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ABSTRACT

Computational experiments have been performed on seismic data digitized
from the records obtained by the Alr Force during the Logan and Blanca
underground nuclear shots, by Dr. Bruce Bogert in New Jersey and by the
Wichita Mountain Selsmic Observatory.

The experiments indicate that microseismic noise of about .3 cps fre~
quency is associated with the oceans but the higher frequencies are not.
Attempts to identify definite wave types, such as Rayleigh and lLove waves,
and to follow wave packets from station to station failed, but the failure
illustrated the complexity of the microseisms and points out @he necessity
of a statistical study.

For the statistical studies the microseisms were considered to be
stochastic time series. It was found that the probability densitios of
the amplitudes were Gaussian and were not independent. Spectral analysis
showed the typical microseism spectrum to have a maximum at about .3 cps
and often other strong bands at 1.4 and 2 cps.

The microseism time series are approximately ssationary and can be
described as a woving average operation. Thus they can be generated by
a convolution of a minimum phase wavelet with a white light series. The
wavelet i1s found for typical data by factorization of the power spectrum
and the white light series is obtained by convolution of the inverse
minizum phase wavelet with the noise data. Testa on the white light



series indicate that its probability density is approximately Gaussian
and that it is approximately independent. Hence non-linear operators
or filters are not particularly useful in microseism studies.

Cross correlation and cross spectra between different components of
data at the same station, like components at different stations and
array data have been computed. It was not possible to identify indi-
vidual wave types or directions of travel with any degree of certainty.

Prediction studies of microseisms have been done to try to improve
the signal to noise ratio during the first motion interval. The mean
squared error technique and the spectrum factorization technique have
been used. The spectrum factorization is found to be superior because
long operators can be more readily obtained. However, one can predict
at best about 50% of the energy which is not sufficient to produce a
significant improvement in the signal to noise ratio. Indications are
that other prediction techniques will not give much better results.

Artificial microseisms generated by convolution of a typical microseism
wavelet with Gaussian white has been used in a computer simulation of a
detection system. The system is an energy detector which detects events
in microseismic noise. The system is studied in terms of false alarm
rate and failure to detect rate. Overall system effectiveness is given
in terms of false alarms per hour as function of signal to noise ratio
for a 95% probability of detection success. The system characteristics
are found to be essentially invariant when the inputs are band pass
filtered. The simple band pass filter can in some cases give signifi-
cant signal to noise ratio improvement.

Details of the statistical tests and computer programs are given
along with an approximate solution to a non-linear water wave problem
related to microseism generation. The solution, which uses DeVorkin's
representation scheme, is for arbitrary initial conditions and shows
that sum and difference frequencies of all the frequencies present
initially will be generated.

Thesis Supervisor: Stephen M. Simpson, Jr.
Title: Associate Professor of Geophysics
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INTRODUCTION

Need to Study Noise

The disarmament talks at Geneva and the need for a surveilance net-
work to detect and report the testing of nuclear devices, particularly
underground testing, have put new emphasis on the field of Seismology.
Government support in this area has made possible much research into
the nature of seismic disturbances and instrumentation for detecting
them. The present thesis was supported by the Advanced Research Projects
Agency under the Vela Uniform Project contract AF 19(604)7378. The con—
tract covers the digitization of the paper records from the Logan and
Blanca shots of the 1958 Hardtack series, investigation of ways to improve
the signal to noise ratio, particularly in the first motion interval, and

investigation of the properties of bomb and earthquake signals.

Definition of Microseisms

Essential to the problem of signal detection and signal to noise
ratio improvement is an understanding of the natures of both the signal
and the noise. This thesis will deal mainly with the properties of the
noise. A definition of what is meant by noise is necessary since in many
cases what is noise to one man is signal to another. 1In the context of
this thesis any ground motion not associated with definite bomb or earth-
quake signals, motion which is present at all times, will be considered
noise and will be called microseisms or microseismic noise.

The study of microseisms dates back about 100 years to the pendulum

measurements of an Italian monk, Bertelli (Haq, 1954). Only very



qualitative conclusions which generalized the data could be made, but
it was obvious from study of Bertelli and others that the surface of
the earth was in a state of oscillation. This "sea'" of elastic waves
came under the scrutiny of other observers who were interested in the
causes of the disturbances. Wiechert (1905) suggested that microseisms
were generated by the impact of surf on a steep coast. Gutenburg (1912)
noted a correlation of microseisms with 4 to 8 second periods with surf
and wind direction. Ramirez (1940) studied the physical properties of
microseismic waves, the velocity, direction of travel and particle
motion, with a tripartate or triangular arrangement of three component
instruments. He found that the properties of these waves were fairly

consistent with those of Rayleigh and Love waves.

Sources of Microseisms

Observers noted that the microseisms and sea waves seemed to be
connected, and, in some cases, the periods of the sea waves were twice
the period of the microseisms. However, the idea that sea waves produced
microseisms was hard to justify theoretically since pressure variations
due to travelling water waves die out exponentually with depth and are
nearly zero within a wave length. Miche (1944) showed that there is a
pressure fluctuation under a standing wave which is unattenuated with
depth (for incompressible fluids), and its frequency is twice that of
the sea wave. Longuet-Higgins (1950) realized that this was what was
needed to explain the observations. He also showed that the mechanism
could account for the energy of the observed microseisms. The presence

of an unattenuated double frequency variation is demonstrated by Longuet-



Higgins in a small parameter expansion approximation to the solution of
the non-linear equations for the pressure variations at the bottom of

a layer of water with a rigid lower boundary and a standing wave on the
top. Another method of approximation for this type of problem using a
representation scheme for the solution of non—linear equations worked
out by DeVorkin (1963) is given in Appendix A. It illustrates that the
sum and difference frequencies of all frequencies present initially are
expedted to develop.

The microseisms with periods from 4 to 12 seconds are generally attri-
buted to ocean waves and recourse to the theory of Longuet—-Higgins can
be made for their explanation although there is still controversy on
the matter. The data which has been used in this thesis was recorded
with a Benioff short period instrument so that only the shortest period
oceanic microseisms come through. Microseisms of higher frequency
than the oceanic band are usually attributed to wind and meteorological
factors or are thought to be cultural noise. Typical noise sources are
swaying trees and buildings, storms, city traffic, heavy machinery,
power plants, trains etc.

This brief allusion to the history of the study of microseisms does
not give a feeling for the enormous amount of work which has been done
in this area. (See Haq, 1954, for a fuller account and references.)

A great deal of the work has been concerned with microseism generation
mechanisms, surface wave propagation and particle motion, and studies
of the direction of propagations and their relation to storms. Nearly all

of these studies consider microseisms as a signal. This thesis for the most
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part considers microseisms as noise. The main object is to treat the
microseisms from a statistical point of view and try to describe them
so that something can be done about them rather than with them. To
this goal, the tools of statistical analysis have been brought forward
and applied with the aid of high speed digital computers.

We shall see that 4 few examples which treat the microseisms as sig-
nals will suffice to point out the nked for a more general description
of the noise. It is obvious that that time series analysis can be applied
to the study of microseisms, but stronger and more useful statements
can be made about the time series if it can be shown that they are
stationary or, better still, ergodic. We must therefore test the micro-
seisms to see if they fall into one or more of these special categories
of time series. Spectral analysis, probability studies and independence
tests are some of the techniques which aid in the classification of
microseisms.

The proper mathematicdl description of microseisms can also be the
key to the optimum prediction problem, and will permit the study of the
predictability of microseisms. We shall see that prediction can be
used in some cases to reduce the noise level and therefore, if a signal
is also present, improve the signal to noise ratio. The amount of im—
provement is of course dependent on the predictability of the noise.

A good mathematical model of microseismic noise will also permit us
to generate the noise artificially. This artificial noise is extremely
useful when long sections of continuous noise are required, and is therefore
necessary when we simulate by computer a system to detect events in micro-

seismic noise.
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Outline

The thesis is divided into four chapters. The first deals with the
basic statistics of the data on which the present studies are based.
It includes a description of the data and how it was recorded as well
as amplitude studies, auto and cross spectra, empirical probability
density functions, and a mathematical model for noise generation.

Chapter two discusses the prediction of the noise by different
methods and then applies this to the problem of the determination
of the direction of first motion of a signal in the noise. Improve-
ment with non-linear predictors is also considered.

In chapter three an automatic system for the detection of signals
in microseismic noise is proposed and the results of a computer simula-
tion of this system are given in terms of detection probabilities and
false alarm rates for filtered and unfiltered inputs.

Chapter four is a summary which restates the major conclusions.

Details of some analyses and the computer programs used are left

for the Appendices.
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1. BASIC STATISTICAL STUDIES

1.1 Empirical Data

Data Sources — Noise before and Noise after Events

The data which forms the basis for most of the computational studies
described in this thesis are the seismic records of the Logan (5 KT)
and Blanca (19KT) underground nuclear shots of the 1958 Hardtack series
(Romney, 1959). These were recorded by the U. S. Air Force at 28
temporary stations set up across the United States as shown in Figure
l.1.1. The instruments used were short period Benioffs with galvanometer
periods (Tq ) of .20 seconds. Most stations were equipped with a ver-
tical instrument (up—down) and two horizontals, a '"toward—away" and a
"right-left". These designations are with respect to an observer
standing at the shot point looking at the station. The vertical and
horizontal instrument responses are the same and are shown in Figures
1l.1.2 and 1.1.3 (Geotechnical Corp., 1961). The paper records from
these shots were provided by the Air Force and were digitized at 20
samples per second. In no case were the paper records for an entire
drum revolution provided so that the greatest time interval of con-
tinuous record available was on the order of a few minutes. For this
reason the noise records which have been digitized are labeled "Noise
Before" and ''Noise After" with the appropriate shot, distance from shot
and component. Noise before refers to the trace on the paper record

which is just above the signal trace, and is therefore one drum revolution
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time before the shot. Noise after is the trace just below the signal
trace. A copy of one of the original paper records which was digitized
is shown in Figure 1.1.4, and a plot of the corresponding digitized
record is shown in Figures 1.1.5 to 1.1.7. Figures 1.1.5 to 1.1.7 have
been plotted by computer program using the oscilloscope attached to the
IBM 7090 computer at the M.I.T. Computation Center. These graphs, and
many of the others appearing in later sections, have been plotted as
histograms. In several cases, particularly the spectral computations,
the values plotted are averages or estimates over some range so that
there is no justification for interpolation and the histogram is the

predered method of presentation.

Logan and Blanca Digitization Procedure

The records were broken up into sections and each section was
digitized separately. This procedure can lead to some error since each
section could have a linear trend. This was compensated for by re-
moving the best fitting (in the least squares sense) segmented line
from the entire record, where each segment is the length of a section.

The digitization accuracy is good to a few percent, and the gain
values supplied with the original records are quite good, but the actual
ground motion values may be off by as much as 15 percent.

Other digitized data has been provided by Dr. Bruce Bogert of the
Bell Telephone Laboratories, who has a short period vertical Benioff' at
Cherry Hill Park, New Jersey, and by United Electro Dynamics, Inc., who
have digitized the records from the WMSO station in Oklahoma. Dr. Bogert's

Benioff has a response similar to that of the Hardtack instruments, but its
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low frequency cut off is somewhat higher (Bogert, 1961), Figure 1.1.8.
The WMSO station is a linear array of vertical Benioffs with the same
response as the Hardtack instruments.

A list of our record numbers appropos to this thesis and the event

and station to which they correspond, is given in Table 1.1l.1.



TABLE lelsl

RECORD NUMBER DESCRIPTION SAMPLES/SEC.
1000 NOISE BEFORE LOGAN 1902 KMes LEFT 20
1001 NOISE AFTER LOGAN 1902 KMes LEFT 20
1002 NOISE BEFORE LOGAN 1902 KMes UP 20
1003 NOISE AFTER LOGAN 1902 KMss UP 20
1004 NOISE BEFORE LOGAN 1902 KMes TOWARD 20
1005 NOISE AFTER LOGAN 1902 KMes TOWARD 20
1006 NOISE BEFORE LOGAN 2111 KMes LEFT 20
1007 NOISE AFTER LOGAN 2111 KMess LEFT 20
1008 NOISE BEFORE LOGAN 2111 KMes» UP 20
1009 NOISE AFTER LOGAN 2111 KMsy UP 20
1010 NOISE BEFORE LOGAN 2111 KMes TOWARD 20
1011 NOISE AFTER LOGAN 2111 KMes TOWARD 20
1026 NOISE BEFORE BLANCA 1610 KMes LEFT 20
1027 NOISE AFTER BLANCA 1610 KMes LEFT 20
1028 NOISE BEFORE BLANCA 1610 KMes UP 20
1029 NOISE AFTER BLANCA 1610 KMes UP 20
1030 NOISE BEFORE BLANCA 1610 KMaes AWAY 20
1031 NOISE AFTER BLANCA 1610 KMes AWAY 20

204 CHERRY HILL PARK 4y NOISE 90909
233 CHERRY HILL PARK 31, NOISE 90909
301 WMSO L9s NOISE BEFORE CALIFe EeQe JUNE 20s 1962 20
303 WMSO L7s NOISE BEFORE CALIFe EeQe JUNE 20s 1962 20
305 WMSO L5s NOISE BEFORE CALIFs EeQe JUNE 20» 1962 20
307 WMSO L3s NOISE BEFORE CALIFs EeQe JUNE 20y 1962 20

309 WMSO L1ls NOISE BEFORE CALIFe EeQe JUNE 20y 1962 20
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1.2 Elementary Properties

We shall briefly consider the microseisms as a signal in a few
somewhat naive computational experiments which will suffice to make
apparent the need for a more general approach to the study of microseisms
which can be provided by statistical techniques.

The first experiment, which is concerned with microseism amplitudes,
has some bearing on microseism sources and the results are in agreement
with those obtained by others. The second set of experiments deals with
the identification of wave types, specifically Rayleigh and Love waves,
in the microseisms. As we shall see this set of experiments failed
badly because of the simplicity of the model which is used and the

complexity of the microseisms themselves.

Microseism Amplitude Studies

Some studies have been made on the amplitudes at two frequencies of
the noise from the Logan and Blanca records to determine the change in
amplitude with distance from an ocean. If the microseisms, at the fre-
quencies in question, are of oceanic origin, there should be a definite
decrease in amplitude with distance from the coast. The frequencies and
amplitudes were estimated directly from the paper records. The approxi-
mate frequency values were obtained by counting peaks over a minute or
more of record. On almost all the records, the noise appeared to have
two distinct frequencies, one at about .3 cycles/second, and the other
near 2 cycles/second. Approximate peak amplitudes were measured on the
records and averaged over several cycles of the frequency of interest.

An attempt was made to choose an average noise trace before the shot.
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A plot was then made of amplitude versus distance from the Atlantic or
Pacific coast (whichever was closer) for both frequencies. These graphs
appear in Figures 1.2.1 and 1.2.2 for Logan and Blanca respectively.

We can see from these figures that for low frequency the noise de-
creases for inland stations, but for the higher frequency there is no
systematic trend. The increase in amplitude of the low frequency com-
ponent at about 1400 km from a coast may be due to microseisms from
the Gulf of Mexico. These rather rough quantitative results are as
expected, since the low frequencies are usually assumed to be caused
by ocean waves and the high frequencies are attributed to local sources,
and are not correlated with the distance from the coast.

It is interesting to note that the rough computation of the fre-
quencies involved is supported by detailed spectral analysis. Figures
1.3.6 to 1.3.9 show spectra of some of the noise and it can be seen that
the important frequencies are at about .3 cps, 1.4 cps and 2 cps for

the Logan and Blanca records.

Rayleigh and Love Wave Experiments

Much of the energy in microseismic noise has been attributed to
surface waves of the Rayleigh and Love wave types. Studies by several
observers mentioned in the introduction have indicated the presence of
these waves in the 4 to 8 second period range. The spectrum of noise
from Logan, Blanca and Cherry Hill Park records which appear in Figures
1.3.6 to 1.3.9 show spectral lines with most of the energy concentrated
in fairly narrow bands. The low frequency peak, as was mentioned before,

is a bit artificial, since it is the high frequency end of the oceanic
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micéroseism band with the low end cut off by the Benlioff response. We
might well suppose that this peak is composed of Rayleigh waves. The
higher frequency lines may also be Rayleigh waves but of a non-oceanic
origin. The Cherry Hill Park records in Figure 1.3.9 are remarkably
similar, with rather narrow bands, even though they were taken three
months apart, and one would like to investigate the important fre-
quencies to identify wave types. Unfortunately, there are no horizontal
recordings available and thus no study of this nature can be done. How-
ever, the Logan and Blanca records are three component and some attempt
has been made at wave type identification. The spectra of these
records, Figures 1.3.6 to 1.3.9, show in general more energy in the
horizontal components at high frequency than in the vertical component.
This suggests that the higher frequency noise, 1.4 cps and 2 cps, may be
Love waves, and the possibility that the lower frequency energy is due
to oceanic microseisms is still present.

Rayleigh waves are a special combination of P waves and S~V waves
which confine all particle motion to a plane defined by the vertical
and the direction of travel of the waves. For a single frequency the
partical motion is retrograde elliptical. Assuming, therefore, that
we have a single Rayleigh wave of a single frequency, we can resolve the
horizontal components of motion into a new coordinate system which is
rotated with respect to the original seismometer coordinate systems such
that all horizontal motion is along one axis, the X" axis. This axis
then determines the direction of travel of the wave, but not the sense
of the direction. The sense can be determined from the resolved hori-

zontal, X", and the vertical, Z", components. Since the partical motion
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is retrograde elliptical, X" must lead Z" by 90° for the wave to be
travelling in the positive X" direction. A plot of X" against Z" should
be an ellipse with its X' intercept almost 2/3 of its z" intercept.
Records 2000, 1002 and 1004, the noise before the Logan shot 1902 km
from the shot point, form a three component set and therefore can be
checked in the manner described for a Rayleigh wave component. All
three records were band pass filtered with a filter of width .08 cps
centered at .255 cps. This frequency corresponds to the maximum of the
spectrum and is possibly attributable to Rayleigh waves from oceanic
sources. The two horizontal components were plotted against each other
and a line fitted to the plot. The plot was fairly scattered so that
the fit of the line was quite poor. The horizontal to vertical
component power ratio after rotation was only 5 which is not correct for
Rayleigh waves. If the plot fell exactly on a straight line the ratio
after rotation would be zero. The indication is that the plot was not
even close to a straight line. The resolved horizontal component was
then plotted against the vertical and an ellipse was fitted to the
resulting curve. This plot was the best fitting ellipse superposed
is shown in Figure 1.2.7. The ellipse in this figure is a very poor
fit and it is not possible to reconcile these results with the single
Rayleigh wave hypothesis. This does not mean that the low frequency
peaks are not Rayleigh waves. Presence of two or more Rayleigh waves
from different sources could explain the lack of a linear relationship
between the horizontal components and the poorly fitting ellipse to the
horizontal versus vertical plot. We might note, however, that some of

the motions shown in Figure 4.2.1 are relatively elliptical, but with
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tilted axes. Examination. of the spectra (Figures 1.3.6 to 1.3.8) shows
relatively more power in the vertical at .255 cps than we would expect
on the Rayleigh wave hypothesis, but this could be explained by a mis-
match of seismometer characteristics.

A test for the presence of Love waves was also performed on this
data. The peak at about 2 cps was of interest here, since there was
relatively more power in the horizontal than in the vertical. For a
single Love wave we would again expect that a plot of the horizontal
components would fall on a straight line. This was not the case, how-
ever, for a band width of about .08 cps centered at 2.05 cps. It is
most probable that either Love or Rayleigh waves from a single source
do not occur, or the band width used is too wide to see them. Cross
correlation experiments could be most useful here, since the equivalent
band width is the Daniell window width and the phase at each window
width may be easily checked. For Rayleigh waves, we expect the hori-
zontal to be in phase, but 90° out of phase with the vertical. For
Love waves the horizontal should again be in phase, but there should be
very little energy in the vertical component.

The failure of these two experiments does not eliminate the possibility
of the existence of Rayleigh and Love waves at the frequencies considered,
but it does illustrate the complicated nature of the noise. The suggestion
is, therefore, that the structure of the microseisms is too complex to be
handled by simple deterministic models. Rather than introduce more com—
plicated models which require an enormous amount of labor to fit to the
data, we shall consider the microseisms as stochastic time series and

treat them from the statistical point of view.
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Apparent Stationarity

The majority of the results of time series analysis are applicable
to stationary time series, that is, series whose probability densities
are not dependent on absolute time. If in a time series the probability,
F%'(X.,'\‘:,) dx\ , that F' is in the interval (X.)X,ﬁ’:{k;) at time T,
is the same for all t , and if the probability Pfl’?z(x') X2; ti,t;)that
at time T/, ?, is in the interval (X4)x0+¢£XJ and at time {3z, ?1
is in the interval (Xi‘)x,_+CLX1) is dependent only on the time separa-
tion ’t:ftx-tn and not on absolute time, the time series is said
to be wide sense stationary. 1f all higher densities F%'ia‘“‘?n(x”x" Xn
f\)ta,\“‘fh) are also independent of absolute time and dependent
only on 'CK::fJ-ft; the series is strictly stationary.

It is obvious that microseism records are not stationary over long
periods of time since microseism activity is strongly influenced by
meteorological conditions. Over short periods of time, however, when
there have been no great changes in the generating mechanisms for
microseisms, the records can be considered stationary. For our pur-
poses we need only be concerned with stationarity over the few hours
necessary to record the shot signal and noise before and after the signal.
We now consider an ensemble or group of time series lined up one beneath
the other each with the same first and second probability densities.

We arbitrarily label time on these series so that a vertical line strikes
each time series at the same time. The ensemble can be constructed by
breaking up a long time series into smaller pieces and considering each
plece as a member of the ensemble. In the case of microseismic noise,
the noise before and the noise after the event can be considered as two

members of the ensemble. We wish then to see if the probability densities
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are approximately the same for these ensemble members. We can do this
computing directly the probability densities, but this becomes a lengthy
process for the second density, ng'\z‘ (Xt » X2 ) t r)'t'g) and it is
worse for the higher densities. If we are only interested in wide sense
stationarity we can consider time and ensemble averages and, assuming
that the ensemble is ergodic, equate these averages. The ensemble
average of §| at time t, and ¥ at time t, is

Oy L

Ave = S X, X PT‘YL(X,))(z)“‘()OéX,OfXg , Ty

-~ Y e

The time average is

T

Ave = .rl:_;”:c ‘5":,- £+ f(u‘r)dit
-T

We note that the time average is the autocorrelation and that the

Fourier transform of the autocorrelation is the power density spectrum

(see section 1.3). Hence, under the ergodic hypothesis, the constancy

of the spectral density in time reflects the wide—sense stationarity

of the time series. Spectral density computations have been performed

on the noise before and noise after the shot and the results are shown

in Figures 1.3.6 to 1.3.8. One can easily see that the general character

of the spectrum does not change much over a period of time representing

two drum revolutions of the Benloff. This strongly suggests that the

microseisms are, for our purposes wide-sense stationary.
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Mean and Variance

Time series analysis simplifies to some extent if the series have
zero mean and unit variance. The digitized records had the best least
squares fitting segmented mean line removed, but this does not guarantee
that the mean is zero. The mean is, however, quite small and can usually
be considered zero. It can easiiy be computed and subtracted off if

necessary. The variance of the records is not unity and no scaling has

been done to make it so.

Amplitude Distribution and Normality Test

The amplitude distribution of the records can easily be computed and,
given the mean and standard deviation (square root of the variance), the
corresponding normal distribution can be found and compared with the
empirical amplitude distribution. Appendix B gives a flow graph of the
necessary steps in the comparison of the distributions and the programs
necessary. Appendix G contains listings of the programs. The comparison
is done by finding the values along the x axis which divide the appro-
priate normal density (given mean and standard deviation) into sections
of equal area (equal probability). A count is then made of the number

of amplitude values which fall into each section. The chi square com-

Z (A/‘-pN)

where there are L sections and Namplitude data points, P = ‘,L , and N“

parison measure is then

is the number of points which fall in the L;Th section. There are L‘3
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degrees of freedom since the mean and standard deviation are used to
determine the appropriate Gaussian. The chi square measure thus de-
fined is chi square distributed and its expected value depends only on
(Cramer, 1946). The probability P ()(L) of exceeding 1(1 is the
quantity of importance in comparison. Acceptance regions for X2 are
generally set so that P(X)2 2 «1 or .01l. Comparisons were made be-
tween empirical and normal probability densities for all the Logan and
Blanca noise records listed in Table 1.1.1. The chi square test was
used as a measure of goodness of fit and the results are shown in
Table 1.4.1 in section 1.4. The probability of exceeding X2 varies con-
siderably and for the records shown only six or seven can be considered
normally distributed for this test. Figures 1.2.3 and 1.2.4 show some
of the empirical frequency ratio plots and Figures 1.2.5 and 1.2.6
show typical computer output from the normalcy and independence tests.
It can be seen from these figures that even though some of the den-
sities fail the X2 test, they look fairly Gaussian and to a rough approx-—
imation may be considered normal.
(Note: If the alternate method of test for normality which is given
in section 1.4 is used, all records are found to be Gaussian.)

The independence tests are discussed further in section 1.4 and in
Appendix C. It is sufficient to say here that the amplitudes are not

independent.
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ANALYSIS OF AMPLITUDE DISTRIBUTION FOR RECORD 1005
COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES= 57

LENGTH OF SERIES= 3321

DEGREES OF FREEDOM= 54

MEAN OF SERIES= ~0+22500189E=~05
STANDARD DEVIATION= 0014274400E=02

HIGHER CENTRAL MOMENTS
THIRD MOMENT= ~0,19685886E-09
FOURTH MOMENT=2 0,12106580E~10
FIFTH MOMENT= =0,12533012E=14
SIXTH MOMENT= 0611494952E~15

EXPECTED COUNT= 5842632
CHI=SQUARE= 0062046965E 02
PROBABILITY OF EXCEEDING CHI-SQUARE= 0021316E~00

POKER COUNT TEST RESULTS

HAND TYPE ACTUAL COUNT EXPECTED COUNT
BUST 35 196401280
1 PAIR 138 334465599
2 PAIR 81 7171200
3 OF A KIND 117 47,80800
FULL HOUSE 20 5697600
STRAIGHT 95 4478080
4 OF A KIND 105 2498800
5 OF A KIND 73 0606640
MEAN SQUARE CONTINGENCY= 0+27838460E O1
DEPENDENCY MEASURE= 0430931623E-00

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM
=0+47553504E=-02 TO 0,45647645E-02¢ 3321 VALUES IN ALL.

1. 1. O Oe 1. O 1. 1, 20 by
2, 1. 2, b 44 8e 12, 11, 94 164
19, 14, 15 16 17, 24, 24, 35, 26 32

32 32, 484 41, 42, 494 51 654 63 654
T2 554 T1le 66 86 T4, 92, 70, 67 98
TTe The 89, 8% 79 89 730 884 764 TTe

88 78 vy 63 T3 60 596 504 43, bio
49, 33, 26, 32 284 23, 15, 15, 17 9
15, X 8e Te 10, b4, Se 6s 4o 4o
6o l, 3 le le O 1, 2e le 3

Figure 1.2.5
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ANALYSIS OF AMPLITUDE DISTRIBUTION FOR RECORD 1026
COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES= 59

LENGTH OF SERIES= 3581

DEGREES OF FREEDOM= 56

MEAN OF SERIES= =0437916552E=07
STANDARD DEVIATION= 0+13271835E~02

HIGHER CENTRAL MOMENTS
THIRD MOMENT= =0,84812047E~-10
FOURTH MOMENT= 0497164132E~11
FIFTH MOMENT= =0,29763772E=14
SIXTH MOMENT= 0486117256E~16

EXPECTED COUNT= 6046949

CHI=SQUARE= 0410001674E 03
PROBABILITY OF EXCEEDING CHI-SQUARE= 0s15617E~03

POKER COUNT TEST RESULTS

HAND TYPE ACTUAL COUNT EXPECTED COUNT
BUST 38 211436320
1 PAIR 159 360486399
2 PAIR 133 7732800
3 OF A KIND 111 51455200
FULL HOUSE 8 6444400
STRAIGHT 84 5415520
4 OF A KIND 112 3422200
5 OF A XIND 71 0407160
MEAN SQUARE CONTINGENCY= 0¢23302333E 01

DEPENDENCY MEASURE= 0425891481E-00

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM
=0648722361E~02 TO 0441697387E~02s 3581 VALUES IN ALL.

1, 2 O Oe Oe O Oe 3 O
le 29 b T 1, 3 5 10, 1le
9e 13, 9 12, 18, 11, 13, 9 21e

23, 27 29 32 384 32, 48, 37 544
51 69, 624 94 4 87, 101, 88, 81, 90,
110 94, 97, 111, 127, 101, 117, 81, 115,

604 844 704 T7e 69, 63, 564 544 43,
82 52 364 30 34, 30 424 27 30,
23 18, 21, 11. 15, 8 17, 2 Se
Se 56 ls 2 be 1l 1. 3 le

Figure 1.2.6
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Horizontal Motion

Figure 1.2.7 Results of Rayleigh Wave
Experiment on Records 1000, 1002 and

1004 with Best Fitting Ellipse.
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1.3 Correlation and Spectral Properties

Description of Random Functions - Correlation and Spectrum

The description of the spectrum of a random function, such as
microseismic noise as recorded on a seismogram, cannot be adequately
done by simple Fourier transformation since the Fourier transform
specifies the phase spectrum ansi immediately particularizes the function
thus setting it aside from all the other possible realizations of the
random process. In order to treat all the members of the ensemble
simultaneously we must make use of the Wiener theorem for autocorrelation.
The autocorrelation, le (T) , of a continuous time function "F (t‘)

is defined as

-T
Py = 52 F | ffermae

With a change of va}.‘jriables =z t-% we can see that "F(T§ ¥ Q('T)‘
The Wiener theorem then states that the power density spectrum @(W) of

f(t) is the cosine transform of F(X) (Lee, 1960).

(<]
@tw\ "'5]5« S‘ ¢(v) coswT X
- 00

We see that the autocorrelation has the effect of bringing all the phases
down to zero thus throwing away the phase information which pins down a
particular member of the ensemble.

The continuous infinite theory has its counterpart in discrete finite

time, but with some modification and some problems.
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Digitization and Aliasing

Digitization or division into discrete time puts some restriction
on the description in the frequency domain. One must pay the price for
throwing away the information between the digitized points and that
price, as specified by the sampling theorem, is that one can only see
frequencies which are less than or equal to half the sampling rate.
If there are h samples per second we can only distinguish up to r!/z
cycles per second, the Nyquist frequency, which corresponds to a
radian frequency of WsT . If the data actually contain a frequency
higher than N/ cps., say h/2 +0, this frequency will be folded gown
to hla-A4 , since cos(T+{) ?C°5(“'S), and this process is called
aliasing. Thus if there are frequencles present higher than h/2 cps,
the spectral estimate at frequency *\, (04{4 hlz),is made up of fre-
quencies -F, 1("/731"F) 4(’1/1)1'{3 RN AY hﬁﬂt{ y M €Ven,
and the spectrum loses meaning. One can avoid this problem by sampling
often enough to include all frequencies or by low pass filtering before

digitization.

Spectral Estimation — Daniell Window and Variance of Estimate

The fact that the data is known for a finite length of time requires
an assumption about the data outside of the interval in which it is known
since the autocorrelation ﬂpé‘f) involves this time. One usually
assumes that the data is zero outside this interval and the autocorrela-
tion must therefore go to zero when T equals the interval length.

This is the complete transient (Wiener) autocorrelation
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N=l1Tl

!
‘{)(‘t\ =N X{ Xi+T , T=0, 21,42, (N1
L=o0

where there are N data points, X.) Xz,... Xy + Some methods of esti-
mating the autocorrelation such as the Tukey estimation try to compen-—
sate for the fact that the data is zero outside [~ Lo ar by adding

weighting factors

' Jia)
({)('f = N-itl Z Xi Xivr T:0,.. 1M
L=o

where M is less than NV (e.g. M’N/b'). The higher lag term$
(T large) are thus given more weight to compensate for the smaller
number of terms in the summation. This will, of course, result in a
biased estimate.

In any case the computed spectrum, §¢(w\ , 1s an estimate of
the true @(w) and can be though of as a convolution of some weighing

function W(W) with the true spectrum
P (w) = G, (w) * Wiew)

where the asterisk denotes convolution. \'\/(W) is then called the
spectral window (Blackman and Tukey, 1958). Ideally the spectral
window is rectangular and the convolution process will then move it
along the true spectrum and the estimate at Wy, &c (wk) will be an

unweighted average of the true spectrum @-ﬂw} from Wg4)h to W““‘



Iyly

where 21\ is the window width. Since convolution in one domain is
multiplication in the other, the Fourier transform of @T \u\«\a/(w)
is ‘PT(T) W!.‘C"; where \P‘r("f) is the true autocorrelation.

The spectral estimate which has been used to compute the spectra and
cross spectra shown in this thesis is the Daniell estimate. The Daniell

method uses the complete transient (Wiener) autocorrelation of the time

function Xy, t=:!, .. . A
N-tvel
(’P(‘r)ﬁ"}/\? fxf Xe1x , T=o.tl,,. t(N-)
' |

The Daniell spectral estimate @D(w) is then

ol :i",'; "P(T) :n—eﬁa— Cos WT (1.3.1)
T=~(w-i)
S“‘('TTT'/M)
where m is the Daniell weighting function.

We note that the spectral window is not simply the Fourier transform
of the Daniell weight since LP(Y)is not the true autocorrelation. We
can, however, compute the spectral window if we choose a time function X¢
for which we know @ (w) (Simpson et al, 1961b). If the time func-
tion Xt is N points of a sine wave sin w.,t we know that é-,—lw)

is a delta function J(w,) so that the spectral estimate becomes

Py trz Frw) ¥ Wew)

@D (W) = J(Ww,) ¥ Wi = Wiw-w,)

Hence we compute the transient autocorrelation ‘)01-\() from the /N points
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of the sine wave, weight this with the Daniell weighting function and
take the cosine transform as indicated in equation (1.3.1) to obtain
the overall spectral window for the computational process. This has
been done (Simpson et al 1961b, Appendix K) for Wy = 7/2 which leads
toan X¢ of Xe: ooy 1,047 o0, o, and a correspondingly
simple autocorrelation function. It can be seen that the Daniell esti-
mate has parameters ™M\ and N~ , and therefore spectral windows were
computed for several different M and N values. A few examples of
the windows have been included in Figure 1.3.1 to 1.3.4 (Simpson et al,
1961b). These figures show that the windows are always non—negative,
they tend to get squarer as the M/N ratio decreases and they are
essentially non-oscillatory. The variance, 031 , of the Daniell
estimate has been worked out by E. A. Robinson (Simpson et al, 196lb,

1962a) and is
W, +h

2
G-Dz - 2‘;‘11 @_Ttw)@(u)

wo"l
where L\= ‘"/”\ and /VV is the number of data points. As an approximation

to this we have used

) :
O-:\z: "2'%"1 @D(w} 2 L

N R
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Figure 1.3.5 shows a plot of the Daniell spectrum (solid line) of a
typical noise record with dotted line denoting the approximate standard
deviation,oz , plotted above and below the solid line. The spectra are
plotted as histograms since the value at any one frequency is an estimate
averaged over the spectral window width. We note that M  is the number
of spectral estimates between W=:=0 and 7' ., One can then see that

the ﬁ//"1 ratio is an estimat-: of the number of cycles of a sine wave
which the data affords and therefore an increase in A//ﬂ1 ratio (de-
crease in ”\AN') means that one is looking at more cycles and can there-
fore make a better estimate of the frequency. This is, of course, just

the uncertainty principle.

Spectrum and Benioff Response

It is important to remember that the data was recorded on a Benioff
seismometer and that the spectrum we see is observed through the eye
of the Benioff. The apparent spike at low frequency, .25 cps, is
artificial since the Benioff cuts off the lows. The sharp cut off on
the low frequency side of the major low frequency feature in the spec-
trum of Figure 1.3.5 and other spectra in Figures 1.3.6 to 1.3.9 is a
result of the seismometer response and is not a real phenomenon. We
notice from Figure 1.3.2 that there is essentially no energy at frequencies
greater than 2.5 cps so that, with our sampline rate of 20 samples per

second, there is no problem with aliasing of frequencies.
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Figure 1.3.9 Power Density Spectra of Records 204 and 233 (CHP 4 and CHP 31).
(Note: The spectra have different frequency scales.)

s



56

1.4 Mathematical Generating Model for Microseisms

Stationary Time Series — Moving Summation and Decomposition

We have seen that microseismic noise can be considered at least as a
wide sense stationary time series. With an additional assumption of an
absolutely continuous spectral distribution (Doob, 1953) we can consider
that the time series is generated by a moving average or moving summation
which is written as a convolution. That is, the time series x can be
generated by convolution of an uncorrelated or purely random series, ?t’

with a weighting function W/ .

e

Xt = Z A ?t-c

L= -0

Since §¥ is at least uncorrelated and may be purely random, it is
obvious that the autocorrelation of Xf will simply be the autocorrelation
of W, . Hence the spectral properties of Xy are defined by the wave-
let W.. If the power density spectrum, @(u)) , of the time series

or, equivalently, of W, can be factored

@(w\ = Buww) -g:w)

and ®tw) has no poles or zeros in the lower half plane then

o .
w
Btw)-‘- Z bke.‘ :
K:0

) \’“/'(:O‘FOP k(o
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(See Appendix E, Spectrum Factorization) \D;( is one sided and invertable

and is called the minimum phase wavelet. The considerations

1. é (WY=O  almost nowhere

™

2. ],351.«») dw » -0
-TV

Ul

3. @(w‘)olm { o

-
-t

must be met for bk to exist (Robinson, 1956). These conditions are
discussed further in Appendix E.

If we assume that the above conditions are met for microseismic
noise, we can choose a simple mathematical model for microseism genera—
tion. We can consider that microseisms can be produced by passing a
train of white light (uncorrelated) impulses through a system whose trans-—

fer function is B(W)".l In block diagram form:

Input System

oa .
1 [
1 t1 2 LB(W)-‘-ZBKC |
l L l 'l K:0
White Light Microseismic
Saries Noise

®(w} corresponds to a realizable system since Bk is a one sided wavelet.

Spectrum factorization computations using the method of Kolmogorov as
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described in Appendix E have been carried out on real microseismic noise.
Figures 1.3.6 to 1.3.8 show the spectra and Figures 1.4.1 to 1.4.5 show
some of the minimum phase wavelets and inverse minimum phase wavelets

for several of the Logan and Blanca noise records.

Autoregression, Probability Density and Edgeworth Series

Since the inverse minimum phase wavelet,an , exists, we can repre-

sent the noise Xt as the autoregressive process

o0

f" = Z Ak Xt-K

K=o
where Et is the white light series, and Qv can be found from b»\by

polynomial division (See POLYDV in Appendix G).

(s -]
» .\
Atw‘s:ZQ«eL "R = -
K=o Z: br\e

TS

Taking the Z transform, 2 = €
oa |
Zk__ 5 be 2

K=0

Hence the white light series ‘Et for the process can be found by con-
volution of @k with Xg . This computation has been done for most of
the Logan and Blanca noise records and statistical tests have been made
on the resulting white light series, g.‘.. The probability density of ’ft

for these records has been compared to the normal density using the steps
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outlined in Appendix B. In most cases the comparison measure resulted

in the probability of exceeding chi-squared being so small that it was
very unlikely the density of fz was exactly normal. The numerical
results summerized in Table 1.4.1 show that only four of the records

pass the \Xz test. The empirical densities, however, look so very nearly
Gaussian (see Figures 1.4.6 to 1.4.12) that it seems likely that they

can be expressed in terms of the Gaussian density with only small
correction terms. (Note that we use the terms '"Gaussian' and '"normal' in-
terchangeably throughout this section. Cramer (1951) gives the Edgeworth

series expansion for the probability density {XX\

C, Q) (‘2 (2) + C_.h. (h)
‘F(X): Co ﬂx) + T €9 t "5”!‘ (x)t ?(x)“’...

P

XY

\
where ‘P(x)is the Gaussian, @xk S , and the superscripts
var
denote differentiation. The Can depend on the moments. The details
of the applicability of the expansion and the computation of the moments
s . ‘
and the Cw appear in Appendix C. The first seven €9, (o to C¢ have

been computed and the corresponding densities have been compared with the

empirical density using the chi-squared measure of goodness of fit.

Normality — Chi-Squared Test

Table 1.4.2 shows the results of the Chi-squared test of the com—
parison of the probability density of the white light series with the
normal density and the higher approximations given by the Edgeworth
series. The method of computation of the Chi squared value used here

differs somewhat from the method mentioned in Appendix B. In Appendix B
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we ignore the fact that the series undergoing the test is bounded and,
after dividing up the normal density into P4 regions of equal area
(probability), we count the number of data points which fall into each
region. The approximation involving the terms in the Edgeworth series,
including the normal approximations were compared directly to the
empirical density, computed for ¥ subregions over the interval in
which the data fell. There was not attempt at division into regions of
equal probability. For this case, where the chi squared value is com-

puted directly from the probabilities, chi squared is

v 2
V* = Z (B, -P) N
N Fka

where ';C is the probability that a value falls in the ith range
using the approximation given by the Edgeworth series, &?[ is the
empirical probability density for the same range, N is the number of
data points which were used to compute the empirical density, and W

is the number of sub-regions used in forming the empirical density.
There may be some bias in this method of computation if Rgi and Rg(
are very small. For this reason the sub-regions are grouped together
so that for every grouping the quantities RALPJ and Fk; N are both
at least five. (This rule of thumb is given in Wadsworth and Bryan,
1961). The grouping will reduce the number of degrees of freedom so

that it becomes

NDF = S=|=m
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where m is the highest moment used in the Edgeworth series and S is
the total number of sub—groupingss § is in general less than ¥ . We

note that this method compares the empirical density and the approximation
about the normal density only over the region where the data actually
exists and does not assume that the data is unbounded.

In computing Fhi it was necessary to calculate at least five equally
spaced points across the sub-region and integrate using Simpson's Rule.
The estimate of the integral using just the center point was not accurate
enough. (We note here that F?; is a probability density and thus
must be normalized such that its integral is equal to one.)

We see from Table 1.4.2 that, using the above method of comparison,
most of the white light series are actually Gaussian (first approximation
of Edgeworth series), and all can be fitted quite well using the third
approximation or less. It is not disturbing that the fit gets poorer
in some cases for higher approximations, since the series used is
asymptotic and may oscillate.

Figures 1.4.6 to 1.4.12 show the empirical density as a solid line
histogram and the Bdgeworth approximation as a dotted line. The first
approximation is the normal, the second approximation involves the
third moment since Co=l, C,2C2=©, the third involves up to the fourth
moment, etc. We can therefore say that the probability density of

is,in most cases, Gaussian.

Independence Tests

The Et‘ are necessarily uncorrelated since the convolution ofX‘. with
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has removed all the linear dependence. It is not necessary that the Et
series be purely random or, equivalently, independent (unless the ft
are normally distributed, see section 2.3). Independence tests are
somewhat difficult because one has to show that the joint probability

density for all Tt factors in order to prove independence.

]

Fgeg, Coxnox) = o Ruoad o0 R 00)

Two tests for independence have been used on the’?t from microseismic
noise. The poker count test (Appendix D) is based on the fact that we
can compute the a priori probabilities of occurrance of poker hands of
various values from the assumption of independence of the series from
which the hands are drawn. In this case the hands are assumed drawn
from an infinite supply of integers with values 0 to 9 and hence the
removal of a number doed' not change the probability of its occurrance.
In the performance of the poker count test, the f} must be integers
from 0 to 9 with equal probability, so the series with nearly Gaussian
density must be mapped into a series with rec¢tangular density. This
mapping will not make the series dependent if it is independent and
vice versa. Proof of this statement and the steps necessary for the
poker count test are given in Appendix D. We may note that the poker
count test is concerned with the joint density of up to five variables.
The other test, the dependence measure related to the mean square con-
tingence test, is also treated in Appendix D. It is simply a numerical

measure of the factorization of the joint density of two random variables.
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The measure, which we call the dependency, is zero is the variables are
independent, and non—zero otherwise. Tests of numerical data are somewhat
difficult since in almost no case will the dependency actually come out

zero although it may be quite small. In order to see how small the depen-—
dency measure must be to indicate dependence, the test was run on the Rand
random digits (Rand Corporation,lq553. These digits were generated by an
independent process and are therefore suitable for testing purposes. A
graph of the result of this test for different series lengths appears in
Appendix D. For a length of 2500 the average dependency was about .0035.
For dependent series such as the amplitude of the microseisms the depen-
dency was about .25. The dependency value for the white light series,
were between .0907 and .0039 and are tabulated along with the tests on the
amplitudes in Table 1.4.1l. Some output from the tests is shown in Figures
1.4.13 and 1.4.15. 1In some cases the dependency value was as low as that

of the Rand digits and in others it was somewhat higher but not orders of
magnitude higher. The figures mentioned above also show the results of

the poker count test. In most cases a chi-squared comparison of the results
is in the .1 or .05 acceptance region. The poker count test was also run on

the Rand random digits. For these the chi-squared value was quite low and

well within the accptance region.

Mathematical Model

The independence tests performed on are certainly not exhaus-
tive since the poker test treats up to fifth joint density and the mean

square contingency treats only the second joint density. The results are
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surprisingly good, however, particularly when we consider the error in
the computation of the ?t series introduced by the spectral estimation
procedure, spectrum factorization, polynomial division and convolution.
It is therefore claimed that the ft' series is essentially independent
and the microseism generating model is now an independent white light
series into a minimum phase system. '

A purely random series Y}, is ergodic and stationary. Further,
the process of moving summation (convolution) is ergodic (Robinson, 1956,
p. 116). Ergodicity, for our purposes, means that the time averages and
ensemble averages are equal with probability one (see also Section 1.2).
Hence the estimation of the moments of the series by time averages for
the expansion of the density in terms of the Gaussian is justified.

In summary, we have shown that microseismic noise can be considered
stationary and ergodic with a nearly Gaussian probability distribution,
The model for the generation is an independent white light series convolved

with a minimum phase wavelet.

Input Minimum Phase System Output

111 2114 ek ) | ;
ALY 15 rz;ob"e \»’f/\\'\,jM\M/‘\v

Independent White
Light Series - Nearly
Gaussian

Microseismic
Noise

Xt = Z by Tt-k
k=0
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Generation of Artificial Microseisms

We are now in a position to generate microseismic noise artificially.
The Rand random digits which are independent and equally likely were
summed in groups of ten and the mean subtracted out to give,by the central
limit theorem,zero mean normal variates. These variates are the Gaussian
white light input to the minimum phase system. They are Gaussian be—
cause of the central limit theorm as mentioned above, and white because
the independence of the variates guarentees that only the zero lag of the
autocorrelation has a non-zero value and hence insures that all frequencies
will be present in the same amount. The minimum phase system response,
can be computed from real data by spectrum factorization (Appendix E).
The artificial noise is then generated by convolution of the minimum phase
wavelet with the Gaussian white light series. Figure 1.4.16 shows real
and artificial microseismic noise with the same r.m.s amplitude plotted
one above the other. It is difficult, if not impossible, to tell the
difference between the two with the eye alone. The identification of the
two traces has been deliberately omitted from the figure. The upper trace
is actually the artificial noise. Since we have been able to show that
microseismic noise can be decomposed into a white light series and a
wavelet, and that the white light is fairly indpenedent and nearly Gaussian,
our mathematical model is quite good, and thus our artificial microseisms
are quite representative. In order to tell the difference between real
and artificlal microseisms we would have to decompose the series into a
wavelet and white light and test the probability density against the normal

density. If it is normal and not just '"nearly" normal, the noise is



66

artificial. It is possible to overcome this difficulty by mapping the
Gaussian series into a series with a probability density representative
of the real noise, but this labor does not seem justified by the slight
variation of the probability density from the Gaussian.

The chief use of the generating model is in the detection simulation
studies in Chapter 3. Several hours of consecutive noise are needed for
these studies and only a few minutes of it is available from our records.
Using the model discussed above we can generate the necessary amount of
noise artificially and it will be typical of microseisms and nearly
indistinguishable from them.

It is also possible to generate three component artificial noise.

The bind here would appear to be in simulating the coherency between the
various components. However it has been shown (Simpson et al, 1962)

that one can generate pairs of white light series with controlled
coherency at zero phase. A simple extension of this to three series with
controlled coherencies is given in Appendix F. One can therefore specify
the coherencies between pairs of the three series, generate three white
light series with these coherencies, and convolve each of the series

with a different wavelet to obtain three component simulated coherent

microseismic noise.



RECORD

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1026
1027
1028
1029
1030
1031

TABLE le4el

SUMMARY OF RESULTS OF NORMALITY AND DEPENDENCY TESTS

ON AMPLITUDE SERIES AND WHITE LIGHT SERIESe

PROBe EXCEEDs CHI SQUARE
AMPLITUDE WHITE LIGHT
«66435 «0000
001293 «0000
«0000 e01522
«0000 «00305
«28699 «0000
021316 «00004
«01426 09632
«00289 «32880
+0000 «00004
«0000 01919
«0000 ¢00350
«00113 «00048
«00015 «0000
«0000 « 0000
«00051 «0000
«0000 «0000
«00252 «00197
«12048 «0000

DEPENDENCY
AMPLITUDE WHITE LIGHT
e25336 ¢ 00976
026546 +00935
e 47489 ¢03863
¢50919 «05031
«28226 «01525
30931 «01378
e22233 «00820
«20035 ¢ 00397
e27856 +«00830
28603 «01051
«24385 e01144
«27526 «00731
25891 «00483
¢25699 e 00677
024425 «00520
027333 «09075
25838 ¢02333
024759 «00618

3201
3201
3401
3401
3321
3321
3181
3181
3361
3351
3321
3321
3581
3581
3241
3241
3301
3301

PROBABILITY OF EXCEEDING CHI SQUARE LISTED AS
¢0000 1S ACTUALLY LESS THAN

«000032» BUT NOT ZERO,

LENGTH OF SERIES
AMPL.

WHITE LIGHT
2702
2702
2902
2902
2822
2822
2682
2682
2862
2852
2822
2822
3082
3082
2742
2742
2802
2802

49



TABLE le4e2

EDGEWORTH SERIES RESULTS

RECORD PROBABILITY OF EXCEEDING CHI-SQUARED FOR APPROXIMATION
ONE TWO THREE FOUR FIVE DEGREES

1000 «00063 044294 «99999 ¢99999 0 39
1001 e 0 0 + 43359 «80852 0 37
1002 o0 ¢52057 «98030 099999 ¢99999 46
1003 «87704 $99999 «51583 ¢99999 «94568 57
1004 o0 o0 ¢99959 99999 e 02469 52
1005 e0 e02302 «99999 ¢« 99999 «08298 53
1006 ¢93772 04635 o0 o0 e0 30
1007 ¢23902 ¢95413 ¢99999 099999 «99999 56
1008 ¢99949 ¢34555 ¢95999 ¢99999 ¢99999 59
1009 o0 ¢ 09997 ¢99999 ¢99999 ¢99999 54
1010 099999 32270 ¢99999 099999 «99999 63
1011 ¢99999 +81863 e 0 99986 «0 44
1026 o0 «00043 «99999 «0 o0 40
1027 ¢99995 o0 o0 o0 o0 9
1028 02309 004340 «99996 0 o0 50
1029 028383 o0 o0 «0 o0 17
1030 + 77600 ¢99999 «0 o0 o0 43
1031 ¢31825 o0 o0 o0 «0 31

DEGREES REFERS TO THE NUMBER OF DEGREES OF FREEDOM FOR THE LOWEST
APPROXIMATION NUMBER FOR WHICH THE PROBABILITY OF EXCEEDING CHI-SQUARED
IS GREATER THAN 401,

89
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Rigure 1.,4.,13

ANALYS1S OF WHITE LIGHT SERIES OBTAINED BY CONVOLVING THE INVERSE OF THF
MINIMUM PHASE WAVELET OF RECORD 1000 WITH THE ORIGINAL RECORD

COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES= 51

LENGTH OF SERIES= 2702

DEGREFS OF FRFEDOM= 48

MEAN OF SERIES= =0410384890F 03
STANDARD DEVIATION= 0475864953E 05

HIGHER CENTRAL MOMENTS

THIRD MOMENT= 0491304071F 14
FOURTH MOMENT= 0417391028F 21
FIFTH MOMENT=: =04,10809396F 25
SIXTH MOMENT= 0417594533€ 32

EXPECTED COUNT= 52,9804

CHI=SQUARE= 0611462693E 03
PROBABILITY OF EXCEEDING CHI=SQUARE 1S LESS THAN 0,00032

POKER COUNT TEST RESULTS

MAND TYPE ACTUAL COUNT EXPECTED COUNT
BUST 146 159440800
1 PAIR 240 272416000
2 PAIR 86 58432000
3 OF A KIND 73 38488000
FULL HOUSE 5 4486000
STRAIGHT 7 3488800
4 OF A KIND 3 2043000
§ OF A KIND 0 0405400

MEAN SQUARE CONTINGENCY= 088167071£-01

DEPENDENCY MEASURE= 0697963411E-02

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 FQUALLY SPACED RANGES FROM
~0453663570E 06 TO 0,43644589E 06, 2702 VALUES IN ALL.
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Figure 1.4.14

ANALYSIS OF WHITE LIGHT SERIES OBTAINED BY CONVOLVING THE INVERSE OF THE
MINIMUM PHASE WAVELET OF RECORD 1006 WITH THE ORIGINAL RECORD

COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES= 51

LENGTH OF SERIES= 2682

DEGREES OF FREEDOM= 48

MEAN OF SERIES= 0417902389E 03
STANDARD DEVIATION= 0.71888679E 05

HIGHER CENTRAL MOMENTS
THIRD MOMENT= =0,47103929E 14
FOURTH MOMENT= 0,22192675E 21
FIFTH MOMENT= ~0,62127688E 26
SIXTH MOMENT= 0467908355€ 32

EXPECTED COUNT= 52,5882

CHI=-SQUARE= 0461046970E 02
PROBABILITY OF EXCEEDING CHI=SQUARE= 0496320E~01

POKER COUNT TEST RESULTS

HAND TYPE ACTUAL COUNT EXPECTED COUNT
BUST 130 158422720
1 PAIR 263 270414399
2 PAIR 69 57488800
3 OF A KIND 46 38459200
FULL HOUSE . 8 4482400
STRAIGHT 13 3485920
4 OF A KIND 7 2441200
8 OF A KIND 0 0405360

MEAN SQUARE CONTINGENCY= = 0473803157E=01
DEPENDENCY MEASURE= 0482003506E~02

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACM OF 100 EQUALLY SPACED RANGES FROM
~0,73412665€ 06 TO 0,48402021F 06, 2682 VALUES IN ALLe
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Figure 1.,4.15

ANALYSIS OF WHITE LIGHT SERIES OBTAINED BY CONVOLVING THE INVERSE OF THE
MINIMUM PHASE WAVELET OF RECORD 1026 WITH THE ORIGINAL RECORD

COMPARISON OF ACTUAL DISTRIBUTION AND NORMAL DISTRIBUTION

NUMBER OF RANGES= 55

LENGTH OF SERIES= 3082

DEGREES OF FREEDOM= 52

MEAN OF SERIES= 0629668643E 02
STANDARD DEVIATION= 0+49980906E 05

HIGHER CENTRAL MOMENTS
THIRD MOMENT= 043692747T7E 14
FOURTH MOMENT= 0,41691343E 20
FIFTH MOMENT= 0439579482E 25
SIXTH MOMENT= 0422342489E 31
EXPECTED .COUNT= 56,0364

CHI=SQUARE= 0415871704E 03
PROBABILITY OF EXCEEDING CHI-SQUARE IS LESS THAN 0400032

' POKER COUNT TEST RESULTS
HAND TYPE ACTUAL COUNT EXPECTED COUNT

BUST 143 181.84320
1 PAIR 307 310446399
2 PAIR 90 66452800
3 OF A KIND 53 44435200
FULL HOUSE & 5454400
STRAIGHT 12 4443520
4 OF A XIND 6 2477200
S OF A KIND 1 0,06160

MEAN SQUARE CONTINGENCY= 0443508112E-01
DEPENDENCY MEASURE= 0448342347€~02

PROBABILITY DISTRIBUTION

NUMBER OF VALUES IN EACH OF 100 EQUALLY SPACED RANGES FROM
=0427321346E 06 TO 0435513622E 04, 3082 VALUES IN ALLe
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1.5 Cross—Series Properties

The availability of simultaneous three component seismic noise records
from different stations affords opportunity for cross correlation and
cross—spectral analyses. Techniques similar to those of autospectral
analysis have been worked out and programmed for high speed digital com-
puters. The major computational difference is the need for a sine trans-
form in addition to the cosine transform since the cross correlation is
not in general an even function. Knowing the sine and cosine transforms
of the cross correlation it is easy to compute the magnitude cross power
and phase spectra, and it is also useful to compute the coherency. The
development of the usual expression for coherency can be done quickly for

transients and then carried over to discrete time for our case.

Cross Correlation, Cross Power and Coherency

For two transients X(¢) and ke (t) the cross correlation is

Py () =fX(-t) y(t+)dt

The cross power spectrum is then the Fourler transform

oo © o
| (WY _ (W
@x (W) =27 EJ(‘C)E o =5 | | xe) yee-1) €7 ey
3 -00 e

with the change of variables v = T+ this becomes

o 0 ‘
\ -t ‘ wr
@xucw\ﬁ;}jxwt’—‘ ot | 4t e dr
00

- o
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hence

@xj(w\?— AT EU‘J‘; F:}(“"\ (1.5.1)

where F;(w) is the Fourier transform of ¥X(%) , FS(w) the Fourier trans-

form of 5(+) , and the bar denotes complex conjugation. The auto-power

spectra are found to be, by similar treatment,
., =27 Rwy R

® = 2n Fyw Fytwy

The coherency is then usually defined as

|8y |
\/ @xx(k’) 633(“))\

(3Ol\y3 (bj\ =

| Fecor Fyean |

——
—

—

V ) Frgwy Fytw) Pty

This definition is not particularly useful since CO"\»‘J(A;) is always
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one. I1f the cross—correlation is weighted by some function, such as the
Daniell weighting function (Section 1.3), the coherency is not necessarily
one and has some meaning as a measure.

We define the normalized cross power vector PJ(VO)

éi\j (w)
Niwy= —
J B ) gy

!
where &;jlka now takes into consideration the weighting function /(7).

wrw
@;j(m: 5}{1 % ylerryde e T\ dr

-w ‘m

§x’3(w): Fx(w\F{,(w) -%('\A/(w)

where \A/ku)) is the Fourier transform of x&/ttﬁ and the asterisk
'
denotes convolution. @x:’( h)) is in general complex, hence N (W) is

truly a vector. The coherency is then defined

cohy,(w) = | Nw |

Daniell Window and M/N_Ratio

The treatment is almost identical for discrete time. The complete
transient cross correlation for the two series Xi» and fjt each of

points is
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N-171
Xt Yere , T=0,tl, N D)
== (N-]TI)

fyenr- A1

and the cross power spectrum with the Daniell weighting function is

-1
B, (= = Sin T2 Jwt
,(3(00\- an Cf)('r) — e

T- -(/\/-l) M

We shall take WINW, with Wp3 /M where M is the Daniell parameter,
and N=0,1,2,..., M . We have seen in Section 1.3 that, for N [m
large, the Daniell window is nearly rectangular. With Wo = T/m the
windows for neighboring spectral estimates K Wo and (K-H)Wo

overlap by about 50%. The Daniell window averages the sine and cosine
transforms over the window width and consequently averages the cross
power vector, NiwYy . we see, therefore, that ‘N(W\l, the coherency,
is less than or equal to one. If the N(“/) vector changes direction
rapidly over the band w EM the vector averaging will tend to cancel
out and the coherency will be low, and if the vector direction is not
changing or changing only slightly, the coherency will be high. Thus the
coherency as we use it is a measure of how rapidly the cross power phase
is changing. If the records being cross correlated are identical, the
phase spectrum is zero and the coherency is one. (Actually the coherency

may be slightly less than one since the Daniell window is not quite
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rectangular.) 1If the records are different, the coherencies will be low
unless there are some bands of frequencies where the phase remains

relatively constant.

Cross Spectra of Different Components at the Same Station

Figures 1.5.1 to 1.5.3 show the results of the cross spectral compu-
tations between different components at the same station. The graphs
in the figures are identified individually with the two record numbers
of the data used, the indices of the first and last points of the data
for each record and the Daniell parameter,hﬂ « In most cases, no com—
putation has been done for frequencies above five cps. The recordings
at any one station were made within a fraction of a wavelength of any
wave of interest so that no compensation need be made for linear phase
shifts due to spatial separation.

Figure 1.3.1 shows the cross—spectra of the components of the noise
recorded before the Logan shot 1902 km from the shot (records 1000, 1002
and 1004). The only really prominent feature of this set of computations
is the low frequency spike which is the tail end of the well-known oceanic
microseisms. The Benioff instrument cuts off fairly sharply at low fre—
quencies so that this splke is somewhat artificial in that its low fre-
quency side is simply instrument cutoff, but that sharpness of the higher
frequency side must be a real phenomenon. The phase spectrum does not
show the expected 90° phase shift for Rayleigh waves, but this may be
explained by the fact that the instrument characteristics are changing
rapidly here and are hence possibly non-uniform from instrument to

instrument. None of the frequencies with fairly high coherency seem to
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have phases corresponding to any known wave type. We note that the phases
have been plotted to fall between +T and =TT .

Figure 1.5.2 shows the cross—spectra of the components of the noise
before the Logan shot 2111 km from the shot point (Records 1006, 1008
and 1010). The 1008-1010 set of graphs have high coherence and power
at 1.9 cps, but the phase is =T which does not pin down any wave type.
The peak at 2.1 cps has a phase closer to -90° which could conceivably
be a Rayleigh wave. The 1006-1010 set of graphs has reasonably coherent
peaks at .6, 1.4 and 1.9 cps. The .6 and 1.4 cps peaks are nearly in
phase and could, therefore, be Love waves. The 1.9 cps peak is another
of the many bands which are fairly coherent but have phase relationships
which are not indicative ef any particular wave type.

Figure 1.5.3 shows the cross spectra of the noise recorded before the
Blanca shot 1610 km fpom the shot (records 1026, 1028 and 1030). There
are possible Rayleigh waves at 1 and 2 cycles per second, but the co-
herencies are somewhat low.

Figure 1.5.4 shows the auto spectra of the records used in the cross
spectral computations. They are included for convenient reference.

It seems that, in view of the above results, the model of a single
band of surface waves from one direction is entirely too simple. It is
much more likely that there are many surface waves of several frequencies
coming from several sources. For a few stations quite close to the coast
it may be possible to complicate the model to take care of surface waves
from a few directions, and produce some believable results. However,
the stations for which we have good noise data are very far inland, nearly

equi-distant from the Atlantic and Pacific coasts. Thus, sources from the
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Atlantic, Pacific, Gulf and Great Lakes may produce microseisms which
will be recorded with nearly the same amplitude at these inland stations.
On top of this we have local sources which confuse the issue considerably.
The higher frequency bands at 1.4 and 2.0 cps were seen in the last two
sections to have no particular directional properties and to have no
simple amplitude dependence on distance from water wave sources. We
conclude that there are of local origin and may be isotropic. Even

a fairly complicated model taking into account many sources may not fit

the data too well, and would certainly require a lot of labor to use.

Cross Spectra of Like Components at Different Stations — Linear Phase Shifts

The coherency measure used causes some difficulty if the two series
are shifted in time, since a time shift will result in a linear phase
shift. For example, e“"t has zero phase at time t=0 but at a later time
the phase is Wt. If the time shift is large, the phase changes over
the small band of frequencies W ™A\  will be large and will tend to
reduce the coherency estimate. If meaningful coherency values are to be
obtained one must line up the records properly in time before computing
the cross correlation. This procedure assumes that the relative time
shift is known and this is not always the case. For three component
records at one station there is no difficulty since a line up in absolute
time is all that is necessary. However, if one is trying to follow a wave
packet across considerable distance by cross correlation and coherency
measures, difficulties arise. 1If the records are lined up in absolute
time, the relative time of the maximum of the cross correlation may give

an ldea of the arrival time differences, but the coherency will not
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necessarily be large in the range of the frequencies which comprise the
wave packet. If the records are shifted the amount,ﬂ[ , indicated by
the maximum of the cross correlation and then cross correlated, the
coherency in the frequency region which caused the maximum will cer-
tainly become larger, but there may have been features in the original
record other than the wave packet which caused the maximum. Hence we
have still not identified the wave packet or its relative time shift.
The magnitude of the time shift for any particular wave packet will of
course depend on the velocity, V, of the packet, on the distance between
the stations, X , and on the direction of travel of the wave relative to
a line between the stations. The time shift can therefore vary fromt=o0 ,
if the waves are travelling perpendicular to the line between the stations,
to t= X/lv , 1f the waves are parallel to the line. The problem is
complicated by the existence of many waves of different frequency of
waves of the same frequency travelling in different directions. 1In even
the simple case of a single wave packet dispersion may disrupt the
coherence.

There is another scheme to find the appropriate time shifts which is
a bit more promising than the cross correlation method. If the cross
correlation is computed and not weighted by the Daniell factor, the
sine and cosine transforms will not average the cross power vector over
the Daniell window width. The cross power vectors can then be rotated
by phase shifts corresponding to known time shifts in the frequency
range of interest and averaged in this range. This is done for several
time shifts and one looks for the time shift corresponding to the largest

resultant of the averaged vectors. This should be close to the shift
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necessary to maximize the coherency in the band of frequencies when the
Daniell window is used.

Sone time shifting experiments have been done using data from two
different stations. Cross correlation and cross spectral computations
have been carried out on like components at different stations using the
methods described above. Figure 1.5.5 shows the complete cross correla-
tion of records 1000, the noise before the Logan shot 1902 km from the
shot point, and record 1006, the nolse before the Logan shot 2111 km
from the shot point. The two records were lined up in absolute time be-
fore the computation. If most of the energy was travelling in one direc-
tion we would expect the cross correlation to have a pronounced maximum,
but not necessarily for zero lag. There is no such maximum in Figure
1.5.5. (The correlation is the transient cross correlation and so dies
off to zero at the ends.) If the energy were coming directly from one
station to the other at about 3 km/sec it would take about 70 seconds
or 1400 data points. The correlation covers from minus to plus 2999
lags and should show a maximum if one were present. It is, of course,
possible that a maximum occurs for one freqﬁency and that it is masked
by the presence of other frequencies. To check this for the more energetic
bands, the data was band pass filtered before correlation. Figures 1.5.6
and 1.5.7 show the cross correlation for pass bands centered at 1.4 cps
and 2.0 cps. The results are perhaps a bit disappointing but not totally
unexpected. The cross correlation for the 1.4 cps band is exceedingly
sinusoidal. This can, of course, happen if the band is too narrow, but

we expect something more like the figure for the 2 cps pass band which
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shows a beating between the frequencies present. It is not possible to
pick a maximum on either of these figures with any certainty. If the
energy is contained in such a narrow band as the 1.4 cps correlation in-
dicates, the signal is not random enough for coherency to have any
meaning.

Some time shifting was also done to maximize the coherency by looking
for a linear trend in the phase. Figures 1.5.8 and 1.5.9 show cross spec-
tral results for records 1000 and 1006 for several different time shifts.
The frequencies about 1.4 and 2.0 cps were checked for a linear trend amd
appropriate shift made. The coherency was increased at these frequencies
for the time shift indicated. The shifts were +1.5 seconds (that is,
record 1000 has been shifted such that its absolute time origin, T', lines
up with absolute time T + 1.5 seconds on record 1006) and ~2.5 seconds.

In view of the cross correlation results, it does not seem that these time
shifts, even though they increase the coherency, have any particular physical
interpretation in terms of velocity and direction of travel of particular
waves. If the 1.4 and 2.0 cps are from local sources (and there must be
many of these local sources across the country to explain the occurrance

of the spectral lines at different stations) we would not expect the time
shifts to have any significance since the lines are narrow and the sources
isotropic. With such narrow band signals we can expect the coherency to be
high for shifts which are integer multiples of the wave period. We can see
that time shifting experiments are not particularly fruitful for the narrow
band signals or for the bands when the instrument characteristics change so
rapidly with frequency that a mismatch between instruments is probable. The
experiments are more suitable for long period records where local sources

play a smaller part.
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Some cross spectral computations were also done on some data from the
WMSO linear array. Simultaneous sections of noise were used with no time
shifting. The noise from the first instrument in the array was cross
correlated with the noise from several other instruments in the array.

The results are shown in Figures 1.5.10 to 1.5.15. Again we see that at
the frequencies with high coherence the phase is not changing rapidly.
Figures 1.5.10 and 1.5.11 have a Daniell parameter of 400 and a slightly
different frequency scale from Figures 1.5.13 and 1.5.14 which have a
Daniell parameter of 200. The smaller Daniell parameter will take averages
over wider bands and the resulting coherencies and phases will not be quite
as jagged as those for a Daniell parameter of 400. Auto spectra are shown
in Figures 1.5.12 and 1.5.15. When the coherency is high, we tend to say
that the waves at that frequency are travelling at right angles to the
array and there is no linear phase shift to disrupt the coherency computa-
tion. The phase sped%ra also show in some cases linear trends over bands
of freguencies which are of course accompanied by low coherencies. A time
shift would bring up the coherency and indicate the direction of travel of
the source waves for these bands.

A much more sophisticated analysis of array data is needed before any
reliable results can be stated. Simulation studies of the sort described
in Chapter 3 would be of interest with the array recordings time shifted
(delayed) to minimize the noise and thus utilize the directional properties
of the array. Similar studies could also be done with data from a two

dimensional array.
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2. PREDICTION OF MICROSEISMS

2.1 Prediction by Minimization of Mean Squared Error

Prediction and the First Motion Interval

Elementary considerations of the possible differences between the
signals from earthquakes and the signals from underground explosions
were based on the obvious differences in the source mechanisms. An ex-
plosion should give an initial compression whereas an earthquake, being
a shearing source, should give compressions or rarefactions depending
on the position of the observer relative to the fault plane and the direc-
tion of slip along the plane. A group of recording stations around a
source should therefore all record initial compressive first motion for
an explosion, but would vary if an earthquake were the source. Granting
the first motion criterian is legitimate, there is still the problem of
identifying the first motion on the record when the signal is corrupted
by noise. The problem is somewhat simplified by the fact that, even
though its pulse may be small, the first motion is followed by stronger
P waves which are easily discernible in the noise. These P waves there-
fore allow us to say approximately where in time the first motion pulse
arrived. If we could by some means predict what the noise would be in a
small interval preceeding the strong P waves and subtracted the predicted
noise from the signal plus noise, we would be left with the uncorrupted
signal and could make definite statements concerning the direction of

first motion. Figure 2.1.1 illustrates this idea with the assumption of

perfect prediction of the noise.
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In general, of course, we cannot predict perfectly, but a good pre-
diction could possibly increase the signal to noise ratio to a point
where there would no difficulty in picking out the first motion direction.
We will therefore wish to express the predictability of the noise in
terms of signal to noise ratio imprevement. Evaluation of the effective-
ness of the scheme can be done by prediction studies of the noise alone
without reference to any particular signal. The only parameter we need
is time length over which we must predict. This will be called the
prediction distance and it will be denoted by K in the following
analysis.

We wish to form a linear operator which will predict the "future"
of a record, X\ , from its '"past'" and possibly from the past of other
related records (e.g. three components at one station). We note that
even though we are not necessarily operating in real time it is necessary
that we use only the past as a basis for prediction since the past is
noise alone and the future is signal plus noise. We shall present the
analysis for the formation of a linear operator operating on three records
to predict one of the three. The expressions will reduce simply to the
case of self prediction, the prediction of one record from itself. The
analysis has been done (Wadsworth et al, 1953) for the two dimensional
case and the simple extension to three dimensions is given here.

The requirement that the record Xi be predicted from itself and
from ﬁ; and Z_ can be stated by the regression function (Wadsworth

et al, 1953).

M
/)ZHK = d +fc‘sx¢'-$ + Z bs‘ji-s +i Co Zi-g

S=o S<o S=eo
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where‘QfJK is the predicted value of the X1 time series K time

units ahead. One time unit is simply the sampling period and is .05
seconds for the Logan and Blanca records. The Xi¢ are the actual noise
values and d , Qg by and Cs constitute the linear operator which
must be determined. The criterion used in this determination is the Wiener
mean squared error criterion where we wish to minimize the sum of the mean
squared error between the actual and predicted X! series. This means,
of course, that we have to know what the future is of the noise above.
Hence a long series of pure noise is arbitrarily divided into past and
future and the operator formed. The operator, under the assumption of
stationarity of the time series, can then be used on the portion of the
noise preceding the first motion to predict the noise in- the first motion

interval.

Mean Squared Error Techniques for Three—Dimensional Case

The sum of the squared error is taken over the operator interval
length from +RK=N to ( +K= N-}h-l a duration of n time units.

Thus we minimize ]f where

N4+n-i-k 2
\
1= E (Xiak=Kias)
l=A-K
-l=K
Nin-l! . 2
I - [Xl\"’K - (d*thXi-s + st jf'S + icsif-s\
Sto Yy S=o

L= N-k
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with respect to d , &y , bhg and Cg . This is done by setting the partial
derivatives with respect to d y Qg bs and Cs equal to zero for all § .

The resulting set of M+ 4 equations for the 3M+‘+ operation coef-

ficients is

nd+ Z[as Xi-g =+ ESZS‘\.S +C$Z‘ZL-]: ZX‘“‘
{ ¢ (

S

d |
E Xi-r QSZ)\(th;-» +bg Yi-s¥i-v +Cs Z""Sx"”]:z)fi-kxn&
3 R { [ | ‘

L

d) 4i-r4 Z [QsZXi-s Yyi-r ¥ ESZSC-S Yi-nt Cszit‘-sw‘»»}’}:ﬂf'”’“m
. . ' ;

S iy f {

dzztw- *Z[QS Xi-g Biow + bsiyc s Bi- r+ cSEc'-szrVJ :Z},__r Xitie
i S ] ¢ L ;

'goy- r=0 to M,

where summations over | are from (= N=k fo (sVin-1-x , and summa-
tions over § are from S=0O to Q=M « We write this as the matrix

equation

RA=B (2.1.1)
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where R is a 3mM+4d  py IM+t4  gymmetric correlation matrix, each
element depending essentially on different lags of the auto and cross
correlations of X, , 4 and 2Zv . A is the 3M+4 by L solution
matrix where each column of A 1is the prediction operator ( Qf) Q‘E\ )
be, o, B, ¢85 iy C,ﬁ) d“) for different prediction distance K ,
and X takes on L. different values. A is obtained by inversion of

\J

the R matrix.

A= R.‘ 3

B is an L by 3M“'/ matrix, where each column of B is the right hand
side of the equation for a different K. The matrix equation can be

partitioned as shown below

iy

T 1 DI I oY = | ot 1 wooLL ] - U
Ris= Rz Res = | Rys= Ro Bz
| ! ;
l ) N *
Doy Do e PBirtog!| Dxice | | LiarXier
L li, L | . qtk _——— ¢
- — - — = — —— __'._.‘._.._... e ]
21_ 13 14_ bK - - a 2l
| R's' | R"S' | R"S" ° B"V: i
' {
| . | . - |
DJ"":‘"'S Z‘j»"‘lr:sl 23‘ v i - z&;-r)(iwc
IS T U .1 N L
aj . 34 e o = 3\
l Rrs" l R"S: C‘O 'thz
— )
! ‘Zzi'&"'sl LEi"‘ ' 2l Y !
I W L TR MU N 2 STk B .
| R44
‘ LS =t k.-
| ! 4 L i i ¢ .
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If we donote the auto correlation or Toeplitz matrix by

[, T m
r;\ r@ n ' [ r"_'
e Y Vb_\h ~

N \‘. NN
\ ~N AN N
\_\ \ \
NN
- N
-

where Y} is the auto correlation for the 3‘*& lag we see that the
diagonal submatrices of R in equation (2.1.1) are not quite auto
correlation matrices because the terms along diagonals of the sub-
matrices are summed over differemt intervals. If the operator interval
length, N , is large, the diagonal submatrices are only very slightly
different from auto correlation matrices and approach this as Nn=»O@
If we take the one dimensional zero mean case ( b = CS:OL’O)

with U large, the problem becomes the same as that treated by

Levinson (1949).

Predictability and the Percent Reduction

A measure of how well the prediction operator performs its task is

the percent reduction, RP « This quantity is defined (Wadsworth et al,

1953) as

RP: 100 (f - %’oﬁ-\,

where I}“ is the value for J for the operator used and Io is a

measure of the sample variance over the same interval.

Io= Z(XL-tK‘)?\)l
i



117

If we think of IQ‘IM as a measure of the variance of the prediction
we can see that the percent reduction is a measure of the amount of power
which can be predicted. In terms of the signal to noise ratio, if we
take S as a general signal and N the noise, then before filtering

we have

S S

and after filtering

Hence

s\ - = ()
Nlaeree V" 75 Nlpirors

Prediction Computations

In order to test the predictability, then, one must take a section
of noise record, divide it into past and future and form the R and B
matrices given in equation (2.1.1). The R matrix is inverted and R-'
is multiplied by B « The columns of the resulting A matrix are the
operators or filters for differant prediction distance K. nh predictions
for a given K are made by moving the operator along the real data for

successive points. The prediction error, Iw\ for this KK can then be
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formed and, with Ib for the same h points, the percent reduction can
be computed. This is done for each operator so that the percent reduc-
tion as a function of X can be obtained.

This procedure has been programmed for the IBM 709-7090 computers.
Computation has been done for one dimension with several M values with
K =1 t0 30 and for three dimensions with M= 38 also for K=1! to 30.
The results of the one dimensional experiments are shown in Figures 2.1.2 to
2.1.4. The percent reduction should increase with increasing length of
operator (M value) and does in all cases computed. For an infinite
length operator the percent reduction must decrease monotonely with ¥
(Robinson 1954, p. 148) which does not occur in the cases shown. This
is obviously due to the short operator lengths used in the computations,
and we can be sure that higher percent reduction would be obtained with
longer operators. The spectra of the records (Figures 1.3.6 to 1.3.9)
show that most of the energy is crowded into a few narrow bands, the
lowest frequency being about 1 cps. It would be best to have operator
lengths covering a few wave lengths of the major frequency components
which in this case would be about three seconds or at least 60 terms.

The method of solution for the operators then involves inversion of a
60 by 60 matrix which starts to suffer from round off error.

We note that in all cases the percent reduction falls off rapidly
at first and then has one or more plateaus. The Cherry Hill Park records
remain fairly predictable out to three seconds, maintaining a percent
reduction of about 50. This is attributed to the narrowness of prominent

spectral lines of these records. (A spike in the frequency domain represents
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a sine wave and can be predicted exactly with a two term operator.)

If a typical wave length of the first motion is established at 1
second the corresponding prediction distance for the C.H.P. records would
be 10 units. This would give a signal to noise ratio improvements of
1.4 and 1.3 for C.H.P. 31 (record 237) and C.H.P. 4 (record 204) which
is not significant.

The Logan 1902 records show a plateau effect in the percent reduc-
tions but the initial fall is more pronounced than in the C.H.P. records.
The vertical is the most predictable component and a 20 term operator
gives a signal to noise improvement of only about 1.3 for 1 second
(20 units).

We have seen that the predictability in the one dimension or self
prediction case is not particularly significant. However, one might
expect that the use of information from more than one component would
do somewhat better if the components used are related. The analysis
for three components has been shown and was programmed for the IBM
709-7090 computers.

The precent reduction for M  values of 5, 10, 15 and 20 (corresponding
to operator lengths of 16, 31, 46 and 61) for the prediction of the ver-
tical component, Logan 1902 V(M, record 1002 from itself and the two
horizontals is shown in Figure 2.1.5. Comparison of this figure with
Figure 2.1.3, the self prediction results, shows an almost imperceptable
improvement by using all components.

As mentioned above, the predictability is almost certain to be better

if longer operators are used. With the above method of solution the
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increase of operator length becomes impossible because the machine core
is rapidly used up and significant additional time is needed for the com-
putation. Therefore another method must be applied to obtain the longer
operators or the idea of prediction must be discarded as impractical.
Such a method does, however, exist and is treated in the next section,

2.2,
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2.2 Prediction and Spectrum Factorization

Comparison of Prediction Techniques

We have seen in the last section that the mean squared error technique
was not a practical method of prediction in the form in which it was used
because of the large amount of computer space and time required. The
program for prediction using the mean squared error technique was written
almost entirely in FORTRAN and, due somewhat to the inefficiency of FORTRAN,
the time required to obtain a 60 term self-prediction operator was about
10 minutes on the IBM 7090. The spectrum factorization method requires
the spectrum as an input but the time needed to compute a 500 term wave-
let is only 2 minutes on the 7090. Since the timing of both methods
increases as the cube of the operator length, it is easy to see that there
are tremendous advantages to the spectrum factorization method. The
computation of the complete transient autocorrelation of 3000 data points
and Daniell spectrum of 500 terms takes only about 2 minutes if high speed
techniques are used (Simpson et al, 1961b). The Levenson (1949) technique
has been programmed for the 709-7090 computers by Ralph Wiggins, but the
work presented here was done before this program was available. The
timing of the Levenson technique program increases as the square of the
operator length but is about the same as the spectrum factorization pro-
gram for a 500 term operator. The factorization method yields the minimum
phase wavelet from which, as we shall see, the percent reduction can be
obtained directly. The Levenson technique, on the other hand, gives the
prediction operator directly, and we must compute this operator for unit

prediction distance and invert it to obtain the wavelet. The choice
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between the two methods might well depend on whether one wants to actually
do prediction or just find the percent reduction. An iteration technique
for the multi-dimensional problem has been worked out by E. A. Robinson
(personal communication), and it will be quite a bit faster than the three-
dimensional technique described in the last section. The program for this

has not been completed at the time of this publication.

Decomposition

The spectrum factorization method is much more fruitful than the mean
squared error technique and the theory behind it is intimately related
to the contents of section 1.4. 1In that section we showed that we could
consider microseismic noise as a stationary ergodic time series and that,
with a few additional considerations, we could assume that microseisms
were generated by a white light (essentially independent) series convolved
with a minimum phase wavelet. The importance of the minimum phase wavelet
is that it is one sided, and therefore the expression for the present

value of Xt , the microseismic noise, involves only the past values of"ft
]

the white light series. That is

e
L=0

where b, is the minimum phase wavelet. We have seen that if bi is

known we can easily find aq: , the inverse minimum phase wavelet and can

therefore write

o0
gt = z a; X¢-t (2.2.1)
L=0
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so that all the past ? ¢+ can be found from all the past Xt « We can
therefore evaluate the expression for the minimum error for the mean squared
error criterion (Robinson, 1954).

The minimum error is
X
IM,N = E Yt+K— ‘t*K)

A
where x'HK is the true value of the series at time t+k , X3k
is the predicted value, and the E means expected value. The true value

is, from the above considerations,

0o
Xer = E b{ y?*"“: (2.2.2)

izo
But we know Ft“. from equation (2.2.1), so that the error in pre-
diction must result from our lack of knowledge of ‘?‘t“‘ fromJ:o to

¥ . Since f't are uncorrelated the best prediction we can do for

them is to predict their mean, which is zero. Hence, our best prediction

of X-HK , Qt{k , is given by equation (2.2.2) with ¥t+K‘-i=o

for t+K-L)T . That is

oo

AN

Kesi = z :b': ‘S't-m-i
R

This has been shown to be true by Wold (1938), (Robinson, 1954).

Minimum Error and Percent Reduction in Terms of the Wavelet

The minimum error is, therefore,
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T = E[Z btgt.“{_,: - i bi~« ﬁtmw]z“
(=0 "

K-1

SE[ T
= Z 2 Elr]

1
If the expected value of ;t is one

S 2
Tww? p bl
L*0

and we see that the minimum error and hence the percent reduction de-
creases monotonely with increasing prediction distance K . We can now
easily obtain an expression for the percent reduction, R? , in terms
of B{ . We recall that
Fa - |C>C>(l - ]:muv )
P To

where Io is the variance of the sample,

L=ExJ=E[Lus,.]
2 LED bi £] ;'f]z

Hence
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2
where we have made no assumptions regarding the value of E( ?‘t\)

Thus we see that if b, is known we can find the value of RP for
all WK without actually computing the prediction, or even the prediction
operator. We saw in section 1.4 that it is possible to find by , and
the process is called spectrum factorization. The derivation of the b;
from the power spectrum is given in Appendix E. We see also in Appendix E
that it is possible to find the first M terms exactly. This procedure
has been programmed for the IBM 709 and 7090 computers, and the program
listing, FACTOR, appears in Appendix G. Appendix E also explains most
of the program logic.

We note that the expression for Io requires all of the b, and the
program will only give us the first M . For long operators this is
not troublesome since the wavelet dies off fairly rapidly. However, the
estimate of Jo using just M terms will be a bit small, and therefore
the value of Rp will be a bit small. We could, of course, estimate Jo

from the data without using the §i since I° is just the variance,

N-i}

2
Io = _/\—V_ E(Xg ".)T)
20

where the mean is zero.

The computation of the minimum phase wavelet, bi , has been done
for 500 terms and the corresponding percent reductions are shown in
Figures 2.2.1 to 2.2.6. Included also are some of the minimum phase
wavelets and some of the inverse wavelets (Figures 1l.4.1 to 1.4.5). The

minimum phase wavelets for all the records are quite similar, so it is not
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necessary to include all of the graphs.

The percent reductions are now, of course monotonely decreasing and
are forced to zero at 1 = 25 seconds (not shown in graphs) because
is computed from the first 500 terms (25 secondg). Comparison of these
figures with the self-prediction of section 2.1 (Figures 2.1.2 to 2.1.4)
shows a marked increase in predictability using this technique, as much
as 10 in the percent reduction, but the increase is still not large enough
to improve the signal to noise ratio in the first motion interval by a
significant amount. Comparison of the estimate of 1o from the 509 term
wavelet with the sample variance estimated from 3000 data points indicates

that the percent reductions obtained are off by less than one.
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2.3 Summary Comments on Prediction

We have seen in the last two sections that the optimum least squares
prediction for short operators and for one and three dimensions are not
good enough to improve the signal to noise ratio significantly. Further,
we saw that the best predictions possible using the wavelet obtained by
spectrum factorization did not yield results of any consequence. The
fact that we only had 500 terms of the infinite wavelet is not important
since the estimate of the standard deviation using the 500 terms was quite
good (within 0.1 percent). We have alternatives of increasing the operator
length of the three dimensional prediction, of going to non—linear pre-
diction models, or, of course, of rejecting the technique of prediction
of the microseisms in the first motion interval as a useful method of
improving the signal to noise ratio. The first alternative, increasing
the operator length for the three-dimensional case, does not seem worth
trying. The improvement in predictability of the three—dimensional case,
over self prediction was seen to be minescule. Further, the improvement
of predictability of long operators over short was not significant. We

therefore reject the first alternative.

Independence of White Light Series

It is possible, also, to reject the second alternative, that of non-
linear prediction models. We saw, in section 1.4, in the decomposition
of the microseisms to a white light series and a minimum phase wavelet,
that the white light series could be considered purely random. That is,

the ‘gt were not only uncorrelated, but also statistically independent.
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From elementary probability considerations we have

P?l?,f)(.)xz) = PY'(X.) sz'f, ( X,_'X.)

The joint probability of Y, and ?2 is equal to the marginal pro-
bability of Y, times the conditional probability of Y , given f’. .

1f Y. and ?l are independent

Pc;, £ (X,%2) = Ps‘(x.)P?,,(’(z) ; Pf,,}f,(xz lx) = sz(’(z\

We can repeat this for many jFL and obtain

walf' fz-"fn (xm\,’(-)xz; ‘x*‘) = Pnu(x“*')

Thus from the definition of independence we see that the knowledge of

?\ )?\ S Y’\ give no information about fn +) . In a prediction
problem where f‘)fz) . YH are the past values and {hﬂ the future
values of a time series and the Yi)i:ltblware independent, we have no
information about Y"*' except its probability density F%“*‘(X.m4d
which we knpow from the assumption of stationarity. Any prediction scheme
using any of the T; {z] To »n Wwill avail us nought, but F%“*I(XAJ')a

The best least squares prediction which one can do in the case of in-
dependence is to predict the expected value aof fn4' , the mean,
which a linear predictor can do. Therefore, if random noise can be
considered as an independent white light series convolved with a minimum
phase wavelet, the best prediction one can do is linear prediction,

since the non-linear predictor will only bring in higher order correla-

tions which give no new information.
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Weiner (1946) states that linear prediction is optimum in the case
where the noise series can be reduced to a Gaussian white light series
by convolution with a operator. The reason for this can be seen from
the following analysis of the joint probability density for independent

and dependent variables.

Independence and Gaussian White Light — Example
Let T, and {'L be normally distributed independent random variables.

Then the joint density of ¥, and §, 1is

Bnxi = By R, ()= s, Pl i i

where ¥  is the standard deviation of {. . Now we define Y, and 4a
as a linear combination of Xc and Xl
3‘ = O~X| + bx;_

and therefore

P’)]")h( 34)'“]3.) d‘1| djy_ = P?'fl(x‘/xz) O(X. CQXl

or
P"'"')g_( ‘j 1) ji) = \Tl P?'?z (x'/xz)
where I Jl , the magnitude of the Jacobian for this transformation, is
T:: ad-be

Solving (2.3.1) for X, and XL :
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C

ol

X,:“j:‘j» "%\jz
Q
T T 59

Hence joint density for the dependent variables'q, and ’ﬁ2. is

':Tl UTlcfz'*(53CF }.
Pom, (90 9:)= Trae e"PH ) )

OTza‘L*.G‘;-bﬁ 22: 4 ( 0.22 bd-fGT?“CLC )jljz
—(zmw‘f 7 |4 RPN E

We note the expected values of the following quantities.
*+
U, = E(y)= @i+ 80
2 2 -2
M,= E(j;ﬁ):c ot +d* ([
’a:z:E(‘j.‘j;\: ac 12 + bd @*

Thus

Tl A R A I
P94l = e exP[ 2506 T

If l,q , the correlation of Y. and Y2 , is zero, the cross term in the

exponential is zero and Fﬁfﬂz(j')ﬁi) factors. This can be extended

for and we see that in general if the correlation
'q-‘vh.“"'lh((j‘)‘jle” 5‘1 &

coefficients are zero the joint density of h variables factors. Hence

for the Gaussian, linear independence implies statistical independence.

(Davenport and Root, 1950).
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Non-Linear Operators

We thus see the reason behind Wiener's statement that linear prediction
is optimum if it reduces the series to Gaussian White light. We need
actually only show, therefore, that the white light series, ft is Gaussian
in order to reject the adoption of a non-linear predictor. We saw in sec—
tion 1.4 that, for microseisms, ft was Gaussian in many cases, and was
in general nearly Gaussian. We can fall back on the independence tests
for these non—Gaussian cases which showed that we could consider {t
independent. The independence of “t forces us to drop the notion of
non-linear prediction and hence forces us to reject the technique of pre-

diction for signal to noise ratio improvement in the first motion interval.
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3. AUTOMATIC DETECTION OF SIGNALS IN MICROSEISMIC NOISE

3.1 Detection System

Description ~ Inputs and Outputs

A detection system to automatically detect signals in microseismic
noise has been designed and a computer program has been written to
simulate the system. The system and programs have been developed by
S. M. Simpson, Jr., for Geoscience, Inc. A flow chart of the computer
simulation of the system appears in Figure 3.1.1l. The signal plus noise
input is rectified by squaring or by taking the absolute value and this
rectified waveform is averaged. The averaged rectified wave form then
enters a network which decides if there is a signal present or not, and
sets an alarm if there is a signal. The system variables are the type of
rectification, the averaging time, the hesitation time and the alarm level.
The averaging time is the length of time over which the rectified wave-
form is averaged before going to the decision network. Averaging over
some length of time is necessary to reduce false alarms due to an occasional
high noise amplitude, but the length must not be much greater than the ex-
pected length of the signal, since the average would be too small to
trigger the alarm. The hesitation time is the length of time that the
rectified averaged input must remain above the alarm level before an alarm
is sounded. This also tends to cut down alarms which might be caused by
noise spikes. The alarm level is the ratio of the value which averaged

rectified wave must reach for an alarm to the r.m.s. amplutide of the noise.
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It is, therefore, the signal to noise ratio at which the system can operate.
For example, if the alarm level is 1.75, an alarm will not be sounded until
the average rectified waveform reaches 1.75 times the r.m.s. noise amplitude.
The system as it stands is an event detector. It tells whether or
not an event has occurred, but makes no statement as to the nature of the
signal which triggered the alarm. Such a system could be used in an auto-
matic nuclear surveilance network to control the collection of data.
Only data near the time of an alarm would be recorded, and these alarms
could be studied for source type. An alternate procedure would be to
collect all data and just study the portions corresponding to alarms.
In order to rate the effectiveness of this system, it is necessary
to study the false alarm rate and failure to detect rate as a function
of the system parameters. The next few sections give the results of
false alarm and failure rate studies on the computer simulated system

for raw and filtered signals and noise.
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3.2 False Alarm Rate — FALARA

Generation of Input Noise

The false alarm rate of the detection system can be obtained by using
a pure noise input rather than a signal plus noise input and counting the
number of times an alarm is sounded as a function of the system parameters.
A large amount of noise representing many hours of sequencial microseisms
is necessary to carry out the study. Since only a few minutes of consecu-
tive microseismig noise is available from our digitized noise library, the
microseisms must be generated artificially. We have seen in section 1.4
that this could be done to a good approximation using a minimum phase
wavelet from real data and Gaussian white noise. Thus, the artificial
microseisms, Xt , shown in the upper trace of Figure 1.4.16, are

generated by the convolution

Xt =z W{ ?t-—i

vwhere \Vi is the wavelet and Yf is the Gaussian white noise. The
wavelet used in these studies was computed from record 1002, the vertical
component of the noise before the Logan shot 1902 km from the shot point.
The Gaussian white noise is generated from the Rand random digits by
summing non-overlapping groups of ten digits. The central 1limit theorem
tells us that the resulting sequence will have an approximately normal
distribution.

A 500 term minimum phase wavelet was computed and every other point

was then deleted. This left a 250 point wavelet with an equivalent
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digitization rate of 10 points per second. The deletion is not unreasonable
since there is almost no power above 5 cps. This wavelet was then con-
volved with 85,249 points of Gaussian white noise to yield 85,000 points

of artificial microseisms which correspond to 2.22 hours of noise.

False Alarm Rate Studies

The computer program FALARA (FAlse Alaram RAte) has been written by
S. M. Simpson to simulate the detection system with pure microseismic
noise input. For each set of system parameters the simulation was continued
until either 100 alarms were sounded or all 85,000 points of noise were
used. A flow chart of the simulation for the false alarm rate is shown
in Figure 3.2.1 along with the system parameters used. As can be seen
from this figure, two different types of rectification were used with five
averaging times, ten alarm levels and five hesitation times. The false
alarm rate is computed in units of alarms per hour. The results are shown
in Figures 3.2.2 and 3.2.3 where the false alarm rate is plotted against
the alarm level for several averaging times and for both types of recti-
fication. Each figure is for a different hesitation time. Curves are
included for only part of the results, but these are sufficient to
indicate over-all trends in the system.

It is obvious that a desirable system should have very few false
alarms for a low alarm level. We see from the figures that the curves
with both low false alarm rate and low alarm level are relatively insen-
sitive to hesitation time. For a given hesitation time the curves show
that a long averaging time is desirable. These qualitative results are

Just as expected. The noise amplitudes change fairly rapidly and the
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high noise values, which are of short duration, are what trigger the

alarm. Consequently the curves for short averaging time are affected

by the hesitation time whereas the curves for long averaging time are

only slightly changed. We note that for given averaging and hesitation
times the curves for rectification by squaring are always better. We also
see that the curves for high averaging times are fairly close together,
which indicates that very little improvement will be obtained with averaging

times greater than 10 seconds.
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3.3 Failure Rate - FAILRA

Description of System

The failure rate of the detection system is somewhat more difficult
to obtain than the false alarm rate. Both signal and noise are required
along with several signal to noise ratios. In the simulation of the
system, the signal, scaled to give the required r.m.s. signal to noise
ratio, and a block of noise are added together to give the input wave-
form. This 1s rectified and averaged and sent to the decision network
where the alarm is announced if triggered. Figure 3.3.1 shows a flow
chart of the computer program FAILRA (FAILure RAte), written by S. M.
Simpson, with the system parameters used to obtain the failure rate.

The artificial microseismic noise used for the false alarm rate
determination was used for the failure rate studies. For the signal it
was necessary to pick out a representative bomb record with a fairly
high signal to noise ratio so that the noise occurring with the signal
was negligible compared to the microseismic noise added later. The record
chosen was the vertical component of the signal from the Blanca shot
recorded at 1398 km from the shot point (record 58, see Figure 3.3.2).
Every other point of the first 600 points of this record were used thus
giving 30 seconds of signal. The signal to noise ratios used were 1.78,

2.07, 2.37, 2.67, 2.97, 3.26, 3.56, 4.0, 4.45 and 5.34.

Failure Rate Studies
The system simulation was carried out for a hesitation time 1.5

seconds, both types of rectification, five averaging times, ten alarm
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levels and all above signal to noise ratios. For each set of system
parameters the detection was tried 101 times and the number of successes
and failures noted. In graphs showing the results, Figures 3.3.2 and
3.3.3, the success probability is plotted against alarm level for different
averaging times. Each figure gives the curves for a different signal to
noise ratio. The complete set of results is not given since the success
probabilities for signal to noise ratios greater than 3.26 are nearly
all equal to one.

The curves show that the long averaging times are successful over
a smaller range of alarm levels than the short averaging times for a
given signal to noise ratio, and they stop being successful at an alarm
level approximately equal to the signal to noise ratio. This is not sur-
prising since the long averaging time will average the signal alarm but
the short averaging time will permit high amplitude pulses to trigger an
alarm.

The wider range of success for short averaging times is offset by
the unavoidably large false alarm rate which was noted in the last section.
The most generally effective system parameters must balance the false
alarm rate and the failure rate. 1In Figure 3.3.4 the overall system effec-—
tiveness, taking into account both false alarms and failures, is shown as
a graph of signal to noise ratio versus false alarm rate for .95 success
probability. The curves were obtained, for a given averaging time, by
picking off the alarm levels for .95 probability of success for all signal
to noise ratiosand then turning to the false alarm rate curves and picking

the false alarm rates for the previously obtained alarm levels. The
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hesitation time was kept at 1.5 for these curves. We see that, for
smaller signal to noise ratios, rectification by squaring and use of long
averaging times are best. For a signal to noise ratio of 1.78 and 10
second averaging time gives about 10 false alarms per hour, and as the
signal to noise ratio increases the false alarm rate drops sharply so
that the system is quite good at high signal to noise ratios. The large
number of false alarms make the system relatively ineffective for signal

to noise ratios less than 1.78.
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3.4 Automatic Detectior with Filtering

Band Pass Filters and the Signal io roise Ratio

The last section showed the overall eifoct of the detection systiea
and indicated that it was not particularly good for signal to noise ratios
less than 1.78. If, however, the signal to noise ratio of the raw data
can be improved by filtering, the usefulness of the detection system may
be increased enormously. Examination of the spectra of the noise records
(Figures 1.3.6 to 1.3.9) show that most of the power is between 0 and about
.7 cps with a few spikes around 1.4 and 2.0 cps. The vertical records have
less energy at the higher frequencies than do the horizontals. If we look
at the noise spectra through a window from .7 to 1.8 cps we see only a very
small percentage of the total power. The signal, on the other hand, has
energy all through this band. If a reasonable percentage of the total signal
power appears in this range of frequencies, a simple band pass filter will
improve the signal to noise ratio quite a bit.

The programs FAILRA and FALARA can be used again to study the failure
and false alarm rates by pre-filtering the signal and noise and the proceeding
as in the last two sections. The flow charts in Figures 3.2.1 and 3.3.1 are
applicable if "Noise Tape" is changed to "Filtered Noise Tape'", and "Signal
Tape' changed to "Filtered Signal Tape."

The signal to noise ratio improvewent obtained by band pass filtering
can be estimated from the spectra of the signal and the noise which are shown
in Figure 3.4.1. If the signal and noise were initially scaled to have a

one-to—-one ratio, and were then band pass filtered to pass .8 to 1.7 cps
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we see that nearly all the signal would remain and nearly all the noise
would be removed. The signal to noise ratio improvement for this case

would be a factor of about 5.

Effect of Filter on System Characteristics

It is important to see if the detection system characteristics change
significantly when the filtered signal and noise both have band widths
which are narrow compared to the band widths of the raw signal and noise.
If the characteristics are relatively invariant with band width, the system
can be said to be an energy detector and its effectiveness can be measured
in terms of the signal to noise ratio improvement brought about by the
filtering, and the system response to unfiltered signals.

The constancy of the system to change in band width was studied by
band pass filtering the signal and noise separately and using the programs
FAILRA and FALARA to obtain the false alarm rates and failure rates. The
signal to noise ratios and alarm levels were computed from the amplitudes
of the filtered noise and signal. The results of the study are shown
in Figures 3.4.2 to 3.4.6. As in the last two sections, the false alarm
rate is shown as a graph of the number of false alarms per hour against
alarm level, the failure rate is given by the success probability as a
function of alarm level, and the system's effectiveness is shown in a
graph of the false alarm rate versus signal to noise ratio. In comparing
these graphs to the ones for unfiltered data we see only slight differénces.
The trends are all the same and the actual curves, particularly those for
longer averaging time, are approximately the same. The overall system

effectiveness is also about the same for the filtered and unfiltered cases.
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In view of the findings from the filtered and unfiltered cases we

can say that the system is essentially an energy detector and that the
curves obtained for the unfiltered case can be used for the filtered case
if we can compute the signal to noise ratio improvement due to filtering.
We have seen that for the particular signal and noise used this improve-
ment was enormous and results in an extremely low false alarm rate.

With the use of the curves which have been presented one can easily com-
pute the range of signal amplitudes which can be detected reliably if

the level of the background noise is known.
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4. SUMMARY

The seismic data from the Logan and Blanca underground nuclear shots,
which was provided by the Air Force, has been digitized and, along with
other data contributed by Dr. Bruce Bogert and by United Electro Dynamics,
Inc., has been subjected to many computational experiments. In the first
of these the microseism data was considered as a signal and the object
was to infer the nature of the sources and the wave types involved. We
saw that the amplitude of the microseisms at about .3 cps decreased with
increasing distance from the coast, but the higher frequency did not dis-
play any regular trend. The suggestion is that the low frequency noise is
of oceanic origin whereas the higher frequencies are more likely of local
origin. It was not possible to pin down Rayleigh and Love waves with any
degree of certainty, but their presence was not disproved. The failure of
the wave type experiments is attributed to the complex nature of the micro-
seisms. The model used cannot deal with many waves of the same frequency
but different directions of travel.

The inadequacy of a simple deterministic model motivated a statisti-
cal treatment of microseismic noise. The microseisms are considered as
a time series and, under the ergodic hypothesis, the relative constancy
of the power density spectrum suggests that the time series is at least
wide sense stationary. Studies on the microseism amplitudes show that
their probability distribution is Gaussian and that they are dependent.

The power density spectra have been computed using the Daniell tech-

nique. The spectra are quite similar in structure over distances of
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several hundred kilometers. There is a prominent peak at about .3 cps
and in some cases there are peaks at 1.4 and 2 cps. The low frequency
peak is interpreted as the high end of the oceanic microseism band which
is cut off on the low end by the seismometer response. The higher fre-
quencies are attributed to local causes.

Cross spectra of different components at the same station, like com-
ponents from different stations, and array data have been computed. Again
it is difficult to pick out individual wave types and it is not possible
to follow waves from one station to another. This is again attributed
to the complex structure of the noise.

Since the microseisms can be considered as a wide sense stationary
time series, a mathematical description is possible. The moving summation
and autoregressive representations are valid. With the assumption of
an absolutely continuous spectral density the spectra can be factored and
a minimum phase wavelet found for the moving average representation. The
generating model for microseisms is then a white light series into a minimum
phase system. Probability studies on the white light series obtained by
convolving the inverse minimum phase wavelet with the original data show
that the white light is essentially Gaussian and independent.

The minimum phase wavelet is also the predictive decomposition and can
be used to compute the predictability of the microseisms. This technique
of prediction is found to be faster and easier to handle than the mean
aquare error method, although the Levinson technique is quite good. The
predictability of the microseisms is not very great. About half the energy

(50 percent reduction) can be predicted for one or two seconds and then the
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decrease is fairly rapid. Multidimensional prediction does not give appre-
ciably better results than the one dimensional or self prediction. Thus
prediction as a method of noise reduction in the first motion interval

is not particularly promising. We can say, however, that our linear pre-
diction is the best we can do, and that non-linear operators will not help.
This is because the microseisms can be considered to be generated by Gaussian
white noise into a minimum phase system. In this case the white noise is
independent and higher correlations give no information about the noise.

The mathematical model enables us to generate artificial microseisms
so that long periods of continuous noise are available. These long noise
series are required by the computer program which simulates a detection
system. Noise above is needed to compute the false alarm rate and signal
plus noise is needed for the failure rate. The system effectiveness is
plotted on a graph of false alarms per hour as a function of signal to
noise ratio for 95% detection probability (5% failure rate). The system
characteristics are found to remain approximately constant when a band
pass filter is introduced at the input. Thus the system will function
as an energy detector and band pass filters can be used to improve the
signal to noise ratio. Improvement of a factor of five was found for
the particular signal, noise, and filter used.

The emphasis has been on the statistical approach throughout this
thesis. There is, of course, plenty of room for additional work of both
statistical and deterministic nature on the available data in the same
general area as the present work. More complicated models which take

into account several wave types and many directions of travel may be
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introduced and fitted to the data. New techniques will enable multi-
dimensional prediction studies with long operator lengths, and it would
be interesting to compare results of this sort of study with the long
operator studies of section 2.2.

The cross correlation results on the array data certainly do not
represent exhaustive study. Multi-dimensional prediction experiments
as well as summation of records with variable time lags would be quite
interesting. Three component and array detection system studies by com-

puter simulation would also prove useful.
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APPENDIX A

WATER WAVE PROBLEM

Longuet-Higgins (1950) has shown that a standing wave can produce
a second order pressure fluctuation which is unattenuated with depth
and which has twice the time frequency of the standing wave. Hence
it is possible to show that microseisms could be produced in deep
water even though the linear theory tells us that the pressure fluc~
tuations die off exponentially with depth. In order that there be
enough energy transmitted to the bottom, there must be a '"patch" of
standing waves which is coherent over a fairly large area and the
patch must not move because the motion will cause the pressure oscil-
lations to average out to zero. Therefore the standing waves must
meet nearly head on. In fact, it has been shown (Kenyon, 1961) that
if the travelling waves meet at an angle © (©=0 , head on), the
average pressure on the bottom must be multiplied by exP(-2}'\\(S'\h9)
where h is the depth of the water, ® the wave number and © the
angle between the travelling wave fronts.

There is a special case of interest when the waves meet at such
an angle that the "patch" of standing waves moves with a velocity, \g 1
equal to the velocity of propagation of Rayleigh waves, V,. , in the
medium. The travelling waves, with velocity Vt , must meet at an angle &
such that

Vi = N /sin(6h)

In this case there is essentially a resonance and strong microseisms
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could build up if the "patch'" of water waves remains coherent for a
long enough time.

One of the problems considered by Longuet-Higgins was the two
dimensional compressible case of a layer of water with a rigid lower
boundary and a standing wave at the surface. His solution requires
the small parameter expansion technique of handling non-linear problems
and illustrates the frequency doubling effect as well as organ pipe
resonance. The problem which will be treated here is a good deal
simpler in that it considers the incompressible transient problem.
This is done to illustrate the energy swapping to the sum and dif-
ference frequencies of all frequencies present and uses a representa-
tion for non-linear problems devised by DeVorkin (1963). DeVorkin's
scheme is particularly useful in that the solution is in terms of
kernels which do not depend on the initial conditions. Therefore
once the kernels have been found for a given geometry the solution of
many problems with different initial conditions can readily be found.
The method is also useful for statistical initial conditions.

We consider the two dimensional transient problem of an incom-
pressible irrotational fluid layer of constant thickness, h , over a
rigid half space with arbitrary initial conditions on the velocity and
surface shape. We assume a velocity potential ?’ « The velocity is
therefore V: ‘6? « The continuity equation is then VILP:O and

the equation of motion is

Q—z+&\7'§7ﬁ+3ﬁ*-‘—§?=0
Dt P
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where [l is the gravitational potential, ? is the density (assumed
constant) and P  the pressure. We factor out a {/ and obtain

Bernoulli's equation

g
-%;f. -\—VLP‘V'“{}"‘ a%+ ¢ ©

where '8 is negative downward and p=o at the surface 34:')2 .

The free surface condition is

o am W L % _
% X S—'E + -g{'-o at ?-”V((X,f) (A-1)

Bernoulli's equation becomes at ?:O

&Y, (a? o\

2
+| = + 3179 (2
3y ) or "yl by T I 0

The solution to the continuity equation which satisfies the con-

dition g—f-:o at 6’=’h is
% .
_LmX

. h
Puy ?r»*“Z g, [emr+eme” Ve (A=)
Mne-M
where we have assumed a discrete set of frequencies. DeVorkin's repre-
sentation scheme applies to total differential equations and hence to
the Fourier transform over the spacial frequencies of the boundary equations.

The initial conditions are

for 1 Fimo) | m:-mtom

for’?.‘ /V(M,o), = -mTom
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where F(m,ﬂ and /\/(m/t) are the Fourier transforms of (p(f) and 'v(('ﬁ),

We combine these into a single variable

(//m ) Rz 1, o Umi lA/Lfk{
+n-‘- F(‘M)O\) ¢1= /V('M,o) R (/3‘ F(—lh#ljo)) %/’A/(‘M*',-‘J}} cte.

The representation scheme is then:

F(m,t)= ; Ky Y, + E K;‘g “I; V’& -rl\_: Ky ¥, Ya ¥+
xR

Nﬁx
Nimt) = ZLW{’ +ZL A EL’:M%%%*“‘
Xoy

which can be combined to

heo s LRu %*}:R“B % %'E?w XW/ bt o0
«BY

where

wh(ﬂ: F( M—zf-',t\ for n odd 2

%‘H) ':/\/('.‘_'__.T.:f-)f) )Cm» N €ven, 22, (a-5)

The R's are thus system functions independent of initial conditions.

The boundary equations (A-1) and (A-2) apply at % = 1? but since
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'Y( is unknown the equations must be expanded in a Taylor series about
'8 =0 in powers of 'bl . Expanding to second order only

‘(ﬂ'g_%n +pr1+%’:+€"7=°

Lex'?&—(f)}—%(%n"?f =0 (A=7)

where the subscripts denote differentiation.
We take the Fourier transform of these equations to obtain

Fom = 0L 7 Cp) Fp) Nimep) = T p Fep) (m-p) Fem-p)t
p P

"‘E?C(P) F(P) (M-P)C(m—p) F(M—p)+ %N(M) 20 (A-8)
P

for equation (A-6) and a similar expression for equation (A-7). In

this transformation we have used the fact that multiplication in one
domain is convolution in the other, and have set the transform of %—%
equal to C(m) Ftm) | The dots represent time differentiation.

We note that equation (A-8) contains more than one term with a time
derivative. Poincare's theorem on small parameter expansions does not
guarantee a solution unless the right-hand side contains not time
derivatives. We can, however, consider all the time derivative terms

as an operator, H . operating on F (»\) and then show that the operator

H= I-&% can ve inverted if Q is small. That is, if the operator H

cannot in general be inverted, we must demand that it can be expressed
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as I;-Q where A is small enough that the Neumann series resulting
from the inversion converges. Hence, for many cases we must impose

the restriction that the non-linear terms be small compared to the

linear ones.

Since }* can be inverted we go ahead and use the representation
scheme equating terms of like order and remembering that the equations
must hold for arbitrary initial conditions, qu‘ .

The first order equations are from equations (A-6), (A-7) and

(A-8), using the notation introduced in equations (A-4) and (A-5),

'n ht|

Ro( — Ca X =0
X h
R () CCF) R = geamn

These can be solved to give

Ru= Qs expliy(ng)t] + Q- expl-i Y(nT)t]

for n odd, where
fin,7) = \/;( SONCY

%+ {(n7)
2 ¥(n37)

..% "i X(PLJW (g
Q- = 2 ¢(n7) "

Qq =

h &
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where J nw is the Kronecker delta, and

Rw = by exp[ i Fen7t]+ b exp[-i¥(n7)t]

for h odd s Where
-n-3 Q(%z)_ y(hT)

byz _*
N i Snai a

b. = ‘,lilC( ‘L‘_‘%?_)-g— { (h,7)
2 Y (n7)

Jnse

The above equations for R: and Rn“ are correct for A f T .
For N= J ’R: andR;ﬂ are zero for all Tt .

The second order equations, obtained by equating the second order
terms in equations (A-6), (A-7) and (A-8) containing the second order
kernels and convolutions of the first order terms. The convolutions
may easily be performed and the R:‘\B ’ é:‘l*(; equations can be con-
sidered as a matrix equation. However, due to the simple coupling of
the equations only a 2 X 2 matrix need be considered. The zero spacial
frequency, NW=J , must again be considered as a special case.

The second order equations are

2R b bogL R %fp_g@z)zm[ o
K

Pe! (A-9)

i) Dl AL
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where Nl: 4+ 2and K and p are odd,

Tkt 22 (DR =

/v~/
Z(P-J (2 ZR“({ ZR"P

The equations must hold for arbitrary ‘/& so that
N=|

Ro-a R | (B7)e(22) [ R Ry ™+ R] R
N-I (A-10)

ﬂRV%%W“]

4
N
p‘ :

()
e
—_

‘S
»>i{f
-

—

\
(@
L
>

(
”\—0
_
/"\
ol

P=1
and " N=! P AP ~hpP
- - - P "
R (e () R =) 2 () [RRHRLR.
P=) (A-11)

h
The convolutions are not hard since Rq is diagonal. The last two

equations may be written
: nal o _ n
R::_Q - ? RKQ - TK*(
L n-J) h+i h odd
RUL + (22) ()R = Tods
We write this as a matrix equation
[y A n n 7
R :«Q N A RK,Q —l_u
Tht) Al N+
R k{ R K{ ﬁ

I

-~



182

where A is the matrix
® -%
2el5) o

The solution to the equation is, then,

t
" n
K_Q - e—A(t-T) K'-(
RV\‘N = T)\-&[ dT
S
] h4!
Since R K{ » RK,Q =0at T =0. This is simplified considerably
if A can be diagonalized. 1I1f U is the transformation matrix for
this diagonalization then R?( A = U SK 2 and
Y " "
S T
<Q -] ®¢
U ne} + A U hfl - T hye:
S kQ k{

multiplying by U™

St o YA [ | = lJ"[ihiq

nii

b KR "y
where UﬂAU = D is diagonal.
Then t n
x4 e‘D(t ) U" Tﬂ« JLT
St x4

and
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and U—’

l

i / (H'J’)C(V-'—?)
t

For the matrix AU
P

are

p—

U=
l

the term e D(t-T) becomes
-

€X P(- Dnn (*'T))

O exP('DMI,m: (t'T))
and the solution for RQQ ng J, T4l 1S then —
- - — ’ ]
L ()|
R:\q X+ Y ‘ L/("“3}C.( %7) ()(" Y)
Rnﬂ - _i/(ﬂ"?)C( '15—3") (x+ Y) na4)
s (VT -x=f T

where

\

yERC
e

[
4\/-—3——-‘
bh-7) ¢ (22)

. C} A

1

vy

LJ )
(n-7) ¢ (2]
>

\

X= exp(i Yty ()
>/: exp(-t ¥n) (t'ﬂ)

AT
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For the zero spacial frequency, which is the frequency of interest
for deep water microseism generation, N:7J, Tel , we have from

equation (A-11)°

TH
RTH-D y Rk(-O

In equation (A-10) we note a symmetry in WK and ¢Q so that we

need only consider half of the right-hand side from which we determine
% I

half the solution for X . We call this half of the solution R KQ

and the entire solution is thus
'y
R«

We can determine C(M) from equation (A-3) by setting '6« =0 after

differentiation.

C(W\) = Ttan "\(th)

RZ
The solution ‘Q is then

K- ) . »
{2 b0 [T /) (L
)

(257 ) %25 o tanh (g tn( 2 0] [RE R [m

where the Ry are functions of T . We substitute in for the

and integrate to obtain terms of the form:
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N pe—
() + ¥ (Tarar)

b 2be expLli WO M o, (s e rir-ei]
k) - y(T-k-1) M V() - Y(T-k-1)

a-b_ explt (1) +¥(T-K-1)) ¢ ]
YUR\=Y (T-x-1)
Terms in e.xp[ii(((K\ 1)((3""*’)\*‘]

+

} + const + other

To see what frequencies are present we look at the frequency of one

term, e.g. the first term above. This term, 77 is
T = 1(. expiz (Yiry- Y(TK*'M‘

where X{K) is

Y(k) = E}%t&mh(%k\

We assume that h is large (deep water) and we have

Y(k) = ) % h

YT = 2 gk

The frequencies present are then
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which are the sum and difference frequencies of all frequencies present.
I1f we start with just a few frequencies we generate many more due to the
nonlinearity of the problem. A study of the energy flow from one fre-—
quency to another is possible with the representation scheme used, but
is quite tedious. We have shown here only part of the second order
kernel, R:\Q which is itself quite cumbersome, and the higher order
kernels are even worse. The only saving grace is that once the kernels

are found the problem is solved for arbitrary initial conditions.
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APPENDIX B

NORMALITY TEST FLOW GRAPH

Input - X(I) series, I=1,LX

Compute mean
[
XMEAN = 2 X(1)/ix
I=1
Compute standard deviation

LX 2‘/ V2
STDEV= Z(x(l)—XMmN\ Lx]
I=1
Define NRANGE
NRANGE =\/IX
(This 1s an arbitrary definition. NRANGE should be small
enough so that at least 5 values of X(I) fall in each range,)
Find the X values which divide the normal density with mean XMEAN
and standard deviation STDEV into NRANGE ranges of equal
probability. Use SUBROUTINE NOINT2.
Returns LRANGE(=NRANGE-1) values for range limits, RANGE(1l).
First range is (-QD, RANGE(1)), 1lst range is (RANGE(LRANGE),Q®).
Count number of values falling in each range. Use SUBROUTINE FRQCT2.
Returns fixed point count of number in each range in vector

ICOUNT(I).
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Chi Square test

P=1/NRANGE=probability of falling in any range.

NRANGE "
¥tz ) (zcountio)- Pai)’/(peLy)
I=i
Number of degrees of freedom=NRANGE-3. Use SUBROUTINE
CHISQR.
Compute probability of exceeding '7Lz . Use SUBROUTINE KIINT1.

See APPENDIX G for program listings



189

APPENDIX C
EXPANSION OF EMPIRICAL PROBABILITY DENSITY FUNCTIONS ABOUT THE

NORMAL DENSITY IN TERMS OF MOMENTS

It is possible to expand a probability density about the normal
density if the moments higher than the mean and variance are known. It
is not, however, guaranteed that the expansion will converge in all

cases. If Fix) is the probability distribution, and {}x\ s

o“:(x
Tdx

is the density and (P(x) is the normal density,

Yoz = e
(X\“ \/EER €

fc x) =

then the expansion in terms of the derivatives of the normal density,

the Edgeworth series, is

]f(,q— Co%&)* c‘_, qu L2} ‘?tx)"'"“ (=)

and will converge if the integral

@ -X3y
f e ol Fx)
~oo

converges and if f:(x) is of bounded variation in (~0C0© , OO)
(Cramer, 1946). For our purposes we need not worry too much about the
convergence. We only wish to see if we can approximate the distribution

fairly well with just a few terms of the expansion.
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It is now possible to obtain the coefficient Cn in terms of
the moments. Remembering that the normal density, LP(") is the "gen-

erating function" for Hermite polynomials

(2[_)" _X%a = (=1) H (x) € —X%

dx

(C-2)

where H " (X) is the nth order Hermite polynomial, and that the

Hermite polynomials are orthagonal with respect to (P‘x)
15

@ | X
HM(X\‘ Hh(x) (‘F(K)&K = ‘SH“‘(’&) Hr\(ﬂ)'e sz
&m Vzﬂ ),

H' ‘FOP mz=h (C-3)
- {O for m#EN

we can now solve for the Cn .

tn)
Substituting IP(X):(")V\H“(‘&) ?(X) into equation (C-1) we have

PY .

2 ¢
(e 6 s

Multiplying both sides by Hm ( X) and integrating we have, because of

(C—S) »

(c-5)

o
Cm= (")MJ Hi ) f0x) oLX
oo

Since H ™ (x) is a polynomial and "F( x) is a probability density
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the integral is simply a sum of moments. The moments (central moments)

are /(,{ K where

s= [ Cp-mfop) o)

-0

and w 1is the mean. The unit normal density (zero mean,unit standard

deviation) was assumed in this derivation so that ]C(X) must be the
function of the standardized variable Lr:ﬁ where ([~ 1is the

standard deviation. This means that the r-th moment of the

standardized variable is -?-?' + Hence Co: , =0y = ’
H3()¢) = X3"3X , and so from (C-5), C3: -:E{.% The rest of the
G

Qh may be obtained from the H»\ (X) in the same manner. Thus

C:’““_
“s =5 =3

Ce= '._’(_4_*.5'_410..".{.2..
J 0—5 g3
Ao _ /5..'(:(.1’_4-30

“= T3 T

The moments may be estimated from the data by averaging so that the
integral (A-6) need not be performed.

The computation of the approximations using up to C@ has been
programmed by Roy Greenfield. (See SUBROUTINE PRBFIT in APPENDIX G.)

The expressions for the approximations which must be evaluated are
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16. ) = [H -':-47::-3 (X3-3ﬂ] Pix)

f=fs (e, o) (xt-ex'e3)] o

‘Fn(x)l‘-f (x\'}[ )" H, (x]‘f)(x)

Care must be taken that the X'S are the values of the standardized

variables.
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APPENDIX D

INDEPENDENCE AND DEPENDENCE MEASURES

Poker Count Test for Independence

Given a series of equally likely integers from zero to nine it is
possible, under the assumption that the numbers are independent, to
compute the probable number of non-overlapping groups of five numbers
which fall into each of eight categories. These categories are similar
to those of a poker game where each group of five is considered a hand and
each hand has a certain value. The analogy to the poker game is not com—
pletely accurate since the '"card" values are 0 to 9 rather than ace to
king, and it is possible to have five of a kind. Also the series, which
takes the place of the card deck, has many more than 52 numbers in it,
and removal of a number does not decrease its later probability of
occurrence. The eight categories or hand types with their respective

probabilities are (Durand, 1962, personal communication):

Hand Probability
Bust «2952
1 pair 5040
2 pair .1080
3 of a kind .0720
Full house .0090
Straight .0072
4 of a kind .0045
5 of a kind .0001

These probabilities are exact. The decimals terminate at the
fourth place. In assigning a hand to one of the categories the order

of the digits within the group of five does not matter.
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If the series of numbers is independent, then it is expected that
the number of each type of hand will be approximately the probability
for that hand times the total number of hands. Both this test and the
mean square contingency test require a mapping of the given series into
an integer series. The poker count test requires that the ten digits have
equal probability. Hence the probability density of the original series
is transformed into a rectangular density and the original series is
mapped into an integer series with values from zero to nine with each
integer having probability .l. Figure D-4 shows the steps necessary

in the poker count test and APPENDIX G contains program listings.

Transformation of Probability Densities

Suppose P?(X) ='F(X\ is the probability density (frequency

function) of a random variable "T » The distribution function is then
X
Q= ‘( -F(I)o(f = Fx)
-0

The change of variable, j s F(X) is known as the '"probability

transformation" (Wadsworth and Bryan, 1960).

The probability density Eﬁ (5) can be found as follows:

P”! (\1) dj = P? (x)d

£ tx)

W) = Ry &
7 3) I J‘-i F(x)
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The variable ? is thus rectangularly distributed and, since F(x)
is defined from 0 to 1, 04 Y <.
For the joint distribution, PT' ?-;U")xl) , using the same

transformation, we have

Py.b.;'i(x:) XQ)‘-'-'- PT‘(X.) PY,JQ‘ (X.,Xg)

where Pg_l'g‘(xllx‘)o(x,o()(z denotes the compound probability that

X & $ad Xpt dXy given that X, { § (Xt X

Using the same transformation, j 2 F(X) , we have

P’T\'?z(‘j')sz) dj:djz = Pﬁ.("‘) Pﬁlf‘ (Xg'X.)O(X.O()(z

The Jacobian for this transformation,:r , glives

O(X.O(Xz = '.T' djcdﬂlp

-BX, ) |
— ol ¥ —_—
j—-: bj. a‘jl - 'F(K) O
ELIS AN o Fu
TRREN *

—,—' 2

J= [-F(x)]

Pr.t) s, (xalx)
[F(x)]z -

Pls )= Rt
fex)

P7'7z(5"52) =
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1 ¢ and {2 are independent then

Fels, (Xalx) = Pe, 06 = fx)

P‘Zf‘h( 4, 95)= |

The result is that if 'T‘ and ' fz are independent, then “1. and “‘h
are also independent, and if f‘ and Y: are dependent, then 17' and 77z

are also dependent. The compound probabilities will differ by a factor

equal to {#&)I
P, Uyaly) = Pralg,(xalx) ‘Té'm\

If T, and Tl are independent, then all of the higher probability
densities for '7 are rectangular. An extension of this can easily
be made for any number Jf random variables, and in particular for five

variables as is necessary for the poker count test.

Mean Square Contingency and Dependency Measure
The measure of the degree of dependence of two variables which has
been used is related to the mean square contingency (Cramer, 1951).
Suppose that two variables, Y and "? have densities PT ()(.)
and -P‘\(jl) and a joint density Pf‘?(xt) JJ) where X¢ and jj are
discrete and L3 bt NJjJe lyrov M,

E.-.: Peo 0 4= Py L33
) Peoy (10, )= Poixe)

J
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2
The mean square contingency, YD is defined as

2
TA (Pen 00, 95)= o) By )]
L

Pr (x) P47(jj-)

- ZZ‘ [Pf«z(xi)fli)]l — |

A Pﬂx.‘) P.7 %T

If and only if the variables are independent

P (X0, 95) = Pty By i)
and ‘fz: 0.

Since
Pi«»](xojjk Pe (x:) Prie ( g; %) = ?ﬁ(‘Ji) P\il] (% lli)

and all probabilities are less than or equal to one,

P .
Pfﬂ?()(t‘/jj) S [ ‘IL:“‘)

PY (x:)
Nt
Z Py (i)
or Py Py ¥
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¢*< gl

where % is the smaller Ong and M , the limits of the sumation.
Therefore the quantity .P /(%'") , which we will call the de-
pendency, may be used as a standard measure of dependence since
kpl
0¢& — ¢
—— - =

There is, of course, some difficulty in using this or any measured
dependence on numerical data. Numbers generated by independent random
processes will not in general give a zero value for the dependency. The
question arises, therefore, as to the interpretation of the number re-
sulting from the dependency test. Since it is uncertain how large the
dependency can be and the series still remain independent, a number of
tests were run on independent random numbers. The numbers were obtained
from the Rand Corporation on punched cards and are the same as the numbers
which appear in the book, 1,000,000 Random Digits (Rand Corporation 1958).
These numbers were generated by an independent process.

The numbers were run through both the poker count test and the de-
pendency test. Three different lengths of series were used, 3000, 2500
and 2000, and each was repeated 8 times so that a mean and cariance could
be computed. The results of the dependency test are shown in Figure D-1.
Straight lines have been dotted in to indicate the mean and standard de-

viation changes with series length. There is no reason to suspect that
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their values actually fall on a straight line, in fact one would suspect
that the line would curve off concave upward on the right and concave
downward to the left. These tests were carried out for a lag of one,
that is the random variables took on values of x'f\ and Xn*' of the series
of digits.

Since it is important that the denominator not be zero, the
series of real data were mapped into integer series from 1 to 10 with rec-
tangular densities. This was, of course, not necessary with the Rand
random digits, since they were already equally likely integers. How-
ever, one was added to each Rand digit so that the series would be from
1 to 10 rather than 0 to 9. This was necessary only for ease and speed
of computation of the second probability density. Figures D-2 te D-5
show flow graphs of the steps necessary to compute the empirical proba-
bility density and perform the probability transformation, the poker count
test and the mean square contingency test. APPENDIX G contains the listings

of the programs used in these operations.
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Dependency of Rand Random Digits
006}
Mean of Dependency Value With
N Standard Deviation
N Por Different Data
« 0051
Lengths, Eight
AN
\Samples For Bach
‘H’ \\ Length.
.00
N
~N
N
.003}
\
~
.002’— S~ -
«001F
1 i ] 1 L
1500 2000 2500 3000 3500

Data Length
Figure D=1
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Empirical Probability Density Flow Graph

Inputs - X(I) series, I=1,LX

NDIV number of ranges

Find maximum, XMAX, and minimum, XMIN, of X series.

Compute range limits for NDIV equally spaced ranges from
XMIN to XMAX
RANGE(I)=XMIN+(I-1) (XMAX~XMIN)/NDIV, I=1, NDIV+1
NDIV is somewhat arbitrary. It should be much smaller than LX,
the length of the X series. We have used NDIV=100 with
LX 2500.

Count number of values of X(I) falling in each of the NDIV ranges.
Use SUBROUTINE FRQCT2.
NOTE -~ FRQCT2 assumes that the NDIV+l range limits define
NDIV+2 ranges. The count vector, ICOUNT(I), I=1,NDIV+2, must
therefore be altered such that ICOUNT(2)=ICOUNT(2)+ICOUNT(1),
and ICOUNT(NDIV+1)=ICOUNT(NDIV+1)+ICOUNT(NDIV+2). The correct
counts are then in ICOUNT(2) to ICOUNT(NDIV+l). This may then
be normalized to give the frequency ratio or probability
density, PROB(I).

PROB(I)=ICOUNT(I) NDIV/(LX (XMAX~-XMIN))

Figure D-2
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Probability Transformation Flow Graph

Rectangularize Probability Density

Inputs - PROB(I), I=1,NDIV, The probability density normalized such that

~ND\V

Z PROB(I) Ax =1, Ax=(amAR-xMN)fix

I=)
XMIN = Minimum value of original time series

XMAX = Maximum value of original time series
NPROB = Number of ranges of equal probability desired.
Need not equal NDIV

X(1),I1=1,LX, the time series
Find X limits which divide the empirical density into NPROB ranges

of equal probability, XLIMIT(I), I=1,NPROB+l.

(Linear interpolation where necessary) Use SUBROUTINE GRUP2
Map X(I) series into IX(I) series (integer series such that for

XLIMIT(J) X(I) XLIMIT(J+l), IX(I)=J-1+IXLO

where IXLO can be adjusted to give desired d.c. level.

Use SUBROUTINE MPSEQL

Result is interger series IX(1), I=1,LX with NPROB different

values from IXLO to IXLO+NPROB-1 with equal probability, l/NPROB

Figure D-3
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Poker Count Test Flow Graph

Inputs = X(I),I=1,LX time series
LX length of series
Compute empirical probability density. See Figure D-2 for flow
graph of this procedure
Perform probability density transformation to map X(I) series

into IX(I) series with

0 < IX(1) L9

See Figure D-3 for flow graph of this procedure with IXLO=O.
Take IX(I) series “in non-overlapping groups of 5,IX(I), I=l, ...

5,I1X(I), I=6,¢+...10, etc and consider these as poker hands.

Evaluate the poker hands and count number of each type.

(Types - bust, 1 pair, 2 pair, 3 of a kind etc.) Total

number of hands is LX/5 rounded down. USE SUBROUTINE POKCT1.
Conpare with theoretical count for independent series.

(See a priori probabilities on first page of this APPENDIX.)

Figure D-4
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Mean Square Contingency and Dependency Test Flow Graph

Inputs - X(I), I=1,IX time series

LX length of series

Compute empirical probability density. See Figure D—-2 for flow
graph of this procedure.

Perform probability density transformation to map X(I) series into
IX(1) series with 1 < IX(I) < JHIGH, where JHIGH < 25.
(Requirement of SUBROUTINE PROB2 used below.)

Note - If poker count test is also done the mapped series used
there can be used here if one is added to every IX value.
JHIGH will be 10 for this case.

(See Figure D-3 for transformation and mapping flow graph.)

Compute second probability density, P(I,J) for lag of one.

Use SUBROUTINE PROB2. (Gives joint probability that IX(I)=L
and IX(I+1)=M for I=1, LX-1, and M and L > 1, < JHIGH.)

Compute mean square contingency and dependency.

THIOH THIGH
M.S.C.= IZ: Z [(P(I,T))z/( P(T)% P(J’)\] =1
=t =
where _— THieH
P = ) "P(L,3) #0 5 P3)= ) Pin a0
T= T=1

DEPENDENCY=M.S.C./ (JHIGH-1)

USE SUBROUTINE MSCON1.

Figure D-5
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APPENDIX E

FACTORIZATION OF THE POWER SPECTRUM

The problem of spectrum factorization in the frequency domain was
solved by Kolmogorov (1941). The treatment here is similar to Robinson
(1956).

Given a power density spectrum, é(w\ , it is possible to factor

it such that

Hiwy = Biw) Ruwl

Bug = B e

That this factorization is possible is quite obvious and, in fact, an

where

infinite number of such factorization exist. The trivial case is

©W) 0. There is, however, one important case, and that is when B‘-"’)
has no poles or zeros in the lower half of the )\ plane (AW L0
(Lee, 1960). In this case BLN) corresponds to the transfer function
of a physically realizable system, that is, a system which does not have
output before it has input. A pole in the lower half of the X plane
transforms to the negative time axis and can therefore be considered a
"source" for negative time. If BLw) has poles in the lower half
plane, its Fourier transform B(’t) will only be non-zero for t?. 0o ,
and [ t) then said to be one-sided in positive time. If B L w)
also has no zeros in the lower half plane, then its inverse‘/ B(N) will

have no poles in the lower half plane and its Fourier transform will also
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be one-sided. B(t) is then called the minimum phase wavelet. The
factorization problem is the problem of finding B +) from é(h)) and can
be solved as follows.
)
If we take the Z  transform, i.e. 2= € , of B(W) to obtain
8‘1) , we have mapped the lower half of the place into the interior

of the unit circle and we now consider B(l) a polynomial in 2 .

That is BU'O) is the Fourier transform of some time function ‘3“) and

as such has the form @® ‘
B = be o™s
-
and the £ transform becomes
00
B = Z by2®
= -0

and B (%\ must have no poles or zeros inside the unit circle,

There are certain restrictions on 6(0) , namely

1. étw)::o

™
2. j‘ 'PO% @(w)dh’)'w

3. Jm P(w) dw ¢ 0

which must be met if BLZ)is to exist. If condition (1) is not met,
then the integral (2) will not converge. Condition (2) is equivalent to
the Paley-Wiener criterion (Robinson, 1954, p. 149) and is a requirement

for the existence of a moving average and an autoregressive representation
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of the time series. Condition (3) states that the power must be finite

and is just a stability requirement.

If these requirements are fulfilled, then the logarithm of [ \R) will

be analytic for lZ\ 4l

log Bw) = % «Qo%, P+ L BLw)
or

10gB(i‘)= u(‘-}) + LV(%)

Hence the problem of obtaining the minimum phase wavelet is now one of
finding the imaginary part, V(‘\) , of a function analytic inside the
unit circle given the real part, H(%) , on the circle. This is also
the potential theory problem of finding the field inside of a region
given the sources on the boundary. The function log B(z) can be

expressed as a power (Taylor) series in its region of analyticity

oo
log B®=) o, 2

r:-00
o
Expanding log B(!) s log ‘B(kE" ) in a Fourier series

&o% B eiw) = W(retW) + L V(re'w)
— K twr .
- ZNKQ ) Ny =Crt Loy

u(re™)= Ke [ LCr+ide)rk c‘“"‘]
- Re[zckc.os Kw+ id,(c.as Kw+LCx S1h KW -dKSznkw]v-K

= Z(C«Cos kw=-dSinkw) r<
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However

u(\rem):i- —Qo% PLM»’) at ra|

and @(w} is an even function, i.e.

e Fe-w
é(w) = g‘PS‘QoS w3

Therefore 1/2 log 5( w\ is also even

since

and dy =0
Hence NK =CK

and % P”b’ i“"?n: Zukcask‘w

and ST | & io«t@w) Cos kKw olw

$ =T

The wavelet bs is then determined from

& s iu z"]- ex ):f-'—f;o Few) -
B2)=) bZ = eXP[ k.:-ooK ]— PLesZt™ )
s- 0 Cos kwdwlkj

The following method, suitable for programming purposes, for getting
the bs was first given in MIT G.A.G. Report 9 (1956) and was repeated
in Simpson et al (1962a).

The bs will have to be cut off after some S value, say S=™
It is shown below that the first M+l terms of DS (the first wa+|

points in the wavelet) may be obtained exactly from the first W = | K'S .
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Expanding

Matching like powers of Z we find

o
bo = € °
(> §
b, = € "(:2N‘)
‘X ™ 2"‘2
b1 = o ( 4
etc.
In general, if we are interested in obtaining bo) Ve bm: we may

drop terms in any polynomial with exponents 7™M  and we may drop all
polynomialg whose first power of P is 7 ™M . We also do not care about
any cross terms whose g  exponents are Y M .

We disregard Ef‘° for the time being and consider the problem as

follows:
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i‘ bS = (First WM+ terms of) P (%‘) Pz(z) .‘.pm(‘i)

(this :ls Just another way of grouping the terms).

. m
Where PC: |+ C_L'E +Ci22‘1+,.,+ﬁ‘m2

and
.. [(”{) ) ”"(%%) Forjﬂu'
4 O 'Fol-J"fK‘

K is a positive integer. Considering bs and C-is as
time functiom§ we may now consider the problem as one of partial convolu-

tion. Let F  stand for "First ™*! terms of."” Then
b: F(Q;*Cz* QJ Vs *Cm\)

b= F(c, *¥ F(Ca¥ Flcgu.. . F (Crmr*CuM... )

Let b™= Cm )
) F(Cma%Ca)= F (Conmy ¥ B )

bt o F(Cm-a ¥ F(Cm=™ ew)) = F(Ema b™)

pd = F(e,%xb?)= b
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buﬂ)

2
Examination shows that may be obtained from b( ) by

the following formula representing partial convolution
S
LR E ¢ L)
s j'.)g" t
=0

330)))2) Vi,

Further examination shows that BM\ , where M= |+ integral part
of Mg , may be written down by inspection

b(:‘\ =1

biM= 0

bl =0

\
'

(M
b&=0mm

b(m"l)' = Cm-w, M+

B 2y
This can be seen by noting first that o = for all L.
(+)
and bs =0 for 1{SLL and that the C;g for
M/y_(Lé m have only two terms in them. As the partial convolution
proceeds, the bo terms pickup the diagonal terms in the Q‘lj matrix,
() >
and there are no other contributions to the next b S until L 2 /2‘

It can be seen that only one column of the ClJ matrix is needed at a
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time.

A program has been written for the spectrum factorization problem
for 709 or 7090 computers. The program makes sure that @(“«0)0 by
setting any value of @( w) which is less than 10_6 of the maximum
value of &( w) equal to 1096 of the maximum. The Daniell method of
spectral estimation guarantees @U"\>0 but other spectral window such
as the Turkey-Hamming window do not have the guarantee. The computation
of the ®'S in the computation of the cosine expansion of lz- Ro‘k @LW)
was done by trigonometric interpolation (Lanczos, 1956) so that the

integral need not be computed. The program FACTOR is listed in APPENDIX G.
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APPENDIX F

CONSTRUCTION OF THREE WHITE LIGHT SERIES WITH SPECIFIED COHERENCES

i
We wish to construct three unit variance white light series X-t ,

Xz X3 with controlled coherences

\@m(“”\
\/ é-“ (W) @zz‘“g

I Jigfw)l
v = 0(,3(“_,)
\/é,,(w) §y30) (E-1)

l Em(“’)’

C—°l‘\23(w)= — = ¥Npp(W)

\/ @zz(“’) §33(‘“’)‘

= Xiz(w)

Coh , (W)=

CD"\\3(w):

The solution is an obvious extension of the Simpson et al (1962) treat-
ment of constructing a pair of series with controlled coherence. Since

X1 b 3
+ , Xt , )(t are unit variance white light their spectra are

@ ?11 33“‘33"' 'i"n'
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hence

N (W) o,
‘ §\j(“°\\_ 27 ) 7S

or for zero phase shift
|

qg \ C*tJ

[ w - n—

‘-J( 4T

' 3
We assume that Xy , X% and xt are broken up to have common

and uncorrelated parts
¢ c
X‘t‘ +th+xt'
[ C Q
)(%_- + X H Xt

o

X
X =

- ez, 3 R3
LR xS+ P Axe
X? = &t Rk ¢ (F-2)

where all cross correlations

(PQR,‘ , (= L2,3;)=1,23
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t
are zero. The autospectra of thext series are then

(P\(w): @clw) + ﬁs(w) + (ﬁg,(“)'-'- é:ﬂ
<E>gn(kn = dE;. (““ + éEQ;(“fb + 1;F22(LQ)‘= %if\

@33(00)-: @c,(w\*’ @az(w) +§§L3Lw)+ @Rstw\='!5:7c

The cross—spectra are

R g (W)
@lz(“’\ - @c‘(m N ;'n

R,y (W)
27

éﬂ“‘") = ?ét.(w) + §c.3(“) =

@23( W = Doycw) + é;c.lc W) = %a 3 (W)

2T

We therefore have



216

Agn{wW) - Xiatw)

¢\ = 27
@ o(.g(w)-%z.(uf}
cytws 2
N | — O lw)
@R'(m' 2T
- %aal
@R (W)= |~ %23l
2 LT

B, ()= |+ O (W) = Fa3Ci) =X aw)
3
T

c N .
We must first construct the six mutually independent series Xt‘ , X?‘ ,
i=1,2,3 with the power spectra ¢C‘ @R , given above. We then con-
N t ) L
L
struct the Xt series with equations F-2. These series have the

coherences CX"J ( W) as shown in equations F-1.
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APPENDIX G

PROGRAM LISTINGS

Listings, with descriptions and examples, of some of the more impor-
tant programs used in the computations in this thesis. The listings are
in alphabetical order and include all subroutines appearing in the transfer
vectors with the exception of the FORTRAN System routines. An index of
these programs and other programs useful in time series analysis appears
in Scientific Report Number 4 of Contract AF 19(604)7378 (Simpson et al,
1962b) and complete listings will appear (Simpson, 1963, in press) in
book form in the near future. All the programs appearing here are
designed to operate under the FORTRAN-II system for the IBM 709-7090
computers.

Throughout the listings the terms FORTRAN INTEGER, FORTRAN II INTEGER,
and INTEGER are synonomous and refer to a fixed point integer in the
decrement. The terms MACHINE LANGUAGE INTEGER, MACHINE INTEGER and MLI
refer to a fixed point integer in the decrement. The terms LSTHN and
LSTHN = are equivalent to < and £ while GRTHN and GRTHN = are equivalent
to > amd >. It should be noted that expressions which appear in the
"ABSTRACT" section of the writeup may deviate from the usual FORTRAN

conventions.
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TITLE

LANGUA
EQUIPM
STORAG
SPEED

AUTHOR

TRAANSF
FORTRA

CA
INPUTS

NBL

I1C0

QUTPUT
CHI

TAN

EXANMPL

1. INP
CuT

2. INP
cut

3. INP
cut

4. INP
cuT

231
IA
IF
5 IF
10 P=
EX
CH
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PROGRAM L ISTINGS

* *

ISQR (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO.
BEL
BROUTINE CHISGR(NBLDCS,ICOUNT,N,CHISQ,IANS)

-===ABSTRACT~==-

- CHISQR
COMPUTES CHI-SQUARE FOR EQUALLY LIKELY PROBABILITY CASE.

CHISQR

CHISQR COMPUTES CHI SQUARE WHEN GIVEN THE DISTRIBUTION
COUNT AND THE NUMBER OF EQUALLY LIKELY BLOCKS INTO WHICH
THE DATA IS PUT. NUMBER OF BLOCKS = NBLOCKS, N = TOTAL

NUMBER DF CBSERVATIONS, ICOUNT = DISTRIBUTION COUNT.

CHISQ=SUM( (ICOUNT{I)-N/NBLOCKS)##2/(N/NBLOCKS))

SUMMED OVER NBLOCKS, WHERE FLOATING OPERATIONS ARE ASSUMED

RATHER THAN THE INDICATED INTEGER OPERATIONS.

GE - FORTRAN II SUBROUTINE
ENT - 709 OR TC9G (MAIN FRAME ONLY)
E - 1C5 REGISTERS

- JoN. GALBRAITH

-——~USAGE~--—-

ER VECTCR CCNTAINS RCUTINES - NONE
AND FORTRAN SYSTEM ROUTINES - NONE
N USAGE
LL CHISGR(NBLOCS,ICOUNT,N,CHISQ, [ANS)

CCKS IS NUMBER OF EQUALLY LIKELY BLOCKS.
MUST BE GRTHN 1.

UNT({I) I=1...NBLCCKS IS THE DISTRIBUTION COUNT. I.E. THE NUMBER

CF VALUES IN I-TH EQUALLY LIKELY BLOCK.
MUST BE NCN-NEGATIVE

IS TOTAL NUMBER OF OBSERVATIONS (=SUM(ICOUNT({I))).
MUST BE GRTHN=1.

S
sQ IS THE CHI-SQUARE VALUE
S =0 NCRMAL
=1 ILLEGAL NBLOCS
=2 ILLEGAL N
ES

UTS - NBLCCS=3 ICOUNT(1leee3)=14345 N=9
PUTS - CHISQ=2.666667 1ANS=0

UTS - NBLOCS=1 ICOUNT(1}=1 N=9
PUTS - ERRCR IANS=1

UTS - NBLOCS=3 ICOUNT(1..43)=1143,5 N=0
PUTS - ERROR IANS=2

UTS - NBLOCS=S ICOUNT(1leee5)=1324344+5 N=15
PUTS - CHISQ=3.333333 TANS=0

MENSTON ICCUNT(1CO)
NS=0

(NBLCCS-1) 99C,99C,5
(N) 9924992,10
1./FLOATF{NBLOCS)
PNO=P=FLOATF(N)

15Q=0

6084
0001
0002
00903
0004
0C05
0006
0007
0008
0009
0C10
0011
0012
Gol13
0014
0015
0016
0017
ocls
G019
0020
0021
€022
€023
0024
0025
c026
0027
0028
€029
0030
0031
cC32
GC33
0034
0035
G036
0037
0338
0039
0040
0041
C242
0043
0044
0045
0046
0C47
0048
0049
0050
Cc051
0052
0053
0254
0355
0056
0057
0058
€059
0060
0061
0062
0063
0064
0065
0066
0067
0068
C069
0070
0071
0072
c073
G074

BEFRFRERRBREARE AT RHARRRER

*

IS XTSI SISE IS 2022 2 2 3
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FRARBERSRERRRERBRBERANNES PROGRAM L ISTINGS
* CHISQR »
R ARNRRRR RN A RN RRBRRR R

(PAGE 2}

D0 25 [I=1,NBLCCS
DIF=FLOATF(ICOUNT(I))-EXPNO
25 CHISQ=CHISQ+DIF#DIF
CHISQ=CHISQ/EXPNOD
26 RETURN

990 IANS=1
GO0 10 26

992 I1ANS=2
GO TO 26
END

L2222 222222222222 2222222 )

L4 CHISGR

SRBRRBRERBRBRBABRERERRERD

(PAGE

0075
0076
0077
0078
079
0080
0081
0082
0083
0084

2)
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L4 cose » - cosp

RREREFREBRRERRRRREERRERR

COSP (SUBRCUTINE) 2/18/63  LAST CARD IN DECK IS NO.
FAP

*COsp .

L B N B B N BN BN N B BN L R NE NE B B BE BN RN BN RE BE IR NS NE B BN NE R NN B RE BE NE B BN B R NE BE R B BN I N B R NN B R R N R R

CCUNT 1ccn

LeL ccsp

ENTRY COSP (SSXyASXyL,COSTADByMyJIMIN, JMAX, TYPE,COSTR)

ENTRY SISP (SAX,AAXyLySINTAByMyIJMIN, JMAX, TYPE, SINTR)

ENTRY CCSISP (SSXyASXoSAXsAAX, Ly COSTAR,SINTAByMy JMIN, JMAX, TYPE,
CCSTRySINTR)

-——-ABSTRACT~——-

TITLE - COSP  WITH SECCNCARY ENTRY POINTS SISP AND COSISP
FAST COSINE AND/GR SINE TRANSFORMS FROM 2 OR 4 EVEN-ODD PARTS

COSP CCMPUTES COSINE SUMS, CT(J) J=JMINje.ees JMAX , ON
TWC INPUT SERIES, SS(I) AND AS(I) I=0yly.ee9L » ACCORDING

T0 L
SUM ( SS(I)*COS(1+J*(PI/M)) ) J EVEN
I=0
CT() =
L
SUM ( AS(E)#COS(T=J=(PI/M)) ) J 0DD
1=0

FCR J =JMIN,JMIN+1ly.eoe s JMAX
WHERE

PI = 3.14159265

M = INPUT PARAMETER

COStI=(PI/M)) I=Cyly..esM IS AN INPUT TABLE

SS(I),AS(I), MAY BE EITHER FIXED OR FLOATING POINT
(THE COSINE TABLE MUST CORRESPOND IN TYPE)

C LSTHN= JMIN LSTHN JMAX LSTHN= M

« SISP CCMPUTES SINE SUMS, ST(J)

L
SUM ( AA(I)=SIN(I=J#(PI/M}) ) J EVEN
I1=0

ST(J) =
L
SUM ( SA(T)=SIN(I=J=(PI/M)) ) J 00D
I=0

FCR J = JMINyJMIN+1,...9JMAX
WhERE
SIN(I=(PI/M)) [=0ylyee.sM IS AN INPUT TABLE
AA,SA, AND THE SINE TABLE ARE FIXED OR FLOATING

COSISP COMPUTES BOTH CT(J) AND ST(J) AS DEFINED ABOVE

NOTE THAT THE FUNDAMENTAL FREQUENCY AS DEFINED BY THE
INPUT TABLES HAS PERIOD = EVEN NO. OF POINTS = 2M

LANGUAGE - FAP SUBROUTINE (FORTRAN II COMPATIBLE)

EQUIPMENT - 709 CR 7C9C (MAIN FRAME ONLY)

STORAGE - 492 REGISTERS

SPEED - TC9-FIXED PT TO9-FLOATING PT
case 34xKe(L+1) 3T7#K#(L+1) MACHINE CYCLES
SISP 39#K=(L+1) 434Ke(L+1) MACHINE CYCLES
CCSISP 6T7=K«#{L+1) T2#K=2(L+1) MACHINE CYCLES

WHERE K = JMAX-JMIN+1
[REDUCE ESTIMATES ABOUT 1C PERCENT FOR 7090}

AUTHOR - S.M. SIMPSON, OCT 26, 61
-===USAGE==-—-
TRANSFER VECTOR CCNTAINS ROUTINES -  NONE
AND FORTRAN SYSTEM ROUTINES -  NONE

FORTRAN USAGE GF CCSP
CALL COSP  (SSXyASXyLyCOSTAByMy JMINyJMAX, TYPE,COSTR)

INPUTS TO COSP

0844
0001
0002
0003
0004
0005
0006
C007
0008
0009
G010
0011
0012
0013
G014
0015
Qo0le
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
€030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
€045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073

(22 I Z2 2222222222222 2222
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COSTAB{leee3)=14070.0s-1.0 SINTAB(1leee3)=0.051.0,0.0 M=2 0147

EEERBRERER RSN R R AR RRE RN PROGRAM L ISTINGS SERRERARAFRRRRRRRXRRRRER
* cosp * » cosp *
RERARTAARER R AR REERRB RS FERRRF RS BB RERBRB RN
(PAGE 2) (PAGE 2)
* SSX(I) I=leeo L+l CONTAINS SS(J) J=0ylyesesl FIXED OR FLOATING 0074
* 0075
* ASX(1) I=l...L+1 CONTAINS AS(J) J=Cylyeecesl FIXED OR FLOATING 0076
- EQUIVALENCE (SSX,ASX) IS PERMITTED 0077
* c078
* L MUST EXCEED 0 0079
* Go8o
- COSTAB(I) I=1.e..M+1 CONTAINS COS(J#PI/M) J= OylyeecerM 0081
* CCSTAB IS FIXED OR FLOATING 0082
* FCR FIXED POINT IT IS ASSUMED THAT THE BINARY POINT 0083
* IS BETWEEN THE SIGN BIT AND SIT 1 SO THAT VALUES 0084
* 1.C ANC -1.0 SHOULD BE ENTERED AS OCTVAL 3777777777177 0085
® ANC 777777777777 RESPECTIVELY. THE BINARY POINT OF 0086
* SSX ANC ASX IS IMMATERIAL, BUT OVERFLOW MAY ARISE. 0087
* 0088
* v MUST EXCEED © 0089
* 6090
* JMIN DEFINES LOWEST MULTIPLE OF FUNDAMENTAL DESIRED 0091
* MUST 8E GRTHN= 0 AND LSTHN= JMAX 0092
- 0093
* JMAX DEFINES HIGHEST MULTIPLE OF FUNDAMENTAL DESIRED 0094
* MUST HE GRTHN JMIN AMD LSTHN= M 0095
* 0096
* TYPE = 0.0 SIGNIFIES SS,AS, AND COSTAB ARE FIXED PT. 0097
* NOT= 0.0 MEANS SS»AS, AND COSTAB ARE FLTG. PT. 0098
» 0099
# QUTPUTS FRCM CCSP 0100
* 0101
* COSTR(I} I=1e.c.JMAX-JMIN+1 CONTAINS CT(J) J=JUMIN...JMAX AS 0102
* DEFINED IN ABSTRACT. 0103
- 0104
* (PROGRAM EXITS WITHOUT COMPUTATION IF LyM,JMIN, 0105
* CR JMAX ILLEGAL) 0106
- o107
+ FORTRAN USAGE CF SISP 0108
* CALL SISP (SAX,AAXysL,SINTAByMyJMIN,JMAX, TYPE,SINTR) 0109
» 0110
# INPUTS TO SISP 0111
- 0l12
* SAX(I) I=1leeebl+l CONTAINS SA(J) J=Csrlyeeerl 0113
L 0114
* AAX(T) I=1...L+1 CONTAINS AA(J) J=03lseeerl 0115
* EQUIVALENCE (SAX,AAX) IS PERMITTED. 0116
* 0117
* L SAME MEANING AS FOR COSP 0118
- 0li9
* SINTAB(I) I=l.oseM+l CONTAINS SIN(J*PI/M) J=0ylpeeesM 0120
* o121
- [ SAME MEANING AS FOR COSP 0122
* 0123
* JMIN SAME MEANING AS FOR COSP 0124
* 0125
* JMAX SAME MEANING AS FOR COSP 0126
» 0127
* TYPE SAME MEANING AS FOR COSP 0128
L 0129
= OQUTPUTS FROM SISP 0130
* 0131
* SINTR(T) I=1e¢eJMAX=JMIN+1 CONTAINS ST(J) J=JMIN...JMAX AS C132
13 DEFINED IN ABSTRACT 0133
* 0134
= FORTRAN USAGE OF CCSISP 0135
* CALL COSISP(SSX,ASX,SAX, AAX,L,COSTAB,SINTABs M, JMIN, JMAX, 0136
L 1 TYPE,COSTR,SINTR) 0137
» 0138
- WHERE ARGUMENTS ARE THE SAME AS FOR COSP AND SISP c139
* EQUIVALENCE (SSXsASX,SAX,AAX) 1S PERMITTED. 0140
* 0141
= EXAMPLES 0142
- 0143
# 1. USE OF COSP, SISP, COSISP WHEN ALL INPUTS EQUATED, FIXED AND 0144
* FLOATING, ALL FREQUENCIES 0145
» INPUTS = X{leeas) = 1le32e33er4. IX(1leee4) = 1009200,300,400 L=3 0146
L]
*

ICOSTB(1e443)=0CT377777777777,0000000C0000,777777777777 0148
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= ISINTB(1...3)=0CTO00000000C00,377777777777,000G00C00000 0149
L JMIN = 0 JMAX = 2 0150
* USAGE - CALL COSP (XyXyLyCOSTAByMy JMINyJMAXy1e,yC1) 0151
» CALL COSP (IX,IX,LsI1COSTByMyJIMIN,)IMAXs0,,ICL) 0152
* CALL SISP (XyX,LySINTAB, M, JMIN, JMAXs1.,S51) 0153
- CALL SISP (IX,IXyL,ISINTB,MyJMIN,IJMAX,0.,151) 0154
» CALL COSISP (XyXyXsXyLyCOSTAB,SINTAB,M, JMIN, JMAX, 0155
* 1.9C2,S2) 0156
» CALL COSTISP (IXsIXyIX9IXyL,ICOSTB, ISINTB,M,JMIN, 0157
» JMAX+Cey1C2,152) 0l58
. CUTPUTS = Cl(leee3) = C2(1lese3) = 10e9=2.4-2. 0159
* S1{ls0e3) = S2(1leee3) = QCep=2490. 0160
* IC1(leee3) = [C2(1.0e3) = 1000,~200,-2C0 0161
* IS1{1e0e3) = 1S2(1eee3) = 0,=-200,0 0162
* 0163
* 2., PARTIAL FREQUENCY COVERAGE 0164
* INPUTS - SAME AS EXAMPLE 1. EXCEPT JMIN = 1 0165
L USAGE - SAME AS EXAMPLE 1. 0166
- CUTPUTS - Cl{leee2) = C2(1lee.2) = =2.,-2. 0167
» S1{lese2) = S2(1eee2) = -244C. 0Ole68
* IC1(leee?2) = 1C2(1...2) = =2C0,-200 0169
- IS1{1..42) = IS2(1lese2) = =200,0 ol70
- 0171
*+ 3, USE OF COSISP TC FIND COEFFICIENTS OF TRIGONOMETRICAL SERIES FOR 0172
* AN EVEN-LENGTH VECTOR 0173
* (SEE CARSLAW, 1930, FOURIER SERIES AND INTEGRALS, P324,325) 0174
- GIVEN XX{I) I=1l...2%¢M CONTAINING X(J) J=04lyecey28M-1 0175
- FIND A{O)yA(1)y.aueA(M) AND B(1)sB(2)y...4B(M=1) SUCH THAT 0176
* 0177
* X(J)=A(0)+A(1)COS(J#D)+.. . +A(M-1)COS((J-1)*D)+A(M)COS(PI) 0178
* +B(L)SIN(J#D)+. .. +B(M-1)SIN((J-1)+D) 0179
- WHERE D=PI/M J=091lyeeey2eM-1 0180
» SOLUTICN 0181
* INPUTS ~ CCSTAB(l..eM+1l) = COS{J#PI/M) J = OylyecerM 0182
L SINTAB(leooM#1l) = SIN(JI*PI/M) J = OylyeessM o183
- L = 2%M-1 0184
* USAGE - CALL COSISP(XyXyXsXsLoCOSTAB,SINTABsM,0,My1.,AA,B8) 0185
* AA(L) = AA(1)/FLOATF(2#M) 0186
- AA(M+1) = AA(M+1)/FLOATF(2+M) 0187
- DO 10 I=2,M 0188
* AALT)=AA(T)/FLOATF(M) 0189
» 1C BB(I)=BB(I)/FLOATF(M) 0190
* CUTPUTS - AA(l...M#1) WILL CONTAIN A(O0)}sA(l)y...A(M) AS REQUIRED 0191
* BB(2«eeM) WILL CONTAIN B(1l)y...B(M-1) AS REQUIRED 0192
- {BB(1)=BB(M+1)=0.) 0193
- 0194
# 4. USE OF COSISP TC INVERT COEFFICIENTS OF TRIG SERIES FOR AN EVEN- 0195
* LENGTH VECTOR 0196
* GIVEN A{O)seeeA(M) B(1)...B(M-1) AS DEFINED ABOVE 0197
* FIND X(J) = TRIG SERIES ABOVE J = 0slyeeer2eM-1 0198
- SGLUTION 0199
= INPUTS - AA(I) AND BB(I) ARE SAME AS OUTPUTS OF EXAMPLE 3. 0200
* USAGE - CALL COSISP(AA,AA,BB,BB,M,COSTAB,SINTAB, 0201
- 1 MyQyMsl.49XSyXA) 0202
* 12M=2=M 0203
- DO 20 I=2,M 0204
- J=12M+2-1 0205
L XS(J)=XS(1) 0206
L] 20 XA(J)Y==XA{I) 0207
= DO 30 I=1,12M 0208
» 30 XBAC(I)=XA(I)+XS(I) 0209
- CUTPUTS - XBAC{le..2#M) WILL CONTAIN X{(Oylyeecey2#M-1) AS REQUIRED 0210
* 0211
* 5. ILLUSTRATICON OF FINDING TRIG SERIES 0212
* INPUTS -~ SAME AS EXAMPLE 1. 0213
* USAGE - SAME AS EXAMPLE 3. 0214
- CUTPUTS = AA(leee3) = 2.5,-1ey-.5 0215
- BB(leee3) = Cay-1ley0. 0216
* 0217
# 6. ILLUSTRATION OF INVERTING TRIG SERIES 0218
- INPUTS - SAME AS EXAMPLE 5. WITH AA,BB, SAME AS OUTPUTS FROM EX 5. 0219
* USAGE - SAME AS EXAMPLE 4. 0220
» CUTPUTS - XBAC(leeed) = 1ley2e9309b. 0221
' 0222
-

7. USE OF SYMMETRIES TO REDUCE TIME IN COMPUTING TRANSFORMS ABDUT 0223
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* MICPCINT OF AN ODD-LENGTH SERIES G224
* GENERAL FCRM 0225
* I=M 0226
* C(J) = SUM ( X(I)=COS{I=JePI/M) ) 0227
* I==-M 0228
* AND 0229
= I=M 0230
- S{J) = SUM ( XUI)=SIN(I=J=PI/M) ) 0231
* I=-M 0232
* J = JMIN...JMAX 0233
* SUPPOSE X{-6 --6)=1oy3c'1ogZoylo'1¢'5014-13¢13o'5¢14.|lo 0234
* EIRST SPLIT X ABOUT ITS MIDPOINT INTO ITS SYMMETRIC AND 0235
* ANTISYMMETRIC PARTS 0236
* SX{leee7) = 5495e14e15e1b097297. 0237
* AX{laeaT) = Cep3e12e9larte9ler0. 0238
» THEN SPLIT EACH OF THESE ABOUT THEIR MIDPOINTS 0239
» SSX{lewst) = Seyl0esl2eyTe ASX(leeed) = De92.92.9-3. 0240
* SAX(leeod) = legbertes0e AAX{lesed) = Qey2e9—2440. 0241
* INPUTS - THEN REVERSE ALL THE VECTORS AND CHANGE SIGNS OF ASX C242
- AAX TC GIVE 0243
* SSX(leeoekh) = Terl2e910es5s ASX{leeod) = 349=2.9=2.10. 0244
* SAX(Llawoh) = ODepbegbosle AAX(Lleood) = 0e092.9-2440. 0245
= L=3 M=6 COSTAB(l...7)=C0S{J=PI/6)} 0246
= SINTAB(1eeo7)=SIN(J2P1/6) J = Oeesb 0247
* USAGE - CALL COSISP {SSXsASXySAXyAAXy3,COSTABsSINTAB,M,OyM,y 0248
* 1.,COSTR,SINTR) 0249
L] CUTPUTS - CCSTR{leee7) = C(Ds0eb) = 3449 .2679593095-91.943.73205,0. 0250
L SIATR{1eeo7) = S{Ceeeb) = CeyBel9615,0493413.46410C, 0251
L] -2.19615,C. 0252
- 0253
+ PROGRAM FCLLCWS BELOW ¢254
* NCTATION DIFFERENCES IN PROGRAM NOTES ARE 0255
* RSS=SS5X PAS=ASX RAA=AAX RSA=SAX 0256
- P=L 0257
* 0258
- 0259
HTR c 0260
8CI 1,CCSP 0261
casP  SXD =244 SET UP EXIT 0262
SXA LV+1,1 0263
SXA LV+2,2 0264
CLA K1¢ 0265
STA EXIT N266
#SET ARGUMENT TABLE 0267
CLA 1:4 0268
STA T1 0269
CLA 294 0270
STA T2 0271
CLA* 3,4 0272
STD 15 c273
cLA by 4 0274
STA Té6 0275
CLA= Sy4 0276
STD T8 0277
CLA=» 614 0278
STD T9 0279
CLA=® T+4 0280
STD T10 0281
CLA#® B4 0282
STO Ti1 0283
CLA 9,4 0284
STA T12 0285
#SET COSP SWITCHES 0286
CcLA KAl8 KA6 0287
STA 3¢ c288
CLA KA6 190 0289
STA 733 €290
CLA KA15 7107 0291
STA 1106 0292
CLA KA19 Z13¢ 0293
STA 21098 0294
CLA KT1 TRA 7104 0295
STO 2114 0296
sTa 1112 0297

CLA KT2 TRA 7102 0298
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(PAGE 5)
STO £121A
ST0 I122A
TRA 14
#SET EXIT
SISP  SXOD CGSP-2,4
SXA LV+1,1
SXA LV+2,2
cLA K10
STA EXIT
#SET ARGUMENT TARLE
CLA 1s4
STA T3
CLA 214
STA T4
CLA# 3,4
STD T5
cLA byl
STA T7
CLA Se4
STD Lk}
CLA= 614
STD 19
CLAs Te4
STD T10
CLA% 8,4
STO T11
CLA 9,4
STA T13
#SET SISP SWITCHES
CLA KAl4 KA9
STA 138
CLA KA9 150
STA 733
CcLA KA7 2100
STA 56
STA 166
STA 176
STA 186
CLA KAl6 7115
STA 2106
CLA KZ1 ZET SWE
STo I1l14
STC 2112
CLA KZ2 ZET SWO
STO 2121A
STO 71224
TRA 114
#«SET EXIT
COSISP SXD COSP-2,4 SET UP EXIT
SXA Lv+l,1
SXA LV+2,2
CLA Kléa
STA eEXIT
#SET UP ARGUMENT TABLE
CLA 1,4
STA Tl
CLA 214
STA T2
CLA 344
STA T3
CLA b4y b
STA T4
CLA=» Ss4
STD 15
CLA 694
STA T6
CLA Te4
STA 17
CLA# B4
STD T8
CLA® 9,4
STD T9
CLA» 10,4
STD TicC
CLA= 1144

SRSV FBAFARRATRLERERZEREES

* cose

*

(2222322222222 32 222 X2 222

(PAGE

0299
0300
0301
0302
6303
0304
0205
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373

5)
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{PAGE 6)
STO T11
cLa 12,4
STA T12
CLA 13,4
STA T13

#SET COSISP SWITCHES

CLA KAl4
STA 3¢
CLA KAS
STA 133
CLA KA6
STA L56
STA 166
STA 276
STA 186
CLA KA15
STA 2136
CLA KZ1
STO 1114
ST0 7112
CLA KZ2
STO I121A
ST0 1122A
CLA KAlé6
STA 71C98
TRA 114

ey rC
v  t

PROGRAM LISTINGS

*

cosp

L2222 12222222222 22222222}

»

LAZ I XL EI RS2 X222 22222222

KA9
750

190

2107

ZET SHWE

ZET SWO

Z115

#MAKE COMMON SETTINGS FOR COSP, SISP, COSISP AS IF IT WERE COSISP
#FIRST FGR FIXED PCINT OR FILOATING POINT

14 ZET
TRA
CLA
LDQ
TRA

15 cLA
Lo

Z16 sTC
ST0
STO
ST0
ST0
sTQ
STQ
STC
ST¢
STQ
STO
sTO
STO
STO
STO
sTQ
STQ
STQ
sTQ
STQ
CLA
STA
STA
STA
STA
CLA
STA
STA
STA
STA
CLA
STA
CLA
STA

#THEN ADDRESSES

CLA
STA
STA
STA
STA

Til
15
MPY
ADD
716
Fmp
FAD
51
61
71
81
791
152
162
172
282
192
154
L64
174
184
194
155
165
175
185
195
KA2
152
162
72
282
KA3
155
165
15
185
KA4
292
KAS
295

T7

150
753
160
163

FLOATING
FIXEC

FLOATING

SMSE

SMSO

SMCE

SMCo

SINTAB (OR HASH)

(PAGE

0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448

6)
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EAZ X222 22222222222 22222 )

* cosp L - cose -
SAARERFINAZAAAIRNFFRAZRARRRR ARBERBBRARBEARABERANERBRE
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STA z7¢ 0449

STA 173 0450

STA 8¢ 0451

STA 733 0452

CLA T4 RAA  (OR HASH) 0453

STA 151 0454

STA 161 0455

STA 71 0456

STA 181 0457

CLA T3 RSA (OR HASH) N458

STA 154 0459

STA 164 0460

STA 174 0461

STA Ii4 - 0462

CLA T6 COSTAB (DR HASH) 0463

STA 190 0464

STA 173 0465

CLA Tl RSS {OR HASH) 0466

STA 191 0467

CLA T2 RAS (DR HASH) 0468

STA 194 0469

CLA T8 M 0470

TV Lv 0471

TZE Lv 0472

STD 7101 0473

STD 71C3 0474

ADD T8 2M 0475

STD 2¥ 0476

CLA T5 4 c4t7

™I Lv 0478

TZE Lv 0479

STL 2105 ¢480

CLA T12 CCSTR  (OR HASH) 0481

STA 21¢8 0482

STA Z1G9A 0483

CLA T13 SINTR (OR HASH) G484

STA 116 £485

STA I118 0486

#FCR JMIN EVEN SET JE=JMIN#1,J0=JMIN+1,ESTOR=0,0STOR=1 0487

. JMIN ODB SET JC=JMIN,JE=JMIN+1),0STOR=0,ESTOR=1 0488

120 CLA 79 JMIN 0489

T™I Lv 0490

CAS TiC 0491

TRA Lv 0492

TRA Lv 0493

ARS 18 0494

LBT 0495

TRA 221 IS EVEN 0496

ALS 13 1S 0cCo 0497

STD Je G498

ADD KD1 0499

STD JF 0500

ST2 OSTOR 0501

CLA K1 0502

STA ESTOR 05923

TRA 123 0504

121 ALS 18 IS EVEN 05905

STD JE 0506

ADD KD1 0507

STD Je 0508

sT2 ESTOR 0509

cLA K1l €510

STA CSTCR 0511

«CLEAR DUMMY SWITCHES 0512

123 STZ DUME 0513

STz DUMC 0514

#NOW BEGIN LOOPING 0515

#«INITIALIZE 7105 SWITCH, CLEAR SUM REGISTERS, SET TRAVEL SWITCHES 0516

#  FORWARD c517

730 CLA e (##=KA6 COSP, ##=KA9 OTHERWISE) 0518

STA I1C5 0519

STz SMSE G520

ST? SMSO 0521

STz SMCE 0522

STz SMCO 0523
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STz SWE
STZ SWC
CLA JE
STO 7132
CLA Jc
STD 1192
#+SET MINUS JE,JO
LDC JE,1
SXD MJE, L
LocC JCy1
SXD MJIC,y L

L2

PROGRAM LISTINGS

#XR4 WILL CONTROL MOTION FOR EVEN HARMONIC INDEX
#XR2 wILL CONTROL MCTION FOR ODD HARMONIC INDEX
#XR1 WILL CONTROL MOTION FOR DATA INDEX

#DATA INCEX=SINE INDEX=COSINE INDEX=0

AXT
133 TRA

0,7

*%

(#=#=790 FOR COSP,

L2222 X222 222222222 22222

ARERJERRBABEERAZERRARNES

=250 OTHERNWISE)

#L00P FOR FORWARD MOTION ON SINE WAVE FOR BOTH HARMONICS
- THIS PART [S FOR EVEN HARMONICS (XR4) SUMMED IN SMSE

150 LnQ *%44 (#2=SINTAB)
51 NOP (MPY OR FMP $$,1 WITH == = RAA)
152 NOP (ADD OR FAD SMSE)
STO SMSE
] THIS PART IS FOR ODD HARMONICS (XR2), SUMMED IN SMSO
153 LDQ g2 (##=STINTAB)
154 NOP (MPY OR FMP =2,1 NWITH #%=RSA)
155 NOP (ADD OR FAD SMSO
STC SMSC

#NOW GO TO CCSINE SUMS IF COSISP, OR AVOID IF SISP
156 TRA L3 (##=790 FOR COSISP, ##=7100 FOR SISP}
#L00P FOR FORWARD MOTION ON SINE WAVE OF EVEN HARMONIC AND
- REVERSE MOTION CN SINE WAVE OF 0DD HARMONIC
- FCR EVEN

160 LDQ wwy 4 (##=SINTAB)
161 NCP (MPY OR FMP ##,] WITH s=*=RAA)
162 NCP (ADD OR FAD SMSE)
sTo SMSE
- FCR QDO
163 CLsS 8,2 (#2=SINTAB)
XCA
164 NGP (MPY OR FMP =#a,1 WITH =#=RSA)
165 NOP (ADD OR FAD SMSO)
STO SMSO
266 TRA L (#%=790 IF COSISP, ##=7100 IF SISP)
#L00P FOR REVERSE MOTION ON SINE WAVE OF EVEN HARMONIC AND
- FORWARD MOTION ON SINE WAVE OF ODD HARMONIC
* FCR EVEN
Z70 cLS #xy4 (#2=SINTAB)
XCA
71 NOP (MPY OR FMP ##,]1 WITH =2=RAA)
112 NGP (ADD OR FAD SMSE)
STO SMSE
- FOR COD
173 LDQ any2 (#2=SINTAB)
174 NOP (MPY OR FMP ##,1 WITH ##=RSA)
75 NOP (ADD OR FAD SMSO)
STO SMSO
176 TRA LA (##=790 COSISP, #%=7Z100 IF SISP)

#L00P FOR REVERSE MOTION ON SINE WAVE FOR BOTH HARMONICS
- THIS PART IS FOR EVEN HARMONICS

180 CcLS w4 (==2=SINTAB)
XCA
181 NOP {MPY OR FMP ##,1 WITH =2=RAA)
182 NOP (ADD OR FAD SMSE)
ST0 SMSE
* THIS PART IS FOR ODD HARMONICS
283 CcLS #,? (#»=SINTAB)
XCA
184 NOP (MPY OR FMP w=,] WITH =s=RSA)
185 NOP (ADD OR FAD SMSO)
STO SMSO

#NOW GO TO COSINE SUMS IF COSISP, OR AVOID IF SISP

186 TRA .s (=2=790 FOR COSISP, #=#=7100 FOR SISP)
#1L00P FOR FORWARD OR BACKWARD MOTION ON COSINE WAVE
- THIS PART FOR EVEN HARMONICS SUMMED IN SMCE

(PAGE

0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
C570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598

8)
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- casp » - cosp *
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290 LCQ L2 X% (#»#=C0OSTAB) 0599

1291 NCP (MPY OR FMP wx#,]1 WKITH =#=RSS) 0600

192 rCP (ADD OR FAD SMCE) 0601

STC SMCE 0602

L] THIS PART IS FCR 0ODD HARMCNICS SUMMED IN SMCO 0603

193 LDQ n,2 (##=COSTAB) 0604

194 NOP (MPY OR FMP ##,1 WITH ®#=RAS) Q605

195 NGP (ADD OR FAD SMCO) 0606

STO SMCO 0607

*INCREMENT INDEX FOR EVEN HARMONICS (BY +JE FOR FORWARD 0608

- TRAVEL, BY -JE FOR REVERSE TRAVEL) 0609

2100 TXI 4] Jhaypus (ss=JE FORWARD) {es=~JE REVERSE) 0610
#CHECK IF INDEX HAS RUN CFF END (GREATER FTHAN M FOR 0611
- FORWARD FRAVEL, LFSS THAN ZERO FOR REVERSE) 0612
» (HOWEVER FOR REVERSE TRAVEL XR4 GOING NEGATIVE MEANS 0613
- XR4 GETS GREATER THAN M, SO SAME TEST APPLIES) 0614

Z1C1  TXH I120 44 0 as=M 0615
«INCREMENT INDEX FOR ODD HARMONICS {BY+J0O OR ~(JO})} 0616
* AND MAKE SAME KIND OF END TEST 0617

2102 Txi #4lg2qun {#2=30 FORWARD) (ee=-30 REVERSE) 0618

103 Tx L1102 40 {anz=M) 0619
# INCREMENT DATA INCEX AY 1 AND CHECK FOR END OF DATA 0620
L3 LOCPING BACK YC PLACE DETERMINED B8Y WHETHER COSP OR 0621
. SISP DR COSISP AND FORWARD DR BACKWARD AND EVEN OR ODD 0622

104 TIXI s¥lylyl i 0623

2105 TxL sn,] 00 (TXL s==pA,1,wep sa8=P} 0624
. s8A=790 FOR COSP 0625
- FOR SISP OR COSISP (INITIAL = 250) 0626
* #sA=1250 EVEN AND ODD HARMONICS FORWARD 0627
- seA=260 EVEN FORWARD, ODD REVERSE 0628
. *sA=770 EVEN REVERSE, 0DD FORWARD 0629
. #8A=780 EVEN AND ODD REYERSE 0630

2106 TRA *~n (#»=Z2107 FOR COSP DR COS1ISP, 0631
- #e=7115 FOR SISP) 0632
#sREADJUSTMENTS WHEN CDD HARMONIC INDEX RUNS OFF END 0633
#FORWARD OR BACKWARD 0634

110 2€E7 SWC 0635

TRA 2113 BACKWARD 0636

CLA K1 0637

STO SWC 0638

«IF FCRWARD SET T€ GC BACKWARD ON 0DD 0639
Z111 SXD TEMP,2 0640
cLA 2M 0641

suB TEMP 0642

PDX 0,2 0643

CLA MJC 0644

STo 2102 0645

#IF COSP GO BACKy IF NOT REMAKE FORK AT 1105 0646
- cose SISP DR COSISP 0647
2112 NOP {(TRA 2104 OR ZET SHWE) 0648
TRA 2112A 0649

cta KAlO (KA10 = PZE 260) 0650

STA 21C5 0651

TRA 104 0652

2112A CLA KAl12 {KA12=PZE Z80) 0653
STA 2105 0654

TRA 2104 0655

=1F BACKWARDS SET TC GO FORWARDS ON ODD 0656
2113 ST2 SuC 0657
P XA 042 0658

PaC U492 0659

CLA Jc 0660

ST 2162 0661

#IF COSP GO BACK, IF NOT REMAKE FORK AT 2105 0662
- case SISP OR COSISP 0663
1114 NOP (TRA 1104 OR ZET SWE) 0664
TRA Z114A 0665

CLA KA9 (KA9=PZE 150) 0666

STA 1G5 0667

TRA 1104 0668

2114A CLA KAll (KA11=PZE 270) 0669
STA 1105 0670

TRA I1C4 0671
#READJUSTMENT WHEN EVEN HARMONIC INDEX RUNS OFF END 0672
#WHICH WAY WERE WE GCING 0673
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1120 ZET SWE 0674
TRA 7122 BACKWARDS 0675
#IF FCRWARD, REVERSE SWE, READJUST IR4 AND DECREM OF TXI 0676
2121 CLA K1 0677
STO SWE 0678
SXD TEMP,4 RESET I=JE TO 2M-I=JE 0679
CLA 2M 0680
sus TEMP 0681
PDX Cs4 0682
CLA MJE 0683
STD Z1co 0684
#1S CCSP GO BACK, IF NOT REMAKE FORK AT 7105 0685
1121A NCP (TRA Z102(COSP) ZET SWO (SISP,COSISP)) 0686
TRA z1218 0687
CLA KAll (KA11=270) 0688
STA 7105 0689
TRA 7102 0690
71218 CLA KA12 (KA12=280) 0691
STA I1C5 0692
TRA 1102 0693
# IF BACKWARDS 0694
1122 ST2 SKE 0695
PXA 094 0696
PAC 044 0697
CLA JE 0698
STD 2100 0699
#«IF COSP GO BACK, IF NOT REMAKE FORK AT 2105 0700
21224 NCP (TRA Z102 (COSP),ZET SWO (SISP,COSISP)) 0701
TRA 21228 0702
CLA KA9 (KA9=Z50) 0703
STA 1105 0704
TRA 7102 0705
71228 CLA KA10 (KA10=260) 0706
STA 1105 0707
TRA 7102 0708
#COSP OR COSISP RESULT STORAGE FOR COSINE TRANSFORMS 0709
#WAS LAST EVEN HARMONIC A DUMMY 0710
2107 ZEY DUME 0711
TRA 7109 YES 0712
#IF NOT STCRE SMCE IN COSTR BLOCK 0713
LXA ESTOR,4 0714
CLA SMCE 0715
7108 ST0 LA T (##=COSTR) 0716
#+WAS LAST 0ODD HARMONIC A DUMMY 0717
2109 ZET DUMO 0718
TRA 71098 YES 0719
#IF NCT STORE SMCC IN COSTR BLCCK 0720
LXA OSTORy4 0721
CLA SMCO 0722
Z109A STO any4 (=2=COSTR)} 0723
211098 TRA L2 (##=7115 COSISP, ##=7130 COSP) 0724
#COSISP OR SISP RESULT STORAGE FOR SINE TRANSFORMS 0725
#WAS LAST EVEN HARMONIC A DUMMY 0726
Z115 ZE7 DUME 0727
TRA 117 YES 0728
#IF NOT STORE SMSE IN SINTR BLOCK 0729
LXA ESTORy4 0730
CLA SMSE Q731
2116 STO "4 {#2=SINTR) 0732
#WAS LAST ODD HARMONIC A DUMMY 0733
117 ZET DUMO 0734
TRA Z130 YES 0735
#1F NOT STORE SMSO IN SINTR BLOCK 0736
LXA OSTOR.4 0737
CLA SMSO 0738
2118 ST0 a4 (#2=SINTR) 0739
#RESEY FOR NEXT LCOP STORAGE 0740
2130 CLA ESTCOR 0741
ADD K2 0742
sTO ESTOR 0743
CLA 0STOR 0744
ADD K2 0745
ST0 OSTOR 0746
#INDEX JE BY TWO AND CHECK IF YOO BIG 0747

CLA JE 0748
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LS 222222 R 22 X222 22222223

*
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» case L - cose
FRBBARRARBRARRRBZRRABRERN
(PAGE 11)
ADD KC2
STD JE
CAS T1C COMPARE WITH JMAX
TRA 2135 T0OC BIG
NOP 0K
#IF NEW JE OK, INDEX JO BY TWO AND CHECK ITS SIZE
2131 CLA Ja
ADD KD2
STD Je
CAS T10
TRA 7133 TOC BIG
NCP 0K
«RETURN TO BEGINNING CF LOOP
2132 TRA 7130
=]IF JO TOO BIG SET SWITCH
7133 CLA K1l
STO [31V] Jo]
#1S JE ALSO TOG BIG
ZET DUNME
TRA Lv YES - ALL FINISHED
TRA 7132 NO - ONE MORE TO GO
#=IF JE TOO BIG SET SWITCH
7135 CLA Kl
STO DUNE
TRA 7131 GO0 CHECK JO
#*FINAL EXIT
LV LXD COSP-2,4
AXT w1 (===1R1)
AXT "2 (#2=]R2)
EXIT TRA LA XL (##=10 FOR COSP OR SISP, #=2=14 FOR COSISP)
#CONSTANTS, TEMPORARIES,
SWE PIE - (=#=0 WHILE EVEN HARMONIC GOING FORWARDS)
- (##=]1 WHILE EVEN HARMONIC GOING BACKWARD)
SWO PZE s (##=0 WHILE ODD HARMONIC FORWARDS)
* {we=]1 WHILE ODD HARMONIC BACKWARDS)
JE PZE Os0gnn +a=J)E
MJE PZE 0sQyne =#=25 COMP OF JE
Jo PZE Qy0yns ##=J0
MJO PZE OyOyns »#=25 COMP OF JO
DUME PZE L1 (##=0 FOR REAL EVEN,#==1 FOR DUMMY EVEN)
DUMC PZE e (#=2#=0 FOR REAL 0O0D,#==1 FOR DUMMY 0ODD)
ESTOR PZE 4 {##=ZERO INDEX OF INITIAL EVEN HARMONIC STORAGE)
OSTOR PZE L2 (##=ZERO INDEX OF INITIAL ODD HARMONIC STORAGE)
MPY MPY e,
FMP FMP n,]1
ADD ADD L3
FAD FAD »a
SMSE PZE e SUM FOR EVEN HARMONIC SINE TRANSFORM
SMSC PZE L2 SUM FOR 0ODD HARMONIC SINE TRANSFORM
SMCE PZE e SUM FOR EVEN HARMONIC COSINE TRANSFORM
SMCO PZE L1 SUM FOR ODD HARMONIC COSINE TRANSFORM
2M PZE 030,84 (na=2M)
TEMP PZE LA
T1 PZE e (##=RSS)
T2 PZE - (=2=RAS)
13 PZE % (===RSA)
T4 PZE " (#==RAA)
75 PZE 030, {#a=P)
T6 PZE e (##=COSTAB)
17 PZE L2 (#2=SINTAB)
T8 PZE 090 yun (nn=N)
T9 PZE 0300 (#a=JMIN)
T10 PZE 090y e { se=JMAX)
Tll PIZE L34 (##=TYPE)
T12 PZE »n (##=COSTR)
T13 PZE LA (##=SINTR)
KO PZE o
K1 PZE 1
K2 P2E 2
K10 PZE 1¢
K14 PIZE 14
KTl TRA 1104
KT2 TRA 102
K21 ZE7 SWE
KZ2 2ET SWO

(PAGE 11)

0749
0750
0751
0752
0753
0754
€755
0756
Q757
0758
0759
0760
0761
0762
0763
0764
0765
0766
0767
0768
0769
0770
0771
0772
0773
0774
0775
0776
0777
0778
0779
0780
0781
0782
0783
0784
0785
0786
0787
0788
0789
0790
0791
0792
0793
0794
0795
0796
0797
0798
0799
0800
0801
0802
0803
0804
0805
0806
0807
0808
0809
0810
0811
0812
0813
0814
0815
0816
0817
0818
0819
0820
0821
0822
0823
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KD1
KD2
KA2
KA3
KA4
KAS
KA6
KA7
KAS
KA9
KA10
KA1l
KA12
KAl3
KAl4
KAlS
KAl6
KAL7
KA18
KAl9

PZE
PZE
PZE
PZE
PZE
PLE
PLE
PLE
PLE
PZE
PZE
PZE
PZE
PZE
PZE
PLE
P1E
PZE
PZE
PLE
END

0,01
050,42
SMSE
SMSO
SMCE
SMCO
19¢C
7100
1340
150
260
17¢C
2390
KA8
KA9
Z1C7
115
1120
KA6
213¢

£y Fy 4
413

PROGRAM LISTINGS ERRARARRRERARE RN BN SR NN RS
» cosep =
ABFR AR RBRERREERR AR RSN
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0824
0825
0826
0827
0828
0829
0830
0831
0832
0833
0834
c835
0836
0837
0838
0839
0840
0841
0842
0843
0844
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- COSTBL » - COSTBL
L2 22222222222 X 222222222 2]
= COSTBL (SUBROUTINE) 2715763 LAST CARD IN DECK IS NO.
- FAP
*COSTBL
COUNT 200
LBL cosTaL

LN B B I BN NE B B BN R R N BE DR NN DY NE BE BN NN N N AL R N I RN R BN NE BN N BE RE RE BE RE BE BN BE BN BT R N N R R NE B N R BE NE BN BN NE BN NE N RE B A R

232

ENTRY COSTBL (N,COSTAB)
ENTRY SINTBL (N,SINTAB)
ENTRY cosTBX (N,ICOSTS)
ENTRY SINTBX (N,ISINTB)

--=-ABSTRACT----

TITLE - COSTBL WITH SECONDARY ENTRY POINTS SINT8BL, COSTBX, SINTBX
GENERATE COSINE CR SINE HALF-WAVE TABLES, FIXED OR FLOATING

COSTBL GENERATES A HALF-WAVE COSINE TABLE FLOATING POINT
SINTBL GENERATES A HALF-WAVE SINE TABLE FLOATING POINT
COSTBX GENERATES A HALF-WAVE COSINE TABLE FIXED POINT
SINTBX GENERATES A HALF-WAVE SINE TABLE FIXED POINT
WHERE
THE HALF-WAVE LENGTH IS AN INPUT PARAMETER.
FOR FIXED POINT TABLES THE BINARY POINT IS BETWEEN
THE SIGN BIT AND BIT 1.

LANGUAGE - FAP SUBROUTINE (FORTRAN I[I COMPATIBLE)
EQUIPMENT - 729 OR 709G (MAIN FRAME ONLY)
STORAGE - 128 REGISTERS
SPEED - ABCUT 2N MILLISEC ON 709, WHERE N = HALF-WAVE LENGTH
AUTHOR - JON CLAERBOUT
~==-USAGE----

TRANSFER VECTOR CONTAINS ROUTINES - (NONE)
AND FORTRAN SYSTEM ROUTINES - COS,SIN

FORTRAN USAGE OF CCSTBL
CALL COSTBL(N,COSTAB)

INPUTS TO COSTBL
N DEFINES THE HALF-WAVE LENGTH TO BE N+1
MUST EXCEED ZERO (PROGRAM EXITS IF N IS NEGATIVE OR ZERD)

OUTPUTS FRCM CCSTEL
COSTAB(I) I=1...N+1 CONTAINS TABLE(J) = COS(J#PI/N) J=0slse.esN
I.E. COSTAB(I) CONTAINS TABLE(I-1)

FORTRAN USAGE CF SINTBL
CALL SINTBL(N,SINTAB)
INPUTS TO SINTHL
N SAME MEANING AS FOR COSTBL
CUTPUTS FROM SINTBL
SINTAB(I) I=1...N+1 CONTAINS TABLE(J) = SIN(J*PI/N) FOR J=0jsleeceN

FORTRAN USAGE OF CCSTBX
CALL COSTBX(N,ICOSTB)
INPUTS TGO COSTBX
N SAME MEANING AS FOR COSTBL
OUTPUTS FROM COSTBX
ICOSTB(I) I=1l...N+1 IS SAME AS FOR COSTBL BUT DATA IS FIXED POINT

FORTRAN USAGE CF SINTBX
CALL SINTBX(N,ISINTB)
INPUTS TGO SINTBX
N SAME MEANING AS FOR COSTBL
OUTPUTS FROM SINTEX
ISINTB(I) I=1l...N+1 IS SAME AS FOR SINTBL BUT DATA IS FIXED POINT

EXAMPLES
1. GENERAL BEHAVIGR FCOR N=4
INPUTS - N=4
USAGE - CALL COSTBL(N,COSTAB)
CALL SINTBL(N,SINTAB)
CALL COSTBX(N, ICOST8)
CALL SINTBX{N,ISINTB)
CUTPUTS - NOTE -~ THESE NUMBERS ARE GOOD TO 8 OCTAL PLACES.

0199
0001
0002
0003
0004
0005
0006
0007
€008
0009
0010
0011
co12
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0929
0030
0031
0032
0033
0034
0035
G036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074

b i s 22 2222 222222222222 1)

R HARFBERABERBRERRRERS
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= COSTAEB(less5)
- SINTAB(1...5)
= 1CCSTB(1...5)
*
- ISINTRB(1...5)
»
-
HTR o}
BCI 1,CCSTBL
COSTBL CLA -
STo FL
TRA %43
COSTBX ST2 FL
ST2Z CCRS
SXD COSTBL-2,4
SXA SV,1
CLA KCCS
STO0 AL
CLA 294
STA 83
ADD =1
STA A
STA B
STA B1
STA B2
STA B4
TRA )]
SINTBL CLA -
STO FL
TRA “+4
SINTBX STz FL
cLA =
STO CCRS
SXD CCSTBL-244
Sxa SVyl
cLA KSIN
STO AL
#« SET UP FIXING LCOP
CLA 214
ADD =1
STA A
STA 8
STA 81
STA B2
STA L2
+« SET UP COMPUTATION LOOP
D CLA= ls4
TZE SV
™I Sv
STD N
ADD KD1
STD AN
STD BN
CLA N
ARS 18
ORA ORF
FAD ORF
STO NFL
CLA =3,14159265
FOP NFL
STO INCR
ST2 ARG
= LOOP
AXT 1,1
CLA ARG
AL NCP (22
A STQ wn,l
cLA ARG
FAD INCR
STO ARG
TXI #+1y101
AN ™>tL ALglyse
ZETY FL
TRA Sv

AXT 1,1

£33

PROGRAM L ISTINGS

= 140,.70711,0.04~-e707114-1.C
= 0e0y+7071141.0,.70711,0.0

OCT 3777TTT77T7777,265011714C00,
000000000000,665011714000, 777777777777

OCT 000000000000,265011714000,
3777177771717, 265011714000,00C0C000C0G0

"

(TSX $C0S,4)

GET COSINS

COSINS+1

(TSX $SINy4)

GET SINS
SINS+1

GET N

FORM N+1

FLOAT N

FORM PI/N

cos SIN

TSX $C0S,4
#2=COSINS+1

TSX $SIN,4
w«n=SINS+1

aazN+1
FIX IF ZERO
EXIT - NOT ZERO

RN BB RREBAS AR RRBRE G
- cosTBL *
REERBRERRREARASRBRERRRE RN

(PAGE 2)

0075
0076
0077
co78
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
olos
0109
0110
o111
o112
0113
Cll4
0115
0l1lé
0117
0118
0119
0120
0121
0122
0123
0124
0125
0l26
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0l44
0145
0146
0147
0l48
0149
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8C CLM
B LoQ 8,1
LLS 8
sse
sus =0200
STA RTSH
81 CLA #ay]
LRS
ANA =0C0CTTTITTT777
ALS 8
LLsS
RTSH ARS L
B2 ST0 »e,1
TXI #+1y101
BN XL BCyl,nn
CLA CORS
TNZ L1
CLA =C371771771777717
B3 STO .
SSM
LXD BN,1
B4 STC L2 TR
TRA SV
t1 CLA N
ARS 18
LBT
TRA *+2
TRA SV
CLA N
ARS 1
ADD KD1
STD MD
CLA =03177177777777
LXD MC,y1
L2 sT0 we,l
SV AXT LA TR
LXD COSTBL-2,4
TRA 3+4
N PZE L2
FL PZE L1
INCR PIE e
ARG PZE -
ORF ocT 233000000000
NFL PZE e
KD1 PZE 0,0,1
KCOS TSX $C0S 4
KSIN TSX $SINy4
CORS PIE L2
MD PIE 090y 2s

END

23

PROGRAM LISTINGS

#4=COSINS+1

#2=COSINS+1

=% FROM B+4
#2#=COSINS+1

»a=N+1
##=COSINS

##=COSINS+1

1F = 0,
N ODD - SET MOPT =

GET (N+1}/2

%% =

SINS+1

=#=N IN DECR

##=0,FXD
#»2=PI/N.
ax=]2PI/N,

«2=FLOATF(N]

=#=0 IF COS
sa=(N+1)/2

N EVEN - EXIT

I=0s1yecesN

ABEBARRRERRABRERRRBRRA RS
- COSTBL -
AR ER AR ASARRBSARAREES

(PAGE 3)

0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0l6l
0162
0163
0l64
0165
0166
o167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
o181
o182
ol83
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199

SET FIRST AND
LAST VALUES
IN TABLE =1
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- FACTOR

ERBRRZABRARRARERRRRA SRR RN

* FACTCR (SUBROUTINE) 2/18/763 LAST CARD IN DECK IS NO.
- FAP
#FACTCR

COUNT 45C

LsL FACTOR

ENTRY FACTOR (SPECTyN,LyWAVE,B1,B2,CyTRANsWORK,COST)

LI I B B B B BE N B AR B N R BN L N I N NE R BE NE BN BN IR BN RN NN NE RN BN NN B NE BN R N B R BRI BE K BN R R Y RE B R NN NN N B U R R R R NN )

23h

* * FACTOR

————ABSTRACT--—-

TITLE - FACTOR
FACTCR POWER SPECTRUM TO FIND MINIMUM PHASE WAVELET

FACTCR USES THE METHOD OF KOLMOGOROV (REF.- 1. ROBINSON,E.
Aey MoI.T. PH.D. THESIS,GEOPHYSICAL ANALYSIS GROUP REPORT
7+1954. 2. SIMPSON ET Al., SCIENTIFIC REPORT NO. 2 OF
CONTRACT AF 19{(6C4)7378.) TO FACTOR THE POWER SPECTRUM

AND THUS PRODUCE THE MINIMUM PHASE WAVELET.

THE RESTRICTIONS ON APPLICABILITY OF THE METHOD REQUIRE
THAT THE [NPUT SPECTRUM BE NON-NEGATIVE AND NON-ZERO.
HENCE SPECT(I), THE INPUT SPECTRUM, IS CHECKED AND ANY
VALUES WHICH ARE LESS THAN 1C#=s(-6) OF THE MAXIMUM VALUE
OF SPECT(I) ARE SET EQUAL TO 10##(-6) OF THE MAXIMUM.(THIS
FEATURE MAY EASILY BE REMOVED FROM THE SYMBOLIC DECK).

ONE HALF OF THE NATURAL LOG OF THE SPECTRUM 1S COMPUTED
ANC EXPANDED IN A COSINE SERIES. THE COEFFICIENTS OF THE
EXPANSIONSION ARE COMPUTED BY TRIGONOMETRIC INTERPOLATION
(REF. LANCZOS, APPLIED ANALYSIS) RATHER THAN BY INTEGRA-
TICN. SUBRCUTINE COSP IS USED FOR THE CALCULATION, BUT THE
FIRST AND LAST TERMS OF THE SPECTRUM MUST BE WEIGHTED BY
172 SO THAT THE COSINE PRODUCTS PRODUCED BY COSP WILL BE
ORTHOGCNAL UNDER SUMMATION. THE COEFFICIENTS OF THE COSINE
EXPANSICN ARE TRAN(I),I=1,L. THE EXPONENTIAL

L
EXPe#=(TRAN(1)}+ SUM(TRAN(I)=(Z#%(]-1))))
I=2

MUST BE EXPANDED IN A CONTINUED PRODUCT OF POLYNOMIALS IN
Z. THE POLYNOMIALS ARE THEN MULTIPLIED OUT AND GROUPED IN
THE FCRM

L
P = SUM (W(I)=(Z==(]-1)))
I=1

WHERE L IS THE LENGTH OF THE WAVELET, AND W(I) IS THE
DESIRED WAVELET.

PRCGRAM NOTES -

THE EXPANSION OF THE EXPONENTIAL AND MULTIPLICATION OF
THE RESULTING POLYNOMIALS MAY BE SIMPLIFIED BY THE
FOLLCWING CONSIDERATIONS - THE EXPONENTIAL MAY BE
REPRESENTELC AS A CONTINUED PRODUCT OF POLYNOMIALS
WHERE THE ITH POLYNOMIAL IS OF THE FORM

L-1
P(IN=(SUM{ C(I,J)e(Z=»1))+ 1)=EXPe={TRAN(1))
=1
WHERE
C(I,4Jd)= (TRAN(1)/1)#(TRAN(2)/2)%ccc.#(TRAN(TI)/(J/1))
FOR J=K#]
C{I,Jd)= 0 FOR J NOT =Ks]
THE C{I,0) TERMS ARE 1 FOR ALL I.

WE ARE ONLY INTERESTED IN THE FIRST L TERMS OF THE WAVELET
SO WE NEED ONLY CONSIDER TERMS IN THE POLYNOMIALS WITH
EXPONENTS LESS THAN OR =M,M=L-1. WE CAN THEN COMPUTE THE
WAVELET COEFFICIENTS 8Y PARTIAL CONVOLUTION OF THE
PCLYNOMIAL COEFFICIENTS. THAT IS,

WAVE(I)= C(1,J)2C(2,J)n...C(MyJ)
WHERE WAVE(I) IS THE WAVELET, M=L-1, AND THE s SYMBOL
DENCTES CONVOLUTION.

IT WILL BE NOTED THAT IF THE CONVOLUTION IS REPRESENTED

0480
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
c019
c020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
G032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
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HEEBRRARRALBRRARERRARRRRER PROGRAM LISTINGS .. SHSERBSB RN SRLERTRBRNS
. FACTOR - - FACTOR -
BRBEBB SR AR E AR AR RABERRRE SERESRRAREBARARARSRESBEE
(PAGE 2) (PAGE 2)
- IN STEPS BY 0075
- B(M=1)= C(M=-1,J)=C(MyJd), BIK)I=C(K,J)uB(K+1) 0076
» BY CAREFUL INSPECTION OF THE FORM OF THE C(I,J) ONE CAN 0077
L WRITE DOWN THE B(N) BY INSPECTION FOR N=L/2 (ROUNODED DOWN) 0078
[ +1. THIS CUTS DOWN THE TOTAL LABOR BY NEARLY 1/2. 0079
- BIN)= 1403090000030 sCINyN}yC(N+1sN+1)s00eesCiMyM) 0080
- FACTCR SETS UP B(N) AND THEN USES AN INTERNAL SUBROUTINE 0081
* TO SET UP C(N-1,J) FOR J=0,M. THE INTERNAL SUBROUTINE 0082
* PARCON COMPUTES THE PARTIAL CONVOLUTION WHICH IS B(N-1}). 0083
- THE NEXT C(I,J) IS SET UP BY CCOM AND THE NEXT B(I-1) 0084
- COMPUTED BY PARCON. THIS IS REPEATED UNTIL ALL THE PARTIAL 0085
* CONVOLUTIONS HAVE BEEN DONE. THE RESULTING WAVELET IS THEN 0086
» SCALED BY EXPs=(TRAN(1)). 0087
» THE CUTPUT OF PARCON FOR ONE STAGE IS THE INPUT FOR THE 0088
- NEXT STAGE SO THAT THE ADDRESSES Bl AND B2 IN THE PARCON 0089
- ROUTINE ARE REVERSED BETWEEN STAGES. 0090
L 0091
# LANGUAGE - FAP, SUBROUTINE (FORTRAN II COMPATIBLE) 0092
# EQUIPMENT - 709,7090 (MAIN FRAME ONLY) 0093
# STORAGE - 303 DECIMAL REGISTERS 0094
* SPEED - 2200+494L+16L %8243 ##3+270N+37L#N MACHINE CYCLES 0095
+ AUTHOR - JoN. GALBRAITH NOV. 1, 1961 0096
* 0097
- -—==USAGE-——~ 0098
* 0099
# TRANSFER VECTOR CONTAINS ROUTINES - MAXAB, COSTBL, COSP 0100
- AND FOQRTRAN SYSTEM ROUTINES - LOG, EXP 0101
. 0102
= FORTRAN USAGE G103
- CALL FACTOR(SPECT,NyLsWAVE,B1,B2,Cy TRAN,WORK,COST) 0104
L 0105
+ INPUTS 0106
. 0107
- SPECT(I) I=1,N SPECTRUM FROM ZERO TO PI 0108
* 0109
* N NUMBER OF POINTS IN SPECTRUM o110
- MUST BE GRTHN 0. o111
- 0112
= L LENGTH OF DESIRED WAVELET. o113
- MUST BE GRTHN O, LSTHN= N. oll4
- 0115
- BL(I) I=14L SPACE FOR PARTIAL CONVOLUTION 0116
- 2117
- 82(1I) I=1,L SPACE FOR PARTIAL CONVOLUTION ol18
- 0119
- cn I=1,L SPACE FOR COLUMN OF C{I,J) MATRIX 0120
* 0121
- TRAN(I) I=14yL SPACE FOR COSINE TRANSFORM 0122
. 0123
L WORK(I) I=14N SPACE FOR COMPUTAT(ON OF 1/2#LOG(SPECT).MAY BE THE 0124
- SAME AS SPECT IF SPECTY CAN BE OESTROYED. 0{%5
- 0126
- COST(I) I=1sL SPACE FOR COSINE TABLE FOR COSINE SERIES EXPAN- o127
- SICN. 0128
L NOTE- 0129
- COST MAY BE THE SAME AS EITHER B1,B2,0R C IF THE LENGTH IS L+1 0130
- INSTEAD OF L AS NOTED ABOVE. 0131
- THE OUTPUT WAVELET MAY ALSO BE THE SAME AS B1,B2,0R C. HENCE 0132
L4 THE MINIMUM STCRAGE FOR DATA USING ALL POSSIBLE EQUIVALENCES IS 0133
. N+4#L+1 , AND FACTOR COULD BE CALLED BY 0134
. CALL FACTOR(SPECT,NyL,B1,B1,B82,CyTRAN,SPECT,81) 0135
- WHERE Bl IS OF LENGTH L+1 SINCE IT MUST DO DOUBLE DUTY FOR COST. 0136
- NO CHECKS ARE MADE ON THE VALUES OF N AND L. BOTH MUST BE GREATER 0137
* THAN O, AND L MUST BE LESS THAN OR =N. ILLEGAL VALUES MAY RESULT 0138
L IN INCORRECT WAVELETS OR PROGRAM LOOPS. 0139
- 0140
& QUTPUTS 0141
- 0142
- WAVE(I) 1=1yL OUTPUT MINIMUM PHASE WAVELET 0143
- 0144
- SEE NOTE ABOVE FOR EQUIVALENCE ALLOWANCES. 0145
. IF THE COSINE TABLE CAN BE USED LATER BY THE CALLING PROGRAM, 0l46
. FACTOR CAN BE CALLED WITH SEPARATE SPACE FOR COST, AND THE TABLE 0147
- WILL BE RETURNED ALSO. 0148
» 0149
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+ EXAMPLES

)

# l. INPUTS -

*

=

» THE WAVELET IS

*

-

*

»

- FORTRAN LOOP.

-

-

-

-

-

*

*

L 10w (-8)

=
PZE
8CI 1,FACTOR

FACTOR SXA RETURN, 1
SXA RETURN+1,2
SXA RETURN+2,4
SXD FACTOR~2,4
CLA Sy4
STA PAR+1
STA BFST
STA LCCP2
STA LOCP3+1
CLA 644
STa PAR+2
cLA 1,4
STA MAX+2
ADD ONE
STA LccPl
cLA 244
STA MAX+]1
CLA 9,4
STa WGT+3
STA WGT+5
STA CSp+1
STA CSP+2
ADD CNE
STA END1-2
STA WGT
STA WGT+2

MAX TSX $MAXAR, 4
PZE *w
P2E =e
PZE BIGSP
PZE INCEX
LoQ BIGSP
FMP DEC
stTo BIGSP
LXA RETURN+2,4
cLA 1.4
CLAs 244
STD ENC1
STo N
LRS 13
CRA CONST
FAD CONST
STo NF
AXT 1s1
LoopPl CLa #u,]

CAS RIGSP
TRA #43
TRA 42
CLA BIGSP
TSX $LCGy4
FDP NF
STQ LE XD

TXI #+1,y1,1

PROGRAM LISTINGS

23

- FACTOR

(222222 2222222222 2222212 24

*

EA 22222 2222 2222 222222224

FOR A CONTINUOUS SPECTRUM
SPECT= 1.25+C0OS(W)y W=0,PI

WAVE= leye590e90eyeccecesOe

FOR THE DISCRETE CASE THE NUMBERS WILL NOT COME GUT
EXACTLY THE SAME DUE TO ROUND OFF AND APPROXIMATION.
FCR A TEST CASE THE INPUT SPECTRUM CAN BE SET UP WITH A
SPECT(I)=1.25 +COSF(FLOATF(I-1)%W) ,1=1,N

W =PI/FLOATF(N-1)
WHERE N IS THE LENGTH OF THE SPECTRUM.
RESULTS ARE GIVEN BELOW FOR N=500

CUTPUTS - WAVE(l...6)= 1.040.4999+-0.00025,0.0004,-0.00001,0.000003

THE HIGHER TERMS ARE EVEN SMALLER WITH WAVE(20) LESS THAN

SAVE IR1
SAVE IR2
SAVE IR4

GET LOCATION OF B1

GET LOCATION OF B2

GET LOCATION OF SPECTRUM

GET LOCATION OF N

GET WORK SPACE FOR SPECTRUM

FIND MAXIMUM OF SPECTUM
LOCATION OF N
LOCATION OF SPECTUM

MAX. OF SPECTUM
10##(-6) OF MAX
RESET IR4

GET N (IN DECREMENT)

N IN ADDRESS

FLOATING N

«#=SPECT+1

SPECT LARGER
SPECT EQUAL
SPECT LESS
LOG(SPECT)

1/2 LOG{SPECT)(WEIGHTED)

{PAGE

0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
olel
0162
0163
0164
0le65
0166
o167
0168
0169
0170
0171
0172
0173
0174
0175
0176
o177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
o188
0l89
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224

3)
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END1  TXL LOOPlylyns
Tx1 #+1y1s-1
WGT CLA ay]
FCP THOD
STQ e,
cLA L2
FDP TWCO
STQ LA
LXA RETURN+2,4
CLA= 3,4
ST0 L
SuB DONE
STo LL
cLA 10,4
STA CST+2
STA CSP+4
CLA N
SuB DONE
STO NN
CLA 8,4
STA CSP+9
CST TSX $CCSTBL,4
PZE NN
PZE LA
cse TSX $COSPy4
PZE LA
PIE L L4
PLE NN
PLE L3s
PIE NN
P1E ZERC
PZE LL
PZE GNED
PZE L3
LXA RETURN+2, 4
CLA L
ARS 1
ANA MASK
AGD DCONE
STO M
CLA ONED
BFST STO e
AXT 1,1
CLA »
sus DONE
STD END2
LoopP2 STz #8,1
TXI *+ly1,1
END2 TXL #=24lynn
CLA 8,4
STA LOGP3
STA COM+2
CLA L
STD END3
LXxD Myl
LOOP3 CLA #uy]
STo L XD S
X1 #4+1y1,y1
END3  TXL LOCP3ylyus
AXT 142
CLA M
STO P
sus DONE
STD END23
AXT 1,1
CLA Te4
STA PAR+3
STA COM+1
CONV  CLA P
sus DCNE
STO P
SXD Ky2
COM TSX cCCMy 4
PZE e

PLE LL

23

PROGRAM LISTINGS

#w=N

#s=WORK+1l. WEIGHT LAST
TERM IN SPECTRUM BY 1/2
»#=H{ORK+1

»##=WORK. WEIGHT FIRST
TERM I[N SPECTRUM BY 1/2
##=WORK

GET L

L-1

N-1
LOCATION OF TRAN
GO TO COSINE TABLE

casT

GO TO COSINE TRANSFORM
WORK SPACE FOR SPECTRUM
WORK SPACE FOR SPECTRUM
N-1

coesTt

N-1

JMNIN=0

JMAX=L~1

1.0

TRAN(COSTR)
L/2
L/2+1
M=L/2+1
1.0

=a2=Bl. Bl(0)=1.0
M
M-1
CLEAR Bl

sa=M-1

GET LOC. OF TRAN,

IR1=M
TRAN
Bl

L IN DECREMENT

GET LOCATION OF C

TRAN

FRERBEERERRBRERERIR RS
» FACTOR -
HRBEABRS SRR BRGR RS RN BRSNS

(PAGE 4)

0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
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PAR

END23

LOOP4

END4
RETURN

L

LL

K

N

NN

M

P

NF

NORM

BIGSP

INDEX

CONST

MASK

ZERD

ONE

DONE

ONED

TWOD

DEC
*CCOM

*
-
*
*

CCOM

TSX
PZE
PIE
PZE
CLA
LOQ
STO
STQ
TX1
TXI
TXL
LXA
CLA
ARS
LBT
TRA
CLA
STA
TRA
CLA
STA
cLA
STA
LDQ#
FMP
TSX
sTQ
CLA
STD
AXT
L0Q
FMP
STO
I
TXL
AXT
AXT
AXT
TRA
PZE
PZE
PZE
P1E
PZE
PZE
P1E
PZE
PZE
PZE
PZE
CcCT
ocT
PZE
P2E
PZE
DEC
DEC
DEC

PARCCN+ 4
* %

- %

*%

PAR+1
PAR+2
PAR+2
PAR+1
419241
#+1,1,1
CONVylynw
RETURN+2,4
M

18

+4

Sy4
LoCcP4
#+3

644
LOCP4
b4
LGCP4+2
84
=5
$EXP,y4
NGRM

LL

END4
0,1
eyl
NCRM
#uy]
*+1y1y1
LCOP4, 1, *=
“n,]
*y 2

L XY
11,4

COO0OO0QLOLOOOD

+233000006000
777777000000
[¢]

1,0,0

04051

1.0

2.0

»000CC1

yeyyg
b )

PROGRAM LISTINGS

FERRBERBEARRRARER SRR RRRS
L FACTOR

L2223 2222 22222222222 222 )2 g

LOCATION OF B1
LOCATION OF B2
LOCATION OF C
EXCHANGE
LOCATIONS

OfF B1

AND B2

#a=M-1
RESET IR4
GET M
M IN ADDRESS
LOW BIT TEST
M EVEN, B2 CONTAINS WAVELET
M 0ODD, Bl CONTAINS WAVELET

GET ADDRESS OF A (STORAGE FOR WAVELET)

TRAN(1)

SCALE FOR WAVELET

B2 OR Bl
SCALE FOR WAVELET
WAVELET
wa=l =1
RESTORE IR1
RESTORE IR2
RESTORE IR4
L-1
N-1

~COMPUTES C(P,J) FOR J=0 TO L-1
#CALLING SEQUENCE

TSX
PLE
PLE
RETURN
SXA
SXA
SXA
CLA
STOD
CLA
ARS
CHS
ADD
STA
STA
CLA

CCCMy4

LOCATION OF C(P,0)
LGCATION OF TRAN

BACK,1
BACK+1,2
BACK+2,4
L
ADDR2+42
p

18

1,4
ADDR3
ADDR4
144

SAVE IR1
SAVE IR2
SAVE IR4
GET L

GET P
L IN ADDRESS

ADDRESS OF C(P,P)

LOCATION OF C(0)

(PAGE

0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
323A
3238
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374

5)
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STA
ADD
STA
cLS
ARS
ADD
STA
CiA
ADDR1 STO
AXT
ADDR2 STZ
TXI
XL
STO1 CLA
ADDR3 STO
STO
STO
CLA
LRS
DVP
LLS
suB
TZE
STD
CLA
POX
SXD
AXT
CLA
STC
LOOP LDQ
F¥p
FOP
ADDR4 STQ
sTC
CLA
FAD
sT0
TXI
TXI
END  TXL
BACK  AXT
AXT
AXT
TRA
TEMP1 PZE
TEMP2 PTE
R PZE

<10

* -

ADDR1

ONE

ADDR2

P

18

244 TRAN

STC1

ONED 1.C

LA c(cy

2,1 CLEAR

*u,l c(1) 10

*+1,1,1 clL)

ACDR2y1 g% *wz=|

% TRAN(P)

Y C(P,P)

TEMP]

TEVP2

LL

35 INTO MQ

P (L-1)/P

53 INTO AC

DCNE (L-1)/P-1

BACK IF ZERO,NO MORE TO DO
ENC NOT ZERO, SET TO DO (L-1)/P-1 TIMES
P

22 P IN IR2

END-242

1,1

TWCD GET 2.0

R INITIALIZE R

TEMPL

TEMP2 TRAN(1)

R

LA XY ##=C. C(R+1) COMPUTED.
TENMPL SAVE FOR NEXT C

R GET R

ONED INCREMENT BY 1.0

R RE-SET &

#+ly2)nn ##=P, INCREMENT C STORAGE INDEX
®#+141,1 INCREMENT LOOP COUNTER
LOCP ¢l y#% ##=.-1/P-1. END LOOP CHECK.
LT RESTCRE IR1

*a 2 RESTORE IR2

LA TR RESTORE IR4

3+4 RETURN

04040 WILL CONTAIN PARTIAL SUM FOR C({P)
0,GC,0 WILL CONTAIN TRAN(P)

#PARCCN CCMPUTES A PARTIAL CONVOLUTION OF C ANC B1
#CALLING SEQUENCE

- TSX
= PZE
L PZE
» PZE
PARCON SxA
SXA

SXA

CLA

STA

STA

STA

ADD

STA

CLA

STA

CLA

REG1 STO

AXT

CLA

STD

sus

STD

REG2 STZ

TXI

XL

PARCON+4

LOCATICN CF B1
LCCATICN CF B2
LOCATION COF C(X,0)

EXT,1 SAVE IR1

EXT+1,2 SAVE IR2

EXT+2,4 SAVE IR4

214 GET LOCATION OF 82
REG1

REG3

REG3+1

ONE

REG2

314 LOCATION OF C

REGS

ONED 1.0

Lid 82(0)=1.0

2,1

L GET L

REG2+2

DONE

REGS

2, CLEAR B2(1) TO 82(L)
#+1,1,1

REG2 11 yu» DECREMENT=L

FACTOR

L2222 22T 2222222222 2222 )

(2222222222 222222222227

(PAGE 6)

0375
0376
0377
0378
0379
0380
0381
0382
c383
0384
0385
0386
0387
c38s8
0389
€390
0391
0392
6393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
C406
0407
0408
0409
041¢C
0411
0412
0413
0414
0415
04l6
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
C438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
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REG7

REGS5
REG4
REG3

REG6

REGS
EXT

cLA
suB
POX
SXD
PDC
SXD
SXD
AXT
LXA
cLA
STD
cLsS
ARS
ADD
STA
AXT
LDQ
FMP
FAD
STO
TXI
TX1
XL
TXI
TXL
AXT
AXT
AXT
TRA
P2E
END

M

K

'3}
REG3+2,1
»2
REG3+3,2
Syl

Cy2
EXT+2,4
S

REGS

S

18

1,4

REG4

0,4

e, 4
"hy2
a8,
#s,l
#4ly4 00
#4ly2 80
REGS y4 420
s41,1,1
REGT~1sl9s8»
ae,]
#8,2

L1 Y

444

o

241

PROGRAM LISTINGS

K GOES FROM 1 TO M-1.

IR1=M-K

S=IR1=M-K
ZERD IR2
RESET IR4
GET S

LOCATION OF B1(S)

c(wo)

B1(S)

82

B2

(M=K) IN DECREMENT
~{M~-K) IN DECREMENT
se=$

sa=L-]1
RESTORE IR1
RESTORE IR2
RESTORE IR4
RETURN

SRR RBASREVER AR AREE

- FACTOR

FRRERSRF AR RBRARRZRRRRARRS

(PAGE

0450

SET BY CALLING LOOP. 0451

0452
0453
0454
0455
0456
0457
0458
0459
G460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
04175
0476
0477
0478
0479
0480

2



AR RAR RN R AR RNE R RE RS NE RN, PROGRAM LISTINGS

L FRQCT1

RFRBRBERBFERTRERAERRRRRERR

(2} (s XN NN N e e e N N e N e s N e N e N N e N e N e N N N e e N N N N e N N N N e N N e W N R N e N N e N e N o W N N e N e W e R e N e N e R e R e N e W e R W N W e e R W o W e W W o W I W e W (a2 BN

FRQCT1 (
LABEL

FRQCT1

SUBROUTI

TITLE - FRQC
FREQUE

LANGUAGE -
EQUIPMENT -
STORAGE -
SPEED -
AUTHOR -

TRANSFER VEC
AND FO

FORTRAN USAG
CALL FRQ

INPUTS

IX{1)

NX

IXLO

IXHI

OUTPUTS

ICT(I)

IANS

EXAMPLES OF

1. INPUTS -
QuTPUTS -

2. INPUTS =~
CUTPUTS

3. INPUTS -
CUTPUTS -

4. INPUTS -
CUTPUTS -

DIMENSIO
SET UP AND C

24

* * FRQCT1

SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO.

NE FRQCT1(IXsNXyIXLOsIXHT,[CT, IANS)
~=——ABSTRACT---~

Tl
NCY DISTRIBUTION OF A FIXED POINT VECTOR

FRGCT1 MAKES A FREQUENCY COUNT OF AN INTEGER SEQUENCE WITH
VALUES IN A SPECIFIED RANGE. FOR EACH INTEGER VALUE IN
THE INCLUSIVE RANGE IXLO TO IXHI, THE NUMBER OF
OCCURRENCES OF THIS VALUE IN THE INTEGER SEQUENCE IS
COUNTEC.

FORTRAN 11 SUBROUTINE
709 GR 709C (MAIN FRAME ONLY)
117 REGISTERS

S. M. SIMPSON
-——-USAGE----

TOR CCNTAINS ROUTINES - NONE
RTRAN SYSTEM ROUTINES - NONE

E
CTL(IXyNXy IXLO» IXHI, ICT, IANS)

I=1l.+.NX IS THE GIVEN INTEGER SEQUENCE
IXLO LSTHN OR = IX(I) LSTHN OR = IXHI.

IS THE NUMBER OF IX VALUES IN THE SEQUENCE.
MUST BE GRTHN 0.

IS AN INTEGER
LSTHN OR = ALL IX(I)
IXLO MAY BE NEG.

IS AN INTEGER
GRTHN OR = ALL IX{(I}
IXHI MAY BE NEG.

I=1...NCT IS THE FREQUENCY COUNT WHERE
ICT(1) = NUMBER OF MEMBERS OF THE INPUT SEQ = IXLO
ICT(2) = NUMBER OF MEMBERS OF THE INPUT SEQ = IXLO+1
ETC.
ICT(NCT) = NUMBER OF MEMBERS OF THE INPUT SEQ = IXHI
WHERE NCT = IXHI-IXLO+1

0 NORMAL
1  ILLEGAL NX
2 TLLEGAL IXLO

FRQCTY
IXLO=3 IXHI=10 NX=3 IX{1leoa3)=4,y454
ICT(les.8) = 04340,0,0,40,0,0 IANS=0
IXLO=S IXHI=12 NX=T7 IX{1eeeT)=5569798,9,10,11
ICT(leee8) = 11191911191'190 IANS=0
IXL0=5 IXHI=12 NX=0
ERROR IANS=1
IXL0=13 IXHI=12 NX=T
ERROR TANS=2

N  IX{2),ICT(2)
LEAR ICT(I}.

0094
0001
0002
0003
0004
0005
0006
0007
0068
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074

RERBBRRBBRBRRRBERBRABEEE

*
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IANS=0 0075

NCT=IXHI-IXLO+1 6076

NSHIFT=1IXL0-1 GoT7

IF (NX) 9991,9991,10 0078

10 IF (NCT) 9992,9992,15 0079

15 0C 20 1I=1,NCT 0080

20 I1CT(I)=0 0081

C SCAN IX{(I) TO MAKE COUNTS (PUT EACH IX IN RANGE 1 TO NCT FIRST}. 0082

D0 35 I=1,NX 0083

IXI=IX({I)-NSHIFT 0084

IF (IXI) 9992,9992,30 0085

39 IF (IXI-NCT) 35,35,9992 0086

35 JICTUIXII=ICT(IXI)+1 0087

G0 TO 9999 0088

9999 RETURN 0089

9991 IANS=1 0090

GO TO 9999 0091

9992 1ANS=2 0092

GG TD 9999 0093

END 0094
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=  FROCT2 . *=  FRQCT2
(A 222222 X222 22222 22X 22X 21
. FRQCT2 (SUBROUTINE) 2/18/63  LAST CARD IN DECK IS NO.
. FAP
*FRQCT2
COUNT 200
LBL FRQCT2
ENTRY  FRCCT2 (X,LX,B,LB; [COUNT, IANS)

LIE B B B BRI B RN B BN R BE B NN BN B N BE NN BN DN BE N R BN BN BN ORE NN BE RN BN RE BN RN YN BN RN RE R RE B BT NN RE B AN BN R NE RN R RN RN R
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PROGRAM LISTINGS

---~ABSTRACT----

TITLE - FRQCT2

FREQUENCY COUNT

LANGUAGE
EQUIPMENT
STORAGE
SPEED
AUTHOR

FRQCT2 MAKES A FREQUENCY COUNT OF A FLOATING POINT,
FORTRAN INTEGER, OR MACHINE LANGUAGE INTERGER SERIES FOR
THE NUMBER OF VALUES LYING IN SPECIFIED RANGES. IT IS
USEFUL IN COMPUTING EMPIRICAL PROBABILITY DENSITIES.

THERE ARE LB RANGE LIMITS, B(I)y I=1, LB, AND HENCE LB+1
RANGES. A NUMBER, X(J), IS SAID TO BE IN THE I-TH RANGE
IF B{I-1) LSTHN CR EQUAL X{J) LSTHN B{(I). A NUMBER IS IN
THE FIRST RANGE IF IT IS LSTHN B{(1), AND IN THE LB+l
RANGE IF GRTHN OR EQUAL B(LB). THE INPUT SERIES X(I) MUST
BE THE SAME MODE (FLOATING, INTEGER, ETC.) AS THE RANGE
LIMITS BECAUSE THE METHOD USES CAS INSTRUCTIONS.

FAP SUBROUTINE (FORTRAN II COMPATIBLE)
709 OR 709C (MAIN FRAME ONLY)

117 REGISTERS

Je No GALBRAITH

~==-USAGE---~

TRANSFER VECTOR CCNTAINS ROUTINES ~ NONE
AND FORTRAN SYSTEM ROUTINES - NONE

FORTRAN USAGE
CALL FRQCT2(XsLX9BoLBs ICOUNT, IANS)

INPUTS

X(1)

LX

B(I)

L8

QUTPUTS

ICOUNT(I)

IANS

EXAMPLES

1.

INPUTS

I=l...LX IS THE GIVEN SERIES.
MAY BE FLOATING, FORTRAN INTEGERy OR MACHINE INTEGER.

IS THE LENGTH OF THE X SERIES.
MUST BE GRTHN 0.

I=1..+LB IS VECTOR OF RANGE LIMITS. B(I) LSTHN B(I+1).

RANGES INTO WHICH THE SERIES IS DIVIDED ARE (-INFINITY,

LSTHN B(1)),(GRTHN OR =B{1),LSTHN B(2)) ETC.

MAY BE FLOATING, FORTRAN INTEGER, OR MACHINE INTEGER,
BUT MUST BE THE SAME AS X(I)

NUMBER OF RANGE LIMITS.
MUST BE GRTHN 0.
NOGTE - NUMBER OF RANGES =1+ NUMBER OF RANGE LIMITS.

I=1...LB+1=NUMBER OF X VALUES IN EACH RANGE OF B.

ICOUNT(1)=NO. X LSTHN B(1). ICOUNT(2)=NO. X LSTHN B(2),
GRTHN OR =B(1).

ICOUNT(LB)=NO. X LSTHN B(LB)},GRTHN OR=B(LB-1).

ICOUNT{LB+1)=NO. X GRTHN OR =B8(LB).

IANS=0, NORMAL
TANS=1, ILLEGAL LX
IANS=2, TLLEGAL LB
IANS=3, WEIRD ERROR

X{leeol5) = =210e9=2009-15e9-1409-1209=11e9=8ey-TeyO0esley
2-1,3-'4-’5o’6- LX=15 B‘lo-.5)= ‘20."16."705.0.'.9
LB=5

OF NUMBER OF VALUES OF A SERIES IN GIVEN RANGES.

0211
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
00le6
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
€029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074

L2222 22222222222 22222222

(A2 22 2222 X2 22222 22222
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= CUTPUTS - ICCUNT(le..6) = 1519591s51,6, IANS=0 0075

* 0076

- INPUTS —~ SAME AS EXAMPLE 1. EXCEPT B{less5)==210ey=11.570e94.546. 0077

- CUTPUTS - ICCUNT(l.ee6) =04593,5,1,1 IANS=0 0078

» 0079

# 3, INPUTS - SAME AS EXAMPLE 1. EXCEPT B{leee5)==2149=11:5yC14546.1 0080

- CUTPUTS - ICCUNT{l...6) =04593+5,2,0 TANS=0 0081

» ©o82

#* 4, INPUTS - SAME AS EXAMPLE 1. EXCEPT B(1)=0. B{(2)=.5 LB=2 0083

* CUTPUTS - ICCUNT(1...3) =8,1,46 TANS=0 0084

= 0085

#« 5, INPUTS -~ SAME AS EXAMPLE 4. EXCEPT LB=0 oCc86

* CUTPUTS - ERROR TANS =2 0087

- 0088

*+ 6. INPUTS ~— SAME AS EXAMPLE 4. EXCEPT LX=0 LB=2 0089

- CUTPUTS - ERRCR IANS =1 0090

* 0091

# SAVE IRS AND CHECK FOR ILLEGAL PARAMETERS 0092

PIE o] €093

BCI 1,FRQCT2 C09%4

FRQCT2 SXA RETURM,1 0095

SXA RETURMN+1,2 C09é6

SXA RETURN+2,4 0097

SXp FRCCT2~-2,4 0098

STZx 644 TANS=0 0099

CLA# 2¢4 GET LX 0100

TZE ERR1 0101

TVMI ERR1 0102

STD ENC 0103

CLA=® 444 GET LB 0104

TZE ERR2 C105

T™I ERR2 G106

ARS 18 LB IN ADDRESS 0107

STO LB 0108

ARS 1 LB/2 (IN ADDRESS) 0109

ST0 L3HALF o11¢C

cLa 1,4 ADDRESS OF X 0111

ADD KivLI A(X+1) C112

STA XACD 0113

STA TESTLC 0114

CLA 354 AUDRESS OF B Cl15

ADD K1MLE A{B+1) 0116

STA BTESTL 0117

STA BACOD C118

SuB LR 0119

STa TESTHI 0120

CLA 514 ADDRESS OF ICOUNT 0121

ADD KiMLl A(ICOUNT+1) 0122

STA STZCNT 0123

STA EQUAL 0124

STA STCCNT 0125

LXA Loyl 0126

X1 #+1,1,1 0127

SXD ENC1ly1 0128

AXT 1,4 0129

AXT 1,1 013¢C

STZICNT STZ LATRE ZERO ICOUNT(I),I=1,LB+1 0131

TXI #+1y191 0132

END1 TXL STZCNT 41, #a=LB+1 0133

AXT 151 0134

LOOP CLA K1ML] 0135

STo LBLC INITIAL LBLO=1 0136

CLA L8 0137

STO LBHI INITIAL LBHI=LSB 0138

CLA LBHALF 0139

STO LBCCM INITIAL LBCOM=LB/2 0140

AXT 142 0141

TESTLO CLA we,] GET X. (##=A(X+1)) 0142

BTESTL CAS LA TL) 8(1) SEE IF IN LOWEST RANGE 0143

TRA TESTHI Ol44

TRA NEXIND 0145

TRA EQUAL 0146

TESTHI CAS L2 ##=A(B(LB)). SEE IF IN HIGHEST RANGE 0147

TRA HIEST 0148

TRA HIEST 0149
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SEARCH LXA LBCCM,2
XADD CLA #a,] GET X(IR1)
BADD CAS *Ey 2 COMPARE WITH B(LBCOM)
TRA GRATER X GREATER, NEW LBLO (=LBCOM)
TRA NEXIND GOT IT, INDEX ICOUNT(IR2+1)
LESS PXA Gy2 X LESS, NEW LBHI (=LBCOM)
sSue LELC LBCOM-LRLO=DIF
CAS K1MLI
TRA %43 DIF GREATER THAN ONE
TRA EQUAL DIF=1, GOT IT, INDEX ICOUNT(IR2)}
TRA ERRCR IMPOSSIBLE
ARS 1 DIF/2
ADD LELOC NEW LRCOM
LDQ LuCOM
STQ LBHI
STO LECCM
TRA SCARCH
GRATER PXA 042
SuB LEHI LBCOM-LBHI=~-DIF
Sse DIF
CAS K1MLIE
TRA *+3
TRA NEXINC GCT IT, INDEX ICOUNT(IR2+1)
TRA ERROR IMPOSSIBLE
ARS 1
ADD LBCOM
LDOQ LBCCM
STO LBCOM
STQ LBLO
TRA SEARCH
NEXIND TXI #+1,2,1
EQUAL CLA ®#%,2 #x=A{ICOUNT+1)
ADD K1FX
STCCNT STQ *e, 2 #x=A(ICOUNT+1)
TXI1 *#+1l,1,1
END TXL LCCPyly#n ru=t X
RETURN AXT *x,]
AXT *ity 2
AXT LA XY
TRA Ty4
HIEST LXA LRy2
TRA NEXINC
ERR1 CLA K1FX
STO= by 4
TRA Ty
ERR2 CLA K2FX
STO= 6e4
TRA Ty4
ERROR CLA K3FX
STQO= 644
TRA T+4
# CONSTANTS AND TEMPCRARIES
K1FX PILE 049Cyl
K2FX PZE 09092
K3FX PZE 04Cs3
K1MLTI PZE 1,G+0
LB PZE 0
LBHALF PZE 0
LBLO PZE 3
LBCOM PLE n
LBHI PLE 0

END

RRERFABRRRERAERARBRRRERE
- FRQCT2 L
ARFRARBRRTFRESRERRFRRARRS
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0150
0151
0152
0153
0154
0155
Cl56
0157
0158
0159
0160
0l61
0162
0163
0164
0165
0166
0167
0168
0169
170
0171
c172
0173
0174
0175
0176
o177
oL78
0179
0180
0181
0182
183
0184
0185
c186
0187
0188
0189
0190
0191
0192
0193
0194
0195
C196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
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GETRD1 (SUBROUTINE) 2715763 LAST CARD IN DECK IS NO.

LABEL

CGETRC1

[alaNaNsNeNaNalalaNalalsNsiaRsNsNaNalsEsNalaNaNsNolaNslaNalsEalsNoelsNalolaNalaReN ol aNalesNaleRasNalalsNaNelall NeleNeNaNsNaReNeNalaRaNaNsRa s N aXe)

SUBRDUTINE GETRCL(ITAPEsNX, IX, IANS)
-===ABSTRACT~----

TITLE - GETRD1
ACCESS ROUTINE FOR RAND CORP. MILLION RANDOM DIGITS FROM TAPE

GETRD1 FURNISHES THE NEXT NX SEQUENTIAL RANDOM DIGITS
AS FIXED POINT INTEGERS FROM A SPECIFIED TAPE UNIT.

THE TAPE UNIT CONTAINS THE MILLION DIGITS IN BCD FORM

AS LOADED OFF-LINE FROM THE 20000 CARDS CONTAINING THEM,
EACH CARD WITH FORMAT(50I1). GETRD1 KEEPS A BUFFER OF
LENGTH 50 TO PREVENT MISSING ANY DIGITS, BUT DOES NOT
CHECK FOR THE POSSIBILITY THAT THE SUPPLY IS EXHAUSTED.

LANGUAGE - FORTRAN I1 SUBROUTINE
EQUIPMENT - 709 OR 7090 (MAIN FRAME PLUS 1 TAPE UNIT)
STORAGE - 229 REGISTERS

SPEED - SLGW, SINCE TAPE IS BCD
AUTHCR ~ S.M.SIMPSON JR.
-—=~USAGE---~

TRANSVER VECTOR CCNTAINS ROUTINES - (NONE)
AND FORTRAN SYSTEM ROUTINES - (TSH), (RTN)

FORTRAN USAGE
CALL GETRD1I(ITAPE,NX,IX, IANS)

INPUTS
ITAPE IS THE LOGICAL TAPE NO. OF THE RANDOM DIGITS TAPE
MUST LIE BETWEEN 1 AND 12 INCLUSIVE
NX IS THE DESIRED NO. OF DIGITS
MUST EXCEED ZEROQO
CUTPUTS
IX(1) I=1...NX WILL CONTAIN THE NEXT NX DIGITS AS FORTRAN
FIXED POINT INTEGERS
IANS = 0 NORMAL
= -1 FOR ILLEGAL ITAPE
= 2 NX
EXAMPLES

1. ILLUSTRATING EFFECTS OF SUCCESSIVE CALLS
INPUTS ~- THE FIRST THREE RAND DIGITS CARDS ARE AS FOLLOWS

CCLUMN NUMBERS

0C000000011111111112222222222333333333344444444445
12345678901234567890123456789012345678901234567890

OXP>O

10097325337652013586346735487680959091173929274945

37542048056489474296248052403720636104020082291665

08422689531964509303232090256015953347643508033606
SSUME THE CARDS ARE LOADED ON LOGICAL TAPE 9

> W N

USAGE - REWIND 9
CALL GETRD1(9,10+IX1sIANS1)
CALL GETRD1(9,10,1IX2,IANS2)
CALL GETRD1(9, 1,1IX3,IANS3)}
CALL GETRD1(9,29,1IX4,1ANS4)
CALL GETRD1(9s 1+1X5,IANS5)
CALL GETRD1(9,55,IX6, IANS6)
REWIND 9
CALL GETRD1(9, 3,IX7,I1ANST)

0172
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074

LA 2222 222222222 222242% X221
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Cc CUTPUTS - TANSLI=IANS2 = ETC = IANST = 0 (NO ILLEGALITIES) 0075
[+ IX1(1l.2e10) = 1,0,40,947+35,2+4553,3 0076
c IX2(1leeelC) = T9695929051539548,6 0077
C IX3{leeel) =3 0078
C IX4(1e0e29) = 4436979395049 8979698;039959990999191,7T93, 0079
C 91299429 T1499+495 0080
[ IX5(leeel) = 3 0081
C IX6(leoa55) = 795349290949 891095+6943899949T9%4922916,2, 0082
C 498909592949 0939792109693969190749092409 0083
c 09892921991,61695:048+49219246 0084
C IX7(leee3) = 8,945 (NOT = 1,0,0 SINCE GETRD1 STILL 0085
Cc HAS 44 DIGITS IN ITS BUFFER TO 0086
Cc USE UP BEFORE READING FROM TAPE 0087
C AGAIN) 0088
C 0089
C 2. ILLUSTRATING ILLEGAL USAGE 0090
C 0091
c USAGE - CALL GETRDL(C,1,IX,IANS1) 0092
C CALL GETRD1(13,1s1IX, IANS2) 0093
c CALL GETRD1(9,-3,1X, IANS3) 0094
C 0095
c CUTPUTS - IANS1 = IANS2 = -1 {ILLEGAL ITAPE) 0096
C IANS3 = -2 (ILLEGAL NX) 0097
(o 0098
C PROGRAM FOLLOWS BELOW 0099
c 0100
C DUMMY DIMINSION STATEMENT 0101
DIMENSION IX(2) 0102
C TRUE DIMENSION STATEMENT 0103
DIMENSION INP(50) 0104
C CHECK LEGALITIES OF ITAPE,NX 0105
IANS=-1 0106
IF (ITAPE) 9999,9999,2 0107
2 IF (ITAPE-12) 4,4,9999 0108
4 IANS==2 0109
IF (NX) 9999,49999,10 0110
10 I0UT=0 0ol1l
IANS=0 o112
MORE=NX 0113
C 0l1l4
C ANY DIGITS LEFT IN BUFFER FROM PREVIOUS CALL (IF NO, GO READ 0115
C 50 DIGITS). o116
c 0117
IF (NBUF) 20+40,20 0118
C o119
C IF YES, CHECK IF REQUEST CAN BE FILLED FROM BUFFER. 0120
C ol21
20 IF (NX-NBUF) 30,30,24 0122
C 0123
C IT CANT. EMPTY BUFFER AND THEN GO READ MORE DIGITS. 0124
c 0125
24 DO 26 1I=14NBUF 0126
26 IX(I)=INP(I) 0127
I0UT=NBUF 0128
MORE=MORE-NBUF 0129
GO TO 490 0130
[o 0131
C IT CAN BE FILLED FROM BUFFER, SET UP TO DO SO AND EXIT, Q}gg
c 0
30 NBLOK=NBUF 0134
GO TO 66 0135
C 0136
C READ 50 DIGITS 0137
c 0138
40 READ INPUT TAPE ITAPE,42,({INP(I),1I=1,50) 0139
42 FORMAT(50I1) 0140
c 0l41
C CHECK IF THIS IS LAST BLOCK OF 50 NEEDED. 0142
c 0143
IF (MORE-S50) 60,60,50 Ol44
C 0145
C NO. MOVE BLOCK OF 50 AND GO BACK FOR ANOTHER. 0146
c 0147
50 DO 54 1=1,50 0148

II=I+10UT 0149
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PROGRAM L ISTINGS

[2 2222222222232 223 2223

IX(IT)=INP(I)
ICUT=10UT+5¢C
MORE=MORE-50
GO TO 40

SET FOR FINAL MOVE.

NBLOK=5Q

C MOVE FINAL BLOCK AND SET UP BUFFER FOR NEXT CALL

- GETRD1
(PAGE 3)
54
C
C YES.
o
60
C
C
66
68
70
T4
9999

DO 68 [I=1,MORE
II=1+10UT
IX(IIY=INP(I)
NBUF=NBLOK-MORE

IF (NBUF) 7099999,70
MRP1=MORE+1

DC 74 [I=MRP1,NBLOK
II=1-MCRE
INPLIT)=INP(I)

GC TO 9999

RETURN

END

AEREEERR SRR SRR R RN BRI E RS
* GETRD1 -
FRARBABRBRERRSRERRRRRERR
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0150
0151
0152
0153
0154
0155
0l56
0157
0158
0159
0160
0161
0162
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0164
0165
0166
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0169
0170
0171
o172
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GRUP2 (SUBRCUTINE) 2/18/63 LAST CARD IN DECK IS NO.

LABEL

GRUP?2

2ol

PROGRAM L ISTINGS
- - GRUP2

SUBROUTINE GRUP2 (P,NDELX,DELX»XLO, YLIM,NWANT, IANS)

-—=—ABSTRACT-——-

TITLE - GRUP2
DIVIDES THE X AXIS INTO EQUALLY PROBABLE RANGES

LANGUAGE
EQUIPMENT
STORAGE
SPEED
AUTHOR

GRUP1 PERFCRMS A PROCESS KNOWN AS THE PROBABILITY
TRANSFORMATION WHEREBY A GIVEN PROBABILITY DENSITY IS
TRANSFCRMED INTO A RECTANGULAR DENSITY.

THE PRINCIPAL INPUT IS A HISTOGRAM-TYPE PROBABILITY
DISTRIBUTICN FUNCTION P(I),I=1...NDELX, WHERE P(I) =
PROBABILITY DENSITY FOR THE RANDOM VARIABLE X FALLING IN
THE ITH RANGE OF X VALUES, WHERE ALL RANGES ARE OF EQUAL
LENGTH DELX, AND THE LOWEST RANGE IS FROM XLGC TO XLO+DELX.

GRUP2 DIVIDES THE X AXIS INTO NWANT RANGES FROM XLO TO
NDELX#DELX+XLOy EACH RANGE HAVING EQUAL PROBABILITY DELP.
DELP=1./FLOATF(NWANT). GRUP2 RETURNS THE X VALUES
CORRESPONDING TO THE RANGES. THE DIVISION IS MADE BY
INTEGRATING THE PROBABILITY DISTRIBUTION ALONG THE X AXIS.
LINEAR INTERPOLATION IS MADE WHEN AM INTEGER MULTIPLE OF
L/NWANT LIES BETWEEN SUM UP TO J AND J+1 OF (P(I)=DELX).

FORTRAN II SUBROUTINE

709 CR 709G (MAIN FRAME ONLY)
198 REGISTERS

JeNe GALBRAITH

—=——USAGE~-~~-

TRANSFER VECTUR CONTAINS ROUTINES - NONE
AND FORTRAN SYSTEM ROUTINES - NONE

FORTRAN USAGE
CALL GRUP2 (P,NDELX,DELX,XLO,YLIM,NWANT,IANS)

INPUTS

PLI)

XLO

DELX

NDELX

NWANT

OUTPUTS

YLIM(I)

IANS

I=1l.¢NDELX IS THE PROBABILITY DISTRIBUTION DEFINED

FRCM XLO TO NDELX#DELX+XLO AND NORMALIZED SUCH THAT

THE SUM FROM I=1 TO NDELX OF P(I)#DELX =1. 1IF P(I)

IS NORMALIZED SUCH THAT SUM (P(I)) LESS THAN 1., AN ERROR
MAY OCCUR WITH IANS=-4. 1IF P{I) IS NORMALIZED SUCH THAT
SUM (P(I)) GRTHN 1., THE YLIM WILL BE COMPUTED IN THE
USUAL MANNER WITH NORMALIZATION ASSUMED =1.

IS LOWEST VALUE OF X FOR WHICH P({I) IS DEFINED.

IS THE INCREMENT IN X.
MUST BE GRTHN 0.

IS THE NUMBER OF INCREMENTS.
MUST BE GRTHN 1.

IS THE NUMBER OF EQUALLY LIKELY DIVISIONS WANTED.
MUST BE GRTHN 1.

I=1...NWANT+1 IS THE VECTOR OF X VALUES WHICH
CORRESPOND TO EQUALLY LIKELY PROBABILITY DIVISIONS.
(YLIM(1)=XLO)y (YLIMINWANT+1)=XLO+FLOATF(NDELX)*DELX).

0 NORMAL
-1 ILLEGAL NDELX
-2 ILLEGAL DELX
=3 ILLEGAL NWANT
~4 WEIRD ERROR (P PROBABLY NOT PROPERLY NORMALIZED)

L/ I I 1)

0139
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
€035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074

E2 222222 222222222 222222
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EXA

1.
2.
3.

4.

c
c
C
C
c
C
c
C
C
C
C
c
c
c
C
o
C
C
C
C
c
c
C
C
[
c

C

10

20

50

60
70

90
100
9999
9777

MPLES

INPUTS
CuTPUTS

INPUTS
CUTPUTS

INPUTS
CUTPUTS

INPUTS

CUTPUTS
INPUTS
CUTPUTS
INPUTS
CuUTPUT

INPUTS
CUTPUTS

291

PROGRAM L ISTINGS
* - GRUP2

ALL P=0. NDELX=1 DELX=0. XL0=0. NWANT=0
ERROR IANS = -1

SAME AS EXAMPLE 1. EXCEPT NDELX=20
ERROR IANS= =2

SAME AS EXAMPLE 2 EXCEPT DELX=.05 NWANT=1
ERROR IANS= -3

Plleee20) = lapeT9e511e312e91e99e69e51049037e21e141.5,
1.591¢591e591e59¢5505,2. NDELX=20 DELX=.05
XLC=C. NWANT=5

YLIM(1ypeees6) = 0492212514355.68333,.81666,1. IANS=0

SAME AS EXAMPLE 4. EXCEPT XLO0O=20.
YLIM{1lye00e96) = 204920.7125920.35,20.68333.720,.86666.,21.
1ANS=C

SAME AS EXAMPLE 5. EXCEPT DELX=.0005
ERROR TANS=-%

SAME AS EXAMPLE 5. EXCEPT DELX=100.
YLIM(lyeeesb) = 204920.2520.4,420.6,20.8,20.20 IANS=C

DIMENSION P(20C),YLIM(201)
CHECK NDELX

IANS=~1

IF(NDELX~-1) 9999,9999,5
CHECK DELX

IANS=-2

IF(DELX)
NUM1=NWANT-1

IANS=-3

IF(NUML)
YLIM(1)=XLO

YLIM(NWANT+1)=XLO+FLOATF (NDELX)#DELX
DELP=1./FLOATF(NWANT)

PTEST=DELP

ISTART=

SUM=0
TANS=C
DG 109
DC 50

1

9999,9999,10

9999459999, 20

J=1yNUNML
1=

ISTART,NDELX

DELTA=P (1) *DELX
SUM=SUM+DELTA
IF{SUM-PTEST) 50,460,709
CCNTINUE
USED ALL P WITHOUT FINDING ALL YLIM.
GC TO 9777

YLIM{J+1)=FLCATF(I)*DELX+XLO

ISTART=I+1

GO TO 90
INTERPOLATE

SUM=SUM=DELTA

FRACTX=(PTEST-SUM) /DELTA
YLIM{J+1)=(FLOATF(I-1)+FRACTX)#DELX+XLOD

ERROR-

ISTART=

PTYEST=PTEST4NELP
CONTINUE

RETURN

IANS=-4

GO TO 9999

END
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KTINTL (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO.

LABEL

KIINT1

SUBROUTINE KIINT1 (CHISQ,NDF,PROB,IANS)

~—=—ABSTRACT————

TITLE - KIINT1

PROBABILITY THAT A CHI-SQUARED VARIATE EXCEEDS A VALUE.

KIINT1 PRODUCES THE PROBABILITY THAT A CHI-SQUARED VARIATE
WILL EXCEEC A GIVEN VALUE. THIS PROBABILITY IS COMPUTED BY
EQUATIONS GIVEN BY YULE AND KENDALL, 1950, THEORY OF
STATISTICS, PAGE 464 (FOOTNOTE) FOR NDF LESS THAN 31,
WHERE NDF = NO. DEGREES OF FREEDGCM.

FOR HIGHER NDF THE NORMAL APPROXIMATION IS USED.

WHEN THE NORMAL APPROXIMATION IS USED A TABLE OF THE
NORMAL DISTRIBUTION WHICH APPEARS IN SUBROUTINE NOINT1 IS
USED AND, SINCE THIS TABLE HAS ONLY 201 VALUES
CORRESPONDING TO VALUES OF X (UNIT NORMAL) FROM

0.C TC 4.0, PROBABILITIES LESS THAN .00032 ARE SET TO ZERO
AND THCSE GREATER THAN 99968 ARE SET EQUAL TO ONE. THIS
DOES NCT OCCUR IF THE EQUATIONS ARE USED.

LANGUAGE - FORTRAN II SUBROUTINE
EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY)

STORAGE - 191 REGISTERS
SPEED -
AUTHOR - S.M. SIMPSON

--=-USAGE----

TRANSFER VECTOR CONTAINS ROUTINES - NOINT1

AND FORTRAN SYSTEM ROUTINES - SQRT, EXP(3

FORTRAN USAGE

CALL KIINT1(CHISQ,NDF,PROB, IANS)

INPUTS
CHISQ IS THE PARTICULAR VALUE OF A CHI-SQUARED VARIATE.
MUST BE GRTHN=0.
NDF IS THE NUMBER OF DEGREES OF FREEDOM OF THE VARIATE.
MUST BE GRTHN 0.
OuTPUTS
PROB IS THE PROBABILITY THAT THE VARIATE GRTHN=CHISQ.
IANS =0 NCRMAL
= ILLEGAL CHISQ
=2 ILLEGAL NDF
EXAMPLES

1.

2.

4.

Se

THE AGREEMENT BETWEEN THE PROB VALUE IN THE EXAMPLES AND THE
COMPUTED PROB VALUE IS TO 3 OR FOUR PLACES SINCE 4 PLACE TABLES
WERE USED TO MAKE UP THE EXAMPLES.

INPUTS = NDF=1 CHISQ=~1.
QUTPUTS - ERROR IANS=1

INPUTS - NDF=0 CHISQ=1.
CUTPUTS - ERROR IANS=2

INPUTS - NDF=1 CHISQ=1.
QUTPUTS - PROB=.3179 IANS=0

INPUTS - NOF=8 CHISQ=2.7330
CUTPUTS - PROB=.95 IANS=0

INPUTS - NOF=21 CHISQ=38.932
CUTPUTS - PROB=.01 TANS=0
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C 6. INPUTS - NDF=3¢C CHISQ=43.773 0075
ot CUTPUTS - PROB=.05 IANS=0 0076
C 0077
C 7. INPUTS - NDF=31 CHISQ=17. 0078
C CyTPUTS - PROB=.98 IANS=C 0079
C 0080
C 8. INPUTS -~ NDF=3 CHISQ=2.366 0081
C CUTPUTS - PRCEB=,50 TANS=0 0082
C 0083
c 0084
C INITIALIZE AND CHECK IF NORMAL CURVE APPROXIMATION IS TO BE USED. 0085
IANS=1 0086
IF(CHISQ)9999,10,10 0087
1C TANS=2 coss
IF(NDF) 9999,9999,12 0089
12 IANS=C 0090
15 CHI=SQRTF(CHISQ) 0091
IF (NDF-3C) 20,20,70 0092
C PROB IS COMPUTED IN THE FORM PROB = P1l+P2»P3. CHECK NDF FOR EVEN, 0DD. 0093
20 P2=(2.71828183)##(~-CHISQ/2.0) 0094
NDFH=NDF/2 0095
IF (NDF-2#NDFH) 25,25,30 0096
C EVEN. SET P1=Z, AND P3=1.0 IF NDF=2. 0097
25 P1=0.C 0098
IF (NDF=-2) 27,27,50 6099
27 P3=1.07 0100
GO TO 606 0101
C 0DD. COMPUTE Pl, MODIFY P2 AND SET P3=0.0 IF NDF=1. 0102
30 CALL NCINTL(CHI,P1) 0103
P1=2.0#{1.0-P1) 0104
P2=CHI*P2#,7978848(C 0105
IF (NDF-1) 35,35,50 0106
35 P3=0.0 0107
GO T0 69 0108
C EVALUATE P3 AS A PCLYNOMIAL FOR NDF GREATER THAN 2. 0109
50 NLCCPS=NDFH-1 o110
P3=1.0C 0111
C IF NDF=3 (NLULCPS=0}, P3=1. 0112
IF(NLOOPS) 6C,604+52 0113
52 DIV=NOF-2 Ol14
D0 55 1=1,NLCCPS 0115
P3=P3*CHISQ/CIV+1.C 0116
55 DIV=DIV-2.0 0117
GO TO 60 0118
C COMBINE PIECES TO FORM PROB. 0119
60 PRCR=P1+P2sP3 0120
GC TC 9999 0121
C USE NCRMAL APPRCXINATICON FOR NDF GREATER THAN 30. 0122
70 CHIMOD=CHI®*1.414214-SQRTF(FLOATF(NDF)}#2.0-1.0) 0123
CALL NCINT1(CHIMOD,P1) 0124
PROB=1,2-P1 0125
GO TO 9999 0126
9999 RETURN o127

END 0128
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L LINTR1 (SUBRCUTINE) 2/18/63 LAST CARD IN DECK IS NO. 0092
» LABEL 0001
CLINTR1 0002
SUBROUTINE LINTR1(X,XLO,DELX, TABLE,NTABLE,YOFX) 0003
C 0004
C -===ABSTRACT—=-~ 0005
c 0006
C TITLE - LINTR] 0007
c LINEAR INTERPGLATION IN A TABLE 0008
C 0009
[ LINTR1 INTERPOLATES LINEARLY IN A TABLE TO FIND A VALUE 0010
C WHICH LIES BETWEEN THE TABULATED VALUES. XLO IS THE 0011
c ARGUMENT CCRRESPONDING TO THE LOWEST TABULATED VALUE. DELX 0012
c IS THE ARGUMENT CIFFERENCE BETWEEN TABULAR VALUES. Q013
C THE TABLE IS LOCATED IN TABLE(I)e X IS THE ARGUMENT AND 0014
c YOFX IS THE INTERPOLATED VALUE. HENCE 0015
C 0016
C XTRA 0017
C YOFX = TABLE(L) + (TABLE(L+1) - TABLE(L)) # -—-- 0018
C DELX 0019
C 0020
C WHERE L IS SUCH THAT 0021
C XLO+(L-1)#DELX LSTHN= X LSTHN XLO+L#DELX 0022
C AND XTRA = X-XLO-(L-1)®=DELX 0023
C 0024
c DELX IS CONSTRAINED TO BE POSITIVE 0025
C X MUST LIE IN THE ARGUMENT RANGE OF THE TABLE. 0026
c 0027
C LANGUAGE - FORTRAN IT1 SUBROUTINE 0028
C EQUIPMENT - 7C9 OR 709C (MAIN FRAME ONLY) 0029
C STORAGE - 96 REGISTERS 0030
C SPEED - 0031
C AUTHOR - S. M. SIMPSON 0032
C 0033
C -===USAGE-——- 0034
c 0035
C TRANSFER VECTGR CCNTAINS ROUTINES - NONE 0036
c AND FORTRAN SYSTEM ROUTINES - NONE 0037
C 0038
C FORTRAN USAGE 0039
c CALL LINTRL(X¢XLO,DELX,TABLE,NTABLE,YOFX) 0040
C 0041
C INPUTS 0042
Cc 0043
C X IS ARGUMENT FOR WHICH INTERPOLATION IS DESIRED. 0044
Cc XLC LSTHN OR = X LSTHN OR = XLO+(NTABLE-1)#DELX. 0045
c 0046
C XLC IS THE ARGUMENT CORRESPONDING TO THE FIRST TABULAR Q047
C ENTRY. 0048
C €049
C CELX IS THE ARGUMENT DIFFERENCE BETWEEN TWO SUCCESSIVE 0050
c TABULAR LCNTRIES. 0051
Cc MUST EXCEED C.0, BUT THIS CONSTRAINT IS NOT CHECKED. 0052
C 0053
c TABLE(I) I=1...NTABLE IS A GIVEN ARRAY IN WHICH TABLE(J) 0054
C CCNTAINS Y(XLO+DELX#(J-1)). 0055
C 0056
c NTABLE IS THE LENGTH OF THE TABLE. 0057
c 0058
C QUTPUTS 0059
C 0060
c YOFX WILL CONTAIN THE LINEARLY INTERPOLATED VALUE 0061
c 0062
C EXAFMPLES 0063
C 0064
C 1. INPUTS - X=7.5 XL0=5, DELX=2.5 TABLE(1leee9)=103403%4y 0065
c 1649254936294909644981. NTABLE=9 0066
C CUTPUTS -~ YCFX=4. 0067
Cc 0068
C 2. INPUTS - SAME AS EXAMPLE 1. EXCEPT X=21.3 0069
C OUTPUTS - YOFX=56.8 0070
C 0071
C 3. INPUTS -~ SAME AS EXAMPLE 1. EXCEPT X=25. 0072
C CUTPUTS - YOFX=81. 0073
C 0074
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C 4. INPUTS - SAME AS EXAMPLE 1. EXCEPT X=13, 0075

C CUTPUTS - YOFX=17.8 c076

C 0077

DIMENSION TABLE(2) 0078

C SET uP. c079

XMXLO=X-XLO 0080

20 ILO=XMXLO/DELX+1.0 0081

C INTERPOLATE ONLY IF ILC DOESNT CORRESPOND TO LAST TABULAR ENTRY. 0082

IF (ILO-NTABLE) 30,40,30 0083

30 FLILGC=1LO-1 0084

DIFX=XMXLO-FLILO*DELX 0085

IHI=ILO+1 0086

YOFX=TABLE(ILC)+(TABLE(IHI)-TABLE(ILO))#DIFX/DELX 0087

GC 70 9999 0088

40 YOFX=TABLE(NTABLE) 0089

GC TO 9999 0090

9999 RETURN 0091

END €092



* MAXSN (SUBROUTINE) 2/18/63  LAST CARD IN DECK IS NO.
* FAP
*MAXSN

COUNT 150

LBL MAXSN

ENTRY  MAXSN (LXsXsXMAX1s1)

ENTRY  MINSN (LXsXsXMIN1»1)

ENTRY  MAXAB (LXsXsXMAX2s1)

ENTRY  MINAB (LXsXsXMIN2s1)

% ok ok ok >k Kk k k >k 3k ok ck Kk k ok k ok k k k K K )k %k K Kk ok Kk Kk k xk k ¥k %k k &k *k % k k *k k k XK Xk k ¥k kX *k k %k X

2ob

~==—ABSTRACT====

TITLE = MAXSN s WITH SECONDARY ENTRY POINTS MINSNy MAXAB, AND MINAB
FIND SIGNED OR UNSIGNED EXTREMAL VALUES OF A VECTOR.

MAXSN FINDS THE MAXIMUM SIGNED NUMBERs AND ITS INDEXs IN
A VECTOR OF NUMBERS (EITHER FIXED OR FLOATING POINT)e

MINSN FINDS THE MINIMUM SIGNED NUMBER.
MAXAB FINDS THE MAXIMUM OF THE ABSOLUTE VALUES,

MINAB FINDS THE MINIMUM OF THE ABSOLUTE VALUES,

LANGUAGE - FAP SUBROUTINE (FORTRAN II COMPATIBLE)

EQUIPMENT - 709 OR 7090 (MAIN FRAME ONLY)

STORAGE - 54 REGISTERS

SPEED - APPROXe. 14N MACHINE CYCLESs N = LENGTH OF VECTOR
AUTHOR - JeFe CLAERBOUT

-—=—USAGE----

TRANSFER VECTOR CONTAINS ROUTINES = NONE
AND FORTRAN SYSTEM ROUTINES - NONE

FORTRAN USAGE FOR MAXSN
CALL MAXSN (LXsX9XMAX1s1)

INPUTS
X{1) I=1eeelX IS A VECTOR OF NUMBERS,
MAY BE FIXED OR FLOATING POINT.
LX IS FORTRAN 11 INTEGER,
MUST BE GRTHN=1.
OUTPUTS
XMAX1 IS THE MAXIMUM SIGNED VALUE IN THE X VECTOR.,
1 IS THE INDEX OF THE MAXIMUM SIGNED VALUE,

TeEe X{1) = XMAX1

FORTRAN USAGE FOR MINSN
CALL MINSN (LXsXsXMIN1»sI)

INPUTS SAME AS FOR MAXSN
oUTPUTS

XMIN1 1S THE MINIMUM SIGNED VALUE IN THE X VECTOR
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1 1S THE INDEX OF THE MINIMUM SIGNED VALUE.

FORTRAN USAGE FOR MAXAB
CALL MAXAB (LX9XsXMAX2s1)

INPUTS SAME AS FOR MAXSN
OUTPUTS
XMAX2 1S THE MAXIMUM ABSOLUTE VALUE IN THE X VECTOR.

NOTE THAT XMAX2 MAY BE NEGATIVE,
1 1S THE INDEX OF THE MAXIMUM ABSOLUTE VALUE,

FORTRAN USAGE FOR MINAB
CALL MINAB (LXsXsXMIN2,1)

INPUTS SAME AS FOR MAXSN
OUTPUTS
XMIN2 1S THE MINIMUM ABSOLUTE VALUE IN THE X VECTOR.
NOTE THAT XMIN2 MAY BE NEGATIVE.
I 1S THE INDEX OF THE MINIMUM ABSOLUTE VALUE,
EXAMPLES
le INPUTS = X(1leeel0) = =1le9—Bes=5¢9"2e91lesb4es Tes1l0es134516,

LX = 10

USAGE - CALL MAXSN (LXsX9XMAX1s11)
CALL MINSN (LXsXeXMIN1s12)
CALL MAXAB (LXsX9sXMAX2+13)
CALL MINAB (LXsXsXMIN2s14)
QUTPUTS = XMAX1 = 16, I1 = 10
XMIN1 =-11. 12 = 1
XMAX2 = 16, 13 = 10
XMIN2 = 1. 14 = 5
20 INPUTS - X(lseel0) = ~1609=1369=106e9=Te9-b4es=1092e95¢9849114
LX =10
USAGE - SAME AS EXAMPLE 1.
OUTPUTS - XMAX1 = 11 I1 = 10
XMIN1 =-16. 12 = 1
XMAX2 ==16s I3 = 1
XMIN2 = =1, 14 = 6
3¢ INPUTS = X(1leee10) = =169=139~109=Ts—4s—139255+8,11 LX = 10
USAGE - SAME AS EXAMPLE 1.
OUTPUTS XMAX1 = 11 I1 = 10
XMIN1 =-16 12 = 1
XMAX2 =-16 I3 = 1
XMIN2 = =1 14 = 6
HTR 0
BC1 1 sMAXSN
MAXSN CLA MX
STO USE
TRA *4+3

MINSN CLA MN
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MAXAB

MINAB

START

LooP

USE

STO
CLA
STO
CLA
STO
TRA
CLA
STO
TRA
CLA
STO
CLA
STO
CLA
sTo
SXA
SXD
CLA*
PDX
CLA
ADD
STA
STA
CLA*
STO*
CLA
ALS
STO
CLA*
HTR
HTR
HTR
CLA
STO*
SXD
TIX
CLA
STO*
AXT
TRA
NOP
sus
sSsp
SBM
TPL
™I
BSS
END

USE
NOP
A-1
SuUB

A
START
MX
USE
*4+3
MN
USE
sSSP
A-1
SBM

A
SVs1
MAXSN=-2s4
194
sl
24
=1
A+2

A

24
394
=1

18
INDEX
394

0
¥*#g]
8

*¥% 4]
394
INDEXs1
LOOPs 11
INDEX
4e4
*%491
Se4

™o
g
oo

ARRAY LENGTH TO IR1

GET TRIAL
EXTREMUM
SET CORRECT INDEX FOR TRIAL EXTREMUN

EITHER NOP OR SSP
EITHER SUB OR SBM
EITHERTPL OR TMI
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L MPSEQ1 (SUBRCUTINE) 2/18/63 LAST CARD IN DECK IS NO.
L4 FAP
#MPSEC]

COUNT 2C0

LBL MPSEQ1

ENTRY MPSEQLl (X,LX,B,LB,IX,IXLO, IANS)

L B B B BN BN BN R NE B NN NE N BN RN BN NE NN N BE R N NN NE NE NN BN RE NN BN NN BN BE R BN N BN N BN RN BN CRE BE NN R BE NN BN NE BN BN NE BN BN BN BN NERE B RN BN BN R NN NE N NN A ]

254

PROGRAM LISTINGS

~---ABSTRACT=----

TITLE - MPSEQ1
MAPS A SEQUENCE OF NUMBERS INTO AN INTEGER SERIES

LANGUAGE
EQUIPMENT
STORAGE
SPEED
AUTHOR

MPSEQL MAPS A SEQUENCE X(I)y I=1l,...,LX INTO AN INTEGER

SEQUENCE IX(I)y I=1je.ee9lLXs THE MAPPING IS CONTROLLED BY

A GIVEN VECTOR OF RANGE LIMITS B(I)y I=1y..esLB,y WHERE
B{I) IS MONOTONELY INCREASING FROM B(1l) TO B{LB), THUS

SPECIFYING LB-1 SEPARATE RANGES. EACH RANGE IS CONSIDERED

CLCSED ON THE LOWER END, OPEN ON THE HIGH END AND THE
RANGES ARE INDEXED FROM IXLO+l TO IXLO+LB-1, WHERE IXLD
IS A PARAMETER. IX(I) IS THEN SET EQUAL TO THE INDEX OF
THE RANGE 7O WHICH X(I) BELONGS, WITH THE FOLLOWING
TREATMENT CF EXTREMAL X VALUES

IF X(I) IS LSTHN 8( 1), IX(I) IXLO+1

IF X(I) IS GRTHN= 8(LB)y IX(I) = IXLO+LB-1

]

NOTE- THE LOGIC USED IS ALMOST IDENTICAL TO THAT OF FRQCT2

FAP SUBROUTINE WITH FORTRAN I1 CALLING SEQUENCE
709 OR 7090 (MAIN FRAME ONLY)

110 REGISTERS

Jo No GALBRAITH

----USAGE----

TRANSFER VECTOR CONTAINS ROUTINES - NONE
AND FORTRAN SYSTEM ROUTINES - NONE

FORTRAN USAGE
CALL MPSEQL(XsLXsB,LByIXysIXLO,y IANS)

INPUTS

X(1)

[

B(I)

L8

IXLO

OUTPUTS

IX(I)
IANS

EXAMPLES

1.

INPUTS

I=l...LX IS THE INPUT SERIES TO BE MAPPED.
MAY BE FLOATING, FORTRAN INTEGER, OR MACHINE LANGUAGE
INTEGER, BUT MUST BE THE SAME MODE AS B(J).

IS LENGTH OF X VECTOR.
MUST BE GRTHN=1.

I=leeelB GIVES INPUT RANGES OF MAPPING INTERVALS.
MUST BE SAME MODE AS X{I).
B(I) MUST INCREASE MONOTONELY, IE B{I+1) GRTHN B(I)

IS LENGTH OF RANGE VECTOR.
MUST BE GRTHN=1.

IS LOWER LIMIT OF OUTPUT MAPPING. IXLO+1 = INDEX OF
LOWEST RANGE.

I=leesLX IS THE INTEGER MAPPING OF X(I).

=0 NORMAL

=1 ILLEGAL LX
=2 ILLEGAL LB
=3 WEIRD ERROR

LX=0 X{leeolb)==509=4e9=3e23-3el9-2e9~2e19009-1.1y
‘05,5-’40'3o5q3o12¢99101.lo LB=16 B(looog’=°4o"3oy
~2e1=1e90091le92e93eréer IXLO=0

CUTPUTS - ERROR TANS=1
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= 2, INPUTS = X AND B SAME AS EXAMPLE 1 LX=16 LB=0 IXLO=0 0075

» CUTPUTS - ERROR TANS=2 0076

- 0077

# 3, INPUTS =~ X AND B SAME AS EXAMPLE 1 LX=16 LB=9 IXLO=0 0078

- QUTPUTS = IX{13000916)=09090909291+49293+797979T79615+5 IANS=0 0079

- 0080

* 4, INPUTS =~ X, B, LX, AND LB SAME AS EXAMPLE 3 [IXLO=12 0081

» CUTPUTS = IX(lpeeesl6)=12912,12412914913,16914515919,19,19419,18, 0082

* 17,17 IANS=0 0083

L4 0084

PZE [V} 0085

B8C}) 1,MPSEQL 0086

MPSEQ1l SXA RETURN,1 0087

SxA RETURN+1,2 0088

SXA RETURN+2,4 0089

SXD MPSEQLI-2,4 0090

STZ» Tk IANS=0 0091

CLA= 244 GET X 0092

T2E ERR1 0093

™I ERR1 0094

STD END 0095

C}A' 444 GET L8 0096

TZE ERR2 0097

™I ERR2Z 0098

ARS 18 L8 IN ADDRESS 0099

STo L8 0100

ARS 1 LB/2 (IN ADDRESS) 0101

ST0 LBHALF 0102

cLA 1.4 ADDRESS OF X 0103

ADD KiMLI AlX+1) 0104

STA XADD 0105

STA TESTLC 0106

cLA 3,4 ADDRESS OF B 0107

ADD KIMLI AlB+1) 0108

STA BTEST1 0109

STA BACD 0110

sus L8 oll1

STa TESTHI 0112

CLA» 614 GET IXLO o113

sSus K2FX IXLO0-2 0114

sT0 XLOW 0115

CLA 5+4 ADDRESS OF IX 0116

ADD K1MLI A(IX+1) 0117

STA IXSTO o118

AXT 1,1 0119

AXT 1,4 0120

LOOP CLA K1MLI 0121

sTO LBLO INITIAL LBLO=1 0122

CLA LB 0123

STO LBH1 INITIAL LBHI=LB 0124

cLA LBHALF 0125

STO LBCOM INITIAL LBCOM=LB/2 0126

AXT 1,2 0127

TESTLO CLA 8yl GET X. (s2=zA(X+1)) o128

BTEST1 CAS ey b B(1) SEE IF IN LOWEST RANGE 0129

TRA TESTHI 0130

TRA NEXIND 0131

TRA NEXIND 0132

TESTHI CAS e #8=zA(B(LB) ). SEE IF IN HIGHEST RANGE 0133

TRA HIEST 0134

TRA HIEST 0135

SEARCH LXA LBCOM,2 0136

XADD CLA 8,1 GET X{(IR1l) 0137

BADD CAS any2 COMPARE WITH B(LBCOM) 0138

TRA GRATER X GREATERy NEW LBLO (=LBCOM) 0139

TRA NEXIND GOT 1T, SET IX{IR1l+l) 0140

LESS PXA 0,2 X LESS, NEW LBHI (sLBCOM) 0141

SUB LBLO LBCOM-LBLO=DIF 0142

CAS K1MLI 0143

TRA #43 DIF GREATER THAN ONE 0144

TRA EQUAL DIF=1, GOT IT, SET IX(IR1l+¢1l) 0145

TRA ERROR IMPOSSIBLE 0146

ARS 1 DIF/2 0147

ADD L8LO NEW LBCOM 0148

LOQ LBCOM 0149
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sTQ LBHI
STo LBCOM
TRA SEARCH
GRATER PXA 0,2
SuB LBHI
ssp
CAS K1MLI
TRA *+3
TRA NEXIND
TRA ERRCOR
ARS 1
ACD LBCOM
LDQ LBCCM
ST0 LBCCOM
sTQ LsLo
TRA SEARCH
NEXIND TXI #4+142,1
EQUAL PXD 12
ADD XLOW
IXSTC STO LLTR!
TXI #+1y1,1
END TXL LOCPylonn
RETURN AXT sn,l
AXT LA XY
AXT 8,4
TRA 844
HIEST LXA LBy2
TRA EQUAL
ERR1 CLA K1FX
STO+ Ty4
TRA 844
ERR2 CLA K2FX
TRA ERR1+1
ERROR CLA K3FX
TRA ERR1+1
= CONSTANTS AND TEMPCRARIES
K1FX PZE Gs0,1
K2FX PLZE 01Cy2
K3FX PLE 0,0,3
K1IMLI PZE 1,C4C
LB PlE ¢]
LBHALF P1E 0
LBLO PzZE 9]
LBCOM PZE c
LBHI PZE C
XLOW PZE

END

PROGRAM LISTINGS

LBCOM=LBHI=-DIF
DIF

DIF=1, GOT IT, SET IX(IR1+1)
IMPOSSIBLE

+#= ADDRESS OF IX+1

wa=LX

STORE IANS
RETURN

YT T R Y Y Y Y )
- MPSEQ1 -
BESEERSN RN RN SRR DR
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0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0lé62
0163
0l64
0165
0166
ol167
0168
0169
0170
0171
0172
0173
0174
0175
0176
oL77
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
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- MSCON1 * - MSCON1
RRERERRERSRRRRRIRTERARRR
* MSCON1 (SUBROUTINE) 2/18/763 LAST CARD IN DECK IS NO.
- LABEL
CMSCON1

et

PROGRAM L ISTINGS

SUBROUTINE MSCCN1 (NORDERs+P4PHI,DEPEND, IANS)

LANGUAGE
EQUIPMENT
STORAGE
SPEED
AUTHOR

INPUTS

NORDER

P(I,J)

OUTPUTS
PHI
DEPEND
TIANS

EXAMPLES

1. INPUTS

QUTPUTS
2. INPUTS
QUTPUTS
3. INPUTS
OUTPUTS
4. INPUTS

OUTPUTS

s N eNaNe NN e NN aNaNaNaNeNalaNo RN sl oo e No N NaN s NN o N e Na e Ne e N o N e e e e Na e N R N o N o R e e N e N o o N e NN a N o N e N e N ol ol e R e N s N e N e e e N a N oo ke ke R n R a]

~=~=ABSTRACT ===~

TITLE - MSCON1
MEAN SQUARE CONTINGENCY AND DEPENDENCY FROM PROBABILITY DENSITY.

MSCCN1 COMPUTES THE MEAN SQUARE CONTINGENCY AND A
DEPENDENCY MEASURE AS DEFINED ON PAGE 282 OF CRAMER,
MATHEMATICAL METHODS OF STATISTICS, PRINCTON UNIV. PRESS,
1951. THE COMPUTATION REQUIRES THE SECOND PROBABILITY
DENSITY WHICH CAN BE COMPUTED WITH SUBROUTINE PROB2 (SEE
WRITE-UP OF PROB2). IF PHI IS THE MEAN SQUARE CONTINGENCY,
DEPEND IS THE DEPENDENCY MEASURE, AND NORDER IS THE ORDER
OF THE SECCND PROBABILITY MATRIX, P(I,J), THEN

DEPEND = PHI1/(NORDER-1)
FORTRAN II SUBROUTINE
709, 7090 (MAIN FRAME ONLY)
238 REGISTERS
J.N. GALBRAITH

----USAGE---

TRANSFER VECTOR CONTAINS ROUTINES - NONE
AND FORTRAN SYSTEM ROUTINES - NONE

FORTRAN USAGE
CALL MSCON1(NORDER,P,PHI,DEPEND, IANS)

INTEGER. THE ORDER OF THE P(1,J) PROBABILITY DENSITY
MATRIX. GRTHN ONE, LSTHN OR EQUAL 25.

I=1y..¢NORDERy J=1y..9NORDER. PROBABILITY DENSITY MATRIX
NORMALIZED SUCH THAT THE SUM OVER I AND J IS = 70 1.
P(I,J) HAS DIMENSION (25,25), P(I,J) MUST NOT HAVE AN
ENTIRE ROW OR COLUMN SUM EQUAL TO ZERO, OR NEGATIVE.

THE MEAN SQUARE CONTINGENCY.
THE DEPENDENCY MEASURE.

ERROR INDICATOR

=0 NORMAL

==1 ILLEGAL NORDER. LSTHN 1 OR GRTHN 25

=-2 ILLEGAL P MATRIX. ROW OR COLUMN SUM ZERC OR NEGATIVE.

P(l:l)=.2 QP(I'I,.I=2,5 =aly P(l,l),‘=2,5 =,1
ALL COTHER P(I,J)=0.

NORDER=0

PHI=0. DEPEND=0. IANS=-1

SAME AS EXAMPLE 1 EXCEPT
NORDER=26
PHI=0. DEPEND=0. IANS=-1

SAME AS EXAMPLE 1 EXCEPT
NORDER=5
PHI=1.6666666 DEPEND=.41666666 IANS=0

SAME AS EXAMPLE 1 EXCEPT
P({1,5)=0.y P(541)=.1 NORDER=5
PHI=1.7333333 DEPEND=.43333333 IANS=0

0107
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
c026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
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C 5. INPUTS - SAME AS EXAMPLE 4 EXCEPT
C P(545)=0.

C CUTPUTS - TANS=-2
[

DIMENSIGN P(25,25),PSROW{25),PSCOL(25)

C CHECK NORDER
TIANS=-1
IF (NORDER-1) 9999,9999,5

5 1F{NORDER-26) 6:9999,9999

C FIND ROW ANC CCLUMN SUMS

6 DC 10 J=1,NCRDER
PSROW(J)=0.
PSCOL({J)=0.
D0 10 I=1,NCRDER
PSROW(J)=PSROW(JI+P(J,T)
10 PSCCL(J)=PSCCL(J)+P(I,4J)

C CHECK ROW AND COLUMN SUMS
IANS==-2
DC 15 I=1,NCRDER
IF(PSROW(I))} 9999,9999,12

12 IF{(PSCOL(I)}) 9999,9999,15
15 CONTINUE
c CCMPUTE MEAN SCUARE CONTINGENCY
PHI=0.
DC 20 1=1,NCRDER
DO 2C J=1,NCRCER
20 PHI=PHI+P(1,J)=P(1,J)/{PSRON(I)*PSCOL(J))
PHI=PHI-1.

c COMPUTE DEPENDENCY MEASURE
DEPEND=PHI/ (FLOATF (NORDER-1))
IANS=0

9999 RETURN
END

ERRBRRBE RS RE R R R R R AR RN
= MSCON1 -
AREBR BB ERRRRR R RE RS RRER

(PAGE 2)

0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
€090
c091
0092
0093
0094
0095
0096
6697
0098
06099
0100
0101
0102
0103
0104
0105
0106
0107
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L NOINT1

EA 2222222222 22222 R 2 X2 4

» NGINT1 (SUBRCUTINE) 2/18/63  LAST CARD IN DECK IS NO.
. FAP
*NOINT]

COUNT 370

LRL NGINT1

ENTRY  NOINTL {(X,PROB)

ENTRY

LANGUAGE
EQUIPMENT
STORAGE
SPEED
AUTHOR

X

PRCB

LB B B A IR R B IR BN B BN N B BN N IR BN NE IR BN NE N BN NE RN N R NN RN I AN B NE R R Y N B RE R NN B RN N NI N N RN R R N

I R I |

b

= * NOINT1

NOINT2 (XMEAN,XSD,NDIV,XDIV,IANS)

-=——ABSTRACT--—-

TITLE - NOINT1 WITH SECONDARY ENTRY NOINT2
NORMAL DISTRIBUTION ANGC DIVISION INTO EQUALLY LIKELY SECTIONS

NCINT1 FINCS THE INTEGRAL OF THE ZERO MEAN, UNIT VARIANCE,
NCRMAL PROBABILITY DENSITY FUNCTION FROM MINUS INFINITY

TC X. THIS IS DONE BY TABLE LOOK UP IN A TABLE OF 201
VALUES OF THE NORMAL DISTRIBUTION WHICH CORRESPOND

TO VALUES OF X FROM 0.0 TO 4.0 IN INCREMENTS OF .02

LINEAR INTERPOLATION IS USED FOR VALUES OF X LYING

BETWEEN TABULATED VALUES. THE PROGRAM RETURNS ZERO FOR X
VALUES LESS THAN -4.0y AND RETURNS 1.0 FOR X VALUES
GREATER THAN 4.0.

NOINT2 DIVIDES UP THE ENTIRE X AXIS INTO AN ARBITRARY
NUMBER, NDIV, OF RANGES WHICH ARE EQUALLY LIKELY WITH
RESPECT TC A GIVEN NORMAL DISTRIBUTION SPECIFIED BY
ITS MEAN AND STANDARD DEVIATION.

THE INTEGRAL OF THE NORMAL DISTRIBUTION GIVES THE
PRCBABILITY THAT X LIES IN A CERTAIN RANGE. NOINT2
REVERSES THE PROCESS BY FINDING THE X RANGES WITH

A GIVEN PRCBABILITY. 1/NDIV = PROBABILITY FOR EACH
DIVISICN. FOR K-TH DIVISION, XAXIS LIMITS CORRESPOND

TO THE PROBABILITIES (K-1)/NDIVy K/NDIV. STORED VALUES
CF THE ANTISYMMETRIC INTEGRAL OF THE UNIT NORMAL
DISTRIBUTION FOR X VALUES ZERO TO 4 IN INCREMENTS OF .02
ARE SEARCHED FOR PROBABILITY VALUES GIVEN BY K/NDIV.
INTERPCLATION WHERE NECESSARY IS LINEAR. I.E. FIND NEAREST
VALUE CF X TO CORRESPONDING TO P WHEN P DOES NOT APPEAR
IN TABLE EXACTLY. IF R-TH VALUE IN TABLE IS LESS THAN P,
AND (R+1) TH VALUE IS GREATERs THEN X VALUE = ((P-RTH
VALUE)/((R+1)TH-RTH VALUE))#.02+R#.02. THIS VALUE IS
THEN SCALED FOR THE PARTICULAR NORMAL DISTRIBUTION SUCH
THAT THE OUTPUT X = X#XSD+MEAN. SINCE ONLY HALF OF THE
NORMAL INTEGRAL IS STORED, THE X VALUES CORRESPONDING TO
P1 GREATER THAN .5 ARE COMPUTED FIRST AND THE VALUES

FCR P2 LESS THAN .5 ARE SYMMETRIC AND EQUAL TO 1-Pl.

NOTE - NOINT1 AND NOINT 2 ARE INDEPENDENT EXCEPT FOR
THEIR MUTUAL NEED OF THE DISTRIBUTION FUNCTION TABLE.

FAP SUBROUTINE (FORTRAN II COMPATIBLE)
709 OR 7090 (MAIN FRAME ONLY)

369 REGISTERS

SeM. SIMPSCN AND J.N. GALBRAITH

----USAGE----

TRANSFER VECTOR CCNTAINS ROUTINES - LINTR1
AND FORTRAN SYSTEM ROUTINES - NONE

FORTRAN USAGE OF NOINT1
CALL NCINT1(X,PROB)

INPUTS TO NOINT1

= UPPER LIMIT OF THE INTEGRAL (FLT PT.).

QUTPUTS FROM NGINT1

X 2
T emmem—ese- INTEGRAL (EXP(-X /2)DX)}.
SQRT(2PI) -INFINITY

0374
0001
0002
0003
0004
0005
0coé
0007
0008
0009
0010
GOl11
0012
0013
0014
0015
0016
0017
o018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074

PROGRAM LISTINGS BEERBR AR RERBRARRRRE R AR

*
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{PAGE 2) (PAGE 2)
» IS FLCATING POINT 0075
- 0076
& FORTRAN USAGE OF NCINT2 0077
» CALL NCINT2(XMEAN,XSDyNDIV,XDIV,IANS) 0078
» 0079
*» INPUTS TO NOINT2 0080
- 0081
" XMEAN = MEAN OF X SERIES 0082
- 0083
= XSD = STANDARD DEVIATION OF X SERIES. 0084
s MUST BE GRTHN O. 0085
- 0086
- NDIV = NUMBRER OF EQUALLY LIKELY DIVISIONS INTO WHICH XSERIES 0087
. IS TC BE PLACED. 0088
= MUST BE GRTHN 1} 0089
* 0090
*= QUTPUTS FROM NCINT2 0091
- 0092
* XDIviI) I1=1...NDIV-1 ARE THE X VALUES FOR EQUALLY LIKELY 0093
- DIVISIONS. FIRST DIVISION IS FROM ~INFINITY TO XDIV(1), €094
- THE SECOND IS FROM XDIV(1) TO XDIV(2) €TC. THE LAST 0095
* DIVISION IS FROM XDIV(NDIV=1) TO +INFINITY. 0096
= c097
* IANS =0 NCRMAL G098
» =1 ILLEGAL XSD 0099
= =2 ILLEGAL NOIV 0100
L 0101
» EXAMPLES OF NCINT1 0102
- 0103
s 1. INPUTS =~ X=-5, 0104
* CUTPUTS - PROB=D. 0105
L 0106
® 2. INPUTS - X=-4. 0107
- CUTPUTS - PRCB=.32 E-04 0108
. 0109
* 3, INPUTS - X=.013 0110
- QUTPUTS - PRCB=.5052 0111
- o112
® 4, INPUTS - X=4. 0113
- QUTPUTS - PRCB=,999968 O0l14
- 0115
* 5, INPUTS = X=4.1 0l16
- CUTPUTS - PRCB=1. 0117
- o118
# EXAMPLES OF NOINT2 0119
» 0120
# 1. INPUTS = XMEAN=0O. XSD=1. NDIV=3 0121
- CUTPUTS - XDIV{1)=~,430722 XDIV(2)=.430722 IANS =0 0122
- 0123
s 2, INPUTS - XMEAN=0. XSD=2. NOIV=3 0124
- QUTPUTS — XDIVI(1)=-.861444 XDIV(2)=.861444 IANS=0 0125
- 0126
s 3, INPUTS -~ XMEAN=1. XSp=2. NDIV=3 0127
L] OUTPUTS - XDIVI(1)=.1385185 X0IV(2)=1.861444 IANS=0 c128
- 0129
# 4, INPUTS - XMEAN=0. XSD=1. NDIV=2 0130
- CUTPUTS - XDIV(1)=0. TANS=0 0131
- 0132
* 5, INPUTS =~ XMEAN=3.5 XSD=1. NDIV=2 0133
- QUTPUTS - XDIV(1)=3.5 IANS=0 0134
- 0135
# 6. INPUTS = XMEAN=3.5 XSD=1. NDIV=1 0136
- GUTPUTS - ERROR TANS=2 0137
» 0138
# 7. INPUTS - XMEAN=3.5 XSD=0. NDIV=2 0139
- QUTPUTS - ERROR TANS=1 0140
. 0141
# B. INPUTS ~ XMEAN=0. XSD=1. ND1IV=4 0142
- QUTPUTS = XDIVI(leee3)==.6T46029049+.674602 1ANS=0 0143
- 0144
#+ 9, INPUTS - XMEAN=0. XSD=1. NDIV=5 0145
L QUTPUTS = XDIVI(leeoe4)=-.8417856,-¢253334,.253334,.8417856 TANS=0 0146
- 0147
sINITIALIZE. 0148
PZ1E 0 0149
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BCI 1,NCINT1
NOINT1 SXA LVy4
SXD NCINT1-2,4
CLA 154
STA GETX
CLA 244
STA STGRE
#GET,STORE X AND ITS SIZE. C
GETX CLA e
STO XX
ssp
STO SX
CAS K4FL
TRA BIGGER
TRA INTRP
TRA INTRP
#«{(0OR ZERO FOR NEG X).
BIGGER CLA K1FL
STO TEMP
TRA CHECK

+INTERPOLATE IF SIZE LESS TH
#NOTE LINTR1 MUST BE USED BA
*TABLE IS FORWARDS.

INTRP CLA K4FL
FS8 SX
sS10 SXMOD
TSX $LINTR1,4
TSX SXMOD
TSX KG
TSX KDELX
TSX Y+200
TSX Kb201
TSX TEMP
#«IF X WAS MINUS WE NEED 1.0
«VALUE.
CHECK CLA XX
TPL STCRE-1
CLA K1FL
FS8 TEMP
TRA STORE
CLA TEMP
STORE STO L3
LV AXT w4
TRA 3,54
«TEMPCRARIES
XX PZE s
SX PZE e
SXMOC PZE L3
TEMP PZE LA
#CONSTANTS
KG PZE 0
KD201 PZ1E 0,0,201
K1FL DEC 1.0
K4FL DEC 4.0
KDELX DEC 0.02
L ENTRY NOINT2 (XMEAN

- SAVE IRS AND INITIALI
PZE 0
BCI 1sNOINT2
NOINT2 SXA RETURN, 1
SXA RETURN+1,2
SXA RETURN+2,4
SXD NOINT2-2,4
ST 514
- CHECK XSD AND NDIV.
CLA= 244
TZE ERR1
TMI ERR1
CLA# 3,4
sus K1FX
TZE ERR2
TMI ERR2
- PARAMETERS OK. SET UP
STD END2

CLA byl

PROGRAM LISTINGS

OMPARE SIZE WITH 4.0.
#+#+=ADDRESS OF X

AN OR = 4,.0.
CKWARDS SINCE OUR

SXMOD=4.0~-SX

XL0=0.0

KDELX=0.02

TABLE IS FORTRAN VECTOR
NTABLE=201

ANSWER

MINUS THE INTERPOLATED

=+=ADDRESS OF PROB
»#=XR4

=X

*##=MAGNITUDE OF X
*#2=4,0-SX

*»#=0UTPUT FROM LINTR1

1 XSDyNDIV,XDIV, IANS)
ZE TANS

IANS=0

GET XSD

TRANSFER IF ILLEGAL
TRANSFER IF ILLEGAL
GET NODIV

NDIV-1

TRANSFER IF ILLEGAL
TRANSFER IF ILLEGAL

AREAERBR AR SR RRBRRS AR RN
* NOINT1 »
T Y Y I YTy )
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0150
0151
0152
0153
0154
0155
0156
0157
G158
0159
0160
0161
0162
0163
0l64
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
o188
0189
‘0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221

MEAN LOOP AND GET XSD AND XMEAN ADDRESSES. 0222

SET UP MEAN LOOP
ADDRESS OF XDIV

0223
0224
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ADD KMLT1 0225

STA LogrP2 0226

STA MEAN+]L 0227

CLA 144 ADDRESS OF XMEAN 0228

STA MEAN 0229

LDQ# 244 0230

FMP KDELX 0231

STO SCALE 0232

CLA 424 A(XDIV) 0233

CLA% 344 GET NDIV 0234

LRS 18 FLOAT IT 0235

ORA CONST 0236

FAD CCNST 0237

STO NDIVFL NDIVFL=FLOATF(NDIV) 0238

CLA K1FL 0239

FDP NDIVFL 0240

STQ DELP 0241

CLA# 3,4 GET NDIV 0242

LGR 19 0243

- NDIV/2 WITH REMAINDER IN SIGN OF MQ 0244

PAX s 1 0245

SxD END,1 0246

SSM 0247

ADD by 4 (ADDRESS OF XDIV)-NDIV/2 0248

ADD KMLIL ADDRESS OF XDIV(NDIV/2) 0249

STA STG1 0250

STA sT1C2 0251

TQP EVEN TRANSFER IF NDIV EVEN 0252

CLA DELP 0253

FoP K2FL 0254

XCA 0255

FAD Y P=(.5+DELP/2) 0256

STC P 0257

AXT Cyl 0258

AXT 1,2 0259

AXT Cr& 0260

TRA SEARCH 0261

EVEN AXT 02 0262

CLA Y 5 0263

STO 4 0264

STi= STC1 0265

AXT 1,2 0266

AXT -1+4 0267

AXT Gyl 0268

LO0OP CLA P 0269

FAD DELP 0270

ST0 P 0271

SEARCH CAS Yol P IS IN AC 0272

TXI SEARCHy1,~1 TRY AGAIN 0273

TRA SKINT GOT IT. SKIP INTERPOLATION 0274

FSB Y-141 INTERPOLATE. P-RTH VALUE 0275

sSTO0 XTEMP1 0276

CLA Y,1 (R+1)TH 0277

FSB Y-1,1 RTH 0278

sST0 XTEMP2 0279

CLA XTEMP1 0280

FoOP XTEMP2 0281

FMP SCALE 0282

ST0 XTEMPL 0283

TRA SKINT+1 0284

SKINT STZ XTEMPL ZERO INTERPOLATION 0285

TXI w+lyly1 COMPLEMENT OF INDEX QF RTH VALUE IN IRl 0286

SXA XTEMP2,1 0287

PXA 01 GET IR1 0288

PAC 91 2 COMPLEMENT 0289

PXA vl INDEX FOR RTH VALUE =N 0290

ORA CONST FLOAT 0291

FAD CONST 0292

XCA FLOATF(N)=FLN IN MQ 0293

FMP SCALE FLN#.02#XSD=X 0294

FAD XTEMP1 0295

STO01 STO a2 =#=A(XDIV)-NDIV/2+1 0296

SSM 0297

ST02 STO "uy4 #s=A(XDIV)-NDIV/2+1 0298

LXA XTEMP2,1 0299
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TXI #+1ly4,.-1 0300

TXI #+1492,1 0301

END TXL LOCP 2, #s ##=NDIV/2 ROUNDED DOWN 0302

= FINISHED SEARCH AND SCALING FOR ALL BLOCKS. ADD MEAN 0303

AXT 1,2 0304

LooP2 CLA "y 2 ##=A(XDIV)+1 0305

MEAN FAD e XMEAN 0306

STO #ey2 0307

X1 4149291 0308

END2 TXL LOCP2,2y 5w se=NDIV-1 0309

RETURN AXT we, ]l 0310

AXT *e,2 . 0311

AXY ", 0312

TRA 644 0313

ERRY CLA K1FX 0314

STOs 5:4 : 0315

TRA 614 0316

ERR2 CLA K2FX : 0317

STO= Sv4 0318

TRA 694 0319

CONST OCT 23300€000000 0320

K1FX PZE 00,1 0321

K2FX PILE 01042 i 0322

KMLI1 PZE 1 . 0323

K2FL DEC 2.0 - 0324

XTEMPL PZE 0 0325

XTEMP2 PZE 0 0326

P PZE 0 0327

DELP PZE 0 c328

NDIVFL PZE 0329

SCALE PLE 0 0330

#TABLE (YULE AND KENDALL, THEORY OF STATISTICS, 0331

#1950, PAGE 664.) 0332

Y DEC +5000,.50809.5160545239,.5319 0333

DEC .5398,.5478B+.55571.56364.5714 0334

DEC +57935.58719.5948,.6026,,6103 0335

DEC «61799¢62559.63314.6406,.6480 0336

DEC «65544.6628,,67005.6772,.6844 0337

DEC «6915,.69854.70549.7123,.719C 0338

DEC o72579e73244473899¢74544.7517 0339

DEC 275804 .7642,.7704,.7764,.7823 0340

DEC +78817479399.7995,.80514+.8106 0341

DEC .8159,.8212,.8264,.8315,.8365 0342

DEC .B413,.8461,.8508,.85544.8599 0343

DEC .8643,.8686,.8729,.8770,.8810 0344

DEC .8849,.8888,.8925,.8962,.8997 0345

DEC .90329.9066,.9099,.9131,.,9162 . 0346

DEC +91924.92225.9251,.9279+.9306 0347

DEC ¢93324.9357,.9382,.9406,.9429 0348

DEC 494521¢94749494957.9515,,9535 . 0349

DEC 49554949573 .9591,.9608,.9625 0350

DEC .96414.965649.9671,.9686,.9699 0351

DEC «9713,.97264.9738,.97505.9761 0352

DEC .9772,.9783,.9793,.9803,.9812 0353

DEC ,9821,.9830.9838,.9846,.9854 0354

DEC .9861,.9868,.9875,.9881,.9887 0355

DEC +9893,.9898,.9904,.9909,.9913 0356

DEC 9918129922+.99275.9931,.9934 0357

DEC 499379,.99413,.99446,.99477,.99506 0358

DEC +99534,.9956054+995859.99609,.99632 0359

DEC ¢996537,996749+99693,.99711,.99728 0360

DEC +99744,.99760,.99774+.99788,.99801 0361

DEC +99813,.99825,.99836+.99846,.99856 0362

DEC +998657¢99874,.99882,.99889,.99897 0363

DEC +99903,4999109¢999169.999214.99926 0364

DEC +9993144999369499940+.99944,.99948 0365

DEC .999527499955,.999584.999614.99964 0366

DEC .999661.999699.99971,.99973,.99975 0367

DEC .99977,.99978,.999809.99981,.99983 0368

DEC +.99984,.999859.999861.99987,.99988 0369

DEC .999897.999904+999908,.999915, .999922 0370

DEC .99992845.999933,.999939,.999943,.999948 0371

DEC +999952,.9999567¢9999599.999963y.999966 0372

DEC .999968 0373

END 0374
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PCKCT1 (SUBROUTINE) 2/18/63 LAST CARD IN DECK IS NO.

LABEL

CPOKCT1
SUBROUTINE POKCT1l (IX,NHANDS,ICT,IANS)
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PROGRAM LISTINGS
- . » POKCT1

-==-ABSTRACT----

TITLE - POKCT1
EVALUATION OF INTEGER SEQUENCE IN GROUPS OF FIVE AS POKER HANDS.

LANGUAGE
EQUIPMENT
STORAGE
SPEED
AUTHGR

POKCT1 BREAKS UP A FORTRAN II INTEGER SEQUENCE INTO NON-
OVERLAPPING GROUPS OF FIVE DIGITS WHICH IT TREATS AS POKER
HANLCS. THE HANDS ARE EVALUATED AND A TABULATION OF THE
NUMBER OF DIFFERENT TYPES OF HANDS IS PRODUCED. THE A
PRICRI PRUBABILITIES OF DIFFERENT HAND TYPES ARE KNOWN FOR
THE CASE OF INDEPENDENT EQUALLY LIKELY DIGITS FROM 2ERO TO
NINE. HENCE A POKER COUNT IS USEFUL IN DETERMINING THE
INCEPENDENCE OF A SEQUENCE. THE A PRIORI PROBABILITIES

ARE GIVEN BELOW AND ARE EXACT. THE DECIMALS TERMINATE AT
THE FOURTH PLACE.

BUST «2952
1 PAIR «5040
2 PAIR . 1080
3 CF A KIND 0720
FULL HOUSE . 0090
STRAIGHT 0072
4 CF A KIND +0045
5 OF A KIND .0001

FORTRAM II SUBROUTINE

709 CR 7090 (MAIN FRAME ONLY)
219 REGISTERS

S.M. SIMPSCN

-——-USAGE-—==

TRANSFER VECTOR CCNTAINS ROUTINES - FRQCT1
AND FORTRAN SYSTEM ROUTINES - NONE

FORTRAN USAGE
CALL PCKCT1({IX,NHANDS,ICT,IANS)

INPUTS

IX(1)

NHANDS

CUTPUTS

ICT(1)

IANS

EXANPLES

1.

INPUTS
IX(1

I=1:..5#NHANDS IS THE DIGIT SEQUENCE
ZERQ LESS THAN OR = IX LESS THAN OR = 9

IS THE NUMBER OF HANDS TO BE FORMED FROM THE IX SEQUENCE.
NHANDS MUST BE GREATER THAN ZERO.

I=1...8 IS THE COUNT OF TYPES OF HANDS FOUND WHERE

ICT(1) = NO. OF HANDS OF NO VALUE
ICT(2) = NO. OF HANDS WITH 1 PAIR
ICT(3) = NO. OF HANDS WITH 2 PAIRS
ICT(4) = NO. OF HANDS WITH 3 OF A KIND
ICT(5} = NO. OF STRAIGHTS

ICT(6) = NO. OF FULL HOUSES

ICT(7) = NO. OF HANDS WITH 4 OF A KIND

ICT(8) = NO. OF HANDS WITH S OF A KIND
WHERE HAND NO. 1 =(IX(1),IX(2),IX(3),IX(4),IX(5))
HAND NOo 2 =(IX(6)IX{(T),IX(8),IX{9),IX(10))
ETC.
AND SUM OF ICT(I) = NHANDS.

0 NCRMAL
=1 ILLEGAL HANDS
=3 ERROR RETURN FROM FRQCT1

NHANDS = 0
I=1+,280 BROKEN INTO GROUPS OF FIVE FDR EASY CHECKING.

0131
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
€024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074

AEBEER AR BERIRRRERRARES

*
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(2222222222 222222222 22 2 3 (222222222222 2222222223
(PAGE 2) (PAGE 2)
C 40123 43125 23456 52643 76543 87654 95867 0075
C 97654 02345 98762 14327 02678 86430 63142 0076
C 01230 18741 32024 99413 08628 54531 07499 0077
Cc 01220 42246 45999 94977 82238 77335 55060 0078
C 10020 23334 06033 88381 74877 06006 15113 0079
c 11222 21212 80808 94449 55454 61116 06006 0080
C 90000 66866 44644 88883 21111 00700 09999 0081
C 39999 00000 11111 22222 66666 33333 36410 0082
C CUTPUTS = ICT(leee8) = 04090,0,0,0,040 IANS=1 0083
C 0084
C 2. INPUTS ~ SAME AS EXAMPLE 1. EXCEPT NHANDS=56 0085
C CUTPUTS = ICT{leeeB) = B3 7973697989796 I1ANS=0 0086
[ 0087
DIMENSION IX{(2),ICT(2),IC1(10),1C2(6) 0088
C CLEAR THE CQUTPUT VECTOR. THEN WORK THRU DATA HAND BY HAND. 0089
IANS=1 0090
IF (NHANDS) 9999,9999,10 0091
10 IANS=0 0092
DC 15 I=1,8 0093
15 ICT(I)=0 0094
DC 90 II=1,NHANDS 0095
C FOR EACH HAND FIRST MAKE A FREQUENCY COUNT OF THE DIGITS (VALUES 0-9). 0096
C NOTE RESTRICTION 1 VIOLATION IS CAUGHY BY FRQCT1. 0097
J=(11~1)#5+1 0098
CALL FRQCTL1(IX(J)45,0,9,IC1,IANS) 0099
IF(IANS) 9991,21,9991 0100
C AND THEN MAKE A FREQUENCY COUNT OF THE FREQUENCY COUNT (VALUES O TO 5) 0101
21 CALL FRQCT1(IC1,10,0,5,1C2,IANS) 0102
IF{IANS) 9991,22,9991 0103
C THE HAND VALUE, IVAL (1 TO 8), IS DETERMINABLE FROM IC2(1),1C2(3), 0104
C IC2(2) EXCEPT FCR STRAIGHTS. 0105
22 IVAL=1 0106
IF (IC2(1)-6) 60,92,50 0107
50 IF {1C2(3)-1) 55,96,93 0108
55 IF (IC2(2)-1) 98,97,94 0109
C CHECK FOR POSSIBLE STRAIGHT WHEN ALL DIGITS ARE DIFFERENT. 0110
60 I=0 0111
62 I=1+1 0112
IF (IC1(I)) 7C,62,70 0113
70 IF (IC1(I+1)) T71,91,71 0114
71 IF {IC1(I+42)) 72,91,72 0115
72 IF (IC1(I+3)) 73,91,73 0116
73 IF (IC1(I+4)) 95,91,95 0117
C SET THE HAND VALUE. 0118
98 IVAL=IVAL+1 0119
97 IVAL=IVAL+]1 0120
96 IVAL=IVAL+1 0121
95 IVAL=IVAL+1 0122
94 JVAL=IVAL+1 o123
93 IVAL=IVAL+1 0124
92 IVAL=IVAL+1 0125
91 ICT(IVAL)=ICT({IVAL)+1 0126
90 CONTINUE 0127
9999 RETURN 0128
9991 IANS=3 0129
GO -TO 9999 0130
END o131
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» POLYDYV

FESHATRFRARFRRRRRERE

L POLYDV

i LABEL

cPoLYDRY
SUBROUT

TITLE - POLY
PERFOR

LANGUAGE -
EQUIPMENT -
STORAGE -
SPEED -
AUTHOR -

TRANSFER VEC
AND FO

FORTRAN USAG
CALL PCL

INPUTS

N

ovs(In)

cvol(1)

L

OUTPUTS
I
EXAMPLES

l. INPUTS -~

CUTPUTS -

2. INPUTS -~

[+ XsEzkzizksEaXalalakaXaEkakaXakakaRaisksksXakaRaks k2 RaksXakakaXa sz EsEsEaNaNsN e RalalaNeRaloRaNaNslaRaNasRsNaRalaNalaRsNaRa N NalslaNaNela NaNa Nl

£ v iy

‘f«
ARBRE PROGRAM LISTINGS AERBRERR R BB R REERERS
* » POLYDYV =
*EH%ERR ERRRARAERARARFTERBERERRRAR
SUBRCUTINE) 2/718/63 LAST CARD IN DECK IS NO. 0100
0001
0002
INE PCLYDV (N,DVS,M,DVD,L,Q) €003
0004
===~ ABSTRACT ===~ 0005
0006
DV 0007
M LCNG DIVISION OF TWO POLYNOMIALS coos
0009
POLYDV COMPUTES THE FIRST L COEFFICIENTS OF THE QUOTIENT 0010
CF TWC PCLYNOMIALS. THE POLYNOMIALS ARE SPECIFIED BY THEIR 0011
COEFFICIENTS.SOME OF THE LAST COEFFICIENTS MAY TURN OUT TO 0012
BE 2ERC IF THE QUOTIENT IS AN EXACT POLYNOMIAL OF DRDER 0013
LESS THAN L. THE REMAINDER IS NOT COMPUTED. AN EXPLAN- 0014
ATICN AS TC HOW THE SYMBOLIC DECK MAY BE ALTERED SO THAT 0015
THE REMAINDER WILL BE COMPUTED IS GIVEN IN THE SYMBOLIC 0016
DECK. THE COMPUTATION IS... 0017
0018
2 3 {L-1) 0019
QELI+Q(2)%X+Q(3) X +Q(4) %X +...+Q(L) =X +REMAINDER = 0020
0021
(M+1) N-1 G022
=DVD(1)+DVD(2) #X+...0VD(M) %X /DVS(1) +.0 DVS(N}) =X 0023
0024
WHERE X IS UNSPECIFIED SINCE ALL OPERATIONS ARE ON THE 0025
CCEFFICIENTS, 0026
¢ IS THE QUOTIENT VECTOR, 0027
CvC IS THE DIVIDEND VECTOR, 0028
CVS IS THE DIVISOR VECTOR. 0029
0030
FORTRAN I[ SUBROUTINE €031
I18M 709, 7090 (MAIN FRAME ONLY) 0032
135 REGISTERS 0233
G034
Jeo CLAERROUT 0035
0036
--—-USAGE~-=-- G037
0038
TCR CCNTAINS ROUTINES — NONE G039
RTRAN SYSTEM ROUTINES - NONE 0040
G041
£ 0042
YDVIN,CVS,¥,DVDsL+Q) 0043
0044
0045
0046
NUMBER OF COEFFICIENTS IN ODIVISOR POLYNOMIAL 0047
MUST BE GRTHN=1. 0048
0049
I=1yN COEFFICIENTS OF DIVISOR POLYNOMIAL 0050
DVS(1) MUST BE NON ZERO 0051
0052
NUMBER OF COEFFICIENTS IN DIVIDEND POLYNOMIAL 0053
MUST BE GRTHN=1. 0054
0055
I=1,M COEFFICIENTS OF DIVIDEND POLYNOMIAL 0056
0057
NUMBER OF COEFFICIENTS IN QUOTIENY POLYNOMIAL 0058
MUST BE GRTHN=1. 0059
0060
0061
0062
I=1,L COEFFICIENTS IN QUOTIENT POLYNOMIAL 0063
0064
0065
0066
M=1 pvD(l)=1. 0067
N=2 DVS(leee2)=1ey-e5 0068
L=4 0069
Qlleee4)=109e554254.125 0070
0071
M=3 4, DVD(lees3)= les2.sl. 0072
N=2 4 DVS(leee2)= leyle. 0073
L=10 0074
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C CUTPUTS - Q(1esal0)=1051090490290c90e90¢90.20.,0. 0075

[ 0076

c THIS COULL BE REPROGRAMMED TO ALLOW EQUIVALENCE(DVD,Q)y NOT ALLOW Q077

DIMENSION DVS(10), DVD(10), Q(10) 0078

NM = N-1 0079

NDC 8 I=1,L 0080

8 Q(I) = 0. 0081

c MOVE THE USED PORTION OF OVD TO Q 0082

MML=XMINOF(VM,L) 0083

DC 10 I=1,MML 0084

10 Q({I) = DVvD(I) 0085

DO 50 I = 1,b 0086

Q(I) = Q (I)/BVS(1) 0087

IF (I-L)30,2Nn,30 0088

20 RETURN 0089

30 K =1 0090

c IF THE FOLLOWING CARD IS CHANGED TO (ISUB=NM) THEN THE REMAINDER 0091

[ WILL 3E COMPUTED AND STORED AT Q(L+1) TO Q{L+N). 0092

ISUB = XMINOF (NM,L-T1) 0093

DO 40 J = 1,1ISuUB 0094

K = K+1 0095

Q(K)=Q(K)-Q(I)*#DVS(J+1) 6096

40 CONTINUE 0097

50 CCNTINUE 0098

C PROGRAM NEVER GETS HERE 0099

END 0100



ERRRER R AR B AR AR R ERR RS PROGRAM LISTINGS
» = PRBFIT

» PRBFIT

AEREAXEZRERARFREREXRRL AR

*
*

[sEsEaNalaNoeNaN el e NaNeNaNalalals el NN ol e NaRaloN e N N Re s Na N e N NN a e N o N ol e N e N a e N a¥a e NN a¥aRa s X ke ks ik ks ksl iaiaka sl ks iz ia i n ke R a)

PRBFIT (SUBRGUTINE) 2/15/63 LAST CARD IN DECK IS NO.

271

LABEL
CPRBFIT
SUBROUTINE PRBFIT(NOR,XMOM,NOUT,XsFsPHI, TANS)

TITLE

-—==ABSTRACT-=--—

- PRBFIT
GENERATE PRCBABILITY DISTRIBUTION WITH SPECIFIED MOMENTS

PRBFIT GENERATES A ZERO-MEAN OISTRIBUTION FUNCTION, F(X),
WHOSE HIGHER MOMENTS (2NDs3RDjyeseyNTH WHERE N IS LESS
THAN CR EQUAL 6) ASSUME GIVEN VALUES. F(X) HAS THE FORM
OF A NCRMAL DISTRIBUTION TIMES A POLYNODMIAL IN X, AND
CONSEQUENTLY IS USEFUL FOR APPROXIMATING EMPIRICAL
DISTRIBUTICNS WHICH ARE ROUGHLY NORMAL IN APPEARANCE,
BUT FCR WHICH THE NORMAL APPROXIMATION IS INADEQUATE.

IT SHOULD BE NOTED THAT THE PROCEDURE CAN YIELD NEGATIVE
VALUES FOR THE DISTRIBUTION IN CASES WHERE THE DEVIATION
FROM NCRMALITY IS SEVERE.

AN ANALYSIS OF THE PROCEDURE USED MAY BE FOUND IN
CRAMER, H., 1951, MATHEMATICAL METHODS OF STATISTICS,
PRINCETON UNIVERSITY PRESS, PRINCETON, PAGE 222.

THE FCRM UF THE CALCULATION IS

c(3) D D D(PHI(U))
FIX) = PHI(U) + =-—=- * (—=tmm g ema)
1%223 DU DU DU
Cl4) D D D D(PHI(U))
+ me—————— # (== een ) H o0t

1#2#3 24 DU DU DU DU

C{NOR) D D(PHI(U))
Fommmm e L Rt P )
1#2%...#NOR V] DU

EVALUATED FOR A GIVEN SET OF X VALUES
X=X(1)9X(2)yeaeyX(NOUT)
WHERE
0
- DENOTES DIFFERENTIATION WITH RESPECT TO U

pu
U = X/SI6

PRI(U) = EXP(-.5=U=U)/ (SQUARE ROOT(2#PI))
(I.E. NORMAL CURVE)

Pl = 3.14159265
K XMOM{L)
C(K) = SUM ( ======v = AlK,L) )
L=0 S16

A(KsL) = COEFFICIENT OF LTH POWER OF X IN THE KTH
HERMITE POLYNOMIAL (X)

XMCM(L) = LTH PROBABILITY MOMENT
(INPUT PARAMETER VECTOR)

SIG = SQUARE ROOT(XMOM(2))
1.E. STANDARD DEVIATION

LANGUAGE ~ FORTRAN II SUBROUTINE
EQUIPMENT - 709, 7090 (MAIN FRAME ONLY)

STORAGE - 366 REGISTERS

SPEED -

AUTHOR - R.J. GREENFIELD, JAN 1963
~---USAGE----

TRANSFER VECTOR CCONTAINS ROUTINES - NONE

C186
€001
0002
€003
0004
0005
0606
0007
0008
0009
0010
0011
0012
0013
Col4
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
G032
0033
0034
0035
G036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
6054
0055
0056
0057
0058
0059
06060
0061
0062
0063
0064
0065
€066
0067
0068
0069
0070
0071
0072
0073
0074

ARARBEER A RERRRAERRR SRS
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C AND FORTRAN SYSTEM ROUTINES - SQRT, EXP(2, EXP 0075
C 0076
C FORTRAN USAGE 00717
C CALL PRBFIT(NOR,XMOM,NOUT,XyFyPHI, IANS) 0078
C 06079
C INPUTS 0080
c o081l
c NOR IS THE ORCER OF THE HIGHEST ORDER MOMENT GIVEN 0082
Cc MUST BE GRTHN= 2 AND LSTHN = 6 0083
C 2284
C XMOM(T) I=1...NOR CONTAINS THE MOMENTS WHICH WILL BE USED TO 0085
c DEVELOP THE EXPANSION. THE FIRST MOMENT, XMOM(1l), 0086
C IS NOT ACTUALLY USED, RUT IS ASSUMED TO BE =C. co87
c (I.E. ZERO MEAN ASSUMPTION). 0088
C 0089
C NOUT IS THE NUMBER OF X VALUES AT WHICH THE EXPANSION WILL BE G090
C EVALUATED G091
C c092
C X(1) I=1...NOUT IS THE LIST OF VALUES AT WHICH THE EXPANSION 6093
C WILL BE EVALUATED 0094
C 6095
C PHI(I) USED FOR STORAGE 0096
C MUST BE DIMENSICNEC AT LEAST AS LARGE AS NOUT 0097
C c098
C OUTPUTS c099
C 0100
c F(I) [=1.+..NOUT ARE THE VALUES OF THE EXPANSION FOR THE clo01l
c NOUT VALUES OF X, I.E. F(I) = F(X{I)) AS DEFINED 0102
C IN ABSTRACT 0103
c 0ld4
C IANS = 0 NORMAL 0105
c = 1 TILLEGAL NOR 0106
C 0107
C 0108
C EXAMPLES 0109
C 0110
C 1. (NGRMAL APPRCXIMATION} 0111
Cc INPUTS - NOR = 2 XMUD(leee4) = O0s94e98.910. NOUT = 4 0112
C X{leee4)= 0095948948 0113
o CUTPUTS = Flleose4)= .39894,.017528,.36828,.36828 IANS= 0 0l1l4
C 0115
C 2. INPUTS SAME AS IN EXAMPLE 1. EXCEPT NOR= 3 ol1lé
c CUTPUTS - Fllese4)= .39894,.0412659.29854,.43800 IANS= 0 o117
c 0118
C 3., INPUTS - SAME AS IN EXAMPLE 1. EXCEPT NOR= 4 0119
C CUTPUTS = F{lesed)= 4280519.0333501,4223289.36272 IANS= 0 0120
C 0121
C 4. INPUTS - SAME AS EXAMPLE 1. EXCEPT NOR= O 0122
C CUTPUTS - ERROR TIANS= 1 0123
c 0124
C 5. INPUTS - SAME AS IN EXAMPLE 1. EXCEPT NOR=10 0125
C CUTPUTS - ERRCR IANS = 1 0126
C 0127
DIMENSION A(T747)9C(T7)3PHI(100),XMOM(T7),X(100),XMUD(7) 0128
DIMENSION XMU(T),F(2) 0129
NCRDER = NOR +1 0130
C TEST INPUT DATA 0131
IF (NORDER-2) 31,31,32 0132
31 IANS=1 0133
RETURN 0134
32 IF(NORDER-7} 33,33,31 0135
33 1ANS=0 0136
XMU(L)= 1. 0137
xXMU(2)= 0. 0138
DO 50 K=2,NCR 0139
50 XMU{K+1)=XMCM(K) 0140
C SET uUP A TABLE 0141
Do 1 J=1,7 0142
1 A{J,Jd)=1. 0143
Al3,1)=-1. 0144
A(4,2)=-3. 0145
A{5,1)=3. 0146
A{5,3)=-6. 0147
Al6,2)=15. 0148

Al6y4)=-1C. 0149
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acmon

51

40

41

4

S
[

6
C

7

Cc
8

10
12
19

98

2h
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A(Ty1)==15.
Al7,3)=45.
A(T,5)=-15.
ALL SUBSCRIPTS ADVANCED BY 1

X(I) INPUT NORMALIZED BY CALLING PROG (ZERQ MEAN)

XMYU ARE NOT NORMALIZEC BUT ARE FOR ZERO MEAN
SEC Ta COMP C
SIG= SQRTF(XMU(3))
D0 51 I=1,NCUT
X{I)= X(I)/SIG
FACT=1.
DO 5 K=1,NORDER
C(K)=0.
IF(K-1) 41,41,40
FACT=FACT#FLCATF(K-1)
DO 4 L=1,K
CAKI=CUK)+(XMU(L)/(SIG=s(L-1)))#A(K,L)
CI{K)=C(K}/FACT
SET UP TABLE OF PHI
DO 6 I=1,NCUT
PHI(I)=EXPF(-X(I)aX(I)=.5)%.3989423
COMPUTE F(I) FGOR NORMAL DISTRIBUTION
DG 7 I=1,NCUT
FLI)=C(1)#PHI(I)
IF (NORDER-4) 99,8,8
COMPUTES OTHER ORCER F
DC 19 K=4,NCRLER
DO 12 I=1,NOUT
HER=A{K,1)
DO 10 L=2,K
HER=HER+A(K,L)#X(T)e=(L~-1)
FC(I)=F(I)+PHI{I)#C({K)=sHER
CGNTINUE
DC 98 I=1,NCUT
X{I)Y= X(I)=SIG
RETURN
END

NSRS ENERRNEERERBER RN
- PRBFIT -
SRBBBARBANBARBRRRERNRFARS
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0150
0151
0152
0153
0154
0155
0156
0157
0158
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PROGRAM LISTINGS
* * PROB2

SUBROUTINE PRCB2 (IXsLXyNyIPyPyIXHI,IANS)

~—=-ABSTRACT===-—

TITLE - PROB2
SECOND PRCBABILITY DENSITY OF INTEGER SERIES AT GIVEN LAG.

LANGUAGE
EQUIPMENT
STORAGE
SPEED
AUTHOR

PROB2 COMPUTES THE SECOND PROBABILITY DENSITY FOR AN
INTEGER SERIES BY A FREQUENCY COUNT METHOD. THE SECOND
PROBABILITY DENSITY, P{M,L), OF A SERIES IX(K) IS THE
PRCBABILITY THAT X(K) = M AND X(K+N)=L, WHERE N IS THE
LAG. PROB2 COMPUTES THIS QUANTITY FOR A GIVEN N. THE
INTEGER SERIES MUST BE SCALED SUCH THAT THE LOWEST VALUE
CF IX(K) =1 AND THE HIGHEST VALUE IS IXHI. IXHI MUST BE
LESS THAN CR EQUAL TO THE DIMENSION OF THE P(I,J) MATRIX.
THE PRCGRAM BELOW DIMENSIONS P(I,J) TO P(25,25).

PROB2 COUNTS INTO AN INTEGER MATRIXy IP(I,J), THE NUMBER
OF TIMES IX(K)=M AND IX{K+N)=L OVER ALL INDEX PAIRS

Ky K+N SUCH THAT BOTH K AND K+N LIE IN THE INCLUSIVE
RANGE 1 TO LX WHERE LX IS THE SERIES LENGTH. N MAY

BE NEGATIVE.

THE INTEGER FREQUENCY COUNT MATRIX IS FLOATED INTO P(I,J)
AND NORMALIZED SUCH THAT SUM OVER I AND J OF P(I,J) IS 1.
THIS IS DONE BY DIVIDING EACH ELEMENT BY R, WHERE
R=LX-XABSF(N). P(I,J) AND IP(I,J) MAY BE EQUIVALENT IF THE
FREQUENCY COUNT IS NOT NEEDED. (THIS CAN BE RECONSTRUCTED
SINCE LX AND N ARE KNOWN.)

FORTRAN 11 SUBROUTINE
709,7C90 (MAIN FRAME ONLY)
229 CECIMAL REGISTERS

JeN. GALBRAITH

-==-USAGE~=--~

TRANSFER VECTOR CONTAINS ROUTINES - NONE
AND FORTRAN SYSTEM ROUTINES - NONE

FORTRAN USAGE
CALL PROB2 (IXsLXsNyIPyP,yIXHI,IANS)

INPUTS
IxX(1)
LX

N

IP(I,J)

IXHI

OUTPUTS

P(I,J)

IANS

I=1yeeslX INTEGER SERIES. IX(I) GRTHN Oy LSTHN OR = IXHI
INTEGER. LENGTH OF IX SERIES. GRTHN ZERO

INTEGER. LAG OR SEPARATION FOR COUNT. CAN BE +,-, OR 0.
XABS(N) LSTHN OR = IXHI

I=l9eesIXHIyJ=1yees IXHI SPACE FOR COMPUTATION OF
FREQUENCY RATIOS. MAY BE EQUIVALENT TO P(I,J). WILL
CONTAIN FREQUENCY RATIOS WHEN RETURN IS MADE IF NO
EQUIVALENCE HAS BEEN MADE.

INTEGER. LARGEST VALUE IX TAKES ON. PROGRAM ASSUMES
IXHI LSTHN OR = 25. MUST BE LSTHN OR EQUAL DIMENSION OF
P(I,J) MATRIX.

I=lseesIXHIyJ=1yeay IXHI. PROBABILITY DENSITY FOR LAG OF N
NORMALIZEC SUCH THAT SUM OVER 1 AND J OF P(I,J}) IS 1.

INTEGER. ERROR INDICATOR

=0 NORMAL

=-1 ILLEGAL IX VALUE. SOME IX LSTHN 1 OR GRTHN IXHI.
=-2 ILLEGAL LX. LX LSTHN 1

==-3 ILLEGAL N. XABSF(N) GRTHN LX.
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0026
0027
0028
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0031
0032
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0034
0035
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0037
0038
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0040
0041
0042
0043
0044
0045
0046
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0048
0049
0050
0051
0052
0053
0054
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0056
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0058
0059
0060
0061
0062
0063
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0067
0068
0069
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0071
0072
0073
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RERRERERRERBIARAERAER SRR NN PROGRAM L ISTINGS ERRERRERRRRBREARRERERBRR RS
- PROB2 . L PROB2 *
HERFAR AR AR B RRRRRRRRRRR AERREBERB AR BERRARBRRBARES
(PAGE 2) {PAGE 2)
C =-6 ILLEGAL IXHI. IXHI GRTHN 26 OR LSTHN 1. 0075
C =3 JCB DONE BUT N=0 AND ONLY CONTRIBUTIONS TO P(I,J) ARE 0076
c CN THE DIAGCNAL. 0077
Cc 0078
C EXAMPLES 0079
c 0080
C 1. INPUTS - IX{1)=0, LX=5, N=1, IXHI=5 0081
c CUTPUTS = TP(1,4)=0 , P(I,J)=0 5 IANS=-1 0082
C 0083
C 2. INPUTS =~= SAME AS EXAMPLE 1 EXCEPT IX{I)=192+344+6 0084
C CUTPUTS -~ SAME AS EXAMPLE 1 0085
Cc 0086
C 3, INPUTS - SAME AS EXAMPLE 2 EXCEPT LX=0 0087
[ CUTPUTS - [ANS==-2 0088
C 0089
C 4. INPUTS ~ SAME AS EXAMPLE 2 EXCEPT IXHI=0 G090
C CUTPUTS - TANS=-6 0091
C 0092
C 5. INPUTS = SAME AS EXAMPLE 4 EXCEPT IXHI=26 0093
C CUTPUTS - IANS==-6 0094
C 0095
C 6. INPUTS - SAMNE AS EXAMPLE 2 EXCEPT IX(5)=5, N=-6 0096
Cc CUTPUTS - IANS=-3 0097
Cc 0098
C 7. INPUTS = IX(I)=1314292939354149595919292+13149555919191919151,1 0099
C IXHI=5, LX=21,y N=1 0100
C CUTPUTS - IANS=0 0101
C 4 2 0 0 O 2 1 0 -0 .0 0102
C 2 2 2 0 0 +.C .1 .1 .0 .0 0103
C IP(I,)= 0 ©C 1 2 O P(Isd)= .0 .0 .05 .l 0 0104
C 0o 0 0 1 2 0 .0 .0 .05 .1 0105
c 2 0 0 0 2 .1 .0 .0 .0 .1 0106
C 0107
C 8. INPUTS =~ SANE AS EXAMPLE 7 EXCEPT N=-1 0108
C CUTPUTS - IANS=0 0109
c 0110
C 4 ¢ 0 0 2 .2 .0 .0 -0 .1 0111
C . 2 2 0 0 O 1 .1 .0 0 .0 0112
c IP{I,4)= ©¢ 2 1 0 © P(Isd)= .0 .1 .05 .0 «0 0113
C ¢ 0 2 1 0 .0 .0 .1 «05 .0 0114
C c 0 0 2 2 0 .0 .0 .1 .1 0115
Cc 0116
C 9. INPUTS — SAMNE AS EXAMPLE 7 EXCEPT LX=24, N=3 0117
C CUTPUTS — IANS=0 0118
C 3 1 2 0 ¢ «15 .05 .1 «0 .0 0119
C ¢ o0 1 2 1 .0 -0 .05 .1 «05 0120
c IP(IyJ)= 0 0 O 1 2 PlIsd)= .0 «0 0 <05 .1 0121
Cc 2 0 0 0 1 .1 .0 .0 .0 «C5 0122
C 2 2 0 0 O .1 .1 -0 .0 .0 0123
c 0124
C10. INPUTS - SAME AS EXAMPLE 7 EXCEPT LX=20, N=0 0125
C OUTPUTS = TANS=3 0126
c 0127
[ 6 0 0 0 O «3 .0 .0 <0 «0 0128
c 0O 4 0 0 O 0 .2 .0 -0 .0 0129
C IP(I,J)=0 0 3 0 O PlIyJd)= .0 .0 .15 O .0 0130
C 0 0 80 3 0 «0 .0 .0 «15 .0 0131
C e 0 0 0 4 0 .0 .0 -0 .2 0132
c 0133
DIMENSION IX(1000),IP(25,25),P(25,25) 0134
C CHECK LX 0135
IANS=-2 0136
IF(LX) 9999,9999,2 0137
2 IANS=~6 0138
C CHECK IXHI 0139
IF(IXHI) 9999,9999,3 0140
3 IF(IXHI-25) 4449999 0141
C CHECK IX SERIES 0142
4 IANS=-1 0143
DG 1 I=1,LX 0144
IF(IX(I)) 9999,9999,11 0145
11 IF(IX(I}-IXHI) 1,1,9999 0146
1 CONTINUE 0147
IANS=-3 0148

C CHECK N 0149
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C
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41

10

15
9999

IF(XABSF({N)-LX) 41,9999,9999
1ANS=0

CLEAR IP(I,J)

D0 5 1=1,25

DO S J=1,25
IP(I,J)=0

IF(N) 6,78
LFRST==N+1

LLAST=LX

GO T0 9

TANS=3

LFRST=1

LLAST=LX-N

DO 10 I=LFRST,LLAST
J=1X(1}

KK=I+N

K=sIX(KK)
IP(JsK)=IP(JyK)+1
L=LLAST-LFRST+1
TOTAL=L

00 15 I=1,IXHI

DO 15 J=1,1XHI
PLIJ)=FLOATF(IP(I,J)})/TOTAL
RETURN

END

PROGRAM LISTINGS
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