **2       0177       0180       0181         CLA       N       N DDD - SET MDPT = 1       0176       0177         ARS       1       GET (N+1)/2       0179       0180         ADD		LRS	• -			0157
ALS       8       0159         LLS       0160         RTSH       ARS       ** FROM B*4       0161         B2       STO       **,1       **=COSINS+1       0163         BN       TXL       BC,1,**       **=N+1       0163         CLA       CORS       0165       0165         TXL       BC,1,**       **=N+1       0164         CLA       CORS       0165       0165         TXL       BC,1,**       **=N+1       0165         CLA       CORS       0166       0167         B3       STO       **=       **=COSINS       LAST VALUES       0168         SW       IN TABLE = 1       0170       0167       0172       0170         B4       STO       **,1       **=COSINS+1       0171       0172         L1       CLA       N       0172       0176       0176         TRA       SV       0172       0176       0177         L1       CLA       N       N DDD - SET MDPT = 1       0176         ARS       1       GET (N+1)/2       0179       0180         AD       K01       GET (N+1)/2       0180		ANA	=000077777777	77		0158
LIS     0160       RTSH     ARS     ***     FROM B*4     0161       B2     STO     **,1     **=COSINS+1     0163       TXI     *t1,1:1     0163       BN     TXL     BC,1:**     **=N*1     0164       CLA     CORS     0166     0167       B3     STO     **     **=COSINS     LAST VALUES     0166       LXD     BN,1     IN     0169     0170       B4     STO     **,1     **=COSINS+1     0170       B4     STO     **,1     **=COSINS+1     0170       B4     STO     **,1     **=COSINS+1     0171       TRA     SV     0172     0172     0172       L1     CLA     N     0172     0176       TRA     SV     0173     0176       TRA     SV     0176     0177       CLA     N     N DOD - SET MOPT = 1     0176       ARS     1     GET (N+1)/2     0179       ADD     KD1     0180     0180       STD     MD     0180     0180       CLA     =037777777777     SET MOPT = 1     0176       L2     STO     #00     KD1     0183       L2		ALS	8			0159
RTSH       ATS       ***       ***FROM B*4       0161         B2       STO       ***,1       ***=COSINS+1       0162         TXI       **1,1:1       0163       0164         BN       TXL       BC,1:**       ***=N+1       0164         CLA       CORS       0165       0165         TNZ       L1       0166       0167         B3       STO       ***       **=COSINS       LAST VALUES       0168         SSW       IN TABLE = 1       0169       0170       0171       0171         B4       STO       ***1       **=COSINS+1       0171       0172         L1       CLA       N       N       0172       0173         B4       STO       ***1       **=COSINS+1       0171         TRA       SV       0172       0176       0174         LBT       IF = 0, N EVEN - EXIT       0176       0176         TRA       SV       0177       0176       0176         TRA       SV       0177       0178       0177         ADD       K01       GET (N+1)/2       0179       0180         CLA       =037777777777       0182       0177<		LIS				0160
B2       STO       **1       **=COSINS+1       0162         TXI       **1,1,1       0163       0163         BN       TXL       BC,1,**       **=N+1       0163         CLA       CORS       0165       0165         TNZ       L1       0165       0166         CLA       CORS       0166       0167         B3       STO       ***=COSINS       LAST VALUES       0168         B4       SSM       IN TABLE = 1       0169       0167         B3       STO       **+1       **=COSINS       LAST VALUES       0168         B4       SSM       IN TABLE = 1       0169       0167       0170         B4       STO       **+1       **=COSINS+1       0171       0171         TRA       SV       0172       0173       0174       0175         TRA       SV       0174       0175       0176       0176         TRA       SV       0176       0176       0177       0179         ADD       K0D       STO       MD       0180       0180         CLA       PO       K0L       0180       0180         CLA       COSTRU-2,4	RTSH	ARS	**	## FROM 8+4		0161
DXT       *+1,1,1       0100         BN       TXL       BC,1,***       ***=N+1         CLA       CORS       0165         TNZ       L1       0165         CLA       CORS       0166         CLA       = C37777777777       SET FIRST AND       0167         B3       STO       **       **=COSINS       LAST VALUES       0168         SSM       IN TABLE = 1       0169       0170       0172       0171         B4       STO       **,1       **=COSINS+1       0171       0172         L1       CLA       N       0177       0172       0173         B4       STO       **,1       **=COSINS+1       0171         TRA       SV       0177       0172       0173         L1       CLA       N       0100 - SET MDPT = 1       0176         TRA       SV       0177       0182       0179         ADD       KO1       0180       0180       0180         STO       MD       GET (N+1)/2       0176       0182         LXD       MD,1       GET (N+1)/2       0179       0182         LXD       MD,1       0182       0180 <td>82</td> <td>STO</td> <td>**.1</td> <td>++=COSINS+1</td> <td></td> <td>0162</td>	82	STO	**.1	++=COSINS+1		0162
BN       TXL       BC,1,**       **=N+1       0164         CLA       CORS       0165       0165         TXL       L1       0166       0167         B3       STO       **=COSINS       LAST VALUES       0168         SSM       IN TABLE = 1       0169       0167         B4       STO       **=COSINS       IN TABLE = 1       0169         LXD       BN,1       0171       0170       0171         B4       STO       **=1       *=COSINS+1       0171         TRA       SV       0172       0171         L1       CLA       N       0172       0173         ARS       18       IF = 0, N EVEN - EXIT       0176         TRA       SV       0174       0174         LBT       IF = 0, N EVEN - EXIT       0176         TRA       SV       0177       0176         ARS       10       GET (N+1)/2       0177         ADD       KD1       STO       0177         ADD       KD1       STO       0180         CLA       =03777777777       0182       0183         L2       STO       ***1       *** SIN*1       0184<		TXI	++1-1-1			0163
CLA       CORS       0165         TNZ       L1       0166         CLA       =C3777777777777       SET FIRST AND       0167         B3       STO       **       **=COSINS       LAST VALUES       0169         LXD       BN,1       IN TABLE = 1       0170       0167         B4       STO       **,1       **=COSINS+1       0170         B4       STO       **,1       **=COSINS+1       0170         B4       STO       **,1       **=COSINS+1       0170         B4       STO       **,1       **=COSINS+1       0177         L1       CLA       N       0172       0177         L1       CLA       N       0100       0175         TRA       **2       0176       0177         TRA       **2       0176       0177         ARS       N       NODD - SET MOPT = 1       0176         ARS       I       GET (N+1)/2       0179       0180         ADD       KD1       GET (N+1)/2       0180       0181         LXD       MD,1       EST       0182       0184         SV       AXT       **1       **= SINS+1       0185	BN	TXI	86.1.++	##=N+1		0164
TN2       L1       0166         CLA       =C37777777777       SET FIRST AND       0167         B3       STO       **       **=CDSINS       LAST VALUES       0168         LXD       BN,1       IN TABLE = 1       0169       0170         B4       STO       **,1       **=COSINS+1       0171         TRA       SV       0172       0174       0173         L1       CLA       N       0173       0174         L8       TRA       SV       0174       0175         L1       CLA       N       0176       0176         TRA       SV       0177       0176       0176         TRA       *+2       0177       0176       0176         TRA       SV       0177       0176       0178         ARS       1       GET (N+1)/2       0179       0179         ADD       KD1       GET (N+1)/2       0179       0183         L2       STO       *+1       ** = SINS+1       0184         SV       AXT       *+1       ** = SINS+1       0184         SV       AXT       *+1       0183       0180         L2	••••	CLA	CORS			0165
CLA       =C37777777777       SET FIRST AND       0167         B3       STO       **       **=COSINS       LAST VALUES       0168         SSM       IN TABLE = 1       0170       0167       0167         B4       STO       **,1       **=COSINS       IN TABLE = 1       0170         B4       STO       **,1       **=COSINS+1       0171       0172         L1       CLA       N       0172       0173       0174         L1       CLA       N       0174       0175       0174         L8       IF       IF = 0, N EVEN - EXIT       0176       0176         TRA       SV       0177       0175       0176       0176         TRA       SV       0177       0176       0176       0176         TRA       SV       0177       0176       0176       0177         ARS       1       GET (N+1)/2       0179       0170       0180         ARS       1       GET (N+1)/2       0179       0180       0181         CLA       =0377777777777       0182       0186       0181         L2       STO       ++1       *+= SINS+1       0186		TNZ	11			0166
B3 STO ** **=COSINS LAST VALUES 0168 SSM IN TABLE = 1 0169 LXD BN,1 B4 STO **,1 **=COSINS+1 0171 TRA SV 0172 L1 CLA N 0172 L1 CLA N 0174 ARS 18 IF IF = 0, N EVEN - EXIT 0175 TRA *+2 0176 TRA SV 0177 CLA N N ODD - SET MOPT = 1 0178 ARS 1 GET (N+1)/2 0180 STD MD 0181 CLA = 0377777777777 LXD MD,1 ** = SINS+1 0182 L2 STO **,1 ** = SINS+1 0182 L2 STO **,1 ** = SINS+1 0186 TRA 3,4 ··· 0186 FL PZE ** **=0,FXD 0189 INCR PZE ** **=0,FXD 0189 INCR PZE ** **=0,FXD 0190 ARG PZE ** **=0,FCD 0197 ADD 019		CIA	=03777777777777777	77	SET FIRST AND	0167
SSM     IN TABLE = 1     0169       LXD     BN,1     0170       B4     STC     **,1     **=COSINS+1     0171       TRA     SV     0172     0172       L1     CLA     N     0173       ARS     18     0174       LBT     IF = 0, N EVEN - EXIT     0175       TRA     SV     0177       CLA     N     N DDD - SET MDPT = 1     0178       ARS     1     GET (N+1)/2     0179       ADD     KD1     0180     0181       STD     MD,1     0183     0181       L2     STO     **,1     ** = SINS+1     0183       L2     STO     **,1     ** = SINS+1     0183       L2     STO     **,1     ** = SINS+1     0186       TRA     3,4     **     0186     0186       N     PZE     **     **=N IN DECR     0189       INCR     PZE     **     **=NIN     0190       ARG     PZE     **     **=NIN     0190       ARG     DZ     ***     0190       N     PZE     **     **=NIN     0190       ARG     DZ     ***     **=NIN     0190       ARG </td <td>83</td> <td>STO</td> <td>**</td> <td>##=COSINS</td> <td>LAST VALUES</td> <td>0168</td>	83	STO	**	##=COSINS	LAST VALUES	0168
LXD BN,1 B4 STC **,1 **=COSINS+1 TRA SV L1 CLA N ARS 18 LBT IF = 0, N EVEN - EXIT 0175 TRA *+2 TRA SV CLA N N N ODD - SET MOPT = 1 ADD K01 CLA = 0377777777777777777777777777777777777		NZZ			IN TABLE = 1	0169
B4       STC       #**1       ***=COSINS+1       0171         TRA       SV       0172       0171         L1       CLA       N       0173         ARS       18       0174       0174         LBT       IF = 0, N EVEN - EXIT       0176         TRA       SV       0177         CLA       N       NDDD - SET MDPT = 1       0176         TRA       SV       0177       0178         ARS       1       GET (N+1)/2       0179         ADD       KD1       0180       0180         STD       MD       0180       0180         STD       MD,1       ## = SINS+1       0183         L2       STO       #*,1       ## = SINS+1       0186         LXD       MD,1       ## = SINS+1       0186         LXD       COSTBL-2,4       0186       0187         N       PZE       ## #**N IN DECR       0188         FL       PZE       ## #**0,FXD       0189         INCR       PZE       ## #**0,FXD       0190         ARG       PZE       ##=0,FXD       0190         NPZE       ##=0,FLOATF(N)       0191		1 20	BN-1		IN PADLE I	0170
TRA       SV       0172         L1       CLA       N       0173         ARS       18       0174         LBT       IF = 0, N EVEN - EXIT       0176         TRA       SV       0176         TRA       SV       0176         TRA       SV       0177         CLA       N       N DDD - SET MDPT = 1       0178         ARS       1       GET (N+1)/2       0179         ADD       K01       0180       0180         STD       MD       GET (N+1)/2       0180         ADD       K01       0180       0181         CLA       = 0377777777777777       0182       0183         L2       STD       MD,1       0183       0183         L2       STD       #0,1       ** = SINS+1       0184         SV       AXT       ***1       ****       0185         LXD       COSTBL-2,4       0186       0186         N       PZE       *****       ******       0186         FL       PZE       ************************************	84	STO	**.1	##=COSINS+1		0171
L1 CLA N ARS 18 L1 CLA N ARS 18 LBT IF = 0, N EVEN - EXIT 0175 TRA *+2 TRA SV 0177 CLA N N ODD - SET MOPT = 1 0178 ARS 1 GET (N+1)/2 0180 STD MD CLA = 03777777777777777777 LXD MD,1 L2 STO *+,1 *+ = SINS+1 0184 SV AXT *+,1 0185 L2 STO *+,1 *+ = SINS+1 0186 TRA 3,4 **=N IN DECR 0186 TRA 3,4 **=N IN DECR 0188 FL PZE ** *=0,FXD 0189 INCR PZE ** **=0,FXD 0189 INCR PZE ** **=1*PI/N, I=0,1,,N 0191 ORF OCT 233000000000 NFL PZE ** **=1*FLOATF(N) 0192 NFL PZE ** **=0 IF COS 0197 KOI PZE 0,0,1 **=(N+1)/2 0198 KOI PZE 0,0,** **=(N+1)/2 0199	5.	TRA	SV			0172
ARS       18       0174         LBT       IF = 0, N EVEN - EXIT       0175         TRA       *+2       0176         TRA       SV       0176         CLA       N       N ODD - SET MOPT = 1       0178         ARS       1       GET (N+1)/2       0179         ADD       KD1       0180         STD       MD       0181         CLA       =03777777777777       0182         LZ       STO       **,1       ** = SINS+1       0183         L2       STO       **,1       ** = SINS+1       0184         SV       AXT       **,1       0185       0187         LXD       COSTBL-2,4       0186       0187       0186         TRA       3,4       **=N IN DECR       0186       0187         N       PZE       ** ** ** *****       0190       AR6         PZE       **= *** ******************************	11	CLA	N			0173
LBT       IF = 0, N EVEN - EXIT       0175         TRA       *+2       0176         TRA       SV       0177         CLA       N       N ODD - SET MOPT = 1       0177         ARS       1       GET (N+1)/2       0179         ADD       KD1       0180       0180         STD       MD       0181       0182         LXD       MD,1       0182       0183         L2       STO       **,1       ** = SINS+1       0185         LXD       MD,1       0185       0186         LXD       COSTBL-2,4       0186       0187         N       PZE       **=N IN DECR       0188         FL       PZE       **=***       0190         ARG       PZE       **=**********************************		ARS	18			0174
TRA       *+2       0176         TRA       SV       0100 - SET MDPT = 1       0177         CLA       N       N ODD - SET MDPT = 1       0178         ARS       1       GET (N+1)/2       0179         ADD       K01       0180         STD       MD       0181         CLA       = 0377777777777777       0182         LXD       M0,1       0183         L2       STO       **,1       ** = SINS+1         LXD       M0,1       0183         L2       STO       **,1       ** = SINS+1         LXD       COSTBL-2,4       0186         LXD       COSTBL-2,4       0186         TRA       3,4       .         N       PZE       **       **=N IN DECR       0189         INCR       PZE       **       **=N IN DECR       0189         INCR       PZE       **       **=I*PI/N, I=0,1,,N       0190         ARG       PZE       **       **=I*PI/N, I=0,1,,N       0191         ORF       OCT       233000000000       0192       0193         NFL       PZE       **       **=FLOATF(N)       0193         NGP </td <td></td> <td>LAT</td> <td></td> <td>IE = 0, N EVEN</td> <td>- FXIT</td> <td>0175</td>		LAT		IE = 0, N EVEN	- FXIT	0175
TRA       SV       0177         CLA       N       N ODD - SET MDPT = 1       0178         ARS       1       GET (N+1)/2       0179         ADD       KD1       0180         STD       MD       0181         CLA       = 0377777777777       0182         LXD       MD,1       0183         L2       STO       **,1       ** = SINS+1         LXD       MD,1       0185         LXD       COSTBL-2,4       0186         TRA       3,4       0187         N       PZE       ** = N IN DECR       0186         FL       PZE       ** ***N       0190         ARG       PZE       ** **********************************		TDA	**2			0176
CLA       N       N DDD - SET MDPT = 1       0178         ARS       1       GET (N+1)/2       0179         ADD       K01       0180         STD       MD       0181         CLA       = 03777777777777       0182         LXD       MD,1       0183         L2       STO       **,1       ** = SINS+1       0183         L2       STO       **,1       ** = SINS+1       0185         LXD       MD,1       0183       0187         LXD       COSTBL-2,4       0186       0187         N       PZE       **       **=N IN DECR       0186         FL       PZE       **       **=0,FXD       0186         INCR       PZE       **       **=0,FXD       0189         INCR       PZE       **       **=1PI/N, I=0,1,,N       0190         ARG       PZE       **       **=FLOATF(N)       0191         ORF       OCT       233000000000       0192       0192         NFL       PZE       **       **=FLOATF(N)       0193         KD1       PZE       0,0,1       COS 5,4       0195         KSIN       TSX       \$SIN,4 <td></td> <td>TRA</td> <td>sv</td> <td></td> <td></td> <td>0177</td>		TRA	sv			0177
ARS       1       GET       (N+1)/2       0179         ADD       KD1       0180       0180         STD       MD       0181       0182         LLA       =037777777777777       0182       0183         LZ       STO       MD,1       0183         LZ       STO       #0,1       ## = SINS+1       0184         SV       AXT       ##,1       ## = SINS+1       0185         LXD       COSTBL-2,4       0186       0187         TRA       3,4       0187       0186         N       PZE       ## #=N IN DECR       0188         FL       PZE       ## #=N IN DECR       0189         INCR       PZE       ## #=0,FXD       0189         INCR       PZE       ## #=N IN DECR       0189         INCR       PZE       ## #=1PI/N, I=0,1,,N       0190         ARG       PZE       ##=FLOATF(N)       0191         ORF       OCT       233000000000       0192         NFL       PZE       ##=FLOATF(N)       0193         KD1       PZE       ##=FLOATF(N)       0193         KD1       PZE       0,0,1       0196			N	N ODD - SET MD	PT = 1	0178
ADD       KD1       0180         STD       MD       0181         CLA       =03777777777777       0182         LXD       MD,1       0183         L2       STO       **,1       ** = SINS+1       0184         SV       AXT       **,1       ** = SINS+1       0185         L2       STO       **,1       ** = SINS+1       0186         SV       AXT       **,1       ** = SINS+1       0186         L2       STO       COSTBL-2,4       0186       0187         LXD       COSTBL-2,4       0186       0187       0186         TRA       3,4       .       0187       0186         N       PZE       **       *==N IN DECR       0188         FL       PZE       **       *==0,FXD       0189         INCR       PZE       **       *==I+PI/N.       0190         ARG       PZE       **       *==I+PI/N.       0190         ARG       PZE       **       *==FLOATF(N)       0191         ORF       OCT       233000000000       0192       0193         KD1       PZE       **=FLOATF(N)       0193       0194 <tr< td=""><td></td><td>ARS</td><td>1</td><td>GET (N+1)/2</td><td>· · •</td><td>0179</td></tr<>		ARS	1	GET (N+1)/2	· · •	0179
STD       MD       0181         CLA       =0377777777777       0182         LXD       MD,1       0183         L2       STO       **,1       ** = SINS+1       0183         SV       AXT       **,1       ** = SINS+1       0184         SV       AXT       **,1       ** = SINS+1       0185         L2       STO       **,1       ** = SINS+1       0186         SV       AXT       **,1       0186       0187         L2       STO       COSTBL-2,4       0186       0187         LXD       COSTBL-2,4       0186       0187         TRA       3,4       0187       0186         TRA       3,4       .       0187         N       PZE       **       *==N IN DECR       0188         FL       PZE       **       *==NIN       0190         ARG       PZE       **       *==IPI/N, I=0,1,,N       0191         ORF       OCT       23300000000       0192       0192         NFL       PZE       **       *==FLOATF(N)       0193         KD1       PZE       0,0,1       KCOS       0196         KSIN			<b>Ř</b> D1	021 111/2		0180
CLA       =0377777777777777       0182         LXD       MD,1       0183         L2       STO       **,1       ** = SINS+1       0183         SV       AXT       **,1       ** = SINS+1       0184         SV       AXT       **,1       0185         LXD       COSTBL-2,4       0186         TRA       3,4       0187         N       PZE       **       *=N IN DECR         FL       PZE       **       *=0.FXD         INCR       PZE       **       *=0.FXD         INCR       PZE       **       *==0.FXD         INCR       PZE       **       *==FLOATF(N)         NFL       PZE       0,0,1       KCOS         KCOS       FLOATF(N)		STD	MD			0181
L2       ND,1       0183         L2       STO       **,1       ** = SINS+1       0183         SV       AXT       **,1       ** = SINS+1       0184         SV       AXT       **,1       0185       0186         LXD       COSTBL-2,4       0186       0187         N       PZE       **       *=N IN DECR       0188         FL       PZE       **       *=0,FXD       0189         INCR       PZE       **       *=PI/N.       0190         ARG       PZE       **       *==PI/N.       0191         ORF       OCT       233000000000       0192         NFL       PZE       **=FLOATF(N)       0193         KD1       PZE       0,0,1       0194         KCOS       TSX       \$COS,4       0195         KSIN       TSX       \$SIN,4       0196         CORS       PZE       **= (N+1)/2       0198         MD       PZE       0,0,**       *==(N+1)/2       0198         MD       PZE       0,0,**       *==(N+1)/2       0198		C1 A	=03777777777777777	77		0182
L2 STO **,1 ** = SINS+1 0184 SV AXT **,1 0185 LXD COSTBL-2,4 0186 TRA 3,4 0187 N PZE ** *=N IN DECR 0188 FL PZE ** **=0,FXD 0189 INCR PZE ** **=PI/N. 0190 ARG PZE ** **=I*PI/N, I=0,1,,N 0191 ORF OCT 23300000000 0192 NFL PZE ** **=FLOATF(N) 0192 NFL PZE ** **=FLOATF(N) 0193 KO1 PZE 0,0,1 0194 KCOS TSX \$COS,4 0195 KSIN TSX \$SIN,4 0196 CORS PZE ** **=0 IF COS 0197 MD PZE 0,0,** **=(N+1)/2 0198 END		iyo	MD.1			0183
LL       STO       1+1       DTO       STO       0185         SV       AXT       ++,1       0185       0186         LXD       COSTBL-2,4       0186       0187         TRA       3,4       0187       0187         N       PZE       **       *=N IN DECR       0188         FL       PZE       **       *=0,FXD       0189         INCR       PZE       **       *=PI/N.       0190         ARG       PZE       **       *==FI/N.       0191         ORF       OCT       23300000000       0192       0192         NFL       PZE       **       *==FLOATF(N)       0193         KD1       PZE       **       *==FLOATF(N)       0193         KD1       PZE       0,0,1       0195       0194         KCOS       TSX       \$COS,4       0196       0195         KSIN       TSX       \$SIN,4       0196       0197         MD       PZE       0,0,**       *==(N+1)/2       0198         END       0197       0198       0199	12	STO	**.1	## = SINS+1		0184
SV       LXD       COSTBL-2,4       0186         TRA       3,4       0187       0187         N       PZE       **       *=N IN DECR       0188         FL       PZE       **       *=0,FXD       0189         INCR       PZE       **       *=0,FXD       0190         ARG       PZE       **       *==1*PI/N, I=0,1,,N       0191         ORF       OCT       23300000000       0192       0192         NFL       PZE       **       *==FLOATF(N)       0193         KD1       PZE       0,0,1       KCOS TSX       \$COS,4         KSIN       TSX       \$SIN,4       0196         CORS       PZE       **=(N+1)/2       0198         MD       PZE       0,0,**       *==(N+1)/2       0198	ŠV	AXT	**.1			0185
TRA       3,4       0187         N       PZE       **       **=N IN DECR       0187         FL       PZE       **       **=0,FXD       0189         INCR       PZE       **       **=PI/N.       0190         ARG       PZE       **       **=I*PI/N.       0190         ORF       OCT       23300000000       0192         NFL       PZE       **       **=FLOATF(N)       0193         KD1       PZE       0,0,1       0194       0195         KSIN       TSX       \$COS,4       0196       0197         MD       PZE       0,0,**       **=(N+1)/2       0198         END       0197       0198       0199	51	I XD	COSTRI -2-4			0186
N       PZE       **       **=N IN DECR       0188         FL       PZE       **       **=0,FXD       0189         INCR       PZE       **       **=PI/N.       0190         ARG       PZE       **       **=1*PI/N.       0190         ORF       OCT       233000000000       0192         NFL       PZE       **       **=FLOATF(N)       0193         KD1       PZE       0,0,1       0194       0195         KSIN       TSX       \$COS,4       0195       0196         CORS       PZE       **=0       IF COS       0197         MD       PZE       0,0,**       **=(N+1)/2       0198         END       0199       0199       0199		TRA	3.4			0187
FL       PZE       **       **=0,FXD       0189         INCR       PZE       **       **=PI/N.       0190         ARG       PZE       **       **=I*PI/N, I=0,1,,N       0191         ORF       OCT       23300000000       0192         NFL       PZE       **       **=FLOATF(N)       0193         KD1       PZE       **       **=FLOATF(N)       0194         KC0S       TSX       \$COS,4       0195         KSIN       TSX       \$SIN,4       0196         CORS       PZE       **=0       IF COS       0197         MD       PZE       0,0,**       **=(N+1)/2       0198         END       0199       0199       0199	N	P7F	**	**=N IN DECR		0188
INCR       PZE       **       **=PI/N.       0190         ARG       PZE       **       **=I*PI/N, I=0,1,***,N       0191         ORF       OCT       23300000000       0192         NFL       PZE       **       **=FLOATF(N)       0193         KD1       PZE       **       **=FLOATF(N)       0194         KCOS       TSX       \$COS,4       0195         KSIN       TSX       \$SIN,4       0196         CORS       PZE       **=0       IF COS       0197         MD       PZE       0,0,**       **=(N+1)/2       0198         END       0199       0199       0199	EI	07E	**	##=0.EXD		0189
ARG       PZE       **       **=I*PI/N;       I=0,1,,N       0191         ORF       OCT       233000000000       0192       0192         NFL       PZE       **       **=FLOATF(N)       0193         K01       PZE       0,0,1       0194         KCOS       TSX       \$COS,4       0195         KSIN       TSX       \$SIN,4       0196         CORS       PZE       **=(N+1)/2       0197         MD       PZE       0,0,**       **=(N+1)/2       0198         END       0199       0199       0199	TNCP	976				0190
ARG       FL       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	APC	076		##=T#DT/N. T=1	0.1N	0191
NFL     PZE     **=FLOATF(N)     0193       KD1     PZE     0,0,1     0194       KCOS     TSX     \$COS,4     0195       KSIN     TSX     \$SIN,4     0196       CORS     PZE     **= 0 IF COS     0197       MD     PZE     0,0,**     **=(N+1)/2     0198       END     0199	DPE		233000000000			0192
KD1     PZE     0,0,1     0194       KC0S     TSX     \$C0S,4     0195       KSIN     TSX     \$SIN,4     0196       CDRS     PZE     **=0     IF     C0S       MD     PZE     0,0,**     **=(N+1)/2     0198       END     0199	NEI	D75	25500000000	AA-FLOATE(N)		0192
KCOS     TSX     \$COS,4     0195       KSIN     TSX     \$SIN,4     0196       CORS     PZE     **=0     IF     COS       MD     PZE     0,0,**     **=(N+1)/2     0198       END     0199	801	D75	0.0.1	LOATT INT		0175
KSIN     SSIN     0190       KSIN     TSX     \$SIN,4     0196       CORS     PZE     **=0     IF     COS     0197       MD     PZE     0,0,**     **=(N+1)/2     0198       END     0199		TSY	\$005.4			0195
CORS         PZE         **         **=0         IF         COS         0197           MD         PZE         0,0,**         **=(N+1)/2         0198           END         0199	KCTN	TSY	\$C1374			0196
MD PZE 0,0,** **=(N+1)/2 0198 END 0199	CUDC	D7C	431N77	200 HL 0=++		0170
END C199	MD	D7E	0.0.**	===0 11 003		0198
		END				0199

```
235
```

FACTOR	****** + ******	PROGRAM LIST	TINGS		+ FACTOR	************
# FACTOR	(SUBROUTINE)	2/18	8/63 L	AST CARD	IN DECK IS NO.	0480
# FAP #FACTCP						0001
COUNT	450					0003
LBL	FACTOR					0004
ENTRY	FACTOR (SPECT,N	,L,WAVE,B1,B2	,C,TRAN,	WORK,COST	}	0005
+	406704	~ <del>~</del>				0006
+	ABSIRA	(1				0007
+ TITLE - FAC	TOR					0009
+ FACTO	R POWER SPECTRUM	TO FIND MINIMU	UM PHASE	WAVELET		0010
+						0011
+	FACTOR USES THE	METHOD OF KOLM	MOGOROV	(REF 1.	ROBINSON FE.	0012
*	A., M.I.I. PH.D.	THESIS, GEOPHY	YSICAL A	NALYSIS G	ROUP REPORT	0013
*	CONTRACT AF 19/6	04 17378. ) TO P	LENTIFIC	KEPUKI N He dawer	0. 2 UF Spectrum	0014
•	AND THUS PRODUCE	THE MINIMUM F	PHASE WA	VELET.	51 2011(0)1	0016
*	THE RESTRICTIONS	ON APPLICABIL	LITY OF	THE METHO	D REQUIRE	0017
+	THAT THE INPUT S	PECTRUM BE NOM	N-NEGATI	VE AND NO	N-ZERO.	0018
*	HENCE SPECT(I),	THE INPUT SPEC	CTRUM, I	S CHECKED	AND ANY	0019
+	VALUES WHICH ARE	LESS THAN 10	**(-6) O	F THE MAX	IMUM VALUE	0020
*	EEATIDE MAY EAST	JEI EQUAL IU I	EDUN 10		C DECK)	0021
	FEATURE PAT EAST	LT DE REMUVEU	FRUM IN	E STADULT	L DELKI.	0022
*	ONE HALF OF THE	NATURAL LOG OF	F THE SP	ECTRUM IS	COMPUTED	0024
*	AND EXPANDED IN	A COSINE SERIE	ES. THE	COEFFICIE	NTS OF THE	0025
+	EXPANSIONSION AR	E COMPUTED BY	TRIGONO	METRIC IN	TERPOLATION	0026
*	(REF. LANCZOS, A	PPLIED ANALYSI	IS) RATH	ER THAN B	Y INTEGRA-	0027
*	TION. SUBRCUTINE	COSP IS USED	FOR THE	CALCULAT	ION, BUT THE	0028
*	FIRST AND LAST THE	COSINE PRODUCT	TS DRUUM I	MUSI BE W	SD WILL BE	0029
•	ORTHOGENAL UNDER	SUMMATION, TH	HE COEFF	ICIENTS O	F THE COSINE	0031
3	EXPANSION ARE TR	AN(I), I=1,L. 1	THE EXPO	NENTIAL		0032
+						0033
*		L			_	0034
*	EXP**(TR	AN(1)+ SUM(TRA	AN(I)#(Z	<b>**</b> {I-1}))	)	0035
•		1=2				0036
*	MUST BE EXPANDED	IN A CONTINUE	ED PRODU	CT OF POL	YNOMIALS IN	0038
+	Z. THE POLYNOMIA	LS ARE THEN ML	JLTIPLIE	D OUT AND	GROUPED IN	0039
•	THE FCRM					0040
*						0041
*		D - SUM (				0042
*		I=1	(#(1/*(2			0044
*		••				0045
	WHERE L IS THE L	ENGTH OF THE W	AVELET,	AND W(I)	IS THE	0046
+	DESIRED WAVELET.					0047
*						0048
PRUGRAM	THE EVDANCION OF	THE EXDONENTS				0049
•	THE RESULTING PO	LYNOMIALS MAY	BE SIMP	LIFIED BY	THE	0051
*	FOLLOWING CONSID	ERATIONS - THE	EEXPONE	NTIAL MAY	BE	0052
*	REPRESENTED AS A	CONTINUED PRO	DDUCT OF	POLYNOMI	ALS	0053
+	WHERE THE ITH PO	LYNOMIAL IS OF	F THE FO	RM		0054
•		1 - 1				0055
•	P(I)	L=I ={SUM( C(I.1)+		+ 1)+FXP+	# (TRAN(1))	0050
*		I=1		- 17-241-	- ( ) ( A ( ( ) ) )	0058
•	WHERE					0059
	C(I,J) = (TR)	AN(1)/1)+(TRAN	N(2)/2)+	•••••+{TR	AN(I)/(J/I))	0060
•			_	FOR J=K#	I	0061
*	C(I,J)=0F	OR J NOT =K#1	[ 			0062
*	THE ULI;01 TERM	S AKE I FUK AL	LL I•			4400
*	WE ARE ONLY INTE	RESTED IN THE	FIRST	TERMS OF	THE WAVELET	0065
*	SO WE NEED ONLY	CONSIDER TERMS	S IN THE	POLYNOMI	ALS WITH	0066
	EXPONENTS LESS T	HAN OR =M.M=L-	-1. WE C	AN THEN C	DMPUTE THE	0067
+	WAVELET COEFFICI	ENTS BY PARTIA	AL CONVO	LUTION OF	THE	0068
*	POLYNOMIAL COEFF	ICIENTS. THAT	IS,			0069
*						0070
*	WAVE(I) = C(1,	J)+C(2,J)+C	C(M,J)	AND THE -		0071
•	WHERE WAVE(1) IS	TON	<b>≓</b> =L−1, /	ANU INE #	STADUL	0072
*	IT WILL AF NOT	10N. FD THAT IF THE			REPRESENTED	0074
-	TATE DE NUT	TL				

************	PROGR	AM LISTINGS "	
* FACTOR	*		+ FACTUR +
(PAGE 2)	*****		(PAGE 2)
			0075
	IN SIEPS BY $B(M-1) = C(M-1)$	1)+C(H. 1). B(K)=C(K. 1)	B(K+1) 0075
	BY CAREEUL INSPECTION O	E THE FORM OF THE C(T.)	ONE CAN 0077
•	WRITE DOWN THE B(N) BY	INSPECTION FOR N=L/2 (R	DUNDED DOWN) 0078
•	+1. THIS CUTS DOWN THE	TOTAL LABOR BY NEARLY	1/2. 0079
•	$B(N) = 1, 0, 0, \dots, n$	0,C(N,N),C(N+1,N+1),	"C(M,M) 0080
•	FACTOR SETS UP B(N) A	ND THEN USES AN INTERNAL	L SUBROUTINE 0081
	TO SET UP C(N-1, J) FOR	J=0, M. THE INTERNAL SUB	ROUTINE 0082
*	THE NEXT CIT IN IS SE	T UD BY COM AND THE NEY	(T R(I-1)) = 0.084
-	COMPUTED BY PARCON. THE	S IS REPEATED UNTIL ALL	THE PARTIAL 0085
•	CONVOLUTIONS HAVE BEEN	DONE. THE RESULTING WAVE	ELET IS THEN 0086
+	SCALED BY EXP++(TRAN(1)	).	0087
*	THE OUTPUT OF PARCON	FOR ONE STAGE IS THE IN	PUT FOR THE 0088
+	NEXT STAGE SO THAT THE	ADDRESSES B1 AND B2 IN	THE PARCON 0089
*	ROUTINE ARE REVERSED BE	TWEEN STAGES.	0090
# 		N TT COMDATIRIES	0091
* LANGUAGE -	709.7000 (NAIN ERAME ON	IV)	0093
+ STORAGE -	303 DECIMAL REGISTERS		0094
+ SPEED -	2200+94L+16L**2+3L**3+2	TON+37L+N MACHINE CYCLES	S 0095
+ AUTHOR -	J.N. GALBRAITH NOV.	1, 1961	0096
*			0097
*	USAGE		0098
+ - TRANSFER WE	CTOP CONTAINS POULTINES -	NAVAR, COSTRI, COSP	0100
	CIUK CUNTAINS ROUTINES - ARTRAN SYSTEM RAUTINES -	ING. EXP	0101
- AND 1			0102
<b>#</b> FORTRAN USA	GE		0103
CALL FA	CTOR(SPECT,N,L,WAVE,B1,B	2,C,TRAN,WORK,COST)	0104
+			0105
# INPUTS			0106
* SPECT(I)	T=1.N SPECTRUM FROM 7	FRO TO PT	0108
+ SFEGILI			0109
+ N	NUMBER OF POINTS IN SP	ECTRUM	0110
+	MUST BE GRTHN 0.		0111
*			0112
# L	LENGTH UF DESIRED WAVE		0115
	MUST DE GRIHN OF ESTHN	- N.	0115
+ B1(I)	I=1.L SPACE FOR PARTI	AL CONVOLUTION	0116
•			0117
• B2(I)	I=1,L SPACE FOR PARTI	AL CONVOLUTION	0118
*		N OF CAT IN MATRIX	0119
= ((1)	I=I,L SPACE FUR CULUM	IN UP C(1, J) MAIRIA	0120
- TRAN(I)	I=1.1 SPACE FOR COSIN	E TRANSFORM	0122
+			0123
<pre># WORK(I)</pre>	I=1,N SPACE FOR COMPU	TATION OF 1/2+LOG(SPECT	.MAY BE THE 0124
	SAME AS SPECT IF SPE	CT CAN BE DESTROYED.	0125
	T-1-1 SPACE EDP COSTN	E TABLE FOR COSINE SERI	ES EXPAN- 0127
+ CO21(1)	SICN.	E TRUEE FOR COSTNE SERIE	0128
NOTE-			0129
+ COST MA	Y BE THE SAME AS EITHER	B1, B2, OR C IF THE LENGT	H IS L+1 0130
INSTEAD	OF L AS NOTED ABOVE.	THE CAME AC ON DO OF C	0131
+ THE OUT	PUT WAVELET MAY ALSO BE	THE SAME AS BI, BZ, UR C.	
	INUM SICKAGE FOR DATA US	COULD BE CALLED BY	0134
CALL FA	CTOR (SPECT . N. L. B1, B1, B2,	C, TRAN, SPECT, B1)	0135
* WHERE E	1 IS OF LENGTH L+1 SINCE	IT MUST DO DOUBLE DUTY	FOR COST. 0136
<ul> <li>NO CHEC</li> </ul>	KS ARE MADE ON THE VALUE	S OF N AND L. BOTH MUST	BE GREATER 0137
+ THAN O	AND L MUST BE LESS THAN	UK =N. ILLEGAL VALUES	MAY RESULT 0138
IN INCO	RRELI WAVELETS UR PROGRA	M LUUPS.	0159
• OUTOUTS			0141
= 001P013			0142
# WAVE(I)	I=1,L OUTPUT MINIMUM P	HASE WAVELET	0143
+			0144
<ul> <li>SEE NOTE</li> </ul>	ABOVE FOR EQUIVALENCE A	LLOWANCES.	0145
+ IF THE C	OSINE TABLE CAN BE USED	LATER BY THE CALLING PR	
+ FACTOR (	AN BE CALLED WITH SEPARA	TE SPACE FUR LUST, AND	INC IADLE ULAT 0149
■ WILL BE ■	RETURNEU ALQU.		0149

C 1	1	1. NY -
1	. <	1
~	• 1	

+ FACTOR	*	PROGRAM LISTINGS + FACTOR		++++
(PAGE 3)	*****		(PAGE	3)
<b>★</b> EXAMPLES			0150	
#			0151	
+ 1. INPUTS -	•		0152	
+	FOR A CONTINU	DUS SPECTRUM	0153	
# _	SPECT= 1.	25+CUS(W), W=0,PI	0154	
*	UAVE- 1		0155	
-	EOR THE DISCR	FTE CASE THE NUMBERS WILL NOT COME OUT	0157	
	EXACTLY THE S	AME DUE TO ROUND OFF AND APPROXIMATION.	0158	
+	FOR A TEST CA	SE THE INPUT SPECTRUM CAN BE SET UP WITH A	0159	
+	FORTRAN LOOP.	SPECT(I)=1.25 +COSF(FLOATF(I-1)*W) ,I=1,N	0160	
+		W =PI/FLOATF(N-1)	0161	
+	WHERE N IS TH	E LENGTH OF THE SPECTRUM.	0162	
*	RESULTS ARE G	IVEN BELUW FUR N=300	0165	
EUTPUTS -	WAVE(1,,6) = 1	1.0.0.49990.00025.0.00040.00001.0.000003	0165	
*			0166	
*	THE HIGHER TE	RMS ARE EVEN SMALLER WITH WAVE(20) LESS THAN	0167	
#	10 + (-8)		0168	
-			0169	
PZE	1 546700		0170	
EACTOR SYA	DETIION.1	SAVE 191	0172	
FACTOR SAA	RETURN+1.2	SAVE IRI	0173	
SXA	RETURN+2,4	SAVE IR4	0174	
SXD	FACTOR-2,4		0175	
CLA	5,4	GET LOCATION OF 81	0176	
STA	PAR+1		0177	
STA	BEST		0178	
STA	LUUP2 LOCD3+1		0179	
	6.4	GET LOCATION OF B2	0181	
STA	PAR+2		0182	
CLA	1,4	GET LOCATION OF SPECTRUM	0183	
STA	MAX+2		0184	
ADD	ONE		0185	
	2.4	CET LOCATION OF N	0185	
STA	297 MΔX+1	SET EDUCATION OF A	0188	
ČLA	9,4	GET WORK SPACE FOR SPECTRUM	0189	
STA	WGT+3		0190	
STA	WGT+5		0191	
STA	CSP+1		0192	
STA	CSP+2		0193	
ADD STA	END1-2		0195	
STA	WGT		0196	
STA	WGT+2		0197	
MAX TSX	\$MAXAE,4	FIND MAXIMUM OF SPECTUM	0198	
PZE	**	LOCATION OF N	0199	
PZE 075	** RTCSD	LUCATION OF SPECTOM	0200	
P7E	INDEX		0202	
LDQ	BIGSP	MAX. OF SPECTUM	0203	
FMP	DEC	10 <b>**(-6)</b> DF MAX	0204	
STO	BIGSP		0205	
LXA	RETURN+2,4	RESET IR4	0206	
	1+4	CET N (IN DECREMENT)	0207	
STD	ENC1	det in the beateners	0209	
STO	N		0210	
LRS	13	N IN ADDRESS	0211	
ORA	CONST		0212	
FAD	CONST	CLOATING N	0213	
	NF 1.1	FLUAIING N	0214	
881 10001 (18		**=\$PFCT+1	0216	
CAS	BIGSP		0217	
TRA	*+3	SPECT LARGER	0218	
TRA	*+2	SPECT EQUAL	0219	
CLA	BIGSP	SPECT LESS	0220	
TSX	\$LCG,4		0221	
FDP		1/2 LUG(SPECIJ(WEIGH)EUJ	0222	
2 I W 7 X I	##γ⊥ #+]s]s]		0224	
1714				

.

******************		PROGRAM LISTINGS		*********************			
+ FACTOR		*			+ FACTOR +		
*********	*******	****			************	*****	***
(PAGE 4)						(PAGE	4)
ENDI	TYI	10001-1-88	= = = N		0.	225	
CNDI	TXI	*+1.11			0	226	
WGT	CLA	<b>**</b> .1	##=WORK+1	• WEIGHT LAST	0	227	
,	FDP	TWOD	TERM IN S	PECTRUM BY 1/2	0	228	
	STQ	**,1	##=WORK+1		03	229	
	CLA	**	**=WORK.	WEIGHT FIRST	02	230	
	FDP	TWCD	TERM IN S	PECTRUM BY 1/2	0	231	
	STQ	**	++=WORK		02	232	
	LXA	RETURN+2,4			0.	233	
	CLA#	3,4	GELL		0.	234 235	
	SIU		1 - 1		0	235	
	STO	11			0	237	
	CLA	10.4			0	238	
	STA	CST+2			03	239	
	STA	CSP+4			02	240	
	CLA	N			02	241	
	SUB	DONE	N-1		03	242	
	STO	NN			03	243	
	CLA	8,4	LOCATION	OF TRAN	0	244	
	SIA	CSP+9	CO TO COC	THE TADLE	0.	242 246	
631	158		60 10 603	INE TABLE	0	240 247	
	P 2 C D 7 C		COST		0	248	
92.3	TSY	\$C05P+4		INE TRANSFORM	0	249	
001	PZE	**	WORK SPAC	E FOR SPECTRUM	02	250	
	PZE	**	WORK SPAC	E FOR SPECTRUM	0	251	
	PZE	NN	N-1		02	252	
	PZE	**	COST		0	253	
	PZE	NN	N-1		0	254	
	PZE	ZERC	JMIN=0		0	255	
	PZE		JMAX=L-1		0.	230	
	PZE	UNED		- P 1	0	257 258	
	PZC	RETURN+2.4	TRANCCUST		01	259	
	CLA	L			0	260	
	ARS	1		L/2	02	261	
	ANA	MASK			03	262	
	ADD	DONE		L/2+1	0	263	
	STO	M		M=L/2+1	0.	264	
	CLA	ONED			0.	207 744	
BEST		**	**=01•	BI(0)-1.0	0	267	
		1 y 1 M		м	0	268	
	SUB	DONE		M-1	0	269	
	STD	END2			03	270	
LOOP 2	STZ	<b>**,1</b>		CLEAR B1	03	271	
	TXI	++1,1,1			0	272	
END2	TXL	*-2,1,**	**=M-1		0	273	
	CLA	8,4		GET LOC. OF TRAN.	0.	274	
	STA	LOUP3			0	215 276	
		1			0	277	
	STD	END3			0	278	
	LXD	M,1		IR1=M	0	279	
LOOP 3	CLA	**,1		TRAN	0	280	
	STO	**,1		81	0	281	
	TXI	*+1,1,1			0.	282	
END3	TXL	LOCP3,1,**	L IN DECR	EMENI	0.	283 286	
	AXI	1,2			0.	204	
		м 0			0	286	
	510	DONE			0	287	
	STO	END23			0	288	
	AXT	1,1			0	289	
	CLA	7,4		GET LOCATION OF C	0.	290	
	STA	PAR+3			0	291	
	STA	COM+1			0	292	
CONV	CLA	Ρ			0	293	
	SUB	DONE			0	294	
	510	۲ ۲ ۲			0	275 296	
C 04	570 TCV	N92 CCDM-4			0	297	
CUM	P7F	**		С	0	298	
	PZE	**	TRAN		Ū.	299	

*********** * Factor	*******	*****	PROGRA	M LISTINGS	************* * FACTOR	**********
*********	******	*****			**********	*********
(PAGE 5)						(PAGE 5)
PAR	TSX	PARCON+4				0300
	PZE	**		LOCATION OF B1		0301
	PZE	**		LOCATION OF B2		0302
	PZE	**		LOCATION OF C		0303
	CLA	PAR+1		EXCHANGE		0304
	LOQ	PAR+2		LOCATIONS		0305
	510	PAR+2		UF BI		0306
		*+1.2.1		AND BZ		0307
	TXI	*+1,1,1				0309
END23	TXL	CONV,1,##	**=M-1			0310
	LXA	RETURN+2,4		RESET IR4		0311
	CLA	M		GET M		0312
	ARS	18		M IN ADDRESS		0313
	LDI TDA	**4		LUW BIT TEST N EVEN, 82 CONTAINS W	AVELET	0314
	CIA	5.4		M ODD. BI CONTAINS WA	VELET	0316
	STA	LOCP4				0317
	TRA	<b>#</b> +3				0318
	CLA	6,4				0319
	STA	LOOP4				0320
	CLA CTA	4,4	GET ADDRE	SS OF A (STORAGE FOR W	AVELET)	0321
		8.4	TRAN(1)			3234
	FMP	**5	1000111			3238
	TSX	\$EXP,4				0324
	STO	NORM	SCALE FOR	WAVELET		0325
	CLA	LL				0326
	SID	ENU4				0327
1.0024		U,1 ##.]		82 OR 81		0329
LUUIT	EMP	NORM	SCALE FOR	WAVELET		0330
	STO	**,1		WAVELET		0331
	TXI	*+1,1,1				0332
END4	TXL	LCOP4,1,**	**=L-1			0333
RETURN	AXT	<b>**</b> ,1		RESTORE IR1		0334
		**;2		RESTORE IRA		0336
	TRA	11.4		RESTORE INT		0337
L	PZE	0				0338
LL	PZE	0	L-1			0339
ĸ	PZE	0				0340
N	PZE	0				0341
N N	P/E 075	0	N-1			0342
<b>P</b>	P7F	0				0344
NF	PZE	ō				0345
NORM	PZE	0				0346
BIGSP	PZE	0				0347
INDEX	PZE	0				0348
		+2330000000000				0349
7580	P7F	0				0351
ONE	PZE	1,0,0				0352
DONE	PZE	0,0,1				0353
ONED	DEC	1.0				0354
TWOD	DEC	2.0				0355
UEC *((OM -	-COMPUTE	\$ C(P+J) EOR J	=0 TO 1-1			0357
+CALLI	NG SEQUE	NCE	-0 10 2 1			0358
*	TSX	CCCM+4				0359
+	PZE	LOCATION OF C	(P,O)			0360
+	PZE	LOCATION OF T	RAN			0361
	KETUKN SVA	9ACK . 1	SAVE TRI			0363
CCOM	SXA	BACK+1+2	SAVE IR2			0364
	SXA	BACK+2.4	SAVE IR4			0365
	CLA	L	GET L			0366
	STD	ADDR2+2				0367
	CLA	P	GET P			0368
	ARS	18	L IN ADDR	522		0309
		1.4		F C (P.P)		0371
	STA	ADDR3	AUURE33 U			0372
	STA	ADDR4				0373
	CLA	1,4	LOCATION	OF C(0)		0374

********		*****	PROGRAM LISTINGS	*****************	
<b>#</b> FACTOR		*		+ FACTOR	+
*********	*******	*****		*****	****
(PAGE 6)				(PAGE	6)
	STA	ADDR 1		0375	
	ADD	ONE		0376	
	STA	ADDR2		0377	
	CLS	P		0378	
	ARS	18		0379	
	ADD	2,4	TRAN	0380	
	STA	5101		0381	
		UNEU		0383	
AUDA1	AXT	2.1	CLEAR	0384	
ADDR 2	STZ	-/- **,1	C(1) TO	0385	
	TXI	++1,1,1	C(L)	0386	
	TXL	ACDR2,1,##	**=L	0387	
ST01	CLA	**	TRAN(P)	0388	
ADDR 3	510	** TEND1	C(P,P)	0389	
	510	TEND2		0390	
	CLA	LL		0392	
	LRS	35	INTO MQ	0393	
	DVP	ρ	(L-1)/P	0394	
	LLS	53	INTO AC	0395	
	SUB	DCNE	(L-1)/P-1	0396	
	TZE	BACK	IF ZERO, NO MORE TO DO	0397	
	510	ENU	NUL ZERU, SET TU DU (L-1)/P-1 TI	MES 0398	
	PDY	r 2	PINIR2	0400	
	SXD	END-2.2		0401	
	AXT	1,1		0402	
	CLA	TWCD	GET 2.0	0403	
	STO	R	INITIALIZE R	0404	
LOOP	LDQ	TEMP1	<b>T</b> 6 · · · / • · ·	0405	
	FMP	TEMPZ	IRAN(1)	0406	
10004	510	к ##.7	**=C. ((2+1) COMPUTED.	0407	
ADDINA	STO	TENPI	SAVE FOR NEXT C	0409	
	CLA	R	GET R	0410	
	FAD	ONED	INCREMENT BY 1.0	0411	
	STO	R	RE-SET R	0412	
	TXI	*+1,2,**	<b>**=P.</b> INCREMENT C STORAGE INDEX	0413	
END		*+1,1,1	INCREMENT LUUP CUUNTER	0414	
BACK		LUCP (1)** **.1	RESTORE IRI	0416	
DACK	AXT	**•2	RESTORE IR2	0417	
	AXT	**,4	RESTORE IR4	0418	
	TRA	3,4	RETURN	0419	
TEMP1	PZE	0,0,0	WILL CONTAIN PARTIAL SUM FOR C(P	) 0420	
TEMP2	PZE	0,0,0	WILL CONTAIN TRAN(P)	0421	
	PZE			0422	
*FARCU *CALLI	NG SEQUE	NCF		0424	
+	TSX	PARCON,4		0425	
+	PZE	LOCATION OF	81	0426	
*	PZE	LUCATION OF	B2	0427	
*	PZE	LUCATION OF	C(X,0)	0428	
PARCUN	SXA		SAVE IKL SAVE IRD	0429	
	SXA	EXT+2.4	SAVE IR2	0431	
	ČLA	2,4	GET LOCATION OF 82	0432	
	STA	REG1		0433	
	STA	REG3		0434	
	STA	REG3+1		0435	
	ADD			0436	
		3.4	LOCATION OF C	6438	
	STA	REG5		0439	
	CLA	ONED	1.0	0440	
REG1	STO	**	82(0)=1.0	0441	
	AXT	2,1		0442	
	CLA	L	GET L	0443	
	STD	KEGZ+Z		0444	
	500 510	RECS		0440	
RFG2	STZ	**.1	CLEAR B2(1) TO B2(1)	0447	
	TXI	*+1,1,1		0448	
	TXL	REG2,1,**	DECREMENT=L	0449	

•

****	FACTOR	******	*	PROGRAM LISTINGS ++++++++++++++++++++++++++++++++++++	***********
*** (PA	######## GE 7)	******			(PAGE 7)
		CLA	м		0450
		SUB	ĸ	K GOES FROM 1 TO M-1. SET BY CALLING LOOP.	0451
		PDX	•1	IR1=M-K	0452
		SXD	REG3+2+1		0453
		PDC	•2		0454
		SXD	REG3+3+2		0455
		SXD	S•1	S=IR1=M-K	0456
	REG7	AXT	0.2	ZERO IR2	0457
		I XA	FXT+2.4	RESET IR4	0458
			S	GET S	0459
		STD	8FG6		0460
		CI S	S		0461
		ARS	18		0462
		A00	1.4	LOCATION OF BI(S)	0463
		STA	REGA		0464
		AYT	0.4		0465
	PECS	100	**.4	C(0)	0466
	DECA	END	**.2	B1(S)	0467
	PECA	EAD	y2 	B2	0468
	NC05	510	<u>,</u>	82	0469
		111	***	(M-K) IN DECREMENT	0470
		TYT	**1.2.**	-(M-K) IN DECREMENT	0471
	RECA	TYI	8FG5-4-##	**= \$	0472
	NL GO	TYI	**1.1.1		0473
	8509	T VI	9567-1-1-##	ee=1 - 1	0474
	EVT	AVT	AL.]	RESTORE IRI	0475
	EAT	AVT		PESTORE IR2	0476
		A V T			0477
		TOA	•••••	DETIIDN	0478
	c	1KA 07C	- <del></del>	NET VIN	0479
	3	FLE	0		0480
		F (N1)			

```
242
```

FRQCT1	****	PROGRAM LIST	INGS	+ FRQCT1	• • • • • • • • • • • • •
**************	****			*********	*********
	UBROUTINE)	2/18	/63 LAST	CARD IN DECK IS NO.	0094 0001
	E FROCTI (IX.NX.	110.1181.101.	TANS		0002
C		INCOJINNIJICI J	IANSI		0004
C	ABSTRA	CT			0005
	•				0006
C FREQUEN	I ICY DISTRIBUTION		INT VECTOR		0007
C		0, 4, 1, 1, 1, 2, 0, 0			0009
C F	RUCTI MAKES A F	REQUENCY COUNT	OF AN INTE	EGER SEQUENCE WITH	0010
	ALUES IN A SPEC	IFIED RANGE.	FOR EACH IN	NTEGER VALUE IN	0011
c o	CCURRENCES OF T	HIS VALUE IN T	HE INTEGER	SEQUENCE IS	0013
c c	OUNTED.				0014
C					0015
C FOULTPMENT - 7	UKIRAN II SUBRU	N ERAME ONLY)			0016
C STORAGE - 1	17 REGISTERS				0018
C SPEED -					0019
CAUTHOR - S	. M. SIMPSON				0020
C	USAGE-				0021
C					0023
C TRANSFER VECT	OR CONTAINS ROU	TINES - NONE			0024
C AND FOR	TRAN SYSTEM ROU	TINES - NONE			0025
C C FORTRAN USAGE					0028
C CALL FRQC	T1(IX,NX,IXLO,I	XHI,ICT,IANS)			0028
					0029
INPUTS					0030
, . IX(I)	I=1NX IS THE	GIVEN INTEGER	SEQUENCE		0032
;	IXLO LSTHN OR =	IX(I) LSTHN D	R = IXHI.		0033
					0034
NX	IS THE NUMBER O	F IX VALUES IN	THE SEQUEN	NCE.	0035
	HOST DE ORTIN O	•			0037
IXLO	IS AN INTEGER				0038
	LSTHN OR = ALL	IX(I)			0039
	IXLU MAY BE NEG	•			0040
IXHI	IS AN INTEGER				0042
	GRTHN OR = ALL	IX(I)			0043
	IXHI MAY BE NEG	•			0044
C OUTPUTS					0046
:					0047
	I=1NCT IS THE	E FREQUENCY CO	UNT WHERE	INDUT SEO - TYLO	0048
	ICT(2) = N	UMBER OF MEMBEI	RS OF THE I	INPUT SEQ = IXLO+1	0050
5		ETC.		· · · · ·	0051
	ICT(NCT) =	NUMBER OF MEM	BERS OF THE	E INPUT SEQ = IXHI	0052
6 6	WICKE NUL	- 1801-1810+1			0055
IANS	= O NORMAL				0055
C	= 1 ILLEGAL NX				0056
	= 2 ILLEGAL IX	LU			0057
EXAMPLES OF F	RQCT1				0059
C					0060
C I. INPUTS -	$\frac{1 \times 10^{\pm 3}}{10 \times 10^{\pm 3}} = \frac{1 \times 10^{\pm 3}}{10 \times 10^{\pm 3}} = 0^{\pm 3}$	=10 NX=3	1X(13 1X(13	)]=4,4,4	0061
	1011100007 - 09	210101010101010	1443-0		0063
C 2. INPUTS -	IXLO=5 IXHI	=12 NX=7	IX(17	1)=5,6,7,8,9,10,11	0064
C CUTPUTS -	ICT(18) = 1,	1,1,1,1,1,1,0	I AN S=0		0065
U С 3. INDUTS —	IXI0=5 IVHT-	=12 NY=0			0066
C CUTPUTS -	ERROR IANS=	-12 NA-U			0068
		-			0069
C 4. INPUTS -	IXLO=13 IXH	I=12 NX=7			0070
CUTPUTS - I	EKROR IANS=	Z			0071
DIMENSION	IX(2),1CT(2)				0073
SET UP AND CL	EAR ICT(I).				0074

•

********	******	PROGRAM	LISTINGS		**********	*******	***
+ FRQCT	1 *				# FRQCT1		*
*********	*******				**********	*******	***
(PAGE 2)						(PAGE	2)
	IANS=0					0075	
	NCT=IXHI-IXL0+1					0076	
	NSHIFT=IXLO-1					0077	
	IF (NX) 9991,9991,10					0078	
10	IF (NCT) 9992,9992,15					0079	
15	DC 20 I=1,NCT					0080	
20	ICT(I)=0					0081	
C SCAI	N IX(I) TO MAKE COUNTS (PU	T EACH I	X IN RANGE	1 TO NCT	FIRST).	0082	
	DO 35 I=1,NX					0083	
	IXI=IX(I)-NSHIFT					0084	
	IF (IXI) 9992,9992,30					0085	
30	IF (IXI-NCT) 35,35,9992					0086	
35	ICT(IXI)=ICT(IXI)+1					0087	
	GO TO 9999					0088	
9999	RETURN					0089	
9991	IANS=1					0090	
	GO TO 9999					0091	
9992	IANS=2					0092	
	GO TO 9999					0093	
	END					0094	

-

```
241
```

_	************	****	PROGRAM LISTINGS	********	**********
	+ FRQCT2	*		+ FRQCT2	•
	+ FRQCT2	(SUBROUTINE)	2/18/63	LAST CARD IN DECK IS NO	. 0211
	♥ FAP				0001
	#FRQCT2				0002
	COUNT	200			0003
	LBL	FRQCT2			0004
	ENTRY	FRECIZ (X,LX,B,LE	, ICOUNT, IANS)		0005
			·		0006
		ADSTRACT			0007
	+ TITLE - EROC	12			0009
	+ FREQUE	NCY COUNT OF NUMBE	R OF VALUES OF A	SERIES IN GIVEN RANGES.	0010
	•				0011
	•	FRQCT2 MAKES A FRE	QUENCY COUNT OF A	FLOATING POINT,	0012
	*	FORTRAN INTEGER, C	R MACHINE LANGUAG	E INTERGER SERIES FOR	0013
	•	THE NUMBER OF VALU	ES LYING IN SPECI	FIED RANGES. IT IS	0014
		USEFUL IN COMPUTIN	IG EMPIRICAL PRUBA	BILITY DENSITIES.	0015
			ITMITS BITY T-		0015
		RANGES. A NUMBER.	X(1), is said to	RE IN THE I-TH RANGE	0018
	-	IF B(I-1) ISTHN OR	FOUAL X(J) LSTHN	B(I). A NUMBER IS IN	0019
	+	THE FIRST RANGE IF	IT IS LSTHN B(1)	, AND IN THE LB+1	0020
	*	RANGE IF GRTHN OR	EQUAL B(LB). THE	INPUT SERIES X(I) MUST	0021
	+	BE THE SAME MODE (	FLOATING, INTEGER	, ETC.) AS THE RANGE	0022
	•	LIMITS BECAUSE THE	METHOD USES CAS	INSTRUCTIONS.	0023
	*				0024
	+ LANGUAGE -	FAP SUBROUTINE (FL	RTRAN II COMPATIB	LE)	0025
	* EQUIPPENI -	117 DECISTERS	FRAME UNLYJ		0026
	# STURAGE -	III REGISTERS			0027
		I. N. GALBRATTH			0020
	#				0030
	*	USAGE	-		0031
	•				0032
	<b>+</b> TRANSFER VEC	TOR CONTAINS ROUTI	NES - NONE		0033
	+ AND FO	IRTRAN SYSTEM ROUTI	NES - NONE		0034
	# 500 TO AN UCAC	-			0035
	+ FURTRAN USAG	E (T)/Y IY D ID 1000	NT TANCS		0036
	+ CALL FRU		NI, IANS J		0038
	# INPUTS				0039
	*				0040
	+ X(I)	I=1LX IS THE G	IVEN SERIES.		0041
	*	MAY BE FLOATING,	FORTRAN INTEGER,	OR MACHINE INTEGER.	0042
	•				0043
	+ LX	IS THE LENGTH OF	THE X SERIES.		0044
	*	MUST BE GRIHN O.			0045
	* • 9/1)		D OF DANCE LINTTS	8/11 I CTUN 9/1411	0046
	= D(1)	RANGES INTO WHICH	THE SERIES IS DI	VIDED ARE (-INFINITY.	0041
	•	LSTHN B(1)).(GRTH	N OR =B(1).LSTHN	B(2)) ETC.	0049
	•	MAY BE FLOATING,	FORTRAN INTEGER,	OR MACHINE INTEGER,	0050
	+	BUT MUST BE THE	SAME AS X(I)		0051
	*				0052
	• LB	NUMBER OF RANGE L	IMITS.		0053
	•	MUSI BE GRIHN U.	DANCES -14 NUMBER	OF BANCE LINTTS	0054
		NUTE - NUMBER UF	RANGES -IT NUMBER	UP RANGE LIMITS.	0055
	+ OUTPUTS				0057
	*				0058
	<pre># ICOUNT(I)</pre>	I=1LB+1=NUMBER	OF X VALUES IN E	ACH RANGE OF B.	0059
	•	ICOUNT(1)=NO. X L	STHN B(1). ICOUNT	(2)=NO. X LSTHN B(2),	0060
	*	GRTHN OR =B(1).		00 0/1 D 1	0061
	•	ICOUNT(LB)=NU. X	LSINN BILBI,GRTHN	UK=8(L8-1).	0062
	•	ICOUNI(LB+1)=NU.	A GRIDNIUK = B(LB)	•	0003
	TANC	TANS=0. NODMAL			0065
	- IAGJ	TANS=1. ILLEGAL L	x		0066
	*	IANS=2. ILLEGAL I	8		0067
	*	IANS=3, WEIRD ERR	OR		0068
	*				0069
	EXAMPLES				0070
	•				0071
	= 1. INPUTS -	X(115) = -21.	-20.,-15.,-14.,-1	2.,-11.,-8.,-7.,0.,1.,	0072
	•	2.1,3.,4.,5.,6. 10-5	LX=15 B(15)=	-20++-10++-1+5+0+++9	0075
	=	LD-3			UU17

		7	••	
٠,	11		•	
	• #		,	
-				

FROCT2		*	FRUGRAM LIJIINUJ	* FROCT2		****
*********		****		*********	*******	
(PAGE 2)					(PAGE	2)
* 0	UTPUTS -	ICCUNT(16)	= 1,1,5,1,1,6, IANS=0		0075	
*					0076	
* I	NPUTS -	SAME AS EXAMPI	LE 1. EXCEPT B(15)=-21.,-11.5	,0.,4.5,6.	0077	
+ C	UTPUTS -	ICCUNT(16)	=0,5,3,5,1,1 IANS=0		0078	
• • 2 T		CANE AC EVAND	E 1 EXCEDT P/1 E1-21 -11 E		0079	
+ 5+ 1 + 1		TCCUNT(16)	= 0.5.3.5.2.0  IANS=0	·• · · • • • • • • • • • • • • • • • •	0080	
* 0		10000011110000	-01313131210 IAN3-0		0082	
<b>*</b> 4. I	NPUTS -	SAME AS EXAMPL	LE 1. EXCEPT B(1)=0. B(2)=.5 LB	=2	0083	
* C	UTPUTS -	ICCUNT(13)	=8,1,6 IANS=0	-	0084	
*					0085	
<b># 5. I</b>	NPUTS -	SAME AS EXAMPL	LE 4. EXCEPT LB=0		0086	
* C	UTPUTS -	ERROR IANS =2			0087	
* * 6 T					0088	
= 0. 1 = 0	UTPUTS -	FRROR LANS =	I THE ENGLY I LATO LETZ		0089	
*		ERRER THIS -	•		0091	
* SAVE	IRS AND	CHECK FOR ILL	EGAL PARAMETERS		0092	
	PZE	0			C093	
	BCI	1,FRQCT2			C094	
FRQCT2	SXA	RETURN,1			0095	
	SXA	RETURN+1,2			0096	
	578	REIUKN+2,4			0097	
	ST7#	6.4	IANS=0		0098	
	CLA+	2.4	GET LX		0100	
	TZE	ERR1			0101	
	TMI	ERR1			0102	
	STD	ENC			0103	
	CLA+	4,4	GET LB		0104	
	TZE	ERK2			0105	
	171	18			0105	
	STO	LB	EB IN ADDRESS		0108	
	ARS	1	LB/2 (IN ADDRESS)		0109	
	STO	LBHALF			0110	
	CLA	1,4	ADDRESS OF X		0111	
	ADD	KIMLI	A(X+1)		0112	
	STA				0113	
		3.4	ACORESS OF 8		0114	
	ADD	KIMLI	A(B+1)		0116	
	STA	BTEST1			0117	
	STA	BACD			0118	
	SUB	LB			0119	
	STA	TESTHI			0120	
		594 V1NIT	AUDRESS OF ICOUNT		0121	
	STA	ST7CNT	ATTCOUTTI		0122	
	STA	FQUAL			0124	
	STA	STECNT			0125	
	LXA	L8,1			0126	
	TXI	*+1,1,1			0127	
	SXD	ENCI,I			0128	
		1,1			0129	
ST7CNT	STZ	**.1	ZERO ICOUNT(I).I=1.18+1		0131	
0.20.11	TXI	*+1,1,1			0132	
END1	TXL	STZCNT,1,##	**=LB+1		0133	
	AXT	1,1			0134	
LOOP	CLA	KIMLI			0135	
	510		INITIAL LBLU=I		0136	
	STO	LBHT	INITIAL LAHT=LA		0138	
	CLA	LBHALF	ATTAL AND GUILE GO		0139	
	STO	LBCCM	INITIAL LBCOM=LB/2		0140	
	AXT	1,2			0141	
TESTLO	CLA	<b>**,</b> 1	GET X. (**=A(X+1))		0142	
BTEST1	CAS	<b>##</b> ,4	B(1) SEE IF IN LOWEST RANGE		0143	
	TRA	TESTHI			0144	
	TRA	NEXIND			0145	
****		EQUAL			0146	
IF21HI	LAS TRA	** HIECT	TT-ALBILDII. SEE IF IN MIGHESI	NANGE	0147	
	TRA	HIEST			0140	
	IKA	MIE21			0149	

*********	********		PROGRAM LISTINGS	****************
* FRQCT2 *		*		* FRQCT2 *
**************************************	****	****		(PAGE 3)
SEARCH	LXA	LBCC⊭,2		0150
XADD	CLA	**,1	GET X(IR1)	0151
BADD	CAS	**,2	COMPARE WITH B(LBCOM)	0152
	TRA	GRATER	X GREATER, NEW LBLO (=LBCOM)	0153
	TRA	NEXIND	GOT IT, INDEX ICOUNT(IR2+1)	0154
LESS	ΡΧΑ	0,2	X LESS, NEW LBHI (=LBCOM)	0155
	SUB	LELC	LBCOM-LBLO=DIF	C156
	LAS	KIMLI	DIE ADELTED TURN ONE	0157
		##3 EQUAL	DIF GREATER THAN UNE	0158
	TDA	CUDAL	THOOSSIDIE	0159
	ADC	1		0160
	400	1810		0162
	100	LECOM		0163
	STQ	LBHI		0164
	STO	LECCM		0165
	TRA	SEARCH		0166
GRATER	ΡΧΑ	0,2		0167
	SUB	LBHI	LBCOM-LBHI=-DIF	0168
	SSP		DIF	0169
	CAS	K1MLI		0170
	TRA	<b>*+</b> 3		0171
	TRA	NEXINC	GCT IT, INDEX ICOUNT(IR2+1)	0172
	TRA	ERROR	IMPOSSIBLE	0173
	ARS	1		0174
	ADD	LBCOM		0175
		LBCDM		0176
	STU	LBCOM		0177
	STO	LBLU		0178
	TVT	SEARCH		0179
EOUAL		**1;2;1		0181
LQUAL		12 KIEY	*==A(ICOORT+I)	0181
STCONT	STO	**.2	**=A(ICOUNT+1)	0183
5100111	TXI	*+1.1.1		0184
END	TXL	LCCP • 1 • # #	**=LX	0185
RETURN	AXT	<b>**</b> ,1		0186
	AXT	**,?		0187
	AXT	<b>**</b> ,4		0188
	TRA	7,4		0189
HIEST	LXA	LR,2		0190
	TRA	NEXINC		0191
ERR1	CLA	KIFX		0192
	\$10*	6+4		0193
6000	IRA	1,4		0194
EKKZ	CLA	NZFX		0195
	51U#	7 4		0198
EDDUD		V 3EV		0198
ERROR	STO#	6.4		0199
	TRA	7.4		0200
+ CONST	TANTS	AND TEMPERARIES		0201
K1FX	PZE	0,0,1		0202
K2FX	PZE	0,0,2		0203
K 3 F X	PZE	0,0,3		0204
K1MLI	PZE	1,0,0		0205
LB	PZE	0		0206
LBHALF	PZE	0		0207
LBLO	PZE	3		0208
LBCUM	P25	0		0209
CBHI	FLE	0		0210
	LNU			

```
247
```

****************	PROGR	RAM LISTINGS		*********	***********
+ GETRD1	•			# GETRD	1 +
****************	***			********	**********
		2115112			NO 0170
+ LABEL	KUUTINET	2715765	LASI CARD	IN DECK IS	0001
CGETRD1					0002
SUBROUTINE	GETRD1(ITAPE,NX,IX,)	(ANS)			0003
					0004
c	AUSTRACT				0006
C TITLE - GETRD1					0007
C ACCESS RO	JUTINE FOR RAND CORP.	MILLION RAN	DOM DIGITS	FROM TAPE	0008
C C		WT NY CEOURN		010170	0009
	EIVED DOINT INTEGERS	EXI NX SEQUEN	TELED TADE		0010
Č AS	Theo Form Infedence				0012
C THE	TAPE UNIT CONTAINS	THE MILLION	DIGITS IN B	CD FORM	0013
C AS	LOADED OFF-LINE FROM	1 THE 20000 C	ARDS CONTAI	NING THEM,	0014
	H CARD WITH FURMAT(5)	STAC ANY DI	L KEEPS A B	DES NOT	0015
C CHE	CK FOR THE POSSIBILI	TY THAT THE	SUPPLY IS E	XHAUSTED.	0017
c					0018
C LANGUAGE - FOR	TRAN II SUBROUTINE				0019
C EQUIPMENT - 709	OR 7090 (MAIN FRAME	E PLUS 1 TAPE	UNIT)		0020
	V REGISTERS	<b>`</b>			0021
C AUTHOR - S.M	A.SIMPSON JR.	,			0023
c					0024
C	USAGE				0025
C TRANSVER VECTOR	CONTAINS DOUTINES				0026
	LAN SYSTEM ROUTINES -	- (NUNE) - (TSH), (RTN	h		0027
C					0029
C FORTRAN USAGE					0030
C CALL GETRD1	(ITAPE,NX,IX,IANS)				0031
					0032
C					0034
C ITAPE IS	THE LOGICAL TAPE NO	. OF THE RAN	DOM DIGITS	TAPE	0035
C MU	IST LIE BETWEEN 1 AND	) 12 INCLUSIV	E		0036
C		010170			0037
	ST EXCEED 7ERO	016115			0038
c					0040
C CUTPUTS					0041
C					0042
	EIVED POINT INTEGER	N THE NEXT NA	UIGIIS AS I	FUKIKAN	0043
č					0045
C IANS =	O NORMAL				0046
C =	-1 FOR ILLEGAL ITAP	PE			0047
ເ ≝	2 NX				0048
C EXAMPLES					0050
C					0051
C 1. ILLUSTRATING	EFFECTS OF SUCCESSI	IVE CALLS		<b></b>	0052
C INPUIS - IH	IE FIRST THREE RAND L	DIGITS CARUS	AKE AS FULL	DM2	0053
č c	CCLUMN NUMBERS				0055
C A					0056
C R	00000000111111111	1222222222223	33333333344	44444445	0057
C U	123456/890123456/8	3901234267890	12345018901	234307890	0058
č 1	100973253376520135	5863467354876	80959091173	929274945	0060
c 2	375420480564894742	2962480524037	20636104020	082291665	0061
C 3	084226895319645093	032320902560	15953347643	508033606	0062
C AS	SUME THE CARDS ARE L	UADED UN LOG	ICAL TAPE 9		0063
C USAGE -	REWIND 9				0065
C	CALL GETRD1(9,10	,IX1,IANS1)			0066
С	CALL GETRD1(9,10	, IX2, IANS2)			0067
c	CALL GETRD1(9, 1	I, IX3, IANS3)			0068
ւ Ր	CALL GEIRDI(9,29	**************************************			0009
č	CALL GETRD1(9.55	5, IX6, IANS6)			0071
С	REWIND 9				0072
C	CALL GETRD1(9, 3	B,IX7,IANS7)			0073
ſ.					0074

- 9		0
6	١ŧ	0

**************************************	PROGRAM LISTINGS	**************************************
********		*****************
(PAGE 2)		(PAGE 2)
C CUTPUTS - IANSI=IANS C IX1(110	2 = ETC = IANS7 = 0 (NO ILLEGALI ) = 1,0,0,9,7,3,2,5,3,3	TIES) 0075 0076
C IX2(110	) = 7,6,5,2,0,1,3,5,8,6	0077
	= 3	
	$1 = 4_{1}0_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})_{1}(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1})(_{1$	
C IX5(11)		0081
C IX6(155	= 7.5.4.2.0.4.8.0.5.6.4.8.9.4.7.4	.2.9.6.2. 0082
C	4,8,0,5,2,4,0,3,7,2,0,6,3,6,1,0	4.0.2.0. 0083
С	0,8,2,2,9,1,6,6,5,0,8,4,2,2,6	0084
C IX7(13)	= 8,9,5 (NOT = 1,0,0 SINCE GETR	D1 STILL 0085
C	HAS 44 DIGITS IN ITS BU	FFER TO 0086
C	USE UP BEFORE READING F	ROM TAPE 0087
	AGAIN)	0088
C 2 TIFUSTRATING THECAL		0089
C	USAGE	0090
C USAGE - CALL	GETRD1(G.1.IX.IANS1)	0092
C CALL	GETRD1(13,1,IX,IANS2)	0093
C CALL	GETRD1(9,-3,IX,IANS3)	0094
C		0095
C OUTPUTS - IANSI = IAN	NS2 = -1 (ILLEGAL ITAPE)	0096
C IANS3 = -2	(ILLEGAL NX)	0097
C DROCRAM EDILOUS BELOW		0098
C.		0100
C DUMMY DIMENSION STATEME	NT	0101
DIMENSION IX(2)		0102
C TRUE DIMENSION STATEMENT	r	0103
DIMENSION INP(50)		0104
C CHECK LEGALITIES OF ITA	PE,NX	0105
IANS=-1 15 (ITADE) 0000 000	20.2	0106
2 IF (ITAPE/ 99999999 2 IF (ITAPE-12) 4.4.0	1999	0108
4 IANS=-2		0109
IF (NX) 9999,9999,1	10	0110
10 IOUT=0		0111
IANS=0		0112
MORE=NX		0113
C ANY DICITS LEFT IN BUEF	ED EDON DREVIOUS CALL (TE NO. CO RE	AD 0115
C 50 DIGITS).	IN TROM FREVIOUS CALL (IT HO) OD RE	0116
C		0117
IF (NBUF) 20,40,20		0118
C		0119
C IF YES, CHECK IF REQUEST	CAN BE FILLED FROM BUFFER.	0120
	24	0121
20 IF (NA-NBUF) 30,30	24	0122
C IT CANT. EMPTY BUFFER	AND THEN GO READ MORE DIGITS.	0124
C		0125
24 DO 26 I=1,NBUF		0126
26 IX(I) = INP(I)		0127
IOUT=NBUF		0128
60 TO 40		0130
C C C C C C		0131
C IT CAN BE FILLED FROM BU	JFFER. SET UP TO DO SO AND EXIT.	0132
C		0133
30 NBLOK=NBUF		0134
GU 10 66		0135
C READ 50 DIGITS		0138
		0138
40 READ INPUT TAPE ITA	<pre>PE,42,(INP(I),I=1,50)</pre>	0139
42 FORMAT(5011)	· · ·	0140
C		0141
C CHECK IF THIS IS LAST BU	OCK OF 50 NEEDED.	0142
	50	0143
1F (MUKE-50) 60,60,	20	0144
C NO. MOVE BLOCK OF 50 AND	GO BACK FOR ANOTHER.	0146
C		0147
50 DO 54 I=1,50		0148
II=I+IOUT		0149

.

<ul> <li>GETRD1</li> <li>GETRD1</li></ul>	******	PROGRAM LISTINGS	**********************
(PAGE 3)       (PAGE 3)         54 IX(II)=INP(I) ICUT=IOUT+5C MCRE=MCRE-50 GO TO 40       0150 0152 0153         C       0154         C YES. SET FOR FINAL MOVE.       0156 0156         C       0156         60 NBLOK=50       0157         C       0158         C WOVE FINAL BLOCK AND SET UP BUFFER FOR NEXT CALL       0159         C       0160         66 DD 68 I=1,WORE       0161         II=+IOUT       0162         68 IX(II)=INP(I)       0163         NBUF=NBLOK-PORE       0164         IF (NBUF) 70,9999,70       0165         70 MRPI=MORE+1       0166         DC 74 I=MRP1,NBLOK       0167         II=1-MORE       0168         74 INP(II)=INP(I)       0169         GC TO 9999       0170         9999 RETURN       0171	# GETRD1 #		# GETRD1 #
(PAGE 3)       (PAGE 3)         54 IX(II)=INP(I) ICUT=IDUT+5C MORE=MORE-50 GD TO 40       0150 0151 0152         GD TO 40       0153         C       0154         C YES. SET FOR FINAL MOVE.       0155         C       0156         60 NBLOK=50       0157         C       0158         C MOVE FINAL BLOCK AND SET UP BUFFER FOR NEXT CALL       0159         C       0160         66 DO 68 I=1,MORE       0161         II=I+IOUT       0162         68 IX(II)=INP(I)       0163         NBUF=NBLOK-MORE       0164         IF (NBUF) 70,9999,70       0165         70 MRP1=MORE+1       0164         DC 74 I=MRP1,NBLOK       0167         II=I+MORE       0166         DC 74 I=MRP1,NBLOK       0167         II=I+MORE       0166         74 INP(II)=INP(I)       0167         GC TO 9999       0170         9999 RETURN       0171	********		***************
54 IX(II)=INP(I)       0150         ICUT=IOUT+5C       0151         MCRE=MORE-50       0152         GC TO 40       0154         C       0155         C       0156         C YES. SET FOR FINAL MOVE.       0155         C       0156         60 NBLOK=50       0157         C       0158         C MOVE FINAL BLOCK AND SET UP BUFFER FOR NEXT CALL       0159         C       0160         66 D0 68 I=1, MORE       0160         1I=I+IOUT       0162         68 IX(II)=INP(I)       0163         NEUF=NBLOK-MORE       0164         IF (NBUF) 70,9999,70       0165         70 MRP1=MORE+1       0166         DC 74 I=MRP1,NBLOK       0167         II=I-MORE       0168         74 INP(II)=INP(I)       0169         GC TO 9999       0170         9999 RETURN       0171	(PAGE 3)		(PAGE 3)
ICUT=IDUT+5C       0151         MORE=MORE-50       0152         GO TO 40       0153         C       0154         C       0155         C       0156         60 NBLOK=50       0157         C       0158         C       0159         C       0160         66 DO 68 I=1,MORE       0161         II=1+10UT       0162         68 IX(II)=INP(I)       0163         NBUF=NBLOK-MORE       0164         IF (NBUF) 70;9999,70       0165         70 MRP1=MORE+1       0166         DC 74 I=MRP1,NBLOK       0167         II=1-MORE       0166         PG T4 I=MORE+1       0166         DC 74 I=MRP1,NBLOK       0167         II=1-MORE       0168         74 INP(II)=INP(I)       0169         GC T0 9999       0170         9999 RETURN       0170	54 IX(II)=INP(I)		0150
MORE=MORE-50         0152           GO TO 40         0153           C         0154           C YES. SET FOR FINAL MOVE.         0155           C         0156           60 NBLOK=50         0157           C         0158           C MOVE FINAL BLOCK AND SET UP BUFFER FOR NEXT CALL         0159           C         0160           66 DO 68 I=1,MORE         0161           II=I+IOUT         0162           68 IX(II)=INP(I)         0163           NBUF=NBLOK-MORE         0164           IF (NBUF) 70,9999,70         0165           70 MRP1=MORE+1         0166           DC 74 I=MRP1,NBLOK         0167           II=I-MORE         0168           74 IF (NBUF) 70,9999,70         0166           GC TO 9999         0170           9999 RETURN         0170           9999 RETURN         0170	ICUT=IOUT+5C		0151
GO TO 40       0153         C       0154         C YES. SET FOR FINAL MOVE.       0155         C       0156         60 NBLOK=50       0157         C       0158         C       0159         C       0160         66 DO 68 I=1,MORE       0160         1I=I+IOUT       0162         68 IX(II)=1NP(I)       0163         NBUF=NBLOK-MORE       0164         IF (NBUF) 70,9999,70       0165         70 MRP1=MORE+1       0166         DC 74 I=MRP1,NBLOK       0167         II=I-MORE       0168         74 INP(II)=INP(I)       0169         GC TO 9999       0170         9999 RETURN       0171	MORE=MORE-50		0152
C       0154         C YES. SET FOR FINAL MOVE.       0155         C       0156         60 NBLOK=50       0157         C       0158         C       0159         C       0160         66 D0 68 I=1, MORE       0161         II=I+IOUT       0162         68 IX(II)=INP(I)       0163         NBUF=NBLOK-MORE       0164         IF (NBUF) 70,9999,70       0165         70 MRP1=MORE+1       0166         DC 74 I=MRP1,NBLOK       0167         II=I-MORE       0168         74 INP(II)=INP(I)       0169         GC TO 9999       0170         9999 RETURN       0171	GO TO 40		0153
C YES. SET FOR FINAL MOVE.       0155         C       0156         60 NBLOK=50       0157         C       0158         C MOVE FINAL BLOCK AND SET UP BUFFER FOR NEXT CALL       0159         C       0160         66 DO 68 I=1,MORE       0161         II=I+IOUT       0162         68 IX(II)=INP(I)       0163         NBUF=NBLOK-MORE       0164         IF (NBUF) 70,9999,70       0165         70 MRP1=MORE+1       0166         DC 74 I=MRP1,NBLOK       0167         II=I-MORE       0168         74 INP(II)=INP(I)       0169         GC TO 9999       0170         9999 RETURN       0170	C.		0154
C       0156         60 NBLOK=50       0157         C       0158         C MOVE FINAL BLOCK AND SET UP BUFFER FOR NEXT CALL       0159         C       0160         66 D0 68 I=1,MORE       0161         II=I+IOUT       0162         68 IX(II)=INP(I)       0163         NBUF=NBLOK-MORE       0164         IF (NBUF) 70,9999,70       0165         70 MRP1=MORE+1       0166         DC 74 I=MRP1,NBLOK       0167         II=I-MORE       0168         74 IPORE       0168         74 IPORE       0169         GC TO 9999       0170         9999 RETURN       0170	C YES. SET FOR FINAL MOVE.		0155
60 NBLOK=50       0157         C       0158         C MOVE FINAL BLOCK AND SET UP BUFFER FOR NEXT CALL       0159         C       0160         66 DO 68 I=1, MORE       0161         II=I+IOUT       0162         68 IX(II)=INP(I)       0163         NBUF=NBLOK-MORE       0164         IF (NBUF) 70,9999,70       0165         70 MRP1=MORE+1       0166         DC 74 I=MRP1,NBLOK       0167         II=I-MORE       0168         74 INP(II)=INP(I)       0169         GC TO 9999       0170         9999 RETURN       0171	C		0156
C       0158         C       0158         C       0159         C       0160         66 D0 68 I=1,MORE       0161         II=I+IOUT       0162         68 IX(II)=1NP(I)       0163         NBUF=NBLOK-MORE       0164         IF (NBUF) 70,9999,70       0165         70 MRP1=MORE+1       0166         DC 74 I=MRP1,NBLOK       0167         II=I-MORE       0168         74 INP(II)=INP(I)       0169         GC TO 9999       0170         9999 RETURN       0171	60 NBLOK=50		0157
C       MOVE FINAL BLOCK AND SET UP BUFFER FOR NEXT CALL       0159         C       0160         66       D0 68       I=1,MORE       0161         II=I+IOUT       0162       0163         68       IX(II)=INP(I)       0163         NBUF=NBLOK-MORE       0164       0165         70       MRP1=MORE+1       0166         DC 74       I=MRP1,NBLOK       0167         II=I-MORE       0168       0167         GC TO 9999       0170       0170         9999       RETURN       0171	C		0158
C 0160 66 D0 68 I=1,MORE 0161 II=I+IOUT 0162 68 IX(II)=INP(I) 0163 NBUF=NBLOK-MORE 0164 IF (NBUF) 70,9999,70 0165 70 MRP1=MORE+1 0166 DC 74 I=MRP1,NBLOK 0167 II=I-MORE 0168 74 INP(II)=INP(I) 0169 GC TO 9999 0170 9999 RETURN 0171	C MOVE FINAL BLOCK AND SET U	P BUFFER FOR NEXT CALL	0159
66 D0 68 I=1,MORE       0161         II=I+IOUT       0162         68 IX(II)=INP(I)       0163         NBUF=NBLOK-MORE       0164         IF (NBUF) 70,9999,70       0165         70 MRP1=MORE+1       0166         DC 74 I=MRP1,NBLOK       0167         II=I-MORE       0168         74 IPORE       0169         GC TO 9999       0170         9999 RETURN       0171	C		0160
II=I+IOUT       0162         68       IX(II)=INP(I)       0163         NBUF=NBLOK-MORE       0164         IF (NBUF)       70,9999,70       0165         70       MRP1=MORE+1       0166         DC 74       I=MRP1,NBLOK       0167         II=I-MORE       0168         74       INP(II)=INP(I)       0169         GC TO 9999       0170       9171         9999       RETURN       0171	66 DO 68 I=1.MORE		0161
68       IX(II)=INP(I)       0163         NBUF=NBLOK-MORE       0164         IF       (NBUF)       70,9999,70         70       MRP1=MORE+1       0165         70       MRP1=MORE+1       0166         DC       74       I=MRP1,NBLOK       0167         II=I-MORE       0168       0169       0169         GC       TO       9999       0170         9999       RETURN       0171	II=I+IOUT		0162
NBUF=NBLOK-MORE       0164         IF (NBUF) 70,9999,70       0165         70 MRP1=MORE+1       0166         DC 74 I=MRP1,NBLOK       0167         II=I-MORE       0168         74 IPNP(I)=INP(I)       0169         GC TO 9999       0170         9999 RETURN       0171	68 IX(II)=INP(I)		0163
IF (NBUF) 70,9999,70       0165         70 MRP1=MORE+1       0166         DC 74 I=MRP1,NBLOK       0167         II=I-MORE       0168         74 IP(II)=INP(I)       0169         GC TO 9999       0170         9999 RETURN       0171	NBUE=NBLOK-MORE		0164
70       MRP1=MORE+1       0166         DC       74       I=MRP1,NBLOK       0167         II=I-MORE       0168       0168         74       INP(II)=INP(I)       0169         GC       TO       9999       0170         9999       RETURN       0171	IE (NBUE) 70,9999,70		0165
DC         74         I=MRP1,NBLOK         0167           II=I-MORE         0168         0168           74         INP(II)=INP(I)         0169           GC         TO         9999           RETURN         0171	70 MRP1=MORF+1		0166
II=I-MORE       0168         74       INP(II)=INP(I)       0169         GC       TO       9999         9999       RETURN       0170         9172       0171	DC 74 I=MRP1.NBLOK		0167
74     INP(II)=INP(I)     0169       GC     TO     9999     0170       9999     RETURN     0171	II=I-MORE		0168
GC TO 9999 0170 9999 RETURN 0171	74 $INP(II) = INP(I)$		0169
9999 RETURN 0171	GC TO 9999		0170
54D 0173	9999 RETURN		0171
	END		0172

+ GRUP2	********	PROGRAM LISTINGS	**************************************	**********
*********	******		**********	*********
# GRUP	2 (SUBROUTINE)	2/18/63	LAST CARD IN DECK IS NO.	. 0139
GRUP2	L			0002
SUBR	OUTINE GRUP2 (P,NDELX	,DELX,XLO,YLIM,NW	ANT, IANS)	0003
C				0004
С	ABSTRAC	T		0005
C				0006
C TITLE -	GRUP2		PANCEC.	0007
	VIUES THE X AXIS INTU	EQUALLY PROBABLE	RANGES	0008
č	GRUP1 PERFORMS A	PROCESS KNOWN AS	THE PROBABILITY	0010
C	TRANSFORMATION WH	EREBY A GIVEN PRO	BABILITY DENSITY IS	0011
C	TRANSFCRMED INTO	A RECTANGULAR DEN	SITY.	0012
C				0013
L C	THE PRINCIPAL INP	UT IS A HISTUGRAM	-ITPE PRUBABILITY	0014
C C	PROBABILITY DENSI	TY FOR THE RANDOM	VARTARIE X FALLING IN	0015
č	THE ITH RANGE OF	X VALUES, WHERE A	LL RANGES ARE OF EQUAL	0017
Ċ	LENGTH DELX, AND	THE LOWEST RANGE	IS FROM XLO TO XLO+DELX.	0018
C				0019
C	GRUP2 DIVIDES THE	X AXIS INTO NWAN	T RANGES FROM XLD TO	0020
C	NDELX+DELX+XLO, E	ACH RANGE HAVING	EQUAL PROBABILITY DELP.	0021
L C	DELPEIS/FLUAIFING	THE PANCES THE D	NS THE X VALUES	0022
c	INTEGRATING THE P	ROBABILITY DISTRI	BUTION ALONG THE X AXIS.	0024
č	LINEAR INTERPOLAT	ION IS MADE WHEN	AN INTEGER MULTIPLE OF	0025
C	1/NWANT LIES BETW	EEN SUM UP TO J A	ND J+1 OF (P(I)*DELX).	0026
C				0027
C LANGUAGE	- FORTRAN II SUBROU	TINE		0028
C STORAGE	- 108 PECISTEPS	FRAME UNLY		0029
C SPEED	- 170 REGISTERS			0031
C AUTHOR	- J.N. GALBRAITH			0032
С				0033
C	USAGE			0034
C	NECTOR CONTAINS BOUT			0035
	VELIUK LUNIAINS KUUI D Eortran System Rout	INES - NUNE		0035
C AN	D FORTRAN STSTER ROOT	INCS - NOAC		0038
C FORTRAN	USAGE			0039
C CALL	GRUP2 (P,NDELX,DELX,	XLO, YLIM, NWANT, IA	NS)	0040
C				0041
C INPUTS				0042
	I=1NDELX IS T	HE PROBABILITY DI	STRIBUTION DEFINED	0045
č	FRCM XLO TO NDEL	X+DELX+XLO AND NO	RMALIZED SUCH THAT	0045
C	THE SUM FROM I=1	TO NDELX OF P(I)	DELX =1. IF P(I)	0046
C	IS NORMALIZED SU	CH THAT SUM (P(I)	) LESS THAN 1., AN ERROR	0047
C	MAY OCCUR WITH I	ANS=-4. IF P(I)	IS NORMALIZED SUCH THAT	0048
L C	SUM (P(I)) GRIMN Usual Manned utt	I LOY THE TEIM WILL H NORMALTZATION AN	SIMED =1.	0049
č	OSCILL MAINER HT			0051
C XLO	IS LOWEST VALUE	OF X FOR WHICH P(	I) IS DEFINED.	0052
C				0053
C DELX	IS THE INCREMENT	IN X.		0054
L C	MUST BE GRIAN U.			0055
	IS THE NUMBER OF	INCREMENTS.		0057
C	MUST BE GRTHN 1.			0058
C				0059
C NWANT	IS THE NUMBER OF	EQUALLY LIKELY D	IVISIONS WANTED.	0060
C C	MUSI BE GRIAN I.			0062
				0063
C				0064
C YLIM(	I) I=1NWANT+1 IS	THE VECTOR OF X	VALUES WHICH	0065
C	CORRESPOND TO EQ	UALLY LIKELY PROB	ABILITY DIVISIONS.	0066
C	(YLIM(1)=XLO), (	TLIM(NWANT+1)=XLO	+FLUAIF(NDELX)#DELX).	1000
				0069
C	= -1 ILLEGAL ND	ELX		0070
Ċ	= -2 ILLEGAL DE	LX		0071
C	= -3 ILLEGAL NW	ANT		0072
C	= -4 WEIRD ERRO	R (P PROBABLY NOT	PROPERLY NORMALIZED)	0073
L				0014

********** * GRUP2	**************************************	• GRUP2	*
**************************************	*********	**************************************	*
с сх <b>л</b>			ĺ
C EXA	*PLES	0075	
сı.			
C 1	$\frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000000000000000000000000000000000$	0078	
č		0079	
C 2.	INPUTS - SAME AS EXAMPLE 1. EXCEPT NDELX=20	0080	
C	CUTPUTS - ERROR IANS= -2	0981	
C		0082	
C 3.	INPUTS - SAME AS EXAMPLE 2 EXCEPT DELX=.05 NWANT=1	0083	
L C	CUIPUIS - ERRUR IANS = -3	0084	
	INDUTS - D(1 20) - 1 . 7. 5.1 2.2 .1 9 4. 5 4. 2. 2		
C 40	$\frac{1}{1} \frac{5}{1} \frac{5}{1} \frac{5}{1} \frac{5}{1} \frac{5}{1} \frac{5}{5} \frac{1}{1} \frac{5}{5} \frac{5}{1} \frac{5}{5} \frac{5}$	l = 05 0087	
č	XLG=C• NWANT=5	0088	
С	CUTPUTS - YLIM(1,,6) = 0.,.2125,.35,.68333,.81666,1.	IANS=0 0089	
C		0090	
C 5.	INPUTS - SAME AS EXAMPLE 4. EXCEPT XLO=20.	0091	
C I	$SUTPUTS - YLIM(1, \dots, 6) = 20 \dots 20 \dots 2125, 20 \dots 35, 20 \dots 68333 \dots 20 \dots$	86666.,21. 0092	
L C	IANS=C	0093	
C A T	INDUTS - SAME AS EXAMPLE & EXCEPT DELY- 0005	0094	
C U.	NITPUT - FRROR IANS=-4	0095	
č		0097	
C 7.	INPUTS - SAME AS EXAMPLE 5. EXCEPT DELX=100.	0098	
C (	$DUTPUTS - YLIM(1, \ldots, 6) = 20., 20.2, 20.4, 20.6, 20.8, 20.20$	IANS=0 0099	
С		0100	
_	DIMENSION P(200), YLIM(201)	0101	
ι		6102	
	TE(NDELY-1) 9999.0999.5	0103	
С	CHECK DELX	0105	
5	IANS=-2	0106	
	IF(DELX) 9999,9999,10	0107	
10	NUM1=NWANT-1	0108	
		0109	
20	IF(NUML) 9999,9999,20 VIIN(1)-VID	0110	
20	YITM(NWANT+1)=XIN+FINATE(NDFIX)+DFIX	0112	
	DELP=1./FLOATF(NWANT)	0113	
	PTEST=DELP	0114	
	ISTART=1	0115	
	SUM=0	0116	
		0117	
	UU 100 J=1,NUF1 DC 50 L-ISTART NDELY	0118	
		0120	
	SUM=SUM+DELTA	0121	
	IF(SUM-PTEST) 50,60,70	0122	
50	CCNTINUE	0123	
C	ERROR- USED ALL P WITHOUT FINDING ALL YLIM.	0124	
(0		0125	
60	TLIM(J+1)=FLUAIF(1)+UELX+ALU TSTADT=T+1	0126	
		0127	
C	INTERPOLATE	0129	
70	SUM=SUM-DELTA	0130	
	FRACTX=(PTEST-SUM)/DELTA	0131	
	YLIM(J+1)=(FLOATF(I-1)+FRACTX)*DELX+XLO	0132	
~~	ISTART=I	0133	
90	PIESI=PIESI+UELP CONTINUE	0135	
100	RETIRN	0135	
9777	IANS=-4	0137	
2	GO TO 9999	0138	
	END	0139	

251	

```
252
```

****************	++++ PROGR	AM LISTINGS	**********	**********
* KIINT1	*		+ KIINT1	*
***************	****		*********	
			TH DECK IS NO	0129
	UBRUUTINE)	2/18/63 LAST CARD	IN DECK IS NO.	0001
CKIINTI				0002
SUBROUTIN	E KIINTI (CHISQ,NDF,PR	OB,IANS)		0003
С				0004
C	ABSTRACT			0005
C C TITLE - KIINT	1			0007
C PROBABI	ITTY THAT A CHI-SQUARE	D VARIATE EXCEEDS A VA	LUE.	0008
C				0009
с к	IINT1 PRODUCES THE PRO	BABILITY THAT A CHI-SQ	UARED VARIATE	0010
C W	ILL EXCEED A GIVEN VAL	UE. THIS PROBABILITY I	S COMPUTED BY	0011
	QUALIUNS GIVEN BY YULE	AND KENDALL, 1990, IN DOINDIEL FOR NDE LESS	THAN 31.	0013
с з С W	HERE NDE = ND. DEGREES	OF FREEDOM.	1040 911	0014
C F	OR HIGHER NDF THE NORM	AL APPROXIMATION IS US	ED.	0015
C W	HEN THE NORMAL APPROXI	MATION IS USED A TABLE	OF THE	0016
C N	ORMAL DISTRIBUTION WHI	CH APPEARS IN SUBRUUTI	NE NUINII IS	0017
c U	SED AND, SINCE THIS TA	DE Y (UNIT NORMAL) ER	:S 10M	0019
	LO TO 4.0. PROBABILITI	ES LESS THAN .00032 AR	E SET TO ZERO	0020
C A	ND THOSE GREATER THAN	99968 ARE SET EQUAL TO	ONE. THIS	0021
C D	DES NCT OCCUR IF THE E	QUATIONS ARE USED.		0022
C				0023
C LANGUAGE - F	ORTRAN II SUBROUTINE			0024
C EQUIPMENT - 7	01 DECISTEDS			0026
C SPEED -	91 REGISTERS			0027
C AUTHOR - S	.M. SIMPSON			0028
C				0029
C	USAGE			0030
	OD CONTAINS BOUTINES -	NOTNEL		0032
	TRAN SYSTEM ROUTINES -	SORT. EXP(3		0033
C AND THE				0034
C FORTRAN USAGE				0035
C CALL KIIN	IT1(CHISQ,NDF,PROB,IANS	)		0036
C				0038
				0039
	IS THE PARTICULAR VALU	E OF A CHI-SQUARED VAR	RIATE.	0040
C	MUST BE GRTHN=0.			0041
C				0042
C NDF	IS THE NUMBER OF DEGRE	ES OF FREEDUM OF THE V	AKIAIE.	0045
L C	MUST DE GRIAN U.			0045
C OUTPUTS				0046
C				0047
C PROB	IS THE PROBABILITY THA	T THE VARIATE GRTHN=CH	HISQ.	0048
C				0049
C IANS	=U NURMAL =1 TILEGAL CHISO			0051
c	=2 ILLEGAL NDF			0052
Č				0053
C EXAMPLES				0055
	CHENT DETWEEN THE DOOR	VALUE IN THE EXAMPLE	S AND THE	0056
	PROB VALUE IS TO 3 OR	FOUR PLACES SINCE 4 PL	ACE TABLES	0057
C WERE USED	TO MAKE UP THE EXAMPL	ES.		0058
C				0059
C 1. INPUTS -	NDF=1 CHISQ=-1.			0060
C OUTPUTS -	ERRUR IANS=1			0062
C 2. INDUITS -	NDF=0 CHISO=1-			0063
C GUTPUTS -	ERROR IANS=2			0064
c				0065
C 3. INPUTS -	NDF=1 CHISQ=1.			0066
C OUTPUTS -	PROB=.3179 IANS=0			0007
	NDE=8 CHIS0=2.7330			0069
C 1110115 -	PROB=.95 IANS=0			0070
C				0071
C 5. INPUTS -	NDF=21 CHISQ=38.932			0072
C OUTPUTS -	PROB=.01 IANS=0			0073
C				0014
```
253
```

*****	PROGRAM LISTINGS	**************************************	**
* ****		* *********************	**
(PAGE 2)		( PAGE	21
C 6. INPUTS - NDF=30 CHISQ=43	3.773	0075	
C CUTPUTS - PROB=.05 IANS=0		0076	
C		0077	
C 7. INPUTS - NDF=31 CHISQ=17	1.	0078	
C CUTPUTS - PRO8=.98 IANS=0		0079	
C		0080	
C 8. INPUTS - NDF=3 CHISQ=2.3	366	0081	
C CUTPUTS - PRCB=.50 IANS=C	)	0082	
C .		0083	
		0084	
C INITIALIZE AND CHECK IF NURMAL	. CURVE APPRUXIMATION IS TO BE	USED. 0085	
1ANS=1		0086	
IF(CHISQ)9999,10,10		0087	
IU IANS=2 IS(NDE) 2000 10		0088	
17 (NDF) 9999,9999,12		0089	
		0090	
10 UNI=SURIF(UNISU) 15 (NDE=20) 20 20 20		0091	
C DODY TS CONDUTED THE EDDM C	0000 - 01402403 CHECK NOE EOG		
20 D2=/2 719291931++/_CHISO/2	RUD - FITF2#F5. CHECK NUF FUF	EVEN, 000. 0095	
NDEH-NDE/2	•••	0094	
IE (N)E=2*NDEH) 25-25-30		0096	
$\Gamma$ EVEN. SET P1=2. AND P3=1.0 IF	NDE=2.	0097	
25 P1=0.0		0098	
IE (N)E-2) 27.27.50		0099	
27 P3=1.0		0100	
GO TO 60		0101	
C ODD. COMPUTE P1, MODIFY P2 AN	ND SET P3=0.0 IF NDF=1.	0102	
30 CALL NOINT1(CHI.P1)		0103	
P1=2.0*(1.0-P1)		0104	
P2=CHI*P2*.79788480		0105	
IF (NDF-1) 35,35,50		0106	
35 P3=0.0		0107	
GO TO 60		0108	
C EVALUATE P3 AS A POLYNOMIAL FO	DR NDF GREATER THAN 2.	0109	
50 NLCOPS=NDFH-1		0110	
P3=1.C		0111	
C IF NDF=3 (NLGOPS=0), P3=1.		0112	
1F(NLUUPS) 60,60,52		0113	
52 D1V=NDF=2		0114	
$\frac{1}{2} = \frac{1}{2} = \frac{1}$		0115	
P3=P3*UH150/D1V+1+0 55 D1V+D1V-2 3		0117	
		0118	
C COMBINE DIECES TO EORM DROB.		0110	
60  pRns=p1+p2+p3		0120	
GD TO 9999		0121	
C USE NORMAL APPROXIMATION FOR N	NDE GREATER THAN 30.	0122	
70 CHIMOD=CHI#1_414214-SORTE	FLOATF(NDF)+2.0-1.0)	0123	
CALL NOINTI(CHIMOD.P1)		0124	
PROB=1.0-P1		0125	
GO TO 9999		0126	
9999 RETURN		0127	
END		0128	

```
254
```

*

PROGRAM LISTINGS *********** ******** ********* LINTR1 1 INTR1 ************ ************* LINTR1 (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0092 ٠ LABEL 0001 . CLINTR1 0002 SUBROUTINE LINTR1(X,XLO,DELX,TABLE,NTABLE,YOFX) 0003 С 0004 0005 С ---- ABSTRACT----С 0006 С TITLE - LINTRI 0007 LINEAR INTERPOLATION IN A TABLE 0008 С С 0009 0010 С LINTRI INTERPOLATES LINEARLY IN A TABLE TO FIND A VALUE WHICH LIES BETWEEN THE TABULATED VALUES. XLO IS THE ARGUMENT CORRESPONDING TO THE LOWEST TABULATED VALUE. DELX С 0011 С 0012 IS THE ARGUMENT DIFFERENCE BETWEEN TABULAR VALUES. С 0013 С THE TABLE IS LOCATED IN TABLE(I). X IS THE ARGUMENT AND 0014 С YOFX IS THE INTERPOLATED VALUE. HENCE 0015 С 0016 С XTRA 0017 С YOFX = TABLE(L) + (TABLE(L+1) - TABLE(L)) * 0018 С 0019 DELX c c 0020 WHERE L IS SUCH THAT 0021 с С XLO+(L-1)*DELX LSTHN= X LSTHN XLO+L*DELX 0022 AND XTRA = X-XLO-(L-1)*DELX 0023 С 0024 DELX IS CONSTRAINED TO BE POSITIVE 0025 С X MUST LIE IN THE ARGUMENT RANGE OF THE TABLE. C 0026 С 0027 C LANGUAGE - FORTRAN II SUBROUTINE C EQUIPMENT - 709 OR 709C (MAIN FRAME ONLY) C STORAGE - 96 REGISTERS 0028 0029 0030 С SPEED _ 0031 С AUTHOR - S. M. SIMPSON 0032 0033 С ----USAGE----0034 С 0035 С TRANSFER VECTOR CONTAINS ROUTINES - NONE 0036 С AND FORTRAN SYSTEM ROUTINES - NONE 0037 C. 0038 C. FORTRAN USAGE C. 0039 CALL LINTR1(X,XLO,DELX,TABLE,NTABLE,YOFX) С 0040 С 0041 С INPUTS 0042 С 0043 С х IS ARGUMENT FOR WHICH INTERPOLATION IS DESIRED. 0044 С XLC LSTHN OR = X LSTHN OR = XLO+(NTABLE-1)*DELX. 0045 С 0046 С XLC IS THE ARGUMENT CORRESPONDING TO THE FIRST TABULAR 0047 С 0048 ENTRY. С C049 С DELX IS THE ARGUMENT DIFFERENCE BETWEEN TWO SUCCESSIVE 0050 С TABULAR ENTRIES. 0051 MUST EXCEED C.O, BUT THIS CONSTRAINT IS NOT CHECKED. С 0052 С 0053 č TABLE(I) I=1...NTABLE IS A GIVEN ARRAY IN WHICH TABLE(J) 0054 Ċ CONTAINS Y(XLO+DELX*(J-1)). 0055 0056 C C C NTABLE IS THE LENGTH OF THE TABLE. 0057 0058 OUTPUTS С 0059 С 0060 WILL CONTAIN THE LINEARLY INTERPOLATED VALUE YOFX 0061 С С 0062 С **EXA**₩PLES 0063 С 0064 С 1. INPUTS - X=7.5 XLO=5. DELX=2.5 TABLE(1...9)=1.,4.,9., 0065 NTABLE=9 16.,25.,36.,49.,64.,81. 0066 С 0067 CUTPUTS - YOFX=4. С С 0068 2. INPUTS - SAME AS EXAMPLE 1. EXCEPT X=21.3 OUTPUTS - YOFX=56.8 0069 C. 0070 С 0071 С 0072 С 3. INPUTS - SAME AS EXAMPLE 1. EXCEPT X=25. CUTPUTS - YOFX=81. С 0073 С 0074

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	PROGRAM LISTINGS	••••••••••••••••••	
*			Ē
(PAGE 2)		(PAGE 2	2)
C 4. INPUTS - SAME AS EXA	MPLE 1. EXCEPT X=13.	0075	
C OUTPUTS - YOFX=17.8		0076	
C		0077	
DIMENSION TABLE(2)		0078	
C SET UP.		0079	
XMXLO=X-XLO		0080	
20 ILO=XMXLO/DELX+1.0		0081	
C INTERPOLATE ONLY IF ILC	DOESNT CORRESPOND TO LAST TABULAR ENT	RY. 0082	
IF (ILO-NTABLE) 30,	40,30	0083	
30 FLILO=ILO-1		0084	
DIFX=XMXLO-FLILO*DEL	X	0085	
IHI=ILO+1		0086	
YOFX=TABLE(ILO)+(TAB	LE(IHI)-TABLE(ILO))+DIFX/DELX	0087	
GC TO 9999		0088	
40 YOFX=TABLE(NTABLE)		0089	
GC TO 9999		0090	
9999 RETURN		0091	
END		C092	

2/18/63 LAST CARD IN DECK IS NO. 0169 MAXSN (SUBROUTINE) FAP * 0001 *MAXSN 0002 COUNT 150 0003 LBL MAXSN 0004 MAXSN (LX,X,XMAX1,I) ENTRY 0005 ENTRY MINSN (LX,X,XMIN1,I) 0006 MAXAB (LX+X+XMAX2+I) ENTRY 0007 ENTRY MINAB (LX+X+XMIN2+I) 0008 0009 ----ABSTRACT----0010 ¥ 0011 * TITLE - MAXSN , WITH SECONDARY ENTRY POINTS MINSN, MAXAB, AND MINAB 0012 FIND SIGNED OR UNSIGNED EXTREMAL VALUES OF A VECTOR. ¥ 0013 0014 MAXSN FINDS THE MAXIMUM SIGNED NUMBER, AND ITS INDEX, IN 0015 A VECTOR OF NUMBERS (EITHER FIXED OR FLOATING POINT). 0016 ¥ 0017 MINSN FINDS THE MINIMUM SIGNED NUMBER. 0018 0019 MAXAB FINDS THE MAXIMUM OF THE ABSOLUTE VALUES. 0020 0021 MINAB FINDS THE MINIMUM OF THE ABSOLUTE VALUES. 0022 0023 * LANGUAGE - FAP SUBROUTINE (FORTRAN II COMPATIBLE) 0024 * EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY) 0025 * STORAGE - 54 REGISTERS 0026 - APPROX. 14N MACHINE CYCLES, N = LENGTH OF VECTOR * SPEED 0027 * AUTHOR - J.F. CLAERBOUT 0028 0029 ----USAGE----0030 ¥ 0031 * TRANSFER VECTOR CONTAINS ROUTINES - NONE 0032 AND FORTRAN SYSTEM ROUTINES - NONE 0033 ¥ 0034 ¥ * FORTRAN USAGE FOR MAXSN 0035 CALL MAXSN (LX,X,XMAX1,I) ¥ 0036 0037 * INPUTS 0038 0039 X(I) I=1...LX IS A VECTOR OF NUMBERS. 0040 MAY BE FIXED OR FLOATING POINT. 0041 ¥ 0042 IS FORTRAN II INTEGER. 0043 ¥ LX MUST BE GRTHN=1. 0044 0045 * OUTPUTS 0046 0047 × XMAX1 IS THE MAXIMUM SIGNED VALUE IN THE X VECTOR. 0048 0049 IS THE INDEX OF THE MAXIMUM SIGNED VALUE. ¥ I 0050  $I \bullet E \bullet X(I) = XMAX1$ 0051 0052 ¥ FORTRAN USAGE FOR MINSN 0053 CALL MINSN (LX,X,XMIN1,I) 0054 0055 × INPUTS SAME AS FOR MAXSN 0056 0057 ¥ OUTPUTS 0058 0059 IS THE MINIMUM SIGNED VALUE IN THE X VECTOR 0060 XMIN1

0061 ¥ IS THE INDEX OF THE MINIMUM SIGNED VALUE. I 0062 ¥ 0063 * FORTRAN USAGE FOR MAXAB 0064 × CALL MAXAB (LX,X,XMAX2,I) 0065 0066 ¥ INPUTS SAME AS FOR MAXSN ¥ 0067 0068 OUTPUTS ¥ 0069 0070 ¥ XMAX2 IS THE MAXIMUM ABSOLUTE VALUE IN THE X VECTOR. 0071 ¥ NOTE THAT XMAX2 MAY BE NEGATIVE. 0072 0073 ¥ IS THE INDEX OF THE MAXIMUM ABSOLUTE VALUE. × 0074 T 0075 × FORTRAN USAGE FOR MINAB 0076 ¥ CALL MINAB (LX,X,XMIN2,I) 0077 ¥ ¥ 0078 ¥ INPUTS SAME AS FOR MAXSN 0079 0080 × OUTPUTS 0081 × 0082 IS THE MINIMUM ABSOLUTE VALUE IN THE X VECTOR. 0083 XMIN2 × NOTE THAT XMIN2 MAY BE NEGATIVE. 0084 × 0085 IS THE INDEX OF THE MINIMUM ABSOLUTE VALUE. 0086 × I 0087 × 0088 × EXAMPLES 0089 × 1. INPUTS - X(1...10) = -11.,-8.,-5.,-2.,1.,4., 7.,10.,13.,16. 0090 ¥ 0091 ¥ LX = 10CALL MAXSN (LX,X,XMAX1,I1) 0092 ¥ USAGE ----CALL MINSN (LX,X,XMIN1,I2) 0093 ¥ CALL MAXAB (LX,X,XMAX2,I3) 0094 ¥ CALL MINAB (LX,X,XMIN2,14) 0095 OUTPUTS -XMAX1 = 16I1 = 100096 ¥ 0097 XMIN1 =-11. 12 = 10098 ¥ XMAX2 = 16. 13 = 10XMIN2 = 1. I4 = 0099 × 5 0100 ¥ 2. INPUTS - X(1...10) = -16...13...10...7...4...1...2...5...8...11.0101 × LX = 10 - SAME AS EXAMPLE 1. 0102 ¥ USAGE 0103 ¥ × OUTPUTS -XMAX1 = 11. I1 = 100104 12 = 113 = 1XMIN1 =-16. 0105 ¥ 0106 ¥ XMAX2 =-16. XMIN2 = -1. I4 = 60107 * 0108 ¥ 3. INPUTS - X(1...10) = -16,-13,-10,-7,-4,-1,2,5,8,11 LX = 10 0109 ¥ - SAME AS EXAMPLE 1. USAGE 0110 ¥ 0111 OUTPUTS XMAX1 = 11I1 = 10¥ XMIN1 = -160112 12 = 1× × XMAX2 = -16I3 = 1 0113 XMIN2 = -114 =0114 × 6 0115 × HTR 0 0116 1.MAXSN 0117 BCI 0118 MAXSN CLA мΧ STO USE 0119 0120 TRA *+3 0121 MINSN CLA MN

	STO	USE		0122
	STO	A-1		0124
	CLA	SUB		0125
	STO	Α		0126
	TRA	START		0127
MAXAB	CLA	MX		0128
	STO	USE		0129
	TRA	*+3		0130
MINAB	CLA	MN		0131
	STO	USE		0132
	CLA	SSP		0133
	STO	A-1		0134
	CLA	SBM		0135
	STO	A		0136
START	SXA	SV,1		0137
	SXD	MAXSN-2.4		0138
	CLA*	1,4		0139
	PDX	•1	ARRAY LENGTH TO IR1	0140
	CLA	2,4		0141
	ADD	= 1		0142
	STA	A+2		0143
	STA	A		0144
	CLA*	2,4	GET TRIAL	0145
	STO*	3,4	EXTREMUM	0146
	CLA	=1	SET CORRECT INDEX FOR TRIAL EXTREMUN	0147
	ALS	18		0148
	STO	INDEX		0149
LOOP	CLA*	3,4		0150
	HTR	0	EITHER NOP OR SSP	0151
Α	HTR	**,1	EITHER SUB OR SBM	0152
USE	HTR	В	EITHERTPL OR TMI	0153
	CLA	**,1		0154
	STO*	3,4		0155
	SXD	INDEX .1		0156
в	TIX	L00P,1,1		0157
	CLA	INDEX		0158
	STO*	4,4		0159
sv	AXT	**,1		0160
	TRA	5,4		0161
NOP	NOP			0162
SUB	SUB	0,1		0163
SSP	SSP			0164
SBM	SBM	0 • 1		0165
MX	TPL	В		0166
MN	TMI	В		0167
INDEX	BSS	1		0168
	END			0169

```
259
```

MPSEQ1	*****	PROGRAM LISTINGS	*********** * MPSEQ1	***************************************
***********	*****		********	**********
+ MPSEQ1	(SUBROUTINE)	2/18/63	LAST CARD IN DECK IS N	0. 0196
* FAP				0001
*MPSEC1	20.0			0002
	200			0003
ENTRY	MPSEGI /Y.IY.B	I B. IY. IYI O. TANSI		0004
+ ENTRI	Proces (AILAID	, LO, IA, IALO, IANS /		0005
*	ABSTR	ACT		0007
				0008
* TITLE - MPS	EQ1			0009
# MAPS	A SEQUENCE OF NU	MBERS INTO AN INTEGE	ER SERIES	0010
+				0011
+	MPSEQ1 MAPS A S	EQUENCE $X(I)$ , $I=1$ ,	, LX INTO AN INTEGER	0012
*	SEQUENCE IX(I),	I=1,,LX. THE MA	APPING IS CONTROLLED BY	0013
•	A GIVEN VELIUR	UP RANGE LIMITS B(1)	1; 1=1;;LB; WHERE	0014
*	SDECTEVING IN-1	SEDADATE DANCES	DITI TO DILBIT FOUS	0015
	CLOSED ON THE L	OWER END. OPEN ON TH	ACH RANGE IS CONSIDERED	0017
+	RANGES ARE INDE	XED FROM IXLO+1 TO I	IXLO+LB-1. WHERE IXLO	0018
*	IS A PARAMETER.	IX(I) IS THEN SET	EQUAL TO THE INDEX OF	0019
+	THE RANGE TO WH	ICH X(I) BELONGS, WI	ITH THE FOLLOWING	0020
*	TREATMENT OF EX	TREMAL X VALUES		0021
*	IF X(I) IS LS	THN B( 1), IX(I) =	= IXLO+1	0022
+	IF X(I) IS GR	THN = B(LB), IX(I) =	= IXLO+LB-1	0023
+	NOTE- THE LOGIC	USED IS ALMOST IDEN	ITICAL TO THAT OF FROCT2	0024
*	FAR CHOROUTTNE			0025
+ LANGUAGE -	TAP SUBRUUTINE	NIITI FUKIKAN II GALL In Edane oniyi	ING SEQUENCE	0020
+ EQUIPMENT -	110 DECISTEDS	IN FRAME UNLT		0027
* SPEED -	IIO ALGISTLAS			0029
+ AUTHOR -	J. N. GALBRAITH			0030
+				0031
*	USAGE			0032
*				0033
TRANSFER VEC	CTOR CONTAINS RO	UTINES - NONE		0034
AND FI	ORTRAN SYSTEM RO	UTINES - NONE		0035
	~ E			0035
	5E 5E01 (X.IX.B.IB.T	X . TXI O. TANS)		0038
* GALL (4)	JEWINNERTOTEDTI	Theorem and the state of the st		0039
INPUTS				0040
*				0041
* X(I)	I=1LX IS TH	E INPUT SERIES TO BE	MAPPED.	0042
*	MAY BE FLOAT	ING, FORTRAN INTEGER	R, OR MACHINE LANGUAGE	0043
*	INTEGER, BUT	MUST BE THE SAME MO	DDE AS B(J).	0044
*		VECTOR		0045
- LX	IS LENGTH UP X	VEGIUR+		0040
-	MUSI DE GRIANE	L •		0048
= # B(I)	I=1IB GIVES	INPUT RANGES OF MAP	PPING INTERVALS.	0049
*	MUST BE SAME M	DDE AS X(I).		0050
*	B(I) MUST INCR	EASE MONOTONELY, IE	B(I+1) GRTHN B(I)	0051
*				0052
+ LB	IS LENGTH OF R	ANGE VECTOR.		0053
*	MUST BE GRTHN=	1.		0054
# - 1910	10 10000 1101T		141041 - THOEM OF	0055
= 1XLU	IS LUWER LIMIT	OF OUTPUT MAPPING.	IVENAL = INNEY OF	0056
•	CURLJI NANUCO			0058
+ OUTPUTS				0059
*				0060
+ IX(I)	I=1LX IS TH	E INTEGER MAPPING OF	= X(I).	0061
*				0062
* IANS	=0 NORMAL			0063
*	=1 ILLEGAL LX			0064
•	=2 ILLEGAL LB	<b>n</b>		0065
# 	=3 WEIRD ERRO	K (		0066
* CYANDICC				0001
# CAAFPLES				0000
- + 1. INPHITS -	-   X=0 X(1)	6)=-543.23.1		0070
# 101010 ·	5,5.,43.5.	3.,2.9,1.1,1. LB=1	l6 B(19)=-43	0071
*	-2.,-1.,0.,1.,	2.,3.,4., IXLD=0	······································	0072
+ CUTPUTS	- ERROR IANS=1			0073
*	-			0074

**********	******	****	PROGRAM LISTINGS	************	******	***
<ul> <li>MPSEQ1</li> </ul>		*		# MPSEQ1		*
**********	******	****		************	104CC	*** 2 \
(PAGE 2)					TPAGE	21
+ 2. IN	PUTS -	X AND B SAME	AS EXAMPLE 1 LX=16 LB=0 IXLO=0	0	0075	
* CL	TPUTS -	ERROR IANS=2			0076	
•				_	0077	
+ 3. IN	PUTS -	X AND B SAME	AS EXAMPLE 1 LX=16 LB=9 IXLU=(	) TANG-0	0078	
	11012 -	1 X ( 1 , , 10 /=)	0,0,0,0,2,1,4,2,5,1,1,1,1,1,1,0,5,5	IANS-U	0080	
= 4. IN	PUTS -	X. B. LX. AND	LB SAME AS EXAMPLE 3 IXLO=12		0081	
+ OL	TPUTS -	IX(1,,16)=	12, 12, 12, 12, 14, 13, 16, 14, 15, 19, 19	,19,19,18,	0082	
+		17,17 IANS=	0		0083	
+		•			0084	
	PZE	U 1.NOSE01			0085	
MPSEQ1	SXA	RETURN 1			0087	
	SXA	RETURN+1,2			0088	
	SXA	RETURN+2,4			0089	
	SXD	MPSEQ1-2,4	1.11C 0		0090	
	SIZ#	1:4	IANS=U CET LY		0091	
	T7F	Z14 FRR1			0093	
	TMI	ERR1			0094	
	STD	END			0095	
	CLA#	4:4	GET LB		0096	
	TZE	ERR2			0097	
	ADC	18	LB IN ADDRESS		0099	
	STO	10 18			0100	
	ARS	1	LB/2 (IN ADDRESS)		0101	
	STO	LBHALF			0102	
	CLA	1,4	ADDRESS OF X		0103	
	ADU STA	KIPLI	A(X+1)		0104	
	STA	TESTIC			0106	
	CLA	3,4	ADDRESS OF B		0107	
	ADD	KIMLI	A(B+1)		0108	
	STA	BTEST1			0109	
	STA	BACD			0110	
	STA	TESTHI			0112	
	CLA+	6,4	GET IXLO		0113	
	SUB	K2FX	IXLO-2		0114	
	STO	XLOW			0115	
	CLA	5+4	ADDRESS UF IX		0110	
	STA		ALIXTI		0118	
	AXT	1,1			0119	
	AXT	1,4			0120	
LOOP	CLA	KIMLI			0121	
	STO	LBLO	INITIAL LBLU=1		0122	
	STO	LD	INITIAL LANTELA		0124	
	CLA	LBHALF			0125	
	STO	LBCOM	INITIAL LBCOM=LB/2		0126	
	AXT	1,2	057 V (an-A(V+1))		0127	
TESTLU	CLA	**,1	GET X. (**=A(X+1)) R(1) SEE TE IN LOWEST RANGE		0120	
DIESII	TRA	TESTHE	BIT SEL IT IN LOWEST RANGE		0130	
	TRA	NEXIND			0131	
	TRA	NEXIND			0132	
TESTHI	CAS	**	++=A(B(LB)). SEE IF IN HIGHEST	RANGE	0133	
	TRA	HIEST			0135	
SEARCH	1 XA	IBCON-2			0136	
XADD	CLA	++,1	GET X(IR1)		0137	
BADD	CAS	**,2	COMPARE WITH B(LBCOM)		0138	
	TRA	GRATER	X GREATER, NEW LBLO (=LBCOM)		0139	
	TRA	NEXIND	GUI IT, SEI IX(IRI+1) VIECC, NEW IRNT (~IRCOM)		0140	
LESS	778 5118	U)2 1810	A LESSY NEW LOTI (*LOUUM/   RCOM-  RI O=DIF		0142	
	CAS	KIMLI			0143	
	TRA	*+3	DIF GREATER THAN ONE		0144	
	TRA	EQUAL	DIF=1, GOT IT, SET IX(IR1+1)		0145	
	TRA	ERROR	IMPOSSIBLE		0146	
	ARS	1	UIF/2 New Ircom		0148	
		LBCOM	HLA LOUUN		0149	
		20001				

<ul> <li>MPSEQ1</li> </ul>	*****	*******	PROGRAM LISTINGS	**************************************
**************************************	*****	******		(PAGE 3)
	STQ	LBHI		0150
	STU	LBCOM		0151
004750		SEARCH		0152
GRAIER	PXA	0,2	1.0001 1.011- 015	0153
	208	LBHI	LBCOM-LBHI=-DIF	0154
	550		DIF	0155
	TDA	NIPLI #13		0157
	TRA	NEXTNO	DIE=1. GOT IT. SET IX(IR1+1)	0158
	TRA	FRROR	INPOSSIBLE	0159
	ARS	1	18 351000	0160
	ADD	I BCOM		0161
	100	LBCOM		0162
	STO	LBCOM		0163
	STO	1810		0164
	TRA	SEARCH		0165
NEXIND	TXI	*+1.2.1		0166
EQUAL	PXD	•2		0167
	ADD	XLOW		0168
IXSTO	STO	**.1	**= ADDRESS OF IX+1	0169
	TXI	*+1,1,1		0170
END	TXL	LCCP,1,##	**=LX	0171
RETURN	AXT	**,1		0172
	AXT	<b>**</b> ,2		0173
	AXT	**,4		0174
	TRA	8,4		0175
HIEST	LXA	LB,2		0176
	TRA	EQUAL		0177
ERR1	CLA	K1FX		0178
	STO*	7,4	STORE IANS	0179
	TRA	8,4	RETURN	0180
ERR2	CLA	K2FX		0181
	TRA	ERR1+1		0182
ERROR	CLA	K3FX		0183
	IRA	ERR1+1		0184
+ CUNS	IANIS	AND TEMPURARIES		0185
KIFX	PZE	0,0,1		0186
K2FX	PZE	0,0,2		0187
K 3F X	P/E	0,0,3		0188
KIMLI	PZC	1,0,0		0189
	71C	0		0101
	P7C	0		0191
	P 2 C D 7 F	C C		0192
	P7F	Č		0175
XI UM	PZE	v		0195
ALUN	FND			0196
	LNU			0170

```
262
```

******	****	PROGRAM LISTINGS	*********	**********
MSCON1	*		+ MSCON1	+
******	*****			********
	0.1000.01/T T 10/2 1			
# MSCUNI ( # LABEL	SUBROUTINE)	2/18/63	LAST CARD IN DECK IS NO	0107
CMSCON1				0002
SUBROUTI	NE MSCCN1 (NORDER:	P, PHI, DEPEND, IANS	5)	0003
C				0004
C C	ABSTRACT			0005
C TITLE - MSCO	N 1			0008
C MEAN S	QUARE CONTINGENCY	AND DEPENDENCY FR	OM PROBABILITY DENSITY.	0008
C				0009
C	MSCONI COMPUTES TH	IE MEAN SQUARE CON	ITINGENCY AND A	0010
C	DEPENDENCY MEASURE	AS DEFINED ON PA	GE 282 OF CRAMER,	0011
C C	MAIHEMAILGAL MEIHU 1951. The computat	TON REGULTRES THE	SECOND PROBABILITY	0012
c i	DENSITY WHICH CAN	BE COMPUTED WITH	SUBROUTINE PROB2 (SEE	0014
C	WRITE-UP OF PROB21	• IF PHI IS THE M	EAN SQUARE CONTINGENCY,	0015
C	DEPEND IS THE DEPE	NDENCY MEASURE, A	ND NORDER IS THE ORDER	0016
Č I	OF THE SECOND PROE	ABILITY MATRIX, P	(I,J), THEN	0017
L C	DEPEND - P	HT/(NOPDER-1)		0018
c	bcread = r	III/ INORDER"I/		0020
C LANGUAGE -	FORTRAN II SUBROUT	INE		0021
C EQUIPMENT -	709, 7090 (MAIN FR	AME ONLY)		0022
C STORAGE - 1	238 REGISTERS			0023
				0024
C C	JONO GALDRAITH			0026
c	USAGE			0027
С				0028
C TRANSFER VEC	TOR CONTAINS ROUTI	NES - NONE		0029
	RIKAN SYSTEM RUUTI	NES - NUNE		0030
C FORTRAN USAG	5			0032
C CALL MSC	_ DN1(NORDER,P,PHI,D	EPEND, IANS)		0033
C				0034
C INPUTS				0035
			CODARTITY DENSITY	0036
C	MATRIX. GRTHN ONE	. LSTHN OR EQUAL	25.	0038
č		,		0039
C P(I,J)	I=1,,NORDER, J=	1,,NORDER. PROB	ABILITY DENSITY MATRIX	0040
C	NORMALIZED SUCH T	HAT THE SUM OVER	I AND J IS = TO 1.	0041
	ENTIRE ROW OR COL	IUN (25,257, P(1, IIMN SUM FOULAL TO	7 FRD. OR NEGATIVE.	0042
č				0044
C OUTPUTS				0045
C				0046
	THE MEAN SQUARE C	UNTINGENCY.		0047
	THE DEPENDENCY ME	ASURE.		0049
C				0050
C IANS	ERROR INDICATOR			0051
C C	=0 NORMAL	0 1 CTUN 1 00 CDT	UN 25	0052
C C	=-2 ILLEGAL NORDE	RIX. ROW OR COLUM	N SUM ZERO OR NEGATIVE.	0054
č				0055
C EXAMPLES				0056
C		1-0 F - 1 0/1 f	\ <u>1-2</u> E = 1	0057
C I. INPUIS -	P(1,1)=0.2 P(1,1)	1=2,5 =.1, P(1)1	1,1=2,3 =•1	0058
č	NORDER=0	•		0060
C OUTPUTS -	PHI=0. DEPEND=0.	IANS=-1		0061
C	···· · · · · · · · · · · · · · · · · ·			0062
C 2. INPUTS -	SAME AS EXAMPLE 1	EXCEPT		0063
ט ב חוודפוודג –	PHI=0. DEPEND=0.	IANS=-1		0065
C	THI-DO DEFERDOV	• MILY = 1		0066
C 3. INPUTS -	SAME AS EXAMPLE 1	EXCEPT		0067
C	NORDER=5		ANG 0	0068
C OUTPUTS -	PHI=1.66666666 DE	PEND=.41666666 I	AN5=0	0069
L C 4. INDUTS -	SAME AS EVANDIE 1	FYCEPT		0071
C 1117013 -	P(1,5)=0 P(5.1)	=.1 NORDER=5		0072
C OUTPUTS -	PHI=1.7333333 D	EPEND=.43333333	IANS=0	0073
C				0074

+ MSCON1	**** PROGRAM LISTINGS	• MSC ON 1 +
	****	
APAGE 21		(PAGE 2)
C 5. INPUTS -	SAME AS EXAMPLE 4 EXCEPT	0075
C	P(5,5)=0.	0076
C CUTPUTS -	IANS=-2	0077
C		0078
DIMENSION	P(25,25),PSROW(25),PSCOL(25)	0079
C CHECK NOR	DER	0080
IANS=-1		0081
IF (NORDER	-1) 9999,9999,5	0082
5 IF (NORDER	-26) 6,9999,9999	0083
C FIND ROW	AND COLUMN SUMS	0084
6 DC 10 J=1	NCRDER	0085
PSROW(J)=	0.	0086
PSCOL(J) =	0.	0087
DO 10 I=1	,NCRDER	0088
PSROW(J)=	PSROW(J)+P(J,I)	0089
10 PSCOL(J)=	PSCCL(J)+P(I,J)	C090
C CHECK ROW	AND COLUMN SUMS	0091
IANS=-2		0092
DO 15 I=1	NCRDER	0093
IF(PSROW(	I)) 9999,9999,12	0094
12 IF(PSCOL(	1)) 9999,9999,15	0095
15 CONTINUE		0096
C COMPUTE M	EAN SQUARE CONTINGENCY	0097
PHI=0.		0098
DC 20 I=1	, NCRDER	0099
DO 2C J=1	, NCRDER	0100
20 PHI=PHI+P	(I,J)*P(I,J)/(PSROW(I)*PSCOL(J))	0101
PHI=PHI-1.	•	0102
C COMPUTE DI	EPENDENCY MEASURE	0103
DEPEND=PH	I/(FLOATF(NORDER-1))	0104
IANS=0		0105
9999 RETURN		0106
END		0107

****************	PROGRAM	LISTINGS	*********	*********
+ NOINT1			NOINT1	
****************	F****		***********	*********
* NGINT1	(SUBROUTINE)	2/18/63 LAST CARD	IN DECK IS NO.	0374
➡ FAP				0001
*NOINT1				0002
CUUNT	370			0003
				0004
ENIRY	NUINII (X;PKUB) NOINT2 (YNEAN YSD NDIV Y	DIV TANS I		0005
ENIKI	NOINTZ (AFEAN; ASU; NUIV; A	ILL VI LANS /		0007
•	ABSTRACT			0008
•				0009
# TITLE - NOIN1	F1 WITH SECONDARY ENTRY N	IDINT2		0010
■ NORMAL	DISTRIBUTION AND DIVISIO	IN INTO EQUALLY LIKELY	SECTIONS	0011
*				0012
+ 1	NCINT1 FINDS THE INTEGRAL	. OF THE ZERO MEAN, UN	IT VARIANCE,	0013
+ 1	NCRMAL PROBABILITY DENSIT	Y FUNCTION FROM MINUS	INFINITY	0014
*	IC X. THIS IS DONE BY TAB	LE LOOK UP IN A TABLE	UF 201	0015
*	VALUES OF THE NORMAL DIST	RIBUTION WHICH CURRES		0016
- 1	IU VALUES UP & FRUM 0.0 I	U 4.0 IN INCREMENTS U		0017
-	THEAR INTERPOLATION IS O Retween tabin ater values	THE DECEAM DETIDING	7 EPO EOD Y	0018
	VALUES LESS THAN +4.G. AN	D RETHRNS 1.0 FOR X V		0020
	SREATER THAN 4.0.		ALULU	0021
*				0022
+ 1	NOINT2 DIVIDES UP THE ENT	IRE X AXIS INTO AN AR	BITRARY	0023
+ 1	NUMBER, NDIV, OF RANGES W	HICH ARE EQUALLY LIKE	LY WITH	0024
<del>.</del> f	RESPECT TO A GIVEN NORMAL	DISTRIBUTION SPECIFI	ED BY	0025
*	ITS MEAN AND STANDARD DEV	IATION.		0026
*				0027
<b>#</b> ]	THE INTEGRAL OF THE NORMA	L DISTRIBUTION GIVES	THE	0028
<b>*</b>	PRCBABILITY THAT X LIES I	N A CERTAIN RANGE. N	OINT2	0029
* h	REVERSES THE PROCESS BY F	INDING THE X RANGES W		0030
• /	A GIVEN PRUBABILITY - 1/N	TON YAYIS LIMITS COD		0031
- L	TATZICNA FOR K-IN DIALS	JUNE AATS LIMITS COR	ED VALUES	0032
-	THE ANTISYMMETRIC INTE	CRAL OF THE UNIT NORM	AI	0034
- C	DISTRIBUTION FOR X VALUES	ZERO TO 4 IN INCREME	NTS OF .02	0035
+ /	ARE SEARCHED FOR PROBABIL	ITY VALUES GIVEN BY K	/NDIV.	0036
<b>#</b> ]	INTERPOLATION WHERE NECES	SARY IS LINEAR. I.E.	FIND NEAREST	0037
* \	ALUE OF X TO CORRESPONDI	NG TO P WHEN P DOES N	OT APPEAR	0038
<b>*</b> ]	IN TABLE EXACTLY. IF R-T	H VALUE IN TABLE IS L	ESS THAN P,	0039
+ /	AND (R+1) TH VALUE IS GRE	ATER, THEN X VALUE =	((P-RTH	0040
* \	/ALUE)/((R+1)TH-RTH VALUE	))=.02+R=.02. THIS V	ALUE IS	0041
*	THEN SCALED FOR THE PARTI	CULAR NURMAL DISTRIBU	TIUN SUCH	0042
	HAT THE UUTPUT X = X#X50	THE Y VALUES CODDES	LF UF INC TO	0045
	NURPAL INTEGRAL IS STURED Di coeater than .5 are co	MOUTED EIDST AND THE	VALUES	0044
	CR P2 LESS THAN -5 ARE S	YMMETRIC AND FOUAL TO	1-91.	0046
•				0047
*	NOTE - NOINT1 AND NOINT 2	ARE INDEPENDENT EXCE	PT FOR	0048
• 1	THEIR MUTUAL NEED OF THE	DISTRIBUTION FUNCTION	TABLE.	0049
•				0050
+ LANGUAGE - F	AP SUBROUTINE (FORTRAN I	I COMPATIBLE)		0051
* EQUIPMENT - 7	709 UR 7090 (MAIN FRAME O	NL Y J		0052
# STUKAGE # 2 # CDEEN	DOY REGISTERS			0055
* 3FCEU * * AUTHOD - 4	S.M. STAPSON AND L.N. CAL	BRAITH		0055
= AUTHON = 3	THE STREEGH AND SAME GAL			0056
<b>.</b>	USAGE			0057
+	•••			0058
# TRANSFER VEC1	FOR CONTAINS ROUTINES - L	INTR1		0059
+ AND FOR	RTRAN SYSTEM ROUTINES - N	ONE		0060
+				0061
<b>+</b> FORTRAN USAGE	OF NOINT1			0062
CALL NOIN	IT1(X,PROB)			0063
	1 A 1 7 1			0064
INPUTS TO NOI	INI 1			0065
* . u		COMINELT DE L		0065
+ X	- UPPER LIMIT UP THE INT	CURAL (FLI PIOJO		0067
- <b>AUTDUTS EDOM</b>	NCINTI			0066
+ UUTPUIS FRUM	NUINTI			0070
*	1 ×	2		0071
# PROB	= INTEGRAL (F	XP(-X/2)DX		0072
*	SQRT(2PI) -INFINITY			0073
*				0074

PROGRAM LISTINGS *********************** IS FLOATING POINT *** FORTRAN USAGE OF NCINT2** CALL NCINT2(XMEAN, XSD, NDIV, XDIV, IANS)

NOINT1

*********************

0075

0076

0077

0078 0079 0080

0144 0145

0146

0147 0148

0149

IANS=0

(PAGE 2)

***** INPUTS TO NOINT2 0081 . = MEAN OF X SERIES 0082 XMEAN . 0083 * = STANDARD DEVIATION OF X SERIES. 0084 XSD * MUST BE GRTHN 0. 0085 0086 0087 = NUMBER OF EQUALLY LIKELY DIVISIONS INTO WHICH XSERIES . NDIV IS TO BE PLACED. 0088 0089 MUST BE GRTHN 1 0090 0091 **QUTPUTS FROM NOINT2** ٠ 0092 0093 I=1...NDIV-1 ARE THE X VALUES FOR EQUALLY LIKELY XDIV(I) DIVISIONS. FIRST DIVISION IS FROM -INFINITY TO XDIV(1), 0094 THE SECOND IS FROM XDIV(1) TO XDIV(2) ETC. THE LAST 0095 . DIVISION IS FROM XDIV(NDIV-1) TO +INFINITY. 0096 * 0097 0098 TANS =0 NCRMAL =1 ILLEGAL XSD =2 ILLEGAL NDIV 0099 0100 0101 0102 # EXAMPLES OF NOINT1 0103 0104 1. INPUTS - X=-5. . CUTPUTS - PROB=0. 0105 . 0106 . 2. INPUTS - X=-4. 0107 * CUTPUTS - PRCB=.32 E-04 0108 . 0109 3. INPUTS - X=.013 OUTPUTS - PRCB=.5052 0110 ٠ 0111 * 0112 4. INPUTS - X=4. OUTPUTS - PRCB=.999968 0113 ٠ 0114 0115 5. INPUTS - X=4.1 OUTPUTS - PROB=1. 0116 0117 0118 0119 + EXAMPLES OF NOINT2 0120 1. INPUTS - XMEAN=0. XSD=1. NDIV=3 CUTPUTS - XDIV(1)=-.430722 XDIV(2)=.430722 0121 ٠ IANS=0 0122 0123 NDIV=30124 2. INPUTS - XMEAN=0. XSD=2. ٠ OUTPUTS - XDIV(1)=-.861444 XDIV(2)=.861444 IANS=0 0125 0126 3. INPUTS - XMEAN=1. XSI OUTPUTS - XDIV(1)=.1385185 xSD=2. NDIV=3 0127 . XDIV(2)=1.861444 IANS=0 0128 . 0129 4. INPUTS - XMEAN=0. OUTPUTS - XDIV(1)=0. 0130 NDIV=2 XSD=1. # IANS=0 0131 . 0132 ٠ 5. INPUTS - XMEAN=3.5 CUTPUTS - XDIV(1)=3.5 0133 XSD=1. NDIV=2 . 0134 IANS=0 . 0135 0136 6. INPUTS - XMEAN=3.5 CUTPUTS - ERROR IANS=2 XSD=1. NDIV=1 ٠ 0137 . 0138 0139 7. INPUTS - XMEAN=3.5 DUTPUTS - ERROR IANS=1 NDIV=2. XSD=0. 0140 0141 8. INPUTS - XMEAN=0. XSD=1. NDIV=4 OUTPUTS - XDIV(1...3)=-.674602,0.,+.674602 0142 ۰ 0143 IANS=0

NDIV=5

XSD=1.

OUTPUTS - XDIV(1...4)=-.8417856,-.253334,.253334,.8417856

#### 265

*********************

......................

.

9. INPUTS - XMEAN=0.

0

.

.

**#INITIALIZE**.

PZE

NOINT1

(PAGE 2)

.

***************	****	PROGRAM LISTINGS	*********
+ NOINT1	•		* NOINT1 *
****************	****		******************
(PAGE 3)			(PAGE 3)
BCI	1,NOINT1		0150
NDINTI SXA			0151
SXD	NUINT1-2,4		0152
ULA CT.	1,4		0155
SIA			0154
ULA STA	214 STORE		0155
ALCET STORE Y AN	SIUKE CITE CO	MOADE CITE WITH & A	0150
#GET+STURE X AN	10 115 SIZE. CO	JMPAKE SIZE WIIN 4.0.	0157
GEIX CLA	** *	ATTENDRESS OF A	0150
510	**		0160
53F \$TO	¢ Y		0160
240	2451		0162
TDA	RICCER		0163
			0165
			0165
- (00 7500 500 N			0105
			0167
DIGGER CLA	TEMO		0168
	1677		0160
IKA AINTEODOLATE TE	UNEUR 1 0176 1 800 TH	N 0P - 6 0	0107
TINIEKPULAIE IF	SILE LESS INA	THADRS SINCE DUD	0170
TADLE LINIKI MU	131 DE USEU BAU 1000	NAMADO STARE OOK	01/1
TABLE IS FURWA	KUS.		0172
INIKP CLA	K4FL		0175
FSB	24		0174
510			0175
158	SCINIKI94		0176
ISX	SXMUD S		0177
158			0178
158	KUELA P	VELX=V.VZ	0179
ISX	Y+200 1	ABLE IS FURIKAN VECTUR	0180
158	KUZUI P	NIABLE=201	0101
ISX		ANSWER	0182
*IF X WAS MINUS	WE NEED I.C M	AINUS THE INTERPOLATED	0183
+VALUE.			0184
CHECK CLA	XX		0185
IPL	STURE-1		0186
CLA	KIFL		0187
FSB	TEMP		0188
TRA	STORE		0189
CLA	TEMP		0190
STORE STO	** 1	F#=ADDRESS UF PRUB	0191
LV AXT	**,4 *	₩=XR4	0192
TRA	3,4		0193
*TEMPORARIES			0194
XX PZE	**	**=X	0195
SX PZE	##	##=MAGNITUDE UF X	0196
SXMOD PZE	**	##=4.U-5X	0197
TEMP PZE	**	##=UUIPUI FRUM LINIKI	0198
*CONSTANTS	•		0199
KO PZE	0		0200
KUZUI PZE	0,0,201		0201
KIFL DEC	1.0		0202
KAFL DEC	4.0		0205
KDELX DEC		NED NOTH NOTH TANES	0204
+ ENIRY	NUINIZ (AMEAN	ASUINUIVIAUIVIIANSI	0205
+ SAVE IKS	AND INITIALIA	LE TANS	0208
PLE	U NOINTO		0207
BUI	1, NUINIZ		0208
NUINIZ SXA	KEIUKN 1		0209
SXA	RETURN+1,2		0210
SXA	KEIUKN+2,4		0211
SXD	NUIN12-294	TANG-D	UZIZ
STZ#	<b>5</b> +4	I ANS=U	U213
+ CHECK XS	AND NDIV.	OFT MED	0214
CLA+	2,4	GET XSU	0215
TZE	EKRI	TRANSFER IF ILLEGAL	0216
TMI	ERR1	TRANSFER IF ILLEGAL	0217
CLA#	3,4	GET NDIV	0218
SUB	KIFX	NDIV-1	0219
TZE	ERR2	TRANSFER IF ILLEGAL	0220
TMI	ERR2	TRANSFER IF ILLEGAL	0221
# PARAMETE	RS OK. SET UP	MEAN LOOP AND GET XSD AND XMEAN	ADDRESSES. 0222
STD	END2	SET UP MEAN LOOP	0223
CLA	4,4	ADDRESS OF XDIV	0224

**************************************	*******	*****	PROGRAM LISTINGS	
*********	*******	****		*****
(PAGE 4)				(PAGE 4)
				0225
	STA	KMLII LOOD2		0225
	STA	NEAN+1		0227
	CLA	1.4	ADDRESS OF XMEAN	0228
	STA	MEAN		0229
	LDQ+	2,4		0230
	FMP	KDELX		0231
	STO	SCALE		0232
	CLA	4,4	A(XDIV)	0233
	CLA*	3,4	GET NDIV	0234
		18	FLUAT IT	0235
		CONST		0236
	STO	NDIVEL	NOTVEL = ELOATE(NOTV)	0238
		KIFI		0239
	EDP	NDIVEL		0240
	STO	DELP		0241
	CLA#	3,4	GET NDIV	0242
	LGR	19		0243
+	NDIV/2	WITH REMAIND	ER IN SIGN OF MQ	0244
	PAX	,1		0245
	SXD	ENC,1		0246
	SSM			0247
	AUD	4,4	(AUDRESS OF ADIVINDIV/2)	0248
	AUU	KFLII STOI	AUURESS OF ADIVINUIV/21	0249
	514	5101		0250
		EVEN	TRANSFER IF NOTV EVEN	0252
	CIA	DELP	INANSIEK II NDIT ETEN	0253
	FDP	K2FL		0254
	XCA			0255
	FAD	Y	P=(.5+DELP/2)	0256
	STO	ρ		0257
	AXT	C,1		0258
	AXT	1,2		0259
	AXT	C,4		0260
5	TRA	SEARCH		0261
EVEN		0,2	5	0262
	STO	t D	• 2	0264
	ST7#	STCI		0265
	AXT	1.2		0266
	AXT	-1,4		0267
	AXT	0,1		0268
LOOP	CLA	Р		0269
	FAD	DELP		0270
	STO	Р		0271
SEARCH	CAS	Y,1	P IS IN AC	0272
	IXI	SEARCH,1,-1	IKY AGAIN	0273
	IKA		THTEDDOLATE D-DTH VALUE	0275
	STO	1-111 XTEMP1	INTERPOLATE. F-RITT VALUE	0276
	CLA	Y.1	(R+1)TH	0277
	FSB	Y-1,1	RTH	0278
	STO	XTE [₩] P2		0279
	CLA	XTEMP1		0280
	FDP	XTEMP2		0281
	EMP	SCALE		0282
	STU	XTEMP1		0285
CHINT	IKA ST7	SKINI+1 VTEMD1		0285
24141	512	AIEFF1	COMPLEMENT OF INDEX OF RTH VALVE	IN TR1 0286
	SXA	XTEMP2.1		0287
	PXA	•1	GET IR1	0288
	PAC	,1	2 COMPLEMENT	0289
	PXA	,1	INDEX FOR RTH VALUE =N	0290
	ORA	CONST	FLOAT	0291
	FAD	CONST		0292
	XCA		FLDATF(N)=FLN IN MQ	0293
	FMP	SCALE	FLN+.02+XSD=X	0294
	FAD	XTEMP1		0295
ST01	STO	**,2	**=A(XDIV)-NDIV/2+1	0296
	SSM			0297
STO2	STO	##94 VTCN00 0	**=A(XUIV)-NUIV/2+1	V290
	LXA	XIEMP2,1		0233

Mainting         Mainting           (PAGE 5)         TX1 +1,4,-1         0300           TX1 +1,2,1,1         0300           • TTNSHED SEARCH AND SCALING FOR ALL BLOKS. ADD MEAN         0303           AXT 1,2         ••••NDIV/2 RUMNED DDWN         0301           LDDP2 CLA +••;2         •••A(XDIV)+1         0306           BCD +•;2         •••A(XDIV)+1         0306           ND +•;2         •••A(XDIV)+1         0306           ND +•;2         •••NDIV-1         0307           RETURN ATT +•;1         0316         0316           AXT +•;2         •••NDIV-1         0308           RETURN ATT +•;1         0316         0316           AXT +•;2         ••         0311           AXT +•;2         ••         0316           AXT +•;2         ••         0317           AXT +•;2         ••         0316           AXT +•;2         ••         0317           TRA 5.4         0316           CONST CT 23300c000000         0322           KIFK PZE 0.0         0323           VEC 5.000, 5000, 5100, 5239, 5319         0326           VEC 5.000, 5000, 5100, 5239, 5319         0330           VEC 5.000, 5000, 5100, 5239, 5319         0330<	••••••	*****		PROGRAM LISTINGS	**********************	ł
(PAGE 5)         (PAGE 5)           TX1         **1.4-1         0300           TX1         **1.4-1         0302           *         FINISHED SCARCH AND SCALING FOR ALL BLOCKS, ADD MEAN         0303           AXT         1.2         ***ACXVI+1         0305           LODP2         CLA         ***2         ***ACXVI+1         0305           MEAN         FO         ***2         ***ACXVI+1         0305           TX1         ***1,*.1         0306         0307           TX1         ***1,*.1         0306         0307           TX1         ***1,*.1         0306         0307           TX1         ***1,*.1         0310         0307           TX1         ***1,*.1         0310         0311           TX1         ***1,*.1         0310         0311           TRA         6,4         0311         0311           TRA         6,4         0311         0311           TRA         6,4         0312         0312           TRA         6,4         0312         0322           CONST CCT         23300000000         0320         0321           KPEL         0         0322         0322 <th>**********</th> <th></th> <th>*</th> <th></th> <th>************************</th> <th></th>	**********		*		************************	
TXI         **1.41         0300           FND         TXL         LOCP.2.**         ***NDIVZ RUNDED DDWN         0302           AXI         1.2         ***ACKOLVE RUNDED DDWN         0303           AXI         1.2         ***ACKOLVE RUNDED DDWN         0303           MEMA         FG         ***2         ***ACKOLVE RUNDED DDWN         0305           MEMA         FG         ****2         ****DDV-1         RESURA RUNDED DDWN         0306           RESURA         LODP2.2.**         ****NDIV-1         R0307         RESURA RUNDED DDWN         0310           ATT         ***1         COLVER RUNDED DDWN         0310         111           ATT         ***1         COLVER RUNDED DDWN         0310           RESURA RUNDED DDWN         RESURA RUNDED DDWN         0311         111           TA         ****1         0311         111 <th>(PAGE 5)</th> <th></th> <th></th> <th></th> <th>(PAGE 5)</th> <th></th>	(PAGE 5)				(PAGE 5)	
1:1         ************************************		T V T			0300	
END         TAL         LOCP:2:         •••NCIV:2 ROUNCED DOWN         0332           •         FINISHED SEARCH AND SCALING FOR ALL BLOCKS. ADD MEAN         0303           ATT         1;2         ••=A(XDIV)+1         0305           HEAN FAD         ••         XMEAN         0306           FINISHED SEARCH AND SCALING FOR ALL BLOCKS. ADD MEAN         0306           MEAN FAD         ••         XMEAN         0306           FENDZ TAL         LODP2:2::         •*         0310           AXT         •*:         0310         0311           AXT         •*:         0311         0310           AXT         •*:         0311         0312           TRA         6:4         0313         0311           TRA         6:4         0315         0316           TRA         6:4         0316         0316           TRA         6:4         0317         0322           KFEWPI TOCT         2:300ctD00000         0322           KFEWPI TPZE         0         0322           KFEWPI TPZE         0         0322           KFEWPI TPZE         0         0322           KFEWPI TPZE         0         0322			#+1,4,-1 #+1,2,1		0300	
<ul> <li>TINISHED SEARCH AND SCALING FOR ALL BLOCKS. ADD MEAN</li> <li>TOTAL CALL THE FOR ALL BLOCKS. ADD MEAN</li> <li>TAT 1,2</li> <li>CLOPZ CLA **,2</li> <li>CLA KIP CALL</li> <li>TAT **,2</li> <li>CLA KIP CALL</li> <li>TAT **,1</li> <li>TAT **,4</li> <li>TAT **,4&lt;</li></ul>	END	TXI	10CP.2.**	**=NDIV/2 ROUNDED DOWN	0302	
ATT         1,2         0304           LODZ CLA         **,2         XHEAN         0305           HEAN FAO         **,2         XHEAN         0306           STI         **,2         0307           FDUZ TAL         LODZ/2,2,**         ***NDIV-1         0309           RETURN ATT         **,4         0311         0316           ATT         **,4         0315         0316           TRA         6,4         0316         0316           TRA         6,4         0316         0316           TRA         6,4         0316         0316           TRA         6,4         0316         0316           TRA         6,4         0317         0326           TRA         6,4         0319         0322           CDUST DCT         2300C000000         0322         0322           KFEMP IP FE         0         0322         0322           KFEMP IP FE         0         0322         0322           KFEMP IP FE         0         0322         0324           KFEMP IP FE         0         0322         0331           DEC 5000, 5000, 5100, 5209, 5319         0332         0332      <	*	FINIS	SHED SEARCH AND	SCALING FOR ALL BLOCKS. ADD MEAN	0303	
L LOP2 CLA **,2 **=A(XD(Y)+1 0305 FEAN FAD **,2 XEAN 0306 STO **,2 NEAN 0306 FEURA AT **,1 0307 RETURN AT **,1 0317 TRA 6,4 0313 FRA 6,4 0313 FRA 6,4 0313 FRA 6,4 0313 FRA 6,4 0314 TRA 6,4 0314 TRA 6,4 0314 TRA 6,4 0314 TRA 6,4 0314 TRA 6,4 0317 TRA 6,4 0317 TRA 6,4 0318 TRA 6,4 0318 TRA 6,4 0318 TRA 6,4 0317 TRA 6,4 0318 TRA 6,4 0318 TRA 6,4 0318 TRA 6,4 0318 TRA 6,4 0317 TRA 6,4 0318 TRA 6,4 0,4 0320 KIFK 72E 0,0 1320 KIFK 72E 0,0 1320 TRA 6,4 0,0 130 TRA 6,4 0,0 14 TRA 6,		AXT	1,2		0304	
PEAN         FAD         **         XTEAN         0306           NO         ***121         0307           FUDUR         LOT 122.****         0307           FEDURA         XT         ****           ATT         ****         0310           RETURA         XT         ****           ATT         ****         0310           RAT         ****         0310           RAT         ****         0311           TRA         6.4         0314           STO*         5.4         0314           TRA         6.4         0316           TRA         6.4         0316           TRA         6.4         0316           CONST OCT         23300c00000         0320           KIFF PZE         0.0.1         0322           KZFF PZE         0.0.1         0326           XTEMP DZE         0.0.1         0327           SCALE PZE         0.0.1         0328	LOOP2	CLA	**,2	++=A{XDIV}+1	0305	
ST0         ***2         0307           FUDZ         C11         C1772,***********************************	MEAN	FAD	**	XMEAN	0306	
END2         111         0000           RETURN NAT         ************************************		STO	**,2		0307	
RETURN IXT       10.1111       0.000         RETURN IXT       10.1111       0.000         AXT       **.4       0.000         TRA       6.4       0.000         BRIL       CLA       KIFX       0.000         SID*       5.4       0.000         TRA       6.4       0.000         SID*       5.4       0.000         SID*       5.4       0.000         SID*       5.4       0.000         CONST       0.000       0.000         KFEV       0.6.0       0.000     <			##1;2;1 10002 2.44		0308	
AXT       **:12       0311         TRA       6:4       0312         TRA       6:4       0313         ERRI       CLA       KIFX       0314         STO       5:4       0316         TRA       6:4       0316         TRA       6:4       0316         CLA       KIFX       0317         STO       5:4       0316         TRA       6:4       0316         CNST CCE       230:0       0320         KIFX       0321       0322         KFR       PE       0:0       0322         KFLN PZE       0:0       0322         KFLN PZE       0:0       0322         NEIVFL PZE       0       0322         SCP P PZE       0       0322         SCE STOR:SCR0S000S000S160S239S319       0332         DEC -5500S000S000S160S239S314       0333         DEC -5500S000S000S160S239S314       0334         DEC -55146235G31464066400       0336         DEC -55146235G31464066400       0336         DEC -55146235G31464066103       0341         DEC -51735944625563145114       0333         <	RETURN	AXT	±.1	===NDIV=1	0310	
ATT         ••.4         0313           FRHI         CLA         KIFX         0314           STO•         5.4         0315           TRA         6.4         0315           FRA         CLA         KIFX         0316           STO•         5.4         0316           GUNST         5.4         0317           GUNST         5.4         0318           GUNST         5.4         0317           GUNST         5.4         0318           GUNST         5.4         0317           GUNST         5.4         0320           KFX         PE         0.0.22           KFL         DEC         0322           KFL         DEC         0322           KFL         DEC         0324           STEMP         DEC         0327           FLP         PE         0         0327           STEMP         DEC         0328           STEMP         DEC         0331           DEC         STEMP         DEC         0333           DEC         STEMP         DEC         0333           DEC         STEMP         DEC         0		AXT	**.2		0311	
TRA         6.4         0313           ERRI         CLA         KIFX         0314           STO         5.4         0315           TRA         6.4         0316           ERR2         CLA         KZFX         0316           STO         5.4         0316           CDNST         CT         2300000000         0320           KIFX         ZZ200000000         0321           KZFX         PZE         0.01         0322           KVIT         ZZ300000000         0322         0322           KVIT         ZZ20         0323         0324           KZFL         DEC         2.0         0324           XTEMP ZZE         0         0325         0324           VTEMP ZZE         0         0326         0327           DEL         PZE         0         0320         0327           VIELT         0         0331         0333         0333           DEC         5000516052395319         0333         0333           DEC         5000516052395314         0333         0333           DEC         500051605723644         0337         0316		AXT	**,4		0312	
ERRI       CLA       K1FX       0314         TRA       6,4       0315         TRA       6,4       0316         ERR2       CLA       K2FX       0317         ST0*       5,4       0316         CUTS       5,4       0316         CUTS       5,4       0316         CUTS       6,4       0316         CUTS       5,4       0317         CUTS       5,4       0322         KPL       DEC       2,0       0323         KTEMP 72E       0       0326         P 72E       0       0327       0327         DEL       P2E       0       0327         SCALE P2E       0       0327       0328         VDEC       5308, -5419, -5537, -5631, -5104       0333         VEC       5338, -541, -5537, -5634, -5714       0333         DEC       6574, -5624, -7104, -764, -7644       0337         DEC       6515, -6385, -6359       0344         DEC <td></td> <td>TRA</td> <td>6,4</td> <td></td> <td>0313</td> <td></td>		TRA	6,4		0313	
ST0+         5.4         0315           FRR2         CLA         K2FX         0316           CDNST         CLA         K2FX         0317           TRA         6.4         0319           CDNST         CC         0310           CDNST         CC         0310           CDNST         CC         0310           KTFA         CC         0311           CDNST         CC         0310           KTFA         CC         0322           KTT         CC         0323           KZTL         CC         0324           KTFMP         CC         0326           XTEMP         CC         0326           XTEMP         CC         0327           DELP         PZE         0         0329           SCALE         PZE         0         0329           SCALE         PZE         0         0331           DEC         5308, -5474, -5537, -5331, -6402, -6103         0333           DEC         5004, -5402, -6103         0335           DEC         CC         0370         0356           DEC         C1750, -742, -770, -774, -7744, -7751, -7753, -7535, -531, -6403	ERR1	CLA	K1FX		0314	
ERR         144         5.4         0319           FIG         5.4         0319           GUNST         5.4         0319           GUNST         010         0319           GUNST         011         0319           GUNST         011         0319           GUNST         011         0320           KFX         PZE         0.012         0321           KPT         DEC         0102         0322           KPLI         PZE         0.012         0323           KIEW         PZE         0         0324           VIEWPZE         0         0326           PZE         0         0327           DELP PZE         0         0327           SCALE         PZE         0           VEC         0001, 5000, 5160, 5239, 5319         0332           VEC         5001, 5000, 5160, 5239, 5319         0332           VEC         5001, 5000, 5160, 5239, 5319         0333           DEC         5738, 561, 5746, 6024, 6103         0333           DEC         65731, 6304, 6024, 6103         0334           DEC         6515, 6321, 6408, 7457, 7517         03339           DEC		STO+	5,4		0315	
ENKL         CDA         0314           TRA         54         0319           CONST OCT         2330000000         0320           KIFX         PZE         0.0.1         0322           KIFX         PZE         0.0.2         0321           KIFX         PZE         0.0.2         0322           KIFIN         PZE         0         0322           KIFN         PZE         0         0322           XTEMP1 PZE         0         0322           NDIVFL PZE         0         0322           SCALE PZE         0         0322           SCALE PZE         0         0323           P DEC - 5000, 5000, 5100, 5239, 5319         0333           DEC - 5338, 5578, 5537, 5536, 5714         0331           DEC - 5338, 5578, 5531, 6406, 6400         0335           DEC - 6554, 6628, 6700, 6772, 684         0335           DEC - 7587, 7324, 7389, 7454, 7517         0333           DEC - 7881, 7939, 7995, 8051, 8106         0344           DEC - 6192, 9222, 926, 8770, 810         0344           DEC - 6192, 9222, 928, 9731, 9273, 930         0343           DEC - 7884, 9379, 7995, 8051, 8106         0344           DEC - 8443, 84641, 8506, 8554, 8599	6992	IRA CLA	014 NJEV		0310	
TRA         0319           CONST DCT         23300C0000000         0320           KPFX         PZE         0.0.1         0321           KPFX         PZE         0.0.2         0322           KPT         DEC         0.0.2         0322           KPLI         DEC         2.0         0324           KTENPI PZE         0         0325           TTEMPI PZE         0         0326           PZE         0         0327           DELP PZE         0         0326           SCALE PZE         0         0327           SCALE PZE         0         0330           *IABLE (YULE AND KENDALL, THEORY OF STATISTICS,         0331           0EC .5399, 5478, 5577, 553, 553, 571, 640         0333           DEC .6579, 568, 577, 553, 553, 571, 640         0333           DEC .6579, 568, 700, 5772, 5644         0333           DEC .6179, 648, 6428, 6700, 6772, 6444         0337           DEC .7581, 754, 774, 7172, 6444         0334           DEC .7581, 754, 774, 7187         0336           DEC .7881, 778, 779, 777, 7644, 7762         0344           DEC .7881, 773, 784, 778, 7797, 7817         0336           DEC .7881, 7733, 7803, 779, 7804, 9714         0345	EKK2	STO#	5.4		0318	
CONST DCT         23300C000000         0320           KIFX PZE         0.0.1         0321           KZPX PZE         0.0.2         0323           KZPX PZE         0.0.2         0323           KZPX PZE         0.0.2         0323           KZPL DEC         2.0         0325           XTEMP1 PZE         0         0326           P PZE         0         0327           DELP PZE         0         0328           SCALE PZE         0         0330           * FABLE TVULE AND KENDALL, THEORY DF STATISTICS,         0331           * DEC - 5300.5000.5000.5100.5239.5319         0333           DEC - 5339.5571.5534.5714         0333           DEC - 5500.557.6331.6605.6103         0335           DEC - 6505.66234.6700.6772.6844         0336           DEC - 7580.77324.71369.7454.7123.719C         0338           DEC - 7580.7742.71769.7164.77823         0340           DEC - 8643.8666.87.7054.7123.717         0338           DEC - 8643.8666.87.7054.7123.719C         0334           DEC - 8643.8666.857.955.8554.8559         0343           DEC - 8643.8666.857.955.957.9535         0340           DEC - 8643.8666.9729.970         0345           DEC - 8643.8666.9729.970		TRA	6.4		0319	
KIFX         PZE         0.0.1         0.022           KPLI         PZE         0.0.22         0.022           KVLII         PZE         1         0.022           KZTL         DEC         2.0         0.022           KTENPI         PZE         0         0.022           XTENPI         PZE         0         0.022           DELP         PZE         0         0.022           SCALE         PZE         0         0.0326           NDIVFL         PZE         0         0.0326           SCALE         PZE         0.03330         0.03331           DEC         .5934, .6527, .5531, .5517         0.0334         0.0335           DEC         .6431, .6628, .6700, .6772, .6744, .7623	CONST	OCT	2330000000	0	0320	
K2FX         PZE         0,0.2           KZFL         DEC         2.0           XTEMP1 PZE         0         0325           XTEMP2 PZE         0         0326           P         PZE         0         0327           DELP         PZE         0         0327           SCALE         PZE         0         0327           VELP         0         0328         0329           SCALE         PZE         0         0330           • FABLE         VUE         0332         0331           • PDEC         50050005000516052395319         0333         0335           DEC         550955315714         0334         0335           DEC         -5038567166346103         0335         02553386628660967726844         0337           DEC         -61796255633164046480         0334         02577837799770477647723         0340           DEC         -75807642770477647723         0340         0341         0257884889889279928931.         0342           DEC         -78848888882789628977         0345         0455         0453           DEC         -843186661862787298718610         0341	K1FX	PZE	0,0,1		0321	
KPL 11       PZE       0323         KZTEMP1       PZE       0326         P       PZE       0326         P       PZE       0326         NDIVFL       PZE       0326         SCALE       PZE       0326         NDIVFL       PZE       0326         SCALE       PZE       0327         SCALE       PZE       0328         SCALE       PZE       0326         SCALE       PZE       0330         *ISSO       PACE       0331         *ISSO       PACE       0332         Y DEC       5500516052395319       0333         DEC       5539557153635714       0334         DEC      5398547855715365714       0335         DEC      53985649705471237190       0336         DEC      738974547187       0339         DEC      738974547187       0339         DEC      7881739795180518106       0342         DEC      78817929790580518106       0342         DEC      788180628559       0342         DEC      99129222925192799306	K2FX	PZE	0,0,2	-	0322	
K2FL         DEC         2.0         0325           XTEMP2         DELP         DEC         DEC         DECP	KMLI1	PZE	1		0323	
XTEMP1 72         0         0225           YTEMP2 72E         0         0326           P         P2E         0         0327           NDIVF1 P2E         0329         0329           SCALE 72E         0         0330           *ISBO, PAGE 664.)         0330           Y DEC. 50005000516052395319         0332           DEC. 55385478555756365714         0333           DEC. 55385478555756366480         0336           DEC. 553954785557563164066480         0336           DEC. 5519609570547123719C         0338           DEC. 75386470647726844         0337           DEC. 7736732473897454723         0330           DEC. 775862128224631384066480         0336           DEC. 7788762474147457710C         0338           DEC. 7788762474474517102         0340           DEC. 84138461850885548599         0343           DEC. 84138461860882798700810         0344           DEC. 9029066909991319162         0346           DEC. 919292229251927993109255         0346           DEC. 9192922292519359196059615         0350           DEC. 91929357931940639464         0355 <t< td=""><td>K2FL</td><td>DEC</td><td>2.0</td><td>-</td><td>0324</td><td></td></t<>	K2FL	DEC	2.0	-	0324	
A. Terr. Z. Fit         0         0           P         PZE         0         0226           DELP         PZE         0         0226           SCALE         PZE         0         0300           *TABLE         (VULE AND KENDALL, THEORY OF STATISTICS,         0331           *1950, PAGE 664.1         0332         0           *1950, PAGE 664.1         0334         0332           DEC .5000, 5080, 5160, 5239, 5319         0332           DEC .5373, 5871, 5946, 4022, 6103         0335           DEC .5733, 5871, 5946, 4022, 6403         0336           DEC .5753, 5631, 6406, 6480         0336           DEC .5584, 6628, 6700, 6772, 6844         0337           DEC .7580, 7642, 7704, 7124, 7184, 7107         0339           DEC .7580, 7642, 7704, 7164, 7823         0340           DEC .8643, 8866, 8729, 8770, 8810         0344           DEC .8643, 8866, 8729, 8770, 8810         0344           DEC .9032, 9066, 9099, 9131, 9162         0346           DEC .913, 9272, 9251, 9279, 9306         0345           DEC .913, 9726, 9733, 991, 9306, 9429         0346           DEC .913, 9726, 9733, 991, 960, 9625         0350           DEC .913, 9726, 9733, 9730, 991, 991         0355           DEC .913, 997	XIEMP1 VTENDO	97E	0		0325	
DELP         PZE         0         0329           SCALE         PZE         0         0330           *TABLE         TVULE         AND         0331           *TABLE         TVULE         0         0331           *TABLE         TVULE         0331         0332           Y         DEC         5080,5478,5239,5319         0333           DEC         5398,5478,5557,5636,5714         0334           DEC         5793,5871,5948,6026,6480         0335           DEC         6554,6628,6700,6772,6844         0337           DEC         7506,77654,7123,7190         0339           DEC         7506,7764,7764,7764         0337           DEC         7508,7454,7517         0339           DEC         7508,742,2264,8131,8406         0341           DEC         8508,728,8962,8997         0343           DEC         8081,8925,8962,8967         0345           DEC         8088,8725,8962,8967         0345           DEC         9064,999,9131,9162         0346           DEC         9032,9357,9382,9406,9355         0349           DEC         912,9373,9591,9603,9812         0355           DEC         912,9733,979,9030,9791         03	P	PZE	0		0327	
NOTVEL PZE         0           SCALE PZE         0           *IABLE (YULE AND KENDALL, THEORY DF STATISTICS,         0331           *1950, PAGE 664.)         0332           y DEC .5000, 5080, 5160, 5239, 5319         0333           y DEC .5398, 5478, 5557, 5636, 5714         0334           DEC .5398, 5478, 5557, 5636, 5714         0335           DEC .5173, 5871, 5946, 6026, 6103         0336           DEC .6573, 5731, 5947, 6046, 6480         0336           DEC .6547, 6228, 6700, 6772, 6344         0337           DEC .7573, 7324, 7389, 7454, 7112         0338           DEC .7580, 7462, 77054, 7125, 7104         0338           DEC .7580, 7462, 77054, 7125, 7105         0340           DEC .7880, 7462, 7704, 7764, 7784, 7823         0340           DEC .7880, 7462, 77054, 7125, 8316         0342           DEC .843, 8466, 8729, 8170, 8810         0344           DEC .8443, 8466, 8729, 8770, 8810         0344           DEC .9032, 9066, 9099, 9131, 9162         0346           DEC .913, 9726, 9731, 9591, 9006         0347           DEC .9454, 9573, 9591, 9006, 9625         0350           DEC .9454, 9673, 9793, 9803, 9812         0355           DEC .9454, 9974, 9930, 9934, 9946, 9947         0355           DEC .9474, 99760, 99776, 99766	DELP	PZE	ŏ		C328	
SCALE PZE 0 0330 *TABLE (YULE AND KENDALL, THEORY OF STATISTICS, 0331 *1950, PAGE 664.) 0331 DEC 0500, 5000, 500, 5160, 5239, 5319 0333 DEC 05398, 5478, 5557, 5636, 5714 0334 DEC 05793, 5871, 5948, 6026, 6103 0336 DEC 05793, 5871, 5948, 6026, 6103 0336 DEC 05793, 5871, 5948, 6026, 6480 0336 DEC 0554, 6628, 6700, 6772, 6844 0337 DEC 0554, 6628, 6700, 6772, 6844 0337 DEC 0508, 7462, 7704, 7744, 77823 0340 DEC 0580, 7462, 7704, 7764, 77823 0340 DEC 0580, 7462, 7704, 7764, 77823 0340 DEC 059, 6212, 7704, 7764, 77823 0340 DEC 0580, 7462, 7704, 7704, 7764, 77823 0340 DEC 0580, 7704, 7704, 7704, 77823 0340 DEC 0540, 7860, 0799, 911, 9162 0344 DEC 0554, 9573, 9591, 9279, 9306 0347 DEC 0554, 9573, 9591, 9209, 9316 DEC 0554, 9573, 9591, 9608, 9625 0350 DEC 0554, 9573, 9591, 9608, 9625 0350 DEC 0554, 9573, 9591, 9608, 9625 0350 DEC 0554, 9573, 9739, 9403, 9812 0355 DEC 0321, 9860, 99941, 9304, 9354 DEC 0321, 9860, 99632 0351 DEC 0561, 9869, 99601 0351 DEC 0321, 9860, 99632 0353 DEC 0359 DEC 0393, 9966, 99632 0359 DEC 0359, 9966, 99650 0356 DEC 03903, 9916, 99946, 99857 0355 DEC 0393, 9966, 999651 0350 DEC 03932, 9966, 99965, 99965 0360 DEC 03979, 99913, 9916, 99945, 99965 DEC 03934, 9966, 99965 0359 DEC 03934, 9966, 99965 0359 DEC 03934, 9966, 999632 0359 DEC 03934, 9966, 999632 0359 DEC 03965, 99867, 99867 0363 DEC 03965, 99966, 99965 0366 DEC 039924, 99366, 99965 0366 DEC 039924, 99366, 99965 0366 DEC 039924, 99366, 999651, 99867 0363 DEC 03965, 99867, 99867 0363 DEC 03966, 99966, 99965 0366 DEC 039924, 99366, 99965 0366 DEC 039964, 99965, 99965 0366 DEC 039964, 99965, 99965 0366 DEC 039926, 99965, 999595 039966 0377 DEC 0399268 03	NDIVFL	PZE	-		0329	
<pre>*1ABLE (YULE AND KENDALL, THEORY OF STATISTICS, 0331 *1950; PAGE 664.) 0332 Y DEC .5000,.5080,.5160,.5239,.5319 0333 DEC .5398,.5478,.555756365714 0334 DEC .5793,.5871,.594860266103 0335 DEC .6179,.6255633164066480 0336 DEC .65546628670067726844 0337 DEC .6915,.698570547123719C 0338 DEC .7580,.764277047723719C 0338 DEC .7580,.7642770477647823 0340 DEC .7580,.7642770477647823 0340 DEC .7580,.7642770477647823 0340 DEC .7580,.764277047823734974547517 0339 DEC .7580,.7642770477647823 0340 DEC .7680,.764277047823</pre>	SCALE	PZE	0		0330	
*1950, PAGE 664.) V DEC .5000, 5500, 5160, 5239, 5319 0 DEC .50308, 5478, 5557, 5636, 5714 0 DEC .5793, 5871, 5948, 6026, 6103 0 DEC .6179, 6255, 6331, 6406, 6480 0 DEC .6554, 6628, 6700, 6772, 6844 0 DEC .554, 6628, 6700, 6772, 6844 0 DEC .578, 7374, 7389, 7454, 7517 0 DEC .7800, 7642, 7704, 7764, 77843, 7817 0 DEC .7801, 7939, 8051, 8106 0 DEC .7819, 8212, 8264, 8315, 8365 0 DEC .843, 8866, 8729, 8770, 8810 0 DEC .8443, 8866, 8729, 8770, 8810 0 DEC .8443, 8866, 8729, 8770, 8810 0 DEC .932, 9066, 9099, 9131, 9162 0 DEC .9452, 9474, 9495, 9515, 9535 0 DEC .9461, 9668, 9679, 9150, 9525 0 DEC .9641, 9666, 9679, 9150, 9535 0 DEC .9641, 9666, 9679, 9150, 9535 0 DEC .9641, 9668, 9679, 9150, 9625 0 DEC .9641, 9668, 9679, 9131, 9162 0 DEC .9641, 9668, 9679, 9930 0 DEC .9641, 9668, 9675, 9615, 9635 0 DEC .9772, 9783, 9733, 9803, 9812 0 DEC .9641, 9668, 9675, 9613 0 DEC .9641, 9668, 9675, 9613 0 DEC .9772, 9783, 973, 9803, 9812 0 DEC .9641, 9668, 9675, 9631 0 DEC .9963, 9934, 9904, 9909, 9913 0 DEC .99651, 99674, 99923 0 DEC .99651, 99774, 99783 0 DEC .99651, 99744, 99793, 99031 0 DEC .99651, 99674, 99885, 99607 0 DEC .99911, 99925, 99836, 99867 0 DEC .99931, 99934, 99946, 99847 0 DEC .999534, 99560, 999585 0 DEC .99954, 99560, 999585 0 DEC .99955, 99958, 99961, 99945 0 DEC .999744, 99785, 999864 0 DEC .999954, 99966 0 DEC .999954 0 DEC .999954 0 DEC .999954 0 DEC .999958, 999960, 999943, 999943 0 DEC .999958 0 DE	*TABLE	(YULE	AND KENDALL,	THEORY OF STATISTICS,	0331	
T DEC .53000,.3000,.3100,.2100,.2237,.3119       0333         DEC .5388,.5478,.5557,.53636,.5714       0334         DEC .5793,.5871,.5948,.6026,.6103       0335         DEC .6554,.6628,.6700,.6772,.6844       0337         DEC .6554,.6628,.6700,.6772,.6844       0338         DEC .7257,.7324,.7399,.7454,.7517       0339         DEC .7801,.7642,.7704,.7764,.7823       0440         DEC .7811,.7939,.7955,.8051,.8106       041         DEC .8413,.8461,.8508,.8554,.8399       0343         DEC .8443,.8486,.8729,.8770,.8810       0344         DEC .9032,.9066,.9099,.9131,.9162       0346         DEC .9441,.9451,.9406,.9429       03443         DEC .9554,.9573,.932,.9406,.9429       03443         DEC .9554,.9573,.9591,.9608,.9625       0350         DEC .9554,.9573,.9591,.9608,.9625       0350         DEC .9772,.9783,.970,.9816,.9854       0351         DEC .9861,.9875,.9881,.9964       0352         DEC .9918,.9922,.9927,.9931,.9913       0355         DEC .9918,.9928,.9904,.99454       0356         DEC .9918,.9928,.9904,.9947,.9913       0356         DEC .9918,.9925,.99836,.9961,.99877       0356         DEC .9918,.9927,.9931,.9971       0355         DEC .9918,.9928,.99446,.99477,.99506       0357	+1950,	PAGE	664.)	(0 6320 5310	0332	
DEC       53793.5871.5948.6026.6103       0335         DEC       65793.5871.5948.6026.6480       0336         DEC       65793.5871.5948.6026.6480       0337         DEC       6554.6628.6700.6772.6844       0337         DEC       7554.6228.6700.6772.6844       0339         DEC       7550.7724.7399.7454.7517       0339         DEC       7580.7642.7704.7764.77647.7823       0340         DEC       7580.7744.7399.7955.8051.8106       0342         DEC       8643.8866.8729.8770.8810       0344         DEC       8643.8866.8729.8770.8810       0344         DEC       8643.8866.8729.8770.8810       0345         DEC       8649.8866.8729.8770.9810       0345         DEC       932.9066.9099.9131.9162       0346         DEC       932.937.932.9366.9935       0349         DEC       932.937.931.950.9315       0349         DEC       9452.9474.94945.9315.9315       0349         DEC       9544.9373.9591.9083.9465.9651       0351         DEC       9464.9456.9671       0355         DEC       9641.9456.9671       0355         DEC       9643.99864.9947       0356         DEC       9643.99665.99863.99861       0357     <	Ŧ	DEC .	5308. 5478. 55	001+32371+3317	0335	
DEC         6179, 6255, 6331, 6406, 6440         0336           DEC         6554, 6628, 6700, 6772, 6844         0337           DEC         6554, 6628, 6700, 6772, 6844         0337           DEC         7257, 7324, 7389, 7454, 7517         0339           DEC         77257, 7324, 7784, 7764, 7723         0340           DEC         7780, 7642, 7704, 7764, 7723         0340           DEC         7780, 7642, 7704, 7764, 7723         0340           DEC         7780, 7642, 7704, 7764, 7723         0340           DEC         7780, 7764, 7764, 7723         0340           DEC         7881, 7939, 7995, 8051, 8106         0341           DEC         8413, 8666, 8729, 8770, 8810         0343           DEC         8849, 9888, 8925, 8962, 8997         0345           DEC         9032, 9056, 9071, 9311, 9162         0345           DEC         9032, 9357, 9382, 9406, 9429         0346           DEC         9452, 9474, 9495, 9515, 9535         0349           DEC         9452, 9474, 9495, 9515, 9535         0350           DEC         9554, 9573, 9591, 9603, 9612         0355           DEC         9713, 9726, 9738, 9750, 9761         0355           DEC         9813, 99464, 9903, 9812         0356		DEC .	5793.5871.59	4860266103	0335	
DEC         -6554, -6628, -6700, -6772, -6844         0337           DEC         -65915, -6695, -7054, -7123, -7190         0338           DEC         -7580, -7642, -7704, -7764, -7717         0339           DEC         -7580, -7642, -7704, -7764, -7723         0340           DEC         -7580, -7642, -7704, -7764, -7744, -7723         0340           DEC         -881, -7939, -7995, -8051, -8106         0341           DEC         -8159, -8212, -8264, -8315, -8365         0342           DEC         -8643, -8686, -8729, -8770, -8810         0345           DEC         -8643, -8686, -8729, -8770, -8810         0345           DEC         -9032, -9066, -9099, -9131, -9162         0346           DEC         -9122, -9221, -9251, -9279, -9306         0347           DEC         -9032, -9066, -9079, -9316, -9429         0348           DEC         -9452, -9474, -9495, -9515, -9535         0350           DEC         -9654, -9573, -9591, -9608, -9625         0350           DEC         -9681, -9664, -9674, -96964, -9654         0352           DEC         -9681, -9686, -9679, -9691         0351           DEC         -9681, -9686, -9677, -9681, -9687         0355           DEC         -9681, -9686, -9677, -96993, -9913         0356		DEC .	6179625563	3164066480	0336	
0EC       .6915,.6985,.70254,.7123,.719C       0338         DEC       .7574,.7324,.7389,.74554,.7517       0339         DEC       .7580,.7642,.7704,.7764,.77643       0340         DEC       .7580,.7642,.7704,.7764,.77633       0340         DEC       .7580,.7642,.7704,.7764,.77633       0340         DEC       .7881,.7939,.7995,.8051,.8106       0341         DEC       .86159,.8212,.8264,.8315,.8365       0342         DEC       .8413,.8461,.8508,.8525,.8962,.8997       0345         DEC       .8643,.8666,.8729,.8770,.8810       0344         DEC       .9032,.9066,.9099,.9131,.9162       0346         DEC       .9032,.9022,.9221,.9221,.9271,.9279,.9306       0347         DEC       .9332,.9357,.9382,.9406,.9429       0348         DEC       .9322,.9357,.9382,.9406,.9429       0346         DEC       .9554,.9573,.9511,.9505       0350         DEC       .9541,.9656,.979,.9761       0352         DEC       .9713,.9764,.9733,.9793,.9803,.9812       0355         DEC       .9861,.9868,.9875,.9861,.9887       0355         DEC       .9914,.9926,.99944,.9997,.99934       0357         DEC       .9934,.990560,.99958,.99606,.999632       0359         DEC       .99354,.99971,		DEC .	6554,.6628,.67	00,.6772,.6844	0337	
DEC. 7257.7324.7389.7454.7517       0339         DEC. 7580.76542.7704.7764.77643.7823       0340         DEC. 7881.7939.7995.8051.8106       0341         DEC. 8159.8212.8264.8315.8365       0342         DEC. 8413.86461.8506.8554.8599       0343         DEC. 8433.8666.81.8509.0345       0344         DEC. 8643.8866.8729.8770.8810       0344         DEC. 849.9.8888.8925.8962.8997       0345         DEC. 9032.9066.9099.9131.9162       0346         DEC. 9192.9222.9251.9279.9306       0347         DEC. 9452.9414.9495.9415.9535       0349         DEC. 9452.9414.9495.9415.9535       0349         DEC. 9452.9414.9495.9515.9535       0349         DEC. 9451.9573.9501.9603.9603       0351         DEC. 941.9456.9671.9686.9699       0351         DEC. 972.9738.9739.9903.9812       0355         DEC. 9803.9804.9904.9904.99013       0355         DEC. 9803.9804.9904.9903       0355         DEC. 9918.9927.9927.9931.9934       0357         DEC. 99853.99676.9971.99389.99801       0361         DEC. 99865.9974.99883.99861       0362         DEC. 99913.99926.99836.99944.99948       0365         DEC. 99953.99935.999836.99944.99948       0361         DEC. 99964.999674.99889.998897       0363		DEC .	6915,.6985,.70	54,.7123,.7190	0338	
DEC       .7580,.7742,.7704,.7764,.7823       0340         DEC       .7580,.7739,.7995.8051,.8106       0341         DEC       .8159,.8212,.8264,.8315,.8365       0342         DEC       .8413,.8461,.8508,.8554,.8599       0343         DEC       .8643,.8686,.8729,.8770,.8810       0344         DEC       .8643,.8686,.8729,.8770,.8810       0344         DEC       .8949,.8888,.89258962,.8997       0345         DEC       .9032,.9066,.9099,.9131,.9162       0346         DEC       .91229222,.9251,.9279,.9306       0347         DEC       .91229222,.9251,.9279,.9306       0348         DEC       .9452,.9474,.9495,.9515,.9535       0349         DEC       .9452,.9474,.9495,.9515,.9535       0350         DEC       .9542,.9367,.9581,.9668,.9625       0351         DEC       .9542,.9361,.9688,.94875       0352         DEC       .9712,.9783,.9793,.9801,.96812       0353         DEC       .9811,.9804,.99047,.9913       0356         DEC       .981,.9868,.9904,.99047       0356         DEC       .9914,.9914,.9943,.99463,.9974       0357         DEC       .9914,.99464,.99047,.99380       0356         DEC       .9914,.9922,.9927,.9931,.99306       0359		DEC .	7257, 7324, 73	89, .7454, .7517	0339	
DEC.         1/83/1.193/1.193/1.603         0342           DEC.         8159.,82(2).8264.8315,.8365         0342           DEC.         8413.4661.8508.48554.8599         0343           DEC.         8643.8668.8729.8770.8810         0345           DEC.         8849.8888.8729.8922.8997         0345           DEC.         9032.9066.9099.9131.9162         0346           DEC.         9032.922.9221.9271.9279.9306         0347           DEC.         9932.9357.9382.9466.9429         0348           DEC.         9942.9221.9251.9279.9306         0347           DEC.         9955.9.9573.9591.9608.9625         0350           DEC.         9954.9573.9591.90608.9625         0350           DEC.         9954.9573.9591.90608.9625         0353           DEC.         9713.973.9803.9812         0353           DEC.         981.9846.9054         0354           DEC.         9821.9868.9875.9881.9846.9054         0355           DEC.         9831.98464.9054         0355           DEC.         9831.98464.9077.9931.0937         0355           DEC.         9831.98464.9077.9931.0937         0356           DEC.         99341.99446.99477.99506         0358           DEC.         993446.99477.995		DEC .	7580,.7642,.//	04,.7764,.7823	0340	
DEC. 3013, 0241, 0207, 0207, 0207       0344         DEC. 4643, 8464, 0209, 8554, 0207       0344         DEC. 8849, 888, 025, 8962, 0997       0345         DEC. 9032, 9066, 0099, 9131, 9162       0346         DEC. 9032, 9066, 0099, 9131, 9162       0346         DEC. 9332, 937, 9332, 9466, 9429       0348         DEC. 9332, 937, 9332, 9466, 9429       0348         DEC. 9554, 9573, 9591, 9608, 9625       0350         DEC. 9772, 9733, 9730, 9730, 9761       0352         DEC. 9821, 9830, 9838, 9846, 9854       0355         DEC. 9821, 9830, 9838, 9846, 9854       0355         DEC. 9914, 9922, 9927, 9931, 9934       0356         DEC. 99374, 9964, 9904, 9904, 9903       0357         DEC. 99374, 99674, 99693, 99711, 9978       0360         DEC. 99813, 99864, 99846, 99856       0361         DEC. 99931, 99936, 99941, 990921, 99926       0361         DEC. 99744, 99760, 99958, 99807       0363         DEC. 99813, 99864, 999446, 99846       0357         DEC. 99864, 99864, 99846       0356         DEC. 99931, 99714, 99738, 99801       0361         DEC. 99865, 99874       0363         DEC. 999813, 99964, 999444, 99944       0365         DEC. 999813, 99964, 99941, 999944       0366         DEC. 999874, 999		050	1001:.1939:.19 9150. 9212. 92	1991 • 80714 • 8100 164 - 8315 - 8365	0342	
DEC       8643, 8686, 8729, 8770, 8810       0344         DEC       8849, 8888, 8725, 8962, 8997       0345         DEC       9032, 9066, 9099, 9131, 9162       0346         DEC       9192, 9222, 9251, 9279, 9306       0347         DEC       932, 9357, 9382, 9406, 9429       0348         DEC       9452, 9474, 94995, 9515, 9535       0349         DEC       9544, 9573, 9591, 9608, 9625       0350         DEC       9544, 9764, 9738, 9730, 9761       0352         DEC       9772, 9783, 9793, 9803, 9844       0357         DEC       9861, 9868, 9875, 9881, 9864       0355         DEC       9913, 9922, 9927, 99313       0356         DEC       99379, 99413, 99446, 99477, 99506       0359         DEC       99379, 99413, 99446, 99477, 99506       0359         DEC       99379, 99413, 99446, 99856       0360         DEC       99379, 99413, 99446, 99856       0361         DEC       99379, 99433, 99864, 99856       0362         DEC       99363, 99864, 99874       0363         DEC       99931, 99926       0363         DEC       99864, 99874       0363         DEC       99374, 99788, 99801       0363         DEC       99864,		DEC	8413.8461.85	0885548599	0343	
DEC       .8849,.8888,.8925,.8962,.8997       0345         DEC       .9032,.9066,.9099,.9131,.9162       0346         DEC       .9192,.9222,.921,.9279,.9306       0347         DEC       .9332,.9357,.9382,.9406,.9429       0348         DEC       .9452,.9474,.9495,.9515,.9535       0349         DEC       .9554,.9573,.9511,.9058,.9625       0350         DEC       .9544,.9573,.9515,.9535       0349         DEC       .9541,.9656,.9671,.9686,.9699       0351         DEC       .9713,.9726,.9738,.9750,.9761       0352         DEC       .9772,.9783,.9793,.9803,.9812       0355         DEC       .9821,.9830,.9838,.9846,.9854       0354         DEC       .9821,.9808,.9904,.9909,.9913       0355         DEC       .9831,.9848,.9904,.9909,.9913       0356         DEC       .99314,.9922,.9927,.99314,.9934       0357         DEC       .99379,.9943,.99711,.99728       0360         DEC       .99585,.99856,.9987       0361         DEC       .99453,.99644,.99856       0362         DEC       .99934,.99926       0364         DEC       .99934,.99930,.99911,.99948       0365         DEC       .99965,.99836,.999404,.99983       0366         D		DEC	8643 8686 87	29,.8770,.8810	0344	
DEC       .9032,.9066909991319162       0346         DEC       .91929222925192799306       0347         DEC       .93329357938294669429       0348         DEC       .94529474949595159535       0349         DEC       .95549573959196089625       0350         DEC       .9456967196669699       0351         DEC       .97139726973897509761.       0352         DEC       .971397398039812       0353         DEC       .9819830993898469854       0354         DEC       .9819886987598819887       0355         DEC       .9919922992799319934       0357         DEC       .9919922992799319934       0357         DEC       .993799413994469947799506       0358         DEC       .9937994139944699856       0356         DEC       .9937994139946499856       0360         DEC       .9937994699507       0363         DEC       .9937994799633996032       0356         DEC       .9937994699866       0361         DEC       .99369986799867       0363         DEC       .999653998679988999897       0363         DEC		DEC .	8849,.8888,.89	25,.8962,.8997	0345	
DEC       .9192,9221,9279,9306       0347         DEC       .9332,9357,9382,9466,9429       0348         DEC       .9452,9474,9495,9515,9535       0349         DEC       .9554,9573,9591,9608,9625       0350         DEC       .9641,9656,9671,9686,9699       0351         DEC       .9713,9726,9738,9750,9761       0352         DEC       .9713,9743,9793,9803,9812       0353         DEC       .9821,9887,9887       0354         DEC       .9831,9868,9887,9887       0355         DEC       .9931,9944,9909,9913       0356         DEC       .9918,9922,99279931,99506       0358         DEC       .9934,99560,99585,9960,99506       0358         DEC       .9934,99560,99585,9960,99506       0351         DEC       .99367,99413,9946,99477       0361         DEC       .994674,99603,99711,99728       0362         DEC       .99865,99813,99801       0361         DEC       .99865,99986,99944,99948       0365         DEC       .99964,99958,99981,99983       0364         DEC       .99964,99986,99981,99983       0368     <		DEC .	9032,.9066,.90	99, . 9131, . 9162	0346	
DEC       .932,932,9382,9406,9429       0340         DEC       .9452,9474,9495,9515,9535       0349         DEC       .9554,9573,9591,9608,9699       0351         DEC       .9441,9456,9671,9686,9699       0351         DEC       .9713,9726,9738,9750,9761       0352         DEC       .9713,9738,9793,9803,9812       0353         DEC       .9821,9830,9838,9846,9854       0354         DEC       .9821,9830,9838,9846,9854       0355         DEC       .9821,9830,9838,9846,9854       0355         DEC       .9821,9830,9838,9846,9857       0356         DEC       .9831,9848,9904,9909,9913       0356         DEC       .9931,9922,9927,9931,9934       0357         DEC       .99379,99413,99460,9947799506       0358         DEC       .99379,99464,99463,9947799506       0356         DEC       .99614,99560,9977499788,99801       0361         DEC       .99614,99684,99877       0363         DEC       .99814,99882,998801       0365         DEC       .99961,99924,99984       0365         DEC       .99961,99964,99975       0363         DEC		DEC .	9192,.9222,.92	51,.9279,.9306	0347	
DEC       .94229414949393159335       0347         DEC       .95549573959196089625       0350         DEC       .964196569671196869699       0351         DEC       .977297839726973897509761       0352         DEC       .97729783973398039812       0353         DEC       .98219830983898469854       0354         DEC       .9821983898469875       0355         DEC       .98619868987588819887       0355         DEC       .99839941399446994779934       0357         DEC       .9913997499319934       0357         DEC       .9937999413994469947799728       0360         DEC       .993799944995859960999728       0356         DEC       .99853996749978899801       0361         DEC       .99865998269984699856       0362         DEC       .9986599864999869       0363         DEC       .9994139994499926       0364         DEC       .999403999109991699921       0363         DEC       .999559996599964       0365         DEC       .999469996799948       0367         DEC       .99977		DEC .	93321.935/1.93	021.94001.9429	0340	
DEC       *954***********************************	¢.	DEC	94721.94141.94 0554.0572.05	9777 • 77477 • 77777 01 - 9678 • 9675	0350	
DEC       .9713,.9726,.9738,.9750,.9761       0352         DEC       .9772,.9783,.9793,.9803,.9812       0353         DEC       .9821,.9830,.9838,.9846,.9854       0354         DEC       .9821,.9830,.9838,.9846,.9854       0355         DEC       .9821,.9868,.9875,.9881,.9887       0355         DEC       .9893,.9898,.9904,.9909,.9913       0356         DEC       .9914,.99229927,.9931,.9934       0357         DEC       .9913,.9946,.9947,.99506       0358         DEC       .99379,.99413,.9946,.9947799506       0359         DEC       .9934,.99560,.99585,.99609,.99632       0359         DEC       .99653,.99674,.99693,.9971199728       0360         DEC       .99653,.99674,.99788,.99801       0361         DEC       .9985,.99874,.99788,.999801       0363         DEC       .9985,.99874,.99889,.99897       0363         DEC       .99965,.99874,.99889,.99897       0363         DEC       .99965,.99981,.999844       0365         DEC       .99973,.99916,.99948       0366         DEC       .99965,.99986,.999961,.99983       0368         DEC       .99977,.99978,.99980,.999988       0366         DEC       .99977,.99978,.999908,.999981       0369		DEC .	9641.9656.96	7196869699	0351	
DEC.9772,.9783,.9793,.9803,.98120353DEC.9821,.9830,.9838,.9846,.98540354DEC.9861,.9868,.9875,.9881,.98870355DEC.9861,.9968,.9904,.9909,.99130356DEC.99379,.99413,.99446,.99477,.995060357DEC.99379,.99413,.99446,.99477,.995060357DEC.99534,.99560,.99585,.99609,.996320359DEC.99534,.995674,.99693,.99711,.997280360DEC.99744,.99760,.99774,.99788,.998010361DEC.99813,.99825,.99836,.99846,.998560362DEC.99855,.99874,.99889,.998970363DEC.99903,.99910,.99916,.999260364DEC.99955,.99958,.99961,.999480365DEC.99957,.99958,.99971,.999730367DEC.99966,.99969,.99971,.99973,.999750367DEC.99985,.99886,.99887,.999880369DEC.99986,.99986,.99987,.999880369DEC.99986,.99986,.99987,.999880367DEC.999968,.99987,.999880368DEC.999986,.99987,.999880370DEC.999986,.999971,.999780371DEC.9999680371DEC.9999680371DEC.9999680372DEC.9999680373DEC.9999680373DEC.9999680373DEC.9999680373		DEC .	9713, .9726, .97	38,.9750,.9761	0352	
DEC.9821,.9830,.9838,.9846,.98540354DEC.9861,.9868,.9875,.9881,.98870355DEC.983,.9898,.9904,.9909,.99130356DEC.9918,.9922,.99279931,.99340357DEC.99379,.99413,.99446,.99477,.995060357DEC.99379,.99413,.99446,.99477,.995060359DEC.99534,.99560,.99585,.99609,.996320359DEC.99653,.99674,.99585,.99609,.997280360DEC.99744,.99760,.99774,.99788,.998010361DEC.99813,.99825,.99836,.99846,.998560362DEC.99865,.99874,.99822,.9988970363DEC.99931,.99916,.99916,.99921,.999260364DEC.99952,.99955,.99958,.99961,.999480365DEC.99966,.99969,.99971,.99973,.999750367DEC.99964,.99980,.99987,.999880368DEC.99985,.99986,.99987,.999880369DEC.999964,.99990,.999915,.9999880370DEC.999928,.99990,.999915,.999943,.9999480371DEC.999928,.999933,.999939,.999943,.9999660372DEC.9999680372DEC.9999680372DEC.9999680372DEC.9999680372DEC.9999680372DEC.9999680372DEC.9999680372DEC.9999680372DEC.9999680373BEND0374		DEC .	9772,.9783,.97	93,.9803,.9812	0353	
DEC.9861,9868,.9875,.9881,.98870355DEC.9893,.9898,.9904,.9909,.99130356DEC.9918,.9922,.9927,.9931,.99340357DEC.99379,.99413,.99446,.99477,.995060358DEC.99534,.99560,.99585,.99609,.996320359DEC.99534,.99674,.99693,.99711,.997280360DEC.99744,.99760,.99774.99788,.998010361DEC.99813,.99825,.99836.99846,.998560362DEC.99865,.99874,.99889,.998970363DEC.99903,.99910,.99916,.99921,.999260364DEC.99931,.99936,.99940,.99944,.999480365DEC.99977,.99978,.99980,.99981,.999830368DEC.99984,.99980,.99981,.999830368DEC.99984,.99980,.99981,.999880369DEC.99984,.99980,.99981,.999830368DEC.99984,.99980,.99981,.999880369DEC.99984,.99990,.999915,.999880370DEC.99984,.99990,.999915,.9999220370DEC.999928,.999933,.999939,.999943,.9999480371DEC.9999680371DEC.9999680371DEC.9999680372DEC.9999680372DEC.9999680372DEC.9999680373DEC.9999680373DEC.9999680373DEC.9999680373DEC.9999680373DEC.9999680373DEC.9999680373DEC.999968		DEC	9821,.9830,.98	38,.9846,.9854	0354	
DEC       .9893,.9898,.9904,.9909,.9913       0350         DEC       .9918,.9922,.9927,.9931,.9934       0357         DEC       .9937999413,.99446,.99477,.99506       0358         DEC       .99534,.9956099585,.99609,.99632       0359         DEC       .99534,.9956099585,.99609,.99632       0360         DEC       .99653,.99674,.99693,.99711,.99728       0361         DEC       .99744,.99780,.99774,.99788,.99801       0361         DEC       .99813,.99825,.99836.99846,.99856       0362         DEC       .99865,.99874,.99889,.99897       0363         DEC       .99813,.99910,.99916,.99921,.99926       0364         DEC       .99903,.99910,.99916,.99944,.99948       0365         DEC       .99931,.99936,.99980,.999948       0366         DEC       .99977,.99978,.99980,.99981,.99983       0368         DEC       .99977,.99978,.99980,.99981,.99983       0368         DEC       .99984,.99980,.999915,.999883       0368         DEC       .99984,.99990,.999915,.999922       0370         DEC       .999928,.999933,.999934,.999943,.999948       0371         DEC       .999928,.999933,.999959,.999966       0372         DEC       .999968       .0371         DEC       .9		DEC .	9861,.9868,.98	75,.9881,.9887	0355	
DEC       .979,.99413,.99446,.99477,.99506       C358         DEC       .99534,.99560,.99585,.99609,.99632       O359         DEC       .99534,.99560,.99585,.99609,.99632       O360         DEC       .99653,.99674,.99693,.99711,.99728       O360         DEC       .99744,.99760,.99774,.99788,.99801       O361         DEC       .99855,.99836,.99886,.99856       C362         DEC       .99865,.99874,.99889,.99897       O363         DEC       .99865,.99910,.99916,.99921,.99926       O364         DEC       .99903,.99910,.99916,.99944,.99948       O365         DEC       .99964,.99959,.999404,.99948       O365         DEC       .99952,.99955,.99958,.99964       O366         DEC       .99964,.999971,.99973       O367         DEC       .99986,.99980,.99981,.99983       O368         DEC       .99986,.99986,.99987,.99988       O368         DEC       .99986,.99986,.999915,.99988       O369         DEC       .99986,.999908,.999915,.999922       O370         DEC       .999928,.999939,.999943,.999948       O371         DEC       .999928,.999939,.999963,.9999948       O371         DEC       .999968       O372         DEC       .999968       O372		DEC .	98931.98981.99 0018.0022.00	1041 • 9909 • 9913 177 • . 9931 • . 9936	0357	
DEC.99534,.99560,.99585,.99609,.996320359DEC.99653,.99674,.99693,.99711,.997280360DEC.99744,.99760,.99774,.99788,.998010361DEC.99813,.99825,.99836,.99869,.998560362DEC.99865,.99874,.99862,.9988970363DEC.99903,.99910,.99916,.99921,.999260364DEC.99952,.99955,.99958,.99964,.999640365DEC.99966,.99969,.99971,.99973,.999750367DEC.99964,.99969,.99971,.999730368DEC.99987,.99980,.99981,.999830368DEC.99986,.999908,.999915,.999880369DEC.99989,.999908,.999915,.9999220370DEC.999928,.999933,.999939,.999943,.9999480371DEC.999968.9373DEC.999968.999963,.999966DEC.999968.99973DEC.999968.99973DEC.999968.99973DEC.999968.9973DEC.999968.9973DEC.999968.9973DEC.999968.9973DEC.999968.9973DEC.999966.972DEC.999968.972DEC.999968.973DEC.999968.973DEC.999968.972DEC.999968.972DEC.999968.972DEC.999968.972DEC.999968.972DEC.999968.972DEC.999968.9		DEC	99379.99413.	994469947799506	0358	
DEC.99653,.99674,.99693,.99711,.997280360DEC.99744,.99760,.9977499788,.998010361DEC.99813,.99825,.99836,.9986,.998560362DEC.99865,.99874,.99882,.9988970363DEC.99903,.99910,.99916,.99921,.999260364DEC.99952,.99955,.99958,.99961,.999640365DEC.99966,.99969,.99971,.999750363DEC.99984,.99980,.99981,.999830368DEC.99985,.99978,.999750367DEC.99984,.99980,.99981,.999880369DEC.99985,.99986,.999915,.999880369DEC.99984,.999908,.999915,.9999220370DEC.999928,.999933,.999939,.999943,.9999480371DEC.999952,.99956,.999959,.999963,.9999660372DEC.9999680373DEC.9999680373DEC.9999680373		DEC	99534 99560	99585,.99609,.99632	0359	
DEC.99744,.99760,.9977499788,.998010361DEC.99813,.99825,.99836,.99886,.998560362DEC.99865,.99874,.99882,.9988970363DEC.99903,.99910,.99916,.99921,.999260364DEC.99931,.99936,.99940,.99944,.999480365DEC.99952,.99955,.99958,.99961,.999640366DEC.99966,.99969,.99971,.999750367DEC.99985,.99980,.99981,.999830368DEC.99985,.99986,.999915,.999880369DEC.99985,.999906,.999915,.9999220370DEC.999928,.999933,.999939,.999943,.9999480371DEC.999952,.99956,.999959,.999963,.9999660372DEC.9999680373END0374		DEC .	99653, 99674, .	99693,.99711,.99728	0360	
DEC       .99813,.99825,.99836,.99886,.99856       0362         DEC       .99865,.99874,.99882,.99889,.99897       0363         DEC       .99903,.99910,.99916,.99921,.99926       0364         DEC       .99931,.99936,.99940,.99944,.99948       0365         DEC       .99952,.99955,.99958,.99961,.99964       0366         DEC       .99966,.99969,.99971,.99973,.99975       0367         DEC       .99977,.99978,.99980,.99981,.99988       0368         DEC       .99984,.99985,.999961,.99987,.99988       0369         DEC       .99984,.99980,.999915,.999922       0370         DEC       .999928,.999933,.999939,.999943,.999948       0371         DEC       .999968       0372         DEC       .999968       0372         DEC       .999968       0373         DEC       .999968       0373		DEC .	99744,.99760,.	99774,.99788,.99801	0361	
DEC.       999805,99874,99802,99887       0363         DEC.       99903,99910,99916,99921,99926       0364         DEC.       99931,99916,99940,99944,99948       0365         DEC.       99952,99955,99958,99961,99964       0366         DEC.       99966,99969,99971,99973,99975       0367         DEC.       99964,99985,99986,99987,99988       0369         DEC.       99986,99990,999915,99988       0369         DEC.       99992,99909,999915,999988       0370         DEC.       999928,999933,999939,999943,999948       0371         DEC.       999968       0372         DEC.       999968       0372         DEC.       999968       0373         DEC.       999968       0373		DEC .	99813, 99825,	99836, 99846, 99856	0362	
DEC       •99931, •99936, •99940, •99944, •99948       0365         DEC       •99952, •99955, •99958, •99961, •99964       0366         DEC       •99966, •99969, •99971, •99973, •99975       0367         DEC       •99977, •9978, •99980, •99981, •99983       0368         DEC       •99984, •99985, •99986, •999815, •99988       0369         DEC       •99989, •99900, •999915, •999922       0370         DEC       •999928, •999933, •999939, •999943, •999948       0371         DEC       •999952, •99956, •99959, •999963, •999966       0373         DEC       •999968       0373         DEC       •999968       0373		DEC .	998141	990029•990099•99097 00016-00021-00024	0360	
DEC       .99952,.99955,.99958,.99961,.99964       0366         DEC       .99966,.99969,.99971,.99973,.99975       0367         DEC       .99977,.99978,.99980,.99981,.99983       0368         DEC       .99984,.99985,.99986,.99987,.99988       0369         DEC       .99989,.99990,.999908,.999915,.999922       0370         DEC       .999928,.999933,.999939,.999943,.999948       0371         DEC       .999956,.999959,.999963,.999966       0373         DEC       .999968       0373         DEC       .999968       0374		DEC .	99931 00034 -	99940 • 99944 - 99948	0365	
DEC       \$99966,.99969,.99971,.99973,.99975       0367         DEC       \$99977,.99978,.99980,.99981,.99983       0368         DEC       \$99984,.99985,.99986,.99987,.99988       0369         DEC       \$99989,.99990,.999908,.999915,.999922       0370         DEC       \$999928,.999933,.999939,.999943,.999948       0371         DEC       \$999952,.999956,.999959,.999963,.999966       0372         DEC       \$999968       0373         DEC       \$999968       0374		DEC	99952 • 99955 • -	99958 • • 99961 • • 99964	0366	
DEC       .99977,.99978,.99980,.99981,.99983       0368         DEC       .99984,.99985,.99986,.99987,.99988       0369         DEC       .99989,.99990,.999908,.999915,.999922       0370         DEC       .999928,.999933,.999939,.999943,.999948       0371         DEC       .999952,.999956,.999959,.999963,.999966       0372         DEC       .999968       0373         DED       .999968       0374		DEC	99966, 99969.	99971,.99973,.99975	0367	
DEC       .99984,.99985,.99986,.99987,.99988       0369         DEC       .99989,.99990,.999908,.999915,.999922       0370         DEC       .999928,.999933,.999939,.999943,.999948       0371         DEC       .999952,.999956,.999959,.999963,.999966       0372         DEC       .999968       0373         END       0374		DEC	99977, 99978,	99980,.99981,.99983	0368	
DEC       .99989,.99990,.999908,.999915,.999922       0370         DEC       .999928,.999933,.999939,.999943,.999948       0371         DEC       .999952,.999956,.999959,.999963,.999966       0372         DEC       .999968       0373         END       0374		DEC .	99984, 99985,	99986,.99987,.99988	0369	
DEC .999928,.999933,.999939,.999943,.999948 0371 DEC .999952,.999956,.999959,.999963,.999966 0372 DEC .999968 0373 END 0374		DEC .	99989,.99990,.	999908,.999915,.999922	0370	
DEC •999968 0373 END 0374		DEC .	999928, 999933	1, 999939, 999943, 999948	0371	
END 0374		DEC	, 777772 <b>; •</b> 999956	006666.01006666.01000	0372	
		END	,,,,,00		0374	

PROGRAM LISTINGS

• NOINT2 • REFER TO NOINT1 NOINT2 *
REFER TO
NOINT1

,

270 PROGRAM LISTINGS

*********************

POKCT1	*			# POKCT1	•
*********	*****			*********	**********
- DCKCT		2/10/			01 21
<ul> <li>FLRCI</li> <li># ΙΔ8ΕΙ</li> </ul>	I (SUBRUUTINE)	27187	05 LASI CARU	IN DECK IS NO.	0001
CPOKCT1					0002
SUBRO	UTINE POKCT1 (IX,	NHANDS, ICT, IANS)			0003
С					0004
С	ABS1	RACT			0005
C	•				0006
C TITLE - P	UKCT1 Luation of Inter			DOKED HANDE	0007
	LUATION OF INTEGE	ER SEQUENCE IN GRU	UPS OF FIVE AS	PUKER HANDS.	0008
		HD A CODTRAN II I		E INTO NON-	0009
č	OVERIAPPING GR	OF A FORTRAN II I	TS WHICH IT TR	E THIO NON-	0010
č	HANDS. THE HAN	NDS ARE EVALUATED	AND A TABULATE	ON OF THE	0012
C	NUMBER OF DIFF	ERENT TYPES OF HA	NDS IS PRODUCE	D. THE A	0013
C	PRICRI PRUBABI	LITIES OF DIFFERE	NT HAND TYPES	ARE KNOWN FOR	0014
C	THE CASE OF IN	DEPENDENT EQUALLY	LIKELY DIGITS	FROM ZERO TO	0015
C	NINE. HENCE A	POKER COUNT IS US	EFUL IN DETERM	INING THE	0016
C	INDEPENDENCE C	OF A SEQUENCE. THE	A PRIORI PROB	ABILITIES	0017
	ARE GIVEN BELL	JW AND ARE EXACT.	THE DECIMALS T	ERMINATE AT	0018
			2052		0019
:			• 2992 . 5040		0020
,	2 PATR		.1080		0021
	3 OF A KIN	ID	.0720		0023
	FULL HOUSE		.0090		0024
	STRAIGHT		.0072		0025
	4 CF A KIN	ID	.0045		0026
	5 OF A KIN	ID	.0001		0027
					0028
LANGUAGE	- FORTRAN II SUB	ROUTINE			0029
EQUIPMENT	- 709 UR 7090 (M	AIN FRAME ONLY)			0030
STURAGE	- 219 REGISTERS				0031
. 3PEED . ANTHOR	- S.W. SIMPSON				0033
	Jere Jim Jun				0034
	USAG	E			0035
					0036
C TRANSFER V	VECTOR CONTAINS R	OUTINES - FRQCT1			0037
AND	FORTRAN SYSTEM R	OUTINES - NONE			0038
					0039
, FURIRAN US	SAUE	LOT TANGA			0040
CALL	PURCILITAINHANDSI	ICT, IANS)			0041
INPUTS					0042
					0044
IX(I)	I=1:5+NHAND	S IS THE DIGIT SEC	QUENCE		0045
	ZERO LESS THA	N OR = IX LESS TH	AN DR = $9$		0046
					0047
NHANDS	IS THE NUMBER	OF HANDS TO BE FO	DRMED FROM THE	IX SEQUENCE.	0048
	NHANDS MUST B	E GREATER THAN ZEI	RO.		0049
OUTDUTS					0050
CUIPUIS					0051
10.1(1)	I=18 IS TH	E COUNT OF TYPES (	F HANDS FOUND	WHERE	0052
10	ICT(1) = NO.	OF HANDS OF NO VAL	LUE		0054
	ICT(2) = NO.	OF HANDS WITH 1 PA	AIR		0055
	ICT(3) = NO.	OF HANDS WITH 2 PA	AIRS		0056
	$ICT(4) = NO_{\bullet}$	OF HANDS WITH 3 OF	= A KIND		0057
	ICT(5) = NO.	OF STRAIGHTS			0058
,	ICT(6) = NO.	OF FULL HOUSES			0059
	$I(I(7) = NU_{\bullet}$	OF HANDS WITH 4 UI	- A KIND		0060
	TOTIO) = NU.	UF MANUS WITH 5 UP	- A KINU .TV(3).TV(4) TV	((5))	0061
		$ = 1 = (1 \times (1) + 1 \times (2)) $ $ = (1 \times (4) + 1 \times (2)) $	, 1¥(8), 1¥(0) - 1)	(10))	0062
		FTC.	*************		0064
	AND SUM OF TO	T(I) = NHANDS			0065
					0066
IANS	=0 NCRMAL				0067
	=1 ILLEGAL H	ANDS			0068
	=3 ERROR RET	URN FROM FRQCT1			0069
					0070
EXAMPLES					0071
	NU AND 2				0072
. I. INPUTS	- NHANUS $=$ 0	N INTO COOUNC OF			0073
, IX(I)	1=1+280 BROKE	N INTO GROUPS OF F	-IVE FUR EASY (	HECKING.	0074

*****************

<b>6</b> y	-	4
1	4	
		٨.

**************************************	****		PRC	IGRAM LI	ISTINGS		**	88888888888888 DOVCT1	*******	****
* PUNCTI	*****							PUKCII		*
(PAGE 2)									(PAGE	2)
										.,
C	40123	43125	23456	52643	76543	87654	95867		0075	
С	97654	02345	98762	14327	02678	86430	63142		0076	
C	01230	18741	32024	99413	08628	54531	07499		0077	
C	01220	42246	45999	94977	82238	77335	55060		0078	
C	10020	23334	06033	88381	74877	06006	15113		0079	
С	11222	21212	80808	94449	55454	61116	06006		0080	
C	90000	66866	44644	88883	21111	00700	09999		0081	
C	99999	00000	11111	22222	66666	33333	36410		0082	
C CUTPUTS -	ICT(1.	(8	0,0,0,0	,0,0,0,	O IAN	S=1			0083	
C									0084	
C 2. INPUTS -	SAME A	S EXAMP	LE 1. E	XCEPT N	HANDS=5	6			0085	
C CUTPUTS -	ICT(1.	••8) =	8,7,7,6	,7,8,7,	6 IANS	=0			0086	
C									0087	
DIMENSIO	N IX(2	),ICT(2	),IC1(1	0),IC2(	6)				0088	
C CLEAR THE OU	TPUT VE	CTOR.	THEN WO	IRK THRU	I DATA H	AND BY	HAND.		0089	
IANS=1			-						0090	
IF (NHAND)	51 9999	,9999,1	0						0091	
IC IANS=0									0092	
	1,8								0093	
		NDC							0094	
	1-1+NRA D ETDCT	MAKE A	EDENUE				TC /VAI	1155 0-01	0095	
C NOTE DESTRICT		VIOIATI		AUCHT B	V EDOCT	1 0101	IS IVAL	023 0-91.	0098	
	+5+1	TOLATI	0. 15 0	AUGINI U	I INGCI	1.			0097	
		11.5.0.	9.101.1	ANSI					0090	
IE (IANS)	9991	21,9991	////////						0100	
C AND THEN MAKE		OUENCY		F THE E	REQUENC			S 0 TO 51	0101	
21 CALL FRO	CTICICI	.10.0.5	.IC2.IA	NS)			114202		0102	
IF (IANS)	9991.	22,9991	,						0103	
C THE HAND VAL	UE, IVA	L (1 TO	8), IS	DETERM	INABLE	FROM IC	2(1).IC	2(3).	0104	
C IC2(2) EXCEP	T FOR S	TRAIGHT	s.						0105	
22 IVAL=1									0106	
IF (1C2()	1)-6)	60,92,5	0						0107	
50 IF (IC2(	3)-1)	55,96,9	3						0108	
55 IF (IC2()	2)-1)	98,97,9	4						0109	
C CHECK FOR PO:	SSIBLE	STRAIGH	T WHEN	ALL DIG	ITS ARE	DIFFER	ENT.		0110	
60 I=0									0111	
62 I=I+1									0112	
IF (ICI()	1)) 70	,62,70	_						0113	
70 IF (IC1(	1+1))	71,91,7	1						0114	
	1+2))	12,91,1	2						0115	
	1+31)	/3,91,/	5						0116	
	1+4))	95,91,9	5						0117	
	VALUE.								0110	
07 TVAL-IVAL									0120	
96 TVAL-IVAL	L T 1								0120	
95 IVAL-IVAL	1+1								0122	
94 IVAL=IVAL	L+1								0123	
93 IVAL=IVA	L+1								0124	
92 IVAL=IVAL	L+1								0125	
91 ICT(IVAL)	)=1CT(I)	VAL)+1							0126	
90 CONTINUE									0127	
9999 RETURN									0128	
9991 IANS=3									0129	
GC+TC 999	99								0130	
END									0131	

```
272
```

	h 1.	
POLYDV	**** PROGRAM LISTINGS *	• POLYDV •
*****************	****	******************************
<ul> <li>POLYDV (S</li> <li>LABEL</li> </ul>	UBRCUTINE) 2/18/63 LAST (	CARD IN DECK IS NO. 0100 0001
SUBROUTI	NE PCLYDV (N,DVS,M,DVD,L,Q)	0002
C		0004
C	ABSTRACT	0005
Č TITLE - POLYD	v	0007
C PERFORM	LCNG DIVISION OF TWO POLYNOMIALS	6008 0008
ւ Հ P	OLYDV COMPUTES THE FIRST L COEFFICIENTS (	OF THE QUOTIENT 0010
C C	F TWO POLYNOMIALS. THE POLYNOMIALS ARE SP	PECIFIED BY THEIR 0011
	DEFFICIENTS.SOME OF THE LAST COEFFICIENTS	MAY TURN UUT TU 0012
C L	ESS THAN L. THE REMAINDER IS NOT COMPUTER	AN EXPLAN- 0014
C A	TICN AS TO HOW THE SYMBOLIC DECK MAY BE A	ALTERED SO THAT 0015
C I	HE REMAINDER WILL BE COMPUTED IS GIVEN IN ECK. THE COMPUTATION IS	0016 0017
C		0018
C	2 3 (L-1)	0019
C Q	{1}+Q{2}*X+Q{3}*X +Q{4}*X ++Q{L}*X	+REMAINDER = 0020 0021
c	(M+1)	N-1 0022
C	=DVD(1)+DVD(2)*X+DVD(M)*X /DVS(1	L)+DVS(N)=X 0023
เ (. พ	HERE X IS UNSPECIFIED SINCE ALL OPERATION	IS ARE ON THE 0025
C	COEFFICIENTS,	0026
C	Q IS THE QUOTIENT VECTOR,	0027
L C	DVS IS THE DIVISOR VECTOR.	0029
c		0030
C LANGUAGE - F	ORTRAN II SUBROUTINE	0031
C STORAGE - 1	35 REGISTERS	0033
C SPEED -		C034
C AUTHOR - J	• CLAERPOUT	0035
C	USAGE	C037
C		0038
C TRANSFER VECT	TRAN SYSTEM ROUTINES - NONE	0040
C		0041
C FORTRAN USAGE		0042
		0044
C INPUTS		0045
C	NUMBER OF CREETCIENTS IN DIVISOR DOLYNOI	0046
C N	MUST BE GRTHN=1.	0048
C		0049
C DVS(I)	I=I,N CUEFFICIENTS OF DIVISOR POLYNOP DVS(1) MUST BE NON 7FR0	11AL 0050 0051
c	CENTER FOR DE NON EENG	0052
C M	NUMBER OF COEFFICIENTS IN DIVIDEND POLYNO	DMIAL 0053
C C	MUSI BE GRIMN=1.	0055
Č DVD(I)	I=1, M COEFFICIENTS OF DIVIDEND POLYNO	DMIAL 0056
	NUMBER DE COFFETCIENTS IN OUDTIENT POLYN	0057 MIAL 0058
C	MUST BE GRTHN=1.	0059
C		0060
		0062
č Q(I)	I=1,L COEFFICIENTS IN QUOTIENT POLYN	DMIAL 0063
C C C C C C C C C C C C C C C C C C C		0064
C EXAMPLES		0065
C 1. INPUTS -	M=1 DVD(1)=1.	0067
C	N=2 DVS(12)=1.,5	0068
	L=4 O(1,,4)=1,,5,,25,,125	0069
C 001F013 -	*******	0071
C 2. INPUTS -	M=3 , DVD(13)= 1.,2.,1.	0072
C	N=2 , UVS(12)= 1.,1. 1=10	0074
<b>L</b>		

•	*se	1
L	é	<i>د</i> ،

*******	PROGRAM LISTINGS	**************
POL	YDV * * PC	ILYDV +
********	***************************************	
(PAGE 2		(PAGE 2)
C	CUTPUTS - Q(110)=1.,1.,0.,0.,0.,0.,0.,0.,0.,0.,0.	0075
С		0076
С	THIS COULD BE REPROGRAMMED TO ALLOW EQUIVALENCE(DVD,Q), NOT A	LLOW 0077
	DIMENSION DVS(10), DVD(10), Q(10)	0078
	NM = N-1	0079
	5 DC 8 I=1,L	0080
8	Q(I) = 0.	0081
С	MOVE THE USED PORTION OF DVD TO Q	0082
	MML=XMINOF(M,L)	0083
	DC 10 I=1,MML	0084
10	Q(I) = DVD(I)	0085
	DO 50 I = 1,L	0086
	Q(I) = Q  (I)/DVS(1)	0087
	IF (I-L)30,20,30	0088
20	RETURN	0089
30	K = I	0090
С	IF THE FOLLOWING CARD IS CHANGED TO (ISUB=NM) THEN THE REMAIND	DER 0091
С	WILL BE COMPUTED AND STORED AT Q(L+1) TO Q(L+N).	0092
	ISUB = XMINOF(NM,L-I)	0093
	DO 40 J = 1, ISUB	0094
	K = K+1	0095
	Q(K) = Q(K) - Q(I) * DVS(J+1)	0096
40	CONTINUE	0097
50	CONTINUE	0098
С	PROGRAM NEVER GETS HERE	0099
	END	0100

•	y May	4
6	í	4
• •		~

***************	PROGRA	M LISTINGS		***********	**********
PRBFIT +				* PRBFIT	*
**********				**********	*********
PRBFIT (SUBRCU	ITINE)	2/15/63	LAST CARD	IN DECK IS NO.	0186
+ LABEL					0001
CPRBFIT					0002
SUBROUTINE PRB	FIT(NOR,XMOM,NOUT,	X,F,PHI,IA	NS)		0003
	- ARCTRACT				0004
	ADSTRACT				0005
C TITLE - PRBEIT					0007
C GENERATE PRO	BABILITY DISTRIBUT	TON WITH SE	PECIFIED MOM	ENTS	0008
C		104 1117 5			0009
C PRBFIT	GENERATES A ZERO-	MEAN DISTRI	BUTION FUNCT	TION, F(X),	0010
C WHOSE	HIGHER MOMENTS (2N	D, 3RD,, M	NTH WHERE N	IS LESS	0011
C THAN G	R EQUAL 6) ASSUME	GIVEN VALUE	ES. F(X) HAS	S THE FORM	0012
C OF AN	CRMAL DISTRIBUTION	TIMES A PO	DLYNOMIAL IN	X, AND	0013
C CONSEQ	UENTLY IS USEFUL F	OR APPROXIM	ATING EMPIR	ICAL	0014
C DISTRI	BUTIONS WHICH ARE	ROUGHLY NOP	RMAL IN APPE	ARANCE,	0015
C BUT FU	R WHICH THE NURMAL	APPROXIMAI	ION IS INAD	EQUATE.	0016
	ULD BE NUIED THAT	THE PROCEDU	JRE CAN YIELI	DEVIATION	0017
	FUR THE DISTRIBUT	LUN IN CASE	S WREKE INE	DEVIATION	0010
	LANALIT IS SEVEKE	• DURE USEN N		IN	0020
C CRAMER	. H 1951. MATHEM	ATICAL METH	ODS OF STATE	ISTICS.	0021
C PRINCE	TON UNIVERSITY PRF	SS. PRINCFI	ON, PAGE 22	2.	0022
C					0023
C THE FC	RM OF THE CALCULAT	ION IS			0024
С					0025
C	C(3)	DD	D(PHI(U))		0026
C F(X	) = PHI(U) +	* (**-	)		0027
C	1*2*3	DU DU C	0		0028
l	<i>c(4)</i>				0029
					0030
c c	1+2+3+4 DII	ווח ווח ווח			0032
č		00 00 00			0033
c	C(NDR)	D D(	PHI(U))		0034
С	+ *	(**	)		0035
C	1#2##NOR	DU DU			0036
C					0037
C EVALUA	TED FOR A GIVEN SE	T OF X VALU	JES		0038
C NHCOS	X(1),X(2),,X(NU	017			0039
C MARENE	n				0041
C C	DENOTES DI	FFFRENTIATI	ON WITH RESE	PECT TO U	0042
č	DU				0043
c					0044
С	U = X/SIG				0045
C					0046
С Р	HI(U) = EXP(5*U*)	U)/(SQUARE	ROOT(2*PI))		0047
C	(I.E. NORM	AL CURVE)			0048
C C					0049
с с	ri = 3.14159265				0050
C C	к хили	(1)			0052
č	C(K) = SUM (	* A(K-1	.) )		0053
Č	L=0 SI	G	-		0054
С					0055
С А	(K,L) = COEFFICIEN	T OF LTH PO	WER OF X IN	THE KTH	0056
C	HERMITE PO	LYNOMIAL (X	()		0057
C	04/11 - 1 TH		Ŧ		0058
L XM	LP(L) = LIH PRUBAB	ILIIY MUMEN	11 100 1		0059
	LINPUT PAR.	AMETER VELI	UKI		0061
	SIG = SUHAPE POO	T (XMOM(2))			0062
č	JIG - JUGARE RUU J.F. STAND	ARD DEVIATI	ON		0063
č					0064
C LANGUAGE - FORTRA	N II SUBROUTINE				0065
C EQUIPMENT - 709. 7	090 (MAIN FRAME ON	LY)			0066
C STORAGE - 366 RE	GISTERS				0067
C SPEED -					0000
C AUTHOR - R.J. G	REENFIELD, JAN 19	63			0070
C					0071
C	USAGE				0072
C C					0073
C TRANSFER VECTOR CC	NTATHE DOUTTNES -	NONE			0074

```
275
```

	PROGRAM LISTINGS	**************************************
* PKDFII	*****	* FRUIT *
(PAGE 2)		(PAGE 2)
C AND FO	RTRAN SYSTEM ROUTINES - SORT, EXP(2, EXP	0075
c		0076
C FORTRAN USAC	E	0077
C CALL PRBF	IT(NOR,XMOM,NOUT,X,F,PHI,IANS)	0078
C		0079
C INPUTS		0080
	TO THE OPPER OF THE HICHEST OPPER NOMENT CIVE	0082
C NUK	MUST PF GRTHN= 2 AND ISTHN = 6	0083
č		0084
C XMOM(I)	I=1NOR CONTAINS THE MOMENTS WHICH WILL BE	USED TO 0085
с	DEVELOP THE EXPANSION. THE FIRST MOMENT, X	10M(1), 0086
C	IS NOT ACTUALLY USED, BUT IS ASSUMED TO BE	=0. 0087
L C	(1.E. ZERU MEAN ASSUMPTION).	0088
	IS THE NUMBER OF X VALUES AT WHICH THE EXPANS	
c Keel	EVALUATED	6091
c		0092
C X(I)	I=1NOUT IS THE LIST OF VALUES AT WHICH THE	EXPANSION 0093
C	WILL BE EVALUATED	0094
C		0095
	USED FUR STURAGE	0096
C	POST DE DIMENSIONED AT LEAST AS LARGE AS NOUT	0098
ζ ουτρυτς		0099
C		0100
C F(I)	I=1NOUT ARE THE VALUES OF THE EXPANSION FO	DR THE 0101
C	NOUT VALUES OF X, I.E. $F(I) = F(X(I))$ AS DEF	INED 0102
C	IN ABSTRACT	0103
		0104
C IANS	= 1 TILEGAL NOR	0106
č		0107
С		0108
C EXAMPLES		0109
C		0110
C 1. (NURMAL A	$\frac{PPRUXIMATIUN}{NOR} = 2 \qquad \frac{NO(1)}{2} = 0 \qquad 4 \qquad \frac{NO(1)}{2} = 0 \qquad \frac{NO(1)}{2} = 0$	
с тиротз - г	X(1,,4) = 058 = -8	0113
C CUTPUTS -	F(14)= .39894,.017528,.36828,.36828 IAM	IS= 0 0114
С		0115
C 2. INPUTS	SAME AS IN EXAMPLE 1. EXCEPT NOR= 3	0116
C CUTPUTS -	F(14) = .39894,.041265,.29854,.43800 IAM	S = 0 0117
	SAME AS IN FRAMPLE 1. FROEPT NOR= 4	0110
C CUTPUTS -	F(14) = .2805103335012232836272 IAN	IS= 0 0120
C		0121
C 4. INPUTS -	SAME AS EXAMPLE 1. EXCEPT NOR= 0	0122
C CUTPUTS -	ERROR IANS= 1	0123
	SAME AS IN EXAMPLE 1 EXCEPT NOR-10	0124
C CUTPUTS -	ERROR IANS = 1	0125
C		0127
DIMENSIC	N A(7,7),C(7),PHI(100),XMOM(7),X(100),XMUD(7)	0128
DIMENSIC	N_XMU(7),F(2)	0129
		0130
	FR=21 - 31 - 31 - 32	0132
31 IANS=1		0133
RETURN		0134
32 IF(NORDE	R-7) 33,33,31	0135
33 IANS=0		0136
XMU(1)=	1.	0138
	2 • NCR	0139
50 XMU(K+1)	= XMCM(K)	0140
C SET UP A TA	BLE	0141
DO 1 J=	1,7	0142
$1 \qquad A(J,J) = 1$	•	0143
A(3,1)=-	1.	0144
A(4,2)=-	3.	0145 0146
A1211=3 A(5-3)=-	•	0147
A(6,2)=1	5.	0148
A(6,4)=-	10.	0149

*****************	PROGRAM LISTINGS	*********************
<ul> <li>PRBFIT</li> </ul>		+ PROFIT +
****************		***************
(PAGE 3)		(PAGE 3)
A(7,1)=-15.		0150
A(7,3)=45.		0151
A(7,5)=-15.		0152
C ALL SUBSCRIPTS ADVANCE	D BY 1	0153
C X(I) INPUT NORMALIZED	BY CALLING PROG (ZERO MEAN)	0154
C XMU ARE NOT NORMALIZED	BUT ARE FOR ZERO MEAN	0155
C SEC TO COMP C		0156
SIG= SQRTF(XMU(3))		0157
DO 51 I=1,NCUT		0158
51 X(I)= X(I)/SIG		0159
FACT=1.		0160
DC 5 K=1,NORDER		0161
C(K)=0.		0162
IF(K-1) 41,41,40		0163
40 FACT=FACT+FLOATF(K-	1)	0164
41 DO 4 L=1,K		0165
4 C(K)=C(K)+(XMU(L)/(	SIG==(L-1)))=A(K,L)	0166
5 C(K)=C(K)/FACT		0167
C SET UP TABLE OF PHI		0168
DO 6 I=1,NCUT		0169
6 PHI(I)=EXPF(-X(I)*X	(1)+.5)+.3989423	0170
C COMPUTE F(I) FOR NORMA	L DISTRIBUTION	0171
DG 7 I=1,NGUT		0172
7 F(I)=C(1)*PHI(I)		0173
IF(NORDER-4) 99,8,	8	0174
C COMPUTES OTHER ORDER F		0175
8 DO 19 K=4,NORDER		0176
DO 12 I=1.NOUT		0177
HER = A(K+1)		0178
DO 10 L=2+K		0179
10 HER=HER+A(K,L)+X(I)	**(L-1)	0180
12 F(I)=F(I)+PHI(I)+C(	K)#HER	0181
19 CONTINUE		0182
99 DC 98 I=1,NCUT		0183
98 $X(I) = X(I) + SIG$		0184
RETURN		0185
END		0186

```
277
```

************	*****	PROGRAM LIS	STINGS		**********	**********
PRUB2	*				PROB2	**********
* PROB2 (S	UBROUT INE)	2/1	18/63	LAST CARD I	N DECK IS NO.	0174
+ LABEL						0001
CPROB2	NC 00000 / TV / V					0002
SUBRUUIT	NE PRUBZ (IX,LX,	N, IP, P, IXHI, I	LANS J			0003
C C		T				0004
c						0005
C TITLE - PROB	2					0000
C SECOND	PRCBABILITY DENS	SITY OF INTEG	GER SERI	IES AT GIVEN	LAG.	0008
С						0009
С	PROB2 COMPUTES TH	HE SECOND PRO	BABILI	TY DENSITY F	OR AN	0010
C	INTEGER SERIES BY	Y A FREQUENCY	COUNT	METHOD. THE	SECOND	0011
C	PROBABILITY DENSI	ITY, P(M,L),	OF A SE	ERIES IX(K)	IS THE	0012
C C	PRCBABILITY THAT	X(K) = M ANE	) X(K+N)	)=L, WHERE N	IS THE	0013
Ĺ	LAG. PRUBZ CUMPUI	IES THIS QUAN		JR A GIVEN N	IN THE	0014
c c	DE TY(K) -1 AND 1	JSI DE SUALEU Fue utruest n	/ SUCH 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MUST DE	0015
č	LESS THAN OR FOLK	N TO THE DIM	ALUE IS	DE THE D(I.	NUST DE	0018
č	THE PROGRAM BELOW		P(I.J)	TO P(25.25)	•	0018
c					•	0019
C	PROB2 COUNTS INTO	AN INTEGER	MATRIX,	, IP(I,J), T	HE NUMBER	0020
С	OF TIMES IX(K)=M	AND IX(K+N)=	L OVER	ALL INDEX P	AIRS	0021
C	K, K+N SUCH THAT	F BOTH K AND	K+N LIE	E IN THE INC	LUSIVE	0022
С	RANGE 1 TO LX WHE	ERE LX IS THE	SERIES	S LENGTH. N	MAY	0023
С	BE NEGATIVE.					0024
C		_	_			0025
C	THE INTEGER FREQU	JENCY COUNT M	MATRIX 1	IS FLOATED I	NTO P(I,J)	0026
C	AND NORMALIZED SU	JCH THAT SUM	OVER I	AND J OF P(	I,J) IS 1.	0027
L	THIS IS DUNE BY L	DIVIDING EACH	I ELEMEN	NI BY R, WHE	KE	0028
	R=LX-XABSE(N). P(	(1,J) ANU IP(	LJJJ MA	AY BE EQUIVA	LENI IF THE	0029
C I	CTNCE LY AND N AD	LS NUT NEEDED	)• (IHI3	S CAN BE REC	UNSTRUCTED	0030
C C	SINCE EX AND N AP					0032
C LANGUAGE -	FORTRAN II SUBROU	ITINE				0033
C EQUIPMENT -	709,7090 (MAIN FR	RAME ONLY)				0034
C STORAGE -	229 DECIMAL REGIS	STERS				0035
C SPEED -						0036
C AUTHOR -	J.N. GALBRAITH					0037
C						0038
l	USAGE					0039
C TRANSEED VEC		THES - NONE				0040
	DTDAN SVSTEM ROUT	INES - NUME				0041
C AND I O	KIRAN SISILA KOOI	THES - NUME				0042
C FORTRAN USAG	F					0044
C CALL PRO	B2 (IX,LX,N,IP,P,	IXHI, IANS)				0045
С						0046
C INPUTS						0047
C						0048
C IX(I)	I=1,,LX INTEG	GER SERIES. I	X(I) GR	THN O, LSTH	N OR = IXHI	0049
C IV		00 14 000100		1 7500		0050
	INTEGER. LENGTH	UP IX SERIES	GRIHN	N ZEKU		0051
C N	INTEGER, IAC OP			IT. CAN BE .	OR 0	0052
C "	XABS(N) ISTHN DR	= IXHI	51 0000	TT GAIL OL T	, , on ve	0054
č	LINGS IN COMMENT					0055
C IP(I,J)	I=1,,IXHI,J=1.	,IXHI SPA	CE FOR	COMPUTATION	0 <b>F</b>	0056
C	FREQUENCY RATIOS	. MAY BE EQU	IVALENT	TO P(I,J).	WILL	0057
С	CONTAIN FREQUENC	Y RATIOS WHE	N RETUR	IN IS MADE I	FNO	0058
C	EQUIVALENCE HAS	BEEN MADE.				0059
C			Nee		C11115 C	0060
C IXHI	INTEGER. LARGEST	VALUE IX TA	KES ON.	PROGRAM AS	SUMES	0061
L C	IXHI LSTHN OR =	25. MUST BE	LSTHN O	IN EQUAL DIM	ENSION OF	0062
с С	PILIJI MAIKIX.					0003
						0004
						0005
	1=1		-	V DENCITY E		0067
C F(1)J)	NORMAL TZED SUCH	THAT SUM OV	FR T AN	ID J DE PIT-		0068
č	NUMERCLE JUCK	JUN UV				0069
C TANS	INTEGER. FRROP	INDICATOR				0070
C	=0 NORMAL					0071
С	=-1 ILLEGAL IX V	ALUE. SOME I	X LSTHN	I 1 OR GRTHN	IXHI.	0072
C	=-2 ILLEGAL LX.	LX LSTHN 1				0073
С	=-3 ILLEGAL N.	XABSF(N) GRT	HN LX.			0074

*********** PROGRAM LISTINGS ****** PROB2 ÷ PR082 ÷ ********* ****** (PAGE 2) (PAGE 2) =-6 ILLEGAL IXHI. IXHI GRTHN 26 OR LSTHN 1. 0075 С =3 JCB DONE BUT N=0 AND ONLY CONTRIBUTIONS TO P(I, J) ARE С 0076 С ON THE DIAGONAL. 0077 0078 С C EXAMPLES 0079 0080 C 1. INPUTS - IX(I)=0, LX=5, N=1, IXHI=5 CUTPUTS - IP(I,J)=0, P(I,J)=0, IANS=-1 С 0081 0082 С 0083 С 0084 2. INPUTS - SAME AS EXAMPLE 1 EXCEPT IX(I)=1,2,3,4,6 C CUTPUTS - SAME AS EXAMPLE 1 0085 C 0086 С 3, INPUTS - SAME AS EXAMPLE 2 EXCEPT LX=0 0087 C. CUTPUTS - IANS=-2 0088 С 0089 С С 4. INPUTS - SAME AS EXAMPLE 2 EXCEPT IXHI=0 0090 CUTPUTS - IANS=-6 0091 С С 0092 С 5. INPUTS - SAME AS EXAMPLE 4 EXCEPT IXHI=26 0093 CUTPUTS - IANS=-6 0094 С 0095 С 0096 6. INPUTS - SAME AS EXAMPLE 2 EXCEPT IX(5)=5, N=-6 С CUTPUTS - IANS=-3 0097 C. 0098 C. 7. INPUTS - IX(I)=1,1,2,2,3,3,4,4,5,5,1,2,2,3,4,5,5,1,1,1,1,1,1,1 0099 С 0100 С IXHI=5, LX=21, N=1 CUTPUTS - IANS=0 0101 С • 2 .0 .0 С 4 2 0 ٥ 0 • 1 • 0 0102 С 0 2 2 0 0 . C •1 • 1 .0 .0 0103 С IP(I,J) =0 0 1 2 0 P(I,J) = .0•0 •05 •1 • 0 0104 •0 .05 С 0 0 0 1 2 •0 •0 • 1 0105 0 0 0 2 • 1 .0 .0 .0 .1 0106 С 2 0107 С 8. INPUTS - SAME AS EXAMPLE 7 EXCEPT N=-1 CUTPUTS - IANS=0 0108 С 0109 С 0110 С • 0 0111 С 4 С 0 0 2 • 2 .0 •0 .1 •1 0 0 •1 •0 .0 •0 0112 2 0 C 2 .05 P(I,J) = .0•0 • 0 0113 IP(I,J) =2 0 0 •1 0 С 1 .0 .0 • 1 .05 .0 0114 0 0 2 1 ٥ С 0115 .0 .0 .0 .1 .1 С С 0 0 2 2 0116 С 0117 9. INPUTS - SAME AS EXAMPLE 7 EXCEPT LX=24, N=3 С CUTPUTS - IANS=0 0118 С .0 .0 0119 С 3 1 2 0 0 .15 .05 .1 .05 С 0 0 2 1 .0 .0 •1 .05 0120 1 С IP(I,J) =0 0 0 1 2 P(I,J) = .0• 0 •0 .05 •1 0121 С 2 0 0 0 1 .1 • 0 •0 •0 .05 0122 2 0 0 0 • 1 • 0 .0 .0 0123 С 2 .1 0124 С C10. INPUTS - SAME AS EXAMPLE 7 EXCEPT LX=20, N=0 0125 OUTPUTS - IANS=3 0126 С 0127 С .0 •0 0128 С 0 0 0 0 • 3 .0 .0 6 Ó .0 •2 .0 •0 •0 0129 0 4 0 0 С .15 .0 •0 .0 0130 IP(I,J)=00 0 0 P(I,J) = .0С 3 0 0 0 •0 •0 • 0 .15 • 0 0131 С 0 3 0132 0 0 0 4 •0 •0 .0 .0 .2 С 0 С 0133 DIMENSION IX(1000), IP(25,25), P(25,25) 0134 0135 С CHECK LX IANS=-2 0136 0137 IF(LX) 9999,9999,2 0138 2 IANS=-6 0139 С CHECK IXHI 0140 IF(IXHI) 9999,9999,3 IF(IXHI-25) 4,4,9999 0141 3 CHECK IX SERIES 0142 С 0143 4 IANS=-1 0144 DO 1 I=1,LX IF(IX(I)) 9999,9999,11 0145 IF(IX(I)-IXHI) 1,1,9999 0146 11 0147 1 CONTINUE 0148

0149

.

IANS=-3

CHECK N

С

*********	***********	PROGRAM LISTINGS	***********	*********
<ul> <li>PROB2</li> </ul>	*		PROB2	•
*********	***********		**********	*********
(PAGE 3)				(PAGE 3)
	IF(XABSF(N)-LX) 41,9	999,9999		0150
41	IANS=0			0151
С	CLEAR IP(I,J)			0152
	DO 5 I=1,25			0153
	DO 5 J=1,25			0154
5	IP(I,J)=0			0155
	IF(N) 6,7,8			0156
6	LFRST=-N+1			0157
	LLAST=LX			0158
	GO TO 9			0159
7	IANS=3			0160
8	LFRST=1			0161
	LLAST=LX-N			0162
9	DO 10 I=LFRST.LLAST			0163
	J=IX(I)			0164
	KK=I+N			0165
	K = I X (KK)			0166
10	$IP(J \cdot K) = IP(J \cdot K) + 1$			0167
-	L=LLAST-LFRST+1			0168
	TOTAL=L			0169
	00 15 I=1.IXHI			0170
	00 15 J=1.IXHI			0171
15	P(I.J)=FLOATE(IP(I.J	))/TOTAL		0172
9999	RETURN			0173
	END			0174

#### BIBLIOGRAPHY

Blackman, R. B., and Tukey, J. W., 1958, The measurement of power spectra: Dover Publications Inc., New York

Bogert, B. P., 1961, The transfer function of a short-period vertical seismograph: Bull. Seis. Soc. Am., 51:503-513.

Bullen, K. E., 1953, An Introduction to the Theory of Seismology: Cambridge University Press, Cambridge.

Claerbout, J. F., 1963, Digital Filters and Applications to Seismic Detection and Discrimination: S.M. Thesis, Mass. Inst. of Tech.

Cramer, H., 1946, Mathematical Methods of Statistics: Princeton Univ. Press.

Davenport, W. B., Jr., and Root, W. L., 1958, An Introduction to the Theory of Random Signals and Noise: McGraw-Hill Book Company, Inc., New York.

DeVorkin, D., 1963, Representation Schemes for Investigating Non-Linear Processes: Ph.D. Thesis, Mass. Inst. of Tech.

Doob, J. L., 1953, Stochastic Processes: John Wiley and Sons, New York.

Geotechnical Corporation, 1961, Personal communication.

Haq, K. E., 1954, The nature and origin of microseisms: Sc.D. Thesis, Mass. Inst. of Tech.

Kenyon, K., 1961, Microseisms and Water Waves: S.M. Thesis, Mass. Inst. of Tech.

Kolmogorov, A., 1939, Sur l'interpolation et extrapolation des suites stationnaires: C. R. Acad. Sci., V. 208, Paris, 2043-2045.

Lamb, H., 1932, Hydrodynamics: Dover Publications, New York.

Lanczos, C., 1956, Applied Analysis: Prentice Hall, Inc., New Jersey.

Lee, Y. W., 1960, Statistical Theory of Communication: John Wiley and Sons, Inc., New York.

Levinson, N., 1949, The Wiener RMS (Root Mean Square) Error Criterion in Filter Design and Prediction: Appendix B of Wiener (1949). Longuet-Higgins, M. S., 1950, A theory of the origin of microseisms: Phil. Trans. Roy. Soc. London (A).

Longuet-Higgins, M. S., and Ursell, F., Sea waves and microseisms: Nature.

Ramirez, J. E., 1940, An experimental investigation of the nature and origin of microseisms at St. Louis, Missouri: Bull. Seis. Soc. Am.

Rand Corporation, 1955, A million random digits with 100,000 normal deviates: Glencoe, Ill., Free Press.

Robinson, E. A., 1954, Predictive Decomposition of Time Series with Applications to Seismic Exploration: Ph.D. Thesis, Mass. Inst. of Tech.

Robinson, E. A., 1962, Random Wavelets and Cybernetic Systems: No. Nine of Griffin's Statistical Momographs and Courses, Charles Griffin and Company Limited, London.

Romney, C., 1959, Amplitudes of seismic body waves from nuclear explosions. J. Geophys. Res. V. 64, 1489-1498.

Simpson, S. M., Robinson, E. A., Claerbout, J. F., Galbraith, J. N., Clark, J., 1961a, Initial studies on underground nuclear detection with seismic data prepared by a novel digitization system; Annual Report No. 1 of Contract AF 19(604)7378 at M.I.T., prepared for Geophysics Research Directorate, Air Force Cambridge Research Laboratory, Office of Aerospace Research, United States Air Force Bedford, Mass.

Simpson, S. M., Robinson, E. A., Claerbout, J. F., Galbraith, J. N., Ross, W. P., Clark, J., 1961b: Time series techniques applied to underground nuclear detection and further digitized seismic data: Scientific Report No. 2 of Contract AF 19(604)7378 continued as above.

Simpson, S. M., Robinson, E. A. Claerbout, J. F., Clark, J., Galbraith, J. N., Pan, C., Wiggins, R., 1962a, Continued numerical studies on underground nuclear detection and further digitized seismic data; Scientific Report No. 3 of Contract AF 19(604)7378 continued as above.

Simpson, S. M., Robinson, E. A., Claerbout, J. F., Clark, J., Galbraith, J. N., Greenfield, R. J., Wiggins, R. A., 1962b, Magnetic tape copies of M.I.T. Geophysics Program Set I, (Time Series Programs for the IBM 709, 7090); Scientific Report No. 4 of Contract AF 19(604)7378 continued as above.

Simpson, S. M., Jr., (Director M.I.T. Geophysical Analysis Group), 1955, Linear Operators and Seismic Noise: MIT GAG Report No. 9 Simpson, S. M., Jr., 1956, Properties, Origin and Treatment of Certain Types of Seismic Noise: MIT GAG Report No. 10a.

Stoker, J. J., 1957, Water Waves: Interscience Publishers, Inc., New York.

Vesiac Staff, 1962, Problems in Seismic Background Noise: VESIAC Advisory Report 4410-32-X, Acoustics and Seismics Laboratory, Institute of Science and Technology, The University of Michigan.

Wadsworth, G. P., and Bryan, J. G., 1960, Introduction to Probability and Random Variables: McGraw-Hill Book Company, Inc., New York

Wadsworth, G. P., Robinson, E. A., Bryan, J. G., and Hurley, P. M., 1953, Detection of Reflections on Seismic Records by Linear Operators: Geophysics, V. 18, No. 3, July 1953.

Whittle, P., 1963, Prediction and Regulation; (in press).

Wiener, N., 1949, Extrapolation, Interpolation, and Smoothing of Stationary Time Series: The Technology Press of the Mass. Inst. of Tech., and John Wiley and Sons, Inc., New York.

Wold, H., 1938, A study in the analysis of stationary time series: Uppsala. Almqvist and Wiksells. BIOGRAPHICAL NOTE

The author was born in Philadelphia, Pennsylvania on April 26, 1936. He attended the Germantown Friends School in Philadelphia from 1941 until his graduation in 1954. He entered the Massachusetts Institute of Technology in 1954 and obtained a Bachelor of Science degree in Physics in 1958. He entered the Graduate School at M.I.T. in the Geology and Geophysics Department in 1958 and was a research assistant under Professor W. F. Brace until 1960. He then held a tuition scholarship for a year and research assistantships for two years while working for Professor S. M. Simpson, Jr on this thesis. He was married in 1960 to the former Miss Joan Blumenstiel of Alliance, Ohio.