ATMOSPHERIC TEMPERATURE STRUCTURE FROM THE MICROWAVE EMISSION OF OXYGEN

by

B. RICHARD FOW B.S., Drexel Institute of Technology (1961)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

at the

FREMITILIBRARIES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY January, 1964

Signature of Author Department of Meteorology, 20 January 1964

Accepted by

Chairman, Departmental Committee on Graduate Students

ATMOSPHERIC TEMPERATURE STRUCTURE

FROM THE MICROWAVE EMISSION

OF OXYGEN

by

B. Richard Fow

Submitted to the Department of Meteorology on January 20, 1964 in partial fulfillment of the requirements for the degree of Master of Science.

ABSTRACT

Previous work relating to the subject of the determination of atmospheric temperature profiles by radiometric soundings at infrared and microwave frequencies is reviewed. An attempt is made to show the progress and development of knowledge in this field. As suggested by Meeks and Lilley (1963) the microwave emission of atmospheric oxygen is investigated as a possible tool for the determination of the atmospheric temperature profile from zero to fifty kilometers. An iterative method for solving the integral equation relating the kinctic temperature profile and the emission measurements is proposed. Investigations designed to determine the best frequencies and madir angles at which to make the measurements are undertaken. The iterative solution technique is compared with a simpler zero order solution and the former is demonstrated to be superior. A near limit in realizable accuracy of the iterative solution or inversion technique is determined. The effects of boundary conditions and the initial guess on the final result are explored. The iterative inversion technique is applied to ideal data from realistic model atmospheres. The results are seen to be quite good. Uncertainties and instrumental effects are then considered. The iterative inversion technique is applied to non-ideal data. The results obtained indicate the bandwidth and stability limitations that will be necessary in the radiometers ultimately to be built to make emissions measurements. The effects of uncertainties at different frequencies is explored. Experiments are performed to see if there is any difference between errors of the same magnitude but different sign.

> Thesis Supervisor: Reginald E. Nevell Title: Assistant Professor of Meteorology

Research Supervisor: M. Littleton Meeks Title: Staff Member, Lincoln Laboratory

TABLE OF CONTENTS

Section		Page No.				
I	Introduction and Review of Previous Work	1				
II	Statement of the Problem and the Proposed Method of Solution	24				
III	Determination of the Best Frequencies and Nadir Angles for Measurements	30				
IV	Solution of the Integral Equation	41				
V	Use of the Iterative Inversion Technique on Ideal Data	52				
VI	The Influence of Instrumental Effects and Un- certainties on the Iterative Inversion Procedure	61				
VII	Conclusions	74				
VIII	Suggestions for Future Work	78				
Appendices						
I	Polynomial Curve Fitting	80				
II	Weighting Function Analysis	86				

92

121

123

III

Acknowledgments

References

Computer Programs

SECTION I

INTRODUCTION AND REVIEW OF PREVIOUS WORK

Meteorology is essentially pragmatic science. The ultimate purpose of scientific studies made in the name of meteorology is to extend the range and accuracy of weather forecasts or, more generally, predictions of the state of the entire atmosphere.. Most meteorologists would agree that before truly long range and accurate forecasts can be made, the forecaster must know the initial conditions of the atmosphere over the entire globe.

The density of weather observation sites is generally related to population density. North America, Europe, parts of Asia, and Australia are adequately covered while South America, Africa and in general the oceanic regions are poorly covered. In fact, there exist large expanses of ocean areas which are completely without any type of meteorological reporting stations.

It is virtually impractical and also very costly to provide world-wide coverage by conventional techniques.¹

¹ Conventional techniques include balloon-radiosondes for soundings in the lowest 30 km of the atmosphere and rocket radiosonde and rocket grenade soundings for the region from about 30 km to 80 km. The radiosonde sensors are direct measuring and simple devices. The temperature sensor is a thermistor, the pressure sensor an aneriod capsule and the humidity sensor a relative humidity sensitive resistor. The rocket grenade method determines temperature and winds through measured time differences in the arrival of the sound waves at ground based receivers. At the present time rocket grenade firings are limited in number because of the large expense involved. The cost of operating a weather ship for one year is of the order of several million dollars and several hundred such ships would be required to give even marginal coverage of the oceans. Additional land stations, though not as expensive as ships are nevertheless very costly. The use of airplanes or balloons to make direct measurements similar to those that are made by ground stations or ships is equally expensive.

The development of artificial earth satellites as observation platforms and the success of the TIROS weather satellite program have given impetus to the idea of using satellites to fill the void in our data acquisition network. It now appears that satellites can cover large areas of the earth's atmosphere in a short time and at a reasonable cost. However, since the satellite must operate outside the earth's atmosphere, most of what today is considered meteorologically useful information, that is temperature, pressure water vapor, and other trace substance distributions, must be measured by indirect methods. Unfortunately, the most useful meteorological information, the wind field, does not at present appear to be measureable to any satisfactory degree by indirect means. However, in all but the tropical and part of the subtropical latitudes, at least the geostrophic² wind

² In the middle latitudes, i.e., 30° to 60° North or South, the horizontal pressure gradient in the atmosphere and the coriolis force essentially balance one another. Hence at a given altitude, the horizontal wind can be calculated from the horizontal pressure gradient, density and coriolis parameter. This is known as the geostrophic approximation. For more details on this subject any introductory text in dynamic meteorology may be consulted.

field can be reasonably well deduced from the temperature, pressure and humidity distributions.

Since the geostrophic scale theory indicates that the approximation of a hydrostatic atmosphere is quite tenable, our primary interest is directed to the determination of the temperature and humidity distributions and the ground level pressure. Here we are indeed fortunate, because these three parameters are intimately associated with the electromagnetic radiation emanating from the earth's atmosphere.

In this work we shall be concerned with the determination of the vertical thermal structure of the atmosphere in the lowest fifty kilometers. We shall assume horizontal homogeneity of the atmosphere over relatively small square areas of about eighty kilometers or fifty miles on a side. It might be added at this point that the usefulness of the temperature structure is not limited to weather forecasting. It is a vital aspect of our environment and as such effects many human endeavours.

Before proceeding to examine the previous work in this subject, let us briefly review the theoretical foundations of the determination of temperature structure from the radiative emission of the atmosphere. The thermal radiation in the earth's atmosphere may be calculated from the differential equation of radiative transfer. A derivation and general discussion of this equation may be found in Steinberg et Lequeux (1960). We shall assume the radiative transfer equation in the following form:

$$\frac{d}{dz}(\mathbf{I}_{v}) = -K_{v}(\mathbf{I}_{v}) + \epsilon_{v}$$
(1)

where $I_{ij} = monochromatic intensity of radiation emerging from the atmosphere$

- K = monochromatic absorption coefficient
- ϵ_{ij} = monochromatic emission per unit length
- z = vertical coordinate.

We next define the following quantity

$$\tau_{y}(2) = \int d\tau_{y} = - \int K_{y} dz = \int K_{y} dz$$

as the monochromatic optical depth of the atmosphere when looking down from a height H to a height z. Using the definition of optical depth, we apply the integrating factor $e^{-T_{ij}}$ to equation (1) and solve it obtaining the very general result

$$\tau_{v}(z)$$

$$I_{v}(H) = I_{v}(z) e^{-\tau_{v}(z)} + \int_{0}^{\varepsilon} \frac{\varepsilon_{v}}{K_{v}} e^{-\tau_{v}} d\tau_{v} \qquad (2)$$

If we now assume that local thermodynamic equilibrium obtains and z is ground level; i.e. z = 0, then equation can be written as

$$\tau_{v}(0) = I_{v}(0) e^{-\tau_{v}(0)} + \int_{v} J_{v}(\tau_{v}) e^{-\tau_{v}} d\tau_{v}$$
(3)

where $J_{v}(\tau_{v}) = \frac{\varepsilon_{v}}{K_{v}n_{v}^{2}}$ = source function; i.e. Planck radiation function.

Equation (3) says that the intensity that we measure at altitude H is the sum of the intensity of a source lying underneath the atmosphere $I_{V}(0)$ diminished by the negative exponential of the optical depth of the atmosphere plus the self emission of all infinitesimal layers between H and the ground each diminished by the negative exponential of the optical depth between it and H. Equation (3) was derived with the assumption that the observer is at an altitude H looking down to the ground. A similar equation results if the observer looks up from H. That equation is

$$T(\infty)$$

$$I_{v}(H) = I_{v}(\infty) e^{-T_{v}(\infty)} + \int_{0}^{t} J_{v}(\tau_{v}) e^{+T_{v}} d\tau_{v} \qquad (4)$$

. .

where $I_{ij}(H)$ is now the downward flux at H and $I_{ij}(m)$ is the intensity of a source just above the atmosphere.

Now the optical depth τ_{ij} is a function of altitude and the monochromatic absorption coefficient. But the monochromatic absorption coefficient is a function of the temperature profile, pressure profile, and the composition profile of which the water vapor profile is a part. We have already stated that the hydrostatic assumption is generally a very good assumption, therefore, we shall employ it. We shall now further assume that the concentration profiles and ground level pressure are known. Hence the pressure profile with height may be expressed exclusively by the temperature profile. Thus the monochromatic absorption coefficient and in the case of thermodynamic equilibrium the monochromatic emissivity are functions of the temperature profile.

In this light let us reconsider the solution of equation (1). Hence we must solve the equation

$$\frac{d\mathbf{I}_{v}}{dz} = -K_{v}\mathbf{I}_{v} + \varepsilon_{v}$$
(5)

We apply the integrating factor $e^{K_{V}z}$ and obtain

$$\frac{d}{dz} (\mathbf{I}_{v} e^{\mathbf{K} v z}) = \varepsilon_{v} e^{\mathbf{K} v^{z}}$$
(6)

Now for thermodynamic equilibrium we have

$$\mathbf{\varepsilon}_{\mathbf{j}} = \mathbf{K}_{\mathbf{j}} \mathbf{J}_{\mathbf{j}} \tag{7}$$

where J_{y} is the Planck black body radiation function. Substituting (7) into (6) and integrating from z = 0 to z = H the height of the observation platform there obtains

$$I_{i}(H) = I_{i}(0) e^{-K_{i}H} + \int_{0}^{H} J_{i}K_{i}e^{-K_{i}(H-z)} dz$$
(8)

where the functional dependences of K, and J, on the temperature profile T(z) are understood, i.e., $K_v = K_v(T(z))$ and $J_v = J_v(T(z))$. Equation (8) is a non-linear integral equation in the independent variable z, the parameter v and implicitly the unknown function T(z). That which is measured by the radiometric instrumentation on the satellite is $I_v(H)$ versus v. If the complete $I_v(H)$ spectrum is known then a unique and exact T(z) can be found which satisfies equation (8) for all v.

Kaplan (1959) was the first one to propose the use of remote radiation measurements to deduce the thermal structure of the atmosphere. His proposed method required ten high resolution (10 cm⁻¹ minimum resolution) measurements made from above the atmosphere at carefully selected frequencies in the 15 μ CO₂ vibrational band. The ten frequencies selected were on the high frequency side of the 15 μ corresponding to them ranged $\frac{1}{3}$ unit optical depth is the d which makes \int_{0}^{1} K_v dz = 1

from near zero to distances greater than the height of the observing platform. Thus the emission at each of the ten frequencies would be characteristic of the emission from each of ten layers of a cloudless atmosphere ranging from the ground to the very top layer of the atmosphere. Clouds were assumed to be black bodies and hence the tops were considered to be the lowest level from which radiation emanated.

In this proposal, it was concluded that the measurement of the emission into space at ten frequencies would permit the determination of the mean temperature of each of the ten layers, subject to the following provisions: (1) that within each layer the relative variation of temperature with height is specified; (2) that the temperature of the underlying surface be determined by measurements further out in the band wing where the unit optical depth is very large; and (3) that for a given frequency the emission should originate from approximately the same atmospheric layer for all temperature profiles.

In his next work (1960), Maplan discusses in more detail the interpretation of the radiation measurements in terms of the departures of temperatures from some standard atmosphere with pressure as the independent variable. He divided the atmosphere into six layers and specified several possible constant lapse rates within each layer. This gave him a library of continuous temperature distributions from 1000 mb (assumed to be ground level) to 50 mb above which the atmosphere was considered to be isothermal. He also assumed a CO_2 concentration of 2.6 mm per mb at standard temperature and pressure. Each model atmosphere emits radiation, S_D , whose frequency dependence

is a function of the temperature dependence. Given a set of actual radiation readings, S, taken by a satellite spectroscope, the model which "best fits" the observed data is chosen as the one for which $(S - S_{\perp})^2$ is a minimum.

A more detailed solution is then obtained using a perturbation technique by expanding the fractional departures of the observed radiation from that of the "best fitting" model in terms of the temperature departures in each layer. The first order or binear departures are solved for directly from the resulting set of linear equations. These results are then used to obtain the quadratic or second order departures. The process is repeated iteratively until a satisfactory convergence is obtained. Third and higher order departures can be neglected if there are a sufficient number of models to obtain a reasonable first approximation.

Kaplan tested the method by using one of his models as assumed observations. He chose the following seven frequencies: 675, 685, 695, 700, 705, 710 and 730 cm⁻¹. He did not obtain convergent solutions in all the test cases of his method. The results of the cases that did converge were quite good.

Some experiments with systematic and random errors were also performed. It was found that temperature errors were approximately proportional to the magnitude of the systematic noise. However, the inclusion of random errors produced temperature errors that were much worse and oscillatory. Kaplan felt that a better selection of frequencies might reduce the effects of the random errors and if this was not sufficient, the number of atmospheric layers would have to be reduced.

Other conclusions reached by Kaplan were as follows. If ground reflectivity at 15 µ can be neglected, then the outgoing radiation for an overcast condition is the same with an isothermal layer from the top of the clouds to the ground. Hence the method can yield the level and temperature of cloud tops. With the addition of cloud pictures, the partially overcast case could be handled. Finally, the most accurate results will be obtained for each layer if the entire atmosphere is sounded.

King (1959, 1963) examines the radiative transfer equation and the solutions given by equations (3) and (4) in the light of modern mathematical concepts. He shows that if

$$e^{-T(0)} \ll 1$$
 or $e^{-T(\infty)} \ll 1$

then (3) or (4) respectively are Laplace transforms of $J_{\nu}(\underline{x}_{\nu})$; the transform variable being τ_{ν} , the optical depth or in the case of a horizontally stratified atmosphere τ_{ν} sec 0, where 0 is the zenith or madir angle (see Fig. 1). Hence with the transform variable a function of frequency through τ_{ν} or a function of sec 0, the inversion may be performed in terms of frequency or sec 0. He further points out that since such a transformation is an integration operation, its inversion must be in essence a differentiation operation. Hence a multiplicative effect on errors in the data might be expected. Thus King's great contribution to this subject is to bring to light such theoretical mathematical considerations as are involved in this problem.

Wark (1961) proposed an abbreviated version of Kaplan's experiment. He started with the equation of radiative transfer in the following form:

$$\mathbf{I}_{\mathcal{J}}(\mathbf{H}) = \mathbf{J}_{\mathcal{J}}(\mathbf{T}_{2}) + \int_{\mathbf{T}_{2}}^{\mathbf{T}_{0}} \tau_{\mathcal{J}} \frac{\partial[\mathbf{J}_{\mathcal{J}}(\mathbf{T})]}{\partial \mathbf{T}} dt$$

$$\mathbf{I}_{2}$$
(9)

H
-
$$\frac{H}{K}$$
 dz
where $\tau_{V} = e$ = transission function
 T_{2} = kinetic temperature at z = H
 T_{0} = kinetic temperature at a point below where $\tau_{V} \sim 0$

Equation (9) is easily derived from equation (3) after assuming that the $\tau_{ij}(0)$ of equation (3) is essentially infinite for the frequencies under consideration. He limits the investigation to the stratosphere and divides this region into three layers. Now if we use pressure instead of temperature as the dependent variable, we can rewrite equation (9) as

$$I_{v}(H) = J_{v}(T_{2}) + \int_{P_{2}}^{P_{1}} \tau_{v} \left[\frac{\partial J_{v}}{\partial (\log P)} \right] d (\log P)$$

$$+ \int_{P_{1}}^{P_{0}} \tau_{v} \left[\frac{\partial J_{v}}{\partial (\log P)} \right] d (\log P)$$
(10)

The layers are then assumed to be isothermal which is expressed by

$$\partial J_{\mathcal{J}} = \text{constant} = A$$
 (11)

It is then further assumed that since the frequency range of the measurements is small, we can write for the chosen three frequencies (i.e. 680 cm^{-1} , 690 cm^{-1} , and 695 cm^{-1})

$$J_2 = \frac{3}{2} J_1 \tag{12}$$
$$J_3 = \frac{3}{3} J_1$$

where 2_{2} and 8_{3} are constants which are computed for $T = 250^{\circ}$ K. Substitution of (11) and (12) into (10) at the three frequencies yields

$$I_{1} = J_{1}'(T_{2}) + A' D_{1}' + A'' D_{1}''$$

$$I_{2} = \theta_{2} J_{1}'(T_{2}) + A' D_{2}' + A'' D_{2}''$$

$$I_{3} = \theta_{3} J_{1}'(T_{2}) + A' D_{3}' + A'' D_{3}''$$
(13)

where the D's are the integrals of the form $\int Td(\log P)$ which results from the substitution of (11) into (10). $J_1(T_2)$, A' and A'' are obtained from the solution of (13). From $J_1(T_2)$ we obtain T_2 and it can be shown that from A' and A'' we can obtain $DT/\partial(\log P)$, the temperature lapse rate.

Wark computed emissions for three assumed atmospheres and then used these as inputs to his method. His results also were quite good. There was no indication in Wark's work as to whether or not he made any analysis of the effects of random or systematic errors in the input data.

Fryberger and Uretz (1961) also made a study of the determination of the atmospheric temperature profile. They developed an equation relating the radiometric profile to the temperature profile from concepts and terminology familiar to electrical engineers. They were concerned with the thermal structure in the lowest 10,000 feet of the atmosphere. They assumed a horizontally stratified atmosphere and chose to invert the transfer equation using zenith angle rather than frequency as the transform variable. Radiometric profiles were computed for several atmospheres. A solution for the temperature profile of the form

$$T = \begin{cases} T_{1} = T_{0} + k_{1}h & 0 \le h < 500 \\ T_{2} = T_{0} + k_{1}500 + k_{2}(h = 500) & 500 \le h < 1000 \\ T_{2-} = T_{0} + k_{1}500 + \dots + k_{20}(h = 9500) & 9500 \le h < 10000 \end{cases}$$
(14)

where h is the altitude in feet, was assumed. The transform equation they dealt with was essentially equation (8) integrated from the ground up to 10000 feet instead of from H down to 0, generalized to a horizontally stratified atmosphere (i.e. heights were multiplied by sec 9), and with the resulting first term $e^{-K_y(10000)}$ considered to be negligible. They then substituted equation (14) into their expression for J_y and used an assumed standard profile in K_y . Thus equation (8) is linearized and tractable. They then solved the resulting linear system for the coefficients k_i in equation (14). The profile corresponding to these coefficients then served as the second approximation which is used in K_y and the process is repeated iteratively until the k_i 's converge. They performed their inversions in infrared spectrum, but the frequency was not specified. Their results were good; the derived temperature profiles reproduced the temperature profiles from which the radiometric profiles were obtained well except where the original temperature profile had considerable and varying curvature. They did not indicate whether or not a systematic and/or random error analysis was performed.

Yamamoto (1961) described another approach to solving the so called Kaplan problem. We shall now consider his method in some detail for it is the method employed in this work. Observations are assumed to be made from above in the following four bend regions of the 15 μ CO₂ band: 665-670, 675-680, 686-691 and 692-697. A uniform CO₂ distribution is assumed. Equation 3 may then be written as

$$\mathbf{I}_{\mathcal{Y}}(0) = - \int_{0}^{\mathbf{p}_{g}} \mathbf{J}_{\mathcal{Y}}(\mathbf{p}) \frac{d\tau_{\mathcal{Y}}(\mathbf{p})}{d\mathbf{p}} d\mathbf{p}$$

$$\mathbf{0}$$
(15)

where the independent variable is pressure with p_g the surface pressure. τ_N of equation (15) is the transmission function as defined in equation (9). Also as in equation (9) the monochromatic optical capth at the lower limit of the sounding is essentially infinite. Also, since all measurements are made at frequencies near the center of the 15 μ band, it is assumed that

$$\mathbf{J}_{\mathbf{y}}(\mathbf{p}) = \alpha_{\mathbf{y}} \mathbf{J}(\mathbf{p}) \tag{16}$$

where the α_{j} 's are constants and $J_{j}(p)$ is the Planck function at a wave number near the center of the band. Substituting (16) into

(15) there obtains

$$\mathbf{I}_{j}^{2}(\mathbf{0}) = = \begin{bmatrix} \mathbf{p} \\ \mathbf{s} \\ \mathbf{J}(\mathbf{p}) & \frac{d\tau_{j}(\mathbf{p})}{d\mathbf{p}} & d\mathbf{p} \\ \mathbf{0} & (17) \end{bmatrix}$$

where
$$\mathbf{I}_{i} = \frac{\mathbf{I}_{i}}{\alpha_{i}}$$

Ŧ

Yamamoto's technique is to express $J_{V}(p)$ by a polynomial of a limited number of terms (actually 4) each term having one unknown parameter, its coefficient. He then computes the transmission function using the ICAO standard atmosphere. Hence by inserting the assumed form of J(p) into equation (17), its constants can be determined by inverting the linear system

$$I_{v_{1}}(0) = -a_{1} \int_{0}^{p} P_{1}(p) \frac{d\tau_{v_{1}}}{dp} dp - a_{2} \int_{0}^{p} P_{2}(p) \frac{d\tau_{v_{1}}}{dp} dp$$

$$-a_{3} \int_{0}^{p} P_{3}(p) \frac{d\tau_{i}}{dp} dp - a_{i} \int_{0}^{p} P_{i}(p) \frac{d\tau_{i}}{dp} dp \qquad (18)$$

11

where the P(p)'s are the polynomial terms with coefficients a_1 , a_2 , a_3 and a_4 respectively. It should be emphasized at this point that the integrals can be evaluated since a temperature profile (i.e. ICAO Standard Atmosphere) has been assumed insofar as the computation of $d\tau/dp$ is concerned. The process may be repeated with the temperature profile corresponding to the derived coefficients used in computing $d\tau/dp$, and so on iteratively. Yamanoto suggested this but did not do it.

His main concern in this work was to determine a variable by which the Planck function corresponding to the atmospheric temperature distribution, in general, could best be represented by a polynomial of as few terms as possible. He also tried different representations for the transmission function, for example, numerical values, Legendre polynomials and Chebyshev polynomials. He noted that none of the polynomial representations were markedly superior to the others. The Legendre polynomials however did simplify the computations.

The method and the various polynomials were tested by using as input data the calculated emission from atmosphere with various temperature profiles. These profiles were taken from actual radiosonde soundings. The derived profiles reproduced well the mean features of the actual atmospheres. Details such as the height of the tropopause did not show up very well. In all of the calculations, the effects of water vapor and ozone on absorption at 15 μ were neglected. No error studies were conducted.

Meeks (1961) first proposed using the millimeter spectrum of oxygen to sound the atmosphere. This idea was elaborated in a later work, Meeks and Lilley (1963), in which details of atmospheric oxygen absorption and emission centered at 60.0 kilo-megacycles per sec was considered. The microwave spectrum of the oxygen molecule 0_2^{16} is a result of fine-structure transitions in which the magnetic moment assumes

various directions with respect to the rotational angular momentum of the molecule. In comparison, the fine structure of the 15 μ CO₂ band is due to the rotational fine structure of the molecule while in its vibratory state.

At the microwave frequencies the emission from the earth's atmosphere, which is considered to be a black body at temperatures on the order of 300° K, is adequately represented by the Rayleigh Jeans approximation to black body emission. Thus we can write for J_{ij} , the source function in the previous equations,

$$J_{ij} = 2 kT / \lambda^2$$
(19)

Also since radiometers are generally calibrated with sources at certain reference temperatures, it is customary to measure power in terms of an equivalent temperature. This so called brightness temperature is defined by the expression

$$I_{v} = 2kT_{b}(v)/\lambda^{2}$$
(20)

If we now substitute equations (19) and (20) into (8) there obtains

$$T_{b}(v) = T_{s}(v) e^{-K_{v}H_{\mu}} + \int_{0}^{H} T \{K_{v} e^{-K_{v}(H-Z)\mu} \mu\}dz$$
(21)

where we have generalized to an arbitrary madir angle 0, by assuming a horizontally stratified atmosphere with $\mu = \sec 0$ (see Fig. 1) and where T_{e} = the brightness of a source lying outside the atmosphere.

As pointed out by Meeks and Lilley (1963), if the brightness temperature of the underlying surface of the atmosphere is close to zero or if the exponent K H is much greater than 1, then the bracketed quantity of equation (21) can be regarded as a weighting function that specifies the contribution of the state temperature T(h) to the brightness temperature $T_h(v)$. Let us now consider the shape of this function when viewing the atmosphere from above and at a frequency which is not on a resonance line. At low altitudes the value of K, is very large due to the pressure broadening effects, however, concomitantly the exponential term is very small; hence the weighting function has a small value. As we rise to higher altitudes K decreases, but so does the quantity K (H-z); hence the value of the exponential term rises and thus so does the value of the weighting function. As z approaches N, the exponential approaches its maximum value 1, but at the same time decreasing effects of pressure broadening are causing K_{ij} to approach zero; hence the weighting function approaches zero again. A typical weighting function is shown in Fig. 2.

Meeks and Lilley (1963) determined the shapes of twelve weighting functions at six different frequencies and at two madir angles for each frequency. It is shown that at frequencies of intense absorption, the half width is smaller and the altitude at the peak points is higher than at frequencies of less intense absorption. It is also shown that the altitude at the peak point rises slightly with increasing madir angle.

The weighting function concept shows us that the brightness temperature at a given frequency is indicative of state temperatures

primarily in the region between the half maxima of the weighting function. Consequently Meeks and Lilley proposed that the weighted mean temperatures of atmospheric layers about 10 km thick could be determined from brightness temperature measurements. The mean height of these layers would depend upon the nominal frequency of the measurement. They pointed out that at frequencies between strong lines bandwidth limitations on the radiometer would be more severe than at frequencies between weaker lines or lines more widely separated. This results from the fact that the mean height of the weighting function and its width at half-maximum is strongly dependent upon the absorption coefficient. The absorption in turn is relatively constant over bandwidths on the order of tens of megacycles in between lines. The width of this constant region determines the bandwidth. A set of typical parameters for probing the atmosphere from 0 to 30 km are given in the paper by Neeks and Lilley.

The aforementioned provides a very good starting point for this work - the objective of which is to demonstrate the possibility of using the microwave oxygen emission spectrum to sound the atmosphere. Additional frequencies need to be investigated as possible operational frequencies of measurement. Also it should be demonstrated at least with computed results that weighting functions do not change significantly with different atmospheric temperature profiles. Having obtained a set of frequencies for measurements which are considered to be the best possible in some sense, Yamamoto's inversion technique ought to be tried in the microwave region. Finally, an elementary study of the effects of random errors in the data should be attempted.

There are several reasons why it might prove more desirable to use the microwave spectrum rather than the infrared spectrum in sounding the atmosphere. In the first place in the infrared region there are no amplifiers; there are only direct detection devices. Years of work in radar, communications and radio astronomy has placed the state of the art of millimeter wavelength coherent detectors and amplifiers considerably shead of that of the micron wavelength region. These facts more than offset the factor of about 1000 in intensity that infrared wavelength emission from the atmosphere has over microwave emission.

In the second place, scattering by atmospheric aerosols from the molecular scale to the scale of water droplets in clouds is less premounced in the microwave region than in the infrared region. In the case of Rayleigh type scattering, which is the case for any air, the scattering coefficient at the infrared wavelengths is 10^{12} greater than the microwave scattering coefficient. In the case of fog or stratus type cloud layers which contain water droplets whose radii are on the order of 5 μ , the scattering coefficient for infrared radiation in the 15 μ region is about an order of magnitude or more larger than that for the 5 mm microwave region. However, it should be noted at this point that there is some evidence to indicate that absorption of microwaves by cloud drops and precipitation may be very appreciable (see Hogg and Semplak, 1959).

Another advantage the microwave spectrum has over the infrared spectrum lies in the ability of the observer to discern more details of line structure. This, of course, translates into better resolution in the temperature versus height profile.

There is an advantage in measuring at microwave frequencies which arises from considerations of the minimum attainable error in a radiometer. In the case where $T \gg H W/k$ where H is Planck's constant, w the frequency and k Boltzmann's constant, the minimum error of is given approximately by

$$\Delta T \simeq \frac{T_{eff}}{\sqrt{\beta T}}$$
(22)

where ΔT_{rms} = uncertainty in radiometer reading T_{eff} = source temperature plus receiver noise temperature T = integration time θ = bandwidth.

Equation (22) is a statement of the accuracy with which we can measure a noise like signal over bandwidth β in a time τ . It is derived by considering the input signal to be sum of harmonics of a basic signal and then summing the fluctuations in each harmonic. The in phase and quadrature composents of each elementary signal are assumed to be independent. The assumption of white noise is also employed. A very good drivation of equation (22) is given in Dicke (1946). However, when $T \sim F w/k$, the in phase and quadrature components of each elementary signal are no longer independent, they are instead non-commuting variables, and their energy can thus assume only discrete values. In this case Hagfors (1963) has shown that the minimum error is given by

$$\Delta T_{\rm rms} = \frac{\frac{1}{2} \operatorname{eff}}{\sqrt{6}\tau} \frac{\sinh X}{X} \sqrt{1 + 2 \operatorname{Tan} h \frac{X}{2}}$$
(23)

where $X = \pi v_{c}/kT$.

In the classical limit (when $X \rightarrow 0$) equation (23) reduces to equation (22). Now if we assume that we are given noiseless instruments at both 15 μ and 5 mm wavelength then we would find that for source temperatures of about 300[°]K the classical limit obtains at the millimeter wavelengths but not at the infrared wavelengths. Hence at 15 μ there are errors due to quantum effects which are not significant at 5 mm.

The 5 mm oxygen spectrum is also superior to the 15 μ carbon dioxide spectrum for determining the temperature profile in the following respect. Our knowledge of the absorption properties of a gas depend upon how well we know the distribution of that gas. If the troposphere and stratosphere the oxygen distribution is certainly more uniform and better known than the CO₂ distribution in the same region.

Finally, at 5 mm, there are fewer important complications due to other emitting gases than at 15 μ where we have to consider contributions from ozone and water vapor.

SECTION II

STATEMENT OF THE PROBLEM AND THE

PROPOSED METHOD OF SOLUTION

In the most concise terms our problem is to convert measurements of brightness temperature versus frequency from the atmosphere into estimates of the kinetic temperature versus height profile. The source of the emission we shall be concerned with is the magnetic moment transitions of molecular oxygen in the atmosphere. The frequencies of these transitions are located near sixty kilomegacycles.

The satellite radiometer system which we shall have to work with initially will probably have the following characteristics:

- 1) It will measure the emission at several discrete frequencies.
- It will have a narrow bandwidth at each frequency, hopefully on the order of one to ten megacycles.
- 3) The antenna will have a response pattern similar to that shown in Fig. 3. The beamwidth of the half power point of the antenna will be very small, hopefully on the order of a degree.

Equation (21) is the form of the radiative transfer equation most applicable to the data which we shall obtain. It is re-written here for convenience

$$T_{b}(v, \Theta) = T_{s}(v) e^{-K_{v}H_{u}} + \int_{0}^{H} T(z) K_{v}e^{-K_{v}(H-z);i} \mu dz \qquad (21)$$

-25-

212

olerre

NEEK

where $T_{b}(v, 0) \approx$ brightness temperature at a frequency v and madir angle

- $T_{g}(v)$ = equivalent temperature of the ground
- K. = monochromatic absorption coefficient
- μ **sec 0, 0 = nadir angle**
- v = nominal frequency of the measurement
- T(z) = kinetic temperature profile

We shall refer to the quantity $K_{\mu}e^{-K_{\mu}(H-Z)\mu}\mu$ of equation (21) as a weighting function or kernel.

If the kernel were not a function of the temperature profile then equation (21) would be linear, but this is not the case. The temperature profile does enter the kernel in a rather complicated fashion through the absorption coefficient as shown below

$$K_{v} = \frac{C_{1} p[T(z)]}{\frac{2}{v} [T(z)]^{3}} \sum_{N} S_{n} [T(r), v] e^{-E_{n}/kT(z)}$$
(24)

where p[T(z)] = pressure profile, assumed hydrostatic $<math>S_n[T(r), v] =$ frequency and line width dependent matrix element (C.F. Meeks and Lilley, 1963) $E_n =$ excitation energy of the nth line

In deriving equation (21) it is assumed implicitly that there is no scattering. In order to avoid complications due to non zero reflectivity of the ground we shall restrict the investigation to frequencies and madir angles for which $K_{\rm c}H \approx > 1$. Thus the equation whose solution we shall be concerned with is

$$T_{B}(\nu, \Theta) = \int T(z) WF[T(z), \nu, \Theta] dz$$

$$O$$
(25)

where

$$WF[T(z), v, \Theta] = K_{e} e^{-K_{v}(H-z)\mu} \mu$$

We shall employ a method closely related to that used by Yamamoto (1961) to solve equation (25). Our method is different in that we are dealing with an inversion to the temperature profile and we assume boundary conditions at both z = 0 and z = H. Also we shall perform the iterations which Yamamoto suggested but did not perform.

First we let T(z) be represented by a polynomial of a finite number of terms each having an undetermined coefficient, i.e.

$$T(z) = a_0 + a_1 z + a_2 z^2 + ... + a_k z^k$$
 (26)

The total number of terms must be two less than the total number of independent brightness temperature versus frequency and madir angle measurements. This polynomial representation of T(z) is substituted into the integrand of equation (25) for the function T(z) which appears explicitly.

Next we assume a fully determined temperature profile and substitute it into the function WF in equation (25). This determined temperature profile is actually our first guess at what the real profile might be. Normally this first guess would be some average or standard atmosphere such as the U.S. Standard Atmosphere 1962. The first guess might very well be a constant for lack of anything better.

We next assume that the boundary conditions T(0) and T(H) have been determined. Hence by the appropriate substitution of equation (26) into equation (30) there obtains the following linear system:

$$\begin{cases} T(0) = \mathbf{a} & H & H \\ T_{\mathbf{B}}(v_{1}, \theta_{1}) = \mathbf{a}_{0} & \int \mathbf{z}^{0}(WF)_{1} d\mathbf{z} + \dots + \mathbf{a}_{k} \int \mathbf{z}^{k} (WF), d\mathbf{z} \\ 0 & 0 & 0 \\ T_{\mathbf{B}}(v_{2}, \theta_{2}) = \dots & H & H \\ T_{\mathbf{B}}(v_{k-1}, \theta_{k-1}) = \mathbf{a}_{0} & \int \mathbf{z}^{0} (WF)_{k-1} d\mathbf{z} + \dots + \mathbf{a}_{k} \int \mathbf{z}^{k-1} (WF)_{k-1} d\mathbf{z} \\ 0 & 0 & 0 \\ T(H) = \mathbf{a}_{0} + \mathbf{a}_{1}H + \dots + \mathbf{a}_{k} H^{k} \end{cases}$$

$$(27)$$

The integrals in (27) are evaluated using the first guess at the temperature profile and the coefficients a through a are determined by solving simultaneously the resulting linear equations.

The temperature profiles corresponding to these coefficients are substituted back into the functions $(WP)_i$ (i = 1, 2 ... k) of (27) and the system of equations are solved again. Successive iterations of this type are performed until the following condition is satisfied:

$$\left(\begin{array}{c} \frac{1}{H} \int \left[T^{(P)}(z) - T^{(P-1)}(z) \right]^2 dz \right)^{1/2} \leq M$$
 (28)

 $T^{(P)}(z)$ and $T^{(P-1)}$ are the pth and p - 1th derived temperature profile. M is some arbitrary constant which is a measure of the difference between the pth and p - 1th derived T(z).

By satisfying (28) we guarantee convergence in the sense of (28) to a k^{th} degree polynomial representation of the kinetic temperature profile which satisfies best the radiometric data. We must be aware of the fact that convergence in this context does not mean convergence to the best possible solution of (25).

We intend to investigate certain questions relating to this problem given that we must limit ourselves to five measurements of brightness temperature versus frequency and nadir angle and measurements of the two boundary conditions. This is a total of seven measurements which is reasonable for a satellite experiment. The resulting limitation to a sixth degree polynomial also tends to keep the calculations at reasonable member. Hence the problem can be handled by standard FORTRAN II programming on an available IBM 7094 Data Processing System in a reasonable time (approximately 10 minutes).

We shall consider the following questions:

- 1) What frequencies and madir angles are the best at which to make brightness temperature measurements?
- 2) Do the associated weighting functions change their location on the height axis with different temperature profiles?
- 3) What is the ultimate in accuracy that we can expect from our method?
- 4) What is the effect of a poor initial guess for the temperature profile?
- 5) What are the effects of poorly determined boundary conditions?
- 6) What are the effects of random errors in the data?

SECTION III

DETERMINATION OF THE BEST PREQUENCIES AND

NADIR ANGLES FOR MEASUREMENTS

Let us first examine the effect of different temperature profiles on a weighting function corresponding to a fixed frequency and nadir angle. The characteristic shape of a weighting function is independent of the temperature profile. The shape depends only on the fact that the absorption coefficient is always positive. The width at half maximum points and the altitude of the maximum point are however dependent upon the temperature. Analytic investigation of this problem is virtually impossible because of the complicated manner in which the temperature profile enters into the weighting function.

The following experiment was thus performed to obtain at least a partial solution to the above problem. The altitudes of the maxima or peaks of the weighting functions were computed for several different representations of atmospheres. The results are given in Table I. The temperature profiles used are shown in Fig. 4.

The results seem to indicate that the temperature profile does not have a marked effect on the altitude of the weighting function peaks. Plots of the weighting function show the same is true for its effect on the width of the weighting function. Even though these conclusions were deduced from a small sample of an infinity of temperature profiles which exist in the atmosphere, they are true in general in view of the following. The various temperature structures which have been observed in the earth's atmosphere are not very different from one another. At any given altitude, temperatures at various points

A Comparison of the Altitudes of the Weighting Function Peaks						
Frequency Ge/sec.	Nadir Angle Degrees	ATMOS. 1 Psak Alt. Kn	ATMOS. 2 Poak Alt. XM	ATMOS, 3 Peak Alt. Km	ATMOS, 4 Poak Alt. XM	
55+6500	0.0	14.80	15.20	15.10	14.50	
59.3000	0.0	20.94	21.30	21.00	20.70	
60.3200	30.0	34.88	34.40	34.50	34.70	
60.3300	0.0	31.13	30,50	30,60	30.90	
60.3200	0.0	27.15	26,80	26.70	26,90	

TABLE I

Description of the T(h) profiles used above.

ATMOS PHERE	1	***	A six degree polynomial fit to the U.S. Standard Atmosphere, 1962, 0-50 Km.
ATMOS PHERE	2	-	A six degree polynomial fit to Radiosonde and Rocket grenade data taken at Norfolk, Va.,
Atmos phere	3	-	July 14, 1961, 0-50 Km. A six degree polynomial fit to data representing the mean of the winter 1957 profiles at 12° N,
A TMOSPHERE	4	-	O-50 Km. A six degree polynomial fit to data representing the mean of the winter 1957 profiles at 58 N, O-50 Km.

These profiles are illustrated in Figure 4.

Note: Go 1000 megacycles.

on the earth very rarely differ by more than 100°K. The average temperatures of the air columns from 0 to 100 kilometers at these points differ by even less. These facts make our conclusion concerning the effects of temperature profiles at least plausible.

The weighting function peak altitudes and their widths at half maximum are dependent on frequency and madir angle. With respect to frequency, the closer one is a line center, the higher the altitude at which the weighting function will peak and the wider it will be. With respect to madir angle the larger it is the higher will be the altitude at which the Weighting function will peak and the wider it will be. These results are deduced by inspection of the expression for the weighting function as defined in equation (25). We note that large values of K or μ make the exponential factor more influential at high altitudes, hence the weighting function peaks at higher altitudes. The larger values of K or μ also cause the exponential term to change more repidly with altitude, thus causing the weighting functions to be marrow.

With ATMOSPHERE 1, Fig. 4 as a model atmosphere and Fig. 5 from Meeks and Lilley (1963) as a guide, the height of the weighting function peak, the kinetic temperature corresponding to the aforementioned height and the brightness temperature were determined for various frequencies and madir angles. The results are presented in tabular and graphical form in Appendix II. The tabular listing is ordered according to increasing height of the weighting function peak. We shall show that this arrangement is very useful in selecting a set of frequencies and madir angles at which to take measurements.

The apparent discontinuity in the frequency domain implied by the figures in Appendix II is not real. We decided not to make any computations at frequencies closer than 5 mc/sec. to a line center.

.

34 Figure

, · ·

This was done because the absorption model did not include the Zeeman effect which must be included for frequencies near the line centers. Hence it would be incorrect to extrapolate the results given in Appendix II into the 10 mc/sec band centered on the lines. We emphasize this fact by cross-hatching the 10 mc/sec bands which makes the frequency domain seem discontinuous.

In view of the shape of the weighting function and equation (25) we can see that a brightness temperature for a given frequency and nadir angle is the weighted average of the kinetic temperature profile. The altitudes at which temperatures are weighted most heavily occur between the altitudes of the half maximum points of the weighting function. This means that any brightness temperature by itself contains information mostly about kinetic temperatures in a ten to fifteen kilometer layer centered at the peak of its corresponding weighting function. This is an important fact to bear in mind when selecting the frequencies and nadir angles at which to take measurements.

A simple criterion for the selection of the measuring points is to choose them such that the corresponding weighting functions distribute themselves uniformly over the height region in which the kinetic temperature profile is desired. Such a criterion should provide for a sounding of kinetic temperature that weights equally all altitudes except those near the boundary. It can thus be seen that the table of Appendix II is conveniently arranged for this purpose. There is however, one qualification which must be observed when selecting the measuring points. Any real radiometer which we may use to make these measurements will have a finite non zero bandwidth. This may lead to problems if the chosen frequencies are close to line centers. We must first of all be sure that the band pass of the radiometer

.j5

does not cause it to be sensitive at the frequency of a line center. We must also be aware of the fact that the weighting function peak altitudes change very rapidly with frequency near line centers (see the figures in Appendix II). This means that measurements of brightness temperatures near line centers would represent the average kinetic temperature of layers thicker than ten or fifteen kilometers. The exact thickness would depend upon the bandwidth of the radiometer. The larger the bandwidth the larger is the height interval over which we average.

In general, measurements near line centers are to be avoided if possible. Hence, the process of selecting measuring points may involve a compromise between uniformity of weighting function distributions and the proximity of the measuring frequency to a line center. To serve the needs of the latter, we make use of the figures in Appendix II. These figures however show that to make soundings in the regions above thirty kilometers we are forced to make measurements near line centers.

The frequencies and madir angles selected for the determination of the temperature profile in the first fifty kilometers of the atmosphere, were chosen using the compromise procedure. They are listed together with the altitudes of their weighting function peaks in Table I. The weighting function peaks were determined for the four temperature profiles of Fig. 4. The weighting functions corresponding to these frequencies and madir angles and computed from the temperatures of ATMOSPHERE 1 are shown in Fig. 6.

It should be thoroughly understood at this point, that to say that five measuring points can be selected at which any temperature profile can be sounded and approximately deduced is nonsense; unless

٠

`

as we have shown, the atmospheric layer to which each measuring point corresponds is approximately the same for any temperature profile which is likely to be encountered. We recall that Kaplan (1959) made a similar statement.

If we examine the table of Appendix II we note that many of the measuring points would produce nearly identical weighting functions. This means that if we measured brightness temperature versus frequency continuously (except at the 10 mc/sec bands at the line centers) from about 53.0 to 63.0 GC/sec⁴, much of our data would be redundant. It is desirable to obtain redundant data for the purpose of checking measurements. However, to utilize redundant data most efficiently there would be required an inversion procedure different from the one described in this work. Since it is not likely that the first generation satellite radiometer will be capable of taking redundant data, we shall not pursue this topic any further.

Let us now consider a group of weighting functions as a set rather than each as separate and complete. Each weighting function shows the relative contribution of the kinetic temperature at every altitude to the brightness temperature corresponding to the frequency and madir angle of the measurement. If at each altitude we sum the values of each weighting function in a set, then we shall obtain the relative weight of the various kinetic temperatures in the determination of the corresponding set of brightness temperatures. We shall call this function so derived the influence function. For the distribution of weighting functions shown in Fig. 6, the corresponding influence function is shown in Fig. 7.

GC (gigacycle) = 10³ megacycles.

Had it not been necessary to make the compromises described previously, the weighting function distribution of Fig. 6 would have been more uniform and the resulting influence function more nearly constant in the ten to forty kilometer region. It is not unlikely that if we were to delete the 60.330 GC/sec measurement, the influence function would be flatter in the ten to forty kilometer region. A flat influence function would cause all input data to be weighted equally in the inversion process. Of course, there may be instances when this is not desirable.

The local weather forecaster who is primarily interested in the lowest ten kilometers of the atmospherein detail, would prefer an influence function which peaks in this region. The national and hemispheric forecasters require less detail in the profiles, but they do need to determine a profile over a larger altitude range. A flat influence function from about twenty or thirty kilometers to the surface would be most useful to them. The research meteorologists, especially those interested in the upper atmosphere require varying amounts of detail, but definitely would like to have more regularly scheduled soundings up to one hundred kilometers. The measurements could be selected to give an influencefunction specifically suited to their needs.

SECTION IV

SOLUTION OF THE INTEGRAL EQUATION

Before we examine in detail the proposed iterative inversion scheme, let us consider a simpler inversion scheme. In this technique we simply assign to the measured brightness temperature a certain altitude. This altitude is that of the peak of the weighting function corresponding to the frequency and madir angle of the measurement. The temperature which is used in determining this altitude is ATMOSPHERE 1.

The following observations indicate that we ought to try this technique:

- 1) The weighting functions are very nearly symmetrical about a horizontal axis through their peaks.
- 2) The brightness temperature is very nearly the weighted average of the kinetic temperature profile in a ten to fifteen kilometer layer centered at the altitude of the weighting function peak.
- 3) If the weighting function were exactly symmetrical and the temperature profile were a linear function of height in the layer between the half maximum points of the weighting function, then the average temperature in the layer would be equal to the temperature at the height of weighting function peak.
- 4) The altitude and width of a weighting function are very nearly independent of the temperature profile.

Statement (3) is actually a mathematical fact. It is included in the above in order to emphasize the importance, with regard to this inversion scheme, of the other statements. This simple inversion

scheme will hereafter be referred to as a zero order approximation to the inversion of brightness temperatures or zero order inversion.

An example of the zero order inversion technique is shown in Fig. 8. The solid line is ATMOSPHERE 1. With the temperatures of ATMOSPHERE 1 input to equation (25), the brightness temperatures for some of the frequencies and madir angles listed in Appendix II are computed. Each point in Fig. 8 corresponds to one of the frequencies and madir angles listed in Appendix II except those whose weighting functions peak above 39.0 Km.⁵ The ordinate of each point is the altitude of the peak of the weighting function; the abscissa is the brightness temperature.

The results of this inversion are good. We note however that in the regions where ATMOSPHERE 1 has considerable curvature the errors are larger. This is because the approximation which states that kinetic temperature at the height of the weighting function peak equals the average kinetic temperature of the layer between the half maximum points of the weighting function, is less valid for regions of large curvature in the temperature profile.

Fig. 8 shows the best result we could hope to obtain with the zero order inversion. The optimum result obtains in this case because the brightness temperatures and weighting function peak altitudes

⁵ This exclusion was made to avoid errors in brightness temperature which result from the fact that of 50.0 Km, the upper limit of our integrations over height, these weighting functions still have values which are appreciable with respect to their maximum value.

were correlated. Now let us try the zero order inversion in a simulated real situation, i.e. one in which we measure only the brightness temperature and must assign altitudes to these temperatures which correspond to weighting function peaks computed for a standard atmosphere. We shall simulate this real situation by computing brightness temperatures from equation (25) using ATMOSPHERE 2 and the frequencies and madir angles used in the previous example. The corresponding heights that we shall assign to these brightness temperatures, will be the weighting function peak altitudes as determined with ATMOSPHERE 1, our standard atmosphere.

The results of this inversion are shown in Fig. 9 as the small black dots. The solid line is ATMOSPHERE 2 which is included for comparison. The results of this inversion are surprisingly very good. The larger deviations in the thirty five to forty kilometer region are probably due to termination of the integrations at fifty kilometers. In view of our success with the simple zero order inversion we can proceed with confidence to the more complicated inversion technique described in section II.

We have already discussed the details of the iterative inversion procedure in section II. In the remainder of this section we shall look at some of the intermediate results and interesting details of the procedure.

With the temperatures from ATMOSPHERE 1, brightness temperatures were computed from equation (25) for the frequencies and madir angles listed in Table I. These brightness temperatures, together with boundary conditions corresponding to T(0) and T(50) of ATMOSPHERE 1, were used as input to the iterative inversion procedure. The initial

or first guess of the temperature profile was an isothermal profile of 289 K. An isothermal profile is assumed to be the worst guess that anyone would ever have to make in practice.

Fig. 10 shows the intermediate and final results of this inversion. This figure is an exact reproduction of the plotted computer output during the inversion. The numbers on the curves designate the order in which they were derived in the series of iterations. The fourth derived profile, which is hardly distinguishable from the third, is a sixth degree polynomial representing the temperature versus height profile which best fits, in the sense of equation (28), the input data. M, the root mean square deviation of the (p + 1)th derived profile from the (p)th derived profile, was set at 0.5°K. We note in Fig. 10, that even the second derived profile is not too different from the third and fourth. The fourth derived profile is virtually identical to ATMOSPHERE 1. Hence we conclude that a poor though reasonable initial guess for T(z) will have very little, if any influence on the final result. Judging from other results not given here, the only effect a poor initial guess for T(z) seems to have is to delay convergence for one or two iterations.

Let us now consider one of the best possible results we might ever hope to obtain with this procedure. We simulate the following conditions and perform an inversion which will give us the answer:

- 1) We assume a horizontally stratified atmosphere in which the absorption theory set forth by Meeks and Lilley (1963) is exactly obeyed.
- We assume an infinitely accurate radiometer and antenna system for measuring brightness temperature versus frequency and madir angle.

3) Finally, by some quirk of nature, we assume that the temperature

profile between zero and fifty kilometers is the sixth degree polynomial termed ATMOSPHERE 2.

With these assumptions we compute brightness temperatures from equation (25), with ATMOSPHERE 2 and the frequencies and madir angles of Table 1 as input data. We use these brightness temperatures and the T(0) and T(50) of ATMOSPHERE 1 as input to the iterative inversion scheme. Our initial guess for T(z) is ATMOSPHERE 1.

The results of this inversion are shown in Fig. 11. Also shown in this figure for comparison are ATMOSPHERE 2 and the actual data points from which the polynomial ATMOSPHERE 2 was determined. We conclude after examination of this figure, that this best possible result is indeed excellent. We also note that with measured, rather than assumed, boundary conditions we could do even better.

In the development of the inversion procedure, we discovered that we could not obtain convergence to a solution unless we specified boundary conditions. This might be considered unusual in the light of the following. A linear integral equation has the boundary conditions of its unknown function contained in the statement of the equation (see Hildebrand, "Methods of Applied Mathematics"). Equation (25) is nonlinear, however in the process of substituting and successive approximations for T(z) in $MP \{T(z), v\}$ we in a sense linearize the equation. Nevertheless we find that it is necessary

In a practical situation in the absence of data at the boundaries we could do no worse than to use the boundary conditions of a standard atmosphere. We here arbitrarily have chosen to illustrate this situation in this experiment.

6

to place boundary conditions on T(s) in order to have the iterative solution technique converge to a solution. Thus it seems that a nonlinear integral equation when linearized in the above manner is still intrinsically different from a genuine linear equation. To confirm this conclusion we applied the iterative solution technique to a very simple linear integral equation and an equally simple nonlinear integral equation. In the case of the former convergence to the correct solution occurred without specification of boundary conditions. However in the case of the nonlinear integral equation, divergence from the correct solution occurred in the absence of specified boundary conditions.

We later discovered, quite by accident, that the boundary values we specified at 0 and 50 kilometers had little effect on the inverted profile in the ten to forty kilometer region as the following experiment will illustrate. From equation (25) and the frequencies and nadir angles of Table 1 we computed brightness temperatures with a quadratic interpolation of the raw data of ATMOSPHERE 2 used as the input T(z). From these brightness temperatures together with T(0)and T(50) of the 1962 U. S. Standard Atmosphere as input and boundary conditions respectively, we performed the inversion.

The result of this inversion together with others in which we perturbed the 1962 U.S. Standard Atmosphere boundary conditions by \pm 30.0 ^oK in various combinations are shown in Fig. 12. We note that in the central thirty kilometers of these profiles there is little difference between them. Thus we conclude that at points whose distances from the boundaries are at least equal to the width of a weighting function, the boundary values exert little influence.

VIATION 3	+ 30.0 °K + 30.0 °K
VIATION	+ 30.0 °K - 30.0 °K
VIATION	- 30.0 °K +30.0 °K
VIATION	- 30.0 °K - 30.0 °K

SECTION V

USE OF THE ITERATIVE INVERSION TECHNIQUE ON IDEAL DATA

Let us now consider a series of experiments which are designed to test the performance of the inversion technique under the assumption of ideal data. We shall also assume, as in the previous experiments, that we are dealing with a horizontally stratified atmosphere in which oxygen is the only emitter at the frequencies of concern and that the absorption theory set forth by Neeks and Lilley (1963) is obeyed exactly. As before, our instrumentation is assumed to have no inherent random errors. Thus we can again use equation (25) to simulate the data that would be received.

The frequencies and madir angles used with equation (25) are those given in Table 1. For the temperature profile input, a quadratic interpolation of the raw data from which ATMOSPHERES 1 through 4 inclusively were determined is used. These quadratic interpolations appear as the heavy solid lines in Figs. 13 through 16 inclusive. The brightness temperatures thus determined (they correspond to errorless data) were used as input to the inversion routine. The boundary conditions selected were T(0) and T(50) of the U.S. Standard Atmosphere, 1962. The initial guess of the temperature profile was ATMOSPHERE 1.

The results for each set of data and their corresponding interpolated profile are shown as the long dashed curves in Figs. 13 through 16 inclusive. Since the output of the inversion routine is

in essence a six degree polynomial we have included on the appropriate figures, ATMOSPHERES 1 through 4 for the sake of easy comparison. We have also calculated as a measure of comparison the following quantities separately to the zero to fifty and ten to forty kilometer region;

- 1 The root-mean-square deviation of the interpolated data from the polynomial curve fit by the method of least squares.
- 2 The root-mean-square deviation of the curve obtained by the inversion of brightness temperatures from the interpolated data.
- 3 The root-mean-square deviation of the curve obtained by inversion of brightness temperatures from the polynomial curve fit by the method of least squares.

The results of these calculations appear in Table II. We note that the curves deduced from brightness temperature reproduce rather well the interpolated data from which the brightness temperatures were obtained. The fit seems to be better in the ten to forty kilometer region than in the zero to fifty kilometer region. The results in Table II confirm the impressions obtained in our visual inspection of Figs. 13 through 16. The curves deduced from brightness temperatures show a favorable comparison in the ten to forty kilometer region with the curves of polynomials fit to the original data by the method of least squares.

The fact that our results tended to be better in the ten to forty kilometer region than in the zero to fifty kilometer region in part reflects the effect of the influence function. However, the other factor influencing results in the boundaries of the region of our sounding is, of course, boundary conditions. We chose to put into

TABLE II

		<u>0 t.o</u>	<u>50 Km</u>	Range	10 to) 40 Km	Range	
T (2)		PIMS1 OK	RM52	°K	PMS1 %	RMS2 %K	°K	
ATMOS PHERE	1	1.49	3.14	2.75	1.53	0.650	1.59	
A TNOS PHERE	2	6.45	13.8	10.7	6.58	3.42	5.32	
ATMOSPHERE	3	2.07	5 .56	5.31	2.33	1.82	1.72	
A TMOS PHERE	4	1.86	8.69	7.95	1.63	0.846	1.08	

- RMS₁ The root-mean-square deviation of the interpolated data from the polynomial curve fit by the method of least squares.
- RMS₂ The root-mean-square deviation of the ourve obtained by the inversion of brightness temperatures from the interpolated data.
- RMS3 The root-mean-square deviation of the curve obtained by the inversion of brightness temperatures from the polynomial curve fit by the method of least squares.

the inversion routine the standard boundary conditions because it has not been decided at this point whether or not the first satellite radiometer system should be equipped to measure the temperatures of the boundaries. To measure these boundary temperatures radiometrically would require very narrow bandwidth radiometers for the upper boundary and a more thorough understanding of the reflection and emission of the surface and cloud layers for the lower boundary. We thus defer these problems for the present time by using standard boundary conditions.

We also made a few calculations in an attempt to answer the question, "How much do we gain by going from zero order inversion to the iterative inversion procedure?" The zero order inversion and the iterative inversion results on the brightness temperatures corresponding to ATMOSPHERE 2, were compared. Because of the discrete or point like nature of the zero order inversion, the comparison was carried out at five altitudes which correspond to the weighting function peaks for the five frequencies and madir angles of the measurements. One should recall that according to the rules of the zero order inversion one must use peak altitudes which are computed with a standard atmosphere.

The results of this comparison at the five altitudes is presented in Table III. Also shown are the root-mean-squares of the two sets of deviations. The results tend to indicate that there is gain in accuracy with the use of the iterative technique.

TABLE III

Comparison of Zero and Iterative Inversions

Frequency	Nadir	H(7,0)	Ta(H)	$T_{B}(\nu, \Theta)$	∆T _{Ba}	T1(H)	DT1R
Go/800.	den.	im	0. K	° K	°.K	° IT	° K
55 .65	0.0	14.70	212.419	217.593	+5.174	214.687	÷2,268
59.30	0.0	20.90	217.115	218,142	-1.027	217.847	-0.732
60.32	30.0	34.70	249.677	249.913	-0.236	247.214	-2,463
60.33	0.0	31.50	235.678	238.158	2.460	236.584	+0 ,906
60,37	0.0	27.10	227.075	228,629	-1.554	227.362	-0.287

 $\sqrt{\frac{\xi}{H_{1}}} \frac{1}{(\Delta T_{Ba})^{2}} = 2.70 \text{ K} \qquad \sqrt{\frac{\xi}{5}} \frac{1}{(\Delta T_{10})^{2}} = 1.59 \text{ K}$

- ATBA: deviation of brightness temperatures from assumed actual temperature for zero order.inversion.
- $\land T_{B1} = deviation of brightness temperature from assumed actual temperature for iterative inversion technique.$
- Ta(H) : the temperature of ATMOSFHERE 2 at height H; the assumed actual temperature.
- Haltitude of weighting function peaks as computed with Atmosphere 1.
- $T_{\mu}(\nu, \theta)$: brightness temperature as computed with ATMOSPHERE 2.
- T1(H) the temperature at height H as obtained by the iterative inversion of the set of $T_B(\gamma, \sigma)$'s.

SECTION VI

THE INFLUENCE OF INSTRUMENTAL EFFECTS AND

UNCERTAINTIES ON THE ITERATIVE INVERSION PROCEDURE

In any real measurement program we shall have to deal with, or limit as much as possible, the effects of our non ideal instruments on the data. We have already discussed radiometer uncertainties in Section I, the Introduction. An uncertainty is an error in our data for which we cannot make any corrections. However, we can make corrections or limit most instrumental effects. Four such effects which might cause trouble if not eliminated or taken into account are bandwidth averaging of the received signal, frequency stability of the radiometer beamwidth averaging by the antenna and side lob reception of the antenna.

The latter of these effects (the side lobe reception) is only serious if the side lobes happen to be directed towards a strong radio source such as the sun. We can, however, take steps to avoid this, thus this effect need not concern us. Insofar as the antenna beamwidth is concerned, presently beamwidths can be made small enough so as to be of little concern unless the horizontal temperature gradients are very large. Only during the passage of the satellite over strong frontal systems might the antenna beamwidth thus be of some concern.

The problems of bandwidth and stability are of more concern to us because they involve an average over frequency. Hence, if the nominal frequency to which the radiometer is tuned is near a line

center, we shall in effect be viewing the average temperature of some very thick layers. Let us now consider the combined effects of bandwidth averaging, the averaging due to the frequency drift of the radiometer and the uncertainty of the radiometer.

We shall assume that the brightness temperature is averaged over frequency according to the equation:

$$\overline{T}_{B} = \frac{1}{\Delta v} \int_{v_{1}}^{v_{f}} T_{B}(v) dv$$
(28)

where
$$v_i = v_0 - \Delta v_s - \frac{\beta}{2}$$

 $v_f = v_0 + \Delta v_s - \frac{\beta}{2}$
 $v_0 = \text{nominally tuned frequency}$
 $\Delta v_g = \text{assumed stability of the radiometer at the frequency $v_0$$

 β = bandwidth of the radiometer at frequency \vee .

 $T_{\rm B}(\nu)$ was computed using ATMOSPHERE 2 in equation (25). Five values of $\nu_{\rm O}$ corresponding to the five frequencies in Table I were chosen. The corresponding madir angles of Table I were also used here. For this purpose of computing the uncertainty, we shall assume a radiometer noise temperature of 3000 $^{\rm O}$ K (this is typical for radiometers which could be built today) and an integration time of 10 seconds. In the real case the uncertainty either adds or subtracts from the signal. We shall arbitrarily assume that the uncertainties subtract from the signal. Equation (22) is used to compute the uncertainty. All of the calculations are summarized in Table IV.

The result of the inversion run using the input brightness temperatures listed in Table IV and the boundary conditions of ATMOSPHERE 1 is shown as inversion no. 7 in Fig. 17. The result of the inversion run using the actual brightness temperatures, which is the same as the inversion shown in Fig. 111, is depicted as the errorless inversion in Fig. 17. The root-mean-square deviation of inversion no. 7 from the errorless inversion is 21.3 $^{\circ}$ K in the zero to fifty kilometer region and 11.8 $^{\circ}$ K for the ten to forty kilometer region.

The specifications on the radiometer used to obtain the data for inversion no. 7 are quite loose. Let us now assume a driftless radiometer with a noise temperature of about 100^{-0} K or slightly less. Proceeding as before we compute average brightness temperatures and uncertainties for the same five frequencies. The results of these calculations are summarized in Table V. The uncertainties are now about an order of magnitude less than before and except for the first frequency they are about an order of magnitude less than the difference between the averaged and actual brightness temperatures. Therefore, let us neglect them in determining the input brightness temperatures.

Hence using the input brightness temperatures listed in Table V and the same boundary conditions as before we obtain a temperature profile which corresponds to inversion no. 8 in Fig. 17. The rootmean-square deviation of this temperature profile from that of the

TABLE IV

Nominal Tuned Frequency Go/sec.	Band- width B Gc/sec.	Stability	Initial Freq. Go/sec.	Final Freq. Ge/sec.	K. VAGLUGA	• K	Input ^T B °K	A ctual ^T B ^G K	۶T _B °K
55.6500	0.0400	±0 .0400	55.5900	55.7100	217.525	±0,165	217.358	217.339	+0.019
59 .30 00	0.0400	±0.0400	59 .260 0	59.3600	214,898	±0.165	214.733	214.193	+0.540
60.3200	0.0100	10 .0050	60.3100	60.3300	249 .998	11.030	248,968	25 0.979	+2.011
60.3300	0.0200	10.0100	60.3100	60 .3 500	241.758	±0.233	241.525	240 .090	+1.435
60.3700	0.0400	:0.0200	60.3300	60,4200	232.214	:0.165	232.049	228.029	+4.020

 $\xi((ST_B)^2 = 22.556$ $\frac{\xi((T_B)^2}{5} - 4.511$ RMS Dev.= $\frac{\xi(\delta T_B)^2}{5} = 2.125$ $hT_B = T_B(Input) - T_B(Actual)$

TABLE V

٦.

Nominal Tuned	Band- width	Stability	Initial Freq.	Final Freq.	Ave rage	AT THE	Input ^T B	Actual T _B	st _b
GC/Sec.	Go/sec.	Ge/see.	G c/sec.	Gc/sec.	oK	°K	°K	° <u>K</u>	°K
55.6500	0.0400	±0.0000	55.6300	55 .6700	217.356	±0.017	217.356	217.339	+0.017
59.3000	0.0400	±0.0000	59,2800	59 .3200	214 .268	±0.017	214.268	214.193	+0.075
60.3200	0.0100	±0.0000	60,3150	60.3250	249.663	±0.103	249.663	250 .979	-1.316
60,3300	0.0200	±0.0000	60.3200	60.3400	240.791	±0.023	240.791	24 0.090	+0.701
60.3700	0.0400	±0,0000	60,3500	60.3900	2 29.06 4	±0.017	229,064	228 .029	+1.035

 $\frac{9}{20}$

 $\xi((s_B)^2 = 3.307)$ $\frac{\xi((T_B)^2}{5} = 0.661$ RMS Dev. $\sqrt{\frac{\xi(\delta T_B)^2}{5}} = 0.871$

 $S_{B} = T_{B}(Input) - T_{B}(Aotual)$

errorless inversion is 5.72 $^{\circ}$ K in the zero to fifty kilometer region and 3.01 $^{\circ}$ K in the ten to forty kilometer region.

Tables VI and VII give the input brightness temperatures for two inversion runs designed to test for a difference in effect between a positive and negative uncertainty of the same magnitude at the same frequency. The results of these inversion runs are inversion no. 9, Fig. 17 and inversion no. 10, Fig. 18 corresponding respectively to the input data in Table VI and Table VII. The boundary conditions for both are those of ATMOSPHERE 1. The rootmean-square deviation of inversion no. 9 from the errorless inversion is 4.01 K in the zero to fifty kilometer region and 1.46 K in the ten to forty kilometer region. For inversion no. 10, the rootmean-square deviation from the errorless inversion in the zero to fifty kilometer region is 3.62 °K and 1.97 °K in the ten to forty kilometer region. The deviations are somewhat greater near the altitudes of influence of the weighting function corresponding to the frequency whose associated brightness temperature is in error. The deviations also appear to have the same sign as the error in the brightness temperature.

Inversion no. 11, Fig. 18, when compared with inversion no. 9, Fig. 17, shows the difference in effect of a one degree error in brightness temperatures corresponding to two different frequencies. The input data for inversion no. 11, is given in Table VIII. The boundary conditions are those of ATMOSPHERE 1. The root-mean-square deviation of inversion no. 11 from the errorless one is 10.2° K in the zero to fifty kilometer region and 3.60° K in the ten to forty kilometer region. Again in this case most of the deviations appear to have the same

Frequency	Nadir Angle	Input T _B	Aotual T _B	δ T _B	
55.6500	0.0	216.339	217.339	-1,000	
59.3000	0.0	214.193	214.193	0.000	
60.3200	30.0	250.979	250.979	0.000	
60.3300	0.0	240.090	240.090	0.000	
60.3700	0.0	228.029	228.029	0.000	

.

,

$$\frac{((ST_B)^2 : 1.000}{\frac{C(ST_B)^2}{5} : 0.2}$$

RMS Dev. = $\sqrt{\frac{C(ST_B)^2}{5}} = 0.447$
 $ST_B : T_B(Input) = T_B(Actual)$

Frequency	Nadir Angle	Input T _B	Actual ^T B	5 T B
55.6500	0.0	218.339	217.339	+1.00 0
59.3000	0.0	214.193	214.193	0.000
60.3200	30.0	25 0.979	250.9 79	0.000
60.3300	0.0	240.090	240.090	0.000
60.37 00	0.0	228.029	558.058	0.000

$$\frac{\xi(s T_B)^2}{5} = 1.000$$

 $\frac{\xi(s T_B)^2}{5} = 0.2$
RMS Dev. = $\sqrt{\frac{\xi(s T_B)}{5}} = 0.447$

$$S^{T}_{B} = T_{B}(Input) - T_{B}(Actual)$$

5

TABLE VII

Frequency	Nadir Angle	Input ^T B	Actual ^T B	S # D
55.6500	0.0	217.339	21.7.339	0.000
59.3000	0.0	214,193	214.193	0.000
60.3200	30.0	250.979	250.979	0,000
60.3300	0.0	240.090	240.090	0.000
60.3700	0.0	227.029	228.029	-1.000

$$S(8T_B)^2 = 1.000$$

 $S(8T_B)^2 = 0.2$
RMS Dev. $= \sqrt{\frac{\Sigma(8T_B)^2}{5}} = 0.447$
 $ST_B = T_B(Input) = T_B(Actual)$

-

TABLE VIII

sign as the error in brightness temperature. However in this case the greatest deviations tend to be in the boundary regions (0-10 and 40-50 km) rather than in the regions of greatest influence of the weighting function related to the brightness temperature which is in error.

Finally, in inversion no. 12, Fig. 18, we show the effects of errors of the same magnitude but of alternating signs in each of the brightness temperatures. The input data for this inversion run is given in Table IX. Again, the boundary conditions are those of ATMOSPHERE 1. The root-mean-square deviation of inversion no. 12 from the errorless inversion is 30.6 °K in the zero to fifty kilometer region and 12.6 °K in the ten to forty kilometer region. The greatest deviations tend to be in the boundary regions. The sign of the deviation at a given altitude tends to be the same as the sign of the error in the brightness temperature which corresponds to the weighting function influential at that altitude.

TABLE	IX
-------	----

Frequency	Nadir Angle	Input ^T B	A ctual ^T B	7 2 B
55.6500	0.0	216.339	217.339	-1.000
59.3000	0.0	215.193	214.193	+1.000
60.3200	30.0	249.979	250.979	-1.000
60.3300	0.0	241.090	240.090	+1.000
60.3700	0.0	226.029	228,029	-2.000

$$\frac{((ST_B)^2 = 8.000}{\frac{(ST_B)^2}{5} = 1.6}$$

RMS Dev. $= \frac{S(ST_B)^2}{5} = 1.262$

SECTION VII

CONCLUSIONS

Various aspects of the problem of the determination of the kinetic temperature profile of the atmosphere from the five millimeter radiative emission of molecular oxygen have been investigated. One of the most important conclusions we have reached is that with only five ideal measurements of this emission, we can deduce a polynomial representation of the actual temperature profile from zero to fifty kilometers which is almost as good as the polynomial representation that could be obtained by a "least square" fit of from thirty to fifty values of kinetic temperature versus height. In fuct, in the ten to forty kilometer region we can expect to obtain a better representation of the actual atmospheric temperatures than with a polynomial determined from up to fifty kinetic temperature measurements in the zero to fifty kilometer region.

Our investigation of the zero order inversion and a comparison of it with the iterative inversion procedure has led us to the following conclusion. A set of brightness temperatures versus frequencies and madir angles can yield more information when investigated as a whole set than when each measurement is considered separately. We have come to this conclusion by numerical experimentation. For the limiting case of an infinite number of brightness temperature measurements, we could reach a similar conclusion by abstract mathematical arguments.

We have also concluded that a statement of fixed boundary conditions in the iterative inversion procedure is required. However, we have shown that the chosen boundary conditions do not influence the derived temperature profile outside of the so called boundary region. We might ask ourselves therefore, "Why does the iterative procedure fail to work without boundary conditions?" At present all that we say to answer this question is that without these fixed boundary conditions we do not have a properly specified problem.

The iterative inversion procedure requires an initial guess of the solution. We have shown that the use of a good guess (one which is similar to the unknown actual temperature profile) or a bad guess (a temperature profile having little relation to the actual one) has little effect on the final result. The only effect of a bad guess is to increase the number of iterations required to obtain a solution. We, therefore, conclude that the use of a standard atmosphere for an initial guess is quite satisfactory.

We spent a considerable amount of time investigating the relationship of the frequency and nadir angle dependence of our brightness temperature measurements to the kinetic temperature versus altitude function. To facilitate this investigation, we considered the effect of these parameters on a functional combination of the absorption and transmissivity functions termed by Meeks and Lilley (1963) as weighting functions. We also developed a point of view of a group of weighting functions known as the influence function. We concluded from our studies that the shape and locations of the weighting functions on the height axis were substantially unaffected by the nature of the temperature profile.

Through our investigations of weighting functions and their corresponding influence function we concluded that measurements indicative of temperatures in the ten to thirty kilometer region are easily obtained. However to obtain measurements indicative of temperatures above thirty kilometers would require that these measurements be made at either large madir angles or at frequencies very close to line centers. The former alternative was concluded to be a poor one because it would destroy horizontal resolution. The latter alternative would impose limitations on allowable bandwidths of the radiometers. This would have adverse ramifications on the rootmean-square undertainties of the measurements. However, we concluded that this is really a technological instrumentation proclem that could eventually be solved. To make measurements indicative of temperatures below ten kilometers would involve simply additions to the absorption theory that incorporate ground effects.

From the iterative inversions of ideal data, we learned that the deviations of the derived profile from the actual profile at various altitudes would be negatively correlated to the value of the influence function at the same altitudes. Hence we concluded that an influence function whose value is constant with altitude is desirable in cases where a temperature profile with a uniform deviation is required.

We performed several inversions on data tainted by instrumental effects and uncertainties. These experiments led to the following conclusions:

1 - Deviations of the derived temperature profiles from the actual temperature profile are greater at altitudes where the influence function is small.

- 2 Measurements made near line centers must be done with radiometers that are very stable and that have narrow bandwidths and low noise temperatures.
- 3 Errors made at brightness temperatures which correspond through frequency and madir angle to weighting functions that peak at high altitudes are more serious than errors made at brightness temperatures that correspond to weighting functions which peak at low altitudes.
- 4 Errors of the same magnitude but different sign at brightness temperatures of the same frequency and madir angle produce equal root-mean-square deviations of derived profiles from actual profiles. The signs of the former deviations correspond to those of the latter.
- 5 There does not seem to be a linear relationship between root-mean-square deviations of ideal data from non ideal data and root-mean-square deviations of the derived profiles from the actual profiles.

SECTION VIII

SUGGESTIONS FOR FUTURE WORK

One of the most important problems and the one most deserving of study in any future work, is that of the effect of errors in the data. The work done in this thesis on this subject is quite incomplete. Two avenues of approach immediately suggest themselves. First, we might try a "least square fit" inversion on a large net of data points. Theory of this method is described in Hidelbrand, "Methods of Applied Mathematics." Such a technique would tend to smooth the data and cause random errors to cancel one another.

A second approach is to divide the inversion from zero to fifty kilometers into inversions over several smaller height ranges. For example, with the same five measurements, we first derive a polynomial valid from zero to fifteen kilometers, them one from fifteen kilometers to thirty five and finally one from thirty five to fifty kilometers. The boundary conditions required at fifteen and thirty kilometers could be the temperatures obtained by a zero order inversion. Dividing the single large inversion up into smaller ones might help to dampen the error multiplying effect which seems to result when the data has errors in it.

Another aspect of this problem which deserves some consideration is the use of orthogonal functions in the inversion procedure. In the least they would reduce the amount of numerical computation necessary. They would also reduce the effect of round off errors in the problem by giving rise to matrices with very strong diagonals.

- 1) The spectral reflectivity and emission of the ground and sea surfaces.
- The spectral reflectivity, emission and absorption of clouds and rain.
- 3) The Zeeman effect.

Finally and most importantly, a program of measurements including the development of suitable airborne radiometers must be undertaken. At present we can build rediometers which are quite stable enough for our purposes. However these radiometers have rather large bandwidths (approximately 100 Mc/sec) and high noise temperatures (approximately 3000 $^{\circ}$ K). We need equally stable radiometers with bandwidths of about 5 Mc/sec and noise temperatures of 100 $^{\circ}$ K. The rapid development of solid state devices may make it possible to obtain these specifications in radiometers in the not too distant future.

APPENDIX I

POLYNOMIAL CURVE FITTING

Since the result of our inversion procedure is a set of polynomial coefficients, we are naturally led to make a comparison between the polynomials resulting from the inversion of brightness temperatures and those obtained directly from temperature versus height data. Clearly, there are many criterion by which a polynomial can be said to best fit a set of data points. We chose to use the method in which the square of the sum of the deviations of the fitted curve from the data points is minimized. The criterion for this method is

$$\frac{N}{2} = w(z_{1}) \left\{ T(z_{1}) - \frac{n}{2} = a_{k} z_{1}^{k} \right\} = \min$$
 (I-1)
1=0 k=0

where N = number of data points n = degree of the polynomial z_i = altitude of ith point $T(z_i)$ = temperature data at the ith altitude $a_k = k^{th}$ coefficient of the polynomial $w(z_i)$ = weight of the ith data point.

The necessary conditions for a minimum in equation (I-1) require that the partial derivatives $\partial/\partial a_k = 0, 1, 2, ...$ n of equation (I-1) all vanish. This leads to the following system of linear equations which can be solved for the coefficients a_0 through a_k :

$$\mathbf{a}_{0} \xrightarrow{\mathbf{N}} \mathbf{v}(\mathbf{z}_{1}) \mathbf{z}_{1}^{\mathbf{r}} \mathbf{z}_{1}^{\mathbf{0}} + \mathbf{a}_{1} \xrightarrow{\mathbf{v}} \mathbf{v}(\mathbf{z}_{1}) \mathbf{z}_{1}^{\mathbf{r}} \mathbf{z}_{1}^{\mathbf{1}} + \cdots + \mathbf{i} = 0 \qquad \mathbf{i} = 0$$

(I-2)

$$\begin{array}{cccc} & & & & \\ & & & \\ & + a_n & & \\ & & i = 0 \end{array} & & \\ & & \mathbf{v}(z_i) & \mathbf{z}_i^r & \mathbf{z}_i^n & = & \\ & & & \mathbf{v}(z_i) & \mathbf{z}_i^r & \mathbf{T}(z_i) \end{array}$$

Where r = 0, 1, 2, ... n

Using equation (I-2) with n = 6 and a constant $w(z_i)$ we obtained the temperature profiles ATMOSPHERE 1 through ATMOSPHERE 4. The results together with the input data are shown in Fig.(I-1) through Fig. (I-4).

APPENDIX II

WEIGHTING FUNCTION ANALYSIS

Note - The numbered frequencies in the tables are shown graphically on the charts with arrows.

APPENDIX II

Weighting Function Analysis

Frequency . No.	Height of Peak Xm	Frequency Gc/sec.	Nadir Angle Deg.	т _в (3)	T(h) at.W.F. Peak o _K
0	4.05	53.5800	0.0	211.434	260.319
1	11.85	-55.4500	0.0	220,940	220,530
2	12.05	55.5100	0.0	220.371	220.020
3	12,15	55.3900	0.0	220.721	219.800
	12.48	55.4500	30.0	219.577	218.981
	12.80	55 .3900	30.0	219.373	218.353
	12.80	55.5100	30.0	219.054	218.353
4	12.80	55 .5700	0.0	219.184	218.353
	13.45	55.5700	30.0	218.031	217.210
5	14.08	55.6300	0.0	217.718	216.200
6	14.80	55.6500	0.0	217.277	215.475
	14.80	55.6300	30.0	216.846	215.475
	15.40	55.6500	30.0	216.533	215.013
7	16.50	57.9000	0.0	214.406	214.579
0	16,90	57.9000	30.0	214.295	214.541
8	17.00	58.8050	0.0	214.215	214.541
•	17.00	61.5000	0.0	214.302	214.541
	17.05	61.5000	15.0	214.292	
	19 00	50.0050	20.0	214.109 07 h 6hc	214.50V
	10.29	62.0000	15 0	214.045 014 670	214.07
	18.60	62.0000	70.0	214.012	214.001
	18 80	52.0000 57 0000	60.0	214.100	215.082
	10.00	58,8050	60.0	214.760	215,300
,	10.30	62,0000	45.0	215,000	215,548
Q	19.69	59.3775	0 .0	215.347	215.676
	20.13	59.3775	30.0	215.655	216,907
10	20.94	59.3000	0.0	216.266	216.760
	21.09	59.3000	15.0	216.378	216,907
	21.32	59.3000	30.0	216.682	217.107
	22.10	59.3000	45.0	217.300	217.953
	22.13	59.3775	60.0	217.211	217.953
	23.27	59.3000	60.0	218.480	219.331
11	25.08	59.1000	0.0	220.843	221.540
12	26.71	58.3950	0.0	223.046	223.574
13	27.15	60.3700	0.0	224.144	224.150
	27.30	58.3950	30.0	223.675	224.348
	27.30	60.3700	15.0	223.724	224.348
	27.52	60.3700	30.0	224.206	224.607
	28,20	60.3700	45.0	225.119	225.522
	28.81	58.3950	60.0	226.178	226.317
• <i>i</i> .	29.31	60.3700	60.0	226.742	226.989
14	29.36	52.4490	0.0	227.054	227.075
.	29.78	62.4490	30.0	227.791	227.623
15	<u>31.13</u>	60,3300	0.0	229.767	229,523

t

:

\$

.

APPENDIX II

Weighting Function Analysis

Frequency No.	Height of Peak Km	Frequency Gc/sec.	Nadir Angle Deg.	T _B (3) K	T(h) at W. F. Peak ⁹ K
16	31.18	60,4100	0.0	229,012	229.671
	31.59	62,4490	60.0	230.746	230.272
	31.68	60.3300	30.0	230,569	230.425
17	32.20	58.4300	0.0	231,254	231,204
•	32.70	58,4300	30.0	232.110	232.014
	33.42	60.3300	60.0	233.764	233,205
	33.49	60,4100	60.0	233.923	231.686
18	33.50	58,3400	0.0	233.717	233, 381
	33.89	58,4300	60.0	235,409	234,102
	33.91	58,3400	30.0	234.604	234,102
19	34.33	58.3100	0.0	235.361	234 480
20	34.41	60.3200	0.0	235,499	235.041
21	34.57	62.4230	0.0	235.698	235.429
	34.80	58.3100	30.0	236.276	235.824
	34.88	60.3200	30.0	236.418	236.025
	34.99	62,4230	30.0	236.669	236.228
22	35.01	58.4570	0.0	236.269	236.228
	35.41	58.4570	30.0	237.225	237.059
	35.60	58.3400	60.0	238.023	237.487
	35.71	58.4370	30.0	237.688	237.704
	36.51	58.3100	60.0	239.743	239,518
	36.60	60.3200	60.0	239.941	239.755
23	36.68	62.4780	0.0	239.702	239.994
	36.85	62.4230	60.0	240.317	240.350
	37.29	58.4570	60.0	240.746	241.477
	37.35	62.4780	30.0	240.650	241.600
24	37.52	57.6200	0.0	241.294	241.989
	37.48	58.4370	60.0	241.200	241.989
25	37.82	58.4400	0.0	241.266	242.776
	38.00	57.6200	30.0	242,211	243.311
	39.05	62.4780	60.0	243.944	246.250
26	39.52	59.5850	0.0	244,299	247.616
	40.02	57.6200	60.0	245.099	249.157
	40.02	59.5850	30.0	244.982	249.157
27	40.08	59.1700	0.0	244.791	249.470
	40.61	59.1700	30.0	245.543	251.065
	41.82	62.4900	0.0	245.501	255.033
	41.90	59.5850	60.0	246.452	255.370
	42.36	62.4900	30.0	245.628	256,900
	42.41	59.1700	60.0	246.335	257.062
	44.32	62.4900	60.0	243.700	263.376

.

The temperature profile used to make the calculations summarized in this Appendix was ATMOSPHERE 1.

The figures corresponding to the preceding tables are Figure II-1 and Figure II-2.

APPENDIX III

COMFUTER PROCRAMO

This appendix contains the FORTRAN II listings of the principal computer programs used in this work. The computations were done on an IEM 7094 Data Processing System. The plotted output was obtained from a CALCOMP plotter and IEM 1401 Data Processing System.

The comment statements at the very beginning of each program explain the purpose of the program. We have not included programs which differ from the listed programs with respect to the form of the input data and the output results. Likewise, we have not included library or processor subprograms such as the CALCOMP subroutines, since these subprograms were not designed especially for this work.

Below are brief descriptions of the programs listed.

- CURVES This program fits a polynomial in the sense of least squares to set of kinetic temperature data points. This program was used to obtain ATMOSPHERES 1 through 4.
- MISP4 This program computes brightness temperatures and Weighting function peak altitudes for a temperature profile represented by a polynomial.
- MISP5 This program is the same as MIGP4 except for the fact that the temperature profile must be represented by a set of data points.
- INVRT1 This program performs the iterative inversion of brightness temperatures.
- ATMSP4 This subroutine computes pressure with the hydrostatic equation from a temperature profile represented by a polynomial.

- ATMSP5 This subroutine is the same as ATMSP4 except for the fact that the temperature profile must be represented by a set of data points.
- KERNLI This subroutine computes the weighting function for various atmospheric profiles, frequencies and madir angles.
- BTEMP2 This subroutine computes brightness temperatures from the weighting functions determined by KERNL1.
- GAMD2E This function routine computes the attenuation coefficient for specified temperatures, pressures and frequency.

C/	
	TMSP4 B. R. FOW ID. NO. AAP8 2 AUGUST 1963 SUBROUTINE ATMSP4
	THIS SUBROUTINE COMPUTES TEMPERATURE AND PRESSURE FOR 1001 HEIGHT
- C	LEVELS FROM O TO 100 KM. THE ORDER IN WHICH H(I), T(I), AND P(I)
С	ARE LOADED INTO THE OUTPUT MATRIX IS VARIABLE.
č	THE REQUIRED INPUT DATA IS
č_	KD1 THE NUMBER OF POLYNOMIAL COEFFICIENTS NEEDED TO SPECIFY
	THE TEMPERATURE PROFILE. THIS IS ONE MORE THAN THE
- Ĉ	NEGREE AE TUE DAI VNAMTAL
	AA/IN THE COEEEICIENTS OF THE DOLYNOMIAL DESCOIDING THE TEMP
č	CTDUCTUOE
Ċ	SIRUCIURE
C	HMIN THE MINIMUM HEIGHT FOR WHICH H(I), I(I), AND P(I) ARE
<u> </u>	
C	HMAX THE MAXIMUM HEIGHT FOR WHICH H(I), T(I), AND P(I) ARE
c	COMPUTED
	JRD FOR JRD≂1, H(I), T(I), AND P(I) ARE STORED FROM HMIN TO
С	HMAX.
C	FOR JRD=2, H(I), T(I), AND P(I) ARE STORED FROM HMAX TO
Č	PZERO GROUND LEVEL PRESSURE IN MM OF HG
- ř	GZERO GROUND LEVEL VALUE OF ACCELRATION DUE TO GRAVITY IN CM.
	CFC++2
Č	VADG THE DATE OF CHANGE OF CDAVITATIONAL ACCELEDATION WITH
	VARGE INL RATE OF CHANGE OF GRAVITATIONAL ACCELERATION WITH
C	ALTITUDE • THIS NUMBER USUALLY IS U-3086CM/SEC**2/KM
	1 SUBROUTINE ATMSP4(KU1,AA,HMIN,HMAX,JRU,PZERO,GZERO,VARG)
	5 GGGF(X)=GZERO=(VARG)*(X)
	2 DIMENSION AA(19), J1(1001), H(1001), T(1001), P(1001), GAM(1001), TAU(10
	X01),WAF(1001),12(1001),HH(1001),TT(1001),PP(1001)
	COMMON T,P,GAM,TAU,WAF,J1,H,JMAX
	3 R=0.28704E+07
	<u>4 PP(1)=PZER0</u>
	6 DO 12 1=1,1001
	7 HH(1)=(FLOATF(1=1))*(0.1)
	TT(T) = AA(1)
	$DO 8 M=2 \times KD1$
	DU U P™~∠∮NU⊥ Q TT/I\=TT/I\=XX/M\&/UU/I\XXX/M_3\\
	HSZ=HH(I)
	TS1=TT(I-1)
	TS2=TT(I)
	<pre>PP(I)=(PP(I=1))*EXPF((=1.0/((2.0)*R))*(((GGGF(HS1))/(TS1))+((GGGF(PP(I)=(PP(I=1))*EXPF((=1.0/((2.0)*R))*(((GGGF(HS1))/(TS1))+((GGGF(PP(I)=(PP(I=1))*EXPF((=1.0/((2.0)*R))*(((GGGF(HS1))/(TS1))+((GGGF(PP(I)=(PP(I=1))*EXPF((=1.0/((2.0)*R))*(((GGGF(HS1)))/(TS1))+((GGGF(PP(I)=(PP(I=1))*EXPF((=1.0/((2.0)*R))*(((GGGF(HS1)))/(TS1))+((GGGF(PP(I)=(PP(I=1))*EXPF((=1.0)((2.0))*R))*(((GGGF(HS1)))/((TS1)))*((GGGF(PP(I)=(0.0))*(((2.0))*R))*(((GGGF(HS1)))/((TS1)))*(((GGGF(PP(I)=(0.0))*(((2.0))*R))*(((GGGF(HS1))))/((TS1)))*(((GGGF((DS1)))*(((DS1)))*(((DS1)))*(((DS1))*(((DS1)))*(((DS1))*(((DS1)))*(((DS1))*</pre>
	XHS2))/(TS2)))*(HS2=HS1)*(1.0E+05))
	PS1=PP(I=1)
	PS1=PP(I=1) 12 CONTINUE
	PS1=PP(I=1) 12 CONTINUE 13 KMIN=XINTE((HMIN)*(10.0))+1
	PS1=PP(I=1) 12 CONTINUE 13 KMIN=XINTF((HMIN)*(10.0))+1 14 KMAX=XINTF((HMAX)*(10.0))+1
	PS1=PP(I=1) 12 CONTINUE 13 KMIN=XINTF((HMIN)*(10.0))+1 14 KMAX=XINTF((HMAX)*(10.0))+1 15 MAX=KMAX+1=KMIN
	PS1=PP(I=1) 12 CONTINUE 13 KMIN=XINTF((HMIN)*(10.0))+1 14 KMAX=XINTF((HMAX)*(10.0))+1 15 JMAX=KMAX+1=KMIN 16 K2=1001 - MAX
	PS1=PP(I=1) 12 CONTINUE 13 KMIN=XINTF((HMIN)*(10.0))+1 14 KMAX=XINTF((HMAX)*(10.0))+1 15 JMAX=KMAX+1=KMIN 16 K2=1001=JMAX 17 C0 T0 (10.24) JPD
	PS1=PP(I=1) 12 CONTINUE 13 KMIN=XINTF((HMIN)*(10.0))+1 14 KMAX=XINTF((HMAX)*(10.0))+1 15 JMAX=KMAX+1=KMIN 16 K2=1001=JMAX 17 GO TO (18.34).JRD
	PS1=PP(I=1) 12 CONTINUE 13 KMIN=XINTF((HMIN)*(10.0))+1 14 KMAX=XINTF((HMAX)*(10.0))+1 15 JMAX=KMAX+1=KMIN 16 K2=1001-JMAX 17 GO TO (18.34).JRD 18 DO 22 K=KMIN.KMAX
	PS1=PP(I=1) 12 CONTINUE 13 KMIN=XINTF((HMIN)*(10.0))+1 14 KMAX=XINTF((HMAX)*(10.0))+1 15 JMAX=KMAX+1=KMIN 16 K2=1001=JMAX 17 GO TO (18,34),JRD 18 DO 22 K=KMIN,KMAX 19 K1=K+1=KMIN
	<pre>PS1=PP(I=1) 12 CONTINUE 13 KMIN=XINTF((HMIN)*(10.0))+1 14 KMAX=XINTF((HMAX)*(10.0))+1 15 JMAX=KMAX+1=KMIN 16 K2=1001=JMAX 17 GO TO (18,34),JRD 18 DO 22 K=KMIN,KMAX 19 K1=K+1=KMIN J1(K1)=K1</pre>
	<pre>PS1=PP(I=1) 12 CONTINUE 13 KMIN=XINTF((HMIN)*(10.0))+1 14 KMAX=XINTF((HMAX)*(10.0))+1 15 JMAX=KMAX+1=KMIN 16 K2=1001=JMAX 17 GO TO (18,34),JRD 18 DO 22 K=KMIN,KMAX 19 K1=K+1=KMIN J1(K1)=K1 20 H(K1)=HH(K)</pre>
	<pre>PS1=PP(I=1) 12 CONTINUE 13 KMIN=XINTF((HMIN)*(10.0))+1 14 KMAX=XINTF((HMAX)*(10.0))+1 15 JMAX=KMAX+1=KMIN 16 K2=1001=JMAX 17 GO TO (18.34),JRD 18 DO 22 K=KMIN,KMAX 19 K1=K+1=KMIN J1(K1)=K1 20 H(K1)=HH(K) 21 T(K1)=TT(K)</pre>
	<pre>PS1=PP(I=1) 12 CONTINUE 13 KMIN=XINTF((HMIN)*(10.0))+1 14 KMAX=XINTF((HMAX)*(10.0))+1 15 JMAX=KMAX+1=KMIN 16 K2=1001=JMAX 17 GO TO (18,34),JRD 18 DO 22 K=KMIN,KMAX 19 K1=K+1=KMIN J1(K1)=K1 20 H(K1)=HH(K) 21 T(K1)=TT(K) 22 P(K1)=PP(K)</pre>
	<pre>PS1=PP(I=1) 12 CONTINUE 13 KMIN=XINTF((HMIN)*(10.0))+1 14 KMAx=XINTF((HMAX)*(10.0))+1 15 JMAX=KMAX+1=KMIN 16 K2=1001=JMAX 17 GO TO (18.34).JRD 18 DO 22 K=KMIN.KMAX 19 K1=K+1=KMIN J1(K1)=K1 20 H(K1)=HH(K) 21 T(K1)=TT(K) 22 P(K1)=PP(K) 23 IE (K2=1) 61.26.28</pre>
	<pre>PS1=PP(I=1) 12 CONTINUE 13 KMIN=XINTF((HMIN)*(10.0))+1 14 KMAX=XINTF((HMAX)*(10.0))+1 15 JMAX=KMAX+1=KMIN 16 K2=1001=JMAX 17 GO TO (18,34),JRD 18 DO 22 K=KMIN,KMAX 19 K1=K+1=KMIN J1(K1)=K1 20 H(K1)=HH(K) 21 T(K1)=TT(K) 22 P(K1)=PP(K) 23 IF (K2=1) 41,24,28 24 H(1001)=1=0</pre>
	PS1=PP(I=1) 12 CONTINUE 13 KMIN=XINTF((HMIN)*(10.0))+1 14 KMAX=XINTF((HMAX)*(10.0))+1 15 JMAX=KMAX+1=KMIN 16 K2=1001=JMAX 17 GO TO (18,34),JRD 18 DO 22 K=KMIN,KMAX 19 K1=K+1=KMIN J1(K1)=K1 20 H(K1)=HH(K) 21 T(K1)=TT(K) 22 P(K1)=PP(K) 23 IF (K2=1) 41,24,28 24 H(1001)=1.0

-	26 D/10011=1.0
ाइड	
•	
	28 K3=JMAX+1
te Lian	29 DO 32 K4=K3,1001
	J1(K4)=K4
_	30 11/((4)=1.0
-	21 + 1(K+) = 1 + 0
	<u>32 P(K4)=1:0</u>
	33 GO TO 41
	34 DO 39 K5=1,JMAX
	35 K6=KMAX+1=K5
•	36 H(K5)=HII(K6)
	37 T(K5)=TT(K6)
	38 P(K5)=PP(K6)
_	J1(K5)=K5
	39 CONTINUE
	A1 RETURN
•	FREQUENCY 10(1+1000+1000)+23(1000+1+1000)+40(1000+1+1000)
	FND

Ø

à

CA	
	TMSP5 B. R. FOW 4 OCTOBER 1963 SUBROUTINE ATMSP5
$=\epsilon$	THIS SUBROUTINE COMPUTES TEMPERATURE AND PRESSURE FOR 1001 HEIGHT
) C	LEVELS FROM O TO 100 KM. THE ORDER IN WHICH H(I), T(I), AND P(I)
С	ARE LOADED INTO THE OUTPUT MATRIX IS VARIABLE.
	THE REQUIRED INPUT DATA IS
=	KD1 THE NUMBER OF TEMPERATURE VS HEIGHT DATA POINTS.
	ZU(I) CORRESPONDING HEIGHT DATA POINTO
C	HMIN THE MINIMUM HEIGHT FOR WHICH H(I), I(I), AND P(I) ARE
С	COMPUTED
C	HMAX THE MAXIMUM HEIGHT FOR WHICH H(I), T(I), AND P(I) ARE
= c	COMPUTED
	JRD FOR JRD=1. H(I), T(I), AND P(I) ARE STORED FROM HMIN TO
-	
~	FOR IRD-2, HAIL, TALL, AND RAL ARE STORED FROM HMAX TO
C	FUR JRD=29 H(1)9 T(1)9 AND F(1) ARE STORED TROW HANA TO
C	
C_	PZERO GROUND LEVEL PRESSURE IN MM OF HS
= c	GZERO GROUND LEVEL VALUE OF ACCELRATION DUE TO GRAVITY IN CM/
-	SEC**2
	VARG THE RATE OF CHANGE OF GRAVITATIONAL ACCELERATION WITH
č	ALTITUDE. THIS NUMBER USUALLY IS 0.3086CM/SEC**2/KM
C	
	I SUBRUUTINE ATMSPS(RUI)ZD HMIN HMAX JRD FZERO JUZERO JVARO TO T
	5 GGGF(X)=GZERO=(VARG)*(X)
	2 DIMENSION ZD(50), J1(1001), H(1001), I(1001), P(1001), GAM(1001), TAULIO
	X01),WAF(1001),12(1001),HH(1001),TT(1001),PP(1001),TD(50)
	COMMON T.P.GAM.TAU.WAF.J.1.H.J.MAX
	3 $P=0.28704F+07$
•	
)	
	6 DO / I=I;IOOI
	12(1)=[
	7 HH(1)=(FLOATF(I=1))*(0.1)
	50 YA=(ZD(2)+ZD(1))/2.0
	51 KZ=YA/0.1
	$52 \ 100 \ 53 \ 3-19 \ 100 \$
	= 53 + 1(3) = 10(1) + ((10/2) = 10(1))/(40/2) = 40(1)/(40/2) = 40/2) = 40(1)/(40/2) = 40/2) = 40(1)/(40/2) = 40(1)/(40/2) = 40/2) = 40(1)/(40/2) = 40(1)/(40/2) = 40/2) = 40(1)/(40/2) = 40/2) = 40/2) = 40/2
	54 KDM1=KD1=1
	55 DO 65 K=2,KDM1
	56 YA=(7D(K+1)+2D(K))/2.0
	57 MZ = YA/(0.1)
	$\frac{1}{2} \frac{1}{2} \frac{1}$
	$\frac{\partial U}{\partial V} = \left(\frac{U}{V} + \frac{U}{V}$
	61 TDP2=(TD(K)=TU(K=1))/(ZD(K)=ZU(K=1))
	62 TDP=(2.0*(TDP1=TDP2))/(ZD(K+1)=ZD(K=1))
	63 DO 64 J=KZ,MZ
	64 TT(J)=TD(K)+(TSP*(HH(J)-ZD(K)))+(TDP*((HH(J)-ZD(K))**2)/2•0)
	10 DO 12 I=2,MZ
	10 DO 12 I=2,MZ 11 HS1=HH(I=1)
	00 12 I=2,MZ 11 HS1=HH(I=1) HS2=HH(1)
	00 12 I=2,MZ 11 HS1=HH(I=1) HS2=HH(I) TS1=TT(I=1)
	10 D0 12 I=2;MZ 11 H51=HH(I=1) H52=HH(I) T51=TT(I-1) T52=TT(I)
	<pre>OD K2=m2 10 D0 12 I=2;M7 11 H51=HH(I=1) H52=HH(I) T51=TT(I=1) T52=TT(I) DD(I=1))*EXDE(I=2:0/(12:0)*D))*(//CCCE(H51))/(T51))*(/CCCE(H51))</pre>
	<pre>OD R2=m2 10 D0 12 I=2;M7 11 H51=HH(I=1) H52=HH(I) T51=TT(I=1) T52=TT(I) PP(I)=(PP(I=1))*EXPF((=1:0/((2:0)*R))*(((GGGF(HS1))/(TS1))*((GGGF(HS1)))*((GGGF(H</pre>
	<pre>OD R2=m2 10 D0 12 I=2,M7 11 H51=HH(I=1) H52=HH(I) T51=TT(I=1) T52=TT(I) PP(I)=(PP(I=1))*EXPF((=1.0/((2.0)*R))*(((GGGF(HS1))/(TS1))*((GGGF(XHS2))/(TS2)))*(HS2=HS1)*(1.0E+05))</pre>
	<pre>OD R2=m2 10 D0 12 I=2,M7 11 H51=HH(I=1) H52=HH(I) T51=TT(I=1) T52=TT(I) PP(I)=(PP(I=1))*EXPF((=1.0/((2.0)*R))*(((GGGF(HS1))/(TS1))*((GGGF(XHS2))/(TS2)))*(HS2=HS1)*(1.0E+05)) PS1=PP(I=1)</pre>
	<pre>OD R2=m2 10 D0 12 I=2,M7 11 H51=HH(I=1) H52=HH(I) T51=TT(I=1) T52=TT(I) PP(I)=(PP(I=1))*EXPF((=1.0/((2.0)*R))*(((GGGF(H51))/(TS1))*((GGGF(XH52))/(TS2)))*(H52=H51)*(1.0E+05)) PS1=PP(I=1) 12 CONTINUE</pre>
	<pre>OD R2=M2 10 D0 12 I=2.M7 11 HS1=HH(I=1) HS2=HH(I) TS1=TT(I=1) TS2=TT(I) PP(I)=(PP(I=1))*EXPF((=1.0/((2.0)*R))*(((GGGF(HS1))/(TS1))*((GGGF(XHS2))/(TS2)))*(HS2=HS1)*(1.0E+05)) PS1=PP(I=1) 12 CONTINUE 13 KMIN=XINTF((HMIN)*(10.0))+1</pre>

15	
16	
17	
18	
10	
I)	
20	
20	
21	
22	
23	IF (K2-1) 41924928
24	$H(1001) = 1 \cdot 0$
25	T(1001)=1.0
26	P(1001)=1.0
	J1(1001)=1001
27	GO TO 41
28	K3=JMAX+1
29	DO 32 K4=K3,1001
	J1(K4)=K4
30	H(K4)=1.0
31	T(K4)=]+0-
32	P(K4)=1.0
33	GO TO 41
34	DO 39 K5=1 JMAX
	K6=KMAX+1=K5
37	
	D/K\$1=DP/K61
50	
20	
1.0	
40	
41	

÷.

£.

B

D

*

12

6

ÇB'	TEMP2 P. R. FOW I.D. NO. AAP8 8 JULY 1963 SUBROUTINE BTEMP2
cc	THIS SUBROUTINE COMPUTES THE BRIGHTNESS FOR A SPECIFIED ATMOS PHERE, FREQUENCY AND NADIR OR ZENITH ANGLE.
C C	INPUT DATA REQUIRED
C	TMS=BRIGHTNESS OF A SOURCE LYING OUTSIDE THE ATMOSPHERE.
C	T#TEMPERATURE IN DEGREES KELVIN.
C	WAF=WEIGHTING FUNCTION •
C	THETA-NADID OF ZEITH ANGLE IN DEGREES.
	IMAX=THE NUMBER OF LEVELS AT WHICH WAS COMPUTED.
c	
C	SUBPROGRAMS REQUIRED
С	ATMSP4 OR ATMSP5 AND KERNL1
C	
- <u>C</u>	OUTPUT TD-DDICUTNECE TEMDEDATURE IN DECREES KELVIN.
C	
	SUBROUTINE BTEMP2(TMS, TB, THETA)
	2 DIMENSION T(1001), P(1001), GAM(1001), TAU(1001), WAF(1001), J1(1001),
	2(1001)
	COMMON T, P, GAM, TAU, WAF, J1, H, JMAX
	3 SECTH=1+0/COSF(THETA)
	4 AUJ= AU(JMAX) & TD=TMC*FYDF(=TAILI*CF(TH)
	TDUM=TB
	6 DO 11 J=2, JMAX
	7 H1=H(J=1)
	8 H2≇H(J)
	9 DELTR=ABSF(H1=H2)
	10 TB=TB+(I(J=1)+I(J))*(WAF(J=1)+WAF(J))*DELTK/400
	11 IUMIEIR 12 RETURN
	END

CCUR	VE8
	CHRVER. A PROGRAM FOR FITTING & POLYNOMIAL FUNCTION TO DATA BOINTS
	VAN INDEPENDENT OF DATA DOINTS OPTAINED FROM A DOUCH CRETCH OF
	XAN INDEPENDENT SET OF DATA POINTS OBTAINED FROM A ROUGH SKETCH OF
C	XTHE FUNCTION AS DETERMINED GRAPHICALLY IS USED TO CHECK THE COMPU-
r	YTED FUNCTION FOR DUYSICALLY UNREASONABLE OSCILLATIONS.
	ATED TO ATTACK TO A THOTCALLY ON REAGON ADDLY OSCILLATION OF
	XINPUT DATA REQUIRED
	X DATA POINTS, TDAT
/	Y DATA DOINT DOCITIVE UNCEDIAINTIES, EDDD
C	A DATA FOINT FOSTILIE UNCERTAINTIES, ERDF
	X DATA POINT NEGATIVE UNCERTAINTIES, ERDN
	X TEST POINTS. TSTP
č	Y. TEST DOINT DOSITIVE UNCEDIAINTIES, EDID
	A TEST FOINT FOSTILIVE ONCERTAINTIES ERTF
	X IESI POINT NEGALIVE UNCERTAINTIES, ERIN
	X NUMBER OF DATA POINTS, IMAX
-	Y NUMBER OF TEST DOINTS. MAY
	X NOMBER OF TEST POINTS, SMAX
r C	X DATA IDENTIFICATION NUMBER, IDNT
г с	X MAXIMUM AND MINUMUM TEMPERATURES TO BE PRINTED ON HORIZONTAL AXI
Ċ	Y S OF CALCOMP PLOTTER OUTPUT, TE(2) AND TE(1) DESDECTIVELY.
	A GOVERNMENT CONTRACTOR CONTRACTOR AND A CONTRACT A
• = C ===	X MAXIMUM AND MINIMUM ALTITUDES TO BE PRINTED ON VERTICAL AXIS;
	X HE(2) AND HE(1) RESPECTIVELY.
	Y MINIMUM DECREE DOLYNOMIAL DEDIVED - YMIN
- (
C	X MAXIMUM DEGREE POLYNOMIAL DERIVED, KMAX.
C	X MINIMUM AND MAXIMUM ALTITUDES AT WHICH THE POLYNOMIAL WILL BE
<u> </u>	Y EVALUATED, ZMIN AND ZMAY RESPECTIVELY
	λ $(\gamma \wedge \Box \phi) = \Sigma^{-1} (\gamma \wedge \Box \phi)$
	X LENGTH OF TEMPERATORE AXIS ON PLOT, XX.
C	X LENGTH OF ALTITUDE AXIS ON PLOT, YY.
	X DATE AND NAME CARD.
ř	
	ASUBROUTINES REQUIRED
	X XSIMEQF THIS SUBPROGRAM IS ON THE SYSTEM TAPE.
•	X CALCOMP ROUTINES
	Y <u>¢ŕ</u> *†
	X SCAIL
	X SCAIL DIMENSION TDAT(50),ERDP(50),ERDN(50),ZD(50),TSTP(25),ERTP(25),ERTN
	X SCAIL DIMENSION TDAT(50), ERDP(50), ERDN(50), ZD(50), TSTP(25), ERTP(25), ERTN X(25), ZT(25), WFD(50), WFT(25), TMPD(50), TMPT(25), DVD(50), DVT(25), TEMP
	<pre>X SCAIL DIMENSION TDAT(50) + ERDP(50) + ERDN(50) + ZD(50) + TSTP(25) + ERTP(25) + ERTN X(25) + ZT(25) + WFD(50) + WFT(25) + TMPD(50) + TMPT(25) + DVD(50) + DVT(25) + TEMP X(1001) + DTEMP(1001) + ALTIT(1001) + DATA(750) + T(1001) + H(1001) + EMTR(12) +</pre>
	<pre>X SCAIL DIMENSION TDAT(50), ERDP(50), ERDN(50), ZD(50), TSTP(25), ERTP(25), ERTN X(25), ZT(25), WFD(50), WFT(25), TMPD(50), TMPT(25), DVD(50), DVT(25), TEMP X(1001), DTEMP(1001), ALTIT(1001), DATA(750), T(1001), H(1001), FMTR(12), XXNMD(2), XNMT(2), EMT(12), TT(1078), HH(1078), TDA1(50), TST1(25)</pre>
	X SCAIL DIMENSION TDAT(50) + ERDP(50) + ERDN(50) + ZD(50) + TSTP(25) + ERTP(25) + ERTN X(25) + ZT(25) + WFD(50) + WFT(25) + TMPD(50) + TMPT(25) + DVD(50) + DVT(25) + TEMP X(1001) + DTEMP(1001) + ALTIT(1001) + DATA(750) + T(1001) + H(1001) + FMTR(12) + XYNMD(3) + YNMT(3) + FMT(12) + TT(1078) + HH(1078) + TDA1(50) + TST1(25)
	X SCAIL DIMENSION TDAT(50) + ERDP(50) + ERDN(50) + ZD(50) + TSTP(25) + ERTP(25) + ERTN X(25) + ZT(25) + WFD(50) + WFT(25) + TMPD(50) + TMPT(25) + DVD(50) + DVT(25) + TEMP X(1001) + DTEMP(1001) + ALTIT(1001) + DATA(750) + T(1001) + H(1001) + FMTR(12) + XYNMD(3) + YNMT(3) + FMT(12) + TT(1078) + HH(1078) + TDA1(50) + TST1(25) X + ZD1(50) + ZT1(25) + BB(20+20) + CE(20) + AA(20) + A(20) + B(20) + CBA(20) + UW
	X SCAIL DIMENSION TDAT(50), ERDP(50), ERDN(50), ZD(50), TSTP(25), ERTP(25), ERTN X(25), ZT(25), WFD(50), WFT(25), TMPD(50), TMPT(25), DVD(50), DVT(25), TEMP X(1001), DTEMP(1001), ALTIT(1001), DATA(750), T(1001), H(1001), FMTR(12), XYNMD(3), YNMT(3), FMT(12), TT(1078), HH(1078), TDA1(50), TST1(25) X, ZD1(50), ZT1(25), BB(20, 20), CC(20), AA(20), A(20, 20), B(20), CBA(20), UW XDVD(50), UWDVT(25), TE(2), HE(2)
	<pre>X SCAIL DIMENSION TDAT(50) + ERDP(50) + ERDN(50) + ZD(50) + TSTP(25) + ERTP(25) + ERTN X(25) + ZT(25) + WFD(50) + WFT(25) + TMPD(50) + TMPT(25) + DVD(50) + DVT(25) + TEMP X(1001) + DTEMP(1001) + ALTIT(1001) + DATA(750) + T(1001) + H(1001) + FMTR(12) + XYNMD(3) + YNMT(3) + FMT(12) + TT(1078) + HH(1078) + TDA1(50) + TST1(25) X + ZD1(50) + ZT1(25) + BB(20+20) + CC(20) + AA(20) + A(20+20) + B(20) + CBA(20) + UW XDVD(50) + UWDVT(25) + TE(2) + HE(2) EOUIVALENCE(T+TT) + (TE+TT(1002) + (TDA1+TT(1004) + (TST1+TT(1054) + (H))</pre>
	<pre>X SCAIL DIMENSION TDAT(50) + ERDP(50) + ERDN(50) + ZD(50) + TSTP(25) + ERTP(25) + ERTN X(25) + ZT(25) + WFD(50) + WFT(25) + TMPD(50) + TMPT(25) + DVD(50) + DVT(25) + TEMP X(1001) + DTEMP(1001) + ALTIT(1001) + DATA(750) + T(1001) + H(1001) + FMTR(12) + XYNMD(3) + YNMT(3) + FMT(12) + TT(1078) + HH(1078) + TDA1(50) + TST1(25) X + ZD1(50) + ZT1(25) + BB(20+20) + CC(20) + AA(20) + A(20+20) + B(20) + CBA(20) + UW XDVD(50) + UWDVT(25) + TE(2) + HE(2) EQUIVALENCE(T+TT) + (TE+TT(1002)) + (TDA1+TT(1004)) + (TST1+TT(1054)) + (H</pre>
	<pre>X SCAIL DIMENSION TDAT(50) + ERDP(50) + ERDN(50) + ZD(50) + TSTP(25) + ERTP(25) + ERTN X(25) + ZT(25) + WFD(50) + WFT(25) + TMPD(50) + TMPT(25) + DVD(50) + DVT(25) + TEMP X(1001) + DTEMP(1001) + ALTIT(1001) + DATA(750) + T(1001) + H(1001) + FMTR(12) + XYNMD(3) + YNMT(3) + FMT(12) + TT(1078) + HH(1078) + TDA1(50) + TST1(25) X + ZD1(50) + ZT1(25) + BB(20+20) + CC(20) + AA(20) + A(20+20) + B(20) + CBA(20) + UW XDVD(50) + UWDVT(25) + TE(2) + HE(2) EQUIVALENCE(T+TT) + (TE+TT(1002)) + (TDA1+TT(1004)) + (TST1+TT(1054)) + (H X + HH) + (HE + HH(1002)) + (ZD1 + HH(1004)) + (ZT1 + HH(1054))</pre>
	<pre>X SCAIL DIMENSION TDAT(50) + ERDP(50) + ERDN(50) + ZD(50) + TSTP(25) + ERTP(25) + ERTN X(25) + ZT(25) + WFD(50) + WFT(25) + TMPD(50) + TMPT(25) + DVD(50) + DVT(25) + TEMP X(1001) + DTEMP(1001) + ALTIT(1001) + DATA(750) + T(1001) + H(1001) + FMTR(12) + XYNMD(3) + YNMT(3) + FMT(12) + TT(1078) + HH(1078) + TDA1(50) + TST1(25) X + ZD1(50) + ZT1(25) + BB(20+20) + CC(20) + AA(20) + A(20+20) + B(20) + CBA(20) + UW XDVD(50) + UWDVT(25) + TE(2) + HE(2) EQUIVALENCE(T+TT) + (TE+TT(1002)) + (TDA1+TT(1004)) + (TST1+TT(1054)) + (H X + HH(1002)) + (ZD1+HH(1004)) + (ZT1+HH(1054)) ASSIGN 951 TO MT</pre>
	<pre>X SCAIL DIMENSION TDAT(50) + ERDP(50) + ERDN(50) + ZD(50) + TSTP(25) + ERTP(25) + ERTN X(25) + ZT(25) + WFD(50) + WFT(25) + TMPD(50) + TMPT(25) + DVD(50) + DVT(25) + TEMP X(1001) + DTEMP(1001) + ALTIT(1001) + DATA(750) + T(1001) + H(1001) + FMTR(12) + XYNMD(3) + YNMT(3) + FMT(12) + TT(1078) + HH(1078) + TDA1(50) + TST1(25) X+ZD1(50) + ZT1(25) + BB(20+20) + CC(20) + AA(20) + A(20+20) + B(20) + CBA(20) + UW XDVD(50) + UWDVT(25) + TE(2) + HE(2) EQUIVALENCE(T+TT) + (TE+TT(1002)) + (TDA1+TT(1004)) + (TST1+TT(1054)) + (H X+HH) + (HE+HH(1002)) + (ZD1+HH(1004)) + (ZT1+HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2 + 1013 + (EMT(1) + I=1+12)</pre>
	<pre>X SCAIL DIMENSION TDAT(50) + ERDP(50) + ERDN(50) + ZD(50) + TSTP(25) + ERTP(25) + ERTN X(25) + ZT(25) + WFD(50) + WFT(25) + TMPD(50) + TMPT(25) + DVD(50) + DVT(25) + TEMP X(1001) + DTEMP(1001) + ALTIT(1001) + DATA(750) + T(1001) + H(1001) + FMTR(12) + XYNMD(3) + YNMT(3) + FMT(12) + TT(1078) + HH(1078) + TDA1(50) + TST1(25) X+ZD1(50) + ZT1(25) + BB(20+20) + CC(20) + AA(20) + A(20+20) + B(20) + CBA(20) + UW XDVD(50) + UWDVT(25) + TE(2) + HE(2) EQUIVALENCE(T+TT) + (TE+TT(1002)) + (TDA1+TT(1004)) + (TST1+TT(1054)) + (H X+HH) + (HE+HH(1002)) + (ZD1+HH(1004)) + (ZT1+HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2 + 1013 + (FMT(1) + I = 1 + 12) 2 EODMAT (12A6)</pre>
	<pre>X SCAIL DIMENSION TDAT(50) * ERDP(50) * ERDN(50) * ZD(50) * TSTP(25) * ERTP(25) * ERTN X(25) * ZT(25) * WFD(50) * WFT(25) * TMPD(50) * TMPT(25) * DVD(50) * DVT(25) * TEMP X(1001) * DTEMP(1001) * ALTIT(1001) * DATA(750) * T(1001) * H(1001) * FMTR(12) * XYNMD(3) * YNMT(3) * FMT(12) * TT(1078) * HH(1078) * TDA1(50) * TST1(25) X * ZD1(50) * ZT1(25) * BB(20 * 20) * CC(20) * AA(20) * A(20 * 20) * B(20) * CBA(20) * UW XDVD(50) * UWDVT(25) * TE(2) * HE(2) EQUIVALENCE(T*TT) * (TE*TT(1002)) * (TDA1*TT(1004)) * (TST1*TT(1054)) * (H X * HH) * (HE * HH(1002)) * (ZD1 * HH(1004)) * (ZT1 * HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2 * 1013 * (FMT(I) * I = 1 * 12) 3 FORMAT (12A6)</pre>
	<pre>X SCAIL DIMENSION TDAT(50) * ERDP(50) * ERDN(50) * ZD(50) * TSTP(25) * ERTP(25) * ERTN X(25) * ZT(25) * WFD(50) * WFT(25) * TMPD(50) * TMPT(25) * DVD(50) * DVT(25) * TEMP X(1001) * DTEMP(1001) * ALTIT(1001) * DATA(750) * T(1001) * H(1001) * FMTR(12) * XYNMD(3) * FMT(12) * TT(1078) * HH(1078) * TDA1(50) * TST1(25) X * ZD1(50) * ZT1(25) * BB(20 * 20) * CC(20) * AA(20) * A(20) * DA1(50) * CBA(20) * UW XDVD(50) * UWDVT(25) * TE(2) * HE(2) EQUIVALENCE(T * TT) * (TE * TT(1002)) * (TDA1 * TT(1004)) * (TST1 * TT(1054)) * (H X * HH) * (HE * HH(1002)) * (ZD1 * HH(1004)) * (ZT1 * HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2 * 1013 * (FMT(I) * I = 1 * 12) 3 FORMAT {12A6} READ INPUT TAPE 2 * 1011 * (TE(I) * HE(I) * I = 1 * 2)</pre>
	<pre>X SCAIL DIMENSION TDAT(50), ERDP(50), ERDN(50), ZD(50), TSTP(25), ERTP(25), ERTN X(25), ZT(25), WFD(50), WFT(25), TMPD(50), TMPT(25), DVD(50), DVT(25), TEMP X(1001), DTEMP(1001), ALTIT(1001), DATA(750), T(1001), H(1001), FMTR(12), XYNMD(3), YNMT(3), FMT(12), TT(1078), HH(1078), TDA1(50), TST1(25) X, ZD1(50), ZT1(25), BB(20, 20), CC(20), AA(20), A(20, 20), B(20), CBA(20), UW XDVD(50), UWDVT(25), TE(2), HE(2) EQUIVALENCE(T,TT), (TE,TT(1002)), (TDA1,TT(1004)), (TST1,TT(1054)), (H X,HH), (HE,HH(1002)), (ZD1, HH(1004)), (ZT1, HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2, 1013, (FMT(I), I=1,12) 3 FORMAT (12A6) READ INPUT TAPE 2,1011, (TE(I), HE(I), I=1,2) WRITEOUTPUTTAPE 3,1011, (TE(I), HE(I), I=1,2)</pre>
	<pre>X SCAIL DIMENSION TDAI(50) * ERDP(50) * ERDN(50) * ZD(50) * ISTP(25) * ERTP(25) * ERTN X(25) * ZT(25) * WFD(50) * WFT(25) * TMPD(50) * TMPT(25) * DVD(50) * DVT(25) * TEMP X(1001) * DTEMP(1001) * ALTIT(1001) * DATA(750) * T(1001) * H(1001) * FMTR(12) * XYNMD(3) * YNMT(3) * FMT(12) * TT(1078) * HH(1078) * TDA1(50) * TST1(25) X * ZD1(50) * ZT1(25) * BB(20 * 20) * CC(20) * AA(20) * A(20 * 20) * B(20) * CBA(20) * UW XDVD(50) * UWDVT(25) * TE(2) * HE(2) EQUIVALENCE(T*TT) * (TE*TT(1002)) * (TDA1*TT(1004)) * (TST1*TT(1054)) * (H X * HH) * (HE * HH(1002)) * (ZD1 * HH(1004)) * (ZT1 * HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2* 1013 * (FMT(I) * I = 1*12) FORMAT (12A6) READ INPUT TAPE 2*1011 * (TE(I) * HE(I) * I = 1*2) WRITEOUTPUTTAPE 3*1011 * (TE(I) * HE(I) * I = 1*2) FORMAT (4E10*3)</pre>
	<pre>X SCAIL DIMENSION TDAT(50) * ERDP(50) * ERDN(50) * ZD(50) * TSTP(25) * ERTP(25) * ERTN X(25) * ZT(25) * WFD(50) * WFT(25) * TMPD(50) * TMPT(25) * DVD(50) * DVT(25) * TEMP X(1001) * DTEMP(1001) * ALTIT(1001) * DATA(750) * T(1001) * H(1001) * FMTR(12) * XYNMD(3) * YNMT(3) * FMT(12) * TT(1078) * HH(1078) * TDA1(50) * TST1(25) X * ZD1(50) * ZT1(25) * BE(20 * 20) * CC(20) * AA(20) * A(20 * 20) * B(20) * CBA(20) * UW XDVD(50) * UWDVT(25) * TE(2) * HE(2) EQUIVALENCE(T * TT) * (TE* TT(1002)) * (TDA1 * TT(1004)) * (TST1 * TT(1054)) * (H X * HH) * (HE * HH(1002)) * (ZD1 * HH(1004)) * (ZT1 * HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2 * 1013 * (FMT(I) * I = 1 * 12) FORMAT (12A6) READ INPUT TAPE 2 * 1011 * (TE(I) * HE(I) * I = 1 * 2) WRITEOUTPUTTAPE 3 * 1011 * (TE(I) * HE(I) * I = 1 * 2) 1 FORMAT (4F10.3) DO 1 * M = 1202 * 1022 * 1013</pre>
	<pre>X SCAIL DIMENSION TDAT(50),ERDP(50),ERDN(50),ZD(50),TSTP(25),ERTP(25),ERTN X(25),ZT(25),WFD(50),WFT(25),TMPD(50),TMPT(25),DVD(50),DVT(25),TEMP X(1001),DTEMP(1001),ALTIT(1001),DATA(750),T(1001),H(1001),FMTR(12), XYNMD(3),YNMT(3), FMT(12),TT(1078),HH(1078),TDA1(50),TST1(25) X,ZD1(50),ZT1(25),BB(20,20),CC(20),AA(20),A(20,20),B(20),CBA(20),UW XDVD(50),UWDVT(25),TE(2),HE(2) EQUIVALENCE(T,TT),(TE,TT(1002)),(TDA1,TT(1004)),(TST1,TT(1054)),(H X,HH),(HE,HH(1002)),(ZD1,HH(1004)),(ZT1,HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2, 1013,(FMT(I),I=1,12) 3 FORMAT (12A6) READ INPUT TAPE 2,1011,(TE(I),HE(I),I=1,2) WRITEOUTPUTTAPE 3,1011,(TE(I),HE(I),I=1,2) 1 FORMAT (4F10,3) DO 1 MJ=1004,1078,1</pre>
	<pre>X SCAIL DIMENSION TDAI(50), ERDP(50), ERDN(50), ZD(50), TSTP(25), ERTP(25), ERTN X(25), ZT(25), WFD(50), WFT(25), TMPD(50), TMPT(25), DVD(50), DVT(25), TEMP X(1001), DTEMP(1001), ALTIT(1001), DATA(750), T(1001), H(1001), FMTR(12), XYNMD(3), YNMT(3), FMT(12), TT(1078), HH(1078), TDA1(50), TST1(25) X.ZD1(50), ZT1(25), BB(20,20), CC(20), AA(20), A(20,20), B(20), CBA(20), UW XDVD(50), UWDVT(25), TE(2), HE(2) EQUIVALENCE(T, TT), (TE, TT(1002)), (TDA1, TT(1004)), (TST1, TT(1054)), (H X, HH), (HE, HH(1002)), (ZD1, HH(1004)), (ZT1, HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2, 1013, (FMT(1), I=1,12) 3 FORMAT (12A6) READ INPUT TAPE 2, 1011, (TE(I), HE(I), I=1,2) 1 FORMAT (4F10.3) DO 1 MJ=1004,1078,1 TT(MJ) = TE(1)</pre>
<u>101</u>	<pre>X SCAIL DIMENSION TDAT(50),ERDP(50),ERDN(50),ZD(50),ISTP(25),ERTP(25),ERTN X(25),ZT(25),WFD(50),WFT(25),TMPD(50),TMPT(25),DVD(50),DVT(25),TEMP X(1001),DTEMP(1001),ALTIT(1001),DATA(750),T(1001),H(1001),FMTR(12), XYNMD(3),YNMT(3), FMT(12),TT(1078),HH(1078),TDA1(50),TST1(25) X,ZD1(50),ZT1(25),BB(20,20),CC(20),AA(20),A(20,20),B(20),CBA(20),UW XDVD(50),UWDVT(25),TE(2),HE(2) EQUIVALENCE(T,TT),(TE,TT(1002)),(TDA1,TT(1004)),(TST1,TT(1054)),(H X,HH),(HE,HH(1002)),(ZD1,HH(1004)),(ZT1,HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2, 1013,(FMT(I),I=1,12) 3 FORMAT (12A6) READ INPUT TAPE 2,1011,(TE(I),HE(I),I=1,2) HORMAT (4F10,3) DO 1 MJ=1004,1078,1 TT(MJ)=TE(1) 1 HH(M))=TE(1)</pre>
<u>101</u> 101	<pre>X SCAIL DIMENSION TDAI(50),ERDP(50),ERDN(50),ZD(50),TSTP(25),ERTP(25),ERTN X(25),ZT(25),WFD(50),WFT(25),TMPD(50),TMPT(25),DVD(50),DVT(25),TEMP X(1001),DTEMP(1001),ALTIT(1001),DATA(750),T(1001),H(1001),FMTR(12), XYNMD(3),YNMT(3), FMT(12),TT(1078),HH(1078),TDA1(50),TST1(25) X,ZD1(50),ZT1(25),BB(20,20),CC(20),AA(20),A(20,20),B(20),CBA(20),UW XDVD(50),UWDVT(25),TE(2),HE(2) EQUIVALENCE(T,TT),(TE,TT(1002)),(TDA1,TT(1004)),(TST1,TT(1054)),(H X,HH),(HE,HH(1002)),(ZD1,HH(1004)),(ZT1,HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2, 1013,(FMT(I),I=1,12) 3 FORMAT (12A6) READ INPUT TAPE 2,1011,(TE(I),HE(I),I=1,2) 1 FORMAT (4F10,3) DO 1 MJ=1004,1078,1 TT(MJ)=TE(1) 1 HH(MJ)=HE(2) TEV1 = F(1)</pre>
	<pre>X SCAIL DIMENSION TDAT(50),ERDP(50),ERDN(50),ZD(50),ISTP(25),ERTP(25),ERTN X(25),ZT(25),WFD(50),WFT(25),TMPD(50),TMPT(25),DVD(50),DVT(25),TEMP X(1001),DTEMP(1001),ALTIT(1001),DATA(750),T(1001),H(1001),FMTR(12), XYNMD(3),YNMT(3), FMT(12),TT(1078),HH(1078),TDA1(50),TST1(25) X,ZD1(50),ZT1(25),FBE(20,20),CC(20),AA(20),A(20,20),B(20),CBA(20),UW XDVD(50),UWDVT(25),TE(2),HE(2) EQUIVALENCE(T,TT),(TE,TT(1002)),(TDA1,TT(1004)),(TST1,TT(1054)),(H X,HH),(HE,HH(1002)),(ZD1,HH(1004)),(ZT1,HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2, 1013,(FMT(I),I=1,12) FORMAT (12A6) READ INPUT TAPE 2,1011,(TE(I),HE(I),I=1,2) WRITEOUTPUTTAPE 3,1011,(TE(I),HE(I),I=1,2) I FORMAT (4F10.3) DO 1 MJ=1004,1078,1 TT(MJ)=TE(1) 1 HH(MJ)=HE(2) TEX1=TE(1)</pre>
	<pre>X SCAIL DIMENSION TDAI(50) + ERDP(50) + ERDN(50) + 2D(50) + ISTP(25) + ERTP(25) + ERTN X(25) + ZT(25) + WFD(50) + WFT(25) + TMPD(50) + TMPT(25) + DVD(50) + DVT(25) + TEMP X(1001) + DTEMP(1001) + ALTIT(1001) + DATA(750) + T(1001) + H(1001) + FMTR(12) + XYMMD(3) + YNMT(3) + FMT(12) + TT(1078) + H(1078) + TDA1(50) + TST1(25) X + ZD1(50) + ZT1(25) + BB(20 + 20) + CC(20) + AA(20) + A(20 + 20) + DA1(50) + TST1(25) X + ZD1(50) + ZT1(25) + BB(20 + 20) + CC(20) + AA(20) + A(20 + 20) + DA1(50) + TST1(25) X + ZD1(50) + ZT1(25) + BB(20 + 20) + CC(20) + AA(20) + A(20 + 20) + DA1(50) + TST1(25) X + ZD1(50) + ZT1(25) + BB(20 + 20) + CC(20) + AA(20) + A(20 + 20) + DA1(50) + TST1(25) X + ZD1(50) + ZT1(25) + BB(20 + 20) + CC(20) + AA(20) + A(20 + 20) + DA1(50) + TST1(25) X + ZD1(50) + ZT1(25) + BB(20 + 20) + CC(20) + AA(20) + A(20 + 20) + DA1(50) + TST1(1054) + UW X DVD(50) + UWDYT(25) + TE(2) + HE(2) + HE(2) EQUIVALENCE(T, TT) + (TEFTT(1002)) + (TDA1 + TT(1004)) + (TST1 + TT(1054)) + (H X + HH) + (HE + HH(1002)) + (ZD1 + HH(1004)) + (ZT1 + HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2 + 1013 + (FMT(1) + I=1 + 2) WRITEOUTPUTTAPE 3 + 1011 + (TE(1) + HE(1) + I=1 + 2) WRITEOUTPUTTAPE 3 + 1011 + (TE(1) + HE(1) + I=1 + 2) WRITEOUTPUTTAPE 3 + 1011 + (TE(1) + HE(1) + I=1 + 2) WRITEOUTPUTTAPE 3 + 1011 + (TE(1) + HE(1) + I=1 + 2) H + (MJ) = HE(2) T + CMJ = TE(1) H + H(MJ) = HE(2) T + CMJ = TE(1) H + H(MJ) = HE(2) T + CMJ = TE(2) H + CMJ = TE</pre>
	<pre>X SCAIL DIMENSION TDAT(50),ERDP(50),ERDN(50),ZD(50),ISTP(25),ERTP(25),ERTN X(25),ZT(25),WFD(50),WFT(25),TMPD(50),TMPT(25),DVD(50),DVT(25),TEMP X(1001),DTEMP(1001),ALTIT(1001),DATA(750),T(1001),H(1001),FMTR(12), XYNMD(3),YNMT(3), FMT(12),TT(1078),HH(1078),TDA1(50),TST1(25) X,ZD1(50),ZT1(25),BB(20,20),CC(20),AA(20),A(20),BB(20),CBA(20),UW XDVD(50),UWDVT(25),TE(2),HE(2) EQUIVALENCE(T,TT),(TE,TT(1002)),(TDA1,TT(1004)),(TST1,TT(1054)),(H X,HH),(HE,HH(1002)),(ZD1,HH(1004)),(ZT1,HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2, 1013,(FMT(I),I=1,12) 3 FORMAT (12A6) READ INPUT TAPE 2,1011,(TE(I),HE(I),I=1,2) WRITEOUTPUTTAPE 3,1011,(TE(I),HE(I),I=1,2) 1 FORMAT (4F10.3) DO 1 MJ=1004,1078,1 TT(MJ)=TE(1) 1 HH(MJ)=HE(2) TEX1=TE(1) 1 FX1=TE(1) 1 EX2=TE(2) HEX1=HE(1)</pre>
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>X SCAIL DIMENSION TDAT(50), ERDP(50), ERDN(50), 2D(50), TSTP(25), ERTP(25), ERTN X(25), 2T(25), WFO(50), WFT(25), TMPD(50), TMPT(25), DVD(50), DVT(25), TEMP X(1001), DTEMP(1001), ALTIT(1001), DATA(750), T(1001), H(1001), FMTR(12), XYNMD(3), YNMT(3), FMT(12), TT(1078), HH(1078), TDA1(50), TST1(25) X, ZD1(50), ZT1(25), BB(20, 20), CC(20), AA(20), A(20, 20), B(20), CBA(20), UW XDVD(50), UWDVT(25), TE(2), HE(2) EQUIVALENCE(T, TT), (TE, TT(1002)), (TDA1, TT(1004)), (TST1, TT(1054)), (H X, HH), (HE, HH(1002)), (ZD1, HH(1004)), (ZT1, HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2, 1013, (FMT(1), I=1,12) 3 FORMAT (12A6) READ INPUT TAPE 2, 1011, (TE(I), HE(I), I=1,2) 1 FORMAT (4F10, 3) DO 1 MJ=1004, 1078, 1 TT(MJ)=TE(1) 1 HH(MJ)=HE(2) TEX1=TE(1) 1 HH(MJ)=HE(2) HEX1=HE(1) HEX1=HE(1) HEX2=HE(2) HEX1=HE(1) HEX1=HE(1) HEX1=HE(1) HEX1=HE(1) HEX1=HE(1) HEX1=HE(1) HEX1=HE(1) HEX1=HE(1) HEX1=HE(1) HEX1=HE(1) HEX1=HE(1) HEX1=HE(1) HEX1=HE(1) HEX1=HE(1) HEX1=HE(1) HEX1=HE(1) HEX1=HE(1) HEX1=HE(1) HEX1=HEX1 HEX1=HEX</pre>
2 1 10 1 12 12	<pre>X SCAIL DIMENSION TDAT(50) + ERDP(50) + ERDN(50) + ZD(50) + TSTP(25) + ERTP(25) + ERTN X(25) + ZT(25) + WFD(50) + WFT(25) + TMPD(50) + TMPT(25) + DVT(25) + TEMP X(1001) + DTEMP(1001) + ALTIT(1001) + DATA(750) + T(1001) + H(1001) + FMTR(12) + XYNMD(3) + YNMT(3) + FMT(12) + TT(1078) + HH(1078) + TDA1(50) + TST1(25) X + ZD1(50) + ZT1(25) + BB(20 + 20) + CC(20) + AA(20) + A(20) + B(20) + CBA(20) + UW XDVD(50) + UWDVT(25) + TE(2) + HE(2) EQUIVALENCE(T + TT) + (TE + TT(1002)) + (TDA1 + TT(1004)) + (TST1 + TT(1054)) + (H X + HH) + (HE + HH(1002)) + (ZD1 + HH(1004)) + (ZT1 + HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2 + 1013 + (FMT(I) + I = 1 + 12) FORMAT (12A6) READ INPUT TAPE 2 + 1013 + (FMT(I) + I = 1 + 12) I FORMAT (4F10.3) D0 1 MJ=1004 + 1078 + 1 TT(MJ) = TE(1) HH(MJ) = HE(2) TFX1 = TE(1) TFX1 = TE(1) HEX1 = HE(1) HEX2 = HE(2) D = 1000T TAPE 2 + 1015 - 2000 TAUN 2000 EDUIVALENCE 2 + 1000 + 1</pre>
12 12	<pre>X SCAIL DIMENSION TDAT(50),ERDP(50),ERDN(50),2D(50),TSTP(25),ERTP(25),ERTN X(25),ZT(25),WFD(50),WFT(25),TMPD(50),TMPT(25),DVD(50),DVT(25),TEMP X(1001),DTEMP(1001),ALTIT(1001),DATA(750),T(1001),H(1001),FMTR(12), XYNMD(3),YNMT(3), FMT(12),TT(1078),HH(1078),TDA1(50),TST1(25) X.2D1(50),ZT1(25),ER(20,20),CC(20),AA(20),A(20,20),B(20),CBA(20),UW XDVD(50),UWDVT(25),TE(2),HE(2) EQUIVALENCE(T,TT),(TE,TT(1002)),(TDA1,TT(1004)),(TST1,TT(1054)),(H X,HH),(HE,HH(1002)),(ZD1,HH(1004)),(ZT1,HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2, 1013,(FMT(I),I=1,12) FORMAT (12A6) READ INPUT TAPE 2,1011,(TE(I),HE(I),I=1,2) WRITEOUTPUTTAPE 3,1011,(TE(I),HE(I),I=1,2) FORMAT (4F10,3) DO 1 MJ=1004,1078,1 TT(MJ)=TE(1) 1 HH(MJ)=HE(2) TEX1=TE(1) 1 HH(MJ)=HE(2) TEX1=TE(1) HEX1=HE(1) HEX2=HE(2) READ INPUT TAPE 2, 1015, ZMIN,ZMAX</pre>
101 12 11 10	<pre>X SCAIL DIMENSION TDAT(50)*ERDP(50)*ERDN(50)*ZD(50)*TSTP(25)*ERTP(25)*ERTN X(25)*ZT(25)*WFD(50)*WFT(25)*TMPD(50)*TMPT(25)*DVD(50)*DVT(25)*TEMP X(1001)*DTEMP(1001)*ALTIT(1001)*DATA(750)*T(1001)*H(1001)*FMTR(12)* XYNMD(3)*YNMT(3)* FMT(12)*TT(1078)*HH(1078)*DA1(50)*TST1(25) X*ZD1(50)*ZT1(25)*FB(20*20)*CC(20)*AA(20)*A(20*20)*B(20)*CBA(20)*UW XDVD(50)*UWDVT(25)*FE(2)*HE(2) EQUIVALENCE(T*TI1)*(TF*TT(1002))*(TDA1*TT(1004))*(TST1*TT(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(TST1*TT(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(TST1*TT(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(TST1*TT(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(TST1*TT(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(TST1*TT(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(TST1*TT(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(TST1*TT(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(TST1*TT(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1)*I=1*2)*(TST1*TT(1054))*(H X*HH)*(HE*HE*TA*TTA*TT*TTTA*TT*TT*TT*TT*TT*TT*TT*TT*</pre>
101 101 101	<pre>X SCAIL DIMENSION TDAT(50)*ERDP(50)*ERDN(50)*ZD(50)*TSTP(25)*ERTP(25)*ERTN X(25)*ZT(25)*WFD(50)*WFT(25)*TMPD(50)*TMPT(25)*OVD(50)*DVT(25)*ERTP X(1001)*DTEMP(1001)*ALTIT(1001)*DATA(750)*T(1001)*H(1001)*FMTR(12)* XYNMD(3)*YNMT(3)* FMT(12)*TT(1078)*HH(1078)*DDA1(50)*TST1(25) X*ZD1(50)*ZT1(25)*FB(20*20)*CC(20)*AA(20)*A(20*20)*B(20)*CBA(20)*UW XDVD(50)*UWDVT(25)*FE(2)*HE(2) EQUIVALENCE(T*TT)*(TE*TT(1002))*(TDA1*TT(1004))*(TST1*TT(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))*(H X*HH)*(HE*HH(1)*HE*(1)*</pre>
101 101 12 11 10 101	<pre>X SCAIL DIMENSION TDAT(50)*ERDN(50)*ZD(50)*TSIP(25)*ERTP(25)*ERTN X(25)*ZT(25)*WFD(50)*WFT(25)*TMPD(50)*TMPT(25)*DVD(50)*DVT(25)*TEMP X(1001)*DTEMP(1001)*ALTIT(1001)*DATA(750)*T(1001)*H(1001)*FMTR(12)* XYNMD(3)*YNMT(3)* FMT(12)*TT(1078)*HH(1078)*TDA1(50)*TSI1(25) X*ZD1(50)*ZI1(25)*BB(20*20)*CC(20)*AA(20)*A(20*20)*B(20)*CBA(20)*UW XDVD(50)*UWDVT(25)*BE(20*20)*CC(20)*AA(20)*A(20*20)*B(20)*CBA(20)*UW XDVD(50)*UWDVT(25)*TE(2)*HE(2) EQUIVALENCE(T*TT)*(TE*TT(1002))*(TDA1*TT(1004))*(TST1*TT(1054))*(H X*HH)*(H5*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2*1013*(FMT(1)*I=1*12) 3 FORMAT (12A6) READ INPUT TAPE 2*1011*(TE(1)*HE(1)*I=1*2) WRITEOUTPUTTAPE 3*1011*(TE(1)*HE(1)*I=1*2) 1 FORMAT (4F10*3) DO 1 MJ=1004*1078*1 TT(MJ)=TE(1) 1 HH(MJ)=HE(1) 1 HH(MJ)=HE(1) 1 HH(MJ)=HE(1) HEX2=HE(2) READ INPUT TAPE 2* 1015* ZMIN*ZMAX WRITE OUTPUTTAPE3* 1015* ZMIN*ZMAX WRITE OUTPUTTAPE3* 1015* ZMIN*ZMAX WRITE OUTPUTTAPE3* 1015* ZMIN*ZMAX</pre>
101 101 10 10 10 101	<pre>X SCAIL DIMENSION TDAT(50), ERDP(50), ERDN(50), ZD(50), TSIP(25), ERTP(25), ERTN X(25), ZT(25), WFD(50), WFT(25), TMPD(50), TMPT(25), DVD(50), DVT(25), TEMP X(1001), DTEMP(1001), ALTI(1001), DATA(750), T(1001), H(1001), FMTR(12), XYNMD(3), YNMT(3), FMT(12), TT(1078), HH(1078), TDA1(50), TSI1(25) X, ZD1(50), ZT1(25), BB(20, 20), CC(20), AA(20), A(20, 20), B(20), CBA(20), UW XDVD(50), UWDVT(25), TE(2), HE(2) EQUIVALENCE(T,TI), (TE,TT(1002)), (TDA1, TT(1004)), (TST1, TT(1054)), (H X, HH), (HE, HH(1002)), (ZD1, HH(1004)), (ZT1, HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2, 1013, (FMT(1), I=1,12) FORMAT (12A6) READ INPUT TAPE 2, 1013, (FMT(I), I=1,12) FORMAT (4F10,3) DO 1 MJ=1004,1078,1 TT(MJ)=TE(1) HH(MJ)=HE(2) TEX1=TE(1) I FORMAT (4F10,3) DO 1 MJ=1004,1078,1 TT(MJ)=TE(1) HH(MJ)=HE(2) TEX1=TE(1) HEX1=HE(1) HEX2=HE(2) READ INPUT TAPE 2, 1015, ZMIN,ZMAX WRITE OUTPUTTAPE3, 1015, ZMIN,ZMAX WRITE OUTPUTTAPE3, 1015, ZMIN,ZMAX WRITE OUTPUTTAPE3, 1015, ZMIN,ZMAX WRITE OUTPUTTAPE 2, 1000, IMAX,JMAX,IDNT,KMAX,KMIN,XX,YY</pre>
101 101 10 10 7	<pre>X SCAIL DIMENSION TDAT(50) + ERDP(50) + ERDN(50) + ZD(50) + TSTP(25) + ERTP(25) + ERTM X(25) + ZT(25) + WFD(50) + WFT(25) + TMPD(50) + TMPT(25) + DVD(50) + DVT(25) + TEMP X(1001) + DTEMP(1001) + ALTIT(1001) + DATA(750) + T(1001) + H(1001) + FMTR(12) + XYNMD(3) + YNMT(3) + FMT(12) + TT(1078) + HH(1078) + TDA1(50) + TST1(25) X + ZD1(50) + ZT1(25) + DB(20, 20) + CC(20) + AA(20) + A(20, 20) + B(20) + CBA(20) + UW XDVD(50) + UWDVT(25) + TE(2) + HE(2) EQUIVALENCE(T, 11) + (TE, TT(1002)) + (TDA1+TT(1004)) + (TST1+TT(1054)) + (H X + HH) + (HE + HH(1002)) + (ZD1 + HH(1004)) + (ZT1 + HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2 + 1013 + (FMT(I) + I = 1 + 2) FORMAT (12A6) READ INPUT TAPE 2 + 1013 + (FMT(I) + I = 1 + 2) WRITEOUTPUTTAPE 3 + 1011 + (TE(1) + HE(I) + I = 1 + 2) FORMAT (4F10.3) DO 1 MJ=1004,1078,1 TT(MJ) = TE(1) 1 HH(MJ) = HE(2) TEX1=TE(1) 1 HH(MJ) = HE(2) TEX1=TE(1) 1 HH(MJ) = HE(2) TEX1=TE(1) 1 HEX2=+HE(2) READ INPUT TAPE 2 + 1015 + ZMIN + ZMAX WRITE OUTPUTTAPE3 + 1015 + ZMIN + ZMAX + IDNT + KMAX + KMIN + XX + YY WRITEOUTPUTTAPE 3 + 1000 + IMAX + JDNT + KMAX + KMIN + XX + YY</pre>
101 101 101 101 7 6 100	<pre>X SCAIL DIMENSION TDAT(50) + ERDP(50) + ERDN(50) + ZD(50) + TSTP(25) + ERTP(25) + ERTN X(25) + ZT(25) + WFD(50) + WFT(25) + TMPD(50) + TMPT(25) + DVD(50) + DVT(25) + TEMP X(1001) + DTEMP(1001) + ALTIT(1001) + DATA(750) + T(1001) + H(1001) + FMTR(12) + XYNMD(3) + YNMT(3) FMT(12) + TT(1078) + HH(1078) + TDA1(50) + TST1(25) X + ZD1(50) + ZT1(25) + EB(20 + 20) + CC(20) + AA(20) + A(20 + 20) + E(20) + CEA(20) + UW XDVD(50) + UUDVT(25) + TE(2) + HE(2) EQUIVALENCE(T+TT) + (TE+TT(1002)) + (TDA1 + TT(1004)) + (TST1 + TT(1054)) + (H X + HH) + (HE + HH(1002)) + (ZD1 + HH(1004)) + (ZT1 + HH(1054)) ASSIGN 951 TO MT READ INPUT TAPE 2 + 1013 + (FMT(1) + I = 1 + 2) WRITEOUTPUTTAPE 3 + 1011 + (TE(I) + HE(I) + I = 1 + 2) WRITEOUTPUTTAPE 3 + 1011 + (TE(I) + HE(I) + I = 1 + 2) WRITEOUTPUTTAPE 3 + 1011 + (TE(I) + HE(I) + I = 1 + 2) WRITEOUTPUTTAPE 3 + 1015 + ZMIN + ZMAX WRITE (1) HH(MJ) = HE(2) TEX1 = TE(1) HEX1 = HE(1) HEX2 = HE(2) READ INPUT TAPE 2 + 1015 + ZMIN + ZMAX WRITE OUTPUTTAPE 3 + 1016 + ZMIN + ZMAX WRITE OUTPUTTAPE 3 + 1016 + ZMIN + ZMAX WRITE OUTPUTTAPE 3 + 1017 + ZMAX WRITE OUTPUTTAPE 3 + 1018 + ZMIN + ZMAX WRITE OUTPUTTAPE 3 + 1019 + ZMIN + ZMAX WRITE OUTPUTTAPE 3 + 1019 + ZMIN + ZMAX WRITE OUTPUTTAPE 3 + 1010 + MAX + MIN + XX + YY WRITEOUTPUTTAPE 3 + 1000 + IMAX + JMAX + IDNT + KMAX + KMIN + XX + YY WRITEOUTPUTTAPE 3 + 1000 + IMAX + JMAX + IDNT + KMAX + KMIN + XX + YY WRITEOUTPUTTAPE 3 + 1000 + IMAX + JMAX + IDNT + KMAX + KMIN + XX + YY WRITEOUTPUTTAPE 3 + 1000 + IMAX + JMAX + IDNT + KMAX + KMIN + XX + YY WRITEOUTPUTTAPE 3 + 1000 + IMAX + JMAX + IDNT + KMAX + KMIN + XX + YY WRITEOUTPUTTAPE 3 + 1000 + IMAX + JMAX + IDNT + KMAX + KMIN + XX + YY WRITEOUTPUTTAPE 3 + 1000 + IMAX + JMAX + IDNT + KMAX + KMIN + XX + YY WRITEOUTPUTTAPE 3 + ION + IDA +</pre>
101 101 101 101 7 5 100	<pre>X SCAIL DIMENSION TDAT(50)*ERDP(50)*ERDN(50)*ZD(50)*TSTP(25)*ERTP(25)*ERTN X(25)*ZT(25)*WFD(50)*WFT(25)*TMPD(50)*TMPT(25)*DVD(50)*DVT(25)*ERTN X(201)*DTEMP(1001)*ALTIT(1001)*DATA(750)*T(1001)*H(1001)*FMTR(12)* XYNMD(3)*YNMT(3)* FMT(12)*TT(1078)*HH(1078)*TDA1(50)*TST1(25) X*ZD1(50)*Z11(25)*RE(20*20)*CC(20)*AA(20)*A(20*20)*E(20)*CBA(20)*UW XDVD(50)*UWDVT(25)*TE(2)*HE(2) EQUIVALENCE(T*TI)*(TE*TT(1002))*(TDA1*TT(1004))*(TST1*TT(1054))*(H X*HH)*(HE*HH(1002))*(ZD1*HH(1004))*(ZT1*HH(1054))* ASSIGN 951 TO MT READ INPUT TAPE 2*101*(FMT(1)*I=1*12) 3 FORMAT (12A6) READ INPUT TAPE 2*1011*(TE(1)*HE(1)*I=1*2) WRITEOUTPUTTAPE 3*1011*(TE(1)*HE(1)*I=1*2) 1 FORMAT (4F10*3) DO 1 MJ=1004*1078*1 TT(MJ)*TE(1) 1 HH(MJ)*HE(2) TEX1*TE(1) TEX2*TE(2) HEX1*HE(1) HEX2*HE(1) HEX2*HE(1) TEX2*TE(2) READ INPUT TAPE 2*1015* ZMIN*ZMAX WRITE OUTPUTTAPE3*1015* ZMIN*ZMAX WRITE OUTPUTTAPE3*1015* ZMIN*ZMAX WRITE OUTPUTTAPE3*1015* ZMIN*ZMAX WRITE OUTPUTTAPE3*1015* ZMIN*ZMAX FORMAT(25:115*210*ZF10*3) PEAD INPUT TAPE 2*1000*IMAX*JMAX*IDNT*KMAX*KMIN*X*YY WRITEOUTPUTTAPE3*1000*IMAX*JMAX*IDNT*KMAX*KMIN*X*YY WRITEOUTPUTTAPE3*1000*IMAX*JMAX*IDNT*KMAX*KMIN*X*YY WRITEOUTPUTTAPE3*1000*IMAX*JMAX*IDNT*KMAX*KMIN*X*YY WRITEOUTPUTTAPE3*1000*IMA**JMAX*IDNT*KMAX*KMIN*X*YY WRITEOUTPUTTAPE3*1000*IMAX*JMAX*IDNT*KMAX*KMIN*X*YY WRITEOUTPUTTAPE3*1000*IMAX*JMAX*IDNT*KMAX*KMIN*X*YY VRITEOUTPUTTAPE3*1000*IMAX*JMAX*IDNT*KMAX*KMIN*X*YY VRITEOUTPUTTAPE3*1000*IMAX*JMAX*IDNT*KMAX*KMIN*X*YY VRITEOUTPUTTAPE3*1000*IMAX*JMAX*IDNT*KMAX*KMIN*X*YY VRITEOUTPUTTAPE3*1000*IMAX*JMAX*IDNT*KMAX*KMIN*X*YY VRITEOUTPUTTAPE3*1000*IMAX*JMAX*IDNT*KMAX*KMIN*X*YY VRITEOUTPUTTAPE3*1000*IMAX*JMAX*IDNT*KMAX*KMIN*X*YY VRITEOUTPUTTAPE3*1000*IMAX*JMAX*IDNT*KMAX*KMIN*X*YY VRITEOUTPUTTAPE3*1000*IMAX*JMAX*IDNT*KMAX*KMIN*X*YY VRITEOUTPUTTAPE3*1000*IMAX*JMAX*IDNT*KMAX*KMIN*X*YY VRITEOUTPUTTAPE3*1000*IMAX*JMAX*IDNT*KMAX*KMIN*X*YY VRITEOUTPUTTAPE3*INA*CONTPUTTAPE3*INA*CONTPUTTAPE3*INA*CONTPUTTAPE3*INA*CONTPUTTAPE3*INA*CONTPUTTAPE3*INA*CONTPUTTAPE3*INA*CONTPUTTAPE3</pre>

	WRITEOUTPUTTAPE 3, 1001, (ZD(1),TDAT(1),ERDP(1),ERDN(1),1=1,1MAX)
1001	FORMAT(2(F10.4,F10.2,2F8.2))
	READ INPUT TAPE 2.1002.17T(1).TSTP(1).ERTP(1).ERTN(1).I=1.MAX)
1	WEITEOUTDUTTADE $2,1002,127(1),157D(1),007D(1$
	WRITEOUPOITAFE 5,1002,(21(3),131P(3),9ERTP(3),9ERTN(3),93=1,3MAX)
1002	FORMAT(2(F10+4+F10+2+2F8+2))
	CALL PLOTS(DATA(750),750)
2	KMAX1=KMAX+1
	RDF=0.0
	DO 10 I=1,IMAX
10	RDE=RDE+(1.0/(ERDP(I)+ERDN(I)))
	DO 13 TEL TMAX
12	
	DO 16 J=1;JMAX
16	RTE=RTE+(1.0/(ERTP(J)+ERTN(J)))
	DO 19 J=1 JMAX
10	
19	
	<pre>CC(1)=0+0</pre>
	DO 211 I=1, IMAX
211	CC(1)=CC(1)+(WFD(1)*TDAT(1))*(1.0E=15)
	DO 22 M=2.KMAX1
	CC(M) = 0.0
	DO 21 I=1, IMAX
21	
	TE ACCUMULATOR OVERELOW 100.22
	00 26 M=1 + KMAX1
	DO 24 N=1,KMAX1
	$BB(M \bullet N) = 0 \bullet 0$
/	
	BB(M)N)=BB(M)N)+(WFD(I)*(ZD(I)**(M=1))*(ZD(I)**(N=1)))*(I•OE=15)
	IF ACCUMULATOR OVERFLOW 100,24
24	CONTINUE
26	CONTINUE
	60 10 213
100	
100	WRITE OUTPUT TAPE 3, 1016,KMAX
1016	FORMAT(1H1,20X,31HACCUMULATOR OVERFLOW FOR KMAX= (12)
213	DD(1)1)=000
	DO 272 I=1,IMAX
272	BB(1,1)=BB(1,1)+(WFD(1))*(1,0E=15)
260	WRITE OUTPUT TAPE 3. 1071. TONT
1071	
1071	I UNMALLINISTUASSON AUTOMATICO MALALA OF COEFFICIENTS FOR DATA IN
>	D. NU. 91X91491X915HIS GIVEN BELOW 0/////IOX)
	IF (KMAX1 - 9) 261,261,263
261	DO 262 M=1 • KMAX1
	WRITE OUTPUT TAPE 3. 1072. (RR(MANIANELAKMAYI).cc/M)
1070	
1072	
1072 262	CONTINUE
1072 262	CONTINUE GO TO 273
1072 262 263	CONTINUE GO TO 273 DO 264 M=1.KMAX1
1072 262 263	CONTINUE GO TO 273 DO 264 M=1,KMAX1 WDITE OUTDUIT TADE 2 1072 (DD/M NA N 1 10)
1072 262 263	CONTINUE GO TO 273 DO 264 M=1,KMAX1 WRITE OUTPUT TAPE 3, 1072, (BB(M,N),N=1,10)
1072 262 263 264	CONTINUE GO TO 273 DO 264 M=1,KMAX1 WRITE OUTPUT TAPE 3, 1072, (BB(M,N),N=1,10) CONTINUE
1072 262 263 264	CONTINUE GO TO 273 DO 264 M=1,KMAX1 WRITE OUTPUT TAPE 3, 1072, (BB(M,N),N=1,10) CONTINUE WRITE OUTPUT TAPE 3, 1073, IDNT
1072 262 263 264	CONTINUE GO TO 273 DO 264 M=1,KMAX1 WRITE OUTPUT TAPE 3, 1072, (BB(M,N),N=1,10) CONTINUE WRITE OUTPUT TAPE 3, 1073, IDNT FORMAT(1)11, 10X, 14/////10X)
1072 262 263 264 1073	CONTINUE GO TO 273 DO 264 M=1,KMAX1 WRITE OUTPUT TAPE 3, 1072, (BB(M,N),N=1,10) CONTINUE WRITE OUTPUT TAPE 3, 1073, IDNT FORMAT(1H1,10X,14/////10X)
1072 262 263 264 1073	CONTINUE GO TO 273 DO 264 M=1,KMAX1 WRITE OUTPUT TAPE 3, 1072, (BB(M,N),N=1,10) CONTINUE WRITE OUTPUT TAPE 3, 1073, IDNT FORMAT(1H1,10X,14////10X) DO 265 M=1,KMAX1
1072 262 263 264 1073	CONTINUE GO TO 273 DO 264 M=1,KMAX1 WRITE OUTPUT TAPE 3, 1072, (BB(M,N),N=1,10) CONTINUE WRITE OUTPUT TAPE 3, 1073, IDNT FORMAT(1H1,10X,14////10X) DO 265 M=1,KMAX1 WRITE OUTPUT TAPE 3, 1074, (BB(M,N),N=11,KMAX1),CC(M)
1072 262 263 264 1073	CONTINUE GO TO 273 DO 264 M=1,KMAX1 WRITE OUTPUT TAPE 3, 1072, (BB(M,N),N=1,10) CONTINUE WRITE OUTPUT TAPE 3, 1073, IDNT FORMAT(1H1,10X,14/////10X) DO 265 M=1,KMAX1 WRITE OUTPUT TAPE 3, 1074, (BB(M,N),N=11,KMAX1),CC(M) FORMAT(10X/1X,11E11,4)

265	
	CONTINUE
273	DO 90 K=KMIN•KMAX
	TE(1)=TEX1
)	TE(2)=TEX2
	HE(1)=HEX1
	HF(2)=HFX2
	FID#FLOATF(IDNT)+(0.01)*(FLOATF(KD))
	DO 28 K=1,20
	$AA(M) = O \cdot O$
28	CONTINUE
	DO 33 M=1.KD1
	R/M1=rr/m1
	DO 32 N=1-KD1
22	
52	
33	CONTINUE
	M=XSIMEQF(20,KD1,1,A,B,DET,CBA)
	GO TO (36+34+35) +M
34	WRITE OUTPUT TAPE 3.1075.KD
1075	FORMAT/1H1.77H ACCUMULATOR UNDERFLOW OR OVERFLOW IN COLVING THE
±012	ANSTEN OF LINEAR EQUATIONS (2004) ONDERED THE COEFFICIENTS OF THE SOLUTIONS THE
	WIAL OF DECOSE TO BUILD
	(MIAL OF DEGREE \$12\$2H \$)
	<u>GO TO 90</u>
35	WRITE OUTPUT TAPE 3,1076,KD
1076	FORMAT(1H1, 102HTHE COEFFICIENT MATRIX OF THE LINEAR EQUATIONS INVO
?	(LVING THE COEFFICIENTS OF THE POLYNOMIAL OF DEGREE +12/30X+12HIS
	(INGULARA)
·	
214	DV15Q=0.0
	DO 70 J=1, JMAX
	TMPT(J)=AA(1)
	DO 69 M=2•KD1
69	
	1/////////////////////////////////////
	DVT(3) = 0 WDVT(3) * WFT(3)
70	DVISQ=DVISQ+(DVT(J))**2
	DO 72 I=1,IMAX
	TMPD(I)=AA(1)
	D0 71 M=2,KD1
71	TMPD(1)=TMPD(1)+(AA(M))*((ZD(1))**(M=1))
_	UWDVD(I) = (TMPD(I) - TDAT(I))
	DVD(I) = UWDVD(I) * WED(I)
	$\frac{\partial V \partial C \partial T}{\partial V \partial C \partial T} = \frac{\partial V \partial C \partial T}{\partial V \partial C \partial T} = \frac{\partial V \partial C \partial T}{\partial V \partial C \partial T} = \frac{\partial V \partial C \partial T}{\partial V \partial T} = \frac{\partial V \partial C \partial T}{\partial T} = \frac{\partial V \partial T}{\partial T} = \partial $
1 <u>2</u>	
147	
147	ALTIT(1)=ZMIN
147	ALTIT(1)=ZMIN D02789NON=2,1001
147 2789	ALTIT(1)=ZMIN D02789NON=2,1001 ALTIT(NON)=ALTIT(NON-1)+DELTAH
147 147 2789	ALTIT(1)=ZMIN D02789NON=2,1001 ALTIT(NON)=ALTIT(NON-1)+DELTAH D0 78 NON=1,1001
147 147 2789 177	ALTIT(1)=ZMIN D02789NON=2,1001 ALTIT(NON)=ALTIT(NON-1)+DELTAH D0 78 NON=1,1001 TEMP(NON)=AA(1)+(AA(2))*(ALTIT(NON))
147 147 2789 177	ALTIT(1)=ZMIN D02789NON=2,1001 ALTIT(NON)=ALTIT(NON-1)+DELTAH D0 78 NON=1,1001 <u>TEMP(NON)=AA(1)+(AA(2))*(ALTIT(NON))</u>
147 2789 177	ALTIT(1)=ZMIN D02789NON=2,1001 ALTIT(NON)=ALTIT(NON-1)+DELTAH D0 78 NON=1,1001 TEMP(NON)=AA(1)+(AA(2))*(ALTIT(NON)) DTEMP(NON)=AA(2) D0 72 M=2 (01)
147 2789 177	ALTIT(1)=ZMIN D02789NON=2,1001 ALTIT(NON)=ALTIT(NON-1)+DELTAH D0 78 NON=1,1001 TEMP(NON)=AA(1)+(AA(2))*(ALTIT(NON)) DTEMP(NON)=AA(2) D0 77 M=3,KD1
147 2789 177	ALTIT(1)=ZMIN D02789NON=2,1001 ALTIT(NON)=ALTIT(NON-1)+DELTAH D0 78 NON=1,1001 TEMP(NON)=AA(1)+(AA(2))*(ALTIT(NON)) DTEMP(NON)=AA(2) D0 77 M=3,KD1 TEMP(NON)=TEMP(NON)+(AA(M))*((ALTIT(NON))**(M-1))
147 2789 177	ALTIT(1)=ZMIN D02789NON=2,1001 ALTIT(NON)=ALTIT(NON-1)+DELTAH D0 78 NON=1,1001 TEMP(NON)=AA(1)+(AA(2))*(ALTIT(NON)) DTEMP(NON)=AA(2) D0 77 M=3,KD1 TEMP(NON)=TEMP(NON)+(AA(M))*((ALTIT(NON))**(M-1)) MM1=M-1
147 2789 177	ALTIT(1)=ZMIN D02789NON=2,1001 ALTIT(NON)=ALTIT(NON-1)+DELTAH D0 78 NON=1,1001 TEMP(NON)=AA(1)+(AA(2))*(ALTIT(NON)) DTEMP(NON)=AA(2) D0 77 M=3,KD1 TEMP(NON)=TEMP(NON)+(AA(M))*((ALTIT(NON))**(M-1)) MM1=M-1 AMM1=FLOATF(MM1)

O	102
	// DIEMP(NON)=DIEMP(NON)+(AMM1)*(AA(M))*((ALTII(NON))**(M=2))
У 	1/8 IF(IEMP(NUN)=IEX1) 1/991809180
	179 TEMP(NON)=TEX1
di la	GO TO 182
•	180 IF(TEX2-TEMP(NON)) 181,182,182
	181 TEMP(NON)=TEX2
	182 CONTINUE
	78 CONTINUE
	NP=1
	NOP=KD
	79 WRITE OUTPUT TAPE 3,1004,NOP,NP
	1004 FORMAT(1H1,108X,5HPAGE ,12,1H=,11//)
	WRITE OUTPUT TAPE 3.1019.(FMT(T).T=1.12).FTD
	1019 FORMAT/20X.1246.2X.F7.2///)
	791 WD1TF AUTOUT TADE 2.1A14.KD
	1014 FORMAT/1H0.7X.85HSUCCESSIVE POLYNOMIAL CURVE FITTING ROUTINE FOR A
	VIMOS DEDIC VERTICAL TEMPEDATURE DATA (//5%,140000000M NO 000///5%
	XIMOSPHERIC VERTICAL TEMPERATORE DATA///JXJIOHPROGRAM NO UU0///JX
	X,/3HUEGKEE OF POLYNOMIAL 12///9X,26HUUEFFICIENTS OF POLYNOMIAL/)
Range -	WRITE OUTPUT TAPE 3,1005,(KS,AA(K))
	1005 FORMAT(5X/10X)(10X)(12)(4H) = (1405)
	801 CONTINUE
	NP=2
	80 WRITE OUTPUT TAPE 3,1050,NOP,NP
	1050 FORMAT(1H1,108X,5HPAGE ,12,1H=,11////5X,19HTEST POINT ANALYSIS///1
	X1X,8HALTITUDE,
-	X8X, 18HWEIGHTING FUNCTION, 8X, 11HTEMPERATURE, 8X, 11HTEMPERATURE, 13X, 1
	X0HDEVIATIONS/54X,8H(SKETCH),10X,10H(COMPUTED),8X,10HUNWEIGHTED,8X,
	X8HWFIGHTED/14X+2HKM+40X+5HDEG_K+14X+5HDEG_K+12X+5HDEG_K+12X+5HDEG_
	81 WRITE AUTOUT TADE 2.1AAL.(7T(I).WET(I).TSTD(I).TMDT(I).HWAVT(I).AV
	VT/ 11, 1=1, 1MAV1
	1006 EOPMAT(128-E6-2-128-E12-5-128-E7-2-128-E7-2-108-E7-2-118-E7-2)
ctis,	22 WDITE OUTDUT TADE 2,1007, DVTSO
-	1007 FORMATIEV //15V //15V OF THE SOUNDES OF THE METCHTED DEVIATIONS
	LUUT FORMATI 2A7712A \$47H3UM OF THE SQUARES OF THE WEIGHTED DEVIATIONS = }
	83 WKITE OUTPUT TAPE 3910089(NOP9NP9(ZD(1)9WFD(1)9TDAT(1)9TMPD(1)9UWD
	XVD(I),DVD(I),I=1,IMAX))
	1008 FORMAT(1H1,111X,5HPAGE ,12,1H-,11/5X,19HDATA POINT ANALYSIS///11X,
	X8HALTITUDE #8X #18HWEIGHTING FUNCTION #8X #11HTEMPERATURE #8X #11HTEMPER
	XATURE,13X,10HDEVIATIONS/54X,8H(SKETCH),10X,10H(COMPUTED),7X,10HUNW
	XEIGHTED,8X,8HWEIGHTED/14X,2HKM,40X,5HDEG_K,14X,5HDEG_K,12X,5HDEG_K
	X,12X,5HDEG K/(12X,F6.2,12X,E12.5,12X,F7.2,12X,F7.2,10X,F7.2,11X)F7
	X•3))
	84 WRITE OUTPUT TAPE 3,1009,DVDSQ
	1009 FORMAT(5X//15X,47HSUM OF THE SQUARES OF THE WEIGHTED DEVIATIONS =E
	X12.5
	85 WRITE OUTPUT TAPE 3,1010, (NOP, NP, (ALTIT(NON), TEMP(NON), DTEMP(NON),
12	XNON=1,1001,10))
11	1010 FORMAT(1H1.111X.5HPAGE .12.1H11/5X.28HCOMPUTED TEMPERATURE PROFI
10	$X = \frac{1}{7} $
	YTHNE,8Y.11HTEMBERATHDE,9Y.12HNEDTV. TEMP./TAV.2HVM.1/V.KUNEC.V.13V
	Y. OHDER V/VM. 10V. OHVM. 1EV. CHDER V. 10V. OHDER V/VM. 0V//0V. EL. 0.11V. ET
7	AJOHULU K/NMJIJAJZHRMJIJAJJHULU NJIZAJOHULU K/KMJZA/(OAJFOJZJIIAJF(V 3.14V 513 5.15V.52 3.11V 57 3.14V 513 513
6	$\frac{1}{120} = \frac{1}{120} = \frac{1}{120} = \frac{1}{100} = \frac{1}$
5	
4	$\Box(1) = A \Box(1) (1)$

.

o 77.	T(1) = TEMO(1)
87	
	DT=((TE(2)=TE(1))/(XX))*10+0 (>
	DHH=DH
	TDA1(1)=TDA1(1)
0.0	
00	∠D1(1)=∠D(1)
	DO 89 J=1,JMAX
	1311(3)=131F(3)
89	ZT1(J)=ZT(J)
_	15(100) = 25(000,002,002)
880	JM1=JMAX+1
	DO 881 Ja M1+25
881	TST1(J)=TFX1
001	
882	CONTINUE
	IF(IMAX=50) 883+885+885
000	IMT=IMAX+1
	DO 884 I = IM1 + 50
884	TDA1(I)=TEX1
885	
002	
	CALLSCAIL(+ 1078 + XX + MIN + DII)
	CALL SCATL/HH.1078.YY.HHMTN.DHH1
	CALL LINE([9H91001]
	CALL AXIS(0.0.0.0.19HTFMPFRATURF (DFG K).19.XX.0.0.TTMIN.DTT)
	CALL AXIS(0.0,0.0,13HALTITODE (KM),13,11,90.0,00HHMIN,0DHH)
	ALPHA=((TE(2)-TE(1))/XX)
	XCORA==0.2*ALPHA*0.859*0.2
	YCORP==0.5*BETA*0.10
	DO 93 I=1.IMAX
	DP= DAI(I)+XCORA
02	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$
	DO 95 J=1,JMAX
931	ZST=ZTI(J)+YCORP
95	CALL SYMBL4(TSP+ZST+0+10+1H++0+0+1)
	CALL FLV11=1+29=1+004=2)
	CALL PLOT(17.0.0.0.2)
	CALL PLUI (1/409110994)
	CALL PLOT(0.0,11.5,2)
	CALL PLOT(0.0.0.0.2)
	CALL $PL01(2.590.19-3)$
	DO 932 I=1.12
	IR=13=I
022	
	<u>CALL SYMBL4(0+0+0+0+0+0+2+FMTR(12)+0+0+72)</u>
	CALL $PLOT(12.25.0.03)$
	CALL NUMBERIU:U;U;U;U;U;U;U;U;U;U;U;U;U;U;U;U;U;U;U
<u></u>	-CALL PLOT(=12,75,1,0,0,0,0)
933	YNMD(1)=1HS
933	YNMD(1)=1HS YNMD(2)=6H POINT
933	YNMD(1)=1HS YNMD(2)=6H POINT
933	YNMD(1)=1HS YNMD(2)=6H POINT YNMD(3)=6H* DATA
933	YNMD(1)≈1HS YNMD(2)≈6H POINT YNMD(3)=6H* DATA CALL SYMBL4(0+0+0+0+2+YNMD(3)+0+0+13)
933	YNMD(1)=1HS YNMD(2)=6H POINT YNMD(3)=6H* DATA CALL SYMBL4(0.0,0.0,0.2,YNMD(3),0.0,13)
933	YNMD(1)=1HS YNMD(2)=6H POINT YNMD(3)=6H* DATA CALL SYMBL4(0.0,0.0,0.2,YNMD(3),0.0,13) CALL PLOT(0.0,0.3,-3)
933	YNMD(1)=1HS YNMD(2)=6H POINT YNMD(3)=6H* DATA CALL SYMBL4(0.0,0.0,0.2,YNMD(3),0.0,13) CALL PLOT(0.0,0.3,-3)
933	YNMD(1)=1HS YNMD(2)=6H POINT YNMD(3)=6H* DATA CALL SYMBL4(0.0,0.0,0.2,YNMD(3),0.0,13) CALL PLOT(0.0,0.3,-3)

]	.0	4

	YNMT/11#1HS
	YNMT(2)=6H POINT
	YNMT(3)=6H+ TEST
	CALL SYMBL4(0.0,0.0,0.2,YNMT(3),0.0,13)
	GO TO MT, (951,952)
951	ASSIGN 952 TO MT
	CALL PLOT(=0.5,11.1,=3)
	GO TO 954
952	ASSIGN 951 TO MT
	CALL PLOT(16.5,-11.9,-3)
954	CONTINUE
	WRITE OUTPUT TAPE 14,2000,KD1
2000	FORMAT(15)
	WRITE OUTPUT TAPE 14,2001,(AA(I),I=1,KD1)
2001	FORMAT(E14.5)
90	CONTINUE
	FREQUENCY 178(1,1000,1000),180(1,1000,1000)
	CALL EXIT
	END

	CGAMO2E O LANHARY 1963 FROM M. L. MEFKS GAMO2 1962.
	C XFUNCTION GAMOZ(I)P)F) IHIS SUBPROGRAM COMPUTES THE ATTENDATION
	C XDUE TO ATMOSPHERIC O2 IN NEPERS/KM FOR A SPECIFIED TEMPERATURE T
	C YIN DECREES KELVIN DESSURE D IN MM OF HG. AND EPEOLENCY E IN GC/S.
-	C AIN DEGREES RELVINIFRESSORE F IN MM OF HO, AND TREGOLACT F IN OCTO
	FUNCTION GAMO2(T,P,F)
	DIMENSION FK/131.FL/131.FXPW/131
	300 IF(IFEM=12345) I9291
	1 /TFM = 12345
	$ALPHA = 0 \bullet 00195$
	C1 = 0.61576
	(2 = 20084
-	$C_3 = 0.85$
-	
	FK(1) = 56.2648
	FV(2) = 58 4466
	FN(2) = 300000000000000000000000000000000000
	FK(3) = 59.5910
	FV(1/1) = 60.4248
•	$FK(5) = 61 \cdot 1506$
9	FK/61 = 61,8002
	= FK(7) = 62.4112
_	FK(8) = 62.9980
-	FK(9) = 63.5685
	$FK(10) = 64 \cdot 1272$
	$FK(11) = 64 \cdot 6779$
	FK(12) = 65,2240
	FK(13) = 0517020
L	$FL(1) = 118 \cdot 7505$
	E[12] = 62.4863
	FL(2) = 0204000
	$FL(3) = 60 \cdot 3061$
	F(4) = 59.1642
•	FL(5) = 58+3239
	$F_{1}(6) = 57.6125$
	$FL(7) = 56 \cdot 9682$
	$FL(8) = 56 \cdot 3634$
	51 (0) - 55 7820
	1111111111111
-	$FL(10) = 55 \cdot 2214$
	FL(12) = 54 • 1294
	$F(13) = 53 \cdot 5960$
-ak	
-	Z 1F(F=ZO/041/ 29494
	3 IF(P=18*957) 41*41*42
	(PETA = 0.26)
-	GO TO 50
	41 BFTA = 0.75
	42 BFTA = 0.25*(1.0+LOGF(267.41/P)/1.323)
	20 DELI = ALPHA*P*(((4/1)**(3)*(0)2099+0)/009*0LTA)
-	5 po 6 I=1,13
	$\mathbf{V} = \{\mathbf{A} \in W_{1} \mid j \neq 1 \text{ and } \{\mathbf{V} \in \mathcal{C} \in \{\mathbf{C} \in \mathcal{V}_{1} \mid 1 \neq 1 \} \in \{\mathbf{V}, \mathbf{V}, \mathbf{V}\}$
	DELIZ = DELIADELI
12	F2 = F*F
1	
—	FZERO = DELI/(FZ+DELIZ)
10	FACTOR = (C1*P*F2)/(T*T*T)
<u></u>	
	1 00 12 J=1,13
7	
<i>c</i>	
~ "	FDIF = FK(J)-F
5	TEST = ABSE/EDIE)/DELT
. 4	
-	
3	
C

100	IF(TEST=10000.0) 8,9,9
<u> </u>	FDIF2 = FDIF*FDIF
	FADD2 = (FK(J)+F)*(FK(J)+F)
	FNPLUS =DELT*(1.0/(FDIF2+DELT2)+1.0/(FADD2+DELT2))
	UNPLUS = FLOATF((2*J-1)*(4*J+1))/FLOATF(2*J)
	TSUM = FNPLUS*UNPLUS
9	
	TEST = ABSF(FD1F)/DELT
200	IF(TEST-100.0) 10,11,11
10	FDIF2 = FDIF*FDIF
	FADD2 = (FL(J)+F)*(FL(J)+F)
	FNMINU = DELT*(1.0/(FDIF2+DELT2)+1.0/(FADD2+DELT2))
	UNMINU = FLOATF(2*J*(4*J-3))/FLOATF(2*J-1)
	TSUM = TSUM+FNMINU*UNMINU
	UNZFRO = FLOATF((4*J*J=2*J+1)*(4*J=1))/FLOATF(J*(2*J=1))
	TSUM = TSUM+F7ER0*UN7ER0
	SUM = SUM + TSUM * FXPW(J)
1.0	CONTINUE
GAME	Z = FACTOR SUM
FREG	0 = N(Y - 100(250 + 1 + 10) + 200(250 + 1 + 10) + 500(250 + 1 + 1))
RETU	RN
END	

B. R. FOW CINVRT1 ID NO. AAP8 PROGRAM INVRT1 6 AUGUST 1963 THIS PROGRAM FINDS THE POLYNOMIAL COEFFICIENTS OF A KINETIC С С TEMPERATURE PROFILE CORRESPONDING TO A SET OF BRIGHTNESS TEMPERA-TURE VS. FREQUENCY AND NADIR ANGLE READINGS. INPUT DATA REQUIRED Ĉ NAME, DATE AND ID CARD С С KD1=THE NUMBER OF POLYNOMIAL COEFFICIENTS SPECIFYING THE IN-ITIAL GUESS TEMPERATURE PROFILE. KD2=THE NUMBER OF BRIGHTNESS TEMPERATURE VS. FREQUENCY AND NADIR ANGLE POINTS. HMIN=THE MINIMUM HEIGHT OF INITIAL AND DERIVED TEMPERATURE PROFILES, KM. С HMAX=THE MAXIMUM HEIGHT OF INITIAL AND DERIVED TEMPERATURE C PROFILES, KM. JRD=SENSE OF RADIOMETER OR ANTENNA. JRD=1. SENSE IS UP FROM HMIN TO HMAX. JRD=2, SENSE IS DOWN FROM HMAX TO HMIN. PZERO=GROUND LEVEL VALUE OF PRESSURE, MM OF HG. С GZERO=GROUND LEVEL VALUE OF GRAVITATIONAL ACCELERATION, С CM/SEC**2. VARG=RATE OF CHANGE WITH HEIGHT OF GRAVITATIONAL ACCELERA= TION CM/SEC**2/KM. TMS=BRIGHTNESS TEMPERATURE OF SOUCE LYING OUTSIDE THE ATMOS-С PHERE, DEG K. С YH=LENGTH OF HEIGHT AXIS ON PLOTTED OUTPUT, INCHES. YT=LENGTH OF TEMPERATURE AXIS ON PLOTTED OUTPUT, INCHES. TE(1) AND TE(2)=EXTREME VALUES OF TEMPERATURE AXIS, DEG K. HE(1) AND HE(2)=EXTREME VALUES OF HEIGHT AXIS, KM. IP=THE NUMBER OF ALTITUDE LEVELS BETWEEN PRINTOUTS OF TEMP. С AI=THE INITIAL TEMPERATURE PROFILE COEFFICIENTS. TB=INPUT BRIGHTNESS TEMPERATURES, DEG K. C FI=INPUT FREQUENCIES, GC/SEC. ZA=INPUT NADIR ANGLES. DEG. IM=MAXIMUM NUMBER OF ITERATIONS. DSM=CRITERION FOR STOPPING ITERATIONS. С TMIN=LOWER BOUNDARY CONDITION ON T(H). TMAX=UPPER BOUNDARY CONDITION ON T(H). OUTPUT DATA A=COFFFICIENTS OF POLYNOMIAL ITC=NUMBER OF ITERATION С С J1=LEVEL NUMBER H≡HEIGHT T=TEMPERATURE DT=DEVIATION OF TEMPERATURE AT J1 FROM THE PREVIOUSLY PRE-DICTED TEMPERATURE AT J1. P=PRESSURE С SSDT=SUM OF THE SQUARES OF THE DEVIATIONS. С DP=DEVIATION OF PRESSURE AT J1 FROM THE PREVIOUSLY PREDICTED PRESSURE AT J1. SUBPROGRAMS REQUIRED- ATMSP4, KERNL1, GAMO2, CALCOMP. С DIMENSION RATA(800), AR(12), TE(2), HE(2), AI(21), TB(21), FI(21), ZA(21)

E

F

E

C

C

C

f

e

C

C

1.B(21.21),T(1001).P(1001).GAM(1001).TAU(1001).WAF(1001).J1(1001).H 2(1001).CBA(21).A(21).J2(1001).H2(1001).T2(1001).P2(1001).DT(1001). 3DP(1001).ARR(12).HH2(1003).TT2(1003).TBR(21).H3(1001). COMMON T.P.,GAM.TAU.WAF.J1.H.JMAX

FREQUENCY 350(10,1,1),580(1,5,100),610(1,5,100),730(20,2,1),750(20 1,1,2) FQUIVALENCE (H2,HH2),(T2,TT2) CALL PLOTS(BATA(800),800)

10 READ INPUT TAPE 2,1010,(AR(I),I=1,12) 20 READ INPUT TAPE 2,1020,KD1,KD2,JRD,IP,INI,IM,YH,YT,DSM,TMS 30 READ INPUT TAPE 2,1030, HMIN, HMAX, PZERO, GZERO, VARG 40 READ INPUT TAPE 2,1040, (TE(I), HE(I), I=1,2), TMIN, TMAX 50 READ INPUT TAPE 2,1050,(AI(I),I=1,KD1) 60 READ INPUT TAPE 2,1060,(TR(1),F1(1),2A(1),1=1,KD2) 70 WRITE OUTPUT TAPE 3,1010, (AR(1),1=1,12) 80 WRITE OUTPUT TAPE 3,1020,KD1,KD2,JRD,IP,INI,IM,YH,YT,DSM,TMS 90 WRITE OUTPUT TAPE 3,1030,HMIN,HMAX,PZERO,GZERO,VARG 100 WRITE OUTPUT TAPE 3,1040,(TE(I),HE(I),I=1,2),TMIN,TMAX 110 WRITE OUTPUT TAPE 3,1050,(AI(I),I=1,KD1) 120 WRITE OUTPUT TAPE 3,1060,(TB(1),FI(1),ZA(1),I=1,KD2) 128 KD3=KD2+1 129 KD4=KD2+2 130 CALL ATMSP4(KD1,AI,HMIN,HMAX,JRD,PZERO,GZERO,VARG) 131 JMX2=JMAX 132 DO 136 K=1, JMX2 $133 J_2(K) = J_1(K)$ H3(K)=H(K) 134 H2(K)=H(K)

135 T2(K)=T(K)

136 P2(K)=P(K)

137 WRITE OUTPUT TAPE 3,2000, (AR(I), I=1,12) 138 WRITE OUTPUT TAPE 3,2010, (J2(I), H2(I), T2(I), P2(I), I=1, JMAX, IP)

139 DO 142 K=1,2

140 JMPK=JMAX+K

141 HH2(JMPK)=HE(K) 142 TT2(JMPK)=TE(K)

143 CALL SCALE(HH2, JMPK, YH, HH2M, DHH2)

144 CALL SCALE (TT2, JMPK, YT, TT2M, DTT2)

- 145 CALL AXIS(0.0.0.0.10HHEIGHT, KM,10,YH,90.0,HH2M,DHH2)
- 146 CALL AXIS(0.0,0.0,18HTEMPERATURE, DEG K,18,YT,0.0,TT2M,DTT2)

147 CALL LINE(T2,H2,JMAX) 148 XS=T2(5)=0.4

149 YS=H2(5) 150 CALL SYMBL4(XS,YS,0.2,5H1NPUT,0.0,5)

151 DO 153 I=1,12

152 IR=13-I

153 ARR(IR)=AR(I)

154 CALL PLOT(2.0)=0.91=3)

155 CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72)

156 CALL PLOT(-3.5,-0.1,-3) 157 CALL PLOT(17.0,0.0,2)

158 CALL PLOT(17.0,11.5,2)

159 CALL PLOT(0.0,11.5,2)

161 CALL PLOT(1.5,1.0,-3)

162 DO 163 J=1,JMX2

163 T?(J)=T(J)

164 ITC=ITC+1

165 DO 320 I=1,KD2

	166 F=FI(T)
	170 A=ZÅ(I)*0.0174533
	171 JMAX=JMX2
6	172 11(M) - 12(M)
	175 T(M)=T2(M)
	176 P(M)=P2(M)
	180 CALL KERNL1(F)A)
-	
-	
	200 AK = [AU(JMAX)
	210 TS=TMS*EXPF(-TAK*SEC)
	220 TBR(1)=TB(1)=TS
	230 DO 310 J=1.KD4
	240 DO 300 K = 2 MAX
-	
	260 HB=H(R)
	270 DELTR=ABSF(HA=HB)
	280 AVH=(HA+HB)/2+0
	290 AVWF=(WAF(K)+WAF(K=1))/2.0
•	310 CONTINUE
	320 CONTINUE
	321 DO 323 J=2;KD4
tel	322 B(KD3•J)≈(HMIN**(J=1))
	323 B (Y D 4 + 1) = (HMAX * * (= 1))
	224 D(ND3)11-100
	325 B(KD4,1)=10
	226 TBR(KD3)=TMIN
	327 TBR(KD4)=TMAX
	330 DFT=1.0
	WRITE OUTPUT TAPE 3,9999,KD4,((B(T,J),J=1,KD4),I=1,KD4),(TBR(1),1=
-	
	11•KD4)
	350 GO TO (400,360,380),M
	350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC
	350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970
	350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC
	350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 300 GO TO 970
•	350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 GO TO 970
•	350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 GO TO 970 400 DO 410 I=1,KD4
•	350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 GO TO 970 400 DO 410 I=1,KD4 410 A(I)=B(I,1)
•	350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 GO TO 970 400 DO 410 I=1,KD4 410 A(I)=B(I,1) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZER0,GZER0,VARG)
•	350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 GO TO 970 400 DO 410 I=1,KD4 410 A(I)=B(I,1) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZER0,GZER0,VARG) 429 AJM=FLOATE(JMAX)
•	350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 GO TO 970 400 DO 410 I=1,KD4 410 A(I)=B(I,1) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZERO,GZERO,VARG) 429 AJM=FLOATF(JMAX) 430 DO 480 K=1,JMAX
•	350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 GO TO 970 400 DO 410 I=1,KD4 410 A(I)=B(I,1) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZERO,GZERO,VARG) 429 AJM=FLOATF(JMAX) 430 DO 480 K=1,JMAX
•	350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 GO TO 970 400 DO 410 I=1,KD4 410 A(I)=B(I,1) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZERO,GZERO,VARG) 429 AJM=FLOATF(JMAX) 430 DO 480 K=1,JMAX 440 DT(K)=T(K)=T2(K)
•	350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 GO TO 970 400 DO 410 I=1,KD4 410 A(I)=B(I,1) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZERO,GZERO,VARG) 429 AJM=FLOATF(JMAX) 430 DO 480 K=1,JMAX 440 DT(K)=T(K)=T2(K) 450 DP(K)=P(K)=P2(K)
•	<pre>350 G0 T0 (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 G0 T0 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 G0 T0 970 400 D0 410 I=1,KD4 410 A(I)=B(I,1) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZER0,GZER0,VARG) 429 AJM=FLOATF(JMAX) 430 D0 480 K=1,JMAX 440 DT(K)=T(K)=T2(K) 450 DP(K)=P(K)=P2(K) 460 T2(K)=T(K)</pre>
•	<pre>350 G0 T0 (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 G0 T0 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 G0 T0 970 400 D0 410 I=1,KD4 410 A(1)=B(I,1) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZER0,GZER0,VARG) 429 AJM=FLOATF(JMAX) 430 D0 480 K=1,JMAX 440 DT(K)=T(K)=T2(K) 450 DP(K)=P(K)=P2(K) 460 T2(K)=T(K)</pre>
 12 	350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 GO TO 970 400 DO 410 I=1,KD4 410 A(I)=R(I,1) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZERO,GZERO,VARG) 429 AJM=FLOATF(JMAX) 430 DO 480 K=1,JMAX 440 DT(K)=T(K)=T2(K) 450 DP(K)=P(K)=P2(K) 460 T2(K)=T(K) 470 P2(K)=P(K) 480 SSDT=SSDT+(DT(K)**2)/AJM
• • • • •	350 GO TO (400,360,380);M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 GO TO 970 400 DO 410 I=1;KD4 410 A(I)=B(I;I) 420 CALL ATMSP4(KD4,A;HMIN;HMAX;JRD;PZERO;GZERO;VARG) 429 AJM=FLOATF(JMAX) 430 DO 480 K=1;JMAX 440 DT(K)=T(K)=T2(K) 450 DP(K)=P(K)=P2(K) 460 T2(K)=T(K) 470 P2(K)=P(K) 480 SSDT=SSDT+(DT(K)**2)/AJM 480 WRITE OUTPUT TAPE 3,2040,ITC,ITC
 12 11 10 	<pre>350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 GO TO 970 400 DO 410 I=1,KD4 410 A(I)=B(I,I) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZERO,GZERO,VARG) 429 AJM=FLOATF(JMAX) 430 DO 480 K=1,JMAX 440 DT(K)=T(K)=T2(K) 450 DP(K)=P(K)=P2(K) 460 T2(K)=T(K) 470 P2(K)=P(K) 480 SSDT=SSDT+(DT(K)**2)/AJM 490 WRITE OUTPUT TAPE 3,2040,ITC,ITC 500 D0 520 -1-1,KD4</pre>
12 12 11 10	<pre>350 G0 T0 (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 G0 T0 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 G0 T0 970 400 D0 410 I=1,KD4 410 A(I)=B(I,1) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZER0,GZER0,VARG) 429 AJM=FLOATF(JMAX) 430 D0 480 K=1,JMAX 440 DT(K)=T(K)=T2(K) 450 DP(K)=P(K)=P2(K) 460 T2(K)=T(K) 470 P2(K)=P(K) 480 SSDT=SSDT+(DT(K)**2)/AJM 490 WRITE OUTPUT TAPE 3,2040,ITC,ITC 500 D0 520 J=1,KD4</pre>
12 12 11 10	350 GO TO (400,350,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 400 DO 410 I=1,KD4 410 A(I)=R(I,1) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZERO,GZERO,VARG) 429 AJM=FLOATF(JMAX) 430 DO 480 K=1,JMAX 440 DT(K)=T(K)=T2(K) 450 DP(K)=P(K)=P2(K) 460 T2(K)=T(K) 470 P2(K)=P(K) 480 SSDT=SSDT+(DT(K)**2)/AJM 490 WRITE OUTPUT TAPE 3,2040,ITC,ITC 500 DO 520 J=1,KD4 510 KK=J=1
12 12 11 10	350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 GO TO 970 400 DO 410 J=1,KD4 410 A(I)=B(J,1) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZERO,GZERO,VARG) 429 AJM=FLOATF(JMAX) 430 DO 480 K=1,JMAX 440 DT(K)=T(K)=T2(K) 450 DP(K)=P(K)=P2(K) 460 T2(K)=T(K) 460 T2(K)=T(K) 470 P2(K)=P(K) 480 SSDT=SSDT+(DT(K)**2)/AJM 480 SSDT=SSDT+(DT(K)**2)/AJM 490 WRITE OUTPUT TAPE 3,2040,ITC,ITC 500 DO 520 J=1,KD4 510 KK=J=1 520 WRITE OUTPUT TAPE 3,2050,KK,A(J)
12 11 10 7	<pre>350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 GO TO 970 400 DO 410 I=1,KD4 410 A(I)=B(I,1) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZERO,GZERO,VARG) 429 AJM=FLOATF(JMAX) 430 DO 480 K=1,JMAX 440 DT(K)=T(K)=T2(K) 450 DP(K)=P(K)=P2(K) 450 DP(K)=P(K)=P2(K) 460 T2(K)=T(K) 470 P2(K)=P(K) 480 SSDT=SSDT+(DT(K)**2)/AJM 490 WRITE OUTPUT TAPE 3,2040,ITC,ITC 500 DO 520 J=1,KD4 510 KK=J=1 520 WRITE OUTPUT TAPE 3,2050,KK,A(J) 530 WRITE OUTPUT TAPE 3,2060,SSDT,(J1(I),H(I),T(I),P(I),P(I),DP(I),I=</pre>
12 11 10 7 6	<pre>350 GO TO (400,380,380);M 360 WRITE OUTPUT TAPE 3,2020;ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030;ITC 390 GO TO 970 400 DO 410 I=1;KD4 410 A(1)=R(I;1) 420 CALL ATMSP4(KD4;A;HMIN;HMAX;JRD;PZERO;GZERO;VARG) 429 AJM=FLOATF(JMAX) 430 DO 480 K=1;JMAX 440 DT(K)=T(K)=T2(K) 450 DP(K)=P(K)=P2(K) 460 T2(K)=T(K) 450 DP(K)=P(K) 460 T2(K)=F(K) 470 P2(K)=P(K) 480 SSDT=SSDT+(DT(K)**2)/AJM 490 WRITE OUTPUT TAPE 3,2040;ITC;ITC 500 DO 520 J=1;KD4 510 KK=J=1 520 WRITE OUTPUT TAPE 3,2050;KK;A(J) 530 WRITE OUTPUT TAPE 3,2060;SSDT;(J1(I);H(I);T(I);DT(I);P(I);DP(I);I= 11;JMAX;IP)</pre>
	<pre>350 G0 T0 (400,360,380),M 360 wRITE OUTPUT TAPE 3,2020,ITC 370 G0 T0 970 380 wRITE OUTPUT TAPE 3,2030,ITC 390 G0 T0 970 400 D0 410 I=1,KD4 410 A(I)=R(I,1) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZER0,GZER0,VARG) 429 AJM=FLOATF(JMAX) 430 D0 480 K=1,JMAX 440 DT(K)=T(K)=T2(K) 450 DP(K)=P(K)=P2(K) 460 T2(K)=T(K) 460 T2(K)=T(K) 460 T2(K)=F(K) 460 SSDT=SSDT+(DT(K)**2)/AJM 480 SSDT=SSDT+(DT(K)**2)/AJM 490 WRITE OUTPUT TAPE 3,2040,ITC,ITC 500 D0 520 J=1,KD4 510 KK=J=1 520 WRITE OUTPUT TAPE 3,2050,KK,A(J) 530 WRITE OUTPUT TAPE 3,2060,SSDT,(J1(I),H(I),T(I),DT(I),P(I),DP(I),I= 11,JMAX,IP) 540 D0 560 K=1,2</pre>
	<pre>350 GO TO (400,380,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 GO TO 970 400 DO 410 I=1,KD4 410 A(I)=B(I,1) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZER0,GZER0,VARG) 429 AJM=FLOATF(JMAX) 430 DO 480 K=1,JMAX 440 DT(K)=T(K)=T2(K) 450 DP(K)=P(K)=P2(K) 460 T2(K)=T(K) 450 DP(K)=P(K) 460 SSDT=SSDT+(DT(K)**2)/AJM 490 WRITE OUTPUT TAPE 3,2040,ITC,ITC 500 DO 520 J=1,KD4 510 KK=J=1 520 WRITE OUTPUT TAPE 3,2050,KK,A(J) 530 WRITE OUTPUT TAPE 3,2060,SSDT,(J1(1),H(1),T(1),DT(1),P(1),DP(1),I= 11,JMAX,IP) 540 DO 560 K=1,2</pre>
12 11 10 7 6 5 4 3	<pre>350 GO TO (400,360,380),M 360 WRITE OUTPUT TAPE 3,2020,ITC 370 GO TO 970 380 WRITE OUTPUT TAPE 3,2030,ITC 390 GO TO 970 400 DO 410 I=1,KD4 410 A(I)=B(I,1) 420 CALL ATMSP4(KD4,A,HMIN,HMAX,JRD,PZER0,GZER0,VARG) 429 AJM=FLOATF(JMAX) 430 DO 480 K=1,JMAX 440 DT(K)=T(K)=T2(K) 450 DP(K)=P(K)=P2(K) 460 T2(K)=T(K) 450 DP(K)=P(K)=V2(K) 460 T2(K)=T(K) 470 P2(K)=P(K) 480 SSDT=SSDT+(DT(K)**2)/AJM 490 WRITE OUTPUT TAPE 3,2040,ITC,ITC 500 DO 520 J=1,KD4 510 KK=J=1 520 WRITE OUTPUT TAPE 3,2050,KK,A(J) 530 WRITE OUTPUT TAPE 3,2060,SSDT,(J1(I),H(I),T(I),DT(I),P(I),DP(I),I= 11,JMAX,IP) 540 DO 560 K=1,2</pre>

- ry .

Ξ

	550	JMPK=JMAX+K
T	560	TT7(JMPK)=TE(K)
5	570	DO 630 J=1.JMAX
$\mathbf{}$	580	IE(12(J)-TE(1))590+610+610
C -	590	T2(.1)=TE(1)
	<u><u> </u></u>	
	21A	
	010	
	620	
	- 630	
	640	CALL SCALE(IT2,JMPK,)YI,IT2M,DIT2)
•	650	CALL LINE (T2,H2,JMAX)
	660	KSCB=20*(ITC+1)
	670	FITC=FLOATF(ITC)
	680	XS=T2(KSCB)
	690	YS=H2(KSCB)
•	700	CALL NUMBER(XS,YS,0.1,FITC,0.0,1)
	710	DO 720 K=1, JMAX
	720	T2(K)=T(K)
	721	D0 724 1=1,21
	722	NA 723 J=1+21
	722	R/T. Han. A
	724	
•	720	TE (DEM_SEDT) 721,750,750
-	750	IF (USM=SSUI) 73197309730
	131	
	/40	IF(IIC=IM)1649/50
	750	(ALL PLUI(0+0+11+5+#3)
	760	DO 780 K=1,2
	770	JMPK=JMAX+K
	780	TT2(JMPK)=TE(K)
. –	790	CALL SCALE(TT2, JMPK, YT, TT2M, DTT2)
-	810	CALL AXIS(0.0,0.0,10HHEIGHT, KM,10,YH,90.0,HH2M,DHH2)
	800	CALL AXIS(0.0.0.0.18HTEMPERATURE, DEG K.18,YT.0.0,TT2M,DTT2)
	820	CALL LINF(T2.H2.JMAX)
-	830	XS=T2(5)-0.4
-	830	XS=T2(5)-0•4 YS=H2(5)
••	830 840 	XS=T2(5)-0•4 YS=H2(5) -CALL SYMBL4(XS+YS+0+2+5HFINAL+0+0+5)
***	830 840 850 860	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) YS=T2(20)
•	830 840 850 860 870	XS=T2(5)=0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20)
•	830 840 850 860 870	XS=T2(5)=0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMPER/XE, VE, 0.2, EITE, 0.0,1)
	830 840 850 860 870 880	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL DUDI(2.0, 0, 0, 2,7)
• • • •	830 840 850 860 870 880 890	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(2.0,0.0,0.2, ADD(12),0.0,72)
• • • • • • • • • • • • • • • • • • •	830 840 850 860 870 880 890 900	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72)
• • • • • • • • • • • • • • • • • • •	830 840 850 860 870 880 890 900 910	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(-3.5,-0.1,-3)
	830 840 850 860 870 880 890 900 910 920	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(17.0,0.0,2)
	830 840 850 860 870 880 890 900 910 920 930	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(17.0,0.0,2) CALL PLOT(17.0,11.5,2)
	830 840 850 860 870 880 890 900 910 920 920 930 940	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72) CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(17.0,11.5,2) CALL PLOT(17.0,11.5,2)
	830 840 850 860 870 880 890 900 910 920 920 930 940 950	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72) CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(17.0,11.5,2) CALL PLOT(0.0,11.5,2) CALL PLOT(0.0,0.0,2)
	830 840 850 860 870 880 890 900 910 920 930 930 940 950 950 960	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72) CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(17.0,11.5,2) CALL PLOT(17.0,11.5,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,3)
	830 840 850 860 870 880 890 900 910 920 920 930 940 950 950 960 970	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(0.0,0.0,0,2,ARR(12),0.0,72) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(17.0,1.5,2) CALL PLOT(17.0,11.5,2) CALL PLOT(17.0,11.5,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,3) CALL PLOT(0.0,0.0,3) CALL EXIT
	830 840 850 860 870 880 890 900 910 920 920 920 920 920 950 950 950 950 960 970 1010	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(0.0,0.0,0.0,2,ARR(12),0.0,72) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(17.0,11.5,2) CALL PLOT(17.0,11.5,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,3) CALL PLOT(0.0,0.0,3) CALL EXIT FORMAT(12A6)
	830 840 850 860 870 880 890 900 910 920 920 930 920 930 950 950 950 950 970 1010 1020	<pre>XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(0.0,0.0,0.0,2,ARR(12),0.0,72) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(17.0,11.5,2) CALL PLOT(17.0,11.5,2) CALL PLOT(0.0,11.5,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,3) CALL PLOT(0.0,0.0,3) CALL EXIT FORMAT(12A6) FORMAT(615,4F10.3)</pre>
	830 840 850 860 870 880 890 900 910 920 920 930 940 950 950 950 960 970 1010 1020 1030	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(17.0,11.5,2) CALL PLOT(17.0,11.5,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,3) CALL FXIT FORMAT(12A6) FORMAT(5F10.3)
	830 840 850 860 870 880 890 900 910 920 920 920 920 920 920 920 920 920 92	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FFTC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(0.0,0.0,0.0,2,4RR(12),0.0,72) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(17.0,11.5,2) CALL PLOT(17.0,11.5,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,3) CALL EXIT FORMAT(12A6) FORMAT(5F10.3) FORMAT(6F10.3)
	830 840 850 860 870 880 900 910 920 920 920 920 920 920 920 920 920 92	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(17.0,0.0,2) CALL PLOT(17.0,11.5,2) CALL PLOT(17.0,11.5,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,3) CALL PLOT(0.0,0.0,3) CALL EXIT FORMAT(615,4F10.3) FORMAT(6F10.3) FORMAT(6F10.3) FORMAT(4F18.6)
	830 840 850 860 870 880 890 900 910 920 920 920 920 920 920 920 920 920 92	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(17.0,11.5,2) CALL PLOT(17.0,11.5,2) CALL PLOT(17.0,0.0,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,3) CALL PLOT(0.0,0.0,3) CALL EXIT FORMAT(615,4F10.3) FORMAT(6510.3) FORMAT(4E18.6) FORMAT(4E18.6)
	830 840 850 860 870 880 900 910 920 920 920 930 940 950 950 950 950 960 970 1010 1020 1030 1040 1050 1060	<pre>XS=T2(5)=0.4 YS=H2(5) CALL SYMBL4(XS;YS;0.2;5HFINAL;0.0;5) XS=T2(20) YS=H2(20) CALL NUMBER(XS;YS;0.2;FITC;0.0;1) CALL PLOT(2:0;=0.9;=3) CALL SYMBL4(0.0;0.0;0,0;2;ARR(12);0.0;72) CALL PLOT(=3:5;=0:1;=3) CALL PLOT(=3:5;=0:1;=3) CALL PLOT(17:0;0:0:0;2) CALL PLOT(17:0;11:5;2) CALL PLOT(10:0;11:5;2) CALL PLOT(0:0;0:0;2) CALL PLOT(0:0;0:0;2) CALL PLOT(0:0;0:0;2) CALL PLOT(0:0;0:0;3) CALL EXIT FORMAT(12A6) FORMAT(6510:3) FORMAT(6510:3) FORMAT(6510:3) FORMAT(6510:5) ECOMMAT(111:2;2;1:2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;</pre>
	830 840 850 870 870 880 900 910 920 930 920 930 950 950 960 970 1010 1020 1030 1040 1050 1060 2000	<pre>XS=T2(5)=0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,F1TC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(0.0,0.0,0.0,2,ARR(12),0.0,72) CALL PLOT(17.0,0.0,2,2) CALL PLOT(17.0,0.0,2) CALL PLOT(17.0,11.5,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,3) CALL PLOT(0.0,0.0,3) CALL PLOT(0.0,0.0,3) CALL EXIT FORMAT(615,4F10.3) FORMAT(6510.3) FORMAT(6510.5) FORMAT(4E18.6) FORMAT(1111,28X,12A6,24X,6HPAGE 0) FORMAT(1111,28X,12A6,24X,6HPAGE 0) FORMAT(1111,28X,12A6,24X,6HPAGE 0)</pre>
	830 840 850 870 870 900 910 920 930 920 930 940 950 960 970 1010 1020 1030 1040 1050 1060 2010	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72) CALL SYMBL4(0.0,0.0,0.2,ARR(12),0.0,72) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(17.0,11.5,2) CALL PLOT(17.0,11.5,2) CALL PLOT(0.0,11.5,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,3) CALL PLOT(0.0,0.0,3) CALL FXIT FORMAT(615,4F10.3) FORMAT(615,4F10.3) FORMAT(6F10.3) FORMAT(4E18.6) FORMAT(4E18.6) FORMAT(1H1,28X,12A6,24X,6HPAGE 0) FORMAT(1H1,28X,12A6,24X,6HPAGE 0) FORMAT(1
	830 840 850 860 870 880 900 910 920 930 920 930 940 950 960 970 1010 1020 1030 1040 1050 1060 2010	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) CALL NUMBER(XS,YS,0.2,FIIC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL PLOT(2.0,-0.9,-3) CALL PLOT(2.0,-0.9,-3) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(-3.5,-0.1,-3) CALL PLOT(17.0,0.0,2) CALL PLOT(0.0,11.5,2) CALL PLOT(0.0,11.5,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,3) CALL EXIT FORMAT(5F10.3) FORMAT(5F10.3) FORMAT(6F10.3) FORMAT(6F10.5) FORMAT(6F10.5) FORMAT(111,28X,12A6,24X,6HPAGE 0) FORMAT(111,2X,2HNO,3X,6HHEIGHT,5X,4HTEMP,8X,8HPRESSURE, 8X,2HNO 1,3X,6HHEIGHT,5X,4HTEMP,8X,8HPRESSURE, 8X,2HNO,3X,6HHEIGHT,5X,4HTEMP
	830 840 850 860 870 880 900 910 920 920 920 930 940 950 950 960 970 1010 1020 1030 1040 1050 1060 2010	XS=T2(5)-0.4 YS=H2(5) CALL SYMBL4(XS,YS,0.2,5HFINAL,0.0,5) XS=T2(20) YS=H2(20) CALL NUMBER(XS,YS,0.2,FITC,0.0,1) CALL PLOT(2.0,-0.9,-3) CALL PLOT(2.0,-0.9,-3) CALL PLOT(2.0,-0.9,-3) CALL PLOT(17.0,0.0,2) CALL PLOT(17.0,11.5,2) CALL PLOT(17.0,11.5,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,2) CALL PLOT(0.0,0.0,3) CALL EXIT FORMAT(615,4F10.3) FORMAT(615,4F10.3) FORMAT(610.3) FORMAT(610.5) FORMAT(611.5) FORMAT(1111,28X,1286,24X,6HPAGE 0) FORMAT(1111,28X,11286,24X,6HPAGE 0) FORMAT(1114,28X,11286,24X,6HPAGE 0) FORMAT(1114,28X,11286,24X,6HPAGE

ע דוו

Ç

C.

12

	2020 FORMAT(1H1,10X,56HACCUMULATOR OVERFLOW OR UNDERFLOW IN XSIMEOF DUR
	1 ING THE \$12\$1X\$10HITERATION\$) 2020 EODMAT/101.10X.16HMATPIN B IN THE .12.1V.22HITEDATION IS SINGH AD.
>	1)
	2040 FORMAT(1H1,10X,17HITERATION NUMBER ,12,95X,4HPAGE,12////11X,40HTEM
	$\frac{1}{2050 \text{ FORMAT(15X,2HA(,12,3H)} = \frac{1}{2010 \text{ FORMAT(15X,2HA(,12,3H)} = \frac{1}{2010 \text{ FORMAT(15X,2HA(,12,3H)} = \frac{1}{2010 \text{ FORMAT(12,2HA(,12,3H)} = \frac{1}{2010 FORMAT(12,2HA(12,2HA(12,2HA(12,2HA(12,2HA(12,2HA(12,$
	2050 FORMAT(4X)114HSUM OF THE SQUARES OF DEVIATIONS OF TEMPERATURES DET
	2•5///2X•5HLEVEL•2X•6HHEIGHT•3X•5HTEMP••3X•7HDELTA T•5X•8HPRESSURE•
	37X, 11HDELTA PRES., 4X, 5HLEVEL, 2X, 6HHEIGHT, 3X, 5HTEMP., 3X, 7HDELTA T, 5
	4X,8HPRESSURE,/X,11HDELIA_PRES,///(1X,14,3X,F5,1,3X,F7,3X,F7,3X,F7,3X,F7,3X,F7,3X,F7,3X,F7,3X,F7,3X,F7,3X,F7,3X,F7,3X,F7,3X,F7,3X,F7,3X,F7,3X,F7,3X,F7,5X,F7,77,77,77,77,77,77,77,77,77,77,777,7
	9998 FORMAT(5X////215/(1X,7E15.8))
	9999 FORMAT(15/(1X)7E15.8)) FND

ł

R. FOW ID. NO. AAP8 31 JULY 1963 SUBROUTINE KERNL1 CKERNL1 THIS SUBROUTINE COMPUTES THE 02 ATMOSPHERIC ABSORPTION WEIGHT-С ING FUNCTION, ZENITH OPACITY, AND ATTENUATION COEFFICIENT. C INPUT DATA REQUIRED F=FRQUENCY IN GC/SEC ſ J1=HEIGHT LEVEL NO. € H=HEIGHT IN KM. С С T=TEMPERATURE IN DEGREES KELVIN P=PRFSSURE IN MM OF HG JMAX=THE NUMBER OF LEVELS AT WHICH T AND P HAVE BEEN COM-PHITED. THETA=NADIR OR ZENITH ANGLE IN RADIANS. C C OUTPUT C GAM#ATTENUATION COEFFICIENT IN NEPERS/KM. TAU=7ENITH OPACITY IN NEPERS. C WAF=WEIGHTING FUNCTION. C JMAX=THE NUMBER OF LEVELS AT WHICH WAF WAS COMPUTED. e THE FIRST JMAX LOCATIONS IN THE J1, H, T, AND P MATRICES ARE С REPLACED BY THE THE J1, H, T, AND P CORRESPONDING TO С THE LEVELS AT WHICH WAF WAS COMPUTED. SUBPROGRAMS REQUIRED ATMSP4 OR ATMSP5 AND KERNL1 LEVEL JC REFERS TO THE LAST LEVEL AT WHICH WAF WAS COMPUTED. С С SUBROUTINE KERNL1(F, THETA) DIMENSION T(1001), P(1001), GAM(1001), TAU(1001), WAF(1001), J1(1001), H 1(1001)COMMON T.P.GAM, TAU, WAF, JI, H, JMAX FREQUENCY 18(100,1,5),45(50,1,10),48(100,1,2),62(50,1,2),73(10,1), 176(50,1,10),79(50,1,5)1 JM1=JMAX=1 160 = 1SECTION 1, COMPUTATIONS FOR LEVELS 1 THROUGH 5 IN GAMO2, 1 THROUGH C 4 IN WAF. 3 GAM(1)=GAMO2(T(1),P(1),F) 4 TAU(1) = GAM(1)5 SECTH=1.0/COSF(THETA) 6 TAK=TAU(1)7 WAF(1)=(EXPF(-TAK*SECTH))*GAM(1)*SECTH 9 GAM(2)=GAMO2(T(2),P(2),F) 8 DO 13 I=2,4 10 GAM(I+1)=GAMO2(T(I+1),P(I+1),F) TAU(I)=(((GAM(I=1)+2.0*GAM(I)+GAM(I+1))/4.0)*0.1)+TAU(I=1) 12 TAK=TAU(I) 13 WAF(1)=(EXPF(-TAK*SECTH))*GAM(1)*SECTH 14 DWAF=(((WAF(4)=WAF(2))/0.2)*1.2)+WAF(3) 15 IC=416 JM13=JMAX-13 17 JC=4 18 IF (DWAF-0.0005) 19,49,49 SECTION 2, COMPUTATIONS FOR LEVELS JC+9 THROUGH JC+13 IN GAMO2 AND LEVELS JC+10 THROUGH JC+12 IN WAF. 19 JC=JC+9GAM(JC) = GAMO2(T(JC), P(JC), F)

	20	GJC=GAM(JC)
	& v	
		TAUI=(((GAM(JC)+GAM(JC=8))/20)×09/+(AU(JC=9))
_ =		DO 24 1=1:4
	22	
	63	
		GAM(JCI)=GAMO2(T(JCI),P(JCI),F)
	24	GICT-GAMILICT)
	<i>2</i> .4	
	25	TAU(JC+1)=TAU1+(((GAM(JC)+GAM(JC+1))/2+0)*0+1)
\bullet		
	20	
	27	WAF(JC+1)=(EXPF(=TAK*SECTH))*GAM(JC+1)*SECTH
	28	DO 32 I=2.3
	20	
	29	
		TAUL/ICI) = (//CAM//ICI-1) + 2.0*GAM//ICI) + GAM//ICI+1) / (-0)*0.1) + TAU(JCI-
=		
	~ *	
		WAF(JCI)=(EXPF(" AK*SEC H))*GAM(JCI)*SECIH
-	33	
•	34	
	35	
	20	
	37	
	381	P(ICI)=P(JCI)
	20	GAM(ICI)=GAM(ICI)
	27	GAMTICI7-GAMTOCI7
		GIC=GAM(ICI)
_	40	
		TIC=TAU(ICI)
	41	WIC=WAF(ICI)
	42	
	+2.	
	43	
		GO TO (45.49).160
→ Ξ		
•	45	IF (JC=JM13) 47,46,481
•	45	IF (JC=JM13) 47,46,481 IGO=2
	45 46 47	IF (JC=JM13) 47,46,481 IGO=2 DWAE=(///WAE/ICI)=WAE/ICI=2))/(0.2)*1.2)+WAE/ICI=1)
	45 46 47	IF (JC-JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1)
	45 46 47 48	IF (JC-JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF-0.0005) 19,49,49
	45 46 47 48 481	IF (JC-JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF-0.0005) 19,49,49
	45 46 47 48 481	IF (JC-JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF-0.0005) 19,49,49 IGO=2
	45 46 47 48 481 C	IF (JC-JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF-0.0005) 19,49,49 IGO=2 SECTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 1N
	45 46 47 48 481 C	IF (JC-JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF-0.0005) 19,49,49 IGO=2 SECTION 3. COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 1N WAF.
	45 46 47 48 481 C C	IF (JC-JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF-0.0005) 19,49,49 IGO=2 SECTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 IN WAF.
	45 46 47 48 481 C C C	IF (JC=JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)=WAF(ICI=2))/0.2)*1.2)+WAF(ICI=1) IF (DWAF=0.0005) 19,49,49 IGO=2 SECTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 1N WAF. JCI=JC+1
	45 46 47 48 481 C C C 49 50	<pre>IF (JC=JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF=0.0005) 19,49,49 IGO=2 SFCTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 IN WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F)</pre>
	45 46 47 48 481 C C 49 50	IF (JC=JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI=2))/0.2)*1.2)+WAF(ICI=1) IF (DWAF=0.0005) 19,49,49 IGO=2 SECTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 IN WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F) TAUK/JCI=1)+2.0*GAM(JCI=1)+2.0*GAM(JCI=1))/(4.0)*0.1)+TAUK/JCI=
	45 46 47 48 481 C C 49 50 51	<pre>IF (JC=JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF=0.0005) 19,49,49 IGO=2 SECTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 IN WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F) TAU(JCI)=(((GAM(JCI-1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI- </pre>
	45 46 47 48 481 C C 49 50 51	<pre>IF (JC=JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI=2))/0.2)*1.2)+WAF(ICI=1) IF (DWAF=0.0005) 19,49,49 IGO=2 SECTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 IN WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F) TAU(JCI)=(((GAM(JCI=1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI= 11)</pre>
	45 46 47 48 481 C C 49 50 51	<pre>IF (JC=JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI=2))/0.2)*1.2)+WAF(ICI=1) IF (DWAF=0.0005) 19,49,49 IGO=2 SECTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 IN WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F) TAU(JCI)=(((GAM(JCI=1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI=1) TAV=TAU(JCI)</pre>
	45 46 47 48 481 C C C 49 50 51	<pre>IF (JC=JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)=WAF(ICI=2))/0.2)*1.2)+WAF(ICI=1) IF (DWAF=0.0005) 19,49,49 IGO=2 SFCTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 IN WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F) TAU(JCI)=(((GAM(JCI=1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI= 11) TAK=TAU(JCI)</pre>
	45 46 47 48 481 C C 49 50 51 51 52 53	<pre>IF (JC=JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF-0.0005) 19,49,49 IGO=2 SECTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 IN WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F) TAU(JCI)=(((GAM(JCI-1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI- 11) TAK=TAU(JCI) WAF(JCI)=(EXPF(-TAK*SECTH))*GAM(JCI)*SECTH</pre>
	45 46 47 48 481 C C 49 50 51 50 51 52 53 54	<pre>IF (JC=JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF=0.0005) 19,49,49 IGO=2 SECTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 1N WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F) TAU(JCI)=(((GAM(JCI-1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI- 11) TAK=TAU(JCI) WAF(JCI)=(EXPF(=TAK*SECTH))*GAM(JCI)*SECTH ICI=IC+1</pre>
	45 46 47 48 481 C C 49 50 51 51 52 53 53 54	<pre>IF (JC=JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF=0.0005) 19,49,49 IGO=2 SECTION 3; COMPUTATIONS FOR LEVFL JC+2 IN GAM02 AND LEVEL JC+1 IN WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F) TAU(JCI)=(((GAM(JCI-1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI- 11) TAK=TAU(JCI) WAF(JCI)=(EXPF(=TAK*SECTH))*GAM(JCI)*SECTH ICI=IC+1 I2(JCI)</pre>
	45 46 47 48 481 C C 49 50 51 51 52 53 54 55	<pre>IF (JC=JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF-0.0005) 19,49,49 IGO=2 SFCTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 IN WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F) TAU(JCI)=(((GAM(JCI-1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI- 11) TAK=TAU(JCI) WAF(JCI)=(EXPF(=TAK*SECTH))*GAM(JCI)*SECTH ICI=IC+1 J1(ICI)=J1(JCI)</pre>
	45 46 47 48 481 C C 49 50 51 51 52 53 54 55 56	<pre>IF (JC=JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF-0.0005) 19,49,49 IGO=2 SECTION 3. COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 IN WAF. JC1=JC+1 GAM(JCI+1)=GAM02(T(JCI+1).P(JCI+1).F) TAU(JCI)=(((GAM(JCI-1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI- 11) TAK=TAU(JCI) WAF(JCI)=(EXPF(-TAK*SECTH))*GAM(JCI)*SECTH ICI=IC+1 J1(ICI)=J1(JCI) H(ICI)=H(JCI)</pre>
	45 46 47 48 481 C C 49 50 51 52 53 54 55 56 57	<pre>Go if (JC=JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF-0.0005) 19,49,49 IGO=2 SECTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 IN WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F) TAU(JCI)=(((GAM(JCI-1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI- 11) TAK=TAU(JCI) WAF(JCI)=(EXPF(-TAK*SECTH))*GAM(JCI)*SECTH ICI=IC+1 J1(ICI)=J1(JCI) H(ICI)=H(JCI) </pre>
	45 46 47 48 481 C C 49 50 51 50 51 52 53 54 55 56 57	<pre>Ge to (t) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</pre>
	45 46 47 48 481 C C 50 51 50 51 50 51 52 53 54 55 56 57 58	<pre>Go (10,17,17,100 IF (JC=JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF=0.0005) 19,49,49 IGO=2 SECTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 1N WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F) TAU(JCI)=(((GAM(JCI-1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI- 11) TAK=TAU(JCI) WAF(JCI)=(EXPF(=TAK*SECTH))*GAM(JCI)*SECTH ICI=IC+1 J1(ICI)=J1(JCI) H(ICI)=H(JCI) T(ICI)=T(JCI) P(ICI)=P(JCI)</pre>
	45 46 47 48 481 C C 49 50 51 50 51 51 52 53 54 55 56 57 58 58	<pre>Go to to</pre>
	45 46 47 48 481 C C 49 50 51 50 51 52 53 54 55 56 57 58 58 59	<pre>Go (G (JC)) (JC) (GAR) (JC) (JC) (JC) (JC) (JC) (JC) (JC) (JC</pre>
	45 46 47 48 481 C C 49 50 51 52 53 54 55 56 57 58 59 60	<pre>IF (JC=JM13) 47,46,481 IG0=2 DWAF=(((WAF(ICI)=WAF(ICI=2))/0.2)*1.2)+WAF(ICI=1) IF (DWAF=0.0005) 19,49,49 IG0=2 SECTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 IN WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F) TAU(JCI)=(((GAM(JCI=1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI=11) TAK=TAU(JCI) WAF(JCI)=(EXPF(=TAK*SECTH))*GAM(JCI)*SECTH ICI=IC+1 J1(ICI)=J1(JCI) H(ICI)=H(JCI) I(ICI)=F(JCI) GAM(ICI)=GAM(JCI) TAU(ICI)=TAU(JCI)</pre>
	45 46 47 48 481 C C 49 50 51 52 53 54 55 56 57 58 59 60 41	<pre>IF (JC=JMI3) 47,46,481 IG0=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF-0.0005) 19,49,49 IG0=2 SECTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 IN WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F) TAU(JCI)=(((GAM(JCI-1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI- 11) TAK=TAU(JCI) WAF(JCI)=(EXPF(-TAK*SECTH))*GAM(JCI)*SECTH ICI=IC+1 J1(ICI)=J1(JCI) H(ICI)=H(JCI) I(ICI)=F(JCI) GAM(ICI)=GAM(JCI) AC(ICI)=GAM(JCI) AC(ICI)=GAM(JCI)=GAM(JCI) AC(ICI)=GAM(JCI)=GA</pre>
	45 46 47 48 481 C C 49 50 51 52 53 54 55 56 57 58 59 60 61	<pre>Go (Go (Go (Go (Go (Go (Go (Go (Go (Go (</pre>
	45 46 47 48 481 C C 49 50 51 52 53 54 55 56 57 58 59 60 61 611	<pre>Go 10 (JC-JMI3) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF-0.0005) 19,49,49 IGO=2 SECTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 IN WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F) TAU(JCI)=(((GAM(JCI-1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI-1)) TAK=TAU(JCI) WAF(JCI)=(EXPF(-TAK*SECTH))*GAM(JCI)*SECTH ICI=IC+1 J1(ICI)=J1(JCI) H(ICI)=H(JCI) I(ICI)=F(JCI) GAM(ICI)=GAM(JCI) AC(I)=IC+1 VAF(JCI)=WAF(JCI) IC=ICI</pre>
	45 46 47 48 481 C C 49 50 51 52 53 54 55 56 57 58 59 60 61 611 611 612	<pre>Go for for first for for for for for for for for for for</pre>
	45 46 47 48 481 C C 49 50 51 52 53 54 55 56 57 58 59 60 61 611 611 612	<pre>Go To To</pre>
	45 46 47 48 481 C C 49 50 51 52 53 54 55 56 57 58 59 60 61 611 611 612 62	<pre>Go (C (C) (G) (G) (G) (G) (G) (G) (G) (G) (G) (G</pre>
	45 46 47 48 481 C C 50 51 50 51 50 51 52 53 54 55 56 57 58 59 60 61 611 611 612 62 C	<pre>Go (0 (-)=0+0)=0+0=0=0=0=0=0=0=0=0=0=0=0=0=0=0=0</pre>
	45 46 47 48 481 C C 49 50 51 52 53 54 55 56 57 58 59 60 61 611 611 612 62 C C	<pre>Go (G (JG) JA (JG) IF (JC-JM13) 47,46,481 IGO=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF-0.0005) 19,49,49 IGO=2 SECTION 3, COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 IN WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F) TAU(JCI)=((GAM(JCI-1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI- 11) TAK=TAU(JCI) WAF(JCI)=(EXPF(=TAK*SECTH))*GAM(JCI)*SECTH ICI=IC+1 J1(ICI)=J(JCI) H(ICI)=H(JCI) H(ICI)=H(JCI) P(ICI)=F(JCI) GAM(ICI)=GAM(JCI) TAU(ICI)=TAU(JCI) WAF(JCI)=WAF(JCI) GAM(ICI)=GAM(JCI) TAU(ICI)=WAF(JCI) ICI=ICI JC=JCI IF (JCI-JMI) 73,63,63 SECTION 4, COMPUTATIONS FOR LEVEL JMAX IN ALL PARAMETERS. ICI=ICH1</pre>
	45 46 47 48 481 C C 49 50 51 52 53 54 55 56 57 58 59 60 61 611 611 612 62 C C	<pre>Go (G (J) (J) (J) (J) (J) (J) (J) (J) (J) (J)</pre>
	45 46 47 48 481 C C 49 50 51 52 53 54 55 56 57 58 59 60 61 611 611 612 62 C C 63 64	<pre>Go (G (G) (G) (G) (G) (G) (G) (G) (G) (G)</pre>
	45 46 47 48 481 C C 49 50 51 52 53 54 55 56 57 58 59 60 61 611 612 62 C C 63 64 45	<pre>Job 10 (Job 17) 47;46;481 IG0=2 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1) IF (DWAF=0.0005) 19;49;49 IG0=2 SECTION 3; COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 1N WAF: Jc1=JC+1 GAM(JCI+1)=GAM02(T(JCI+1);P(JCI+1);F) TAU(JCI)=((GAM(JCI-1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI- 11) TAK=TAU(JCI) WAF(JCI)=(EXPF(-TAK*SECTH))*GAM(JCI)*SECTH ICI=IC+1 J1(ICI)=J1(JCI) H(ICI)=H(JCI) TAU(ICI)=GAMJJCI) TAU(ICI)=GAMJJCI) WAF(ICI)=GAMJJCI) WAF(ICI)=WAF(JCI) IC=ICI JC=JCI IF (JCI-JM1) 73;63;63 SECTION 4; COMPUTATIONS FOR LEVEL JMAX IN ALL PARAMETERS; ICI=IC+1 J1(ICI)=H(JMX) H(ICI)=H(JMX)</pre>
	45 46 47 48 481 C C 50 51 50 51 50 51 52 53 54 55 56 57 58 55 56 57 58 59 60 61 611 611 611 612 62 C C 63 64 65	<pre>30 10 10 1777465481 160=2 DWAF=((WAF(ICI)=WAF(ICI=2))/0.2)*1.2)+WAF(ICI=1) IF (DWAF=0.0005) 19,49,49 160=2 SECTION 3; COMPUTATIONS FOR LEVEL JC+2 IN GAM02 AND LEVEL JC+1 1N WAF. JCI=JC+1 GAM(JCI+1)=GAM02(T(JCI+1),P(JCI+1),F) TAU(JCI)=((GAM(JCI=1)+2.0*GAM(JCI)+GAM(JCI+1))/4.0)*0.1)+TAU(JCI= 11) TAK=TAU(JCI) WAF(JCI)=(EXPF(=TAK*SECTH))*GAM(JCI)*SECTH TCI=IC+1 J1(ICI)=I(JCI) WAF(ICI)=GAM(JCI) TAU(ICI)=GAM(JCI) TAU(ICI)=GAM(JCI) VAF(JCI)=(CI) GAM(ICI)=GAM(JCI) TAU(ICI)=WAF(JCI) VAF(ICI)=WAF(JCI) IC=ICI JC=JCI TF (JCI=JM1) 73,63,63 SECTION 4; COMPUTATIONS FOR LEVEL JMAX IN ALL PARAMETERS. H(ICI)=H(JMAX) H(ICI)=H(JMAX)</pre>

zię.

D

P	114
]	
P	67 P(1C1)=P(JMAX)
⁾	68 GAM(ICI)=GAM(JMAX)
	69 TAU(ICI)=(((GAM(JMAX)+GAM(JM1))/2•0)*0•1)+TAU(JC)
	/1 WAF(ICI)=(EXPF(= AK*SE(IH))*GAM(ICI)*SE(IH
	72 GO TO 80 73 GO TO (76+49)+160
	76 1F (JC=JM13) 78,77,481
	77 IGO=2
	78 DWAF=(((WAF(ICI)-WAF(ICI-2))/0.2)*1.2)+WAF(ICI-1)
	79 IF (DWAF-0.0005) 19,49,49
D	80 JMAX=ICI
•	

CM1.	SP4 B. R FOW ID NO. AAP8 PROGRAM MISP4 22 AUGUST 1963
	THIS PROGRAM COMPUTES BRIGHTNESS TEMPERATURE AND FINDS THE ALTI- TUDE OF THE PEAK OF THE WEIGHTING FUNCTION FOR A GIVEN ATMOSPHERE; FREQUENCY; NADIR ANGLE AND EXTERNAL SOURCE TEMPERATURE;
	INPUT DATA REQUIRED
	NAME, DATE AND ID CARD KD1=THE NUMBER OF TEMPERATURE POLYNOMIAL COEFFICIENTS. KD2=THE NUMBER OF BRIGHTNESS TEMPERATURE VS. FREQUENCY AND NADIR ANGLE POINTS.
Ċ	HMIN=THE MINIMUM HEIGHT OF INITIAL AND DERIVED TEMPERATURE
c c	HMAX=THE MAXIMUM HEIGHT OF INITIAL AND DERIVED TEMPERATURE PROFILES, KM.
C	JRD=SENSE OF RADIOMETER OR ANTENNA.
	JRD=1, SENSE IS UP FROM HMIN TO HMAX.
	JRUEZO SENSE IS DUWN FRUM HMAA IV HMINO DZEDO-CDOUND LEVEL VALUE DE DDECCUDE, NM DE UC
c c	GZERO=GROUND LEVEL VALUE OF GRAVITATIONAL ACCELERATION, CM/SEC**2.
C	VARG=RATE OF CHANGE WITH HEIGHT OF GRAVITATIONAL ACCELERA-
C	TION, CM/SEC**2/KM.
	TMS=BRIGHTNESS TEMPERATURE OF SOUCE LYING OUTSIDE THE ATMOS-
	TB=INPUT BRIGHTNESS TEMPERATURES, DEG K.
	ZA=INPUT NADIR ANGLES: DEG:
Ç	
	OUTPUT DATA
c	JWEM=LEVEL NO OF WEIGHTING FUNCTION PEAK.
с ——с	HWFM=HEIGHT OF WEIGHTING FUNCTION PEAK, KM. TWFM=KINETIC TEMPERATURE AT THE LEVEL OF THE WEIGHTING FUNCTION
<u> </u>	PEAK, DEG. K.
	PWFM=PRESSURE AT THE LEVEL OF THE WEIGTING FUNCTION PEAK, MM OF HG.
	TBR=BRIGHTNESS TEMPFRATURE. WFM=MAXIMUM VALUE OF WEIGHTING FUNCTION.
	SUBPROGRAMS REQUIRED ATMSP4;KERNL1; AND BTEMP2.
	DIMENSION AR(12),AI(20), FI(30),ZA(30),T(1001),P(1001),GAM(1 1001),TAU(1001),WAF(1001),J1(1001),H(1001),J2(1001),H2(1001),T2(100 21),P2(1001),HH2(1003),TT2(1003),ARR(12),BATA(800),HE(2),TE(2) EQUIVALENCE (H2,HH2),(T2,TT2)
	COMMON T.P.GAM.TAU.WAF.J.I.SH.JMAX
	LU READ INPUT TAPE 2,1010;(AR(T);T=1;T2) 30 READ INPUT TAPE 2,1030,HMIN,HMAX,P7ER0,G7ER0,VARG,KD1,KD2, IRD,TR
	40 READ INPUT TAPE 2,1040, (TE(I), HE(I), I=1,2), YH, XT
	50 READ INPUT TAPE 2,1050, (AI(I), I=1, KD1)
	SO READ INPUT TAPE 2,1060,(F1(1),ZA(1),1=1,KD2)
	70 WRITE OUTPUT TAPE 3,1010, (AR(I), I=1,12)
	<pre>>>> WRITE OUTPUT TAPE 3,1030,HMIN,HMAX,PZERO,GZERO,VARG,KD1,KD2,JRD,TB</pre>
1	JU WRITE OUTPUT TAPE 3,1040,(TE(I),HE(I),T=1,2),YH,XT 10 WRITE OUTPUT TAPE 3,1050,(AI(I),T=1,KD1)

	116
, I	
	120 WRITE OUTPUT TAPE 3,1060,(Fi(1),ZA(1),1=1,KD2)
ה =	131 JMX2= IMAX
2	132 DO 136 K=1, JMX2
	133 $J_2(K) = J_1(K)$
	134 H2(K)=H(K)
	135 T2(K)=T(K)
	136 P2(K)=P(K)
	137 WRITE OUTPUT TAPE 3,2000, (AR(I), I=1,12)
	165 DO 320 1=1,KD2
	$100 \ r = r I(I)$ $170 \ A = 7 \ A = 17 \ F = 22$
	171 IMAY- IMY2
	172 DO 176 Me1. MAY
	173 J1(M)=J2(M)
	174 H(M) = H2(M)
	175 T(M) = T2(M)
	176 P(M)=P2(M)
	180 CALL KERNL1(F)A)
	190 CALL BTEMP2(TB,TBR,A)
	199 Z=ZA(1)
	200 WFM=WAF(1)
-	201 M=1 210 D0 270 L=2 WAX
	230 TE(WAFLEWEM1270.250.250
	250 Mm 1
L	260 WFM=WAFJ
	270 CONTINUE
	280 JWFM=J1(M)
	290 HWFM=H(M)
	300 TWFM=T(M)
	310 PWFM=P(M)
	320 WRITE OUTPUT TAPE 3,2010,F,Z,TBR,WFM,JWFM,HWFM,TWFM,PWFM
	330 JM1=JMX2+1
	350 HH2(JM1)=HE(1)
	270 TT2/ W11_TT/1
	370 112(JM1)=1E(1) 380 TT2/ JM2)=TE(2)
	$390 CALL SCALE (HH2 \bullet IM2 \bullet VH \bullet HH2M \bullet DHH2)$
	$\frac{400 \text{ CALL SCALF(TT2*, IM2*XT*TT2M*DTT2)}}{400 \text{ CALL SCALF(TT2*, IM2*XT*TT2M*DTT2)}}$
	410 CALL AXIS(0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
	420 CALL AXIS(0.0.0.18HTEMPERATURE, DEG K.18.XT.0.0.0.TT2M.DTT2)
	430 CALL LINE(T2)H2, JMX2)
	440 DO 460 I=1,12
•	450 IR=13-I
	460 ARR(IR)=AR(I)
	470 CALL PLOT(=1.0,=0.75,=3)
12	490 XB=X +1
1 1	510 CALL PLUT(UOU)(B)2) 510 CALL PLUT(VP.VP.2)
10	520 CALL PLUT(AD)TD)2/
	530 CALL PLUIIAD9U♦U92/ 530 CALL PLOTIA.0.0.0.91
	520 CALL FLUITURURURUR 21 540 CALL PLATI2.A.A.A.A.A.
7	550 CALL SYMBL4(0.0.0.0.0.15.0.0.21.2)
6	560 CALL DI DET (XB 0.03)
5	570 CALL FXIT

	1010 FORMAT(12A6)
	1030 FORMAT(5F10.3,314,F10.3)
_	1040 FORMAT(6F10.3)
	1050 FORMAT(4E18.6)
	1060 FORMAT(6F10.5)
	2000 FORMAT(1H1,28X,12A6)
Ξ	2010 FORMAT(5X///5X11HERFOURNCY =+E8+4+7HGC/SEC++//5X13HNAD1R ANGLE ++E
Ξ	16.2.8HDEGEEEC.//SY2/HEDIGHTMECC TEMPEDATUREE0.2.1EUDECDEEC VELV
_	210 2 SUNDLOKELUT/ 2X2 THUR DUTINE OF WEICHT FUNCTION - FID SUDDUCKELUT KELV
	3 HEIGHT, KINETIC TEMPERATURE, AND PRESSURE AT THE HEIGHT CORRESPON 4DING TO THE WEIGHTING FUNCTION PEAK.//5X11HLEVEL NO. =,I3//5X8HHEI 5GHT =,F6.2,3HKM.//5X13HTEMPERATURE =,F7.3,7HDEG. K.//5X10HPRESSURE
Ξ	
Ξ	END
=	
Ξ	
Ξ	
=	
Ξ	
Ξ	
Ξ	
Ē	
=	
$\boldsymbol{\cup}$	
Ξ	
=	
Ξ	
Ξ	
=	
-	
Ξ	
Ξ	
Ξ	
Ξ	
=	
2	1
11	
10	
_ =	
7	
6	
5	
-	

CMISP5	B. R. FOW	PROGRAM MISP5	4 OCTOBER 1963
C C TU C FR	THIS PROGRAM COMP DE OF THE PEAK OF EQUENCY NADIR A	PUTES BRIGHTNESS T F THE WEIGHTING FU NGLE AND EXTERNAL	EMPERATURE AND FINDS THE ALTI NCTION FOR A GIVEN ATMOSPHERE SOURCE TEMPERATURE.
	INPUT DATA REQU	JIRED	
-			
- C	KD1 THE NUM	BER OF TEMPERATURE	VS HEIGHT DATA POINTS.
•	TD(I) TEMPERA	TURE DATA POINT.	
	ZD(1) CORRESPO	ONDING HEIGHT DATA	POINT. Emperature vs. Erfouency and
	NADIR	ANGLE POINTS.	
	HMIN=THE MIN	IMUM HEIGHT OF INI	TIAL AND DERIVED TEMPERATURE
	HMAX=THE MAX	IMUM HEIGHT OF INI	TIAL AND DERIVED TEMPERATURE
	PROFIL	ES, KM,	
	JRD=SENSE OF	RADIOMETER OR ANT	
	JRD=	2. SENSE IS DOWN F	ROM HMAX TO HMIN.
	PZERO=GROUND	LEVEL VALUE OF PR	ESSURE, MM OF HG.
	GZERO=GROUND	LEVEL VALUE OF GR	AVITATIONAL ACCELERATION.
	MADG-DATE OF	EC**2. CHANGE WITH HEIGH	T OF GRAVITATIONAL ACCELERA-
	TION	, CM/SEC**2/KM.	
•	TMS=BRIGHTNE	SS TEMPERATURE OF	SOUCE LYING OUTSIDE THE ATMO
		E9 DEG K. Ghtness temperatur	ES. DEG K.
	FI=INPUT FRE	QUENCIES, GC/SEC.	
	ZA#1NPUT NAD	1R ANGLES, DEG.	
	OUTPUT DATA		
-	JWFM=LEVEL NO O	F WEIGHTING FUNCTI	ON PEAK.
	HWFM=HFIGHT OF	WEIGHTING FUNCTION	PEAKS KM.
	TWFM≝KINETIC TE DEAV. D	MPERATURE AT THE L	EVEL OF THE WEIGHTING FUNCTION
	PWFM=PRESSURE A	T THE LEVEL OF THE	WEIGTING FUNCTION PEAK, MM (
	HG∙		
	TBR=BRIGHTNESS	TEMPERATURE	NCTION.
	WFW WAATHON VAL	OF OF MLIGHTING IX	
-	SUBPROGRAMS RE	QUIRED ATMSP5,KE	RNL1, AND BTEMP2.
D D	MENSION AR(12),Z	D(50),TD(50),FI(30),ZA(30),T(1001),P(1001),GAM
10()1),TAU(1001),WAF	(1001),J1(1001),H(1001) • J2(1001) • H2(1001) • T2(1
21	•P2(1001)•HH2(10	03),TT2(1003),ARR(12) •BATA(800) •HE(2) •TE(2)
E(DUIVALENCE (H2,HF	2) = (729112)	
	ALL PLOTS (BATA (80	0) • 800)	
10 R	EAD INPUT TAPE 2,	1010, (AR(I), I=1,12)
30 RI	AD INPUT TAPE 2.	1030 HMIN HMAX PZE	RO,GZERO,VARG,KD1,KD2,JRD,TB
40 RI	AD INPUT TAPE 2:	1040,(TE(I),HE(I), 1050,(70/1),TO(1),	<u>1=192;9*****</u>
60 RI	AD INPUT TAPE 29	1060,(F1(1),ZA(1),	1=1,KD2)
			101
70 WI	RITE OUTPUT TAPE	3,1010, (AR(I),1=1)	

V. 4 1.00

P 20

26

i -

6

Ξ

OUTPUT TAPE 3,1040,(TE(1),HE(1),[=1,2),YH,XT

110 WRITE OUTPUT TAPE 3,1050,(ZD(1),TD(1),I=1,KD1) 120 WRITE OUTPUT TAPE 3,1060,(F1(1),ZA(1),I=1,KD2)

130 CALL ATMSP5(KD1,ZD,HMIN,HMAX,JRD,PZERO,GZERO,VARG,TD) 131 JMX2=JMAX

<u>132 DO 136 K≡1,JMX2</u> 133 J2(K)=J1(K)

134 H2(K)=H(K)

135 T2(K)=T(K)

136 P2(K)=P(K)

100 WRITE

137 WRITE OUTPUT TAPE 3,2000, (AR(I), I=1,12)

138 WRITE OUTPUT TAPE 3,2030 139 WRITE OUTPUT TAPE 3,2031,(J1(1),H(1),T(1),P(1),1=1,JMAX)

165 DO 320 I=1,KD2

166 F=FI(I)

170 A=ZA(I)*0.0174533 171 JMAX=JMX2

172 DO 176 M=1, JMAX

173 J1(M)=J2(M)

174 H(M)=H2(M)

175 T(M)=T2(M) 176 P(M)=P2(M)

180 CALL KERNL1(F•A)

190 CALL BTEMP2(TB,TBR,A)

199 Z=ZA(I) 200 WFM=WAF(1)

201 M=1

210 DO 270 J=2, JMAX

220 WAFJ=WAF(J)

230 IF(WAFJ=WFM)270,250,250 250 M=J

260 WFM=WAFJ

270 CONTINUE

280 JWFM=J1(M) 290 HWFM=H(M)

300 TWFM=T(M)

310 PWFM=P(M)

320 WRITE OUTPUT TAPE 3,2010,F,Z,TBR,WFM,JWFM,HWFM,TWFM,PWFM

330 JM1=JMX2+1 340 JM2=JMX2+2

350 HH2(JM1)=HE(1)

360 HH2(JM2)=HE(2)

370 TT2(JM1)=TE(1) 380 TT2(JM2)=TE(2)

390 CALL SCALF (HH2, JM2, YH, HH2M, DHH2)

400 CALL SCALE (TT2, JM2, XT, TT2M, DTT2)

410 CALL AXIS(0.0,0.0,10HHEIGHT, KM,10,YH,90.0,HH2M,DHH2)

420 CALL AXIS(0.0.0.0.18HTEMPERATURE, DEG K.18.XT.0.0.TT2M.DTT2) 430 CALL LINE(T2.H2.JMX2)

440 DO 460 I=1,12

450 IR=13-1

460 ARR(IR) = AR(I)

490 XB=XT+1.5

500 CALL PLOT(0.0,YB,2)

510 CALL PLOT(XB,YB,2)

520 CALL PLOT(XB,0.0,2) 530 CALL PLOT(0.0,0.0,2)

1 ==	
	540 CALL PLOT (2+0+0+05+=3)
	550 CALL SYMBL4(0.0.0.0.0.15.ARR(12).0.0.72)
ລ_≡	560 CALL PLOT(XB.0.03)
	570 CALL EXIT
	1010 FORMAT(12A6)
	1030 FORMAT(5F10+3+314+F10+3)
	1040 FORMAT(6F10.3)
	1050 FORMAT(6F10.3)
	1060 FORMAT(6F10.5)
	2000 FORMAT(1H1,28X,12A6)
	2010 FORMAT(5X///5X11HFREQUENCY =,F8.4,7HGC/SEC.,//5X13HNADIR ANGLE =.F
	16.2.8HDEGREES.//5X24HBRIGHTNESS TEMPERATURE =.F8.3.15HDEGREES KELV
	21N.//5X35HMAXIMUM VALUE OF WEIGHT. FUNCTION =.E12.5//5X.108HLEVEL.
	3 HEIGHT, KINETIC TEMPERATURE, AND PRESSURE AT THE HEIGHT CORRESPON
	4DING TO THE WEIGHTING FUNCTION PEAK .//5X11HLEVEL NO. =,13//5X8HHEI
	5GHT =,F6.2,3HKM.//5X13HTEMPERATURE =,F7.3,7HDEG. K.//5X10HPRESSURE
•	6 = 12.599 MM OF HG.)
	2030 FORMAT(1H1)
	2031 FORMAT(4(1X)13,1X)F5.1,2X)F7.3,1X,E12.5))
	END

ACKNOWLEDGMENTS

I would first like to thank Dr. M. L. Meeks for suggesting and encouraging me to pursue this research. Dr. Meeks also made generous contributions of his time in discussing technical matters with me, directing my research efforts and in obtaining technical and financial support for this work.

I would also like to thank my thesis advisor, Professor Reginald E. Newell for his interest in this work and his invaluable assistance in the writing of this manuscript.

There have been many other people who have given me encouragement and technical assistance in various aspects of this work. I would especially like to thank Dr. Sander Weinreb and Dr. Tor Hagfors of Lincoln Laboratory, M.I.T., and Professor F. B. Hildebrand of M.I.T.

The computational aspects of this work were performed at the M.I.T. Lincoln Laboratory Computation Center. I appreciate very much the assistance of the people in the computer group and I would especially like to thank Mr. Joseph A. Obrien, Mr. Keith T. Russell and Miss Betty M. Lee for the assistance in programming.

Also, I would like to thank the Drafting Department at Lincoln Laboratory for preparing the figures in this work.

The temperature measurements used to obtain ATMOSPHERE 2 were obtained from an unpublished manuscript by W. Nordberg and W. Smith of National Aeromautics and Space Administration entitled "Rocket Measurements of the Structure of the Upper Stratosphere and Mesosphere." (This manuscript was supplied to Professor Newell in April 1963.)

The temperatures used to obtain ATMOSPHERE 3 and ATMOSPHERE 4 were from cross-sections drawn by Mrs. Dorothy Berry for Professor Newell's Upper Atmosphere class.

Finally, I would like to express my appreciation to Mrs. Carol A. Jordan and Miss E. Judith Porter who typed the manuscript.

REFERENCES

- Dicke, R. H., "The Measurement of Thermal Radiation at Microwave Frequencies," Rev. Sci. Instr., 17, 7, pp 258-275, July 1946.
- Fryberger, D. and E. F. Uretz, "Some Considerations Concerning the Measurement of the Atmospheric Temperature Field by Electromagnetic Means," IRE Transactions on Mil Electronics, pp 279-285, Oct. 1961.
- Hagfors, T., Notes on Quantum Effects in Radiometer Observations, private communication.
- Hildebrand, F. B., Introduction to Numerical Analysis, Chapter 7, McGraw-Hill, 1956.
- Hildebrand, F. B., Methods of Applied Mathematics, Prentice-Hall, 1958.
- Hogg, D. C., and R. A. Samplak, "The Effect of Rain and Water Vapor on Sky Noise at Centimeter Wavelengths," Bell System Technical Jour., <u>KL</u>, No. 5, p 1331, 1961.
- Kaplan, L. D., "Inference of Atmospheric Structure from Remote Radiation Measurements," J. Optical Soc. Am., 49, pp 1004-1007, 1959.
- Kaplan, L. D., "The Spectroscope as a Tool for Atmospheric Sounding by Satellites," Tech. Report No. 5, Atmos. Rad. Proj., M.I.T. Peper given at the Fall Instrument-Automation Conference and Exhibit of the Instrument Society of America, Sept. 26-30, 1960.
- King, J. I. F., "Deduction of Vertical Thermal Structure of a Planetary Atmosphere from a Satellite," Aerosciences Lab., Gen. Elec.Co., Tech. Info. Ser. R59SD477, Dec. 1959.
- King, J. I. F., "Meteorological Inferences from Satellite Radiometry I," Journal of Atmos. Sci., 20, No. 4, pp 245-250, July 1963.
- Meeks, M. L., "Atmospheric Emission and Opacity at Millimeter Wavelengths Due to Oxygen," J. Geophys. Res., <u>66</u>, No. 11, pp 3749-3757, Nov. 1961.

- Meeks, M. L., and A. E. Lilley, "The Microwave Spectrum of Oxygen in the Earth's Atmosphere," J. Geophys. Res., <u>68</u>, No. 6, pp 1683-1703, March 1963.
- Steinberg, J. L. et J. Lequeux, Radioastronomie, Collection Science et Progrés No. 4, Dunod, Paris, 1960.
- Wark, D. Q., "On Indirect Temperature Soundings of the Stratosphere from Satellites," J. Geophys. Res., <u>66</u>, pp 77-32, 1960.
- Yamamoto, G., "Numerical Method for Estimating the Stratospheric Temperature Distribution from Satellite Measurements in the CO₂ Band," J. of Meteor., <u>18</u>, No. 5, pp 581-588, Oct. 1961.