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A CONTRACTING ELLIPSOID METHOD
FOR VARIATIONAL INEQUALITY PROBLEMS

by

Janice H. Hammond
Thomas L. Magnanti

ABSTRACT

A variational inequality defined by a symmetric map can be solved as

an equivalent optimization problem. We consider an approach to solve

asymmetric variational inequalities that generates a sequence of

variational inequality subproblems, each of which is defined by a symmetric

affine map, and hence is equivalent to a quadratic program. We interpret

the algorithm geometrically in terms of a sequence of contracting

ellipsoids that are implicitly generated by the algorithm, and interpret

the convergence conditions as near-symmetry conditions imposed upon the

underlying map. We discuss connections between this algorithm and its

geometry and several related methods for solving variational inequalities.

Keywords: variational inequalities, first order methods, asymmetric maps
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1. Introduction

The variational inequality problem VI(f,C) seeks a solution to a

specially structured system of inequalities: namely, for a given set C c Rn

and mapping f:C - Rn, the problem seeks a solution x c C that satisfies

(x - x )Tf(x*) 0 for every x c C. (1)

This general problem formulation encompasses a wide range of problem types.

It is of particular interest to mathematical programmers because it includes

as special cases virtually all of the classical problems of mathematical

programming: convex programming problems, network equilibrium problems,

linear and nonlinear complementarity problems, fixed point problems, and

minimax problems.

The theory and methodology of the variational inequality problem

originated primarily from studies of certain classes of partial differential

equations. In particular, much of the early work on the problem focused on

the formulation and solution of free boundary value problems. (See, for

example, Hartmann and Stampacchia [1966], Browder [1966], Lions and

Stampacchia [1967], Sibony [1970], and Kinderlehrer and Stampacchia [1980]).

In these settings, the problem is usually formulated over an infinite

dimensional function space; in contrast, this paper discusses problems

formulated over finite dimensional spaces.

Recent results concerning network equilibrium problems have heightened

mathematical programmers' interest in variational inequalities. In

particular, the recognition (see Smith [1979] and Dafermos [1980] and related

work by Asmuth [1978] and Aashtiani nd Magnanti [1981]) that the equilibrium

conditions for urban traffic equilibria can be formulated in a natural way as

a variational inequality (or nonlinear complementarity) problem and the desire

to find methods to solve such equilibrium problems have motivated a number of
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researchers to develop algorithms to solve variational inequalities. (See,

for example, Ahn and Hogan [1982], Auslender [1976], Dafermos [1983], Hearn

[1982], Harker [1986], Marcotte [1985], Pang and Chan [1981], and Pang [1985].

Hammond [1984] provides a survey of these and other papers on algorithms for

solving variational inequality problems.)

In this paper we introduce and analyze a "contracting ellipsoid"

algorithm for solving variational inequalities and discuss its relationship

with two related variational inequality algorithms: a generalized steepest

descent algorithm and a subgradient algorithm. The contracting ellipsoid

algorithm has a simple, yet revealing, underlying geometric structure. This

structure not only captures the relationship between the vector field defined

by the problem map and the course the algorithm takes, but also provides a

framework that aids in the understanding of related "generalized descent"

algorithms. Throughout our discussion we emphasize these interpretations.

Indeed, we see these geometrical insights as a major component of the paper.

2. First-Order Approximation Methods

Many algorithms for solving nonlinear optimization problems and systems

of nonlinear equations rely upon the fundamental idea of iteratively approxi-

mating the nonlinear function that defines the problem. In this paper we

discuss several variational inequality algorithms, each of which generalizes a

first-order approximation algorithm for a nonlinear programming problem: that

is, when the variational inequality problem reduces to an equivalent

optimization problem, each method reduces to a first-order approximation

algorithm that solves that optimization problem. To state the conditions

under which VI(f,C) reduces to an equivalent optimization problem, we first

recall that a continuously differentiable monotone mapping f is associated
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with a convex map F:C R that satisfies f(x) = VF(x) for every x c C if

and only if the Jacobian Vf of f is symmetric on C. When f satisfies

this condition, the variational inequality system (1) can be viewed as the

necessary and sufficient optimality conditions for the optimization problem

min {F(x): x C}. (2)

That is, VI(f,C) is equivalent to the convex minimization problem (2)

exactly when the continuously differentiable map f is monotone and has a

symmetric Jacobian on C.

At each iteration, a first-order approximation algorithm for solving

problem (2) approximates F by a function depending on the gradient of F.

Linear approximation methods, which are classical examples of such methods,

generate an iterate xk from the previous iterate xk based on Fk(x), the

k
linear approximation to F about x defined by

Fk (x) := F(xk) + VF(xk)(x - xk ). (3)

k
For example, given x , the Frank-Wolfe method chooses as the next iterate a

k+l k k
point x that minimizes F on the line segment from x to v , where

k
v is the solution to the subproblem

min {Fk(x): x C}.

The steepest descent algorithm can also be viewed as a first-order

k k+1
approximation method: given x , the algorithm chooses a point x that

k k
minimizes F in the direction d , where d is the solution to the

subproblem

min {Fk(x): |lxil 1}.
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A more accurate first-order approximation would replace the (constant)

gradient vector VF(xk ) by the (nonlinear) gradient vector VF(x),

giving the approximation

Fk(x) := F(xk ) + VF(x)(x - xk ). (4)

In this paper, we investigate variations of both of these first-order

approximation schemes as adapted to solve variational inequality problems. In

Section 3 we sunmmarize the convergence properties of a generalized steepest

descent algorithm. Sections 4 and 5 analyze variational inequality algorithms

that generalize first-order approximation methods based on the approximation

(4). Our analysis of a "contracting ellipsoid" algorithm in Section 4

provides a geometrical framework within which to view a number of variational

inequality algorithms. In Section 5, we discuss a subgradient algorithm that

solves a max-min problem that is equivalent to the variational inequality

problem. This algorithm solves problems defined by monotone mappings; it does

not require strict or uniform monotonicity.

3. A Generalized Steepest Descent Algorithm

In this section, we summarize results concerning a generalized steepest

descent algorithm for asymmetric systems of equations, which we view as

unconstrained variational inequality problems, and show that the algorithm's

convergence requires a restriction on the degree of asymmetry of the problem

map. (Hammond [1984] and Hammond and Magnanti [1985] provide proofs of the

results in this section and examples that illustrate the conditions under

which the algorithm converges.) In the following sections, in conjunction

with our discussion of a contracting ellipsoid algorithm, we further discuss
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the convergence conditions from this section and provide geometrical

interpretations of the steepest descent algorithm.

Consider the unconstrained variational inequality problem VI(f,Rn)

defined by a continuously differentiable and uniformly monotone mapping f.

This unconstrained problem seeks a zero of f, since (x - x Tf(x ) > O for

every x c R if and only if f(x ) = 0.

The following algorithm generalizes the well-known steepest descent

algorithm for convex minimization problems: when f is the gradient of F,

the algorithm reduces to the usual steepest descent algorithm applied to (2).

(In the statement of the algorithm, [x;y] denotes the ray from x in the

direction y.)

Generalized Steepest Descent Algorithm for the Unconstrained Variational
Inequality Problem

0 n
Step 0: Select x Rn. Set k = 0.

Step 1: Direction Choice. Compute -f(xk). If f(xk ) = 0, stop: x = x 

Otherwise, go to Step 2.

Step 2: One-Dimensional Variational Inequality. Find xk+1 [xk ;-f(xk)

___ T k__ ;-f(xk )]
satisfying (x - k+1)Tf(xk+l) > 0 for every x [xk ;-f(xk)].

Go to Step 1 with k = k + 1.

The algorithm can be viewed as a method that moves through the "vector

field" defined by f by solving a sequence of one-dimensional variational

inequalities. On the kth iteration, the algorithm moves in the -f(xk)

k+l T k k+1
direction to the point xk 1 that satisfies f T(xk)f(xk+) = 0. If f = VF,

k+lthis orthogonality condition is equivalent to the condition that x =

argmin {F(x): x c [xk;-VF(xk)]}, and the algorithm becomes the usual steepest
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descent method.

The generalized steepest descent algorithm will not solve every

unconstrained variational inequality problem, even if the underlying map is

uniformly monotone. If f is not a gradient mapping, the iterates generated

by the algorithm can cycle or diverge.

The following theorem summarizes the convergence properties of the

algorithm. (In the statement of the theorem, M = (M+MT ) denotes the

symmetric part of the matrix M.)

Theorem 1

Let f:Rn Rn be uniformly monotone and twice differentiable.

(a) Let M = Vf(x ), where x is the unique solution to VI(f,Rn), and

assume that M2 is positive definite. Then, if the initial iterate is

sufficiently close to the solution x , the sequence of iterates

produced by the generalized steepest descent algorithm contracts in M

norm to the solution.

(b) If f(x) = Mx - b is an affine map (and thus, by our previous

assumption, M is positive definite), then the sequence of iterates

produced by the generalized steepest descent method is guaranteed to

contract in M norm to the solution x of the problem VI(f,Rn) if

and only if the matrix M2 is positive definite. Furthermore, the

contraction constant is given by

r = - inf [I(Mx) (Mx)][xM x] 1/2

x#O [x Mx][(Mx) M(Mt)]1

Theorem 1 indicates that the key to convergence of the generalized

steepest descent method is the matrix M2 If the positive definite matrix M
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is symmetric, the convergence of the steepest descent algorithm for

2 T
unconstrained convex minimization problems follows immediately: M = MTM is

positive definite because M, being positive definite, is nonsingular. In

general, the condition that the square of the positive definite matrix M be

positive definite imposes a restriction on the degree of asymmetry of M, that

T
is, on the degree to which M can differ from MT . To see this, note that

M2 is positive definite if and only if

x TM2x = (MTx)T(Mx) > 0 for every x 0.

Thus, M2 is positive definite if and only if the angle between the vectors

T
M x and Mx is acute for every nonzero vector x.

The positive definiteness of M2 does not imply an absolute upper bound

on the quantity IIM - MT 1 for any norm II ||, because we can always

increase this quantity by multiplying M by a constant. However, if M2 is

positive definite, then the normalized quantity IIM - MT112/1IM + MT 112 must

be less than 1, where I1-11 2 denotes the Euclidean norm.

The following result establishes easily verified conditions on the matrix

M that will ensure that the matrix M2 is positive definite.

Theorem 2

Let M = (Mij) be an nxn matrix with positive diagonal entries. If for

every i = 1,2,...,n,

IMij I < ct and Z JMj < ct, (5)
j~i joi

min{(M.2: i=l, ,n}
where t = ai and c = 42 - 1, then both M and M2

max{Mii..: i=1,...,n}

are doubly diagonally dominant, and therefore positive definite, matrices.
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The conditions that Theorem 2 imposes on the off-diagonal elements of M

are least restrictive when the diagonal elements of M are all equal. By

scaling either the rows or the columns of M in an appropriate manner before

applying the generalized steepest descent algorithm, we can weaken, in some

cases considerably, the convergence conditions that Theorem 2 imposes on M.

Hammond and Magnanti [1985] describe the details of such scaling procedures.

4. A Contracting Ellipsoid Algorithm and Its Interpretation

In this section we discuss a generalized first-order approximation

algorithm for solving a variational inequality problem defined by the monotone

mapping f. Suppose that f is the gradient of a convex function F:Rn R1

(so that VI(f,C) is equivalent to the convex minimization problem (2)), and

consider an algorithm that minimizes F over C by successively minimizing

the approximation F (x) to F(x) given in (4). That is, the algorithm

generates a sequence of iterates {xk} by the recursion

k+l k k
xk = argmin {F (x): x c C = argmin {VF(x)(x - x ): x c C. (6)

By replacing [VF]T with the mapping f in equation (6), we obtain the

following algorithm that is applicable to any variational inequality problem.

Contracting Ellipsoid Algorithm

0
Step 0: Select x c C. Set k = 0.

Step 1: Select x k + l argmin {(x - x k)Tf(x): x C)

k+l k k *
If x x , then stop: x = x.

Otherwise, return to Step 1 with k = k + 1.
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(The name of the algorithm is motivated by the fact that for unconstrained

problems defined by monotone affine maps, the algorithm produces a sequence of

ellipsoids that contract to the solution. This algorithm is not related to

Khachiyan's [1979] ellipsoid algorithm for linear programming.)

To motivate the analysis of this algorithm for the problem VI(f,C), we

first consider, in Section 4.1, the use of the algorithm for unconstrained

variational inequality problems defined by affine maps. In this simplified

problem setting, we describe the geometry of the algorithm and analyze its

convergence properties. Section 4.2 extends these results to constrained

problems defined by affine maps. Section 4.3 analyzes the algorithm for the

constrained variational inequality problem defined by a nonlinear, strictly

monotone mapping f. In Section 4.4, we discuss the role of symmetry of the

Jacobian of f in the convergence of the contracting ellipsoid method and the

generalized steepest descent method, and compare the convergence conditions

for these two algorithms. Finally, Section 4.5 discusses relationships

between the contracting ellipsoid method and a number of well-known algorithms

for variational inequality problems.

4.1 Unconstrained Problems with Affine Maps

In this subsection, we restrict our attention to the unconstrained

variational inequality problem defined by a strictly monotone affine map.

That is, we assume that f(x) = Mx - b, and that M is a positive definite

nxn matrix.

In this case, the minimization suoproblem

min {(x - xk)Tf(x): x Rn} (7)

is a strictly convex quadratic programming problem. The strict convexity of
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the objective function ensures that the first order optimality conditions are

k+l
both necessary and sufficient for x to be the unique solution to the

k+l
subproblem. These optimality conditions require that x satisfy

(M + MT)x - (MTxk + b) = 0.

T k+l
Hence, if S = M + MT, then x is given by

k+l -1 Tk
x = S (M x + b), (8)

or equivalently,

k+1 k -1 kx = x - (Mxk - b)

xk S-lf(xk).

Before proceeding with a convergence analysis, we illustrate the

mechanics of the algorithm in an example.

Example 1

LtM[ 2] ['1 * -1 [1/4 ]
Let M= and b= . Then x =M b = ,and

the algorithm generates iterates by the relation (8), with

= M + M. Let x = [ . Then xl = 

2 [5/8 1/4 1/16 [1/16

9/16 9/16 15/32 3/8

6 [ 5/32 k
x .... Figure 1 illustrates a sequence of iterates {x }

21/64
k

as well as a sequence of ellipses {E0} that we describe next.
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(X -X )T

V1
/

//I

Figure 1: The Contracting Ellipsoid Method Solves An Unconstrained Affine Variational Inequality Problem
by Generating Sequence of Eilipsoids that Contract to the Solution x*.

The behavior of the algorithm can be described geometrically by

considering the level sets of the objective function (x - xk)Tf(x) of the

kt h subproblem. When f is affine, the level set

k kT
Ek := {x : (x - x )Tf(x) a}
a

is an ellipsoid centered about the point that minimizes the objective function

th k k+l
of the k subproblem. That is, E is centered about the point x =

a

S (MTxk+ b).
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k k
The level set Ek is of particular interest. Note that E 0, the

k th k
boundary of E contains both the k iterate x (because

_k k T k) =0)ad h o o *
(Xk )Tf(xk) = 0) and the solution x (because the solution to the

unconstrained problem satisfies f(x ) = 0). Hence the point xk+1 is

equidistant, with respect to the S norm (or equivalently, the M norm), from

xk and from x . Note that because the ellipses Ek are defined for each

k = 0, 1, 2,... by the same matrix M, they all have the same structure and

orientation. (Ek also has the same structure and orientation as the level

sets about the solution given by E : = {x : (x - x )TM(x - x ) = a}.) Note

also that the chord joining xk to any point x on aEk is orthogonal to

the vector f(x), because, by definition of E0, if x c aE, then

(x - xk)Tf(x) = 0. This observation reveals the relationship between the

vector field defined by f and the ellipsoidal level sets.

The following result summarizes the convergence properties of the

contracting ellipsoid algorithm for unconstrained problems defined by affine

maps.

Proposition 1

If f(x) = Mx - b and M is positive definite, then the sequence of

iterates generated by the contracting ellipsoid algorithm converges to the

solution x = M b of VI(f, Rn) from any starting point x if and only if

-1 T -1 T
p(S 1MT), the spectral radius of the matrix S MT, is less than one.

Moreover, for some norm I|| |, the algorithm converges linearly, with

convergence ratio IS- 1MTII.
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Proof

k+l -1 TkFrom (8), x S (MTxk + b), and, because the problem is

-1
unconstrained, x = M b. Thus,

k+1 * -1 Tk T -1x -x = S [MTxk + b - (M + MT)M -lb]

S-1MT(xk _ x*

-1 T k+x - x(S M) k+(x -x).

The matrix (S-1 T)k approaches 0 as k -+ if and only if p(S M ) < 1.

(See, for example, Ortega and Rheinboldt [1970].) Hence, the sequence {xk}

converges to x if and only if p(S M ) < 1.

Since p(S- 1MT ) < 1, then a norm I111 exists that satisfies

1 Tk+l * -1iT xk *ItS MT < 1. By Cauchy's inequality, Ix 1- x I = S M (x - x )l 

IIS-IMT 'll x - x I for each k = 0,1,..., and hence the algorithm

-1 T
converges linearly, with convergence ratio iS 1MT I.

The following lemma states several conditions that are equivalent to the

condition p(S 1MT ) < 1. In addition, the lemma shows that p(S 1MT ) < 1,

and hence the algorithm converges, whenever M2 is positive definite (the

convergence condition for the generalized steepest descent method). Conse-

quently, if M satisfies the diagonal dominance conditions stated in

Theorem 2, then the algorithm will converge. The row and column scaling

procedures mentioned in Section 3 can also be used in this setting to

transform the matrix M into a matrix satisfying the conditions of

Proposition 1.
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Lemma 1

Let M be a positive definite matrix and let (A) denote the set of

eigenvalues of A. Since (M-1)T = (MT) , we represent this matrix by M -T

Then (a) the following conditions are equivalent:

(i) (S-1 T ) < 1;

(ii) p(MS- 1) < 1;

(iii) p[(M-TM + I)-1] < 1;

(iv) p[(MTM- 1 + I)-1] 1;

(v) min {IX + 11: X c A(M TM)} > 1; and

(vi) min {IX + 11: A c (MTM-1)} > 1;

and (b) if M2 is positive definite, then p(S -1MT) < 1.

Proof

-1 TT -1 -T T T-1
(a) First note that (S1MT)T = MS and (M -TM) = MTM- 1 The

following equivalences are therefore a consequence of the fact that

a matrix and its transpose have the same eigenvalues: (i) (ii);

(iii) +-+ (iv); and (v) o- (vi).

Conditions (i) and (iii) are equivalent because

-1MT -T-1 -TM + I)-1(S M)=(M s) (M +I)

Conditions (iii) and (v) are equivalent because

p[(M -TM + I)-1] = 1
min{IlA: A C (M M + I)}

1

min{IA + 11: A c A(M-TM)}

< 1

if and only if min{I + 11: A C (M -TM)} > 1.
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(b) The matrix M2 is positive definite if and only if M is

positive definite, since M 2 = MT (M -TM)M, and M is nonsingular.

If M-TM is positive definite, then for every c (M-TM),

Re(X) > 0, and hence

| + 11 = {[1 + Re(X)] 2 + [Im()]2} 1/2 > 1 + Re(X) > 1.

Thus, conditions (v) of part (a) holds, which ensures that (i) holds

as well.

Let us return to Example 1. The iterates produced by the algorithm are

1 1/41
guaranteed to converge to the solution x = because

L 3/8
1/2 -1

p(S MT) = p < 1. This example illustrates that the
1/4 1/2

2
condition that M be positive definite is not a necessary condition for

-3 10
convergence: for this problem, M = is not positive definite.

-10 12

The geometrical interpretation of the algorithm discussed in Example 1

extends to all unconstrained problems defined by affine maps. The contracting

ellipsoid method generates a sequence of ellipsoidal level sets for any such

k k+1problem. For each k, the ellipsoid E0 is centered about the point x

* k kand x E E . In addition, the ellipsoids {E0} all have the same structure

and orientation. Therefore, if p(S M ) < 1, then the sequence of

ellipsoids converges to the point x , because (i) the sequence of ellipsoid

centers x converges to x and (ii) x is on the boundary of each E0 .

k+lThe distance with respect to the S norm from the center x of the

~~~~~~~~~~klth * l i s i O to n p i on t b u a y s e l o x _~ x~ S..1.
kth ellipsoid Ek to any point on its boundary is equal to ik+1x - x I
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Therefore, if IS 1MTjI S < 1, then the sequence of iterates x contracts

to the solution x in S norm, which ensures that the ellipsoids must

contract to the solution in S norm.

These observations establish the following result.

Theorem 3

T
Let f(x) = Mx - b and S = M + M If M is positive definite and

p(S 1MT ) < 1, then the sequence of ellipsoids {Ek} generated by the

algorithm converges to the solution x = M b. Moreover, if HS 1MT s < 1,

k *
then the sequence {E } contracts to the solution x in S norm.

4.2 Constrained Problems with Affine Maps

In this section, we extend the analysis of the previous section to the

constrained problem VI(f,C) defined by a strictly monotone affine mapping f

n
and a closed, convex, nonempty set C c Rn. We again assume that

f(x) = Mx - b for some positive definite nxn matrix M.

Because f is affine, the minimization subproblem (7) is a strictly

convex quadratic programming problem. Thus, the contracting ellipsoid

algorithm solves the problem VI(f,C) by solving a sequence of quadratic

programs. The work involved in this algorithm is therefore comparable to that

of a projection algorithm, which also requires the solution of a sequence of

quadratic programming problems.

k+l
The necessary and sufficient conditions for x to solve the kth

quadratic programming subproblem are

(x - xk+l)T[(M + MT)xk+l (MTxk + b)] 0 for every x C.

Hence, the subproblem is a variational inequality problem defined over C by

- 16 -



the affine map

g(x,xk) = (M + MT)x - (MTxk + b).

Thus, an alternative interpretation of the algorithm is that it solves a

variational inequality problem defined by an asymmetric affine mapping by

solving a sequence of variational inequality problems, each of which is

defined by a symmetric affine mapping.

The following theorem shows that the iterates generated by the algorithm

converge to the unique solution x if IIS lM S < 1, where S = M + MT.

The convergence proof follows from the proof of the general contracting

ellipsoid algorithm (Theorem 5).

Theorem 4

Let f(x) = Mx - b, where M is an nxn positive definite matrix, let

T n
S = M +M T, and let C be a closed, convex, nonempty subset of R Then if

HIS I MT IIS < 1, the sequence of iterates generated by the algorithm converges

to the solution x of VI(f,C).

The following example considers a constrained variational inequality

problem defined by the same affine map as that in Example 1.

Example 2

Let M = [ and b = , and let C = {x R : x1 > O,

k+l th
x > 0, and x2 < (1/6)x + 1/8}. The solution x to the k subproblem

must satisfy (x k+)T(S- (Sx - b) > 0 for every x C, where

- 17 -



T
S=M+M

2

0
. Let x = . Then x =

8 0

21/20 

3/10

2 =

9/10 ,x 3 33/40

11/40 21/80

The sequenc

I Is-MTI I

4 [63/80
, x = 41/160

41/160

k} ovre oteslto [ 3/4 because
{xk } converges to the solution x = because

= 12/2 < 1. Figure 2 illustrates the sequence of iterates {xk}

as well as a sequence of ellipses.

X2

-'k is the center of Eo0

Eo
so0

-x

X1

f(x °)

/s5- frqD
Figure 2: The Contracting Ellipsoid Method Solves a Constrained Affine

Variational Inequality Problem
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We can also interpret the algorithm applied to constrained problems in

k
terms of a sequence of ellipsoids. Given an iterate x , the algorithm

-k+l k k+l
selects the center x of the ellipsoid E0 as the next iterate x if

-k+l k+l
x is a feasible point. Otherwise, it determines x by finding the

-k+l
smallest ellipsoid about x that contains a feasible point. This feasible

point is the next iterate, xk1. This sequence of ellipsoids does not in

general converge to the solution x . For example, in Example 2, the point

x = determines a set of ellipses centered about .
1/4 7/16

The smallest ellipse in this set containing a feasible point contains the

point x , thus establishing that x is the solution to the problem.

4.3 Constrained Problems with Nonlinear Maps

In this subsection we consider the constrained variational inequality

problem VI(f,C) defined by a closed, convex subset C of Rn and a

strictly monotone nonlinear map f.

For this general problem, the objective function of the minimization

subproblem (7) is not necessarily convex. A solution to this subproblem must

satisfy the first-order optimality conditions for problem (7); that is, xk+1

must satisfy

k+ TT k+l k+1 k k+ >(x - xk+lT VTf(x +)(x x) + f(xk+) 

for every x c C.

In general, the mapping defining this variational inequality subproblem is

neither monotone nor affine. To avoid solving this potentially difficult

subproblem, we modify the contracting ellipsoid algorithm at each iteration k

kby linearly approximating f about x . That is, we replace f(x) in
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problem (7) with f(xk) + Vf(xk)(x - xk) to obtain the following algorithm.

(Because this algorithm reduces to the Contracting Ellipsoid Method when f

is affine, the proof of Theorem 4 follows from the general convergence proof

of Theorem 5.)

General Contracting Ellipsoid Algorithm

0
Step 0: Select x c C. Set k = 0.

k+l .kT k k T k k
Step 1: Let x = argmin [(x - x )Tf(xk) + (x - x) Vf(xk)(x -x)].

xcC

k+l k k *
If x x, then stop: x = x.

Otherwise, repeat Step 1 with k = k+l.

The strict monotonicity of f ensures that the kth subproblem is a

k+l
strictly convex quadratic programming problem. The unique solution x to

this subproblem must therefore satisfy the necessary and sufficient opti-

mality conditions:

(x - x k+)T [[(Vf(k) + Tf(xk) (x k+ - xk) + f(xk)] Ž 0 (9)

for every xC.

Let M = Vf(xk) and let g(x, xk) be the mapping defining the variational

th
inequality subproblem on the k iteration; i.e.,

g(x, xk) = (Mk + MT)(x - xk) + f(xk). (10)

Note that the general contracting ellipsoid algorithm solves a nonlinear

variational inequality problem by solving a sequence of variational inequality

subproblems, each of which is defined by a symmetric affine mapping.
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The following theorem establishes convergence conditions for the general

algorithm. We show that if I IS-1MTII < 1, where M = Vf(x ) and

S = M + MT, then there is a constant r [0,1) that satisfies i|x - IS

rxk - x *IS The proof of the theorem has a simple geometrical

interpretation. Before proceeding with the details of the proof, let us

briefly highlight the geometry underlying the argument. We will show that if

the distance with respect to the S norm from the solution x to a point

k T- kx c C exceeds rllx - x IS, then (x - x)Tg(x, xk ) < 0; that is, the

vector g(x, x) points away from the point x C. But, if the problem map

th
satisfied this condition, then x could not solve the k subproblem, since

sl o k+l k+l1T (xk+1 k
the subproblem solution x must satisfy (x - x )Tg(x , x ) 0 for

every x c C. Therefore, the distance with respect to the S norm from x

to xk+1 must be less than rllxk - x jlS, which ensures, since r < 1,

that the iterates contract to the solution in S norm. Figure 3 illustrates

this geometrical idea. (The general structure of this proof is similar to

that of Ahn and Hogan's [1982] proof of the nonlinear Jacobi method.)

Figure 3: The Approximate Map g(x,xk) Points Away from x' when
11 x - x11s > r Xk - X1 S
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The convergence proof requires f to be twice differentiable in order to

use the second derivative of f to bound the error in making a linear

approximation to f. The theorem also assumes that a solution x to

VI(f,C) exists. This assumption is necessary because we do not assume that

f is uniformly monotone or that C is compact. (If f is a strictly

monotone affine map, we need not add the assumption that a solution exists:

in this case existence of a solution is ensured (see Auslender [1976]) by the

fact that a strictly monotone affine map is strongly monotone.)

Theorem 5

Let f be strictly monotone and twice differentiable, and let C be a

closed convex subset of Rn. Assume that a solution x to VI(f,C) exists,

and that H|S MTIs < 1, where M = Vf(x ) and S = M + MT. Then, if the

0 *
initial iterate x is sufficiently close to the solution x , the sequence

of iterates generated by the general contracting ellipsoid algorithm contracts

to the solution in S norm.

Proof

We show that there is a constant r [0,1) that satisfies

k+1 - x r k - x*
lix IIS r x x IS'

and hence that

k+l x k+l 0 
IIx xiS l IIx x IIS

k+l k *
Because r [0,1), lim r 0, and hence lim x = x

k- k-*c,

Let K = sup. sup IIS [V f(x + t(x - x))] s l and let
IIx-xl1l l OSt l 

c = liS-1MT Is. Two extended mean value theorems (3.3.5 and 3.3.6 in Ortega

and Rheinboldt [1970]) show that, if lix - xl 1, then
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and

-1 *x 2 -< KIx - x I l 2
HjS- [f(x) - (f(x) + f(x )(x - x))]S < Kx - x ls

IlS l[Vf(x) - Vf(x )]II < Kx - x i1S

(11)

(12)

Let 6 = IIx - x ! s, and let y >.0 satisfy y < min{ 1}.

1-c
(Note that 1K > 0, since K > 0 and c < 1.) Assume that 0 < 6 < y.

Finally, let r = (c + 3Ky/1-2Ky). By definition of y, r < 1.

The inequality (x - xk+l)Tg(xk+l, xk) > holds for every x c C, with

g(x,xk ) defined by (10), because x solves the subproblem (9); in

particular, this inequality is valid for x = x. Let x x be a point in

C and let c be defined by lix - x =S c6. Then the following chain of

inequalities holds:

(x" - x) g(x, xk )

= (x - )T[(M k + M)(x - xk ) + f(xk)]

= (x - )Tf() + x* - )T[(M + MT)( - x) + M(x - xk)

+ M(x - xk) + f(xk) - f(x*) + (Mk - M)(x - xk)

+ (M - M)(x - x)]

< (x - x)TS(x - ) + (x - x)TSS MT(x^ - x

+ (x - x)SS- [M(x - xk) + f(xk) - f(x)]

+ (x* - x)TSS - (Mk - M)(x - xk )

+ ( - xkT k _ )(x - x)
+ (x x ) Ss (Mk - )(x" - x).
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The second equality is a result of adding and subtracting terms so that we can

obtain expressions in terms of the S norm; the strict inequality is valid

because (x - x ) f(x ) > 0.

We consider each of the terms in the last expression separately:

(x T - x) =
(x - ) S(x - x ) = -IIX - X 12 = (c6)2;

IIs-

(x - )TSS MT (x - x)

(x - x, S-1T = (x x, S M (x -xk ))

< Ilx - xli Ils-1lMTIICI Ix * - kI IS by Cauchy's Inequality

= c6c6;

(x - x)SS [f(xk)
- f(x) - M(xk 

- f(x ) - M(x - x

< Ix- xlIs ll l[f(xk) - f(x*)

< I Ix - xl IS.KI I - X I S

= c6K62 ;

-M(x k - x )lls
- M~~x

by (11)

(x - )TSS (Mk - M)(x - xk)

< I x - Xl I. I lS (Mk -

< Ilx* - x-ISK{ IXk - x

M)Il'-IIX - xk iI

... . .k *..
j Ilx - l - lls(l -xls - x ls(x - xls

= c6K6(c6 + 6);

by (12)

+ lIx - xl Is)
by the triangle inequality

- 24 -
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and similarly, (x - xk)TSS (Mk - M)(x - x) (c6 + 6)K6c6.

Combining the previous inequalities, we obtain

(x - x) g(x, x) < c6 (c + 3K6 - c(l - 2K6))

< cy (c + 3Ky - c(1 - 2Ky)). (13)

k+l * -T - k
Now if x x , then as noted previously, (x - g(x, x ) 0.

c + 3Kv > y since by (13)
Therefore, r = c y > c, since by (13),

cy2(c + 3Ky - c(1-2Ky)) > (x - x)Tg(x, xk) > 0.

But then,

k+l k -k-

Ilx x IS = Cllx _ x Il < rllx - x I

4.4 Further Geometrical Considerations

In this subsection, we interpret the generalized steepest descent method

in terms of the ellipsoidal level sets {Ek} that are intrinsic to the

contracting ellipsoid method, and discuss the role of symmetry in the

contracting ellipsoid algorithm. We also compare convergence conditions for

these two methods.

k k
Recall that, by definition of E0, the chord from x to any point

x aEk is orthogonal to the vector f(x). In addition, the vector f(x )
0

k k k
is normal to the tangent plane of E at x . Now given x , the

generalized steepest descent method determines the next iterate

k+l k f(xkX x -f(x),
k

with ak chosen so that fT(xk+l)f(xk) = 0. Thus, on the kth iteration,

the algorithm moves from x in the -f(xk ) direction to the point xk+l at
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k+1 k+1 kwhich f(xk + ) is orthogonal to the direction of movement x - x . In

k k
terms of the ellipsoid E0, the steepest descent method moves from x to

the point on aEk that is in the -f(xk) direction, since at that point

k+1 k+1 -f(xk + l) is orthogonal to the direction of movement x - x. Figure 4

illustrates this interpretation of the steepest descent direction. In the

k+l k
figure, xSD denotes the iterate obtained from the point x by the

k+lgeneralized steepest descent direction, while xCE denotes the iterate

k
obtained from the point x by the contracting ellipsoid method.

f (,k+1 

Figure 4: The Relationship Between the Ellipsoidal Level Sets
and the Steepest Descent Method

- 26 -

Ek
0



When f(x) = Mx - b, and M is symmetric and positive definite, the

contracting ellipsoid method generates the sequence {xk } for the

unconstrained problem VI(f,Rn) by

k+l -1 k k *x = (2M) (Mx +b) = (1/2)(x - x).

Hence, the algorithm moves halfway to the solution on each iteration. In this

k *
case, the ellipsoids Ek are tangent to each other at x , as illustrated in

Figure 5. Even if M were the identity matrix, the algorithm would still

move halfway to the solution. Although in this instance the steepest descent

algorithm would converge to x in a single iteration, in general we expect

that the contracting ellipsoid algorithm would outperform the steepest descent

algorithm.

!(xO)

Figure 5: The Contracting Ellipsoid Iterates Move
Halfway to the Solution when M is Symmetric
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If the positive definite matrix M is not symmetric, both the steepest

descent method and the contracting ellipsoid method are guaranteed to converge

only if some restriction is imposed on the degree of asymmetry of M. For

unconstrained problems, the generalized steepest descent algorithm is

guaranteed to converge from any starting point if and only if M2 is positive

definite, while the contracting ellipsoid algorithm is guaranteed to converge

from any starting point if and only if p(S MT ) < 1, where S = M + M. For

constrained problems, the contracting ellipsoid method is guaranteed to

converge if HS- 1MTIIS < 1. Table 1 compares these conditions for 2x2

matrices. Recall that if M is positive definite, then p(S 1MT) < 1.

(Hence, the steepest descent convergence conditions are more stringent than

the contracting ellipsoid conditions.) Although in the 2x2 case, the condi-

tions p(S 1MT ) < 1 and I|S MTIIS < 1 are identical, these conditions are

not equivalent in general. (In general, IS 1MTs < 1 implies that p(S- 1MT

< 1.)

4.5 The Relationship Between the Contracting Ellipsoid Method and

Other Algorithms

The contracting ellipsoid algorithm is closely related to several

algorithms for solving systems of equations and variational inequality

problems. In this subsection, we discuss its relationship to matrix splitting

algorithms, projection algorithms, and a general iterative algorithm devised

by Dafermos [1983]. In Section 5, we discuss the subgradient algorithm for

solving a max-min problem that is equivalent to the problem VI(f,C), and

show that it iteratively solves the same subproblem as the contracting

ellipsoid method.
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4.5.1 Matrix Splitting

Recall that the contracting ellipsoid method solves VI(f,Rn), when

f(x) = Mx - b, by iteratively solving the recursion (8):

k+l -1 Tk
x = S (M x + b).

In this expression, S denotes the symmetric matrix M + M. For the

unconstrained problem defined by an affine map, this algorithm is a special

case of a general matrix splitting iterative method for solving linear

equations. For a linear system Mx = b, splitting the matrix M into the sum

M = A - B,

with A chosen to be nonsingular, produces an equivalent linear system

Ax = Bx + b,

or equivalently,

x = A (Bx + b).

This matrix splitting induces an iterative method defined by

k+1 -1 k k -1 kx =A (Bxk + b) = x - A (Mx - b).

The Jacobi, Gauss-Seidel, and successive overrelaxation methods are examples

of iterative methods induced by matrix splittings. The matrix splitting

M = (M + MT ) - MT

induces the recursion (8) that defines the contracting ellipsoid method.
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4.5.2 Projection Methods

The contracting ellipsoid method solves VI(f,C), when f(x) = Mx - b,

by iteratively solving the subproblem (7):

min {(x - xk )Tf(x): x C}.

The following lemma shows that the subproblem (7) is a projection step, with a

steplength of one. Hence, the contracting ellipsoid method for problems with

affine maps is a projection method, with the metric of the projection defined

by the S norm and the steplength at each iteration equal to one. (If f is

nonlinear, the subproblem of the general contracting ellipsoid method is also

a projection step with a unit steplength.)

Lemma 2

If f(x) = Mx - b and M is positive definite, then the subproblem

xk+ = argmin (x - xk)Tf(x)
xcC

is equivalent to the projection

k+1 S k -1 k
x = p [xk S f(x)]C

defined by the matrix S = M + MT and the operator PC projecting onto the

set C with respect to the S norm.

Proof

xk = P[xk - S f(xk)] if and only if xk is the point in C that

is closest to x - S- f(xk) in S norm; i.e., if and only if
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I Ixk _ S- f(xk) - xl2

[xk -s f(xk ) - x]T S[x -Sf(x k ) - x]

[Sx - f(xk ) - Sx]T S [Sxk - f(xk ) - Sx]

[MTxk + b - (M + MT )x]TS [MTxk + b - (M + M )x]

[(M x + b) Ts -(MT + b) - 2x (MTxk + b) + xTSx]

2[xTMx - xT(MTxk + b)] (dropping the constant term)

[xT(Mx - b) - xTMTxk ]

(x - XkT (Mx - b) (adding a constant term)

(x- xk)Tf(x).

4.5.3 Dafermos' Framework

The contracting ellipsoid method for problems defined by affine maps fits

into the framework of the general iterative scheme devised by Dafermos [1983].

The general scheme solves VI(f,C) by constructing a mapping g(x,y) that

approximates the mapping f(x) about the point y so that

(i) g(x,x) = f(x) for every xcC; and

(ii) gx(x,y), the partial derivative of g with respect to the first

component, is symmetric and positive definite for every x,y C.
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k
Given a point x , the algorithm chooses the next iterate to be the

solution x to the following variational inequality subproblem:

k+ T k+1 k
(x x ) g(x , xk+l)Tg( k+l for every x C.

The algorithm converges globally if g satisfies

I 1 g2-T 1
[g(xl,y)] gy(x2,y 2)[g(x 3,Y 3 112 < (14)

for every xl, x2, x3, y1, y2 y3 C.

Because the contracting ellipsoid method iteratively determines the point

k+l
x C satisfying

(x-x k+l)T[(M + MT)xk+l _ (MTxk + b)] > 0 for every x c C,

the algorithm fits into the general Dafermos scheme with the association

g(x,y) = (M + M T)x - (M Ty + b).

Conditions (i) and (ii) are satisfied: g(x,x) = Mx - b = f(x) and gx(x,y) =

M + MT is positive definite and symmetric. Because gy(x,y) -M condi-

tions (14) reduce to I|(S2) TMT(S2) 112 < 1. Thus, since

I(s2)-TMT( 1-1 I(S)-l(Ss)-TMT(s2)(s2)1 11S = II SMTI, the condi-I( S M (S ) | 112 = |(S2) (S2) T (S2)(S2) HS = Tl

tions (14) reduce to the sufficient condition for convergence specified in

Theorem 4.

When f is not affine, the mapping g(x,xk ) = VTf(x)(x - xk ) + f(x)

defining the variational inequality subproblem of the contracting ellipsoid

method is not necessarily monotone in x (as required by condition (ii) of

the Dafermos method). The algorithm for a problem defined by a nonlinear map

does not, therefore, fit into Dafermos' general framework. The modification

of the contracting ellipsoid algorithm that we discussed in Section 4.3 does,
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however, fit into this framework because

g(x,y) = [Vf(y) + VTf(y)](x - y) + f(y)

satisfies (i) g(x,x) = f(x) and (ii) gx(x,y) = Vf(y) + V Tf(y) is positive

definite and symmetric for every y c C (because f is strictly monotone).

For the general contracting ellipsoid method, the conditions for

convergence (14) are

jI([Vf(y 1) + Tf(yl)]2) {[V2 f(y2 ) + (Vf(y2)T](x2 - y2 ) - VfT(y2)}.

([Vf(y3) + VTf(Y3)]) 112 < 1

for every xl, x2, x3, y1, y2 y3 c C.

These conditions are clearly much more difficult to verify than those

specified in Theorem 5; namely,

Is-l MTi s < 1,

T
where M = Vf(x ) and S = M + M, although locally they reduce to the same

condition. The relationship between the contracting ellipsoid method and the

Dafermos framework suggests that the types of geometrical interpretations

highlighted in this paper may extend to other algorithms as well.

5. Subgradient Algorithms

In this section, we discuss the application of a subgradient algorithm

(Shor [1964], Polyak [1967]; see Shapiro [1979] for a more recent exposition)

to a min-max reformulation of the variational inequality problem, and show

that the subgradient algorithm and the contracting ellipsoid algorithm are

closely related, in that they solve the same quadratic programming subproblem.
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The subgradient algorithm is usually applied to a maximization problem

max {F(x): x c C},

defined by a nondifferentiable concave, continuous function F and a closed

n k
convex subset C of R . Given the previous iterate x , the algorithm

k k R n

determines a subgradient of F at x ; i.e., a vector k Rn satisfying

F(x) < F(xk ) + yk(x - xk) for every x R,

and a steplength ak. It then generates the (k+l)s t iterate by

xk1 = PC [x k + akyk ]

where PC denotes the projection operator onto the set C. Polyak [1969]

proposes the use of a steplength ak given by

F(x*) - F(xk )

ak = k

IlYkil

where 0 < c1 < Ak < 2 - 2 < 2 and x maximizes F over C. He discusses

several methods for choosing ak and analyzes the convergence properties of

the algorithm.

Consider the constrained variational inequality problem VI(f,C). Assume

n
that the problem is formulated over a closed, convex ground set C c RP, and

that the mapping f:Rn Rn is monotone and continuously differentiable.

With these assumptions, the system of inequalities (1) is equivalent to the

system of inequalities

(x - x )Tf(x) > 0 for every x C (15)
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(see, for example, Auslender [1976]). Thus, the problem VI(f,C) is

equivalent to the max-min problem

max min {(y-x) f(y)}} 
x¢£ C yC

(16)

or, equivalently, to the nonlinear maximization problem

max {H(x): x C,

whose objective function is given by

H(x) := min {(y-x)Tf(y)}.
ycC

(17)

As the pointwise minimum of functions (y-x)Tf(y) that are linear in x,

H(x) is concave. Problem (17) is, therefore, a concave programming problem.

Clearly H(x) < 0 for every x C; moreover, H(x ) 0 if and only if x

solves VI(f,C).

The reformulation of VI(f,C) as the max-min problem (16) or (17)

motivates a number of algorithms for solving VI(f,C). For example, Auslender

[1976] and Nguyen and Dupuis [1984] devise algorithms that approximate H(x)

on the kth iteration by the piecewise linear function

Hk(x) := Min {(x - x)Tf(x) : i = 0,1,...,k}.
k~~~~~fx

These algorithms

monotone or that

The max-min

solve VI(f,C).

differentiable.

(17). Note that

operate under the assumption that either f is uniformly

f is strictly monotone and C is compact.

formulation also suggests using a subgradient algorithm to

The function H(x) is concave, and, in general, non-

Thus, the subgradient algorithm can be applied to problem

we need not assume that f is strictly or uniformly monotone
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on C. f must be monotone, however, so that VI(f,C) can be reformulated as

the max-min problem (16).

Let aH(x) denote the subdifferential of H at the point x; that is,

the set of subgradients of H at x. Because H(x) is the pointwise minimum

of the functions (y-x)Tf(y), H(x) is given by the convex hull of the

gradients of those functions (y - x)Tf(y) for which

y = argmin {(y-x) f(y): y C}. Therefore, aH(x) is given by

aH(x) = convex hull of {-f(y): y c argmin (y-x)Tf(y)}.
yC

For most problems, the application of the subgradient algorithm requires

that the value F(x ) of the function at the (unknown) optimal solution be

estimated at each iteration in order to specify the steplength at that itera-

tion. For problem (17), however, this value is known to be zero. Thus, as

applied to (17), the subgradient algorithm becomes:

Subgradient Algorithm for VI(f,C)

0
Step 0: Selection x c C. Set k = 0.

k+l k -k
Step 1: Let x = Pc[X - akf(x )],

-k k)T
where x = argmin {(x-x ) f(x) : x C},

-k
XH(x ) k _ xkTf( -k

ak = (-k)j 2 k -k 2
IIf(x )II(x )1

and 0 < c1 < Ak 2 - c2 2.

k+l k k *
If x = x , stop: x = x.

Otherwise, return to Step 1 with k = k+l.
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Note that the subproblem that determines x is exactly the same

k+l
subproblem that determines x in the contracting ellipsoid algorithm.

-k k
However, the subgradient algorithm moves in the -f(x ) direction from x ,

-k
while the contracting ellipsoid algorithm moves to the point x (See

Figure 6.)

The subgradient algorithm is particularly well-suited for solving

(possibly infinite) systems of linear inequalities (Agmon [1954], Motzkin and

Schoenberg [1954]). From this perspective, the algorithm works directly on

the system (15) of linear inequalities (one for each x C) in the variable

x : given xk, the subgradient algorithm determines the point xk C that

defines the most violated constraint, i.e. for which (x-xk)Tf(x) for x C

-k
is most negative, and then moves in the -f(x ) direction.

The idea of solving VI(f,C) by moving in the direction -f(x ) from

k -k
x with x defined as

-k k)Tfx = argmin {(x - x ) f(x): x C},

is reminiscent of an "extragradient" algorithm proposed by Korpelevich [1977].

This modified projection algorithm will solve variational inequality problems

defined by monotone mappings. (The usual projection algorithm (see Sibony

[1970], for example) requires f to be uniformly monotone). The

-k k
extragradient method moves in the direction -f(x ) from x , with

x = PC[x - af(x )].

The algorithm can be stated as follows:
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Extragradient Algorithm

0
Step 0: Select x c C. Set k = 0.

-k k k *
If x = x , stop: x = x

Otherwise, go to Step 2.

k+l k k
Step 2: Let x Pc[xk af(xk)]

Go to Step i with k = k+l.

Korpelevich shows that the algorithm converges if the following

conditions are satisfied:

(i) C is closed and convex;

(ii) f is monotone and Lipschitz continuous with Lipschitz coefficient

L; and

1
(iii) the steplength a (0,).

The similarity between the contracting ellipsoid, subgradient and

extragradient algorithms is more than superficial. Indeed, if f(x) = Mx - b

then recall from Section 4.5.1 that the solution xk to the (k+l)st

subproblem in the contracting ellipsoid algorithm, which equals the solution

-k
x to the (k+l)s t subproblem of the subgradient algorithm, is a projection;

in fact,

k+l S k -1 (xk,
x P [x -S f(x

C

T
with S = M + M. Figure 6 illustrates these three algorithms as well as the

generalized steepest descent algorithm for the variational inequality problem

given in Example 1, with the initial iterate given by x = [ 
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a

Figure 6: Geometry of Contracting Ellipsoid (CE),
Steepest Descent (SD), Subgradlent (SG)

and Extragradient (EG) Algorithms
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6. Conclusion

A monotone variational inequality problem is equivalent to a convex

minimization problem whenever the Jacobian of the underlying problem map is

symmetric over the feasible set. Therefore, it wouldn't be surprising if the

type of conditions that allow a nonlinear programming-based algorithm to solve

a variational inequality should restrict the degree of asymmetry of the

underlying mapping. In this and a companion paper (Hammond and Magnanti

[1985]), we formalize this notion by specifying some "near symmetry"

conditions for several adaptations of nonlinear programming algorithms.

In this paper, we examine a number of algorithms for variational

inequality problems that reduce to first-order approximation methods for the

equivalent convex minimization problem whenever it exists. The methods that

directly generalize first-order approximation methods converge under condi-

tions (such as M2 positive definite or p((M+MT) 1MT ) < 1) that restrict the

degree of asymmetry of the problem map.

The paper focuses on the convergence of a contracting ellipsoid method.

In particular, we emphasize the geometrical structure underlying the

variational inequality problem that the analysis of the convergence of the

contracting ellipsoid method reveals. Because this method is closely related

to a number of other variational inequality algorithms, this underlying

geometrical structure aids in the interpretation of those algorithms as well.
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