ATMOSPHERIC TMGPREATURE STRUCTURE

FROM THE MICROWAVE EMISSIOM
or oxychan

by

B. RICHARD FOW
B.S., Drexel Institute of Technology
(1961)

OF THE REGUREMGASS FOR THE
DEARES OP MASTER OF SCITMICE
at the

January, 1964

Signature of Author
Department of Xeteorology, 20 January 1964

Certified by

Accepted by
Chairman, Departmental Comaittee on Graduate Students

ATMOSPHERIC TERIPMRATURE SIRUCTURA
FROM MHE MICROWAVE RMISSION OF OXYGEN
by
B. Blchard Fow

Subuitted to the Department of Meteorology on Jamary 20,1964 in partial fulfilimant of the requirenents for the degree of Naster of science.

Abstract

ABSTRACP Previous work relating to the aubject of the determination of atmospheric temperature profiles by radiometric soundings at infram red and microwave frequencies is revievei. An attempt is made to show the progress and development of knowledge in this field. As suegested by Meeks and Lililey (1963) the microweve emission of atmospheric oxygen is investigated as a possible tool for the determination of the atmospheric temperature profille from zero to ififty kilometers. An iterative method for solving the integral equation relating the kinctic temperature profile and the emission measurements is proposed. Investigations designed to determine the best frequencies and nadir angles at which to maike the measuraments are undertaken. The iterative solution technique is compared with a bingler zero order solution and the former is demonstrated to be superior. A near limit in realiznble accuracy of the iterative solution or inversion technique is deternined. The effects of boundary conditions and the initial guess on the iinal result are expiored. The iterative inversion technique is appiled to ideal data from realistic model atmospheres. The results are seen to be quite good. Uncertainties and instrumental effects are then considered. The iterative inversion technique is applied to non-ideal data. The results obtained indicate the bandwidth and stability limitations that will be necessary in the radiometers ultimately to be built to make emissions measurements. The effects of uncertainties at different frequencies is explored. gxperiments are performed to see if there is any difference between errors of the same magnitude but different sign.

Thesis Supervisor: Reginald E. Nevell
Tithe: Assistant Professor of Meteoralosy
gesearch Supervisor: M. Littieton Meoirs
Tities Staif Yember, Lincoln Laboratory

TABLA OF CONTEMIS

Section Page Mo.
I Introduction and Review of Previous Work 1
II Statenent of the Problem and the Proposed Method of Solution 24
III Determination of the Best Frequencies and Madir Angles for Measurements 30
IV Solution of the Integral Equetion 41
v Use of the Iterative Inversion Technique on Ideal Data 52
VI The Influence of Instrumental Effects and Un- certainties on the Iterative Inversion Procedure 61
VII Conclusions 74
VIII Suggestions for Future Work 78
Appendices
I Polynomial Curve Fitting 80
II Weighting Punction Analysis 86
III Computer Programs 92
Acknowledgments 121
References 123

SECTION I

IHRRODUCTION AND REVIEM OF PREVIOUS WORK

Meteorology is essentially pragnatic science. The ultimate purpose of scientific studies made in the name of meteorology is to extend the range and accuracy of weather forecasts or, more generally, predictions of the state of the entire atmosphere.. Most meteorologists would agree that before truly lons range and accurate forecasts can be made, the forecaster must know the initial conditions of the atmosphere over the entire glooe.

The density of weather observation sites is generally related to population density. North America, marope, parts of Asia, and Australia are adequately covered while South America, Africa and in general the oceanic regions are poorly covered. In fact, there exist large expanses of ocean areas which are completeiy without any type of meteorological reporting stations.

It is virtually impractical and also very costly to provide worldwide coverage by conventional techniques. ${ }^{1}$

2
Conventional techniques include balloon-radiosondes for soundings in the lowest 30 km of the atmosphere and rocket radiosonde and rocket grenade soundings for the region from about 30 ka to 80 km . The radiosonde sensors are direct measuring and simple devices. The temperature sensor is a thermistor, the pressure sensor an aneriod capsule and the humidity sensor a relative huridity sensitive resistor. The rocket grenade method deternines temperature and winds through measured time differences in the arrival of the sound waves at ground based recaivers. At the present time rocket grenade firings are limited in number because of the large expense involved.

The cost of operating a weather ship for one year is of the order of several million dollars and geveral hundred such ships would be required to give even marginal coverage of the oceans. Additional land stations, though not as expensive as ships are nevertheless very costily. The use of airplanes or bailloons to make direct measurements similar to those that are made by ground stations or ships is equally expensive.

The development of artificial earth satellites as observation platforms and the auacess of the TIROS weather satellite program have given impetus to the idea of using satellites to fill the void in our data acquisition network. It now appears that satellites can cover large areas of the sarth's atmosphere in a short time and at a reasonable cost. However, since the satellite must operate outside the earth's atmosphere, most of what today is considered meteorologically useful information, that is temperature, pressure water vapor, and other trace substance distributions, muet be measured by indirect methods. Unfortunstely, the most useful meteorological information, the wind field, does not at present appear to be measureable to any satisfactory degree by indirect means. However, in all but the tropical and part of the subtropical latitudes, at least the geostrophic ${ }^{2}$ wind

2 In the middle latitudes, 1.e., 30° to 60° Morth or South, the horizontal pressure gradient in the atmosphere and the coriolis force essentiaily balance one another. Hence at a given altitude, the horizontal wind can be calculated from the horizontal pressure gradient, density and coriolis parameter. This is known as the geostrophic approximation. For more details on this subject any introductory text in dynamic meteorology may be consulted.
field can be reasonably well deduced from the temperature, pressure and humidity distributions.

Since the geostrophic scale theory indicates that the approximation of a hydrostatic atmosphere is quite tenable, cur primary interest is directed to the determination of the temperature and humidity distributions and the ground level pressure. Here we are Indeed fortunate, because thase three paremeters are intimately associated with the electromagntic radiation emanating from the earth's atmosphere.

In this work we shall be concerned with the deternination of the vertionl therwal structure of the atmosphere in the lowest fifty kilometers, We shall assume horizontal honogeneity of the atmosphere over relstively small square areas of about eighty kilometers or ifty miles on a side. It might be added at this point that the usefulness of the tempersture structure is not 11 inited to weather forecssting. It is a vital aspect of our enviroment and as auch effects many human endeavours.

Before proceeding to exenaine the previous work in this subject, let us briefy review the theoretical foundations of the determination of temperature structure from the rediative enission of the ataosphere. The thermal radiation in the arth's atmosphere may be calculated from the differential equation of rediative transfer. A derivation and general discussion of this equation may be found in Steinberg et Lequeux (1960). We shall assume the radiative transfer equation in the following form:

$$
\begin{equation*}
\frac{d}{d z}\left(X_{V}\right)=-X_{v}\left(I_{V}\right)+e_{v} \tag{1}
\end{equation*}
$$

where $I_{,}$monochromatic intensity of radiation emerging from the atmosphere
$K=$ monochromatic absorption coefficient
$\epsilon_{\nu}=$ monochrcmatic mission per unit length
z - vertical coordinate.

We next define the following quantity

$$
r_{v}(z)=\int_{v}^{T_{v}(z)} d \tau_{v}=\int_{H}^{z} X_{V} d z=\int_{z}^{H} X_{\nu}^{d z}
$$

as the monochromstic optical depth of the atmosphere when looking down from a height $I I$ to height z. Using the definition of optical depth, we apply the integrating factor $e^{-T v}$ to equation (1) and solve it obtaining the very general result

$$
I_{v}(z)=I_{v}(z) e^{-T_{v}(z)}+\int_{0}^{T_{v}(z)} \frac{\varepsilon_{v}}{K_{v}} e^{-T_{v}} d T_{v}
$$

If we now asaume that local thermodynamic equilibrium obtains and z is ground level; 1.e. $z=0$, then equation can be written as

$$
I_{v}(H)=I_{v}(0) e^{-T_{v}(0)}+\int_{0}^{T_{v}(0)} J_{v}\left(T_{v}\right) e^{-\tau_{v}} d \tau_{v}
$$

where $J_{V}\left(T_{V}\right)=\frac{e_{v}}{K_{V}{ }_{v}{ }^{2}}=$ source function; i.e. Planck radiation function. Equation (3) gays that the intensity that we measure at altitude H is the sum of the intensity of a source lying underneath the atmosphare
$I_{V}(0)$ diminished by the negative exponential of the optical depth of the atmosphere plus the self emission of all infinitesimal layers between H and the ground each dminished by the negative exponential of the optical depth between it and H. Bquation (3) was derived with the assumption that the observer is at an altitude H looking down to the ground. A similar equation results if the observer looks up from H. That equation is

$$
I_{v}(E)=I_{v}(\infty) e^{-T_{V}(\infty)}+\int_{\delta}^{T(\infty)} J_{v}\left(\tau_{v}\right) e^{-T_{v}} d \tau_{v}
$$

where $I_{v}(H)$ is now the downard flux at H and $I_{V}(\infty)$ is the intensity of a source just above the atmosphere.

Now the optical depth v is a function of altitude and the monochromatic absorption coerficient. But the monochromatic absorption coefficient is a function of the temperature profile, pressure profile, and the couposition profile of which the water vapor profile is a part. We have already stated that the hydrostatic assumption is generaliy a very good assumption, therefore, we shall employ it. We shail now further assume that the concentration profiles and ground level pressure are known. Hence the pressure profile with helght ney be expressed excluaively by the temperature profile. Thas the monochronatic ebsorption coefficient and in the case of thermodynamic equilibrium the monochromatic emissivity are functions of the tempereture profille.

In this light let us reconsider the solution of equation (1). Hence we must solve the equation

$$
\begin{equation*}
\frac{d I_{v}}{d z}=-K_{v} I_{v}+\varepsilon_{v} \tag{5}
\end{equation*}
$$

We apply the integrating factor $e^{K} V^{2}$ and obtain

$$
\begin{equation*}
\frac{d}{d z}\left(I_{v} e^{K \nu z}\right)=\varepsilon_{v} e^{K_{v} z} \tag{6}
\end{equation*}
$$

How for thermodynamic equilibrium we have

$$
\begin{equation*}
\varepsilon_{v}=K_{V} J_{V} \tag{7}
\end{equation*}
$$

where J_{ν} is the Planck black body radiation function. Substituting (7) into (6) and integrating from $z=0$ to $z=f 1$ the height of the observation platform there obtains

$$
I_{\nu}(H)=I_{v}(0) e^{-K_{v} H}+\int_{0}^{H} J_{v} K_{v} e^{-K_{v}(H-z)} d z
$$

where the functional dependences of K_{v} and J_{v} on the temperature profile $T(z)$ are understood, i.e., $K_{V}=K_{V}(T(z))$ and $J_{V}=J_{v}(T(z))$. Equation (8) is a non-linear integral equation in the independent variable z, the parameter v and implicitly the unicnown function $T(z)$. That which is measured by the radionetric instrumentation on the satellite is $I_{V}(H)$ versus v. If the complete $I_{V}(H)$ spectrum is known then a unique an exact $T(z)$ can be found which satisfies equation (8) for all v.

Kaplan (1959) was the first one to propose the use of remote radiation measurasents to deduce the thermal structure of the atmosphere. His proposed method required ten high resolution ($10 \mathrm{~cm}^{-1}$ minimum resolution) measurenents made from above the atmosphere at carefully selected frequencies in the $15 \mathrm{u} \mathrm{CO}_{2}$ vibrational band. The ten frequencies selected were on the high frequency side of the 15 u corresponding to them ranged cesonance and the unit_optical depths

3 unit optical depth is the d which makes $\int_{0} K_{v} d z=1$
from near zero to distances greater than the height of the observing platform. Thus the emission at each of the ten frequencies vould be characteristic of the enission from each of ten layers of a cloudLess atmosphere ranging from the ground to the vary top layex of the atmosphere. Clouds were assumed to be bleak bodies and hence the tops were considered to be the lowest level from which radiation emangted.

In this proposal, it was conciuded that the measurement of the emiseion into space at ten frequencies would permit the detarmination of the mean temperature of ach of the ten layars, eubject to the following provisions: (2) that within each Layer the relative variacion of teraperature with haiaht is specilita; (2) that the temperataxe of the undarlying surface be determinad by measurements further out in the band wing where the unit optical degth is vary Large; and (3) that for a given frequency the emission shoula originate from agproximately the same atmospheric layar for all temperature profiles.

In his next work (1960), menjan discusses in more detall the interpretation of the radiation messurements in terms of the departures of temperatures from some standard atmosphere with pressure as the independent variable. He divided the ainosphere into six layars and speciried several possible constant lapse rates within each layer. This gave hifa library of continuous tamperature distributions from 1000 mb (asmumed to be ground level) to 50 mb above wich the atmosphere was considered to be 1sothermal. He also assumed a CO_{2} concentration of 2.6 mm per mb at standard temperature and pressure. Each model etmosphere emits radiation, S_{0}, whose frequency dependence
is a function of the temperature dependence. Given a set of actual radiation readings, S, taken by a setellite spectroscope, the model which "best fits" the observed date is chosen as the one for which $(\underline{s}-\underline{s})^{2}$ is a minimum.

A more detailed solution is then obtained using a perturbstion technique by expanding the frectional departures of the observed radiation from that of the "best fitting" model in terms of the temperature departures in each layer. The first order or inear departures are solved for airectiy from the resulting set of linear equations. These results are then used to ootain the quadratic or second order deppartures. The process is repeated iterativoly until a satisfactory convergence is obtained. Third and higher order departures can be neglected if there are a sufficient mumber of models to obtain a reasonable first approximation.

Maplan tested the method by using one of his modela as assumed observations. He chose the following seven frequencies: 675, 685, $695,700,705,710$ and $730 \mathrm{~cm}^{-1}$. He did not obtain convergent solutions in all the test cases of his method. The results of the cases that did converge were quite good.

Scme experiments with systematic and randou errors were also performed. It was found that bexpereture errors were approximately proportional to the magnitude of the systematic noise. However, the inclusion of random errors produced temparature errors that were much worse and oscillatory. Kaplan felt that a better selection of frequencies might reduce the effects of the rendoa errors and if this was not sufficient, the maber of atmospheric layers would have to be reduced.

Other sonclusione reached by Kaplan were as fallows. If ground reflectivity at $15 u$ can be neglected, then the outgoing radiation for an overcast condition is the same with an 1sothernal layer from the top of the clouds to the ground. Hence the method can yield the level and temperature of cloud tops. With the addition of cloud pictures, the partially overcast case could be handled. Finally, the most accurate results will be obtain ia for each layer if the entire atmosphere is sounde.

King (1959, 1963) examines the radiative transfer equation and the molutions given by equations (3) and (4) in the light of nodern mathemstical concepts. He shows that if

$$
e^{-T(0)} \ll 1 \text { or } e^{-T(\infty)} \ll 1
$$

then (3) or (4) respectively are Laplace transforms of J_{v} (N $^{\prime}$); the transform variable being $T v$, the optical depth or in the case of a horitontally atratified atmosphere T_{V} sec θ, where θ is the zenith or nadir angie (see Fig. 2). Hence with the tranzform variable a function of frequency through T_{ν} or a function of sec θ, the inversion may be performed in terms of frecuency or sec 0 . He further points out that since suria transformation is an integration operation, its inversion must be in essence a differentiation operation. Hence a multiplicative effect on errors in the data might be expected. Thus Kins's great contribution to this subject is to bring to light such theoretical mathematical considerations as are involved in this problem.

Wark (1961) proposed an abbreviated version of Kapian experinent. He atarted with the equation of radiative transfer in the fallowine form:

FIG. RELATIONSHIP OF ALTITUDE AND PATH LENGTH FOR A HORIZONTALLY STRATIFIED ATMOSPHERE

$$
I_{v}(H)=J_{v}\left(T_{2}\right)+\int_{T_{2}}^{T_{0}} T_{v} \frac{\partial\left[J_{v}(T)\right]}{\partial T} d t
$$

$$
\begin{aligned}
& \text { Whare } T_{v}=e^{-\int_{u}^{H} X_{V} d z}=\operatorname{tran} \operatorname{massion} \text { function } \\
& T_{2}=\text { kinetic temperature at } z=\mathrm{H} \\
& T_{0}=\text { kinetic temperature at a point below were } T_{\nu} \sim 0
\end{aligned}
$$

Equation (9) is easily derived from equation (3) after assuming that the $\tau(0)$ of equation (3) is essentialiy infinite for the frequencies nder consideration. He limits the investigation to the stratosphere and divides this region into three layers. Now if we use pressure insteail of tempertire as the dependent variable, wan rewrite equation (9) as

$$
\begin{align*}
I_{v}(I) & =J_{v}\left(I_{2}\right)+\int_{P_{2}}^{P_{1}} \tau_{v}\left[\frac{\partial J_{V}}{\partial(\log P)}\right] a(\log P) \\
& +\int_{P_{1}}^{P_{0}}{ }^{T}\left[\frac{\partial J}{\partial(\log P)}\right] d(\log P) \tag{10}
\end{align*}
$$

The layers are then assumed to be isothermal which is expressed by

$$
\begin{equation*}
\frac{W_{V}}{\delta(\log P)}=\text { constant }=A \tag{11}
\end{equation*}
$$

It is then further assumed that aince the frequency range of the measurements is small, we can write for the chosen three frequencies (i.e. $630 \mathrm{~cm}^{-1}, 690 \mathrm{~cm}^{-1}$, and $695 \mathrm{~cm}^{-1}$)

$$
\begin{align*}
& J_{2}=J_{2} \\
& J_{3}=J_{1} \tag{12}
\end{align*}
$$

where ${ }^{2}$ and ${ }_{3}$, are constante which are computed for $T=250^{\circ} \mathrm{K}$. Substitution of (11) and (10) into (10) at the three freguencies yields

$$
\begin{align*}
& I_{1}=J_{1}^{\prime}\left(T_{2}\right)+A^{\prime} D_{1}^{\prime}+A^{\prime \prime} D_{1}^{\prime \prime} \\
& I_{2}=B_{2} J_{1}^{\prime}\left(T_{2}\right)+A^{\prime} D_{2}^{\prime}+A^{\prime \prime} D_{2}^{\prime \prime} \tag{13}\\
& I_{3}=B_{3} J_{1}^{\prime}\left(M_{2}\right)+A^{\prime} D_{3}^{\prime}+A^{\prime \prime} D_{3}^{\prime \prime}
\end{align*}
$$

where the D's are the integrals of the form $T \mathrm{f}(\log P)$ which results from the substititioun of (11) into (10). $J_{2}\left(T_{2}\right), A^{\prime}$ and $A^{i "}$ ere obtained from the nolution of (13). Prom $J_{2}\left(T_{2}\right)$ we ontala m_{2} ant it can be shown that from A^{*} and $A^{\prime \prime}$ we can obtain in/C $(\log P)$, the temperatur: lapse rate.

Weri ccmputed wiasions for three assumed atuospheres and then used thege as ipputs to his method. His results also vere quite good. There was no indication in Wark's work as to whether or not he made any analysis of the effects of random or syatematic errors in the input data.

Fryberger and Uretz (1961) also made a tudy of the determination of the atmoapheric temperature proifle. They developed an equation
relating the radiometric profile to the temperature profile from concepts and terrinology familiar to electrical enginears. They were concerned with the thermal structure in the lowest 10,000 feet of the atwosphere. They asomed a horizontally stratified atmosphere and chose to invert the transfer equation using zenith angle rather than Prequency as the tranaform variable. Radiometric profiles were computed for several atmospheres. A solution for the temperature profile of the fomm

$$
I=\left\{\begin{array}{l}
T_{1}=T_{0}+k_{1} h \quad 0 \leq h<500 \\
T_{2}=T_{0}+k_{1} 500+k_{2}(h-500) \quad 500 \leq h<1000 \\
T_{2-}=T_{0}+k_{1} 500+\ldots+k_{20}(h-9500) \quad 9500 \leq h<10000
\end{array}\right.
$$

where h is the altitude in feet, wae assuned. The transform equation they dealt with wan essentiallir equation (8) integrated som the ground up to 10000 feet insteed of Irom H down to 0 , generalized to a horizontaily gtratified atmosphere (1.e. heights were multiplied by sec 0), and with the resulting firat texm $e^{-K(10000)}$ considered to be neg ietible. They then substituted equation (24) into their expression for J_{V} and used an assumed standard profile in X_{V}. Thus equation (8) is linearized and tractable. They then solved the resulting linear system for the coefficients k_{i} in equation (24). The profile corresponding to these coefficients then served as the second spproximation which is used in K and the process is repeated iteratively until the k_{i} 's converge.

They performed their ioversions in infrared apectrin, but the frequency wod not specified. Their resulte were good; the derived temperature profiles reproduced the temperreture profiles from which the rediometric profiles vere obtained well except ware the original temperature proifile had considerable and varying curvature. They did not indicate whether or not a systematic and/or random error analysis was performed.

Yammoto (1961) aescribed another approach to solving the so celled Kapian problem. We shall now consider his method in some detail for it is the method eaployed in this work. Observations are assumed to be made from above in the following four bend regions of the $15 \mu \mathrm{CO}_{2}$ band: $665-670,675-690,686-691$ and 692-697. A uniform CO_{2} distribution is asaumed. Equation 3 may then be written as

$$
\begin{equation*}
I_{v}(0)=-\int_{0}^{p_{s}} J_{v}(p) \frac{d r_{v}(p)}{d p} d y \tag{15}
\end{equation*}
$$

where the independent variable is pressure with p_{2} the auriace pressure. T_{y} of equation (15) is the tranmission function as derined in equation (9). Also as in equation (9) the monochronatic optical capth at the lower limit of the sounding is easentialiy infinite. Also, since all measurements are mode at frequencies near the center of the 154 band, it is assumed that

$$
\begin{equation*}
J_{v}(p)=\alpha_{V} J(p) \tag{16}
\end{equation*}
$$

where the of ${ }^{\prime}$ are constants and $J_{V}(p)$ is the Planck function at a wave muber near the center of the band. Bubatituting (16) into
(15) there obtains

$$
\begin{equation*}
I_{V}(0)=\sum_{0}^{p_{8}} J(p) \frac{d \tau_{V}(p)}{d \underline{t}} d p \tag{17}
\end{equation*}
$$

where $I_{v}^{\prime}=\frac{I_{v}}{x_{v}}$
ramanoto's technique is to express $J_{V}(p)$ by a palyno jal of a 1imited nubar of texms (actuaily 4) ach tern having one unknown parameter, its coefficient. He then computes the tranmiasion function using the ICAO standard atwosphere. Hence by inserting the assumed form of $J(p)$ into equation (17), its couktants can be detarmined by inverting the linear system

$$
\begin{align*}
& I_{v_{1}}(0)=-a_{2} \int_{0}^{p} P_{1}^{s}(p) \frac{d \tau_{1}}{d q} d p-a_{2} \int_{0}^{p} P_{2}(p) \frac{d \tau}{d p} d p \\
& -a_{3} \int_{0}^{p} P_{3}(p) \frac{d \tau}{\nu_{1}} d p-a_{4} \int_{0}^{p_{s}} P_{4}(p) \frac{d \tau}{d p} d p \tag{18}
\end{align*}
$$

where the $P(p)$'s are the paiynomial terms with coofficients a_{1}, a, a_{3} and a_{2} respectivaly. It should be enphasized at this point that the integrals can be valuated since a temperatura profile (i.e. ICAO Standard Atmosphere) ban veen assumed insofar as the computation of
$d T \sqrt{ } / \mathrm{D}$ is concerned. The process may be repeated with the temperature profile corremponding to the derived coefficients used in computing $d T / J p$, and so on iteratively. Iamsnoto suggested this but did not do it.

His main concern in this work was to deternine a variable by which the planck function correaponding to the atmospheric temperature distribution, in general, could bent be represented by a polynomial of as few terms as posible. He alwo tried different representations for the tranmaission function, for example, numerical values, Legendre polyncmiale and Chebyghev polyncmiais. He noted that none of the polyncmial representations vere markedly superior to the others. The Legendre palynomiale however did simplify the couputations.

The method and the various polynomiale ware tested by using as input date the calculated eniasion Ircmatmosphere with various temperature profiles. These protiles were takea from actual radiosonde soundinge. The derived profiles reproduced well the mean featusers of the actual atmospharen. Details such ae the height of the tropopanse did not show up vecy well. In all of the calculationa, the effects of water vapor and ozone on absorption at 15μ were negiected. No error atudies were conducted.

Menk (1961) first proposed using the millimeter spectrum of cacgen to sound the atmosphare. This idaa vas elaborated in a later work, Neeks and Liliey (1963), in which details of atmompharic axygen ebsorption and anission centered at 60.0 kill -megncycles per see vas considered. The microveve apectrum of the axygen malecule 0_{2}^{16} is a remult of finemetructure transition in which the magnetic moment assumes
various directions with respect to the rotational angular momentum of the malecnie. In coaperison, the fine structure of the $25 \mathrm{HeO}_{2}$ bend is due to the rotational fine structure of the molecule waile in ite vibratory state.

At the microwave irequmeies the maission from the earth'a atmosphere, which is considered to be a black body at temperatures on the ordar of $300^{\circ} \mathrm{K}$, is adequately represented by the Rayleigh Jeans approximation to black body mission. Thus we can write for J_{v}, the source function in the previcus equations,

$$
\begin{equation*}
J_{v}=2 \mathrm{kT} / \lambda^{2} \tag{19}
\end{equation*}
$$

Also aince redicmeters are generally calibrated with sources at certain reference temperatures, it is custcmary to maesure power in terms of an equivalent temperature. This so called brightness texperature is dafined by the expression

$$
I_{v}=2 \min _{0}(v) / \lambda^{2}
$$

If we now subetitute equations (19) and (20) into (8) there obtains

$$
\begin{equation*}
T_{b}(v)=I_{s}(v) e^{-K_{v} H_{k}}+\int_{0}^{H} T\left\{X_{v} e^{-K_{v}(H-z) \mu} \mu\right\} \mathrm{a}_{z} \tag{21}
\end{equation*}
$$

where wave genarailzed to an arbitrary nadir angle 0 , by assuming a horizontaily stratified atmomphere with $\mu=\sec \theta$ (see Fig. 1) and whare I_{s} m the brightness of a source lying outside the atmosphere.

As pointed out by Moeks and Liliey (1963), if the brightness temperatiure of the underiying surface of the atmosphere is close to zeco or if the exponent K II is much greater than 1 , thon the bracketed quantity of equation (21) can be regarded as a weighting function that apecifien the contribution of the state temperature $T(h)$ to the brightness texperature $T_{b}(v)$. Let us now consider the shape of this function when Vieving the atmosphere from above and at a frequancy which is not on a resomance line. At low altitudes the value of $\mathrm{X}^{\text {is }}$ very large due to the pressure broadening effects, however, conconitantiy the exponential term is very small; hence the weighting function has a mall value. As we rise to higher altitudea K_{y} decreases, but so does the quantity $\mathrm{K}_{\mathrm{V}}(\mathrm{H}-\mathrm{z})$; hence the vilue of the exponamtial term rises and thus so does the vaiue of the weighting function. As z approsches H, the exponential approaches its maximum value 1 , but at the same time desreasing effects of presmure broadening are cauming K_{V} to approach zero; hence the veighting function approsches zero again. A typical weighting function is shown in Fig. 2.

Neelcs and Lilley (1963) determined the sbapes of twelve weighting functions at six differeat frequencies and at two madir angles for each frequency. It is shown that at frequencies of intense absorption, the half viath is maller and the altitude at the peak points is higher than at frequencies of less intense absorption. It is also mhown that the altitude at the peak point rises alichtily with increasing nadir angle.

The weighting function cancept shows us that the brightness temperature at a given frequency is indicative of state temperatures

primarily in the region betwewn the haif maxime of the weighting function. Consequentiy Meeks and Lilley progosed that the welghted mean temperetuxes of atmospheric layers about 10 lm thick could be determined from brightness tengearature mensurementis. The mean height of theoe layexs would deppend upon the nominal freguency of the neasure. ment. Insy pointed out that at frequencies between strong lines benduldth 2 imitaticns on the radioneter would be more severe than at frequencies between veakes lines or lines more widely sepaneted. This resalts from the fact that the mean height of the weighting function and its width at hals-maximan in strongiy dependert upon the absenption coefficient. The abscrytion in turn is relatively constant over banduidths on the ordar of tens of megacyrcies in between lines. The width of this constant region dmemrines the baniwidth. A get of trpical parmatters for probing the atmogghere ircan to 30 km are given in the paser by Meek and Lilles.

Ta af orementioned prowides a vary good staxting point for this woris - the objective of which is to demonetretce the possibility of using the microvave cxycen enission epecterum to sound the atrooshere. Adaitional Arequencies need to be investigated as possible operational frequancies of measurenmat. Also it should be demonstrated at leagt with compated remite that weigiting functions do not change significantiy with different atmospheric temperature mrofiles. Having obteined a set of frequencies for mesurrenents which are considered to be the best possible in same sense, Famamoto' inversion technieue ought to be triled in the microvave rogion. Pineliy, an elementary atudy of the effects of randan exrors in the data should be attempted.

There are severral reasons why it might prove more desirable to use the microwave apectrom rather than the infrared apectrum in sounding the atmomphere. In the first place in the infrared region there are no aqpifiecs; there are oniy direct detection devices. Years of wocir in radar, communications and radio antronowy has placed the state of the art of millimeter wavelongth coherent detectors and amplifiers considerebly ahead of that of the micron wavelength region. These facts more than offset the factor of about 1000 in intensity that intrared wavelength emission from the atwosphere has over microwave eaission.

In the ancond place, scattering by atmospheric aerosols from the molecular acale to the scale of water dropiets in clouds is less prenounced in the mierowave region than in the infrared region. In the cese of Rayleigh type seattaring, which is the case for aig air, the acettering coofficient at the infrared wavelengths is 10^{12} greater than tine microwave meattering coerficient. In the case of fog or atratua type cloud layers which contain uater droplets whoae reail are on the order of 5μ, the scattering coefficient for infrared radiation in the 15μ region is about an order of magnitude or more larger than that for the 5 minicrowave region. However, it should be noted at this point that there is mone evidence to indicate that absorption of microwaves by cloud drops and precipitation may be very appreciable (see Hoge and Semplak, 1959).

Another advantage the microvave spectrum has over the infrared spectrum iles in the ability of the obeenver to discern more details of line structure. This, of course, transleten into better resolution In the tempecrature versus height profile.

There is an advantage in measuring at microwave frequencies wioh arises from considerration of the minimum attainable error in a radiom meter. In the case where $T \gg \boldsymbol{T} w / \mathrm{k}$ where \boldsymbol{T} is planck's constant, w the frequency and 4 Boltramm's constant, the mininum error of is given approximately by

$$
\begin{equation*}
A T T_{\operatorname{Tin}} \geq \frac{T \operatorname{tex}}{\sqrt{8 T}} \tag{22}
\end{equation*}
$$

where $A_{\text {rws }}$ wncertainty in radiometer readins

Toff \quad scurce temperature plus receiver noise temperature
$T \quad$ - integration time
$\% \quad=$ bancuridth.

Equation (22) in a statenent of the accurecy with which we can mearure a noisu like signal over bandwiath in a time r. It is darived by considering the imput signal to be aum of harmonics of a besic signal and then muming the fiuctustions in each harmonic. The in phase and quadrature compomonts of each elementary aignal are assumed to be indeppondent. The assumption of thite noise is also apployed. A very good drivation of equation (22) is given in Dicke (1946). Hovever, when $T \sim T i / k$, the in phase and quadrature components of each alementary signal are no longer independent, they are instead non-conmuting variables, and their energy can thus assume only diacrete values. In this case Bagfors (1963) has shown that the minimum error is given by

$$
\Delta T_{r \operatorname{lns}}=\frac{\operatorname{coff}}{\sqrt{\operatorname{con}}} \frac{\sinh X}{X} \sqrt{1+2 \operatorname{Tanh} \frac{X}{2}}
$$

where $X=\pi w_{o} / \mathrm{kP}$.

In the classicel limit (when $X \rightarrow 0$) equation (23) reduces to equation (22). How if we aasume that we given noiseless instruments at both 25μ and 5 man walength then we would find that for source temperatures of about $300^{\circ} \mathrm{K}$ the classical limit obtains at the millimeter vavelengthe but not at the infrared wavelengths, Hence at 25μ there are errors due to quantum effects wioh are not aignificant at 5 ma.

The 5 ym oxygen spectrum is also superior to the 15μ carbon dioxide spectrum for daternining the temperature profile in the follow. ing respect. our knowledge of the absorption properties of a gas depend upon how wall we know the distribution of that gas. I' the troposphere and stratomphece the oxygen distribution is certainiy more uniform a 3 bettar krown than the CO_{2} distribution in the same region.

Finaliy, at 5 mm , there are fewer importent cougilicetions due to other ealtting gase than at 15μ where ve have to consider contributions from ozone and water vapor.

SBCTION II

SIATMMENT OT THE PRORLEM AMD THE
FROPOSSD MEMED OR SOLUSTOH

In the most concise terms our problem is to convert measurements of brightness temperature versuls Irequency from the atmosphere into eatimates of the kinetic temperature versus height profile. The source of the enission we sball be concerned with is the magnetic moment transitions of molecular oxygen in the atmosphere. The frequencies of these transitions are located near sixty kilom megacycles.

The matelilte radioneter system which we shall have to mak with initialiy will probably have the following characteristics:

1) It wil measure the mission at several discrete frequencies.
2) It wiIl bave a narrow bandwidth at each frequency, hopefully on the order of one to ten megracycles.
3) The antema will have a reaponse pattern similar to that uhown in Fig. 3. The baamilath of the half power point of the antennk will be very mail, hoperfilly on the order of a dagree.

Equation (21) is the form of the radiative transfer equation most applicable to the data which we ahail obtain. It is remritten here for convenience

$$
\begin{equation*}
T_{b}(v, 0)=T_{s}(v) e^{-K_{v} \mu_{1}}+\int_{0}^{H} T(x) K_{v} v^{-K_{v}(H-z) ; /} \mu d z \tag{21}
\end{equation*}
$$

F1-144/2

FIG. 3 A POLAR COORDINATE PLOT OF ANTENNA GAIN

$$
\begin{aligned}
G_{0}= & \text { THE ON AXIS GAIN OF THE ANTENNA } \\
\phi_{B}= & \text { THE BEAMWIDTH AT THE HALF POWER POINT } \\
G= & \text { THE ANTENNA GAIN AT ANY ANGLE } \varnothing \text { FROM } \\
& \text { THE POSITIVE EXTENSION OF THE ANTENNA'S } \\
& \text { AXIS }
\end{aligned}
$$

where $T_{b}(V, 0)=b r i g h t n e s s$ temperature at a frequency v and nadir angle
$m_{s}(v)$ equivalent temperature of the ground
I. monochronatic ebsorption coefficient
$\mu \quad=\sec 0,0=$ madir angle
$v \quad=$ notainal frequency of the measurement
$T(z) \quad$ kinetic temporature profile
We shall refer to the quantity $\mathrm{K}, \mathrm{e}^{-\mathrm{K}(\mathrm{H}-2) \mu}$ u of equation (21) as a weighting function or kernel.

If the kernel were not a Aunction of the temperature profile then equation (21) would be linear, but this is not the case. The temperature profile does enter the kernel in a rather complicated fashion through the ebsorption coetficient as shown below

$$
\begin{equation*}
X_{v}=\frac{c_{1} p[T(z)]}{v^{2}[X(z)]^{3}} \sum_{n} s_{n}[T(x), v] e^{-E_{n} / \operatorname{LIT}(z)} \tag{24}
\end{equation*}
$$

where $p[T(z)]$ pressure profile, assumed hydrostatic
$S_{n}[T(r), V]=$ trequency and line width dependent matrix element (C.F. Neeks and Lililey, 2963)
$\mathrm{F}_{\mathrm{n}} \quad=$ excitation energy of the $\mathrm{n}^{\text {th }}$ ilne

In deriving equation (21) it is assumed implicitiy that there is no scattering. In order to avoid couplications due to nom zero reflectivity of the eround we shall restrict the invastigation to fraquencias and nedir ancles for which $\mathbb{Z} H:>1$. Thue the equation
whose solution we ghail be concerned with is

$$
T_{B}(v, \theta)=\int_{0}^{H} T(z) W F[T(z), v, 0] d z
$$

where

$$
W R[x(z), v, 0]=\mathcal{V}^{-E^{-K}(H-z) \mu} \mu
$$

We shall maloy a method closely related to that used by Yememoto (1961) to solve equation (25). Our method is different In that we are dealing with an inversion to the temperature profile and we assume boundary conditions at both $z=0$ and $z=H$. Also we shall perficim the iterations which Yamamoto suggestea but aid not perform.

First we let $T(z)$ be represented by a polymomial of a finite number of termas each having an undetemined coefficient, i.e.

$$
\begin{equation*}
T(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{z^{2}} z^{k} \tag{26}
\end{equation*}
$$

The total namber of termes mut be two less than the total number of independerat brightness temperature versus frequency and nadir angle measurements. Thia poiynomial reprecentation of $T(2)$ is substituted into the integrand of equation (25) for the function $T(z)$ which appears explicitily.

Neat we assume a fully determined temperature profile and substitute it into the function WF in equation (25). This determined temperature profile is actually our first guess at what the real profile might be. Nomaliy this first guess would be scme average
or standard atmosphere such as the U. S. Standard Atmosphere 1962. The first guess might very well be a constant for lack of anything better.

We next assume that the boundary conditions $T(O)$ and $T(H)$ have been determined. Hence by the appropriate substitution of equation (26) into equation (30) there obtains the following linear system:

The integrals in (27) are evaluated using the first guess at the temperature profile and the coefficents a_{0} through a_{k} are determined by solving simultaneously the resulting linear equations.

The temperature profiles correaponding to these coefficients are substituted beck into the functions $(W)_{i}(i=1,2 \ldots k)$ of (27) and the system of equations are solved again. Successive iterationa of this type are performed until the following conalition is satisfied:

$$
\begin{equation*}
\left(\frac{1}{H} \int_{0}^{H}\left[T^{(P)}(z)-I^{(P-1)}(z)\right]^{2} d z\right)^{1 / 2} \leq M \tag{23}
\end{equation*}
$$

$T^{(P)}(z)$ and $T^{(P-1)}$ are the $p^{\text {th }}$ and $p-1^{\text {th }}$ derived temperature profile. M is some arbitrary constant which is a measure of the difference between the $p^{\text {th }}$ and $p-1^{\text {th }}$ derived $T(z)$.

By satiafying (28) we guarante convergence in the sense of (28) to a $k^{\text {th }}$ degree polyncmial representation of the kinetic temperature profile which aatisfies best the radiometric data. We must be aware of the fact that convergence in this context does not mean convergence to the best possible solution of (25).

We intend to investigate certain questions relating to this problea given that ve must limit ourselves to five measurements of brightness temaprature versus frequency and nadir angle and measurements of the two boundary conditions. This is a total of seven measurements wich is reasonable for a satellite experiment. The resulting limitation to a sixth degree polyncial also tende to keep the caiculatic:s at reasonable number. Hence the problem can be handled by starilard FORTRAN II programang on an available IBM 7094 Data Procassing Systea in a reasonable time (approximately 10 yinutes). We shall consider the following questions:

1) What frequencies and nadir angles are the best at which to make brightness temperature measurements?
2) Do the asscoiated weighting functions change their location on the height axis with aifferent temperature protiles?
3) What is the ultimate in accuracy that we can expect fron our method?
4) What is the effect of a poor initial guess for the temperature profile?
5) What are the effects of poorly determined boundary conditions?
6) What are the effects of random errors in the data?

SRCPION IIT

HADTR AAHIDS MOR MEASURPGEMIS

Let us first examine the effect of different temperature profiles on a weighting function coxresponding to a fixed frequency and nadir angle. The chatacteristic shape of a weighting function is independent of the temperature profile. The shape depends only on the tact that the absorption coerficient is always positive. The width at haif maximum points and the altitude of the maximum point are however dependent upon the temperature. Analytic investigation of this probiem is virtually impossible because of the complicsted maner in which the temperthure profile enters into the weighting function.

The folloring experiment was thus performed to obtain at least a partial solution to the above problem. The altitudes of the maxima or peaks of the welghting functions were computed for serveral different regresentations of atwospheces. The results are given in Table I. The temperature profiles used are shom in Pis. 4.

The reanits seen to indicate that the temperature profile does not have a marice effect on the altitude of the veighting function peaks. Plots of the weighting function shov the same is true for 1 ts effect on the width of the welghting function. Eren though these conclusions Were deduced from a mall sample of an infinity of temperature profiles wich exist in the etwomphere, they are true in general in view of the following. The various temperature structures which have been observed in the earth'a atmosphere are not very different from one another. At any given altitude, temperetures at various points

$\begin{aligned} & \text { Frequeney } \\ & \text { aesee. } \end{aligned}$	$\begin{gathered} \text { Nadir } \\ \text { Angie } \\ \text { Dongeos } \end{gathered}$		$\begin{gathered} \text { ATMOS. } 2 \\ \text { Peats AIt. } \\ \text { gMy } \end{gathered}$		
55.6500	0.0	14.80	15.20	25.10	14.50
59.3000	0.0	20.94	21.30	21.00	20.70
60.3200	30.0	34.88	34.40	34.50	34.70
60.3300	0.0	31.13	30.50	30.60	30.90
60.3200	0.0	27.15	26．80	26.70	26.90

Deseription of the $T(h)$ profiles used above．
 Atmosphere，1962， $0-50 \mathrm{Km}$ ．
ATMOSMEFTE $2-A$ six degree polymomial tit to madionmade and Rocket Erenade data taken at Norrolk，Va．， July 14，1961．0－50 K．
ATMOKHERE 3 －A Dix degree polymomial int to data mepresenting the mean of the winter 1957 proriles at 12° F， $0-50$ 裍。
ATMOSTHERE 4 －A six degree polymonal fit to data repreagnting the mean of the winter 1957 protiles at $58^{\circ} \mathrm{N}$ ． $0-50$ ． 3 ．

Then profiles are illutrated in Figure 4.
Note $G e^{2} 2000$ megrayeles．

on the earth very rarely differ by more than $100^{\circ} \mathrm{K}$. The average temperatures of the air columns from 0 to 100 killometers at these points differ by even less. These facts make our conclusion concerning the effects of temperature profiles at least plausible.

The weighting function peak altitudes and their widths ot balf maximum are dependent on frequency and nadir angle. With reapect to frequency, the closer one is a line center, the higher the altitude at which the weighting function will peak and the wider it will be. With reapect to nadir angle the larger it is the higher will be the altitude at which the wighting function will peak and the wider it will be. These results are dechuced by inspection of the expression for the weighting function as defined in equation (25). We note that large values of K or μ make the exponential factor more influential at high altitudes, hence the veighting function peaks at higher altitudes. The larger values of K or i also cause the exponential terin to change more rapidiy with altitude, thus causing the weighting functions to be narrow.

With Amosifiges 2, Fig. 4 as a model atmosphere and Fig. 5 from Neaks and Lilleg (1963) as a guide, the height of the weighting function peak, the kinatic temparature corresponding to the aforementioned helaht and the brightness temperature were deternined for various frequencies and nadir angles. The results are presented in tabular and graphical form in Appendix II. The tabular listing is ordered according to increasing height of the veighting function peak. We shall show that this arrangement is veny useful in selecting a set of frequencies and nadir angles at which to take measurements.

The apparent discontinuity in the frequency domain implied by the figures in Appendix II is not real. We decided not to make any, computations at frequencies closer than $5 \mathrm{mc} / \mathrm{sec}$, to a line center.

This was done because the absorption model did not include the Zemnan effect which must be included for frequencies near the line centers. Hence it would be incorrect to extrapolate the results given in Appendix II into the $10 \mathrm{mc} / \mathrm{sec}$ band centered on the lines. We mphasize this fact by crossmatching the $10 \mathrm{mc} / \mathrm{sec}$ bands which makes the frequency domin sem discontinuous.

In fiew of the shape of the weighting function and equation (25) we can sae that a brightnesa temperature for a given irequency and nadir angle is the veighted average of the kinetic temperature profile. The aititudes at which texperatures are weignted most heavily occur between the altitudas of the half maximam points of the weighting twinction. This means that any brightneas temperature by iwaif contains information mostiy about kinetic temperatures in a ten to iffteen kilometer layer centered at the peak of its correagonding weighting function. This is an important fact to bear in mind wen selecting the frequmeies and nadir angies at which to take measurem ments.

A siaple criterion for the selection of the meamuring points is to choose them such that the corresponding welghting functions distribute thmenelves uniformiy over the helght region in which the kinetic temperatwre profile la desired. Such a criterion should provide for a sounding of kinetic temperature that weights equally all aititudes except those near the boundary. It can thus be seen that the table of Appendix II is conveniently aryanged for this parpose. There is however, one qualificstion wich must be observed when selecting the meamuring points. Any real redicuneter which we may use to maice these measurements will have a finite non zero bandwidth. This may lead to problems if the chosen frecuencies are close to line centers. We must first of all be sure that the bend pass of the radicmeter
does not cause it to be sensitive at the frequency of a line center. We aust also be aware of the fact that the weighting function peak altitudes change very rapidis with frecuency near line centers (see the figures in Appendix II). This means that measurementis of brightness temperatures near line centers would represent the average kinetic temperature of layers thicker than ten or fifteen kilometers. The exact thickness would deyend upon the bandwidth of the radiometar. The larger the bandwidth the larger is the helght interval over which ve average.

In general, measurements near line centers are to be avoided if possible. Hence, the process of selecting measuring points may involve a compromise between uniformity of weighting function distributions and the proximity of the measuring frequency to a IIne center. To serve the needs of the latter, we make use of the fisures in Appendix II. These figures however show that to make soundings in the regions above thirty kilometers we are forced to make meanurements near line centers.

The frequencies and nadir angles selected for the determination of the temperature profile in the firgt fifty kilometers of the atmomphere, were chosen using the compromise procedure. They are listed together with the slititudes of their weighting function peaks in Table I. The weighting function peaks were determined for the four temperature profiles of Fig. 4. The weighting functions corregponding to these frequencies and nadir angles and couquted from the teaperatures of ATMOSPHERE 1 are shown in Fig. 6.

It should be thoroughly understood at this point, thet to say that five measuring points can be selected at which any temperature profile can be sounded and approximately deduced is nonsense; uniess

as we heve show, the etmospheric layer to which each meacuring point corremponds is epproxinetely the amm for any temperature profile which 1a $21 k e l y$ to be encountered. We recall that Kaplan (1959) made a similas atatement.

If we expmine the table of Appendix II we note that many of the moasuring points would prodnce neariy identical veighting functions. Whis means that if we measured brichtness temperature versus frequeacy contimoualy (except at the $20 \mathrm{mc} / \mathrm{sen}$ bands at the 2 ine ceaters) from about 53.0 to $63.0 \mathrm{GC} / \mathrm{emec}^{4}$, much of our data would be redundant. It 18 desirable to obtain redundant date for the purpose of oheaking measure. ments. Kovever, to utilive redundant date most efficientiy there would be required an invergion procecuxe different from the one ceacribed in this work. Since it is not litely that the first genaration satellite radicumber will be capeble of taking recundant aata, we shall not pursue this topic any further.

Let us Dow considar a eroup of welghting functions as a set rether than each as sepparate and complete. Broh wighting function ahows the relative combribution of the kinetic temperature at every altitude to the brightness temperetrure correeponding to the frequenoy and nadir angle of the meagurement. If at each eltitude we sun the values of each veighting Anction in a get, then we shoil obtain the relative weight of the verious kinetic temperatures in the determination of the ccrremponding eet of brightnass temperatures. We ghall call this tunction so dexived the intuence funation. For the distribution of weighting functions ahown in Fis. 6 , the correpponding influence function is ghown in Tig. 7 .

[^0]

Bad it not been necessary to make the compromises deacribed previously, the weighting function distribution of Pig. 6 would have been more uniform and the resulting influence function more neariy constant in the ten to forty kilometer region. It is not unlikely that if we were to delete the $60.330 \mathrm{GC} / \mathrm{sec}$ measurement, the influence function would be flatter in the ten to forty kilometer region. A flat influence function would cause all input data to be weighted equalis in the inversica process. of course, there may be instances when this is not desirable.

The local wather forecaster tho is primarily interested in the lowest ten kilometers of the atmosphere in detail, wor a prefer an influence function thich peaks in this region. The national and hemispheric forecasters require leas detail in the proriles, but they do need to determine a profile over a larger altitude range. A flat influence function from about twenty or thirty kilameters to the surface vould be most useful to them. The research meteoralogists, especiaily those interested in the upper atmosphere require varying amounts of detail, but definitely would like to have more regulariy scheduled soundings up to one hundred kilometers, The messurcoments could be selected to give an influtacefinction specifically suited to their needs.

Before we examine in detail the proposed iterative inversion scheme, let us consider a simpler inversion scheme. In this technique we Eimply assign to the meesured brightness temperature a certain altitude. This altitude is that of the peak of the weighting function corregponding to the frequency and nadtr angle of the measurement. The tempernture wich is used in determining this altitude is AMOSPHERE 1.

The following observationa indicate thet we ought to try this technique:

1) The weighting functions are very neariy gymmetrical about a horizontal axis through theix peaks.
2) The brightness temperature is very nearly the weighted average of the kinetic temperature profile in a ten to fifteen kilcmeter layer centered at the altitude of the weighting function peak.
3) If the weighting function were exactly symmetrical and the temperature profile werre a linear function of height In the layer between the half maximum points of the veighting function, then the average temperature in the laver would be equal to the temperature at the helght of velghting function peak.
4) The altitude and width of a weighting function are very neaxiy indopendent of the temperature profile.

Statement (3) is actualiy a mathematical fact. It is included in the above in crder to emphasize the importance, with regend to this inversion schene, of the other statements. This sinple inversion
scheme will hereafter be referred to as a zero order approximation to the inversion of brightness temperatures or zero order inversion.

An example of the zero order inversion technique is shown in Fig. 8. The solid line is AmOSFHERE 1. With the temperatures of ADNOSPFERE 1 input to equation (25), the brightness temperatures for some of the frequencies and nadir angles listed in Appendix II are computed. Each point in Fig. 6 correaponds to one of the frequencies and nadir angles 21 isted in Appendix II exceppt those whose weighting functions paak above $39.0 \mathrm{~mm} .{ }^{5}$ The ordinate of each point is the sititude of the peak of the veighting function; the abscissa is the brichtness temperature.

The results of this inversion are good. We note however that in the regions where Amosphirig i has considerable curvature the errors are larger. This is because the approximation which states that kinetic temperature at the height of the veighting function peak equals the averrage kinetic temperature of the layer betveen the half maximum pointe of the weighting finction, is less valid for regions of large curvature in the temperature profile.

Fig. 8 showe the best result we could hope to obtain with the zero order inversion. The optimum reault obtains in this case because the brightness temperatures and weighting function peak aititudes

5 This exclusion vas made to avoid exrors in brightnass temperature which result from the fact that of 50.0 km , the upper limit of our integrations over height, these weighting functions atill have values which are appreciable with respect to their maximum value.

were correlated. Wow let us try the zero order inversion in a similated real situation, i.e. one in which we measure oniy the brightness temperature and mast assign altitudes to these temperatures which correspond to velghting function peaks computed for a standard atmosghere. We shall simulate this real situation by computing brightness temperatures from equation (25) using Anmospmers 2 and the frequencies and nedir angles used in the previous example. The corresponding heights that we shall asaiga to these brightness temperatures, will be the weighting function peek altitudes as determined with AmOSPHFRS 1 , our standard atmosphere.

The results of this inversion are shown in Pig. 9 as the amall black dots. The solid line is AMOSPFHzR 2 which is included for comparison. The results of this inveraion are surprisingly very good. The larger deviations in the thirty five to forty kilameter region are probably due to termination of the integrations at firty killometers. In view of our success with the simple zero oeder inversion ve can proceed with confidence to the more complicated inversion technique deacribed in section II.

We have airaedy discussed the details of the iterative inversion procedure in section II. In the remainder of this aection ve shali look at sowe of the intermediate results and interesting detaile of the procedure.

With the temperatures trom AlwOSPMBRI 1 , brightness texperatures were computed from equation (25) for the frequancien and nadir angles listed in mable I. These brightness temperstures, together with boundary conditions corresponding to $T(0)$ and $T(50)$ of ABMOSPARER: 1 , vere used as imput to the iterative inversion procedure. The initial

or first guess of the temperature profile was an isothermal profile of $289^{\circ} \mathrm{K}$. An isothermal profile is asaumed to be the vorst guess that anyone would ever have make in practice.

Pig. 10 shows the intenmediate and final results of this inversion. This figure is an exact reproduction of the plotted computer output during the inversion. The numbers on the curves designate the order in mich they were derived in the series of iterations. The fourth derived profile, which is hardly distinguishmble from the third, is a sixth degree polynowial representing the temperature versus beight profile vich best IIts, in the sense of equation (28), the input data. M, the root mean equare deviation of the $(p+1)^{\text {th }}$ derived profile from the $(p)^{\text {th }}$ derived profile, was set at $0.5^{\circ} \mathrm{K}$. We note in Fig. 10 , that oven the second derived profile is not too different from the third and fourth. The fourth derived profile is virtually identical to Amosparse 1 . Hence we conclude that a poor though reasonable initial guess for $T(z) v i l l$ have very little, if any influence on the final reault. Judging from other results not given here, the onily effect a poor initial guess for $\mathrm{T}(\mathrm{z})$ semen to have is to delay convergence for one or two iterations.

Let us now consider one of the best possible results we night ever hope to obtain with this procedure. We simulate the following conditions and perform an inversion which will give us the answer:

1) We assume a horisontaily stratified atmosphere in which the absorption theory set forth by Meeks and Lilley (1963) is exactiy obeyed.
2) We assume an infinitely accurate radiometer and antenna aystem for meanuring brightness temperature vorsus frequency and nadir angle.
3) Finaily, by scme quirk of nature, we assume that the temperature

profile between zero and fifty kilometers is the sixth degree polynomial termed AungSPERR 2.

With these assumptions we coupute brightness temperatures from equation (25), with AuswSFinere 2 and the frequencies and nadir angles of rable 1 as input data. We use these brightness temperratures and the $I(O)$ and $I(50)$ of AndosFrifze 1 as input to the iterative inversion schume. Ow initial guess for $T(z)$ is AMOSPHERI 1.

The results of this inversion are shown in Fig. 12 . Also shown in this Higure for comparison are Anosyinnis 2 and the actual data points from thich the poiynouial AnMOSPRWRR 2 vas determined. We conalude after examination of this figure, that this best possible result is indeed excellent. We also note that with measured, rather than asmumed, boundery conditions we could do even better.

In the develogment of the inversion procedure, we discovered that we could not obtain convergence to a calution unless we ggecified boundery conditions. This might be considered unasual in the light of the following. A linear integral equation has the boundary conditiong of its uninom function contsined in the statement of the equation (see Bildebrand, "Methods of ippilad Mathematics"). pquation (25) is nowinaar, howerver in the procees of substituting and successive approxinations for $T(2)$ in $T T\{T(z), v\}$ we in a gense IInearize the equation. Nevertheless we Ind that it is necesgexy

6
In a practical situation in the absence of data at the boundaries we could do no worge than to use the boundary conditions of a standard atmopphere. We here arbitrear 21 y have chosen to 111ustrate this situation in this experinent.

to place boundary conditions on $T(2)$ in order to have the iterative solution technique converge to a solution. Thus it seems that a nonlinear integral equation then 1inearized in the above mamer is still intrinsically different from a genuine linear equation. To conflym this conclusion we applied the iterative solution technique to a very simple innear integral equation and an equalily simple nonIinear integral equation. In the case of the former convergence to the correct aclution occurred without specificaticr of boundary conditions. However in the case of the nonlinear integral equation, divergence from the correct colution occurred in the absence of specified boundary conditions.

We later discovered, quite by accident, that the boundary valuea ve specificd at 0 and 50 kilometers had little effect on the inverted profile in the ten to forty kiloneter region as the follouing experiment will i21ustrate. From equation (25) and the frequencies and nadir angles of table 1 ve couputed brightness temperatures with a quadratic interpalation of the raw data of ADMOSPHERS 2 used as the ingut $\mathrm{I}(\mathrm{z})$. From these brightness temperatures together with $\mathrm{T}(0)$ and $T(50)$ of the 1962 U. S. Standard Atmosphere as imput and boundary conditions respectively, we performed the inversion.

The result of this inversion together with others in which we perturbed the 1962 U . S. Stendard Atmosphere soundary conditions by $\pm 30.0^{\circ} \mathrm{K}$ in various combinations are shown in Fig. 12. We note that in the central thirty kilameters of these profiles there is littile difference between them. Thus we conclude that at points whose distances from the boundaries are at least equal to the width of a velghting function, the boundary values exert littie infuence.

sbcrion V

USE OF THE THERATIVE TIVERSTOA

Trichancuis on maga mach

Let us now consider a sexies of experinents which are designed to test the performance of the inversion technique under the assumption of ideal data. We bhail also assume, as in the previous experimenta, that we are dealing vith a horizontaily stratified atmosphere in which oxygen is the onsy emitter at the frequencies of concern and that the absorption theory set forth by Moeks and Liliey (2963) is obeyed exactiy. As before, our instrumentation is assumed to have no inherent randou exrors. Thus we can again use equation (25) to simulate the data that would be received.

The frequencies and nadir anglen ueed vith equation (25) are those Eiven in Twble 1, For the temperature profile input, a quadratic interpolation of the raw data from which Aumosprimus 1 through 4 inclusively were determined is used. These quadratic interpalations appear as the heavy solid lines in Figs. 13 through 16 inclusive. The forightness temperatures thus determined (they correspond to errorless data) were used as input to the inversion routine. The boundary conditions seleoted were $I(0)$ and $T(50)$ of the U. S. Stamdard Atmosphere, 2962. The initial guess of the temperature profile was ANMOBPGBRE 1. The results for each set of data and their corresponding inter. polated profile are shown as the long azshed curves in Figs. 13 through 16 inclusive. Since the output of the inversion routine is

in assence a six degree polyncmial ve have included on the appropriate figures, ANBOSFHERES 1 through 4 for the sake of easy comparison. We have also calculated as a measure of comparison the following quantities separately to the zero to fifty and ten to forty kilometer region:

1. The rootmean-square deviation of the interpolated dats from the polynomial curve fit by the method of least squares.

2- The root-maan-square deviation of the curve obtained by the inversion of brightness temperatures from the interpolated data.

3 - The root-mean-square deviation of the curve obtained by inversion of brightness temperatures from the polynomial curve fit by the method of least squares.

The reaults of these calculations appear in Table II. We note that the curves deduced from brightness temperature reproduce rather well the interpolated data from which the brightness temperatures were obtained. The fit semms to be better in the ten to forty kilcmeter region than in the zero to fifty kilometer region. The results in Table II confirm the impressions obtained in our visual inspection of Figs. 13 through 16. The curves deduced from brightness temperatures show a favorable comparison in the ten to forty kilometer region with the curves of polymomials fit to the original data by the method of least squares.

The fact that our reaults tended to be better in the ten to forty kilometer region than in the zero to fifty kilometer region in part reflects the effect of the influence function. However, the other factor influencing reaults in the boundaries of the region of our sounding is, of course, boundary conditions. We chose to put into

TABLE II

S(2)	O 20.50 Kn pange			10 to 40 Km Mange		
	$\begin{aligned} & \mathrm{H}_{\mathrm{WIS}} \\ & \mathrm{~K} \end{aligned}$	VVR_{2}	PM_{K}	${\underset{\mathrm{O}}{\mathrm{~K}}}^{\mathrm{O}_{1}}$	$\begin{aligned} & \mathrm{Frx}_{2} \\ & 0_{\mathrm{K}} \end{aligned}$	a_{K}
ATMOSEHERE	1.49	3.14	2.75	1.53	0.650	1.59
ATMOETHERE	6.45	13.8	10.7	6.58	3.42	. 32
ATVOSPHERE	2.07	5.56	5.31	2.33	1.82	1.72
ATMOEPHETm	1.86	8.69	7.95	1.63	0.846	2.

FMS 1 - The root-mean-square deviation of the interpolated data from the polynomial cuwwe fit by the method of least squares.
RMS $_{2}$ - The root-mean-squar deviation of the ourve obtelned by the inversion of brightnese temperatures from the interpolated data.
HaH_{3} - The root-mean-aquare aeviation of the curve obtained by the inveraion of brightness temperatures from the polynomisi curve fit by the method of leset squares.
the inverraion routine the standard boundary conditions beceuse it has not been decided at this point whether or not the first satallite radion meter systean should be equipged to meagure the temperratures of the boundmries. To measure these boundmey temperatures radicuetricaliy would require very narrow bandwidth radicmeters for the uyper boundayy and a more thorough undmertanding of the reflection and emisaion of the surface and clond layecs for the lowar boundary. We thus cermer these probleas for the yresent time by using standurd boundsary conditions.

We also made a few calculations in an attempt to answer the guestion, "Fow mich do ve gein by going frow zeco oxder invaraion to the iterative inveraion procednre?" The mexo ordax invereion and the iterretive inversion results on the brightness temperatures corremponding to Anposifixas 2, wece compared. Because of the discrete or point lice ngture of the zero oxder ivversion, the comparison was carried cut at Inve altitudes which correspond to the weighting function peake for the Rive Irequencies and nodir angles of the meagurements. One showld recall that according to the mules of the sero ordex inversion one must use paak altitudes which are computed with a standard atmonghare.

The results of this comparison at the IV altitudes is presented in Table III. Also mhow are the root-mean-squmses of the two sets of deviations. The remults tend to indicate that there is gein in eccurecy with the use of the itarative technique.

Conosigaon of Zexe end Iterative Invergions

$\begin{aligned} & \text { Frequenoy } \\ & \text { gelgeg. } \end{aligned}$	$\begin{aligned} & \text { Nadir } \\ & \text { Angies } \\ & \text { der. } \end{aligned}$		$\begin{gathered} \mathrm{Ta}(\mathrm{H}) \\ \mathrm{O}_{\mathrm{H}} \\ \hline \end{gathered}$	$\begin{gathered} T_{\mathrm{s}}(\nu, \theta) \\ \sigma_{\mathrm{K}} \end{gathered}$	$\begin{gathered} \Delta T_{B} \\ \bullet \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{mL}(\mathrm{H}) \\ \mathrm{O}_{\mathrm{K}} \mathrm{~K} \\ \hline \end{gathered}$	$\begin{gathered} \Delta \mathrm{T}_{1 a} \\ \mathrm{O}_{\mathrm{K}} \mathrm{~K} \\ \hline \end{gathered}$
55.65	0.0	14.70	212.419	217.593	+5.174	214.687	$+2.268$
59.30	0.0	20.90	217.125	218.242	. 1.027	217.847	0.732
60.32	30.0	34.70	249	249.913	0.236	247.214	.2.463
60.33	0.0	31.50	235.678	238.158	12.480	236.584	+0.906
60.37	0.0	27.10	227.075	220.629	1.554	2e7.362	.0 .287

$$
\sqrt{\frac{\sum_{H i}^{51}\left(\overline{\left.\Delta T_{B a}\right)^{2}}\right.}{5}}=2.70^{\circ} \mathrm{K}
$$

$$
\sqrt{\frac{\sum_{H i}^{5}\left(\overline{\left(\Delta T_{i a}\right)^{2}}\right.}{5}}=1.59^{\circ} \mathrm{K}
$$

A Pa devintion of brishtness temperatures from ascuraed actual tom ture for zere orderinversion.
ABA - deviation of brightneas temperature from as sumed actual tewper ture for iterative inversion technique.
Ta(H) the temperature of ATMOSTHEFE 2 at heicht Hi the ascumed sotual temperature.
H:altitude of welghting function peass as computed with Atmoepher 1.
${ }^{2}(\nu, \theta)=$ brightneas temomare as omputed with ATMOSTHERE 2.
II(A) - the temperature at heleht H as obtained by the itexative inveresion of the set of $\mathrm{S}_{\mathrm{B}}(2, \theta)^{\prime} \mathrm{B}$.

61

SSCIION VI
THE MHLURECE OF MSYRUPRWAL BYYECTS AMD

In any real measurement progrem ve shall have to deal with, or limit as much as possible, the effects of our non ideal instruments on the data. We have already discussed radiometer uncertainties in Section I, the Introduction. An uncertainty is an error in our data for which we cannot make any corrections. However, we can make corrections or limit most instrumental effects. Four such effects which might cause trouble if not eliminated or taken into account are bandwidth averaging of the received aignal, frequency stability of the radiometer beamidath averaging by the antemn and side $10 b$ reception of the antenna.

The latter of these effects (the side lobe recoption) is oniy serious if the side lobes happen to be directed tovards a strong radio source such as the sun. We can, however, take steps to avoid this, thus this effect need not concern us. Ineofar as the antenna beamwidth is concerned, presentiy beamwidths can be made sall enough so as to be of little concern unless the horizontal temperature gradients are very large. Only during the passage of the satellite over strong frontal systeas might the antenna beamidith thus be of some concerr.

The problens of bendwidth and stability are of more concern to us because they involve an average over Irequency. Hence, if the nominal frequency to which the redicmeter is tuned is near a line
centar, we shail in effect be viewing the averege temperthture of sone very thick lagers. Let us now consider the combined efrects of bandwidth avereging, the avareging due to the irequency drift of the radicnetter and the uncortainty of the radioneter.

We shail astave that the brightness tamperature is averaged over frequency according to the equation:

$$
\begin{equation*}
T_{B}=\frac{1}{\Delta v} \int_{v_{1}}^{v_{P}} T_{B}(v) d v \tag{28}
\end{equation*}
$$

where $v_{1}=v_{0}-\Delta v_{t}-\frac{R}{2}$

$$
v_{f}=v_{0}+\Delta v_{s}-\frac{9}{2}
$$

$\nu_{0}=$ ncminaily twned freguency
$\Delta \nu_{s}=$ ascumed stability of the radiometer at the frequency ν_{o}
8 - banduidth of the radiometer at frequency v.
$T_{B}(V)$ was computed uning Antosprigre 2 in equation (25). Five values of ν_{0} ccrremponding to the five freguencies in Table I were chosen. The correaponding nadir angles of Table I were also used here. For this yurpose of computing the uncerteinty, ve shall assume a radiometer nolee temperature of $3000^{\circ} \mathrm{X}$ (this is typical for radionetere which could be built today) and an integration tim of 10 seconds. In the real case the uncertainty either adds or subtracts from the sigena. We mail arbitrarily assum that the uncertainties subtract from the
signal. Equation (22) is used to compute the uncertainty. All of the calculations are sumaxized in Table IV.

The result of the inversion run using the input brightness temperatures listed in Table IV and the boundayy conditions of AMPDSFIERE 1 is show as inversion no. 7 in Fig. 17 . The result of the inversion run using the sctral beightness temperstures, which is the same as the inversion shown in Fig. 111, is depicted as the errorless inversion in P1g. 17. The rootmmean-square deviation of inversion no. 7 from the errorless inversion is $21.3^{\circ} \mathrm{K}$ in the zero to fifty k11cneter region and 11.8° x for the ten to forty kilometer region.

The apecifications on the realonetser used to obtain the data for inversion no. 7 are quite loose. Let us now asune ariftless radicueter with a notae tempencture of about $100^{\circ} \mathrm{K}$ or alightly 1 ess. Proceeding as before we compute avemage brightness temperatures and uncertainties for the same five Irequencies. The results of these calculations are mumarized in Table V. The uncertainties are now about an order of magnitude less than before and except for the Pirst frequency they are about an order of magnitude less than the diffenence between the avereged and actual brightness temperatures. Therefore, let us neglect them in debernining the imput brightness temperstures.

Hence using the input brightness texperatures Listed in Table V and the same boundaxy conditions as before we obtain a temperatrure profile which correaponds to inversion no. 8 in Fis. 17 . The root-mean-igquare deviation of this tergerature profile from that of the

TABLE IV

```Nominal Tuned Frequoncy Go/sece```	$\begin{gathered} \text { Band- } \\ \text { width } \\ \text { B } \\ \text { ge/sec. } \end{gathered}$	stabllity ce/sec.	$\begin{aligned} & \text { mintial } \\ & \text { Frwa. } \\ & \text { colsee. } \end{aligned}$	$\begin{aligned} & \text { Final } \\ & \text { Freq. } \\ & \text { go/see. } \end{aligned}$	$\begin{gathered} \text { Avermb } \\ T_{B} \\ { }^{\circ} \mathrm{K} \end{gathered}$	$\Delta y_{x}$	$\begin{aligned} & \text { Input } \\ & T_{B} \\ & o_{K} \end{aligned}$	$\begin{gathered} \text { Actual } \\ T_{B} \\ { }^{O_{K}} \end{gathered}$	$8 \mathrm{~T}_{\mathrm{B}}$ ${ }^{\circ} \mathrm{K}$
55.6500	0.0400	$\pm 0.0400$	55.5900	55.7100	217.585	$\pm 0.165$	217.358	217.339	+0.019
59.3000	0.0400	$\pm 0.0400$	59.2600	59.3600	214.898	$\pm 0.165$	214.733	274.193	+0.540
60.3200	0.0100	$\because 0.0050$	60.3100	60.3300	249.998	$\pm 2.030$	248.968	250.979	+2.021
60.3300	0.0200	\$0.0100	60.3200	60.3500	241.758	$\pm 0.233$	241.525	240.090	$+2.435$
60.3700	0.0400	:0.0200	60.3300	60.4200	232.214	$\pm 0.165$	232.049	228.029	$+4.020$

$$
\begin{aligned}
& S\left(S T_{D}\right)^{2}=22.556 \\
& \frac{\left(5 r_{B}\right)^{2}}{5}=4.511 \\
& \text { aKS Dev. }=\frac{\left(\xi \left(\left(T_{B}\right)^{2}\right.\right.}{5}=2.125 \\
& f_{B}=T_{B} \text { (Input) }-T_{B(\text { Aotual })}
\end{aligned}
$$



TABLE V

arrorless inversion is $5.72^{\circ} \mathrm{X}$ in the zero to fifty kilometter region and $3.01{ }^{\circ} \mathrm{K}$ in the ten to forty kilometer region.

Tebles VI and VII give the input brightneas texperatures for two inversion ruas designed to test for a difference in erfect betwan a poaitive and nagative uncertainty of the same magnitude at the sase Irequency. The reaults of these inversion runs are inversion no. 9, Pie. 17 and inversion no. 10, Fig. 10 correaponding respectively to the input data in pable VI and table VII. The boundary conditions for both are those of AMMOSPRESE I. The root-mean-square deviation of inversion no. 9 from the errorless inversion is $4.01^{\circ} \mathrm{K}$ in the zero to pifty kilcmeter region and $3.46^{\circ} \mathrm{K}$ in the ten to forty kiloweter region. For inversion no. 10, the root-mean-square deviation trom the errorless inversion in the zero to ifity kilannter region is $3.62^{\circ} \mathrm{K}$ and $1.97^{\circ} \mathrm{K}$ in the ten to forty kiloweter region. The deviations are somewhat greater near the aititudea of influence of the welghting function correaponding to the frequency whose ageopsated brightness temperature is in error. The doviations also appear so have the aame sign as the error in the brightnoss texperature.

Inversion no. 11, Fig. 18, when compered with inversion no. 9, Fis. 37, shows the difference in effect of a one degree error in brightw ness temperatures correeponding to two aifferent frequencies. The input asta for invorsion no. 11, is given in table VIII. the boundary conditions are those of Ambsmyme l. The root-meanmsquare deviation of invarsion no. 12 from the errorless one $1810.2^{\circ} \mathrm{K}$ in the zero to fifty kilometer region and $3.60^{\circ} \mathrm{K}$ in the ten to forty kilometer region. Again in this case most of the deviations appear to have the sease

WABLT VI


Frequenoy	Nadir Angle	input $\mathrm{T}_{\mathrm{B}}$	$\begin{gathered} \text { Aoturl } \\ \text { TB } \\ \hline \end{gathered}$	5 B
55.6500	0.0	218.339	217.339	+1.000
59.3000	0.0	214.193	214.193	0.000
60.3200	30.0	250.979	250.579	0.000
60.3300	0.0	240.090	240.090	0.000
60.3700	0.0	228.029	220.029	0.000
$5\left(8 \mathrm{~T}_{8}\right)^{2}=1.000$				
$\frac{\sum^{(87 m)^{2}}}{5}=0.2$				
		$\text { v. }=5$	0.447	
$\delta T_{B}=T_{B}($ Input $)-T_{B}($ Actua $)$				



TABLE VIT

Frequenoy	Madir Ancle	Input 9	$\underset{T}{\text { notuse }}$	5
55.6500	0.0	217.339	217.339	0.000
59.3000	0.0	214.293	214.193	0.000
60.3200	30.0	250.979	250.979	0.000
60.3300	0.0	240.090	240.090	0.000
60.3700	0.0	227.029	226.029	-1.000

$$
\begin{aligned}
& \delta\left(\delta T_{B}\right)^{2}=1.000 \\
& \left(\delta\left(\delta T_{B}\right)^{2}=0.2\right. \\
& \text { TH Dev. }=-\sqrt{\frac{8\left(\delta 3_{B}\right)^{2}}{5}}=0.447 \\
& \delta T_{B}=T_{B} \text { (Input) }-T_{B} \text { (Aotual) }
\end{aligned}
$$

sign as the error in brightness temperature. However in this case the greatest deviations tend to be in the boundary regions ( $0-10$ and $40-50 \mathrm{~km}$ ) rather than in the regiong of greatest influence of the weighting function related to the brightness texperature wich is in error.

Finaily, in inversion no. 12, Fis. 18, we show the effects of errors of the same magnitude but of alternating signs in each of the brightness temperatures. The input data for this inversion run is given in Table IX. Again, the voundary conditions are those of AHOSYHIRE 2. The rootmeanmsquare deviation of inversion no. i2 from the errorless inversion is $30.6^{\circ} \mathrm{K}$ in the zero to IIfty kilameter region and $12.6^{\circ} \mathrm{K}$ in the ten to torty kiloneter region. The greatest deviations tend to be in the boundary regions. The sign of the deviation at a given altitude tends to be the same as the sign of the error in the brightness temperature which corresponds to the weighting function influential at that altitude.

## TABIE IX

Frequency	$\begin{aligned} & \text { Nadir } \\ & \text { Angle } \end{aligned}$	$\operatorname{Input}_{T_{B}}$	Aotual TB	$\mathrm{m}_{3}$
55.6500	0.0	216.339	227.339	-1.000
59.3000	0.0	225.293	224.193	+1.000
60.3200	30.0	249.979	250.979	-1.000
60.3300	0.0	241.090	240.090	+1.000
60.5700	0.0	226.029	228.029	-2.000
$\left(\left(T_{B}\right)^{2}=8.000\right.$				
$\frac{\left(6 P_{B}\right)^{2}}{5}=2.6$				
Ras Dev. $=\frac{\sqrt{5\left(S T_{B}\right)^{2}}}{5}=1.262$				

## SECTMON VII

## COMCLUSIONS

Various aspects of the problen of the determination of the kinetic teaperature profile of the atmosphere from the five millimeter radiative eaission or molecular axygen bave been investigated. One of the most frportant conclusions we have reached is that with only five ideal measurements of this emission, we can deduce a polyanaial representation of the actual temperature profile fron zero to fifty kilometers which is alnost as good as the polynomisl representation that could be obtained by a "least square" fit of from thirty to fifty values of kinetic temperature versus height. In fict, in the ten to forty kiloneter region we can expect to obtain a netter representation of the actual atmospheric temperature profile with an inversion of five peasured brightness temperatures than with a polynonial determined from up to fifty kinetic temperatire masurements in the zero to fifty kilaneter region.

Our investigation of the zero order inversion and a comparison of it with the iterative inversion procedure has led us to the following conclusion. A set of brightness temperatures versus frequencies and nadir angles cia jieli more information when investigated as a whole set than when each measurement is considered separately. We have cone to this conclusion by numerical experimentation. For the limiting case of an infinite number of orightness temperature measurenents, we could reach a similar conclusion by abstract mathematical arcuments.

We have aiso concluded that statement of fixed boundary conditions in the iterative inversion procedure is required. However, we have shown that the chosen boundary conations do not inpluence the derived temperature prorile outside of the so called boundary region. We might ask ourselves therefore, "Wy does the iterative procedure fail to work without boundary conditions? At present ail that we say to answer this question is that without these fixed boundary conditions we do not have a properly specified problen.

The iterrative inversion procedure requires an initial guess of the solution. We have shown that the use of a good guess (one which is similar to the unknown actual temperature profile) or a bad guess (s temperature profile having littie relation to ine actual one) has little effect on the final reault. The only effect of a bad guess is to increase the number of iterations required to obtain a solution. We, therefore, conclude that the use of a standard atmosphere for an initial guess is quite saitisfactory.

We spent a considerable amount of time investigating the relationship of the frequency and nadir angle dependence of our brightness temperature measurements to the kinetic temperature versus altitude function. To faciiitate tinis investigation, we considered the effect of these parameters on a runctional combination of the absorption and transmissivity functions termed by Meeks and Liliey (1963) as weighting functions. We also developed a point of view of a group of weighting functions known as the influence function. We concluded from our atudies that the shape and locations of the weighting functions on the height axis were siostantially unaffected by the nature of the teraperature profile.

Through our investigations of weighting functions and their corresponding influence function we concluded that measurenents indicative of temperatures fin the ten to thirty iflometer region are easily obtained. However to obtain neasurements indicative of temperatures above thirty kilometers would require that tinese measurements be made at either large nadir angles or at frequencies Very close to line centezs. The former alternative was concluderi to be a poor one because it wouls destroy horizontai resolution. ine Latter alternative would impose limitations on allowable bandwiaths of the radioneters. This would have adverse ramifications on the root-mean-square undertainties of the measurements. However, we concluded that this $1 s$ really a technological instrumentation provier that eould eventuaily be solved. To make measurements indicative of temperatures below ten kilometers vould involve aimply additions to the absorption theory that insorporate ground effects.

From tine Itarative inveraions of ideal data, ve Iearned that the deviations of the derived profile erom the actual profile at various altitudea would be negativaly correlated to the value of the Infiuence function at the same altitudes. Hence we concluded that an influene function whosc value is onstant vith aititude is desirable in ceses where a temperatme porile with a uniform deviation is requirea.
ife perforsed several inversions on data tainted by instrumental effects and uncertainties. These experiments led to the following conclusions;

1 - Deviations of the derived temperature profiles from the actual temperature profile are greater at altitudes where the influence function is small.

2 - Measurements made near line centers muat be done with radioneters that are very stable and that have narrow banduidths and low noise terperatures.

3- Errors made at brightness texperatures which correspond through frequency and madir angle to weightins fuactions that peak at high altitudes are nore serious than errors made at brightness temperatures that correspond to weighting functions which peak at low altitudes.

4- Errors of the same mignitule but Hifferent aign at brightness temperatures of the same frequency and nadir angle produce equal root-mean-square deviations of derived profiles from actual profileg. The siens of the formex deviations correspond to those of the latter.

5 - There does not sean to be a linear relationship between root-mean-Equare deviations of ideal data from non ideal data and root-mean-zquare deviations of the derived profiles from the actual profiles.

## SBCIION VIII <br> SUGGRSTIOME POR FUIURE WORK

One of the most important problems and the one most deserving of atudy in any future work, is that or the effect of errors in the data. The work done in this thesis on this subject ia quite incomplete. Two evemues oi approain immediataly suggest thenselves. First, we mifght try a "least square fit" inversion on a large net of data poluts. Theory of this method is described in Hildelbrand, "Methols of Applied Mathematics." Such a technique would teail to snooth the data and cause random errors to cancel one another.

A second approath is to divide the inversion from zero to fility kilomerters into inversions over several mailer height ranges. For extamie, with the same five measurements, we firgt derive a polynomial valid from zero to fifteen kilometara, them one from fifteen kiloweters to thirty five and finaily one frow thirty five to fifty kilometers. The boundary conditions required at filiteen and thixty kilometars could be the temperatures obtained by a zero order inversion. Diviuing the single large invarsion up into smaller ones might help to dupen the erar anitipiyiag affeci wich sesme to resuit when the deta hae errore in it.

Another aspect of this problear which deserves some consideration Is the we of orthogonal sunctions in the inversion procedure. In the least they wouli redice the anwint of numericai computation necessary. They would also reduce the effect of round off errors in the problem by giving rise to matrices with very otrone diaganais.

There also remains to be considered and incorporated into this problem the fallowing:

1) The apectral reflectivity and aission of the ground and sea suxfaces.
2) The spectral reflectivity, emission and absorption of clouds and rain.
3) The Zeeman effect.

Finaliy and moat importantiy, a program of measurements including the develogment of suitable airborne radiometers must be undertaken. At present we can build stadometers wich are quite stable enough for our purposes. However these rediometers have rather large bandwiaths (approcimately $100 \mathrm{Mc} / \mathrm{sec}$ ) and high noise texperatures (approximately $3000^{\circ} \mathrm{K}$ ). We need equally stable rediometers with bandwidths of about $5 \mathrm{Me} / \mathrm{sec}$ and noise temperatures of $100^{\circ} \mathrm{K}$. The rapid development of salld state devices may make it possible to obtain these specifications in radionetars in the not too distant future.

## APPraviIX I

## POLYHOMTAL CURVE FIHTHM

Since the result of our inversion procedure is a set of polyncmial coefficients, we are naturally led to make a comparison betveen the polynomials resulting frum the inversion of brightness temperatures and those obtained directly from temperature versus height data. Clearly, thereare many criterion by which a polynomial can be said to best fit a set of data points. We chose to use the method in which the square of the sum of the deviations of the fitted curve from the data points is minimized. The criterion for this method is

$$
\begin{align*}
& \stackrel{N}{n} w\left(z_{1}\right)\left\{T\left(z_{i}\right)-\stackrel{n}{a} a_{k} z_{i}^{k}\right\}^{2}=\min  \tag{I-1}\\
& 1=0 \quad k=0
\end{align*}
$$

where $N=$ muber of data points
$\mathrm{n}=$ degree of the polynomial
$z_{1}=$ altitude of $1^{\text {th }}$ point
$T\left(z_{i}\right)=$ tempersture dete at the $i^{\text {th }}$ altitude
$a^{2}=k^{\text {th }}$ coefficient of the polynomial
$v\left(z_{i}\right)=$ weight of the $i^{\text {th }}$ data point.
The necessary conditions for a minimum in equation (I-1) require that the partial derivatives $3 / \partial q_{k} k=0,1,2, \ldots n$ of equation (I-I) all vanish. This leads to the following system of linear equations which can be solved for the coefficients $a_{0}$ through $a_{k}$ :

81

(I-2)
where $r=0,1,2, \ldots n$

Using equation (I-2) with $n=6$ and a constant $w\left(z_{i}\right)$ we obtained the temperature profiles AMMOSPHERE 1 through AIMOSFHBRE 4. The results together with the input data are shown in Fig.(I-I) through Fig. (I-4).
PIEG-9 -MOI HAVYA - UOAWOD





## APPEmDIX II

WEIGITITHG FUNCTION ANALYSIS

## Note - The numbered frequencies in the tables are shown graphicaliy on the charts with arrows.

Felchting Funotion Analysis

$\begin{gathered} \text { Prequency } \\ \text { No. } \end{gathered}$	Helight of Peat xm	Frequency ac/sec.	Nadir Angle Des.	$\mathrm{T}_{\mathrm{B}}^{\mathrm{B}}$ (3)	$\begin{gathered} T(h) \text { at. } W . F . \\ \text { eak } \\ o_{\mathrm{K}} \\ \hline \end{gathered}$
0	4.05	53.5800	0.0	211.434	260.319
1	11.85	55.4500	0.0	220.940	220.530
2	12.05	55.5100	0.0	220.371	220.020
3	12.15	55.3900	0.0	220.721	219.800
	12.48	55.4500	30.0	219.577	218.981
	12.80	55.3900	30.0	21.9 .373	218.353
	12.80	55.5100	30.0	215.054	218.353
4	12.80	55.5700	0.0	219.18\%	218.353
	13.45	55.5700	30.0	218.031	217.210
56	14.08	55.6300	0.0	217.718	216.200
	14.80	55.6500	0.0	217.277	215.475
	14.80	55.6300	30.0	216.846	215.475
	15.40	55.6500	30.0	216.533	215.013
7	16.50	57.9000	0.0	214.406	214.579
	16.90	57.9000	30.0	214.295	214.541
8	17.00	58.8050	0.0	214.215	214.541
	17.00	61.5000	0.0	214.302	214.541
	17.05	61.5000	15.0	214.292	214.542
	17.46	58.8050	30.0	214.189	214.580
	18.29	62.0000	0.0	214.645	214.837
	18.31	62.0000	15.0	214.672	214.837
	18.69	62.0000	30.0	214.786	215.028
	18.80	57.9000	60.0	214.644	215.082
	19.29	58.8050	60.0	214.769	215.390
	19.39	62.0000	45.0	215.099	215.548
9	19.69	59.3775	0.0	215.347	215.676
	20.13	59.3775	30.0	215.655	216.907
10	20.94	59.3000	0.0	216.286	216.760
	21.09	59.3000	15.0	216.378	216.907
	21.32	59.3000	30.0	216.682	217.107
	22.10	59.3000	45.0	217.300	217.953
	22.13	59.3775	60.0	217.211	217.953
	23.27	59.3000	60.0	218.480	219.331
11	25.08	59.1000	0.0	220.843	221.540
12	26.71	58.3950	0.0	223.046	223.574
13	27.15	60.3700	0.0	224.144	224.150
	27.30	58.3950	30.0	223.675	224.348
	27.30	60.3700	15.0	223.724	224.348
	27.52	60.3700	30.0	224.206	224.607
	28.20	60.3700	45.0	225.119	225.522
	28.81	58.3950	60.0	226.178	226.317
	29.31	60.3700	60.0	226.742	226.989
14	29.36	62.4490	0.0	227.054	227.075
	29.78	62.4490	30.0	227.791	227.623
15	31.13	60.3300	0.0	229.767	229.523

Helghting Function Analysis

Frequeney No.	Heisht of Peak $\qquad$	Frequency Ge/sec.	Nadir Angle Deg.	$T_{B_{K}}(3)$	
16	31.18	60.4100	0.0	229.912	229.671
	31.59	62.4490	60.0	230.746	230.272
	31.68	60.3300	30.0	230.569	230.425
17	32.20	58.4300	0.0	231.254	231.204
	32.70	58.4300	30.0	232.110	232.014
	33.42	60.3300	60.0	233.764	233.205
	33.49	60.4100	60.0	233.923	231.686
18	33.50	58.3400	0.0	233.717	233.381
	33.89	58.4300	60.0	235.409	234.102
	33.91	58.3400	30.0	234.604	234.102
19	34.33	58.3100	0.0	235.361	234.489
20	34.42	60.3200	0.0	235.499	235.041
21	34.57	62.4230	0.0	235.698	235.429
	34.80	58.3100	30.0	236.276	235.824
	34.88	60.3200	30.0	236.418	236.025
	34.99	62.4230	30.0	236.669	236.228
22	35.01	58.4570	0.0	236.269	236.228
	35.41	58.4570	30.0	237.225	237.059
	35.60	58.3400	60.0	238.023	237.487
	35.71	58.4370	30.0	237.688	237.704
	36.51	58.3100	60.0	239.743	239.518
	36.60	60.3200	60.0	239.941	239.755
23	36.68	62.4780	0.0	239.702	239.994
	36.85	62.4230	60.0	240.317	240.350
	37.29	58.4570	60.0	240.746	241.477
	37.35	62.4780	30.0	240.650	241.600
24	37.52	57.6200	0.0	241.294	241.989
	37.48	58.4370	60.0	241.200	241.989
25	37.82	58.4400	0.0	241.266	242.776
	38.00	57.6200	30.0	242.211	243.311
	39.05	62.4780	60.0	243.944	246.250
26	39.52	59.5850	0.0	244.299	247.616
	40.02	57.6200	60.0	245.099	249.157
	40.02	59.5850	30.0	244.982	249.157
27	40.08	59.1700	0.0	244.791	249.470
	40.61	59.1700	30.0	245.543	251.065
	41.82	62.4900	0.0	245.501	255.033
	41.90	59.5850	60.0	246.452	255.370
	42.36	62.4900	30.0	245.628	256.900
	42.41 44.32	59.1700 62.4900	60.0 60.0	246.335 243.700	257.062
	44.32	62.4900	60.0	243.700	263.376

The temperature profile uaed to meke the calculaticna mumarized in this Appendix was ATMOSPHERES 1.

The figures correspending to the preceding tebles are Figure II-1 and Pigure II-2.



APPENDIX IIX

## COMEULER PROCRMM:

This appendix contains the Furxins II Iistings of the principal ecaputer programs used in this work. ITNe computations were done on an IEM 7094 Data Processing System. Ine plotted outyut was outained from a Calcomp plotter ană InM 2401 Lata Frocessint ivstem.

The comment statements at the veay oeginning ox eich progran explain the puxpose of the propram. We have not inciuded programs which difter from the Listed progrems with respect to the form of the imput data and the output reauts. Likewise, we have not inm cluded library or processor subprogrems such as the NALCOUP subroutines, since these subprograms were not designea especialiy for this work.

Below are briet aescriptions of the programs distuch.
CURVIB This progrom fite a polynomial in the sense of least equares to set of kinetic tamperature data points. This progren was used to obtain Ancosphutins 1 through 4.

MISPL This progrem computes brightness tusperatures and Welfhting function peak altitudes for \& tex perature profile regmesented by a polynomial.

MLSPS This progern is the seme as NLiply excegt for the fact that the temperature profile must be zepresented by a set of data points.

TVFRI. This program pertorms the iterative inversion of brightness temperatures.

AIMSP4 This subroutine computes pressure with the hydrostatic equation from tempereture profile represented by a polynomial.

ATMSP5 This subroutine is the same as ATMSP4 except for the fact that the temperature profile must be represented by a set of data points.

KERNLI This subroutine computes the weighting function for various atmospheric profiles, frequencies and nadir angles.

BPEMP2 This subroutine computes brightness temperatures from the weighting functions determined by KFRMLI.

GAM2E This function routine computes the attenuation coefficient for specified temperatures, pressures and frequency.



```
CATMSP5 B.REFOW 4 OCTOBER 1963 SUBROUTINE ATMSPS
C THIS SUBROUTINE COMPUTES TEMPERATURE AND PRESSURE FOR 1001 HEIGHT
 LEVELS FROM O TO 100 KM. THE ORDER IN WHICH H(I), T(I), AND P(I)
 ARE LOADED INTO THE OUTPUT MATRIX IS VARIABLE.
 THE REOUIRED INPUT DAIA IS
```



```
 TVII) TEMPERATUIIE DATA POINT.
 ZD(I) CORRESPONDINGG HEIGHT DATA POINT:
 HMIN THE MINIMUM HEIGHT FOR WHICH H(I), T(I), AND P(I) ARE
 COMPUTED
 HMAX THE MAXIMUM HEIGHT FOR WHICHH|I), I|I) ANO P|I| ARE
 COMP|TED
```



```
 HMAX.
 FOR JRD=2, H(I), T(I), AND P(I) ARE STORED FROM HMAX TO
 HMIN.
 PZERO GROUND LEVEL PRESSURE IN NM OF HG
 GZERO GROUN LEVI VALUE OF ACCELRATIO DUETO GRAVITY IN (M//
 SEC**2
 VARG THE RATE OF CHANGI OF GRAVITATIONAL ACCELERATION WITH
 ALTITUDE. THIS NUMBER USUALLY IS 0.3086CM/SEC**2/KM
 1 SURROUTINE ATMSP5(KD1,ZD,HMIN,HMAX,JRD,PZERO,GZERO,VARG,TD)
 5 GGF(x)=GZERO-(VARG)*(x)
```



```
 X01] WAF(1001),1211001)|#11001), (11001),PP/1001/,T01501
 CO T,P,GAM,TAU, IAF,JI,H,JMAX
 3 R=0.28704E+07
 4 PP(1)=PZERO
 600 7 I=1,1001
 I2(1)=1
 7 ||||)=(FLOA|F(I-1)|*0.1|
 50 YA= (ZD)(2)+ZD(1)1/2.0
 51 KZ=YA/0.1
 52 DO 53 J=1,KZ
 53TT(J)=TD(1)+((1T0(2)-T)(1)/(20(2)-Z0(1))|*(||(J)-20(1))
 54 M1-K01-1
 55 D0 65 K=2.<1
 56 YA = (ZD)(K+1)+ZZO(K) 1/2.0
 57 MZ=YA/0.1
 58 KZ=KZZ+1
 59TSP=1(TO(K+1)-TO(K-1))/(20(K+1)-20(K-1))
```



```
 61-71)P2=(70|(k)-T|(k-1)|/|z|(k)-2)(k-1|)
 62-TDP=(2.0*(TDP1-TDP2))/(ZO(K+1)-ZO(K-1)
 63 DO 64 J=KZ,MZ
 64TT(J)=TD(K)+(TSP*(HH(J)-ZD(K)))+(TDP*((HH(J)-ZD(K))**2)/2.0)
 65 kz=Mz
 10 12 1=2, #17
 11 HS1=|#||-1)
 H52=##11)
 TS1=TT(I-1)
 TS2=TT(I)
```




```
 PS1=PP||-1)
 12 CONTINUE
 13 KMIN=XINTF((HMIN)*(10.0))+1
 14 KMAX=XINTF((HMAX)*(10.0))+1
```

15 -
$16 K_{2}=1001=\mathrm{J} A X$
$1760-70 / 18,341$, JRD
18 DO 22 K=KMINgKMAX
$19 \mathrm{~K} 1=\mathrm{K}+1-\mathrm{KMIN}$
$J 1(K 1)=k 1$
20 (
21 $7(k)=T(|k|$
22 (k1)=PP|k|
23 IF (K2-1) 41,24,28
$24 \mathrm{H}(1001)=1.0$
$25 T(1001)=1.0$
26 2 $110011=1.0$
$11(1001)=1001$
27601041
28 K $3=$ JMAX +1
29 DO $32 K 4=K 3,1001$
J1 (K4) $=k$
30 ( $41=1.0$
$31-T(K 4)=100$
$32 P(k 4)=1.0$
33 GO TO 41
34 DO $39 \mathrm{~K} 5=1$, JMAX
$35 K-K A X+1-K 5$


38-P(K5)=0p(K6)
$J 1(K 5)=K 5$
39 CONTINUE
40 IF $(k 2-1) \quad 41,24,28$
4! RETUR
FREOUENCY $2311000,1,10001,4011000,1,10001$
END

```
GITEMPZ P.R.FO 1.0. NO. AAP8 8.JUQY 1963 SURROUTINE BTEMP2
C
 THIS SUBROUTINE COMPUTES THE BRIGHTNESS FOR A SPECIFIED ATMOS
 PHERE, FRFQUENCY AND NADIR OR ZENITH ANGLE.
 INPUT DATA REOUIRED
 TMS=BRIGHTNESS OF A SOURCE LYING OUTSIDE TME ATMOSPIERE.
 T=TEMPERATURE IN DEGREES KELVIN.
 WAF=WEIGHTING FUNCTION.
 TAU(JMAX)=TOTAL VERTICAL ATTFNUATION.
 THETA NADIR OR, ZEITH ANGLE IN DEGRESS.
 MAX=T NU OF LIVILSAT WICP WAF IAS COMPUTED:
 SUBPROGRANS REQUIRED
 ATMSP4 OR ATMSP5 AND KERNL1
 QUTPUT TB=BRIGH NESS TEMPERATU|T IN DEGREES KELVIN.
 SUBROUTINE BTEMP2ITMS,TBGTHETA1
 2 DIMENSION T(1001),P(1001),GAM(1001),TAU(1001),WAF(1001),J1(1001),H
 2(1001)
 COMMON T, G,GAN IAU WAF,JloH:JNAX
 3. SECTH=1.0/(00SFTIHETA)
 4.TAUJ=TA|||MAX)
 5-TB=TMS*EXPF(-TAUJ*SECTHI
 TDUM=TB
 6 DO 11 J=2,JMAX
 7H1=H(J-1)
 8 |2"#|ग|
 9 DELTR=ABSE(#1-#2)
 10 TB=TB+(T|J-1)+T(J)|(WAF(J-1)+WAF(J))*DELTR/4.0
 11 TDM1=TR
 12 RETURN
 END
```



1001 FORAT $2 /(10.4 \cdot 10.2,2 F 8.2) 1$

WRITEOUTPUTTAPE 3,1002,(ZT(J),TSTP(J),ERTP(J),ERTN(J),J=1,JMAX)
1002 FORMAT(2(F10.4,F10.2,2F8.2))
CALL PLOTS (DATA 7501,7501
2 2 $|x| x|=K| x+1$
$R D E=0.0$
RTE $=0.0$
DO 10 I=1, IMAX
10 RDE=RDE+(1.0/(ERDP(I)+ERDN(I)))
DO 13 I-1 IMAX

Do 16 J=1: JMAX
16 RTE $=$ RTE $11.0 / 1$ ERTP (1) + ERTM (1) 11
DO $19 \mathrm{~J}=1, \mathrm{JMAX}$
$19 \operatorname{WFT}(J)=(1.0 /((E R T P(J)+F R T N(J)) *(R T E)))$
$C(11)=0.0$
D0 $211 \quad 1=1,1$ MAX

0022 M=2 KMAX
$C C(M)=0.0$
DO 21 I=1,IMAX
21. $C(M)=C C(M)+(H F D(1) * T D A T(1) *(Z 011) *(M-1) 1) *(1.0 E-15)$If ACCUMUATOR OVERFLO loo.22
22 CONTINUE
0026 =1, MAXI
DO $24 N=1, K M A X 1$
$R B(M, N)=0.0$
DO $231=1, I M A X$

If ACCUMJATOR OVERFLOW 100.2.4
24 CONTINUE
26 CONTINUEGO TO 213
100 TITE QUTPUT TAPE 3. 1016 KMAX

K $A X=X A X-1$
GO TO 2
$213 \mathrm{BB}(1,1)=0.0$
DO 272 I=1,IMAX

260 ITE O TAPL 3: 1071 /

$X$ D. NO., 1X.14,1X,15HIS GIVEN BFLOW. $/ 1 / 1 / 110 X$
IF (KMAX1 - 9) 261,261,263
261 DO $262 \mathrm{M}=1$ gKMAX1

1072 FORAF $110 \times / 22 \times 10=11.4$
262 CIINUE
60.70 273
263 DO 264 M $=1$, KMAXI
WRITE OUTPUT TAPE 3, 1072, (BB(M,N),N=1,10)
264 CONTINUE
1073 FORMAT 1 IIII $10 \times 14 / / / / / 10 \times 1$
D0 $265 \mathrm{M}=1$ MAN
WRITE OUTPUT TAPE 3, 1074, (BB(M,N),N=11,KMAXI),CC(M)
1074
265 COTINE
2730090 K= 位
TE(1)=TEX
$T E(2)=T E \times 2$
HE(1) = HEX1
HE(2)=HEX2K( $\mid=1=1 \times D+1$
FIT=FLOATF(IDNT) +10.01 (FLOATF(KO11
DO $28 \mathrm{~K}=1,20$
$A A(M)=0.0$
28 CONTINUE
$0033 \quad M=1 \quad 1$
$B(M)=C(\mid M)$D0 32 $N=1, K \ln$
$32 A(M, N)=B B(M, N)$
33 CONTINUE
DETE1.0

(0) 10 (36,34.35)
34 WRITE OUTPUT TAPE 3,1075 (K
1075 FORMAT (1H1,77H ACCUMULATOR UNDERFLOW OR OVERFLOW IN SOLVING THE S
XYSTEM OF LINEAR EQUATIONS/20X49HFOR THE COEFFICIENTS OF THE POLYNO

1090
35 IRITE OUTPUT TAPE 3,1076.KX
1076 FORMATIIM1, IOZMTHE COEFFICIENT MATRIX OF THE ETNEAR EQUATIONS INVO
XLVING THE
XINGULAR•1607090
$36 \quad 0 \quad 47 \quad \mathrm{M}=1, \mathrm{KD}$
$47 A A(N)=A(M)$
$274-D V T S O=0.0$DO $70 \mathrm{~J}=1$, JMAX
TMPT(1)=AA(1)
$0069 \quad M=2, K D 1$


$\operatorname{DVT}(J)=\operatorname{UWDVT}(J) * W F T(J)$
70 DVTSQ=DVTSQ+(DVT(J))**2
D $72 I=1, I$ MAX
TMPD $|1|=A|1|$
D0 $71 \mathrm{M}=2$, KD1
71 TMPD (I) $=$ TMPD $(I)+(A A(M) \mid *(Z D(1)) * *(M-1)$
$\operatorname{UWDVD}(I)=(\operatorname{TMPD}(I)-T D A T(I))$
$\operatorname{DVD}(\mathrm{I})=U W D V D(I) * W F D(I)$
72 OVDSO-DVOSO (DVD(I)) *2
147 DELTA1=(| $/$ MAX-ZM1N|/1000001
ALTIIT1)=2MI
D027890 $=2,1001$
2789 ALTIT(NON) =ALTIT(NON-1)+DFLTAH
DO 78 NON =1,1001
177 TEMP $($ NON $)=A A(1)+(A A(2)) *(A L T I T(N O N))$
DTEN ( ON) =AA(2)
12077 M 3 K K

$M M 1=M-1$
AMM1=FLOATF(MM1)

178 IFITEMP(NON)-TEX1) 179,180,180
179 TEMP (NOM)=TEX1
GO TO 182
180 IF(TEX2-TEMP(NON)) 181,182,182
181 TEMP (NON) $=$ TEXZ
182 CONTINUE
78 CONTINUE
$N P=1$
$N O P=K D$
79 WRITE OUTPUT TAPE 3,1004,NOP,NP
1004 FORMAT $1 H 1,108 \times 5$ HPAGE, $12,1 H-11 / 11$

1019. FORMAT $120 \mathrm{X} \cdot 12 \mathrm{~A}, \mathrm{EX}, \mathrm{FF} 7 \mathrm{Z} / 1 / 1$
791 WRITE OUTPUT TAPE 3,1014,KD
1014 FORMAT (1HO, $7 \mathrm{X}, 85 \mathrm{HSUCCESSIVE} \mathrm{POLYNOMIAL} \mathrm{CURVE} \mathrm{FITTING} \mathrm{ROUTINE} \mathrm{FOR} \mathrm{A}$XTMOSPHERIC VERTICAL TEMPERATURE DATA///5X,16HPROGRAM NO 008///5X
D) $801 \quad \mathrm{~K}=1$. $\mathrm{KD1}$
$K S=k-1$
WRITE OUTPUT TAPE $3,1005,(K 5, A A(K))$
1005 FORMAT $(5 \mathrm{X} / 10 \mathrm{X}, 2 \mathrm{HA}(, \mathrm{I} 2,4 \mathrm{H})=$ E14.5)
801 CONTINUE
$\mathrm{NP}=2$
80 WRIII QUTPUI TAPE 3.1050. NOP N


X $8 \mathrm{X}, 18 \mathrm{HWE}$ IGHTING FUNCTION, $8 \mathrm{X}, 11$ HTEMPERATURE, $8 \mathrm{X}, 11$ HTEMPERATURE, $13 \mathrm{X}, 1$
XOHDEVIATIONS/54X,8H(SKETCH),10X,1OH(COMPUTED), $8 \mathrm{X}, 10 \mathrm{HUNWEIGHTED,8X}$,

XK)
81 VRITE OUTPUT IAPE 3:1006: ZTIJ,
梱 (J, J=1, JMAX)
1006 FORMAT(12X,F6.2,12X,E12.5,12X,F7.2,12X,F7.2,10X,F7.2,11X,F7.3)
82 WRITE OUTPUT TAPE 3,1007,DVTSQ
1007 FORMAT $15 \times / 1 / 15 \times 47 H S U M$ OF THE SOUARES OF THE WEIGHIED DEVIATIONS =,
XE12.51
$1 \mathrm{P}=3$
83 WR1TE OUTPUT TAPE 3,1008 , 100 ,NP, $Z 2 D 11, W F D 11, T D A T(1), T M P D 11 . U W D$
XVD(I), $\operatorname{DVD}(I), I=1, I M A X)$ )
1008 FORMAT(1H1,111X,5HPAGE, I2,1H-,I1/5X,19HDATA POINT ANALYSIS///11X,




X.31)
84 WRITE OUTPUT TAPE 3,1009,DVDSQ

*12.51
NP=4
85 WRITE OUTPUT TAPE $3,1010,1$ NOP, NP, /ALTITINONI,TEMP/NON/,DTEMPINON:
XNON=1,1001,1011
1010 FORMAT(1H1,111X,5HPAGE, $12,1 H-, I 1 / 5 \mathrm{X}, 28 \mathrm{HCOMPUTED}$ TEMPERATURE PROFI




DO $87 \mathrm{I}=1,1001$
$H(I)=A L T I T(I)$

```
 87 7||=TEMP|11
 0I=|(TE|2)-TE|1)|/|x|)|*1000
 DH=||#E(2)-HE(1||/\M1*10.0
 DTT=DT
 DHH=DH
 DO 88 I=1,IMAX
 T0A|||=|0A|||
 88 Z\1|(1)=Z|||
 D0-89 J=1.JMAX
 TST1(J)=TSTP(J)
 89 ZT1(J)=ZT(J)
 IFIJMAX - 251 %202
80- M1= 位\1
 00 881 J=JN1,25
 Z##|=|EX1
881 TST1(J)=TEX1
82 CONTINUE
 IF(IMAX-50) 883.885,885
33 [M1=1MAX+1
 100 884 I=| N150
 zDI(11)=#Ex1
 884 TDAI(I)=TFX1
 855 CONTINUE
 CALL SCAILIIT,10780XX,TTMINODTI)
```



```
 CALL L NE|TO 1001)
```



```
 CALL AXIS(0.0,0.0,13HALTITUDE (KM),13,YY,90.0,HHMIN,DHH)
 ALPHA=((TE(2)-TE(1))/XX)
 BETA=((HE (2)-HE(1))/YY)
 CORA=- - .2 (1) 050% 2
 *CORP=-0.45*1 PWA*0.850*0.1
 YCORP =-0.5*RETA*0.10
 DO 93 I=1,IMAX
 TDP=TDA1(I)+XCORA
 861 20P=201(1)
 93 (AL Sy 4|TOP,z0p,0z_||0.011
 D0 25 = I. M
 TSP=TST1/J1+XCORP
 931 ZST=ZT1(J)+YCORP
 95 CALL SYMBL4(TSP,ZST,0.10,1H+,0.0,1)
 CALL PLOT1-1.5,-1.0,-31
 CALL PLOT1117.0.0.0.21
 CALL PLOT117.0,11.5,21
 CALL PLOT (0.0,11.5,2)
 CALL PLOT (0.0,0.0,2)
 CALL PLOT(2.5,0.1,-3)
 00 232 I=1,12
 TR=13-1
 232 FNTR||R|=FMT||
 CALL SY (4) 40.0.0.0,0.2,FMTR(12),0.0.721
 CALL PLOT(12.25,0.0,-3)
 CALL NUMBER(0.0,0.0,0.2,FID,0.0,2)
 CALL PLOT
 933 Y / |l=1#5
```



```
 \NMO (3)=6H* OATA
 CALL SYMBL4(0.0,0.0,0.2,YNMD(3),0.0,13)
 CALL PLOT (0.0,0.3,-3)
```

```
 YMMT12=1/S
 Y (122)=6"PPOINT
 YMMT(3)=6H+ TEST
 CALL SYMBL4(0.0,0.0,0.2,YNMT(3);0.0,13)
 GO TO MT,(951,952)
 251 ASSIGN 252 I0 MI
 CAlL PLOT|-0.5,11.1:-3)
 0070.954
952 ASSIGN 951 TO MT
 CALL PLOT(16.5,-11.9,-3)
 954 CONTINUE
 WRITE OUTPUT TAPE 14,2000 KO1
2000 FORMAT\I5!
 |RITE OUTPUT TAPE 14,2001,|AA||||=1,*O||
2001 FORMATIE14.5)
 9 0 ~ C O N T I N U E ~
 FREQUENCY 178(1,1000,1000),180(1,1000,1000)
 CALL EXII
 END
```



```
C X UNCTION GAMO2/T,P,F) THIS SUBPROGRAM (OMUUTES THE ATTENUATION
 XDUE TO ATMOSPHERIC O2 IN NEPERS/KM FOR A SPECIFIED TEMPERATURE T
 XIN DEGREES KELVIN,PRESSURE P IN MM OF HG, AND FREQUENCY F IN GC/S.
 FUNCTION GAMOZIT,P,F)
```



```
 300 |F||TEN-12345) l2z1
 1 1TM=12345
 ALPHA =0.00195
 C1 = 0.61576
 C2 =2.0684
 C3=0.85
 C4:300.0
```

                \(F K(11=56.2648\)
                    \(F K(2)=58.4466\)
                    \(F K(3)=59.5910\)
                    \(F K(4)=60.4348\)
                    \(F|5|=61 \cdot 1506\)
                    \(F K(6)=61.8002\)
                    FR \(171=62.4112\)
                    F.K \((8)=62.9980\)
                    \(F K(9)=63.5685\)
                    \(F(110)=64.1272\)
                    FK(111)=64.6779
                    FK| \(|2|=65: 2240\)
                    \(F K(13)=65.7626\)
                            \(F L(1)=118.7505\)
                            \(F L(2)=62.4863\)
                            \(F L(3)=60.3061\)
                            \(F(\mid 4)=59.1642\)
            It \(|5|=58.3239\)
            \(F L(6)=57.6125\)
            \(F L(7)=56.9682\)
            \(F L(8)=56.3634\)
                            \(F L(9)=55.7839\)
                            FL(10) \(=55.2214\)
                            F||111 \(=54.6728\)
                            \(F L(12)=54.1294\)
                            \(F L(13)=53.5960\)
    2 IF (P-267.41) 3,4,4
    3IF(P-18.957) 41,41,42
    4 BETA \(=0.25\)
        GO 70.50
        41 BETA \(=0.75\)
        GO TO 50
        42 RETA \(=0.25 *(1.0+\operatorname{LOGF}(267.41 / P) / 1.323)\)
    
$50061=1,13$

DELT2 = DFLT*DELT
$F 2=F * F$
FZERO $=$ DELT/(F2+DELT2)
FACTOR $=(C 1 * P * F 2) /(T * T * T)$
$5=0.0$
700 12 J=1:13
TSUM $=0.0$
FDIF $=F K(J)-F$
TEST $=\operatorname{ABSF}(F D I F) / D E L T$

```
100 IF/TEST-10000.01 8.9.9
 FADO2 = (FK(J)+F)*(FK(J)+F)
 FNPLUS =DELT*(1.0/(FDIF2+DELT2)+1.0/(FADD2+DELT2))
 UNPLUS = FLOATF((2*J-1)*(4*J+1))/FLOATF(2*J)
 ISUM= FNPIUS*UN
 FDIF=FLIJ)-F
 TEST: ABSFIFDIFI/OELT
200 IFTTEST-100.01 10,11,11
 10 FDIF2 = FDIF*FDIF
 FADD2 = (FL(J)+F)*(FL(J)+F)
 FNMIUU = DELT*(1.0/(FDIF2+DELI2)+1.0/(FADDZ+DELTZ))
```



```
 TSUM= ISUM+FNMIN* NUN
 UNZERO= FLOATF(14*J*J-2*J+1)*(4*J-1)|/FLOATF(J*(2*J-1)
 TSUM = TSUM+FZERO*UNZERO
 SUM = SUM+TSUM*EXPW(J)
 1 2
 CONIINUE
 GAMOZ2 = FACTOR*SUM
 FRFOUENCY 1001250,1,101,2001250,1,101,3001250,1,11)
 RETURN
 END
```




```
166 F=F|(1)
```



```
172 DO 176 M=1,JMAX
173 J1(M)=J2(M)
174H(M)=H3(M)
175 7(1)=T2(N)
176 P(M)=P2(M)
180 CALL KERNLI|F,A)
181 JMAX=JMAX
190 SEC=1.0/COSF(A)
200 TAK TAU(JMAX)
210 TS=TMS*EXPFI-TAK*SECl
220 TPR(1|=TB|||-IS
230-00-310 J=1,K04
240 DO 300 K=2,JMAX
250 HA=H(K-1)
260 HB=H(K)
270 O[17TF=ABSF(#A-##)
280 AV = | |A IB| /2.0
290 AVIJF=\\\AF(K) NAF(K-1)/12.0
300R(I,J)=R(I,J)+((AVH**(J-1))*(AVWF)*(DELTR))
310 CONTINUE
320 CONTINUE
321 323 J={年洤4
322 B/K03,J|=||***|||||
323-3(K04,9J)=|HMA***(J-1)
324 B(KD3,1)=1.0
325 B(KD4,1)=1.0
326 TBR(KD3)=TMIN
327 T BRTK04I=TMAX
330 DET=100
```



```
11,KD4)
340 M=XSIMEQF(21,KD4,1,B,TBR,DET,CRA)
```



```
 11,*)
350 (10) (400,360,380),M
360 WRITE OUTPUT TAPE 3,2020,1TC
370 GO TO 970
380 WRITE OUTPUT TAPE 3,2030,ITC
390 60 10 970
400 40 410 I= = K|4
410 A | | | = | | |, 1)
420 (ALL ATMSP4(KO4,A,MMMAM,JRD,PZERO,GZERO,VARGI
4 2 9 ~ A J M = F L O A T F (J M A X) ~
430 DO 480 K=1,JMAX
440 DT (K)=T(K)-F2(k)
450 |P| (K)=P(K)-P2(K)
460-T2(K)=T|(K)
470 P2(K)=P(K)
4 8 0 ~ S S D T = S S D T + (D T (K) * * 2) / A J M ~
490 WRITE OUTPUT TAPE 3,2040,ITC,ITC
500 DO 520 J=1,K04
510 < - J-1
220 \IR ITE OUTPUT TAPE 3,2050 KK,A||
```



```
 11,JMAX,IP)
540 DO 560 K=1,2
```



```
560 TT2\\MPK)=TE(K)
570 D0 630 J=1.JMAX
580 IF(T2(J)-TE(1))590,610,610
590 T2(J)=TE(1)
600-00 630
810 IF|TE(2)-12||11620.630.630
620 T2\|)=TE(2)
630 CONTINUE
640 CALL SCALE(TT2,JMPK,YT,TT2M,DTT2)
650 CALL LINE (T2,H2,JMAX)
600 KSCB=20*(1)C+1)
670]|T(=|l|AFF|ITC)
680 XS=12/KSCE)
690 YS=#2(KSCB)
700 CALL NUMBER(XS,YS,0.1,FITC,0.0.1)
710 DO 720 K=1gJMAX
720-72(K)=7(K)
721 724 I=1.21
722-00 723 J=1.21
723 R(ITJ)=0.0
724 TRR(I)=0.0
730 IF (DSM-SSDT) 731,750,750
731 SSOT=0.0
740 |F||f(-|M|164,750,750
750 CALL PLOT10.0.11.5:-31
760 00 780 K=1,2
7 7 0 ~ J M P K = J M A X + K ~
780 TT2(JMPK)=TE(K)
790 CALL SCALEITTZ.JMPK,YT,TI2M.DTI2)
```




```
820 (ALL [TNE(T2.12.JMAX)
830 XS=T2(5)-0.4
840 YS=H2(5)
```



```
80 XS = 121201
870 YS=112(20)
880 CALL NUMBER\XS,YS,0.2,F1TC,000,11
 890 CALL PLOT(2.0,-0.9,-3)
 900 CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72)
 910 CALL PLOT (-3.5,-0.1,-3)
 920 (ALL PLOT117.0.0.021
930 CALL P|0T|17.0,11.5,21
940 CALL PLOT10.0,11.5,2)
 950 CALL PLOT(0.0.0.0,2)
 960 CALL PLOT(0.0,0.0,3)
 970 CALL EXIT
1010 FOR NAT(12AO)
1020 FORMAT (615,4F10.3)
1030 FORMAT(5F10.3)
1040 FORMAT(6F10.3)
1050 FORMAT(4E18.6)
1060 FORMAT(6F105)
```




2P, 8 X, 8HPRESSURE $/ /(2 \mathrm{X}, \mathrm{I} 4,3 \mathrm{X}, \mathrm{F} 5,1,4 \mathrm{X}, \mathrm{F} 7.3,4 \mathrm{X}, \mathrm{E} 12 \cdot 5,6 \mathrm{X}, 14,3 \mathrm{X}, F 5 \cdot 1,4 \mathrm{X}$,
3F7.3, $4 \mathrm{X}, \mathrm{E} 12.5,6 \mathrm{X}, \mathrm{I} 4,3 \mathrm{X}, \mathrm{F} 5 \cdot 1,4 \mathrm{X}, \mathrm{F} 7.3,4 \mathrm{X}, \mathrm{E} 12.51)$




```
 1)
2040 FORMAT(1HI,10X,17HITERATION NUMBER,I2,95X,4HPAGE,I2////11X,4OHTEM
 IPERATURE POLYNOMIAL COEFFICIENTS ARE-I
```



```
2060 FORMATH4X IILHSWM OF THE SQUARES OF DEVIATIONS OFGTEMPERATURES DET
```



```
 2.5///2X,5HLEVEL, 2X,6HHEIGHT, 3X,5HTEMP., 3X,7HDELTA T,5X,8HPRESSURE,
 37X,11HDELTA PRES., 4X,5HLEVEL, 2X,6HHEIGHT,3X,5HTEMP., 3X,7HDELTA T,5
```




```
9998 FORMAIT 5X/////2I5/|1X,7E15:8)
9999 FORMAT (15/(1K.7E15.8))
 END
```

CKERI 1 R. R.FOW IO. NO. AAP8 31 JUY 1963 SUBROUTINE KERMI
THIS SURROUTINE COMPUTES THE O2 ATMOSPHERIC ABSORPTION WEIGHTING FUNCTION, ZENITH OPACITY, AND ATTENUATION COEFFICIENT.

## I IPUT DATA REOUIRED

F=FROUENCY GC/SEC
JI=HEIGHT LEVEL NO.
H=HEIGHT IN KM.
T=TEMPERATURE IN DEGREES KELVIN
P. PRESSURE IN OF HG
 PUTED.
THETA AADIR OR ZENITH ANGLF IN RADIANS.
OUTPUT
GAMZATTENUATION COEFIUIENT IN NEPERS/KN.
TAUEZENITH OPACITY IN NEPERS:
WAF = WEIGHTING FUCTIO
JMAX=THE NUMER OF LEVELS AT WHICH WAF WAS COMPUTED.
THE FIRST JMAX LOCATIONS IN THE JI, H, T, AND P MATRICES ARE REPLACED BY THE THE JI, $H$, $T$, AND P CORRESPONDING TO THE LEVELS AT WICH WAF WAS COMPUTED.

Subprogpans re ulifed
ATSP4 OR-ATMSP A KERMLI
LEVEL JC REFERS TO THE LAST LEVEL AT WHICH WAF WAS COMPUTED.
subroutine Kernlilf, THETA)

1/1001)
CO T,P,GAM,TAU, NAF, JI, H, JMAX
FREQUENCY $18(100,1,5), 45(50,1,10), 48(100,1,2), 62(50,1,2), 73(10,1)$,
176(50,1,10),79(50,1,5)
1 1/2 $1 / 1$
$2160=1$

$3 \operatorname{GAM}(1)=\operatorname{GAMO} 2(T(1), P(1), F)$
$4 \operatorname{TAU}(1)=\operatorname{GAM}(1)$
5 SECTH=1.0/COSF(THFIA)
6 FAK=TA| 11

$9 \operatorname{GAM}(2)=G A M O 217(2), P(2)$ FI
8 DO $13 \mathrm{I}=2,4$
$10 \operatorname{GAM}(I+1)=G \operatorname{AMO} 2(T(I+1), P(I+1), F)$

12 TAK=TAU| 11
13.

14 DNAF $=1(1$ WAF $(4)$ - WAF $(2) 1 / 0 \cdot 2) * 1 \cdot 2)+$ WAF 31
15 IC=4
16 JM13 = JMAX-13
17 J $=4$
18 IF ( 1 (1F-0.005) 19.49.49
 LEvels Jex 10 TMROUG JC+12 IN WAF。
$19 \mathrm{JC}=\mathrm{JC}+9$
$G A M(J C)=G A M O 2(T(J C), P(J C), F)$

```
 20GJEGAM||
```



```
 22-24 1=1,4
 23 JCI=JC+I
 GAM(JCI)=GAMO?(T(JCI),P(JCI),F)
 24 GJCI=GAM(JCI)
```



```
 26 TAK=TAU|(隹1)
```



```
 28 DO 32 I=2,3
 29 JCI=JC+I
 30 IAU(JCI)=((1GAM(JCI-1)+2.0*GAM1JCI)+GAM| (CI+1))/4.0)*0.1)+TAU(JCI-
 111
 31. TAK=TAU|毛1|
 32 WAF|JC1)=FEXPF(-TAK*SECTH|)*GAN/JC1)*ESECT#
 33 DO 41 I=1,3
 34 ICI=IC+I
 35 人CI=JC+I
 36 抽|(C||=|||(|)
```



```
 38-T(TCI)=T(JC1)
 381 P(ICI)=P(JCI)
 39 GAM(ICI)=GAM(JCI)
 GIC=GAM(ICI)
 40 |A||(|)}
 TICETAU|ICI
 WAF|(CI)=WAF|OCI
 41 WIC=WAF(ICI)
 42 IC=ICI
 43.JC=JCI
 4460 70 (45,49),100
 45 IF |氐-|M|3|47.46.481
 46 160=2
 4 7 ~ D W A F = (((W A F (I C I) - W A F (I C I - 2)) / 0 . 2) * 1 . 2) + W A F (I C I - 1)
 48 IF (DWAF-0.0005) 19,49,49
 481 100=2

```

        WAF.
        49 JCI=JC+1
        50 GAM(JCI+1)=GAMO2(T(JCI+1),P(JCI+1),F)
        51 TAU(JCI)=(((GAM(JCI-1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI-
        11)
        52-TAK=TAU|JC1)
        53. WAF(JC1)=|EXPF!-TAK*SECTM))*GAM|(JI)*SECTH
        54 ICI=IC+1
        55 J1(ICI)=J1(JCI)
        56 H(ICI)=H(JCI)
        57.7(ICI)=T1JCI)
        58.P||(1)=P|JCl|
        59GAN||(1)=G |N|\||
        60 TAU(IC1)=TAU(JC11
        6 1 \text { WAF(ICI)=WAF(JCI)}
        611 IC=ICI
        612 JC=JCI
        62 IF |JC!-考1| 73,63,63
    C SECTION 4; COMPUTATIOUS FOR LVVEL mAX IN ALL PARAMETERS.
        63-1C1=1(+1
        64 J1(ICI)=J1(JMAX)
        65 H(ICI)=H(JMAX)
    ```

\section*{114}
```

66 T(|C||=T(|mAX)
6)P||C||=P||MAX|
68 GAM(IC I)=GAM(JMAX)
69 TAU(ICI)=(((GAM(JMAX)+GAM(JM1))/2.0)*0.1)+TAU(JC)
70 TAK=TAU(ICI)
71.WAFIICI)=IEXPF(-TAK*SECTH)|*GANICI)*SECTH
72 10 1080
73.6010/76,49):100
76 IF (J-JM13) 78,77,481
77 IGO=2
78 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1)
79 IF (DWAF-O O5) 19,49,49
80 \MAX=1C1
81 RETUN

```

```

JWFM=LEVEL NO OF WEIGHTING FUNCTION PEAK.
HWFM=HEIGHT OF WEIGHTING FUNCTION PEAK, KM.
TWFM=KINETIC TEMPERATURE AT THE LEVEL OF THE WEIGHTING FUNCTION
PFAK. DFG. K.

```

```

                HG*
    TRR=BRIGHTNESS TEMPFRATURE.
WFM=MAXIMUM VALUE OF WEIGHTING FUNCTION.

```

\section*{SUBPROGR S REOURED ATMSP4 KER 1: AM BTEMPZ.}
```

            DIMENSION AR(12),A1(20)% F1(30),ZA(30),T(1001)OP(1001),GAM(1
        1001),TAU(1001),WAF(1001),J1(1001),H(1001),J2(1001),H2(1001),T2(100
        21),P2(1001),HH2(1003),TT2(1003),ARR(12),RATA(800),HE(2),TF(2)
    ```

```

        COM T,P,GAM,TAU,WAF,JI|H., MAX
        CALL PLOTS(BATA/800) 800)
        10 READ INPUT TAPE 2,1010,(AR(1),1=1,12)
        30 READ INPUT TAPE 2,1030,HMIN,HMAX,PZERO,GZERO,VARG,KD1,KD2,JRD,TB
        40 READ INPUT TAPE 2,1040,(TE(I),HE(I),I=1,2),YH,XT
        50 RFAD INPUT TAPE z-1050,(AI|I)I=1,KD1)
    ```

```

        70 ITE OUTPUT TAPE 3,1010.|AR||||=1012|
    ```

```

        100 WRITE OUTPUT TAPE 3,1040,(TE(I),HE(I),I=1,2),YH,XT
        110 WRITE OUTPUT TAPE 3,1050,(AI(I),I=1,KDI)
    ```

```

130 CALL ATMSP4\#KO1,A1, NIMAX,JRD,PZERO,GZERO,VARGI
131 JNX2= गMAX
132 DO 136 K=1,JMX2
133 J2(K)=J1(K)
134 H2(K)=H(K)
135-12(K)=T(K)
136 P2(K)=P(K)
137 WRITE OUTPUT TAPE 3,2000,(AR| 1),1=1,121
165 DO 320 I=1,KD2
166 F=FI(I)
170A=ZA(I)**0.0174533
171 JMAX= JMX2
17200176 N21,MAX
173 J1(M)= J2(M)
174 H(M)=H2(M)
175 T(M)=T2(M)
176 P(M)=P2(M)
180 EALL KERMLI|F,A)
190 (ALL BTEMP2/TB,TBR,A)
199 Z=ZA|II
200 WFM=WAF(1)
201 M=1
21000 270 J=2.JMAX
220 \AFJ=| |
230 [1F|AFJ-WFM/270,250,250
250 M=J
260 WFM=WAFJ
270 CONTINUE
280 JWFN=JI(M)
290 検 = (M)
300 TITFM=T(M)
310 P\FM=P(M)
320 WRITE OUTPUT TAPE 3,2010,F,Z,TBR,WFM,JWFM,HWFM,TWFM,PWFM
330 JM1=JM X2+1
340 JM2 =JMXK2+2
350 |\#2|MM1) \#E|||
360 1"\#2/|M2)=\#\#(2)
370-TT2(JM1)=TE(1)
380 TT2(JM2)=TE(2)
390 CALL SCALE(HH2,JM2,YH,HH2M,DHH2)

```



```

430 CALL LINETT2,+2品MM\21
440 DO 460 I=1,12
450 IR=13-I
460 ARR(IR)=ARIII
470 (All PlOTI-1:0:-0.75:-3)
480 YB=YN+1.5
490- AB=*T+1.5
500 CALL PLOT(0.0,YB,2)
510 CALL PLOT(XB,YB,2)
520 CALL PLOT(XOO,2)
530 CALI PLOT10.0.0.0.21
540 CALL PLOTI2:0,0,05:-31
550 (ALL SY BL4(0.0.0.0.0.15,ARR(12):0.0.721
560 CALL PLOT(XB,0.0,-3)
570 CALL FXIT

```

1051 (12101
1030 FOTI SF10.3,314. 10.31
1040 FOR AT (6F10.31
1050 FORMAT(4E18.6)
1060 FORMAT (6F10.5)
2000 FORMAT (141, 28x, 12A6)

 3 HEIGHT, KINETIC TEMPERATURE, AND PRESSURE AT THE HEIGHT CORRESPON 4DING TO THE WEIGHTING FUNCTION PEAK.//5XIIHLEVEL NO. \(=913 / / 5 \times 8\) HHEI \(5 \mathrm{GHT}=, F 6.2,3 H K M / 15 \times 13 H T E M P E R A T U R E=, F 7.3,7 H O E G . K . / 15 \times 10\) HPRESSURE \(6=12.5\) OF END
THIS PROGRAM COMPUTES BRIGHTNESS TEMPERATURE AND FINDS THE ALTI－ TUDE OF THE PEAK OF THE WEIGHTING FUNCTION FOR A GIVEN ATMOSPHERE， FREQUENCY NADIR ANGLE EXIERNAL SOUREE TEMPERATURE．
```

            INPUT DATA REQUIRED
            NAME, DATE AND ID CARD
                KD1 THE NUMBER OF TEMPERATURE VS HEIGHT DATA POINTS.
                    TD(I) TEMPERATURE DAIA POINI.
                    2011) CORESPOU|G |GHT OATA POINI.
            KO2=THE NUMBER OF BRIGHTESS TEMPERATURE VS. FREOUENCY AND
                    NADIR ANGLF POINTS.
            HMIN=THE MINIMUM HEIGHT OF INITIAL AND DERIVED TEMPERATURE
                PROFILFS, KM.
            HMAX-THE MAXIMUM HEIGHT OF INITIAL AND DERIVED TEMPERATURE
    ```

```

            TRDESENSE OF RADIONETER OR ANTENNA.
                                    JRD=1, SENSE IS UP FROM TMIN TO MAX.
                                    JRD=2, SENSE IS DOWN FROM HMAX TO HMIN.
            PZERO=GROUND LEVEL VALUE OF PRESSURE, MM OF HG.
            GZERO=GROUND LEVEL VALUE OF GRAVITATIONAL ACCELERAIION,
                EM/SEC**2*
            VARG=RATE OF CHANGE WITH HEIGHT OF GRAVITATIONAL ACCELERA-
                TIONGCM/SEC**2/*M*
            TMS=BRIGHTNESS TEMPERATURE OF SOUCE LYING OUTSIDE THE ATMOS-
                PHFRE, DEG K.
            TB=I IPUT BRIGHTNESS TEMPERATURES, DEG K.
            FI=1 FUIT FR OUCIES:GCISEC.
            ZA=I NADIR ANOLS, DEG.
    ```
 OUTPUT DATA
 JWFM=LEVEL NO OF NEIGI ING FUNGION PEAK.

 TVEMEXINETICTEMPERATURE AT TIE LEVEL OFTIE WEIGUING FUCTI O
 PEAK DEG•K•
 PWFM=PRESSURE AT THE LEVEL OF THE WEIGTING FUNCTION PEAK, MM OF
 HG.
 TBR PRIGTESS IEMPERATURE.

 SUBPROGRAMS REQUIRED ATMSP5,KERNL1. AND BTEMP2•
 DIMENSION AR(12),ZD(50),TD(50),FI(30),ZA(30),T(1001),P(1001),GAM(1

 EOU V (

 CALL PLOTS (BATA 800\(), 800)\)
 10 READ INPUT TAPE 2,1010,(AR(I), \(I=1,12\))

 60 READ I NPUT TAPE \(2,1060,(F 1 / 1), Z A 11), 1=1, K D 21\)
 70 WRITE OUTPUT TAPE 3,1010,(AR(I),I=1,12)
 90 WRITE OUTPUT TAPE \(3,1030, H M I N, H M A X, P Z E R O, G Z E R O, V A R G, K D 1, K D 2, J R D, T B\)


```

130 CALL ATMSP5(KDI,ZD,HMIN,HMAX,JRD,PZERO,GZERO,VARG,TD)
131 JMX2=JMAX
132ه136 K=1, JMX2
133 ग2(K)=小|(K)
134 (12(k) \#N()
135-72(K)=7(K)
136 P2(K)=P(K)
137 WRITE OUTPUT TAPE 3,2000,(AR(I),I=1,12)
138 WPITE OUTPUT TAPE 3,2030

```

```

16500 320 I=I ND2
166 F=F1(1)
170 A=ZA(I)*0.0174533
171 JMAX = JMX2
172 DO 176 M=1, IMAX

```

```

174 |(|)=|z|
175-F(M1=72(M)
176 P(M)=P2(M)
180 CALL KERNLI(F,A)
190 CALL BTEMPZITBSTBRA)
199,z=ZA||I|
200 WFM=WAF|1I
201 M=1
210 DO 270 J=2,JMAX
220 WAFJ=WAF(J)
230 IF(WAFJ-WFM) 270,250,250
250M=J
260 \FM=NAFJ
270 CONTINUE
280 JWFM=J1(M)
290 HWFM=H(M)
300 TWFM=T(M)
310 P M=P(M)

```

```

330 JM1= \MX 2+1
340 JM2 = JM M2+?
350 HH2(JM1)=HE(1)
360-HH2(JM2)=HE(2)
370 TT2(㐌N|ITE||
380 TTZ(TM2)=TE(2)

```

```

4 0 0 ~ C A L L ~ S C A L E ( T T 2 , J M 2 , X T , T T 2 M , D T T 2 ) ~
410 CALL AXIS(0.0,0.0,10HHEIGHT, KM,10,YH,90.0,HH2M,DHH2)

```

```

430 CALL LINETT2,H2,\MMX2]
440-460 I=1,12
450 AR=13-1
460 ARR(IR)=AR(I)
470 CALL PLOT(-1.0,-0.75,-3)
480 YB=YH+1.5
490 X 位 XT+1.5
500 CALL PLOT|0-0,YB?2)
510 CALE PLOf(XB,垥,2)
520 CALL PLOT (XB,0.0,2)
530 CALL PLOT (0.0,0.0,2)

```
```

    540 CALL PLOTIZ.00,0.05,-31
    550 CALL SYM 410.0.0.0.0.15,ARR|121.0.0.721
    560 CALL PLOTIXR,0.0,-3)
    570 CALL EXIT
    1010 FORMAT(12A6)
1030 FORMAT (5F10.3,314,F10.3)
1040 FORMATIGF10.31
1050 FORMATIGF10.31
1060 FORMAT (6F10.5)
2000 FORMAT(1H1,28X,12A6)
2010 FORMAT(5X///5X11HFREQUENCY =,F8.4,7HGC/SEC.,//5\times13HNADIR ANGLE =,F
16.2.8HDEGREES.//5\times24HBIGHTNESS TEMPERATURE =,F8.3.15HOEGRESS KELV

```

```

        3 HEIGHI. KINETIC ITMPERATURE, AND PRESSUREAT THE UEIGUIT CORRESSON
        40ING TO THE WEIGNTING FUNCTION PEAK.//5*I1HLEVEL NO. 
        5GHT =,F6.2,3HKM.//5X13HTEMPERATURE =,F7.3,7HDEG. K.//5X1OHPRESSURE
        6 =,E12.5,9HMM OF HG.1
    2030 FORMAI|H|)
    ```

```

        END
    ```

\section*{ACKHOWLEDMMTS}

I would first like to thank Di. M. L. kieeks for suggesting and encouraging me to pursue this research. Dr. Neeks also made generous contributions of his time in discussing technical matters with me, directing my research efforts and in obtaining technical and financial support for this work.

I would also like to thank my thesis advisor, Professor Reginald E. Newell for his interest in this work and his invaluable assistance in the uriting of this manuscript.

There have been niny other people who have given me encouragement and technical assistance in various aspects of this work. I would especially like to thanir De. Sander Weinreb and Dr. Tor Bagfors of Lincoin Laboratory, M.I.T., and Professor F. B. Hildebrand of M.I.T. The corputational aspects of this wark vere performed at the M.I.T. Lincoln Laboratory Computation Center. I appreciate very much the assistance of the people in the computer eroup and I would especialiy like to thank Mr. Joseph A. Obrien, Mr. Keith T. Russeil and Miss Betty M. Lee for the assistance in prograraning.

Also, I would like to thaak the Drafting Department at Lincoln Laboratory for preparing the figures in this work.

The temperature measurenents used to obtain Amwospuind 2 were obtained from an unpublished manuscript by W. Mordberg and W. Smith of Rational Aerouatics and Space Administration entitled "Rocket Measurenents of the Structure of the Upper Stratosphere and Mesosphere." (This manuscript was supplied to Professor Mewell in April 1963.)

The temperatures used to obtain ATMOSPHMRE 3 and AMMOSPHERS 4 were from cross-sections drawn by Wes. Dorothy Berry for Professor Newell's Upper Atmosphere class.

Pinajly, I would like te equess uy appreaiation to Mr's. Carol A. Jordan and Mise E. Judith Porter who typed the manumeript.

\section*{RHFERIMCES}

Dicke, H. H., "he Neasurement of Thanal Taliation at Microvave Frequencies," Rev, Sci, Instr:, 17, 7, pp \(56 . .275\), Juy 1946.

Eheberger, D, and E. F. Thetz, "Some Considerations Concerning the Measurement of the Aumospheric Temperature Piela by Dlestronacoetio Means," IRE Prancautions on hil 1ectronias, gp 275-25, oct. 1261.

Hegfors, T., Hotes on quantim infiecta in Radioneter Observatiuns, private compunication.

Hildebrand, P. B., Intrciuetion to Kumerical Anslyaia, Chapter 7, Mocraw[4112, 1956.

Hildebrand, F. B., Methods of Appliad Mathenatice, Prenticemail, 1958.
Hocs, D. C., and A. A. Sampar, "The Effect on Bain and Hater Vepor on Sky Moise at Centimeter Wavelengths," Beil System Tecinical Jour.,

maplan, L. D., "Inference of Atmospheric Structure from Remote Radiation Mossurements," J. Optical soc. Axa*, 49, pp 1004-1007, 1959.

Kaplan, L. D., "The Spectroscope a Tool for Atmospheric Sounding by Satellites," Tech. Report NO. 5, Atmon, Rai., Proj., M.I.T. Toper given at the Fall Instrument-Autowation onference and Fxhibit of the Inctrument society of Axaerica, Bept. \(96-30,1960\).

King, J. I. F.,"Deduction of Vertical Themul Structure of a Planetary Atmosphere from a jatellite," Aerosciences Lab., Gen. Bnec.Co., Tech. Info. Ber. R59sD477, Dec. 1959.

King, J. I. F., "Keteorological Inferences from Satellite Radionetry I," Journal of Atmos. Bef., 20, 1No. 4, pp 245-250, July 1963.

Meaks, M. L., "Atmospheric Daission and Opecity at Millifmeter Waveleagths Due to Oxygen," J. Geophys. Res., 66, No. 11, pp 7749-3757, Nov. 1961.

Maeks, K. L., and A. E. Lilley, "The Microwave Spectiru of Oxygen in the Barth's Atmosphere," J. Geophys. Res., 68, NO. 6, pp 1683-1703, March 2963.

Steinberg, J. L. et J. Lequeux, Radioastronomie, Collection Scさence et Progrés Ho. 4, punod, Paria, 1960.

Hark, D. Q., "On Indirect Temperature Soundings of the Stratosphere from Satellites," J. Geophys. Res., 66, pp 77-32, 1960.

Yammoto, G., "Mumerical Method for Estinating the Stratospheric Tumperature Distribution from Satellite Measurements in the \(\mathrm{CO}_{2}\) Band," J. cf Meteor., 18, No. 5, pp 581-588, 0ct. 1961.```

[^0]: 4 ac (sigacycle) $=10^{3}$ megacyoles.

