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ABSTRACT

Terrestrial ecosystems have long been recognized as important sources of reactive

hydrocarbons. One ecosystem type that has not previously been investigated is the

subtropical evergreen forest category found in Southern China. To begin a study of this

ecosystem, we conducted two campaigns. First, bi-monthly air samples were collected

in stainless steel canisters over a 15 month period at Dinghushan Biosphere Reserve

(DHSBR) in Guangdong, China and analyzed at MIT using capillary gas

chromatography with flame ionization detection. DHSBR is both mountainous and

covered 79% by forest and experiences hot, wet summers and cool, dry winters. Much

of the dominant subtropical vegetation in DHSBR is representative of the natural

vegetation in a vast area of interior Southern China (23-32' N, 100-120' E), while the

occasional tropical vegetation is representative of the natural vegetation of coastal

Southern China. Seasonal variations in both isoprene and terpene concentrations were

observed at DHSBR. Maximum isoprene mole fractions reached 7 ppb in the late

summer afternoon compared to wintertime maximums of 0.1 ppb. Second, an in situ

study was conducted during the summer of 1996. In addition to hourly NMHC

samples, measurements of carbon monoxide (CO), nitrogen oxides (NOx),
Photosynthetically Active Radiation (PAR), temperature, relative humidity, wind

velocity and daily rainfall were recorded. A study using a vegetation enclosure was also

performed in order to estimate NMHC emissions from the individual major tree species

in the forest reserve. The resulting isoprene emission estimate for this ecosystem was

8.6 ± 6.1 mg C m-2 h-1'. Using these measurements, we have assessed the sensitivity of

the emissions of isoprene to environmental variables and ecosystem speciation and the

importance of these emissions to regional photochemistry. Estimates of atmospheric

hydroxyl radical concentrations were made from the observed decay of reactive

hydrocarbons, yielding 5.7 ± 2.8 x 106 molecules cm-3. Measurement of many

hydrocarbons in addition to CO, NOx and wind information allowed identification of

several characteristic air mass types observed during the in situ campaign.
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Chapter 1: Introduction

1.1 Preface

In the past several decades, atmospheric science has enjoyed a boom, fueled in

part by heightened public awareness of several environmental issues. Concerns over

such problems as changing climate, greenhouse gases, the stratospheric ozone hole,

photochemical smog and deforestation of rain forests have spurred much interest in the

chemistry of the earth's atmosphere. Scientists have noted that trace gas concentrations

including methane, carbon monoxide and nitrous oxide are rising. Man has been

implicated in this atmospheric change since the trends have their origins in the beginning

of the industrial revolution of the last century. We have impacted the trace gas budget

significantly through deforestation, biomass burning, land use changes including planting

crops and using nitrogen based fertilizers and any number of industrial activities. One

primary issue with the increase of trace gases concerns the oxidizing capacity of the

atmosphere. If this change causes a decrease in the oxidizing capacity, the atmosphere

will lose the ability to attack and destroy substances released to it. This would be

particularly important for stratospheric ozone as more Hydrochlorofluorocarbons

(HCFCs) would reach the stratosphere and for climate as the methane lifetime would

increase.

We must attempt to understand the complex chemistry of the atmosphere so

that we may know how our continued influence will contribute to the ever-present

changes in the air above us. As a first step, we need to break down the chemistry into

manageable parts, focusing on individual pieces of the puzzle. Then we may put things

back together to get a picture of the broad scheme. Scientists have therefore looked at

individual and grouped gases for this purpose including nitrogen oxides (NOx), ozone

(03), carbon monoxide (CO), carbon dioxide (CO 2), methane (CH 4 ), sulfur gases, and

non-methane hydrocarbons (NMHC) to name some of the important species of interest.
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They have also investigated specific regions over the globe since regional variations are

very substantial. This thesis provides results and interpretation of an observational

study in an ecosystem type and region never previously investigated. It focused on

biogenic hydrocarbons but included anthropogenic NMHC, CO and NOx.

1.2 Biogenic Nonmethane Hydrocarbons

1.2.1 Impacts ofBiogenic NMHC on Tropospheric Chemistry

In this thesis I chose to focus on the tropospheric chemistry of NMHC,

particularly those derived from biogenic sources. These compounds play a significant

role in shaping the composition of the troposphere. Measurements in Europe show

from 11% to 34% of total NMHC in the atmosphere are due to natural processes

(Anastasi et al., 1991). Fehsenfeld et al. (1992) and Altshuller (1983) estimate that

roughly 60% of NMHC emitted in the US are from natural sources. The mix of

compounds varies greatly between anthropogenic and natural emissions, and the

reactivities of the mixes differ. Although these northern hemispheric areas have been

studied in greatest detail, they do not constitute the greatest source regions for natural

NMHC emissions in the world. That distinction belongs to the tropics. Guenther et al.

(1995) report tropical woodlands account for half of all natural volatile organic

compound (VOC) emissions. Additionally, natural emissions are highly weighted

toward the summer months (Yokouchi et al., 1983; Jobson et al., 1994; Goldstein et al.,

1995). Therefore, we expect that during the high emission summer months natural

emissions will play a particularly important part in tropospheric chemistry.

Many areas of atmospheric chemistry are affected by these natural compounds:

tropospheric ozone levels, OH radical concentrations, CO concentrations, organic nitrate

reservoirs and organic aerosols. A complex relationship exists between ozone and natural

NMHC in the troposphere centering around levels of NO,. Depending on the particular

circumstance, NMHC can act as net sources or sinks for ozone (Peterson and Tingey,

1980). Ozonolysis of alkenes like isoprene and terpenes acts as a sink but in the



presence of sufficient NOx, the interaction is such that a net production of ozone occurs.

When NOx concentrations are roughly 4-7 parts per billion (ppb), model results predict

a doubling of ozone concentrations from 50 to 100 ppbv with inclusion of natural

NMHC chemistry versus the base case with only anthropogenic NMHC (Trainer et al.,

1987). Jacob and Wofsy (1988) report that vegetative NMHC emissions in the tropics

account for increased canopy ozone levels of 30-40 ppbv. Other predictions of NMHC

effects on ozone concentrations range from 10-30 percent increases over levels where

natural emissions are not included (Mackenzie et al., 1991; Lopez et al., 1987; McKeen

et al., 1991). Roberts et al. (1983) and Altshuller (1983) find that NMHC have a

minimal effect on ozone production in the troposphere. It is agreed that NOx levels must

be above a threshold for ozone production to occur. Otherwise, the RO2 radicals will

react with themselves instead of converting NO to NO2. The photolysis of NO2 results

in a O( 3p) which may combine with molecular oxygen to form ozone. Self-reaction of

RO2 also serves to suppress OH radical concentrations which would be produced by the

NO + RO2 reaction.

Oxidation of NMHC also influences OH radical concentrations (Damall et al.,

1976; Robinson 1978; Logan et al., 1981; Kasting and Singh, 1986) . OH reacts with all

alkanes in addition to other hydrocarbon species like alkenes which also have

appreciable reactions rates with ozone. Increases in NMHC concentration in the

atmosphere may lead to decreases in OH and thereby decrease the atmosphere's

capacity to oxidize other compounds (Fehsenfeld et al., 1992, Young et al., 1997). This

oxidation by OH helps to clean the atmosphere. NMHC also affect the concentration of

OH indirectly through CO. Eventually, NMHC may end up as CO which is a significant

sink for OH radical (Zimmerman et al., 1978; Cofer et al., 1982; Gregory et al., 1986;

Hatakeyama et al., 1991). Hatakeyama et al. (1991) estimate that CO production from

NMHC equals that derived from methane and exceeds that from fossil fuel combustion.

They estimate that 25% of tropospheric CO is derived from the oxidation of NMHC.

With its high atmospheric concentrations, CO serves to control OH levels in the

_ ___



atmosphere. When model chemistry included isoprene oxidation, it was found that CO

levels increased by 10 and 31% for latitudes 450 N and 150 N respectively (Fehsenfeld

et al., 1992). Jacob (1988) found that isoprene degradation in the tropics enhanced CO

levels by 20 to 70 ppb.

Many have investigated the potential for increased aerosol concentration due to

tropospheric reactions of biogenic hydrocarbons since aerosols influence the radiation

budget both directly and through their role as cloud condensation nuclei. Most found

that the levels of organic aerosols are detectable but insignificant, on the order of 1% of

the aerosol loading (Yokouchi and Ambe, 1985; Shaw et al., 1983; Altshuller 1983).

Nonetheless, Hoffmann et al. (1997) find high potential aerosol yields from

monoterpenes and point to sesquiterpenes as being important for further analysis.

Fehsenfeld et al.(1992) state that significant levels of aerosol derived from terpene

oxidation could contribute to background haze with sufficiently high terpene

concentrations. These findings are echoed by other researchers as well (Hatakeyama et

al., 1989; 1991; Pandis et al., 1991).

In addition, hydrocarbons may react to form organic nitrates like peroxyacetyl

nitrate (PAN) which acts to store NOx and transport it over large distances (Aiken et al.,

1982; Brewer et al., 1983; Lopez et al., 1989; Grosjean et al., 1992). This interaction

creates problems for those trying to control ozone levels by limiting local NOx

emissions. Hydrocarbons can also have an effect on the nitrogen budget through the

reaction of isoprene and NO3 which is especially important at night (Skov et al., 1992).

Furthermore, organic acids may be produced as a result of the atmospheric chemistry of

NMHC yielding acidic rainfall (Jacob and Wofsy, 1988; Kotzias et al., 1990; Hov et al.,

1991; Hoffmann et. al., 1997).

Other negative impacts have been noted by Moller (1988) and Juttner (1986),

claiming pollution from tropospheric hydrocarbon reactions results in forest damage in

Germany. Hov et al. (1989) mention that NMHC act as greenhouse gases but their

concentrations compared to methane are small so this effect is negligible. Perhaps a



positive reaction of hydrocarbons, especially in the lower stratosphere, is the scavenging

of chlorine (Greenberg and Zimmerman, 1984; Rinsland et al., 1987). The chlorine

abstraction of a hydrogen is an order of magnitude faster than OH but its concentration

in the troposphere is 1000 times less. Even so, modeling efforts by Singh and Kasting

(1988) show that as much as 40% of NMHC oxidation in the troposphere and 90% of

NMHC oxidation in the stratosphere (10-20 km) is caused by Cl atoms. Once in the

lower stratosphere, the importance of the chlorine reaction overtakes that of OH. One

final point that Enhalt et al. (1985) and Greenberg et al. (1990) make deals with using

hydrocarbons as tracers for vertical motion. Specifically, short-lived hydrocarbons in the

upper troposphere signal fast vertical motions have taken place.

In summary, vegetative NMHC emissions may significantly impact the

chemistry of the troposphere primarily through complex interactions with ozone and

OH. Model results predict that isoprene oxidation in particular may decrease OH

atmospheric levels by a factor of 5 for low NOx conditions, which could affect the local

lifetimes of almost all other reactive species (Fehsenfeld et al. 1992). Nitrate, aerosol and

CO budgets may all be influenced by the presence of vegetative NMHC.

1.2.2 Literature Survey ofRecent NMHC measurements

While searching the literature, it became apparent that some regions of the globe

have received less attention than others. Our interests lie primarily in natural

contributions of hydrocarbons to the atmosphere and therefore to remote areas versus

urban ones. Many authors have demonstrated that natural emissions are governed by

such factors as light intensity and temperature (Arnts et al., 1981; Yokouchi and Ambe,

1984; Juuti et al., 1990; Fehsenfeld et al., 1992). Other important factors include season,

relative humidity, wind speed and type and age of vegetation. Based on this knowledge,

it seems reasonable to break observations down by ecological region. Table 1.2.1 shows

this. It represents much of the recent work done in NMHC measurements by the major

scientific groups across the globe. This review is not exhaustive but studies not listed

here are primarily concentrated in the United States or in urban areas.
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Figure 1.2.1 Times Atlas of the World Vegetation Type Classification
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Table 1.2.1 Summary of NMHC measurements performed over the past two decades grouped by vegetation type. Listed are detection method, column used and sp ces reported.

Vegetation Lead Author Year Sampling Location(s) Hydrocarbons Detector /Column Type

Broadleaf Forest Cao 1997 Eastern England isoprene,monoterpenes GC-FID, MS
(Deciduous) Geron 1997 Southeastern US isoprene GC-FID

Klemp 1997 Black Forest in SW Germany C2-C5 GC-FID / Porapak QS
Kramp 1997 Black Forest in SW Germany C5-C8 GC-FID / DB-5

Fuentes 1996 Southern Ontario, Canada C3-C12 GC-FID, MS / HP-I
Guenther 1996 Tennessee isoprene GC-FID, RGD / DB-1
Fuentes 1995 Southern Ontario, Canada C3-Cl2 GC-FID, MS / HP-I

Boudres 1994 Brittany, France C2-C9 GC-FID / PLOT (AI203/KCI)
Khalil 1992 near Baton Rouge, LA C2-C7,isoprene,monoterpenes, aromatics GC-FID, MS
Martin 1991 Pennsylvania isoprene GC-FID / DB-1
Bufler 1991 Welzeim Forest, F.R.G. monoterpenes GC-MS / DB 1301, UCON 50

Kanakidou 1988 Auch, France(SW) C2-C6, isoprene GC-FID / PLOT
Trainer 1987 Scotia, Pennsylvania C2-C5,isoprene
Lamb 1985 Pennsylvania isoprene, TNMHC GC-FID / SE-30

Atlanta, Georgia isoprene, a-Pin GC-FID / SE-30
Tille 1985 Wester Europe C2-C5 GC-FID / Spherosil XOB 075

Mixed Forest Mid-latitude Gong 1997 White Face Mnt., NY C2-CIO GC-FID / Rtx-1
Broadleaf and Conifer Hagerman 1997 Southeastern US isoprene,monoterpenes GC-FID

Hov 1997 Europe C2-C7, aromatics GC-FID
Guenther 1996 Southeastern US isoprene, monoterpenes GC-FID, MS, RGD / Unibeads 3S,DB-I
Solberg 1996 Various European C2-C7 GC-FID / PLOT (A1203/KCI)
Goldan 1995 Southeastern US C3-CIO,isoprene,monoterpenes GC-FID / DB-5

Goldstein 1995 Massachusetts C2-C6 GC-FID / PLOT (GS-Alumina)
Goldstein 1995 Massachusetts C2-C6 GC-FID / PLOT (GS-Alumina)
Lindskog 1994 Rorvik, Sweden C2-C5 GC-FID

Simon 1994 Landes, France monoterpenes GC-FID, MS I/ SP-5
Hov 1992 Birkenes, Norway C2-C4 GC-FID / Aluminum Oxide
Hov 1991 Birkenes, Norway C2-C4 GC-FID / Aluminum Oxide

Mowrer 1991 Rorvik, Sweden C2-C5 GC-FID / PLOT
Clement 1990 Duchesnay Forest, Quebec monoterpenes GC-FID, MS / DB-5
Juttner 1988 Southern Black Forest monoterpenes, aromatics, C7-C9 GC-MS

Riba 1987 Landes , France monoterpenes GC-FID
Juttner 1986 Southern Black Forest monoterpenes GC-MS

Hov 1983 Norway monoterpenes GC-FID/Ucon LB 550X-33 SCOT

Mediterranean Arey 1995 S. Coast Air Basin, CA isoprene,monoterpenes GC-FID, MS / DB-5, HP-5
Scrub Parnsh 1992 Point Arena, CA C2-C5 GC-FID

Arey 1991 Central Valley, CA monoterpenes GC-FID, MS / DB-5, HP-5
Pierotti 1990 Califomia monoterpenes GC-FID, PID
Singh 1988 Moffett Field, CA isoprene, C2-C5 GC-FID/Phenyl isocyanate Porasil C



Vegetation Lead Author Year Sampling Location(s) Hydrocarbons Detector /Column Type

Sub-Tropical Khalil 1990 Chengdu, Sichuan China C2-C4 GC-FID
Hardleaf Evergreen Yokouchi 1988 Tsukuba, Japan isoprene, monoterpenes GC-FID, MS /OV-1

Yokouchi 1983 Tsukuba, Japan monoterpenes GC-FID, MS /5% Silicone DC-200

Mountain Das 1992 Gulmarg, India isoprene, monoterpenes Photoionization (PI) / SE-30
Aiken 1987 Catherine Peak, NM C2-C3 GC-FID / Phenylisocyanate

Roberts 1985 Rocky Mnts., Colorado monoterpenes GC-FID, GC-MS / SE-30,SE-54
Roberts 1983 Niwot Ridge, Colorado monoterpenes GC-FID / SE-30
Shaw 1983 Soviet Georgia soprene,monoterpenes,TNMHC GC-FID, MS / OV-101

Holdren 1979 Moscow Mnt, Idaho isoprene, monoterpenes, aromatics GC-FID, MS / SE-30,
Monsoon Forest Ayers 1988 Northern Australia C2-C4, isoprene, benzene GC / FID

Prarie Konig 1995 Austria isoprene,monterpenes GC-FID, MS / DB-5

Conifer Forest Bottenheim 1997 L. Fraser Valley, B.C. Canada C2-C6 GC-FID I PLOT (AI203/KCI)
Beverland 1996 Scotland isoprene,monoterpenes,TNMHC GC-FID

Bottenheim 1995 Southern Canada C2-C6 GC-FID/Phenyl isocyanate Porasil C
Montzka 1993 Western Alabama isoprene, benzene GC-FID / DB-5

Lamb 1986 Washington isoprene GC-FID I/ SE-30
Lamb 1985 Washington monoterpenes GC-FID / SE-30

Lonneman 1978 Florida C2-C10 GC-FID

Tropical Rain Forest Davis 1994 Amazon (also Alabama) isprene, monoterpenes GC-FID
Rudolph 1992 Republic of the Congo C2-C5, aromatics GC-FID / PLOT, DB-56 Porapak QS

Zimmerman 1988 Ducke Forest Reserve, Brazil C2-CIO,isoprene,monoterpenes,aromatics GC-FID
Rasmussen 1988 Amazon Basin isoprene GC-FID / DB-1

Bonsang 1987 Guyana C2-C6 GC-FID / n-Octane on Porasil
Gregory 1986 Guyana isoprene GC-FID

Cronn 1982 Borneo monoterpenes, aromatics GC-FID / SE-30

Boreal Forest Beine 1996 Alaska C2-C5 GC-FID
Blake 1994 eastern Canada C2-C10 GC-FID / PLOT (AI203/KCI), DB-I

Jobson 1994 Fraserdale, Ontario Canada C2-C5, isoprene GC-FID / PLOT (AI203/KCI)
Janson 1992 Jadraas, Sweden monoterpenes GC, ion trap detection

Tundra and Polar Laurila 1996 Northern Finland C2-C5 GC-FID / PLOT (AI203/KCI)
Jobson 1994 Northwest Territories, Canada C2-C6 GC-FID / PLOT (AI203/KCI)
Blake 1992 Arctic and sub-Arctic C2-C5, isoprene GC-FID / GS-Q, PLOT

Doskey 1992 Barrow, Alaska C2-C10 GC-FID / GS-Q, DB-1
Rudolph 1992 Antarctic C2-C5 GC-FID
Rudolph 1989 Antarctica C2-C3 GC-FID

Rasmussen 1983 Barrow, Alaska C2-C3, aromatics GC
Rasmussen 1980 Antarctica C2 GC



Vegetation Lead Author Year Sampling Location(s) Hydrocarbons Detector /Column Type

Manne Blake 1997 Northwest Pacific C2-C10 GC-FID
Environments Clarkson 1997 Near New Zealand/Antarctica C2-C5 GC-FID/Phenyl isocyanate Porasil C

Blake 1996 Atlantic and Pacific C2-C6, aromatics GC-FID / PLOT (A1203/KCI)
Greenberg 1996 Mauna Loa, Hawaii C2-C10 GC-FID/Phenyl IC-Porasil C, DB-I

Heikes 1996 S. Atlantic \ W. Indian Ocean C2-C4
Donahue 1993 Central Pacific C2-C5 GC / PLOT (AI203/KCI)

Plass-Dulmer 1993 Atlantic C2-C4 GC-FID / Porapak QS
Greenberg 1992 Mauna Loa, Hawaii C2-C10 GC-FID/Phenyl IC-Porasil C, DB-I
Koppmann 1992 Atlantic 40N-30S C2-C10 GC-FID / Porapak QS, DB5

Bonsang 1991 Hao Atoll, South Pacific C2-C5 GC-FID / PLOT (AI203/KCI)
Simo 1991 Western Mediterranean C19-C32, PAHs GC-FID / SE-54

Bonsang 1990 Amsterdam Is. Indian Ocean C2-C5 GC-FID / PLOT (A1203/KCI)
Greenberg 1990 E. Pacific W. CoaSt of N.A. C2-C5, aromatics GC-FID
Rudolph 1990 Atlantic Ocean C2-C5 GC-FID / Porapak QS

Hov 1989 N. Atlantic Norwegian Arctic C2-C5 GC-FID / PLOT
Bonsang 1988 Intertropical Indian Ocean C2-C6 GC-FID / N-Octane Porasil C
Rudolph 1988 Atlantic Ocean (aircraft) C2-C5 GC-FID / Porapak Q, DB-l

Singh 1988 Eastern Pacific E3, Pa, Pe, inB, GC-FID/Phenyl isocyanate Porasil C
Bonsang 1985 Mediterranean and Red Seas C2-C6 GC-FID / N-Octane Porasil C

Cofer 1982 Atlantic Ocean TNMHC GC-FID / Porapak Q
Cronn 1982 South China Sea, Java Sea C2-C5 GC-FID I n-Octane on Porasil C
Enhalt 1982 Atlantic Ocean (aircraft) C2-C5 GC-FID
Singh 1982 Eastern Pacific Ocean C2-C5 GC-FID/Phenyl isocyanate Porasil C

Rudolph 1981 North Atlantic C2-C5 GC-FID/ Spherosil XOB 075
Eichmann 1980 Tasmania-Indian Ocean C9-C28 GC-FID
Eiciunlun 1979 North Atlantic C9-C28 GC-FID / OS 138SCOT,WCOT
Brooks 1973 Gulf of Mexico C2-C3 GC-FID / Porapak Q

Lamontagne 1973 North and South Pacific C2-C4, aromatics

Savannah Donoso 1996 Venezuela C2-C6 GC-FID / PLOT (A203/KCI)
Guenther 1996 Republic of South Africa isoprene,monoterpenes GC-FID, MS

Hao 1996 Zambia C2-C6 GC-FID / HP-1, DB-1, GS-Q
Greenberg 1985 Kenya C2-C10, isoprene, aromatics GC-FID



We have based our classification of vegetation type on the map from the Times

Atlas of the World (Figure 1.2.1). They break down natural world vegetation types into

sixteen possible categories, twelve of which we have identified with reported

observations. In some instances we were uncertain as to the proper categorization since

exact study positions were not given and map resolution was not high. Other issues

arose when the vegetation studied did not fit the description of the climax vegetation

type from the map. For example, in the southeastern US a region classified as Broadleaf

Forest might have a stand of pine which was studied. Two of the four remaining

classifications should contribute relatively little to the natural NMHC budget: Steppe

and Desert. Many researchers expect that emissions from trees and shrubs far surpass

those from grasses and crops (Evans et al., 1982; Anastasi et al., 1991). Lamb et al.

(1987) estimate that crops represent less than 3% of biogenic hydrocarbon emissions in

the United States. The other two types, Dry Tropical Forest and Dry Tropical Scrub &

Thorn Forest may have appreciable emissions and cover a significant area in the

southern hemisphere and Indian subcontinent (Guenther et al, 1996b).

Observations from the broad-leaved forests of the United States and Europe tend

to concentrate on either smaller hydrocarbons (less than six carbons) or the larger

terpene compounds with the hemi-terpene isoprene being common to both groups.

Isoprene has been shown to be a major constituent of deciduous tree hydrocarbon

emissions (Lamb et al., 1985; Khalil and Rasmussen, 1992). These studies were

conducted primarily to obtain information regarding biogenic emission rates and

hydrocarbon distribution (Tille et al., 1985; Lamb et al., 1985; Kanakidou et al., 1989;

Bufler and Wegman, 1991). Martin et al. (1991) focus on diurnal isoprene

concentrations and isoprene oxidation products. Experiments in southern Canada

conducted by Fuentes et al. (1996) showed very low isoprene and terpene

concentrations in early spring, increasing appreciably into the late summer. Diurnal

variation was also noted with isoprene showing afternoon maxima and nighttime minima

and terpenes displaying the reverse trend.



Many observations from mountainous regions were obtained in the US as well.

Two records from Asian sites are also noted. Roberts et al. (1983; 1985) and Holdren et

al. (1979) concentrate on terpenes. They find that terpenes exist in measurable

concentrations within the forest canopy (up to 16 ppb) where they may have significant

influence on the local tropospheric chemistry. Outside the canopy the concentrations

tend to be below detection limits and contribute little to the chemistry. In Soviet

Georgia, Shaw et al. (1983) find terpene concentrations of 4 ppb or less and indicates

they play a small role in the formation of atmospheric aerosols. A unique paper is from

Das (1992) who performed measurements with a photoionization detector, whose high

sensitivity eliminates the need for preconcentration.

Researchers report many measurements from the mid-latitude mixed forests of

Europe. Like a majority of other measurements, two typical fractions exist: terpenes or

smaller hydrocarbons. Research here focused on diurnal (Riba et al., 1987; Clement et

al., 1990) and seasonal (Juttner, 1988; Hov et al., 1991; Hov, 1992) trends in NMHC

concentrations. Juttner (1986; 1988) also gives attention to biogenic and anthropogenic

organic pollutants in the Black Forest. Recent studies have been published from the

northeastern US in New York (Gong and Demerjian, 1997) and Massachusetts

(Goldstein et al., 1995 a, b). Isoprene concentrations in New York showed the expected

diurnal variation and the seasonal maximum occurred during late June. Goldstein et al.

(1995a) report biogenic emissions of three species (ethene, propene and 1-butene) with

emission ratios of 4:2:1. They also report seasonal cycles of background light alkanes

and acetylene reveal a winter maxima and summer minima, which is attributed to

seasonal variation in OH as opposed to source variation. The summer:winter ratio for

the hydroxyl radical is inferred from the data set to be 9:1 (Goldstein et al, 1995b).

Tropical rain forests may be the most productive regions for biogenic NMHC.

Data exists from around the globe for this vegetation type, though it is concentrated in

South America. Isoprene dominates the reactive mix of hydrocarbons in these regions

(Cronn and Nutmagul, 1982; Gregory, 1986; Zimmerman et al., 1988; Rasmussen and



Khalil, 1988). Diurnal and vertical distributions are observed. Both Rudolph et al.

(1992b) and Jacob and Wofsy (1990) note that biomass burning in the dry season

greatly enhances the NMHC concentrations found in the tropics. Jacob and Wofsy

(1990) attribute rain-out as a factor in addition to the fact that little burning occurs

during the wet season.

The polar regions exhibit some of the lowest biogenic emission rates for NMHC.

Primary interest here concerns the relative importance of NMHC transport from lower

latitudes to local emissions. Rudolph et al. (1989) attribute local emissions to oceanic

sources for Antarctica. They find short-lived compounds, like alkenes, tend to vary as

one would expect from the local source. Transport from low latitudes dominates the

seasonal cycle for alkanes on the other hand. Blake et al. (1992) add that oil drilling can

contribute significant amounts of hydrocarbons to the Arctic troposphere. They

observed air parcels having a hydrocarbon mix including isoprene attributed to boreal

forests and hydrocarbons associated with natural gas leakage and fossil fuel burning.

This demonstrates the influence of long-range transport on the local tropospheric

hydrocarbon concentrations. Jobson et al. (1994) show decreasing concentrations of

light NMHC from winter to spring. The relative and absolute concentrations of these

species agreed well with reported data from other arctic sites, indicating homogeneous

air masses. This is most likely due to the low winter OH concentrations increasing

compound lifetime.

Lonneman et al. (1978) and Lamb et al. (1986; 1987) offer results from conifer

forests. Lonneman found that local biogenic hydrocarbon emissions in Florida were not

significant enough to greatly affect the tropospheric chemistry during a three day period

in May. In the US northwest, Lamb et al. (1985) showed reasonable agreement in a-

pinene fluxes determined by enclosure and gradient profile techniques. More recently,

measurements in British Columbia provide evidence that anthropogenic NMHC

emissions can dominate tropospheric chemistry near urban areas (Bottenheim et al.,

1995, 1997).



Arey et al. (1991, 1995), Singh et al. (1988) and Pierotti et al. (1990) discuss

hydrocarbons from the Mediterranean scrub classification. All of those studies were

performed in California. Results of the Arey et al. (1995) study suggest that ozone

control strategies must focus on reductions of both NOx and anthropogenic NMHC.

Even though biogenic NMHC emissions in the California basin represent only ten

percent of the total, combined with current levels of NOx, they could produce ozone

concentrations which exceed the National Ambient Air Quality Standard. It is

insufficient to control anthropogenic NMHC. We found only one study each for the

monsoon forest (Ayers and Gillett, 1988) and Prairie vegetation (Kbnig et al., 1995)

types.

In the earliest listed study from savannah (Greenberg et al., 1985), the authors

conclude that NMHC mixing ratios during the dry season in remote regions resemble

those measured over oceans. Concentrations near populated areas approached NMHC

concentrations of other remote areas. Several more recent studies have been published

(Donoso et al, 1996, Guenther et al., 1996b, Hao et al., 1996), filling an important gap in

measurements, as tropical savannahs cover significant portions of Africa, South America

and Australia. Guenther confirms that the significant measured NMHC fluxes from

vegetation in African savannahs agree reasonably with those predicted by global

emission models. Relatively high alkene concentrations, including isoprene in remote

Venezuela are attributed to biogenic sources. Heightened alkane levels are seen

downwind from petroleum sites as expected (Donoso et al., 1996).

The boreal zone of northern latitudes represents more than 10% of the earth's

landmass (Blake et al., 1994). Based on the findings of Janson (1992) that NMHC

concentrations in a boreal region were of the same magnitude as those found in conifer

forests of more southern latitudes, we conclude this region is an important place for

further study. Since 1992, other researchers have reported measurements (Jobson, et al.,

1994, Blake et al., 1994, Beine et al, 1996). Blake et al. (1994) confirm the dominance of

isoprene as a sink for OH during biomass burning episodes (which elevate levels of



many other NMHC). Seasonal trends are noted by Jobson et al. (1994). Isoprene

concentrations were above the detection limit from April through October, with a

maximum during the summer. Other light NMHC showed highest levels during the

winter months.

Another region which may contribute significant amounts of NMHC to the

troposphere is the sub-tropical evergreen forest of China. This vegetation type is also

found in Japan, Australia and New Zealand. Yokouchi and Ambe (1988) found

significant levels of isoprene (1 ppbv) and oa-pinene (2 ppbv) in Japanese agricultural

areas similar to China's sub-tropical forest. They do not include smaller hydrocarbons in

their analysis. Khalil et al. (1990) have studied bio-gas generators and rice paddies in

China for evidence of hydrocarbon emissions but focus on methane and rule out heavier

hydrocarbons as having significant sources from the generators.

The major group of the measurements we have listed in Table 1.2.1 are derived

from various marine locales. Studies in these remote regions, with no local anthropogenic

influences, are desirable to establish true background levels in the atmosphere. From the

table, it is clear that researchers place emphasis on the smaller hydrocarbons in these

regions. This is due to the relative ease of detecting and separating light hydrocarbons, in

addition to their appreciable lifetimes and concentrations relative to heavier species.

Analysis has shown that the ocean is saturated with these hydrocarbon species relative

to the atmosphere (Bonsang et al. 1988; 1990; 1991). Their observations imply an

oceanic source for hydrocarbons. Measurements from our laboratory confirm this

picture and point to diurnal variability as well, which implies that photosynthetic

processes may be responsible (Donahue and Prinn, 1993).

Sampling on board ships or from aircraft are especially important for obtaining

an accurate picture of spatial hydrocarbon distribution. The advantage over land

measurements is that the equipment is mobile. Observations taken over a broad area can

give latitudinal distributions of compounds. Such distributions point toward major

sources in the Northern Hemisphere which could be attributed to either anthropogenic
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or land based influences. North-South gradients are noted by Cofer (1982) and Singh and

Salas (1982). One disadvantage for ship observations occurs when looking for seasonal

variations. It is clearly difficult to sample from the same place over the course of a

season while floating in a boat! In situ sampling from aircraft presents similar problems

since the sample pre-concentration step often takes tens of minutes; planes cover a large

distance over that time period.

From the observations it is evident that measurements of NMHC are

particularly sparse in Asia, Africa and the southern hemisphere in general relative to the

northern hemisphere. Some representative reported NMHC concentrations are listed in

Table 1.2.2a Reported Measurements of Isoprene and Terpenes in ppbv

Location Isoprene oc-Pinene 3-Pinene d-limonene A -carene

Houston, Txa 0.79 0.22-0 67 0.40

Moscow Mnts, Idahoa 0.113 0.086 0.010 0.064

Rural N. Carolinaa 0.23-0.43

Whiteface Mnt., NY a  0.4 (0.1-4.0) 2.4 (0.5-3.10) 2 2(0.2-15 0) 6 4(0.5-24.0)

Niwot Ridge, Colorodoa 0.63/0.11* 0.14/0.07" 0.07/0.07 0.05/0.03

Norwaya 1.17-1.84 0.33-2.17

North Carolinaa 8.0 1.8 05

Idahoa 0.3 0.3 03 <0.1

Panamaa 0.6

Washingtona 6.0

Brazila 2.40 0 27 .024

Brazilb 2.04 0.10 003 001

Nigeriab 1.21 0.06 <0 01 <0 01

Kenyab 004 <0.01 <0 01 <0.01

SW United Statesc 0 90/6 3+  0 75/0.30 +  0.40/0.17

Candor, N. Carolinad 200 0.225 0 130 0.069

Centreville, Alabamad 4.23 0.160 0.136 0024

Oak Grove, Missd 2.238 0.271 0304 0.063

Yorkville, Georgia d  1.96 0071 0206 0046

Rome, Italye 1.5 0.18 004

Georgia Foreste 1.4 0.8 0.43 008 090
aGreenberg and Zimmerman (1984) summer/winter
bZimmerman et al. (1988)
cGoldan et al. (1995) + nighttime/daytime
dHagerman et al. (1997)
eFehsenfeld et al. (1992)



Table 1.2.2b Reported Measurements of Selected NMHC in ppbv

Location Ethane Ethene Acetylene Propane n-Butane n-Pentane Benzene

Indonesia' 0.58 0.81 0.07

Brazil a  1.55 1.4 0.65 0.33 0.78 0.37

Niwot Ridge, CO a  2.24 0.46 0.70 1.27 0.51 0.19 0.24

Pawnee Grasslands' 5.27 1.82 0.61 1.76 0.61 0.58

Atlantic-Equatorial a  0.73-1.0 0.08-0.5 0.07-0.28 0.1-0.26 0.03-0.18 0.01-0.06

Pacific 10°N-200 Sa  0.27-0.34 0.07-0.11 0.09-0.33 0.2-0.31 0.3-0.30 0.26-0.36

Pacific 17°N-1 loSa 0.50-2.70 0.20-4.00 0.20-1.05 0.16-0.84 0.08-0.18 0.01-0.16 0.04-1.86

North Atlantic a  1.0-1.9 0.02-0.51 0.08-0.30 0.13-0.45 0.03-0.25 0.02-0.30

Pacific 20-32°S a  0.94-2.4 0.05-0.12 0.37-0.46 0.39-0.80 0.51-0.66 0.24-0.30

Brazilb 0.98 0.97 0.30 0.37 0.09 0.07 0.08

Nigeria b  0.73 0.29 0.20 0.10 0.04 0.03 0.07

Kenya b  0.65 0.33 0.58 0.11 0.08 0.04 0.16

SW United States' 2.75/1.2 +  0.62/0.30+ 0.24/0.09 +  0.13/0.10+

'Greenberg and Zimmerman (1984)
bZimmerman et al. (1988)
cGoldan et al. (1995) + nighttime/daytime

Table 1.2.2a for terpenic compounds and 1.2.2b for some other commonly quantified

hydrocarbons. The original compilation of observations in 1992 pointed to three main

vegetation types warranting further study: savannahs, boreal forests and sub-tropical

hardleaf evergreen. In the past several years, NMHC measurements have been published

characterizing the first two types. It appears that our choice of the third type was

fortuitous as the gap in published NMHC data still exists. Our NMHC measurements

comprise the first major data set reported for the major biome of southern China.

1.3 Overview of Research Presented in this Thesis

The primary goal of this work is to assess through multi-gas measurement the

influence of biogenic NMHC on the local tropospheric chemistry in China's sub-

tropical biome. With the help of the Chinese Academy of Sciences (CAS), we identified

a suitable site in southern China to pursue our NMHC study. The Dinghushan

Biosphere Reserve is part of a network of research installations maintained by the CAS
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(Figure 1.3.1). We traveled to Dinghushan in June of 1994 to confirm feasibility and

performed an exploratory study from June 12 through June 15. Based on the results of

this preliminary study, we implemented a flask sampling campaign in June 1995 to

elucidate seasonal variations in NMHC at Dinghushan. This effort was overlapped by

our intensive phase of in situ measurements which covered July and August of 1996. In

addition to NMHC measurements, we obtained data on other trace gases: carbon

monoxide and nitrogen oxides. Meteorological measurements included hourly values of

temperature, humidity, and local wind velocity, plus daily total rainfall. Photosynthetic

radiation (PAR) was also monitored.

We focus on measurements of hydrocarbons having two to ten carbon atoms,

with particular interest in isoprene and terpenes as these compounds have short

lifetimes due to their high reactivity (on the order of hours to days). Biogenic emission

fluxes are calculated from bag enclosure measurements and compared to fluxes derived

using a simple column loss approach. Analysis of loss frequency for most measured

NMHC and CO show that the biogenic species dominate the chemistry in the region.

We include alkanes and other longer lived hydrocarbons to provide information on air

mass origin in addition to broadening the data base of global concentrations and trends.

Hydrocarbon concentration and OH reactivity ratios are used to investigate the

atmospheric processing of pollution plumes. These same plumes enable us to estimate

OH radical concentrations in the forest.



Figure 1.3.1 Map of China indicating the location of the CAS observational stations. Dinghushan
Biosphere Reserve is number 23. Notice also the relative proximity of Guangzhou (GZ), Hong Kong
(HK) and Zhaoqing (ZQ).
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Chapter 2: Flask Sampling Campaign

2.1 Climate at the Dinghushan Biosphere Reserve

2.1.1 Geography and Circulation

The Dinghushan Biosphere Reserve (DHSBR) is located in Guangdong Province,

southern China near the Tropic of Cancer (23o09'21"-23oo 11'30" N and 112o30'39"-

112033'41" E). The reserve lies in the low mountains and hilly lands of the Dayunwu

Mountain Range which runs from northeast to southwest. Within the reserve, the terrain

declines from the northwest to the southeast. Unlike roughly two thirds of other regions

near the Tropic of Cancer dominated by desert or semi-desert conditions, this area's

unique climate and geographic location give rise to a climax vegetation of tropical-

subtropical forest. Monsoon circulation during the summer months causes southeast and

southwest winds to prevail, bringing warm and humid air masses to DHSBR from the

Pacific Ocean and the South China Sea. Typhoons commonly occur during summer and

fall. As these air masses reach the mountains of the region, they rise, resulting in heavy

rainfall. Wintertime circulation is characterized by northeast and east winds, often

bringing dry, cold air. Climatic observations were conducted over the twelve year period

from 1975 to 1986. We compare later our summertime 1996 in situ campaign and prior

year flask campaign results for temperature, PAR, rainfall and relative humidity to this

climate record.

2.1.2 Measured Climate Variables

Temperature

The mean annual temperature is 20.9 'C with a mean maximum in of 28.1 'C in

July and a mean minimum of 12 'C in January. During July and August 1996 the mean

temperature was 26.2 'C and 26.4 'C respectively with ranges of 22-32 'C and 23-31.5

'C (Figure 2.1.1). This compares to the temperature record means of roughly 28.1 'C



and 27.6 'C. Measured values for the mean minimum/maximum monthly temperatures

for July and August were 23.9/28.9 and 23.7/28.3 versus historical values of 24.3/32.7

oC and 24.2/32.5 oC. The summer of 1996 was slightly cooler than normal for

Dinghushan. Temperatures recorded along with flask samples over the prior year are

typical for the region (Figure 2.1.2). Hourly temperatures were obtained during the

intensive campaign using a mercury thermometer with 0.2 degree gradations.

Relative Humidity

Relative humidity is high and fairly constant year round in Dinghushan. The

mean annual relative humidity is 81.5%, with a high of 86.5 % in March and a low of

73.5% in December. Average relative humidity during summer 1996 was over 88%.

Lowest recorded relative humidity over the period was 48% (Figure 2.1.1). Seasonal

values for relative humidity (Figure 2.1.2) are consistent with the long-term record. As

might be expected, clouds frequently fill the skies allowing less than 4 hours of daily

sunshine from February through April. Hourly values of relative humidity were

calculated using wet and dry bulb temperatures obtained from a motorized sling

psychrometer with a 0.2 degree reading accuracy.

Rainfall

The mean annual rainfall observed from 1975 to 1986 was 1,956 mm. The wet

season, with mean monthly rainfall exceeding 200 mm, occurs from April through

September, May being wettest at 312 mm per month. November through January define

the dry season with monthly rainfall means under 50 mm, December being driest with a

22 mm monthly mean. Over summer of 1996, DHSBR experienced greater than average

precipitation. Monthly values for July and August were 282.5 and 339.4 mm

respectively (Figure 2.1.1). These were roughly 30-50 mm greater than the average

monthly means recorded but well within the maximum monthly mean values (>400 mm)

observed over the twelve year period. We experienced over forty mm of rain for four
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Figure 2.1.1 Values for July (a) and August (b) temperature (solid line) and wet bulb temperature
(dashed) are given as the lower two curves. Relative humidity (dashed) is shown at the top. The bar
graph displays daily totals of precipitation.
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Figure 2.1.2 Temperature and Relative Humidity recorded at the time of flask sampling for
the seasonal campaign. The left bar is the 8 AM and the right is the 2 PM measurement of
RH. Morning temperature is given by the box points and afternoon temperature uses crosses.

days over the course of the summer; this is more than some monthly totals during the

dry winter months!

Local Wind Velocity

Local wind velocity was measured once per hour using a handheld anemometer

accurate to 0.05 m/s and 100 in the horizontal plane. In general, wind was out of the

north or east quadrants during the daytime and from the south or west at night. In the

immediate vicinity of the sampling site, this trend meant downslope wind during the

morning and afternoon and upslope in the evening hours. Mean wind speeds vary from

1-3 m/s, being most windy during the spring months.

PAR

Photosynthetic Active Radiation (PAR) in the 400 to 700 nm waveband was

recorded using a LI-190SA Quantum Sensor (LI-COR, inc.) and a strip chart recorder.

Temperature ('C)



The instrument uses a cosine corrected response to obtain the correct flux density of

solar radiation through a planar surface. Absolute calibration is +/- 5% traceable to the

U.S. National Institute of Standards and Technology. Data were collected for twelve

hours on most days starting at 7 AM and ending at 7 PM near sundown. Twenty

complete days in July and twenty-three in August were used to obtain daily average

totals of PAR. Full sun sky over a one hour period would yield roughly 2 mmol s-lm -2

(1 gmol = 6.02 X 1017 photons = 1 lEinstein). Daily averages of 0.89 and 0.71 mmol s-1

m-2 were seen in July and August. The true average is somewhat lower than this since

those days not represented in the data are missing generally due to inclement weather.

Maximum sunlight hours occurred between 11 AM and 3 PM during July with slightly

lower maximum daily values in August between 12 and 2 PM. Figure 2.1.3 displays the

entire PAR record.

2.2 Flask Sampling Campaign

In June 1994 we went to Dinghushan to assess the feasibility of the site for our

research. We took twenty flask samples over a four day period and analyzed the air for

NMHC at MIT the following month. The samples were taken primarily between 6 AM

and 6 PM as these were the times of expected highest isoprene concentrations. Over

thirty NMHC were identified using a Gas Chromatograph with a Flame Ionization

Detector (GC-FID) instrument and knowledge of individual NMHC retention times on

our system. Biogenic gases identified included isoprene, c-pinene and A-3 carene (Figure

2.2.1). Terpene concentrations were found in the 50-450 parts per trillion (ppt) range

and isoprene in a 60-600 ppt interval. Using the diurnal trend of isoprene as a guide, we

decided that the optimal flask sampling time would be at 6 AM and 2 PM as these were

roughly the times of the extremes. In practice, the sampling times for the flask campaign

occurred at 8 AM and 2 PM. Sample frequency was roughly four flask collections per

month, taken on two days separated by approximately one week.
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1.1000E-09 -,,

--- --- Carene

8.5000E- 10 -

6.0000E- 10 -

-----------3.5000E- 10 - --

-- - - - -. --- ---- - 0 - -- --... .---- o

- Time - A

Figure 2.2.1 Isoprene, at-Pinene, and A-3-carene concentrations obtained from the preliminary flask
sampling study performed over four days at Dinghushan Biosphere Reserve in June 1994.

2.2.1 Flask Campaign.: Experimental

Flask measurements were obtained over a fifteen month period from June 1995to

August 1996, with the intent to identify seasonal patterns in NMHC concentrations at

Dinghushan. Stainless steel flasks (0.8 1) fitted with Nupro SS-4H4 Bellows sealed

valves were cleaned on a devoted manifold system. Flasks were hooked to the manifold

and then pumped to six Torr with a mechanical vacuum pump. Next, flasks were

pressurized with zero air to roughly 40 psig and subsequently evacuated as above. After

flushing three times, flasks were pumped down to -300 mTorr using a cryogenic

vacuum pump and then capped. In China, the prepared flask was attached by a 30 cm

1/4" OD stainless steel line to a battery powered model MB-158 Metal Bellows pump.

The air inlet used a Teflon filter attached to the pump inlet with a 10 m 1/4" OD Teflon

line. A tee with purge valve and pressure gauge was placed on the outlet side, one branch

to purge and the other to fill the tank (Figure 2.2.2). The filling procedure was as

follows: first the line was flushed with the purge valve open for 3 minutes, then it was



pressure gauge

-- toggle relief valve

Figure 2.2.2 Canister sampling assembly showing the toggle switch
which allows flushing of the dead volume to the sample tank valve prior
to filling.

pressurized to 40 psig and released several times to completely flush the line to the

cylinder. Once the line was cleaned, the tank valve was opened and filled with air to

almost 40 psig. About 90 seconds is required to fill the tank.

Flasks filled through April 1996 were analyzed within three weeks of their

collection time. Those flasks collected while the chromatographic equipment was in

China were analyzed as much as 6 months after their collection time. It should be noted

that prior to June 29, tanks were sampled as described in the previous paragraph. The

final four flask samples were taken through the same sample line used in the intensive

phase. The site for the bulk of the flask samples was roughly on the other side of the

mountain from the intensive sampling laboratory which could potentially explain the

heightened levels seen at the intensive-phase site for the biogenic gases. Alternatively, it

could simply be due to higher emissions in the mid to late summer.

Analysis of the flask air was performed at MIT using a flame ionization detector

(FID) in a Hewlett Packered 5890A gas chromatograph (GC). Hydrogen carrier gas

(2.27 cc min-1 ) was used, with flows of 360 cc min 1 zero air, 21 cc min-1 nitrogen and 33

cc min' make-up hydrogen to the detector. Initially, the flask was attached to a pressure

regulator and the sample line. A vacuum pump on the outlet side of a mass flow

11111 _ _~~_ ^I~ 1



controller (Tylan, Inc.) emptied the sample line of air up to the closed Whitey valve on

the flask. This line, including an Ascarite II (NaOH) trap for CO 2 and H20 removal, was

then flushed with tank air for five minutes at a rate of almost 30 ml per minute. With the

flow established, the 1 cc collection loop was immersed in liquid argon for sixteen

minutes, resulting in a collected sample volume of 435 cc. Switching of a 6-port Valco

valve followed by desorption of the sample by immersing the sample loop in room

temperature water allowed the sample to travel to a low volume 0.32 ID fused silica

cryofocus loop (also cooled with liquid Argon).

At run start, the gases were again volatilized with immersion in water and sent

directly to a dual in-line column set-up. The first, a WCOT 50 m x 0.32 mm CP-Sil 5CB

(Df=1.2 tm polydimethylsiloxane) column separated the light NMHC in clumps which

were further separated on a 14 meter section of a 0.32 OD PLOT column with

A120 3/KCl stationary phase (Chrompack) . Essentially, the temperature program and

column combination were designed to allow separation of NMHC with two to ten

carbons without using sub-ambient temperatures often employed by other researchers

to separate the lightest species. Cryogens are often used in gas chromatography to

achieve sub-ambient temperatures. Our preliminary experience at the site in Dinghushan

made it clear that low cryogen consumption was essential since supplying the

laboratory site with cryogens was difficult. We determined later that this trap and

column set-up would not be robust enough to handle hourly NMHC measurements of

very humid air as required in the intensive phase. The temperature profile included an

initial three minute period at 35 'C. This enabled ethane and ethene separation on the

PLOT column. Next, temperature ramped 12 degrees per minute to 65 'C then holding

for one minute. The final two ramps of 10 degrees per minute brought the oven

temperature to 150 'C, held it for three minutes, and finally increased it to 200 'C and

held it for seven minutes Total run time was thirty minutes. A sample chromatogram of

a standard run is given to show system separation performance (Figure 2.3.3). Over the



Figure 2.2.3 Standard Analysis of
tank 5200 performed on the 5890a
GC system. Retention times and
peak identification are listed
below.

a.
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25.038
26.782
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(a) Flask Sampling Set-up at MIT

Cryofocus Loop 2 Columns in Series:
50 m CP-Sil 5
15 m PLOT A1203/KCI

(b) In-Situ Set-up at Dinghushan Biosphere Reserve

6 Port Valves

Cryofocus Loops

- Carrier 2

Column 1: 50 m PLOT AI203/Na2SO4
Column 2: 60 m CP-Sil 5
Precolumn (3): 1 m PLOT

Figure 2.2.4 (a) gives the schematic for the hydrocarbon system at MIT. (b) shows the
dual column system used in the intensive phase in China. The primary difference
between the two set ups is series versus parallel columns requiring one detector for the
former and two for the latter.



course of the year, some column degradation occurred and minor changes to the

temperature profile were required. Some samples suffered from coelution of peaks

which required minor alterations in temperature programming to correct. The final

twelve samples (the last six sample pairs) were analyzed using the setup detailed in the

intensive phase. Figure 2.2.4 diagrams both hydrocarbon analysis systems.

2.2.2 Flask Campaign: Calibration

Instrument calibration and peak identification were performed by using standard

mixtures and permeation devices produced in our lab as described in the Appendix.

Signal output was recorded and integrated on an HP-3393A integrator. In general, we ran

two to three samples from each tank and took the average peak area for quantification.

Often a standard addition run was performed to assist in identification of later peaks as

retention time shifts were common after the first half of the run (which affected

compounds retained longer than benzene). Standard samples were diluted by UHP N2

and then treated as tank samples. Most reported peaks were calibrated by using a

corresponding standard peak except for those few which were not in our standards.

These peaks were quantified by the RMR technique as explained in the Appendix.

2.2.3 Flask Campaign: Results

Correlations between all compounds were performed. Two major groups of

hydrocarbons had similar trends (showing intercorrelations > 0.85). The first group

consisted of primarily alkanes including 2-methylbutane, pentane, cyclopentane, 2-

methylpentane, 3-methylpentane, 2,2-dimethylbutane (and coeluting peak(s)), 2,3-

dimethylbutane (and coeluting peak(s)). Propane and 2-methylpropane showed similar

trends. The second group was made up of alkenes with a few larger alkanes including:

the four butene isomers, five pentene isomers, 1-hexene, 1-heptene, octane, nonane, 3-

methylhexane, hexane, and cyclohexane. Ethylbenzene and 2-methyl-2-butene were

correlated with both major groupings. Isoprene, u-pinene and camphene had low

correlation (<0.5) with most, if not all other compounds we identified. There were



correlations on the order of 0.8 between the various terpenes. We interpret these

correlations as some evidence that our identifications are correct as we would not expect

the variations in biogenic gases to mirror those from other sources.

Many researchers have reported seasonal trends in light NMHC in the boundary

layer (Greenberg et al, 1996; Boudries et al., 1994; Jobson et al., 1994; Goldstein et al.,

1995; Klemp et al., 1995). Such trends are influenced by factors like seasonal variations

in source strength, sink strength and mixing patterns. Gases with relatively high

emission year round exhibit maxima during the winter and minima during late summer.

The variation in mixing ratio is due in large part to changes in OH levels due to seasonal

differences in humidity and sunlight. Primary loss mechanisms for light alkanes involve

oxidation by OH radicals. The effect is most pronounced at high latitudes where OH

variability is greatest. Goldstein et al. (1995) estimate this variation in northern

midlatitudes at almost an order of magnitude. Our data set despite being at lower

latitudes still shows some evidence of this seasonal trend. With only sparse sampling

over one year, in addition to high variability and local pollution events, we cannot

however make any definitive statements about the seasonal trends of light alkanes at

Dinghushan.

Table 2.2.1 Carbon monoxide concentrations obtained from flask samples.

Sample time CO concentration (ppb)
June 7 AM 785
June 7 PM 627

June 15 AM 733
June 15 PM 661
June 29 AM 156
June 29 PM 343
July 5 AM 220
July 5 PM 121

July 25 AM 766
July 25 PM 196

August 1 AM 163
August 1 PM 305
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For most of the flask data, there is no consistent way to distinguish between

background and polluted air masses, most likely due to difference in the pollution

sources. Three methods were used to determine unpolluted samples: low carbon

monoxide, low acetylene and/or alkane levels in the low to sub ppb range. From June 7,

1996 to August 1, 1996 there are CO data which clearly point out times of pollution

(Table 2.2.1). Atmospheric CO is derived primarily from combustion or atmospheric

processing of hydrocarbons. Based on the observations of CO during June 1996 one can

conclude that air masses with levels of CO above 200 pbb are most likely polluted.

Some use atmospheric levels of acetylene as a tracer for pollution as its main source

comes from combustion of fossil fuels or biomass burning. Levels below 0.3 ppb may be

considered to be clean air (Klemp, et al. 1997). Data from acetylene seasonal trends in

Massachusetts (Goldstein et al., 1995) indicate background variations as given by the

10th percentile value in the data set to be approximately 0.3 ppb or less during summer

and 0.8 ppb during winter. The 10th percentile value is determined by ordering all

measurements by concentration, multiplying the total number of sample points by 0.1,

and then finding the value corresponding to that measurement (the median is the 50th

percentile). The intensive campaign data show levels of acetylene at roughly 335 ppt for

the lowest 10% of measurements, which we interpret to be clean air. It seems reasonable

to label flask air samples having higher values than 0.3 ppb during the summer and above

1 ppb in the winter as potentially polluted. Air containing alkane concentrations near or

greater than 10 ppb may also be termed polluted with some confidence. With these

criteria, we have attempted to remove pollution events from the flask data set to reveal a

background trend for the light hydrocarbons (Figure 2.2.5).

Laurila and Hakola (1996) report results from flask measurements taken at Utb

which is an island in the Baltic sea (590 47' N, 210 23'E). Three hundred seven samples

were taken over the course of 1993 and 1994 yielding average values with standard

deviation plotted as error bars in Figure 2.2.5. A seasonal cycle is apparent in the data

with a maximum concentration seen in winter and minimum in summer. Concentrations



build into March for ethane whereas the maximum value for pentane is reached in

February. The more reactive light hydrocarbons decline to the low summer levels earlier

than ethane but all show a major drop between April and May. Hydrocarbon levels

recover in late July into August, building to peak concentrations the following spring.

Others have reported similar trends, with the more reactive hydrocarbons reaching

winter peak levels earlier and declining faster in the spring (Boudries et al., 1994; Jobson

et al., 1994; Bottenheim and Shepherd, 1995; Goldstein et al., 1995b). These results

from North America and Europe agree not only qualitatively but also quantitatively,

yielding similar ranges for maxima and minima.

The results of my seasonal measurements agree somewhat well with those

obtained at Utb both in magnitude and monthly trend. Light alkane concentrations build

into March with lower values seen in May. Build up is observed in the late summer.

Butane and pentane both show less variation with season when compared with the Ut6

averages. This could be a result of the higher average OH values and lower seasonal OH

variation. Propene behavior is seen to differ from that of the alkanes displaying

somewhat higher mixing ratios during the summer months over the winter. This could be

due to biogenic contribution in the warm season. 1-butene also shows a similar summer

increase. Both alkenes have been reported to have biogenic sources (Goldstein, et al.,

1995; Laurila and Hakola, 1996). The levels of ethene measured in China tend to be

higher than those reported by others.

Other gases we measured, isoprene and monoterpenes, have primarily biogenic

sources. Their emission rates show strong temperature dependence. An experiment

conducted with a Monterey pine showed concentrations of a-pinene and P-pinene

measured inside an enclosure to be 3 ppbv at 10 'C and roughly 12 ppbv at 30 °C

(Juuti, 1990). Those figures agree with Hatakeyama et al.'s (1991) assertion that a thirty

degree increase in average temperature will result in an order of magnitude increase in

terpene emissions. Unlike terpenes, which are emitted continuously, isoprene is

primarily emitted during daylight hours. Isoprene levels, therefore, tend to be maximum



during the late afternoon. Light intensity also influences isoprene emission (Guenther et

al. 1993). Several researchers have found it useful to plot isoprene concentrations versus

temperature to demonstrate the relationship between increasing temperature and

increasing emission rates. These trends are summarized in Table 2.2.2. The slopes have

good agreement, hovering around 0.07, which translates roughly into a doubling of

concentration in the air for every 4 'C temperature change. The two slopes of 0.056

may be a result of difference in sampling location relative to emission source and to the

effects of light on emissions. Another factor maybe the local chemistry, with higher OH

radical or 03 levels causing slope variations. Local meteorology and the time of sample

during the day may also affect the slope. Differences in intercepts reflect the differences

in concentration from site to site. Using the data from our seasonal flask measurements,

we obtained a slope of 0.072 which closely mirrors other published results (Figure

2.2.6). According to Fehsenfeld et al.(1992), at a given temperature, isoprene emission

1-

y = 0.072x- 2.344 r2  0.397 I1

0.5- 1

0

0 0

S-0.5- 0 H 0O
.~ []I •1]I-

O O

-1 - -OO n

Temperature ('C)

Figure 2.2.6 Loa Isoprene concentration versus Temperature for all flask measurements June
1995 to August 1996. Slope of the linear fit agrees with those reported in the literature, though the

correlation coefficient is low.
0O

-1.5-
0

2III I

Temperature (oC)

Figure 2.2.6 Log Isoprene concentration versus Temperature for all flask measurements June
1995 to August 1996. Slope of the linear fit agrees with those reported in the literature, though the
correlation coefficient is low.
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Table 2.2.2 Temperature dependency of isoprene (is) concentrations of the form log [is] = slope*T (oC)
+ intercept

Location Slope Intercept
Fraserdale, Ontarioa 0.071 -1.4
Western Alabamab  0.076 0.012

Scotia, Pennsylvania b  0.076 0.019
Whiteface Mountain, NYc 0.070 -2.68
Whiteface Mountain, NYc 0.056 -1.92

Southern USd .056202 -1.3784
Centreville, Alabamad 0.066 -1.6019
Dinghushan, Chinae 0.072 -2.344

a Jobson et al. (1994)
b Goldan et al. (1995)
c Gong and Demerjian (1997)
d Hagerman et al. (1997)
eThis work

will rise with increasing temperature until saturation is reached between 1000 to 1500

ptmol m-2 s-1. Reported isoprene levels average 3-4 ppbv in the tropics and subtropics

(Jacob 1988, Yokouchi 1988).

Terpene concentrations are reported to vary an order of magnitude diurnally.

Yokouchi (1983) records daytime I-pinene values of 0.25 ppbv increasing to 2.5 ppbv

at night. Janson (1992) cites similar results with daytime terpene concentrations ranging

from 0.01-0.5 ppbv and nighttime values of 0.2-8 ppb. Likewise, measurements by Riba

et al.(1987) vary from 0.5 to 4 ppbv. Those researchers attribute this variation to

increased atmospheric stability and decreased levels of OH radical and ozone at night.

Less mixing occurs during evening hours.

Seasonal variations follow temperature trends, with summertime having highest

NMHC levels and winter showing lowest. Representative terpene[winter/summer]

differences measured include [<.001 / 0.3] ppbv (Roberts et al., 1983), [0.02 / 0.2] ppbv

(Juttner 1988), and [<0.05 / 0.6] (Yokouchi et al., 1983). Isoprene concentrations are

greatly reduced during winter months when both temperature and daylight hours are at

minima. Fehsenfeld et al. (1992) predict winter vegetative NMHC emissions to be

I



roughly 5% those found during peak summer production in the United States. The

seasonal data obtained from Dinghushan show maximum summer isoprene levels to be in

the low ppb range with winter minima two orders of magnitude lower. Terpene trends

are not as pronounced but do show minima in December and February with higher and

more variable results in the summer months.

Two other variables mentioned, wind speed and relative humidity have minimal

effects on the emission rates. Yokouchi et al. (1983) claim that average winds < 3 m/s do

not appreciably decrease x-pinene concentrations. It is possible that slight decreases in

concentration due to advection could be offset by slight increases in emission. Relative

humidity has been shown to correlate with isoprene emission rates. Both Guenther et al.

(1991) and Fehsenfeld et al. (1992) report that a 10% increase in relative humidity leads

to a 1-3% increase in isoprene emission rates. No consistent variation is noted for

terpenes. Lamb et al. (1995) report positive correlations between ambient relative

humidity and x-pinene concentrations. They also note results of enclosure studies that

show wet branch emission fluxes are an order of magnitude higher than dry branch fluxes

at the same temperature.

2.2.4 Flask Campaign: Interpretation

Measurements of light alkanes can be used to determine the photochemical

history of an air mass. Once emitted, the fate of atmospheric trace species is determined

by atmospheric processes including chemical destruction and mixing with other air

masses. Knowledge of relative concentrations of hydrocarbons in an air mass can

provide information about the degree of chemical processing that has occurred between

emission and measurement since primary chemical destruction of light hydrocarbons

occurs through reaction with OH and the rates of reaction differ. The analysis that

follows could be quite powerful when joined with knowledge of back trajectories.

Many researches have employed the technique of analyzing hydrocarbon ratios

in air samples to examine photochemical aging (Rudolph and Johnen, 1990; Parrish et al.,



1992; Jobson et al, 1994; Blake et al., 1996; Greenberg et al., 1996). Following

Greenberg et al. (1996), the time rate of change of an individual hydrocarbon may be

expressed as:

d[HC] = kHC[OH][HC] - km([HC] - [HC]d)
dt

(2.2.1)

where

[HC] = mixing ratio of the hydrocarbon
t = time
[HC]d = mixing ratio of hydrocarbon in a diluting air mass
kHc = rate constant for reaction of hydrocarbon and OH radical
km = an idealized mixing coefficient

In the limiting case where dilution effects are ignored (i.e. km=O) the hydrocarbon

concentration can be expressed as:

[HC] = [HC]o exp{-k~,j [OH]dt}
0

[HC] = [HC]0 exp{-kHC < [OH] > t)

(2.2.2)

(2.2.3)

where

[HC]o = the initial hydrocarbon concentration
<[OH]> = the time average OH concentration

t = the time since the injection of hydrocarbon into the air parcel

Equation 2.2.2 defines what is meant by the photochemical age of an individual

hydrocarbon based on OH oxidation. Since in general it is difficult to accurately know

the time averaged concentration of OH, it is useful to compare the ratios of three

hydrocarbons. It follows that the concentration ratio of two hydrocarbons (HC 1, HC2)

will be:

(2.2.4)In [HC2] j- (kHC 2 - kHI)(OH1)t
[HC1]) [HC1] 0 )



A similar equation can be expressed for HC3 and HC 1. Combining the two equations of

the form 2.2.4 for three hydrocarbons, the term <[OH]>t may be eliminated. The

resulting equation is:

l[HC3]I = n[HC2])
In [HC =] M I [HC2] + B (2.2.5)

[HCl]) [HCl]

where the slope M is equal to

M = (kHc 3 - kHcI) (2.2.6)
(kHc 2 - kHcI)

and the intercept B is given by

B = ln( [HC3] ) -M In( [HC2] (2.2.7)
[,HCl]M [HC1]o

For the limiting case where chemistry has no effect on the time evolution of ratios (inert

species or reaction rates with OH = 0) and we assume km is constant (or an integrated

average over time), and [HC]d is negligible, equation 2.2.1 will reduce to

([HC3] l[HC2] [HC3]o
In In H + In (2.2.8)

( [HCl]) [HC1] ) [HC2],)(

The relationships between n-butane (HC3), propane (HC2) and ethane (HC1)

for our seasonal measurements are graphed in Figure 2.2.7. The data are divided into four

sets of points: the first and second are clean and polluted air samples (as determined by

the criteria in section 2.2.3) obtained when local air flow was from any octant except the

east or southeast. The third and fourth are clean and polluted air samples coming from
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the east and southeast octants. The slope obtained using all points regardless of octant

wind direction or polluted/clean classification was 1.07 with an r-squared value of 0.64.

The plotted regression line with a slope of 1.47 and r-squared value of 0.834 was

obtained by excluding data points from the east/southeast which demonstrated

pollution. Table 2.2.3 gives a summary of results for the slopes and r-squared values

reported by investigators in the last decade. The slopes agree somewhat well with one

another which is surprising in that the measurements come from a variety of locations.

The slopes are also quite different from the theoretical slope (from equation 2.2.6)

obtained if chemistry is the only mechanism for loss of hydrocarbons in an air parcel.

This slope is in the vicinity of 2.6 depending on the temperature chosen, as reaction

rates have temperature dependence. Clearly, this assumption that the time evolution of

concentration ratios with a parcel will follow the chemistry line is faulty. The deviations

are due primarily to the effects of mixing on a parcel's hydrocarbon mixing ratios. The

chemistry slope has dependency on the temperature chosen in addition to the

experimentally determined rate constant. Parrish et al. (1992) estimate the uncertainty in

Table 2.2.3 Summary of recent results for the slope of In [Butane] / In [Ethane] versus In
[Propane] / In [Ethane]. Notice the range 1.42-1.68 is well below the theoretical slope
calculated by time evolution of concentrations governed by kinetics alone.

Researcher Slope r squared

Rudolph and Johnen (1990) 1.66 0.89

Parrish et al. (1992) 1.47

Jobson et al. (1994a) 1.68 0.95

Jobson et al. (1994b) 1.44 0.92

Bottenheim and Shepherd (1995) 1.42 0.69

Greenberg et a. (1996) 1.51-1.68 0.70-0.98

Blake et al. (1996) 1.6 0.63

Graham (this thesis) 1.47 0.83



the slope due to uncertainty in the rate constants to be within 7%. As mixing ratios

approach detection limits, further errors can be introduced into calculating

photochemical age of an air parcel.

For each point on Figure 2.2.7, the ratio pair may be used to get the relative

photochemical age of the alkanes in the air parcel. First, an arbitrary point in the upper

right hand corner of the plot representing the initial parcel hydrocarbon ratio was

chosen. This ratio is approximately 1.65:1 for propane:ethane and 1.46:1 for

butane:ethane. That point is then used to plot the lines which give the time evolution of

hydrocarbon ratios for the two limiting cases on the Figure (m= 1 for dilution and m =

2.58 for chemistry). The photochemical age is defined by equation 2.2.3 and by

assuming [OH] = 1 x 106 molecules cm 3 , we can mark along the chemistry only line the

chemical processing time required to reach a particular point along the line (which

represents a particular ratio for propane:ethane and butane:ethane). To obtain the

photochemical age of an air parcel from the butane to ethane ratio of a particular sample

point, simply move horizontally (i.e. maintaining a constant butane:ethane ratio) until

the chemistry slope is reached. Since we have guessed at the initial emission ratio, and

have marked the photochemical processing time on the chemistry line, by assuming

chemistry alone has influenced the change in hydrocarbon ratio, we can read the

photochemical processing time for a sample point from the chemistry line. The propane

to ethane ratio is used in a like manner, following along a constant ratio vertically until

the chemistry line is intersected. The crosses along the chemistry line give the

photochemical age of the parcel. One could also calculate the age from equation 2.2.4

assuming the initial emission ratio and average [OH] are known. For most of our sample

points, we get two different predictions of air mass age, implying either or initial ratio is

incorrect or more likely, that mixing processes are also involved in changing hydrocarbon

ratios in the air mass.

As discussed in Parrish et al. (1992), mixing of air parcels causes the measured

ratios to lie above and to the left of the kinetic slope. The photochemical age of the
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mixed parcel will lie somewhere between the age of the two original parcels. From the

point of view of one parcel, if the other parcel has higher ratios (i.e. hydrocarbons more

recently emitted) then the apparent age of the parcel will be less than the true age of the

parcel. The two ratios will give different indications of parcel age, with the calculated age

from the less reactive species being closer to the actual age of the original parcel. In the

case where a more dilute, aged parcel is mixed in, the age calculated from the more

reactive species will lie closer to the true age of the original parcel.

Some of the uncertainty for calculating ages can be removed by comparing two

species with like reaction rates with OH, for example, n-butane and i-butane. The kinetic

slope at 298 K for these two species ratioed to ethane is 0.91. For this case, the slopes

of the two theoretical limits for dilution only or for chemistry only nearly coincide. The

dilution only slope is unity by equation 2.2.8. If we assume that the initial emission

ratios of these two compounds are nearly uniform, then when one parcel mixes with

another, the difference in apparent photochemical age from both compounds will be

similar. The dilution effect yielding different photochemical ages is therefore minimized.

The data for n-butane and i-butane are plotted in Figure 2.2.8. We have broken

the data into two distinct sets (plotted as circles and squares). The slopes for both

regression lines agree well with that expected from chemistry, demonstrating that the

effects of dilution on the ratios has been minimized. By inspection of Figure 2.2.8 and

the ratios of i-butane:n-butane for each data point, it is apparent that iso-butane levels

are sometimes higher relative to n-butane than would be expected. Generally, the range

of ratios is reported in the literature to be 0.4-0.6. Indeed, for the in situ measurements

discussed later, these expected ratios hold up. For the seasonal data, the majority of

points (squares) are clustered around the commonly reported range with an average

value of 0.55 and standard deviation of 0.09. The other group (circles) has iso-butane

levels an average of 1.13 times those of n-butane with the standard deviation equaling

0.23. This would seem to imply that some of the air samples had different emission

sources from those seen over the summer of 1996. Ordinarily both isomers are reported



to have similar sources with the normal isomer about twice as prevalent. From the

seasonal data, it seems there must be some other source which contributes an

uncharacteristically high level of isobutane. The air samples having this higher ratio are

considered polluted by our methods with local winds blowing anywhere from 0' (N) to

1800 (S) but not from the west. It should also be noted that the ratios of n-butane and

propane to ethane are both greater in my measurements than others reported in the

literature. This is most likely due to the prevalence of propane fuel use in China. Butane

and ethane are both contaminants of the liquid propane used there, with butane having

the higher concentration of the two.

One would expect the plots to have the air masses with the most recent

emissions to lie in the upper right hand corner. All of the results from previous papers

we have cited have ethane being more concentrated than the butanes and propane. This

may be in part due to the relative distance the sampling sites were from the sites of

emission. It seems clear that a fair number of my samples suffered from recent injections

of light hydrocarbons as the propane and the butanes had higher levels than ethane.

Bottenheim and Shepherd (1995) and Jobson et al. (1994) show that winter

measurements cluster in the upper right and summer measurements in the lower left.

This reflects the influence of seasonal OH levels. Points in the lower left show older,

more chemically processed air. Figure 2.2.7 does not show that exactly. The right most

points above (0,0) are all from summer measurements. The points near (-0.25, -1.25)

and the large cluster near (-1, -2) are primarily winter measurements and those points in

the lower left are from late spring and summer. The April measurements are all in the

lower left which makes sense since ethane is still at its high winter levels whereas the

more reactive hydrocarbons have already started into their seasonal decline.

Several papers have been published in the 1990's which investigate the uses of

equation 2.1.1 through models (McKeen et al, 1990, 1993, 1996). Significant

simplifications used in our approach may be problematic. One is the assumption that km

and ki x [OH] are constants. Another, that the processes of mixing and chemistry are
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photochemical age values as determined from equation 2.2.4 with assumed <[OH]> to be 106 cm -3 .

separable, may not hold. Errors are also introduced by ignoring background

concentrations, [HC]d, in the analysis. Following the procedure in McKeen et al. (1996),

we attempt to better quantify the relative effects of dilution versus chemistry to explain

the deviations from the theoretical kinetic slope.



If we consider two species whose reactivity with OH is great enough such that

the background levels of hydrocarbon ([HC]d) are minimal in comparison to levels in

polluted air, we can solve equation 2.2.1 for two hydrocarbons and combine the

solutions to obtain

ln([HC1] _ km + LHCI ln [HC2]

[HC1]O k2i + LHC2  [HC2](

where Li equals loss of species i due to reaction with OH and km is the mixing parameter.

By plotting the In values of two hydrocarbons, we may get the value of the slope of

equation 2.2.9. Then a measure of the relative effects of photochemistry versus dilution

can be derived using the relation between LHc1 and LHC2. We want to solve the slope

relation for the ratio km/LHC2 using LHCI/kHCI = LHC2/kHC2. This leads to

m -(k,, + LHC2 ) = k,, + rLHC2  (2.2.10)

where m is the slope from the log HC1 versus log HC2 plot and r is kHcI / kHC2. The

kr-m
desired ratio follows: k r-m (2.2.11)

LHC2  M- I

We calculated three separate values for this ratio using the seasonal dataset.

They are summarized in Table 2.2.4. Propane was plotted against i-butane, n-butane and

n-pentane yielding three different values for the relative effects of mixing and chemistry

ranging from 1.71 to 3.05 with an average of 2.4 (equation 2.2.11). This implies that

mixing processes are almost 2.5 times more important than chemistry in determining the

relative hydrocarbon mixing ratios we measured. If we weight the theoretical slopes of

unity for mixing and 2.58 for chemistry by this ratio (about 30% chemistry and 70%

mixing) we obtain a value of 1.46 for the expected slope of plotted hydrocarbon ratios

which agrees with our value of 1.47 in Figure 2.2.7. It should be noted that the

uncertainty from the reaction rates and measured quantities of roughly ± 0.30 for each

ratio computed from equation 2.2.11 does not account for the variation seen for these

three estimates.

.... _ __ _. _~



Table 2.2.4 Summary of measurements to determine the relative importance of mixing versus chemical
processes. The range of values is quite wide, likely due to the fact that our air mass origins were varied.

Plotted Species Slope (m) ratio of koH (r) km/LHC2

In Propane v. In i-butane 0.812 0.491 1.71

In Propane v. In n-butane 0.865 0.453 3.04

In Propane v. In n-pentane 0.794 0.292 2.44

In general we cannot assume that the background concentrations of hydrocarbons

in the diluting air masses are negligible since we are in a terrestrial site with nearby

population centers. This is especially true for the longer lived species. Equation 2.2.5

requires a background value to be subtracted from [HC1], [HC2] and [HC3] when kn, is

non-zero. Depending on the relative atmospheric levels being measured in the sample

and in the background air, the background term may be ignored. The subtracted

background value is scaled by the factor km / (km + LHC) which appears in the general

solution to equation 2.2.1 when km is non-zero. The more reactive the species, the

smaller the scaling factor, as the loss term in the denominator will start to outweigh the

mixing term.

We can determine km, from our analysis of the relative effects of dilution and

chemistry. Table 2.2.4 gives us the ratio of kn, to the inverse lifetime of three separate

hydrocarbons. Using the fact that the atmospheric lifetimes of alkanes are related

through their reaction rates with OH, we can solve for the above scaling factor. To

determine the scaling factor for ethane, we solve for km from Table 2.2.4; ka, equals the

value in the last column divided by the lifetime of the hydrocarbon for each row. We

need not know OH since it factors out of the scaling term, leaving # k, / (# ki + kethane)

where # represents the number in the third column of the Table and k, is the

corresponding OH-hydrocarbon reaction rate constant. The values for the scaling of

ethane background obtained for i-butane, n-butane and n-pentane are 0.91, 0.97 and 0.97

respectively. Inclusion of this background value for ethane results in the predicted
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trendline lying between the pure chemistry and pure mixing slopes, just as our actual

data does. As time increases, and ethane concentrations in the plume approach

background values, the slope of the line will approach (km + Ln-butane) / (km + Lpropane)

(McKeen et. al., 1996). For our predicted values of km, the slope should eventually

reach 1.13-1.27. The points in the lower left hand side of the Figure 2.2.7 appear to be

bending away from the best fit slope for all points, perhaps as a result of this

background effect.

Figure 2.2.9 displays all twenty-six days of flask measurements for thirty-nine

hydrocarbons. Cyclopropane, ethane and ethene are missing a few early measurements.

Acetylene was not always cleanly separated from a nearby unidentified peak so

concentrations are not given for some samples. Cyclopentene, cis-2-pentene and trans-

2- pentene are lacking some points for the winter flasks. Some other hydrocarbons were

identified with less frequency depending on run conditions and levels of the

hydrocarbons in the sample. Several of the hexane isomers are unreported as they

coeluted with one another. 1-pentene and 2-methyl-2-pentene also coeluted. Limonene

and sabinene were identified in some samples but analytical problems near the end of the

run interfered with consistent data collection for those compounds.

Many of the samples showed heightened levels from some pollution source.

September 25 and October 22 are good examples. Virtually all species reported show

increased atmospheric levels on those days. The exclusively biogenic gases do not show

the same consistent correlations as the other NMHC. In some cases, terpene

concentrations seem to be higher when pollution events occur. February 29 seems a bit

different than other days with elevated hydrocarbon levels. On that day, the xylenes,

toluene, isopentane and the methylpentanes display significant differences between the

AM and PM measurements which are not mirrored in the other species. This seems to

point to a different source of pollution for that afternoon.

The data from our seasonal flask campaign is quite sparse, which makes it

difficult to make any grand conclusions. There is evidence that the biogenic gases

I ~ _ ^ I _-~-I__~~



including isoprene, the terpenes and propene have a seasonal cycle with highest levels

seen during the summer and lower values observed during the colder winter months. The

reverse trend is apparent for the light alkanes, as might be expected from the seasonal

variations in OH levels. Unfortunately, the preponderance of polluted air samples

decreases the usefulness of our data for determining background levels of hydrocarbons

over the year. This may be due to immediately local pollution sources or could also be a

result of the proximity of two major populations centers to the biosphere reserve:

Guangzhou which is 86 kilometers to the east, and Zhaoqing, the provincial capital,

which is 19 kilometers to the west.



Figure 2.2.9 Results of the flask measurement campaign at Dinghushan Biosphere

Reserve from June 1995 through August 1996. Note the x-axis is not linear in time and the
y-axis is a log scale of NMHC concentration (ppbv). The two curves reflect the morning

measurement (squares-solid line) and afternoon measurement (diamonds-dotted line).
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Chapter 3: In situ Measurements

3.1 Intensive Phase: Experimental

The intensive phase of our campaign covered nine weeks from June 28 through

August 31 in the summer of 1996. We sampled NMHC hourly using a dual FID set-up

which enabled us to identify over 50 distinct NMHC. Information regarding NO/NO 2

concentrations was also obtained. For a two week period, we collected CO data. We

also performed some simple bag enclosure measurements to estimate the emission rate

of NMHC from local dominant vegetation.

Initially, we had two separate sample lines; the first was 1/4" OD stainless steel

for the hydrocarbon system and the second a 1/4" OD FEP Teflon for the other gas

measurements. Due to pump failure, we resorted to using one Teflon sample line from

the evening of Julian day 191 on. The line was installed at the height of 10 meters,

hanging off a branch in the lower canopy but at least four meters away from the nearest

foliage. An inverted funnel with a Teflon particle filter was used at the inlet. The sample

line was 35 meters long, and located upslope, to the west of the laboratory building. The

slope was roughly 300, which positioned the inlet above the canopy around the

laboratory building and downhill from it, but below the canopy of the trees surrounding

and uphill (See Figure 3.1.1). A small clearing was located just southeast of the sample

funnel, and slightly to the east stood a temple complex.

Air samples were pulled down the sample line at roughly 8 liters per minute

using a model MB-158 Metal Bellows pump. Hydrocarbon air samples were siphoned

off of the main flow at a rate of 25 standard cubic centimeters per minute (sccm). The

bulk of the flow was sent on to the NOx, 03 and CO detectors which required 2 liters per

minute for their analyses. The remaining flow was vented through a tee with an 18 inch

extension to ensure no room air was pulled back up the line to the instruments (Figure

3.1.2).

We initially used an automated sampling collection for the hydrocarbons

through Julian day 183. The computer controlled cooling and heating cycles of both

:71



sample and cryofocus loops were realized by raising and lowering the liquid gas level in

the cryogenic tanks rather than physically moving the loops. This control was

accomplished by installing the loops in a cryogenic cylinder which was in turn inserted

into a bigger cryogenic tank. The opening at the lowest part of the insertion cylinder

made the fluid connection between the two cylinders. The system was made air tight

and closed after being filled with liquid gas. The gas was stored inside the tank at

roughly 25 psig. By letting pressed gas enter and exhaust from the insertion cylinder,

the liquid level, and hence loop cooling, was readily controllable. This process was

governed by a level controller which sensed the level inside the tank via thermocouples

positioned inside the tank. The computer instructed the level controller when to activate

the pressure control solenoid valve to achieve the desired loop trapping temperature.

The heat cycle was also initiated by the computer. The cartridge heater warmed the loop

and simultaneously vaporized the liquid immersing the loop, causing a pressure increase

which forced the liquid level lower.

The main body of the liquid level controlling system was designed with one

cryogenic cylinder within another. The outer tank is commercially available (LN-30

Andonian Cryogenics, Inc., Waltham, MA) used without further modification. The

inner cylinder or insertion port was specially designed and manufactured by the same

company. The controlling mechanisms were all attached to the cylinder through its top

flange: gas inlet, outlet, and loop, the solenoid valves, the level sensing thermocouples,

the heating cartridge and all the electrical feedthrough. The loop was under constant

cooling either by contact with liquid gas or with vapor in equilibrium with the liquid

unless the heating sequence was enacted. The liquid gas in the closed system was stored

under constant pressure regulated by relief valves with normal relief pressure in the 25-

30 psig range. Our design has the advantage of being closed, reducing static loss of

liquid. Also, the elevated vapor pressure causes the liquid temperature to rise to a higher

value than that under normal atmospheric pressure upon the new equilibrium. These

effects both save money on the expense of liquid coolant, the latter effect allowing the

use of relatively cheap liquid nitrogen over liquid argon.

The internal cylinder contains the loops, serving as the working volume of the

controlling system. It has an inner diameter of 0.75 inches for the length inside the



N

Laboratory

35 m long Sample line

(b)

"500 m

% % Temple Complex

Clearing

Figure 3.1.1 Schematic of the sampling site. The top figure (a) shows the slope from the sample

inlet to the laboratory, highlighting the effect this had on the placement of the sample inlet within

the canopy. The bottom figure (b) gives the general location of the temple complex in relation to

the laboratory. The area called "clearing" isn't quite a clearing per se. It is an area where there was

limited canopy overstucture such that wind coming from the southeast could potentially travel to

the sample inlet without encountering foliage. This could be important in that deposition to the

canopy can be significant.



outer tank and a slightly expanded bowl to physically mount the top flange through which

the system communicates with the outside environment. A thinner internal diameter

decreases the volume of working media when the same height of liquid level is required,

hence reducing the time constant of the controlling cycle. The system works efficiently

and quickly as a result.

Frequent cartridge heater failure (and limited replacement supply) prompted a

return to manual sample collection using handheld dewars of liquid nitrogen. Collection

using liquid nitrogen is far from ideal since trapping of unwanted oxygen may occur if the

loop temperature is allowed to cool to that of liquid nitrogen. To avoid this, we held the

sample loop above the level of the liquid nitrogen and monitored the loop temperature

with a thermocouple. Constant collection temperature was impossible to maintain and was

generally too low to quantitatively capture both ethane and ethene. After Julian day 197,

we were able to use liquid argon which allowed efficient collection of all gases of interest.

Collection time was sixteen minutes after day 198 (previously 8-20 minute periods

were used) with a flow rate of 25 sccm through a 0.39 cc inner volume stainless steel

sample loop. Air was passed through a Nafion dryer and Ascarite II trap prior to

collection to remove water and CO 2 respectively. A Tylan mass flow controller provided

accurate measures of flow rate through the sample loop. After collection, the 6-port Valco

valve was switched to inject placing the sample loop in-line with the carrier stream of the

PLOT (A120 3/Na2SO4) column. The sample went through a second Valco valve and

entered a two meter piece of PLOT column used as a precolumn and means to separate

light and heavy hydrocarbon fractions. During this time, the oven remained at a constant

120 oC. (This temperature was settled on by day 197 as the system had stabilized at that

point. Prior to that, the temperature was different depending on carrier flow and retention

capabilities of the precolumn). After three minutes, the second Valco valve was switched

to inject, placing the precolumn in line with the carrier gas flow of the 60 m x 0.25 mm ID

CP-Sil 5CB column. Light hydrocarbons passed completely through the precolumn during

the three minutes and were cryofocused on 0.32 OD fused silica tubing. Heavy

hydrocarbons remained in the precolumn and were subsequently flushed back out by the

second carrier which traveled in reverse of the first. These compounds were trapped on a



- " ~-111111

6-port valve

Figure 3.1.2 The inlet set up for trace gas measurements at Dinghushan. Flow was roughly
8 liters per minute, leading to residence time in the sample inlet line of 15 seconds maximum.
Since the sample line volume is under one liter (calculated at 700 cm-3), the residence time is

more likely about 6 seconds.

second fused silica loop. After 5 minutes elapsed, the loops were placed in a room

temperature water bath. Figure 2.2.4b displays the setup. Temperature programming was

used to provide reasonable peak separation for hydrocarbons on the respective columns.

For three minutes, the temperature was held at 60 oC. This was followed by a 10 oC per

minute ramp to 120 oC which was then held for one minute. Subsequent ramping at 4

degrees per minute brought the temperature to 160 oC, which was again held for one

minute. A final 10 oC per minute ramp brought the oven to its maximum temperature, 200

oC where it remained for five minutes, yielding a 30 minute runtime.

3.2 Intensive Phase: Calibration

Calibration runs took two forms over the summer in China during the intensive

phase. Initially, we used four permeation tubes for calibration: 2-methylbutane, 3-methyl-

,IA INIII n II 1"1-~--~ --- --



Table 3.2.1 Summary of results for calibration runs of permeation tubes. The left hand column gives the
day of the sample and other four columns show the corresponding normalized response for each individual
species. The variation seen for the two lighter hydrocarbons is smaller than that seen for the heavier two.
For twenty-five of twenty-eight measurements, the deviation is within 5% of the average over the five week
period. Prior to day 199 there were problems transferring the heavy fraction. On days between 199 and 220
where values are missing, operator error prevented proper transfer of the compounds. After day 220,
emission rates for the two heavy species became unstable. For ethylbenzene, a leak was discovered, which
may also be responsible for its increased response over time. The final row gives the RMR response factor.
Good agreement is seen for the two light hydrocarbons. The heavier hydrocarbons show significant
difference. Since the response is from two separate detectors, there is no reason to expect that inter-detector
response would be similar. Even so, the response factor for octane is similar in magnitude to that of the light
alkanes.

Day 2-me-butane 3-me-pentane octane ethylbenzene

193.07
195.13

199.13

200.05

204.01

205.13

206.22

207.18

208.14

209.21

210.21

211.13

212.21

213.17

214.21

215.13
216.14

217.05

218.01

219.21

220.21

221.22

220.13

223.09

224.08

225.21

226.09

227.17

1.01
0.97
0.98
0.96
1.06
1.03
0.96
1.02

1.00
1.01
0.99
1.00
0.99
0.96
1.01
0.99
1.05
1.04

1.01
0.97
0.96
1.11
1.00
0.99
0.94

1.02

1.00
1.07

1.07
0.96
1.02

0.99
1.03
1.04

0.97
1.02

1.00
1.01
0.98
1.00
1.00
0.95
1.01
1.00
1.05
1.04

0.99
0.96
0.95
1.11
0.99
0.98
0.91
1.01
1.01
1.07

0.90
0.87

1.16

1.05
0.92

1.10

1.01
1.18

1.00
1.11

1.02

1.01

0.95
0.95

0.96

0.94

0.78

0.78

0.93

0.81

0.86

0.97

0.90
0.90
0.95

0.90

0.88

1.00
1.07

1.12

1.08
1.05
1.19

1.26

1.40

average response factor 1.91E-12 2.04E-12 1.78E-12 1.03E-12



pentane, octane and ethylbenzene. The first two compounds eluted with the light

hydrocarbons and the second pair with the heavy ones. We missed consistently

transferring the heavy pair (octane and ethylbenzene) to the proper column until day 199.

This meant that sometimes we did not obtain data for all of the heavy hydrocarbons

during the initial period. Samples were obtained by direct injection of the sample loop

(volume = 0.39 cc), bypassing the in-line traps. Using mass loss rate and flow rate over

the permeation devices, one can obtain moles of each hydrocarbon injected. Relative

Molar Response (RMR) was then used to obtain a calibration curve for the entire set of

NMHC we identify. Peak areas of each sample run were calibrated using the calibration

run for that day. If no calibration run was performed for a particular day, the average of

the two nearest bracketing runs was used to find hydrocarbon concentrations.

Results from permeation tubes over the course of the summer are shown in Table

3.2.1. Most times the response from the instrument stayed within ten percent of the

average response over the entire period. For the lighter hydrocarbons, the response was

even more stable, within five percent. The RMR factor differed by only six percent

between 2-methylbutane and 3-methylpentane. Variation on the heavy hydrocarbon

detector was greater. This could be due to true variations at that detector. Generally we

would expect day to day response variation to be related to changes in purity of carrier

gas, make-up gas or zero air to the detector. Since the supplies of these gases were

common to both detectors, it leads me to suspect a different source for the variation. The

differences could be due in particular to changes in emission rate from the tubes.

One of the difficulties encountered in the field was the inability to properly

regulate the storage temperatures. We recorded the temperature just prior to the actual

sampling. The range of measured temperatures was within two degrees (from 27.50 C to

29.5' C). Mass loss was measured at those two extreme temperatures and at 28.50 C; the

loss rate was essentially linear between the two extreme temperatures for the four

hydrocarbons. The slope of the loss rate trends was increased with increasing molecular

weight of the species. The rate of emission of ethylbenzene at the lower temperature was

only 75% of that at the higher temperature. The low temperature rate of 2-methylbutane

was 81% that of the high rate. Another possible factor responsible for the variations in



Table 3.2.2 Shown are the results of five standard runs each of tank 5199 and its daughter tank. The
average area results are given in the second and third columns with standard deviations of the mother (5199)
and daughter tanks in columns four and five. The final column compares twice the response difference to
the average response to determine how the concentrations differ between tanks.

Compound Average area Average area Stdev M Stdev D 2*(m-d)/(m+d)
response 5199 response Daughter

Ethane 52732 52473 0.27% 2.39% 0.49%

Ethene 72856 72693 0.19% 1.14% 0.22%

Propane 61706 61164 0.41% 2.88% 0.88%

Propene 48335 47838 0.77% 1.75% 1.03%

2-mepropane 57625 56629 0.68% 2.62% 1.74%

Butane 55474 54491 0.44% 1.64% 1.79%

t-2-Butene 33272 32811 0.64% 0.94% 1.39%

1-Butene 60097 59681 0.38% 0.64% 0.69%

2-mePropene 60369 60079 0.51% 1.60% 0.48%

c-2-Butene 17237 17427 5.44% 2.30% -1.09%

Pentane + CP 89278 89796 1.28% 4.15% -0.58%

1-Pentene 30613 31080 4.50% 2.30% -1.51%

Cyclohexane 41018 40199 2.48% 1.99% 2.02%

Hexane + Isoprene 92264 90864 1.28% 2.73% 1.53%

1-Hexene 35830 35180 2.02% 2.73% 1.83%

3-meHexane 28589 28522 5.01% 1.50% 0.24%

Heptane 37552 34449 1.45% 11.00% 8.62%

CycloHeptane 21129 21357 9.79% 2.81% -1.07%

Benzene 39057 38390 3.74% 2.65% 1.72%

1-Heptene 23963 23558 9.34% 4.80% 1.71%

Octane 21306 19403 7.90% 11.44% 9.35%

cycloOctane 30230 27799 3.57% 5.56% 8.38%

Toluene 15614 15066 5.55% 2.70% 3.57%

1-Octene 30091 28110 3.04% 4.93% 6.81%

Nonane 15217 15247 26.22% 24.08% -0.20%

c(-Pinene 8078 8717 8.40% 33.84% -7.61%

1-Nonene 20217 19062 14.93% 8.76% 5.88%

Camphene 27987 22205 10.03% 14.98% 23.04%
Carene 8652 8664 18.03% 44.22% -0.15%

Decane 19466 11921 24.44% 52.23% 48.08%

Sabinene 11810 5848 37.63% 30.22% 67.53%

y-Terpinene 30171 15941 33.95% 22.17% 61.72%

Limonene 26449 12992 55.05% 23.75% 68.24%



Table 3.2.3 Summary of response factors for standard calibration runs in Dinghushan. The top rows give

the response of the 5199 daughter standard and the bottom show that of the permeation tubes. The light
fraction permeation tube response values agree well with the average from the standard tank. The octane
permeation tube response is 10% lower than the average obtained from the heavy hydrocarbon response
from the standard.

Light fraction Mole*RMR/area Heavy fraction Mole*RMR/area
Ethane 1.64E-12 Toluene 1.98E-12
Ethene 1.67E-12 1-Octene 1.97E-12
Propane 1.62E- 12 Octane 1.98E- 12
Propene 1.63E-12 1-Nonene 2.22E-12
2-mePropane 1.58E-12 Nonane 2.12E-12
Butane 1.58E-12 cycloOctane .78E-12

t-2-Butene 1.47E-12 Myrcene 1.74E-12
1-Butene 1.74E-12 1-Decene 2.30E-12
2-me-Propene 1.78E-12 Decane 1.08E-12
c-2-Butene 1.68E-12 Limonene 1.75E-12
cycloPentane 1.65E-12 Sabinene 1.67E-12
Pentane 1.63E-12 Undecane 2.25E-12

1-Pentene 1.72E-12
cycloHexane 1.66E-12
Hexane 2.02E-12
Isoprene 2.04E-12
1-Hexene 2.41E-12
3-methylHexane 2.96E-12
cycloHeptane 3.32E-12
Heptane 2.46E-12
Benzene 2.56E-12
I-Heptene 2.63E-12

Average all 1.97E-12 Average 1.90E-12

Average to Hexane 1.67E-12

2-methylButane PT 1.91E-12 Octane PT 1.78E-12
3-methylPentane PT 2.04E-12 ethylBenzene PT 1.03E-12

permeation tube response is the equilibration time in the sample line. The flow rate over

the permeation tubes was 10 sccm with a volume of 300 cm 3 in the line. It may take

longer than 90 minutes for equilibrium to be reached in the line, assuming that the

temperature is stable for that long. Since the emission rates of heavier hydrocarbons were

more sensitive to temperature variations, the changes in concentration in the sample line

would also undergo greater change with varying storage temperatures. A long time

constant for equilibrium might mean that the concentrations in the gas stream we sampled

may have been due to a different temperature than that we were measuring at sample time.



In the middle of August, starting Julian day 226, we were able to use a daughter

standard of MIT tank 5199. This daughter was prepared by filling a clean, evacuated

stainless steel electropolished tank with standard gas. Upon return to MIT, the daughter

tank was quantitatively compared to tank 5199 to obtain concentrations in the daughter.

These results are given in Table 3.2.2. The majority (twenty-three of thirty-five) of

compounds show less than two percent difference between area results based on the

average value for five runs per tank. The daughter tank showed slightly greater variation

from run to run. For the five compounds which showed especially poor agreement

between tanks (greater than 10% difference), high variability was also seen from the

individual runs. We believe this is due in part to significant peak broadening in the final

minutes of the run in addition to column age effects. The three terpenes sabinene, y-

terpinene and d-limonene eluted as part of a quartet which was not always cleanly

separated leading to higher standard deviations for those compounds. The large variations

in the heaviest species indicate that our absolute concentration assignment for the

daughter tank could be off by as much as 50%.

Comparison of the calibration data from the field campaign show reasonable

agreement between permeation tube and daughter standard 5199 scales. The average

RMR response in mole per area on the light hydrocarbon system was 1.98 x 10-12 for the

two permeation tubes and 1.97 x 10-12 for the 22 NMHC in the standard. Looking at

Table 3.2.3, we can see that for most lighter NMHC, the mole per area value hovers

around 1.7 x 10-12. This compares to 1.9 x 10-12 for the 2-methylbutane permeation tube.

RMR is generally expected to agree within 10% of actual values, which these results

roughly confirm. There seems to be a systematic variation from the ethane to 1-heptene,

which has been noted by Sprengnether (1992). The differences between permeation tube

average response and the standard tank response of the lighter hydrocarbons should cause

an apparent jump down in concentration of roughly 10% when the calibration scale was

switched on day 226. Indeed this is supported by the data. For the heavier hydrocarbons

the RMR agreement is less secure. In part this may be due to the Nafion dryer. The dryer

causes rearrangement and/or loss for some terpenes (especially the bridged varieties)

which caused significant variations in response (Bums et al., 1983). Those species most



affected by this were not included in Table 3.2.3. The octane permeation tube does show

agreement within 10% of the average response of the tank hydrocarbons. The low

response from decane is a mystery though it agrees well with that from the ethylbenzene

tube. We opted to calibrate the heavy fraction with the octane permeation tube prior to

day 226 since the response seemed more in line with that obtained from the tank

hydrocarbons.

For calibration runs in the field, standard gas was diluted and treated identically as

whole air samples. We tried to perform one standard run each day. Atmospheric

concentrations for hydrocarbons were calculated by comparison to the standard analysis

for that day. For hydrocarbons not in the standard, RMR was used. Two back-to-back runs

were performed to show that the traps did not significantly affect the results of the

majority of compounds for standard runs (Table 3.2.4). On the light side, the largest

deviations were seen for the last four eluting compounds. We surmise that these

fluctuations are more a result of column performance variations and its effects on peak

width later in the run rather than deleterious effects of the traps. The results from the

heavy hydrocarbons are not as promising. As noted, the Nafion dryer disrupts analysis of

terpenes. Some like camphene show losses as high as 80%. y-terpinene concentrations

seem to be enriched by a factor of 5. We have no reason to expect the traps would

adversely affect the heavier alkanes like nonane and decane. It is entirely possible that

some terpene fragments coelute with those species, causing the apparent increase in

concentration shown in run 62880007 in Table 3.2.5.

Figures 3.2.1 a and 3.2. 1b summarize the results of all standard analyses from the

final two weeks of August. For each specie, the average response is used to normalize

each run. Error bars are one standard deviation obtained from the set of measurements.

The earlier eluting compounds on each column gave more stable responses, varying less

than 10% from day to day. Some of the later eluting (and heavier) species yielded

response deviations greater than 30%. The worst offenders were terpenes, which is most

likely the result of adverse interactions with the Nafion dryer. We can use the results of

the standard variations as bounds for our measurement precision. In the field, precision

seems much lower than in the relatively stable conditions at MIT.
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Compound (a) (b) a/b
62272309 62280007

ethane
ethene
propane
propene
2-me-propane
butane
t-2-butene
1-butene
2-me-propene
c-2-butene
cyclopentane
pentane
1 -pentene
cyclohexane
Hexane
Isoprene
1-hexene
3-methyihexane
cycloheptane
heptane
benzene
1 -heptene
toluene
1 -octene
octane
1-nonene
nonane
cyclooctane
cx-pinene
camphene
myrcene
1-decene
decane
carene
y-terpinene
limonene
sabinene
undecane

2579
3502
2862
2246
2811
2729
1624
2936
2776
852

2239
2190
1498
1958
1392
2759
1621
1223
864

1531
1718
945

1151
1141
845
590
445
538
216
873
233
322
392
172
210
374
351
220

Table 3.2.4 Comparison of two back to back standard runs. Run (a) was performed without any in-line

traps. Run (b) used both the Nafion dryer and Ascarite trap. The final column gives the ratio of run a to run
b. For most low molecular weight species the ratio is close to unity. Notable exceptions are 3-methylhexane
to benzene. Those four compounds showed greater variability than the other light fraction species for the
standard runs. The ratio for the terpenes show wide variation which is caused by the Nafion dryer.
Camphene seems to be destroyed to a great extent, and may even be rearranged to y-terpinene whose
concentration seems to increase with the use of Nafion.
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2662
3548
3076
2539
2900
2816
1702
2966
2802
885
2297
2243
1573
1899
1302
2922
1606
1049
668
1334
1941
865
1215
1095
842
635
519
560
129
188
316
374
494
135
1151
255
458
256

0.97
0.99
0.93
0.88
0.97
0.97
0.95
0.99
0.99
0.96
0.97
0.98
0.95
1.03
1.07
0.94
1.01
1.17
1.29
1.15
0.88
1.09
0.95
1.04
1.00
0.93
0.86
0.96
1.67
4.66
0.74
0.86
0.79
1.28
0.18
1.47
0.77

0.86



Some of these standard runs have no reported results for certain species. Runs

performed from day 230 through 234 showed contamination of propane, with highest

levels on the first day, decaying over the next four. Zero air runs were performed through

this period and yielded concentrations over 3 ppbv at the start. Oddly, propane

concentrations bracketing the zero air run were considerably lower. Ethene and propene

showed contamination as well but the levels were lower and decreased more rapidly.

Standard runs on day 234 and 244 lack the last seven peaks on the light hydrocarbon side

due to instrumental problems in the later part of the run sequence. Injection errors

occurred for runs on days 230 and 235 for the heavy fraction.

The dynamics of trap contamination are unclear. It is possible that depending on

the hydrocarbon concentrations in the gas stream, flux into or out of the traps may occur.

Zero air runs should give the maximum amount of contamination possible as there is very

little hydrocarbon in the gas stream. Standard runs may exhibit some evidence of

contamination if the dilution factor is sufficiently large. The contamination seen here

occurs primarily as a result of high concentrations of hydrocarbons in ambient air passing

through the traps. Zero air blank runs showed little evidence of significant contamination

for the majority of species we measured. Several hours after a large pollution event the

blanks showed levels of light hydrocarbons to be less than 15 ppt except for the period

from 230 through 234 as discussed previously. For normal background levels, only 2-

methylpropene gives consistent contamination peaks of roughly 180 pptv. Other light

hydrocarbons show levels of contamination under 10 pptv from time to time. Since

normal levels of those compounds are in the many hundreds of ppt, the effects are

marginal.

Despite the potential contamination and removal of hydrocarbons by traps, they

are necessary for effective chromatography. The PLOT column is highly sensitive to

water vapor, which binds to the active sites and generally degrades the column. Separation

capability is diminished and large retention time shift may occur, causing difficulty in

peak identification. Removal of CO 2 is also important. Due to its high atmospheric

concentration, CO 2 trapped in the sample loop can cause a pressure surge upon

desorption. This surge decreases retention times of all species as the collected gas slug is

quickly forced through the first several meters of column.



Standard addition runs were performed to investigate our ability to recover each

hydrocarbon in our standard. Problems from the in-line traps and from our cryotrapping

procedure should affect the standard addition runs just as if they were ambient air. While

in a normal standard run we used zero air to dilute to atmospheric levels, for a standard

addition, the dilution gas was whole air. By subtracting the response at the detector which

should have been due to standard gases, we can compare the response due to whole air

with that of the bracketing whole air samples. If we have perfect recovery, the standard

addition concentrations with standard response removed should fall between the two

bracketing runs assuming that atmospheric concentrations are either increasing or

decreasing through the period or constant. It is possible that the mixing ratios of the

ambient air for the middle standard addition run could be higher or lower than both

bracketing runs. Results of these tests are shown in Figure 3.2.2a and Figure 3.2.2b.

Some compounds graphed in the Figures 3.2.2 a and b are not present in the

standard and therefore can be used to ascertain the behavior of the background

concentrations during the middle hour of the 3 hour standard addition test. The runs on

day 228 (starting with 281937 on graph 3.2.2a) occur during the decay from a pollution

event as evidenced by the high initial propane concentrations. Many of the five and six

carbon species not in the standard show highest levels during the standard addition run.

This is also true of some hydrocarbons in the standard. Most of the lightest compounds

show decreasing levels over the three hours. Most species for the two experiments

displayed in 3.2.2b show background hydrocarbon levels increasing over the period. The

behavior of the cycloalkanes was peculiar. For cyclooctane, cycloheptane and

cyclopentane, the hydrocarbon levels after standard subtraction were still far higher than

expected from the bracketing runs. This could be due to incorrect mixing ratio

assignments in the standard tank (ones that are slightly too low). Looking at the RMR

values confirms this could be a possibility as they are a bit higher than the average values

for other species with the same carbon number. Since the peak area due to the standard is

as much as 20 times greater than that from the ambient air for the cycloalkanes, a minor

change in concentration could account for a major difference as seen in the addition runs.

It should be noted that cyclopropane, which is not in the standard, also shows this trend.
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Figure 3.2.2a Results of standard addition runs are given. The middle, solid bar is the concentration

of hydrocarbon in the ambient air calcualted by subtracting out the theoretical response from the

standard gas. The outer bars are the concentrations from the bracketing ambient air runs. The ratio
of the ambient air concentration fromthe addition run to the average of the two bracketing runs is

given at the end of the bar for each species.
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undecane 0.74
sabinene 0.7
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Figure 3.2.2b Results of standard addition runs are given as in Figure 3.2.2a.
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For the majority of compounds, the trends are as expected with the middle bar in Figures

2.3.4a,b lying between the values of the two extremes.

3.3 Ancillary measurements

3.3.1 Nitrogen Oxides

NO and NO2 measurements were performed using a model 42S chemi-

luminescence low level NO-NO2-NOx analyzer (Thermo Environmental Instruments, Inc.,

MA). The gas phase reaction of nitric oxide and ozone produces a characteristic

luminescence with an intensity proportional to the concentration of the nitric oxide. Decay

of excited NO2 molecules results in light emission.

NO + 0 3  - NO 2* +0 2  (3.3.1)

N0 2* - NO 2 + hu (3.3.2)

In order to measure NO 2 in the sample stream, it must first be reduced to NO. Reduction

is achieved by passing the sample through a Molybdenum converter heated to 325 OC.

3 NO 2 + Mo - - 3 NO + MoO 3  (3.3.3)

The conversion reaction is near 100% efficient. The instrument cycles through

three states: NO, NOx and zero. In the NO mode, sample air is drawn directly to the

reaction chamber. Reaction with ozone occurs and the resulting decay intensity is

recorded as NO. By switching two solenoids, the instrument is put in the NOx mode.

Sample gas passes through the NO2 converter and then proceeds to the reaction chamber.

NO and NO2 converted to NO then react and are detected as NOx. In the zero mode, the

sample bypasses the converter and is directed to a prereaction chamber. Nitrogen oxide

reacts with ozone here (instrumental design is such that up to 200 ppb NO will react in the

prereactor chamber, assuming no interferents). The NO-free sample air then passes to the

reaction chamber where a zero reading is recorded. Every ten seconds the instrument



switches modes. The minimum detectable limit is 50 ppt for the instrument and zero drift

is negligible since it is monitored and corrected for continuously.

Data were recorded once per hour starting on Julian Day 183. The instrument

output is given as a continuously updated 5 minute average; each new 10 second

measurement replaces the oldest one to yield a new average value. On day 196 the

recording frequency was increased to once every ten minutes, thereby effectively

capturing NO, levels for every other five minute averaging period. We had two problems

which make the data prior to day 231 useless as far as the absolute numbers are

concerned. First, the initial full scale range was 200 ppb and span drift can be as much as

1% full scale per day. Second, calibration gas was not available to monitor performance

until day 231.

Calibrations were performed by using a NIST traceable NO standard, having 50.5

ppm NO and < 0.5 ppm NO2. The full scale was set to 20 ppb to better reflect the levels of

NO, seen in the forest. Using a model 146 dynamic gas calibration unit (Thermo

Environmental Instruments, Inc., MA) we were able to properly calibrate our detector.

The model 146 has Tylan mass flow controllers and an ozone generator which allowed us

to dynamically dilute the NO standard down to 90% full scale to establish the span

reading. Then, using gas phase titration, we created an NO 2 standard to calibrate that

channel. Essentially, NO reacts with ozone in the model 146, creating NO2. At the NO,

instrument, decreases in NO levels from the original value give the concentration of NO2

levels which must be present in the airstream. This also allows the instrument to confirm

the conversion efficiency of the Molybdenum converter. Care must by taken to supply the

instrument with NO,-free air. This was accomplished by using traps of Purifil, molecular

sieves and iodated charcoal. Daily span and zero checks were performed. The first week

required recalibration of the instrument every other day due to drift of roughly 10% from

full scale. The second and final week had more stable results showing reasonable span and

zero values. Figures 3.3.la and 3.3.1b show the data obtained over the entire period. One

can clearly see spikes in the data representing pollution events. For the last two weeks,

there were three occasions where NO climbed above 40 ppbv. During each event, there

was a corresponding rise in NMHC levels. The trends are particularly similar for toluene,
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3-methylhexane and the six carbon alkane isomers like hexane, the methylpentanes and

the dimethylbutanes.

3.3.2 Carbon Monoxide

Carbon Monoxide data were collected using a Trace Analytical RGD2 reduction

gas detector. Detection occurs as a result of mercuric oxide reduction. A reduced gas

passes over the heated mercuric oxide bed (280 OC), reacting to form mercury vapor as in

the following reaction:

X (g) + HgO (s) ~ XO (g) + Hg (g) (3.3.4)

where X represents any reduced gas. Downstream of the reaction bed, an ultraviolet

photometer determines quantitatively the amount of Hg vapor in the airstream. The

reaction of CO occurs with almost 100% conversion efficiency, so every mole of CO

results in the creation of one mole of mercury vapor. The detector is linear over a range of

approximately 100 mV (100 ppb per 2 cc sample), and can be corrected with a

potentiometer to give linearity over a 500 mV range. A small linearity adjustment was

required over the range of concentrations under which we operated (60-200 ppb) as

confirmed by our calibration curve. The detection limit is one ppb per two cm 3 sample

and response drift is negligible if the reaction bed temperature and flow rate are

maintained constant.

Zero air passed over molecular sieves to remove water and organics was used as

carrier gas. Carrier flow rate was set to thirty cm 3 min-' and controlled by a flow

restrictor. A Valco six port valve with a two cm3 stainless steel sample loop was used to

introduce whole air into the carrier stream. After valve switching, the sample passed

through a three meter column of stainless steel 1/8" tubing packed with 5 A molecular

sieves. Oven temperature was maintained at a constant 900 C, giving adequate separation

of the hydrogen and carbon monoxide peaks. The instrument was operated from July 7

through July 20 in the field. A severe storm on July 20 sent a power surge to the

instrument which blew its fuse and damaged the heating mechanism for the reaction bed;

subsequent measurements were not possible as a result.
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Figure 3.3.2. CO calibration curve showing detector linearity over the range of 50-1100
ppbv.

Figure 3.3.3. Data series for CO. Dotted line represents the median value of 152 ppbv.



Instrument calibration over the range of observed areas was achieved by dynamic-

ally diluting a 3.34 ppm CO NIST traceable standard with +/- 1% analytical certification.

With the linearity potentiometer set at 0.9, linear responses were obtained over the span of

interest (Figure 3.3.2) In general, instrument non-linearity may reach 5% at higher CO

values without the linearity adjustment. Figure 3.3.3 gives the results over the two week

period. By removing the pollution episodes, which were determined by averaging all data

points minus one obvious outlier (2910 ppb) and excluding any point occurring outside of

two sigma (2Y=230.2 ppb), we obtained an average background value for CO of 170 ppb.

The median value for the 289 points was 152 ppb. An average value of 147 ppb was

calculated by excluding those points within 5 hours of an obvious pollution episode. The

final two numbers seem to be in reasonable agreement, and are taken as appropriate

estimates of background CO over the two week sampling period. Instrumental precision is

5% of the measured concentration over the range of values we encountered.

3.4 NMHC Flux Measurements

3.4.1 Methods for Determining NMHC Fluxes from Vegetation

Three primary methods have been used for the determination of hydrocarbon

fluxes from vegetation. They include enclosure, tracer, and micrometeorological

techniques. The second two techniques are useful for flux determination over a wide area

whereas the first relies on direct measurement from individual species.

The field enclosure technique makes use of a tedlar bag (or other inert enclosure)

wrapped around a branch and the mass accumulation of hydrocarbons is determined from

the difference in concentrations measured over time. This method is the easiest to employ

and does not require fast response detectors but has several drawbacks. One problem is

that stresses on the branch, like radical changes in CO 2 or H20 concentration, may affect

emission rates. In addition, the branch may be damaged while being handled and that may

affect emission flux. It is also necessary to sample each species of tree in the area of

interest since they exhibit different emission patterns. Once rates are determined for an

individual branch, they must be extrapolated to the entire tree and then to the forest as a

whole, which requires a detailed survey of tree species in the forest. Since leaf age has
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been shown to play a role in emission rates, it is also necessary to sample different

branches to get some average value (Isidorov et al., 1984, Lamb et al., 1987, Fehsenfeld et

al., 1992).

A second technique uses an SF 6 tracer to aid in hydrocarbon flux determination. A

known amount of tracer gas is released and then samples are taken downwind. Since

tracer flux and downwind concentration are known along with downwind hydrocarbon

concentration, one can work backward to find hydrocarbon fluxes. The assumption used is

simple. If the tracer release accurately mimics hydrocarbon release from vegetation, then

the downwind concentration ratios must equal the corresponding emission fluxes (Allwine

1985, Lamb et al, 1986, Arnts 1982).

The third technique relies on micrometeorologic surface layer theory. There are

several interrelated methods that have been employed in the determination of gas flux

from vegetation. Examples include Bowen ratio and flux-gradient methods. Knoerr and

Mowry (1981) used the Bowen ratio or energy balance method to estimate hydrocarbon

fluxes. This technique uses the relation: net radiation = latent heat exchange + sensible

heat exchange + photosynthetic energy use. The terms on the right can all be expanded in

terms of constants times gradients of water vapor, temperature, and CO 2 respectively.

Vertical measurements of those variables are made and diffusivities of vapor, sensible and

latent heat are assumed to be equivalent. Net radiation can also be measured directly and

therefore the latent heat term can be determined. One can then estimate the flux of any

compound of interest by comparing the calculated flux gradient of water vapor with the

gradient of the trace gas compound of interest.

Gradient profile methods again use the flux relation: flux = K dC/dz where K is a

vertical eddy diffusivity constant and dC/dz is the vertical gradient of the compound of

interest. K can be determined from vertical wind speed and temperature profiles following

the procedures outlined by Nieustadt (1978), Dyer (1974) and Benoit (1977) and

summarized in Lamb et al. (1985). Similar expressions are used for heat and momentum

fluxes which can be expressed in terms of nondimensional vertical profiles (based on

vertical temperature and velocity profiles). Empirical expressions for the non-dimensional

vertical profiles as a function of the Monin-Obukov length, z/L, have been developed by

careful experiments by a number of investigators. The expressions differ depending on the



stability of the atmosphere. The original expressions for heat and momentum fluxes can

then be solved for velocity and temperature as a function of z/L. Simultaneously solving

those expressions iteratively to yield best fit profiles (with best fit coefficients related to

K) will enable the determination of the diffusivities of heat and momentum. It is assumed

that the eddy diffusivity of mass (for hydrocarbon of interest) is equivalent to the

diffusivity of heat for all stability conditions. One thing to note: in forested regions, the

vertical profiles of wind speed and temperature are displaced upward by an amount based

on the tree height. It is necessary to make use of the zero-plane displacement height (d)

which is an imaginary surface where fluxes become zero. Also, at a height of d + zo where

zo is the surface roughness, the wind speed should equal zero. All heights are therefore

changed from z to (z-d) to incorporate this new parameter.

More recently, researchers have been using the Relaxed Eddy Accumulation

method for computing trace gas flux from vegetation (Guenther et al., 1996b; Geron et al.,

1997). Basically, three-dimensional winds are measured simultaneously with two

sampling bags, one for updrafts and the other for downdrafts. The flux is obtained by

taking the difference in concentrations between up and down air samples multiplied by the

standard deviation of the vertical wind speed.

3.4.2 Dynamic Flow Through Experiments

Our original intention was to use a vertical gradient technique to estimate

emissions of NMHC from the forest. The absence of a uniform fetch in the middle of the

forest in addition to the relative sophistication of the technique led us to favor an

enclosure method. By using a dynamic flow through the enclosure, we hoped to avoid

some of the factors contributing to plant stress which traditional bag enclosures suffer

from: increasing bag temperature and changing concentrations of CO 2 and H20 within the

bag. (Arey et al., 1995).

Our enclosure system consisted of a Teflon film bag supported on a stainless steel

frame. The cylindrical frame was about 25 cm in diameter and 35 cm tall yielding a

volume of just over 17 liters. We placed ambient air passed through a charcoal filter into a

large tedlar (polyvinyl fluoride) bag enclosed by black polyethylene to prevent

photochemical reactions. Other groups use true ambient air, making the assumption that



over the course of the experiment, the background concentrations will remain roughly

constant. Then they collect background and emission samples simultaneously, the former

from the inlet to the enclosure and the latter from the outlet. We preferred to have a

separate reservoir both because we could be sure the concentrations were constant and

also due to the difficulty we would have faced filling two sampling bags at once. The inlet

of a battery powered metal bellows pump was connected to the background bag with the

outlet hooked to a calibrated Matheson gas flow rotometer. As soon as the sampling bag

was placed over the branch and secured with a cable tie, the sweep air was allowed to pass

over the branch. The enclosure inlet was on one side of the bag and the outlet -on the far

side. Air flow was maintained at 4 liters per minute for almost 15 minutes until a steady

state was reached. K6nig et al. (1995) recommend at least 3 air exchanges to achieve

steady state. Over the course of the following 6 to 8 minutes, two 0.8 liter black

polyethylene covered tedlar bags with stainless steel valves were filled witth air from the

outlet. The internal temperature of the bag was monitored with a glass bulb thermometer

secured along the bottom of the frame. Since all of our samples were taken from branches

low in the canopy, the effect of direct sunlight on recorded temperature was not really an

issue. Figure 3.4.1 displays the schematic for our enclosure system.

We performed measurements on three separate days, each time sampling from two

different tree species. The background and sample air was analyzed with our GC system

within two days of the sampling time. Our intention was to sample from the most

/ branch

enclosure chamber
sample bag

Reservoir rotometer
Air

pump

battery

Figure 3.4.1 Schematic of our enclosure system. Sweep air was pumped from the
reservoir through the rotometer into the enclosure. Tedlar sample bags were filled
at the outlet on the opposite side from the inlet.



prevalent species in the forest, and indeed, we were able to obtain measurements from

four of the top six species (Castanopsis chinensis, Schima superba, Aporasa yunnanensis

and Cryptocarya concinna). The 100 m2 region immediately surrounding the sample inlet

contained two tree species (Aporosa yunnanensis and Acmena acuminatissima)

represented in the most abundant species but their branches were out of our reach. Our

initial pair of measurements came from two varieties (Sarcosperma larinum and Caryota

ochlandra) of tree that had several plants in the vicinity of the sample inlet but were not

major contributors to the forest biomass. By investigating those trees we hoped to not only

get a representative sample from the region as a whole but also from the small subset

where we were performing our in situ measurements. We did sample Aporosa

yunnanensis from a different site. That species had ten trees in the neighborhood of our

sample inlet in addition to its relative abundance in the forest as a whole. Table 3.4.1 lists

information on the dominant vegetation in the vicinity of our laboratory at Dinghushan.

After each experiment was performed, we clipped the enclosed branch so that we

could weigh the biomass both wet and dry. A Mettler balance was used before and after

the leaves were dried in a 60 'C oven to determine mass. Prior to drying, the surface area

of the leaves was calculated using a LI-COR model LI-3000 portable area meter, accurate

to one hundredth of a cm 2. The results of these measurements as well as the internal

enclosure temperature and expected incident PAR at the top of the canopy at the time of

sampling are recorded in Table 3.4.2. The actual values for PAR came from the base of

the mountain so they may not accurately reflect incident PAR, depending on the relative

angle of the sun.

Isoprene emission rates (gg C g'- h-') from individual branches were calculated

using the following equation:

E f(C - C ) (3.4.1)
b

where

f = the sweep gas flow rate in cubic meters per hour

Co = the isoprene concentration in jgg per cubic meter in the outlet gas

Ci = the isoprene concentration in jtg per cubic meter in the inlet gas
b = the dry foliar mass in grams



Error estimation can be made using a standard analysis. The random error in a quantity

dependent upon several variables is given by

a(F) =i)2

where

N = the number of variables

aF/aXi = the partial derivative of the function with respect to each Xi

oi = the standard deviation or error in each variable

(3.4.2)

In our case, we have four measured variables: two concentrations, one flow rate

and one mass. We assume our concentration random error at most is +10% and the same

standard error is used for the rotometer. It is likely that both of these errors are less. The

mass is measured accurately to 0.01 g. Table 3.4.3 shows the measured emission rate

results and gives an example calculation based on the uncertainty in our measurements.

Species Height (m) age (yr.) Leaf Ratio (%) Biomass Biomass Mean DBH
(Kg) Ratio (%) (cm)

Castanopsis chinensis* 23 235 0.92 32559.00 11.11 74.17
Schima superba* 24 85 2.54 29037.40 9.90 30.34

Aporosa yunnanensis* 25 22 7.97 11358.00 3.87 4.4
Acmena acuminatissima 26 30 3.48 12614.60 4.30 8.72
Cryptocarya concinna* 8.6 40 4.31 31331.04 10.69 11.58
Cryptocarya chinensis 7.6 40 2.72 11938.13 4.07 20.43

Species in 100 m2 area Height (m) age (yr.) number DBH (cm)
Averrohoa carambola 14 120 2 45.2
Aporosa yunnanensis 6 20 10 7.9
Sarcosperma larinum* 6.5 15 2 5.5

Caryota ochlandra* 15 30 5 22
Acmena acuminatissima 7 35 1 28

Macaranga sampsoni 5 20 1 5.2

Table 3.4.1 The top half of this table shows information regarding the top six species by biomass in the
broad region surrounding our laboratory at Dinghushan. These species account for almost 44% of the total
biomass. Also note the leaf ratio with the greatest percentages corresponding to the smallest trees (by DBH).
Since more of their mass is concentrated in the leaves, the leaf biomass ratio (leaf ratio times biomass)
differs form the total biomass ratio listed. The six tree species within the 100 square meters containing the
sample inlet are listed in the bottom half of the table. Only Acmena acuminatissima overlaps with the
dominant species types. The asterisk indicates a sampled specie.
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Table 3.4.2 Details from the dynamic enclosure experiments. The leaf surface area was measured before
drying the leaves. Enclosure temperature and incident PAR at the canopy top are shown. Complete shading
at the sampling sites implies significantly less PAR available to the enclosed leaves.

Species Dry Leaf Surface Sample PAR at Canopy

Weight (g) Area (cm 2) Temperature (oC) Top (gmol m- 2 s- )

Sarcosperma larinum 19.41 1316.19 29:2 491
Caryota ochlandra 14.07 1886.87 29.5 495

Schima superba 28.47 1117.85 28.0 479
Aporosa yunnanensis 11.12 1726.88 28.5 479
Cryptocarya concinna 23.57 2158.98 30.0 335 '
Castanopsis chinensis 35.62 2182.02 32.1 348

Table 3.4.3 Isoprene emission rates as calculated with equation 2.3.5 are given in the top half of the final
column. The lower half of the table demonstrates our error analysis for Caryota ochlandra following
equation 2.3.6. The emission rate error is based on equation 3.4.2.

Species Concentration Concentration flow Dry Weight Emission rate
out (pg m 3) in (pg m -3) (m3 h-') (g) (pg m-2 h')

Sarcosperma larinum 6.71 2.76 0.24 19.41 0.05 ±0.0 1
Caryota ochlandra 215.78 2.59 0.24 14.07 3.64 ±0.52
Schima superba 4.16 0.94 0.24 28.47 0.03 ±0.01
Aporosa yunnanensis 3.87 1.13 0.24 11.12 0.06 ±0.01
Cryptocarya concinna 252.83 0.82 0.24 23.57 2.57 ±0.36
Castanopsis chinensis 6.44 0.82 0.24 35.62 0.04 ±0.01

Variable Xi measured (i aF/aXi (o,F/aXi)2

value
Co Sample Concentration 215.78 pLg m3  21.58 pg m3  0.017 0.14

Ci inlet Concentration 2.59 pg m-3  0.26 gg m3  0.017 0.00

f flow rate 0.24 m3h-' 0.024 m3 h 15.15 0.13

b leaf biomass 14.07 g 0.01 g 0.26 0.00

Total error =(0. 14+0.13) o.5= 0.52
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Many reported rates in the literature are standardized to 1000 pmol m-2 S-' for PAR

and 30 'C temperature. Following the procedure recommended by Guenther et al. (1993),

our results can also be standardized. Measurements are converted using the following

equation:

I = Is*CL*CT (3.4.3)

where

I = isoprene emission rate at temperature T (K) and PAR flux L (gmol m-2 S-1)

Is = isoprene emission rate at Ts = 30 'C and 1000 gmol m 2 S-1

CL = correction factor for PAR derived from measurements

CT = correction factor for Temperature derived from measurements

The correction factors are defined by

CL= aCLIL (3.4.4)

and

exp CT, (- T)

C, = T (3.4.5)

1+exP cT 2(T-TM))
RTT

with

oC = 0.0027 + 0.0016

CLI = 1.066
R = 8.314 J K-' mol'

CTI = 95,000 J moll

CT2 = 230,000 J mol l

TM =314 K

We measured the temperature directly so the CT factor is trivial to determine. The

true PAR values incident at our branches is trickier to estimate. We know the approximate

value of PAR at the top of the canopy. Estimates of the extinction of PAR within the

canopy are given in Guenther et al. (1995) for a canopy with a leaf area index (LAI) of 5.
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The index is determined as projected area coverage by foliage per ground area such that

LAI of 5 implies 5 m2 leaf area for a 1 m2 surface area. A typical oak forest has an LAI of

5. Qualitatively, we can assume the Dinghushan forest to have a similar value. Based on

those results, the PAR reaching lower levels in the canopy is a factor of 14.6 less than that

of leaves at the top. If we assume our LAI is 5, we can calculate the appropriate standard

emissions for our sampled species. Geron et al. (1994) use a different scheme for

calculation PAR extinction within the canopy which predicts a factor of 10 decrease at the

lowest level for an LAI of 5 and light extinction of 0.5. Their equation is

PAR, = PAR - exp{-E . LAI[10)]} (3.4.6)

where

PARi = the PAR flux at canopy level i (ranging from 1 to 5 top to bottom)
EL = the light extinction coefficient for PAR (0.28 to 0.84)
LAI = the ratio of m2 of projected leaf area to m2 of ground area

Using data from the Dinghushan Biosphere Reserve booklet (1993), we

can get an alternative estimate of the extinction for PAR. They divide the canopy into

three layers and list the energy absorbed at each level of the forest. The lowest level of the

canopy where we sampled absorbs about 4% of the energy available from PAR. They

estimate over 80% of the incoming radiation is absorbed in the topmost level of the

canopy. Average effective radiation listed shows that 37 gpmol photons m-2 s-1 reaches the

lowest level which is just under 5% of the 766 gmol photons m-2 s 1 arriving at the top.

We might therefore infer from these results that the LAI for Dinghushan should be greater

than 5. Solving equation 3.4.6 for LAI given PARi = 0.05 PAR yields a value of 6.7 for

the LAI. These values are reasonable in light of measurements in the Amazon (Jacob and

Wofsy, 1990). For a LAI of 7 in the jungle, the radiation available at the lowest levels in

the forest are 3% of those at the top. According to the Jacob and Wofsy (1990), 98% of

the total isoprene emitted by the Amazon forest originates in the upper 10 meters of

canopy. Now we may estimate L in equation 2.3.8 based on our measurement of PAR at
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the canopy top and the approximate factor of 20 extinction. Our standardized values of

emissions for isoprene are shown in Table 3.4.4 along with the correction factors

calculated with equations 3.4.4 and 3.4.5.

Table 3.4.4 Standard emission rates at 303 K and 1000 gmol m-2 s' for our six sampled species at
Dinghushan as calculated by equation 2.3.7. Correction factors for PAR (CL) and Temperature (CT) are
shown. Rate is given as micrograms C per grams dry leaf mass per hour.

Species Emission rate CL CT Standard Emission
(.tg g -' h-') rate (g g " h')

Sarcosperma larinum 0.05 ±0.01 0.07 ± 0.04 0.88 ± 0.18 0.8 ± 0.5
Caryota ochlandra 3.64 ±0.52 0.07 ± 0.04 0.91 ± 0.18 56.1 ± 37.7
Schima superba 0.03 ±0.01 0.07 ± 0.04 0.76 ± 0.15 0.5 ± 0.3
Aporosa yunnanensis 0.06 +0.01 0.07 ± 0.04 0.81 + 0.16 1.1 ± 0.7
Cryptocarya concinna 2.57 ±0.36 0.05 ± 0.03 1.00 ± 0.19 55.2 ± 37.1
Castanopsis chinensis 0.04 ±0.01 0.05 ± 0.03 1.21 ± 0.24 0.6 ± 0.4

Some typical standard emission values for isoprene range from 32-110 jg g''h-'

for emitting species. Species with rates less than 0.5 jlg g-'h' are considered non-emitters

(Guenther et al., 1996c). Ki5nig et al. (1995) report emission ranges for various oak

varieties of 0.61-50.4 jlg g-lh-'. Our values are near this range. Two species, Caryota

ochlandra and Cryptocarya concinna, have appreciable emission rates while the other four

would be considered very low emitters of isoprene. These results are by no means

conclusive due to the number of assumptions we have made in addition to the fact that we

only sampled one branch from each tree. Most measurements reported are an average of

many separate experiments with different levels of PAR and temperature. The empirical

relations used to calculate standard emissions were developed for a different group of tree

species and may not be appropriate for those we sampled. Our estimates for PAR

extinction are based on an average reported for the forest system at Dinghushan.

Moreover, we sampled at several different locations within the forest and it is likely that

the canopy overhead gave varied amounts of coverage from direct radiation.

Next we must estimate a biomass factor for the forest as a whole which we may

multiply by our calculated emission rates to obtain an emission flux from the entire forest.
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Since we did not measure this quantity directly, we must estimate it from available data

and techniques. In their paper discussing global modeling of natural volatile

hydrocarbons, Guenther et al. (1995) relate foliar density (g m-2 ) to net primary

productivity (NPP). For a tropical seasonal forest, the peak foliar mass is expected to be

60% of NPP. NPP for the monsoon evergreen broad-leafed forest is given in the

Dinghushan Biosphere Reserve booklet (1993) as 2599 g m -2 yr.-'. This compares to 2050

g m-2 predicted by Guenther et al. (1995) for this type of ecosystem. The peak foliar mass

therefore for this forest is 0.6 x 2599 or 1559 g m-2. As expected, this is quite large in

comparison to some other forests. Often cited mid-latitude biomass density factors as

calculated by Lamb et al. (1993) include 470 g m-2 for a deciduous forest and 650 g m-2

for a coniferous one. An alternate method for arriving at the foliar mass is by using the

average specific leaf weight (SLW) and LAI. SLW was found to be 82.4, 72.8 and 60.4 g

m-2 for the three canopy levels at Dinghushan. The product of SLW and LAI gives an

estimate for the foliar mass. In our case, the sum of the three SLWs multiplied by our

estimated LAI of 6.7 yields a biomass factor of 1445 g m-2. This agrees quite well with

our other estimate. Taking the average and standard deviation for these three estimates,

we obtain a biomass factor of 1410 ± 170 g m-2. Note that this value is the peak foliar

mass.

Using the biomass factor, we can obtain an estimate for the isoprene emissions

from the entire forest. The evergreen broad-leafed region we studied covered 125

hectares. We sampled four species where we know their biomass ratio in the forest. If we

weight the emission rate times the biomass ratio, we obtain an average flux estimate of 6.1

+ 4.2 gg C g 'h ~' for the forest type representing over a third of the forest by biomass.

Therefore, the isoprene flux during the summer months at Dinghushan was 1410 ± 170 g

m-"2 multiplied by the average emission rate giving 8.6 ± 6.1 mg C m-2 h-'. Geron et al.

(1997) list the results of several studies in the United States with a range of 0.07 to 9.33

mg C m-2 h" . The near zero value was obtained for evening, night and early morning

fluxes whereas the maximum flux estimate came from a study in an oak grove. Oaks are

known high isoprene emitters.
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We also measured terpene fluxes during these experiments but the results are more

uncertain due to analytical problems surrounding the Nafion dryer. Any a-pinene emitted

was most likely removed by the dryer based on our standard runs and comparison of

whole air runs with and without the dryer. Standard runs showed increases in y-terpinene

and sabinene concentrations and decreases in levels of limonene. Results for myrcene and

camphene were inconsistent. That being said, we found detectable terpene emissions from

four of the tree species sampled. Not surprisingly, the levels are generally smaller than

those encountered in the literature. Equation 3.4.1 was used to calculate the fluxes and

results are give in Table 3.4.5. The range for emissions is based on the results of standard

runs, comparing the average response with and without the Nafion dryer. Camphene

losses were about a factor of five, myrcene ranged from a gain of 50% to a factor of 2

loss. Sabinene showed close to a factor of two gain and y-terpinene a factor as high as

eight. To obtain a standard emission rate, we applied a general equation for terpene

emission temperature dependence from Guenther et al. (1993)

M = M, -exp(/f(T - T)) (3.4.7)

where the subscript s represents the standard value and 3 is an empirically determined

coefficient equal to 0.090 ± 0.025. The extrapolation to regional emissions for terpenes is

less promising than with isoprene as we have biomass information on only two of the four

Species Terpene Emission rate Standard rate
( g g h") (jig g h-')

Sarcosperma larinum camphene 0.02 ± 0.07 0.02 ±0.07
myrcene 0.03± 0.03 0.03 ±0.03

Caryota ochlandra myrcene 0.05± 0.05 0.05 ±0.05
Schima superba camphene 0.09± 0.37 0.11 ±0.45

7-terpinene 0.32± 0.16 0.38 ±0.19

sabinene 0.05± 0.03 0.06 ±0.03
Aporosa yunnanensis camphene 0.02± 0.06 0.02 ±0.07

myrcene 0.03± 0.03 0.04 ±0.04

Table 3.4.5 Terpene emission results from our enclosure study. The emission rate is calculated using
equation 2.3.5. Uncertainties for the emission rates were determined by using the results of standard
analyses which allowed quantification of the effects of the Nafion dryer on terpene peak areas. By using
equation 3.4.7, the rates were converted to a standard rates at 303 K.
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terpene emitters representing under 14% of the total biomass. If we assume that this is

representative, we may use the same biomass factor 1410 ± 170 g m-2 to obtain emission

rates. The percent biomass weighted emission rate for terpenes from Schima superba and

Aporosa yunnanensis is 0.06 ± 0.07 jgg g '-1 h'. This leads to a flux of 0.08 ± 0.10 g C m-2

h-'.

3.5 Intensive Phase: Results and Discussion

3.5.1 NMHC data summary

We were able to amass almost 1200 data points for many of the NMHC species

identified during our intensive campaign. Figure 3.5.1 displays our entire data set minus

those measurements we deemed questionable. Quite a number of issues were dealt with to

sort out the good from the questionable data. Between Julian days 183 and 192 we

discarded light hydrocarbon data from ethane to butane. Due to our inability to regulate

the collection temperature, we saw high variability in the levels of light species. Rather

than attempt to pick out those values that seemed reasonable, we chose to eliminate data

from the entire period. Though it was not until day 197 that we started using liquid Argon,

we did become proficient at regulating the collection temperature and therefore retain

information on all species except for ethane between days 192 and 197. Pentane,

cyclopentane and hexane all suffered from contamination apparently from a piece of

Teflon tubing in the sampling line which was removed on day 192. Some species like

methylcyclohexane and cycloheptane have significant gaps in their record as they

periodically went below the detection limit of the instrument. The first five days for the

heavy hydrocarbon fraction are without data as the transfer to the second chromatographic

column was inconsistent. The next 10 day period had many points removed as it was clear

that proper gas transfer had not occurred. Six different heavy species were seen to have

contamination from the first hydrogen carrier gas. To address this, at day 219 we changed

to a new tank and added an oxygen trap to the carrier gas line which led to a steep

decrease in the concentrations obtained for cyclooctane, nonane, 1-decene, ethylbenzene

and the xylenes. Curiously, the contamination did not appear in the zero air runs. Possibly

some interaction between some contaminant in the carrier gas and whole air led to higher
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concentrations of those compounds. The terpenes which are presented have only one week

of data. For that particular week alone we did not use the Nafion dryer to dry the air

sample and relied on Ascarite to do double duty as a remover of both CO2 and H20.

We analyzed the graphed data for the median value, interquartile ranges and the

outer decile values. That information is presented in box and whisker form (Figure 3.5.2).

Some species show average concentrations above the 90th percentile. This is due to

sample concentrations well above the median being averaged. One can clearly see that the

light alkanes have wide ranges as a result of the local propane emissions. The isoprene

numbers were obtained from data prior to Julian day 191 and the terpene information

Table 3.5.1 Summary of some commonly measured NMHC species from this study and three others. The

number of samples for each study represented are 81 for the Amazon, over 600 for Massachusetts and
roughly 20 for Canada. The median value is given in ppbv as are [interquartile ranges] when available.

Compound This work Amazona MassachusettSb  rural Canadac

ethane 1.27 [0.93-2.17] 1.17 [0.73-1.55] 1.227 0.90/0.85

ethene 1.41 [0.81-2.51] 1.24 [0.73-1.68] 0.11/ 0.18

acetylene 0.88 [0.52-1.51] 0.33 [0.22-1.03] 0.243 0.09/ 0.19

propane 2.66 [1.35-5.78] 0.48 [0. 31-1.69] 0.461 0.08 / 0.33

propene 0.41 [0.24-0.83] 0.28 [0. 22-0.67] 0.05 / 0.04

i-butane 1.34 [0.78-2.95] 0.22 [0. 06-0.43] 0.079 0.01 / 0.10

n-butane 2.76 [1.57-5.98] 0.09 [0.09-0.66] 0.167 0.01 / 0.20

t-2-butene 0.04 [0.03-0.09] 0.00 / 0.01

1-butene 0.08 [0.04-0.16] 0.03 / 0.03
sum propyne

c-2-butene 0.03 [0.02-0.07] 0.06 / 0.04
sum i-butene

i-pentane 0.82 [0.60-1.12] 0.25 [0.06-1.00] 0.02 / 0.18

n-pentane 0.17 [0.10-0.31] 0.09 [0.06-0.23] 0.079 0.01/0.12
sum cyclopentane

isoprene 0.67 [0.25-2.06] 2.65 [1.39-3.38] 0.25 / 0.03

2-methylpentane 0.17 [0.11-0.24] 0.01 [0-0.05] 0.05/0.12

3-methylpentane 0.10 [0.06-0.15] 0.02 [0-0.05]

hexane 0.07 [0.04-0.13] 0.03 [0.02-0.06] 0.022 0.03 / 0.04

benzene 0.87 [0.56-1.40] 0.10 [0.07-0.15]

toluene 0.60 [0.39-0.99] 0.72 [0.33-2.67]

ethylbenzene 0.03 [0.02-0.05] 0.02 [0-0.04]

m + p-xylene 0.06 [0.04-0.10] 0.12 [0.02-0.59]

o-xylene 0.05 [0.03-0.09] 0.03 [0.01-0.10]

a-pinene 0.46 [0.32-0.79] 0.13 [0.09-0.18]

camphene 0.13 [0.10-0.19] 0.04 [0.01-0.06]

a Zimmerman et al. (1988) from July and August 1985
b Goldstein et al. (1995b) July 1993
c Bottenheim and Shepherd (1995) July 1991 for two sites.
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Figure 3.5.1 NMHC mixing ratios by volume from Dinghushan during the summer of 1996. The
horizontal axes are Julian day covering a span from June 28 (day 180) to August 31 (day 245) with the
exception of the terpenes, which have data from the week of JD 220. The vertical axes are log scale mixing
ratio (by volume). Calibration from day 180 to 225 was performed by permeation tubes and Relative Molar
Response (RMR). An MIT produced standard tank, daughter 5199, was used for calibration from day 226
forward. This allowed direct calibration of over thirty NMHC with the balance calibrated using RMR.
Conversion to the NCAR(NIST) calibration scale is achieved by using ratios in Table B.3 in the Appendix.
Many of the lightest hydrocarbons lack data during the first several weeks as sample preconcentration was
performed using liquid nitrogen vapor rather than submersion of the sample loop in liquid Argon. Stable
temperatures were difficult to maintain with the vapor technique. Contamination from supplied GC gases
prevented accurate concentration determination for many of the heaviest species prior to day 219 at which
point we added more in-line traps and replaced the carrier gases.
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Figure 3.5.2 Box and whisker plots for summer 1996 data. The square is the median value with the solid

rectangle showing the interquartile range. Tenth and ninetieth percentiles are given by the whiskers. The x
marks the average value. Note for some species the average is even greater than the ninetieth percentile
due to a few points orders of magnitude above the rest.
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includes only those data where no Nafion dryer was used. It is interesting to note the

relative ranges of benzene and toluene. Most published concentrations for these species

show toluene levels a factor of two greater than benzene. For our data set, they are

comparable. This could be due to the influence of local biomass burning or some other

source relatively high in benzene. Ethene levels may also be influenced by biomass

burning. There did not seem to be increased levels of ethene when propane values spiked

yet the mixing ratio is quite high at times. Blake et al. (1994) report that relative to

ethane, ethene may be enhanced by a factor of four in biomass burning plumes and

benzene levels are more than two times those of toluene. We tabulate some other

representative hydrocarbon values for comparison (Table 3.5.1).

We measured a wide variety of hydrocarbons at Dinghushan and determined a

subset of the data which was representative of background values as outlined in section

3.6.4. Analysis of these background values revealed some diurnal variation for certain

groups. Light alkenes, including the butenes, propene and ethene and ethane all showed

maximum concentrations during the early afternoon. Factors of two to four increases

from nighttime lows were observed. This could point to a biogenic source for these

species. Similar variations were seen for the seven pentene isomers detected with

afternoon concentrations as much as 3 times greater than those found at night. The

primary difference is that the pentenes reached maximum concentrations before noon

while the lighter species increased into the early afternoon.

Other species behaved in an opposite manner. The hexane isomers had maximum

concentrations before dawn which were roughly 50% greater than the minimum values in

the late afternoon. Benzene, toluene and 3-methylhexane had similar variation. The light

alkanes did not display diurnal trends. Concentrations for those species had no distinct

pattern. This may be due to the influences of the local propane source. Since decay from

a propane emission event may take place over half a day, our filtering methods may not

have been sufficient to remove all influence from our "background" air. For

hydrocarbons with shorter lifetimes, this effect would be less of an issue.
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The results of our biogenic hydrocarbon in situ measurements after day 192 are

somewhat disappointing. With isoprene, prior to day 192, we are quite confident in the

data. After we switched the inlet line from stainless steel to Teflon, there was a decided

change in the behavior of the isoprene. A number of explanations can be put forward but

none is really satisfying. First, it might seem that there could be either production in the

line or degassing from the Teflon. To our knowledge, no one has reported problems of

this sort for isoprene. Goldstein et al. (1995) reveal that their Teflon sampling line had

occasional contamination but it was on the order of 20-30 pptv, not on the order of 600

pptv that is necessary to explain our results. In any case, if it were degassing, we would
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Figure 3.5.3 Diurnal isoprene data from days 180 through 192. The horizontal axis is diurnal hour and
vertical axis is ppbv. The open squares represent individual data measurements. The solid squares are the
average for that diurnal hour. An afternoon maximum in isoprene mole fractions is clearly apparent.
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Figure 3.5.4 In (a) we show the relationship between log [isoprene (ppbv)] and temperature. The slope

agrees well with values obtained by other researchers (see Table 2.1.1). The bottom graph (b) gives the
plot of isoprene concentration versus PAR. Light saturation of leaf emission is reported to occur between
1000 and 1500 gmol s' m-2 (Fehsenfeld et al. 1992). This saturation is evident here as shown by the
solid line (a cubic polynomial fit to the data).
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expect that the isoprene levels would decay into the evening as temperature and the

amount of adsorbed isoprene declines. That is not the case. We see gradually increasing

levels of isoprene from early evening into the next morning. Production within the line

would be unheard of, as no researcher has reported isoprene sources during the night.

Another possibility is that some compound was coeluting with isoprene. We

have no reason to believe this to be the case. First, we should have seen it before the line

switch if the compound was in the atmosphere. Second, if a compound was degassing

from the Teflon, it is reasonable to expect over the course of the summer that the levels

would decrease. The most definitive proof that coelution is not to blame is mass

spectrometry runs performed on flask samples in our MIT laboratory (Hewlett Packard

model 5972 Mass Selective Detector). The flasks had been filled with air that came

through the same inlet as in our intensive samples. There were no other ion fragments

detected with isoprene. It is possible that the potential coeluter was not present during

the daytime as all flasks were filled between 8 AM and 2 PM. The daytime data before

and after the line change does look very similar.

The variation is such that sometime shortly after sunrise we see a decline in the

levels of isoprene. This corresponds to a change in the local wind direction most often

and also is possibly related to ventilation as the boundary layer develops. Between the

hours of 8 AM and 7 PM the variation is as we would expect, peaking in mid-afternoon

and declining into the evening as emissions from vegetation decay with the declining

PAR. After sundown, we observe a recovery in the isoprene levels. The local wind

direction reverses at this time coming mainly from the southwest. Similar values to the

nighttime mixing ratios we see after day 192 have been reported in the past in the

boundary layer. Vertical profiles of isoprene recorded by Zimmerman et al. (1988) in the

Amazon show that isoprene concentration remains high aloft throughout the night

relative to the surface. Mixing ratios above 1 ppbv at the surface during the night have

been reported before, but the levels always are decreasing from higher afternoon values
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(Montzka et al., 1993). It could be that at night we are seeing air from aloft which has

subsided.

We plot all of the isoprene data points taken during daylight hours to investigate

temperature and PAR dependencies of isoprene concentration. The results are given in

Figure 3.5.4. The curve fit in Figure 3.5.4 has a slope of 0.057 for all points and 0.059

for those points taken before day 192. These values agree with those reported by other

researchers as summarized earlier in Table 2.1.1. Figure 3.5.4(b) also agrees qualitatively

with previous observations. Fehsenfeld et al. (1992) state that the isoprene emission

rate at a given temperature increases with increasing PAR until light saturation is reached

around 1500 pmol m-2 S-1. From our data it is apparent that the cubic fit line reaches a

maximum just above 1500 and starts to decline thereafter. This effect may be more

pronounced were we to plot PAR and isoprene for specific temperatures rather than

including values taken over a ten degree range.

We report measurements of six terpenes between day 220 and 227. The time

series of a-pinene and d-limonene demonstrate the effect of the Nafion dryer on the

terpenes. We performed analyses without the dryer from day 220 to late in the evening

on day 223 when we switched back to using a dryer. At that point, a dramatic drop is

seen in the level of pinene detected. The dryer was removed once again on day 226 and a

clear increase in concentrations is seen for pinene and limonene. Sabinene shows a slight

increase in mixing ratio when the dryer is in line while the other three species show no

discernible effect one way or the other. There is a fair amount of scatter which is typical

of terpene measurements reported in the literature (Yokouchi et al., 1983). Consistent

diurnal changes are not apparent. For a-pinene, the nighttime concentrations on days

222, 223, 226 and 227 on average are higher than the daytime levels. There are some high

peaks during the daytime as well. Initially we suspected that some of this behavior was

due to coelution because it appeared that these afternoon peaks were corresponding

with the local propane pollution. In reality, they lag the pollution plumes by a couple

hours. This trend is true for other species not found in the pollution source as well. It
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may also be that the local chemistry is disturbed by the huge concentrations of light

hydrocarbons such that other reactive species with local sources are allowed to build up

in the boundary layer. Competition for the OH radical becomes greater when some

background hydrocarbon values increase by three or four orders of magnitude.

3.6 Intensive Phase: Interpretation

3.6.1 Indirect determination of OH concentrations

Although the frequent light hydrocarbon releases from near the sample inlet

made determination of true background concentrations of those species difficult, they

did afford a chance to measure OH. We assume that the source is highly local and short-

lived since initially we see a large spike in concentrations which gradually dissipates. By

assuming we can separate the effects of transport and chemistry as in equation 2.2.1, we

can calculate OH. We will use the fact that hydrocarbons react at different rates with

OH to ascertain OH levels in the forest. It is necessary to designate a tracer

hydrocarbon, one whose reaction with OH is very slow in comparison to the effects of

transport. This tracer will provide information on the nature of advection and

turbulence. Once the Km is determined, the equation can be solved for OH using

knowledge of the time evolution of other hydrocarbons.

We solve first for Km using ethane, propane and sometimes propene

concentrations at time zero and time t; the time step ends up being about an hour as our

measurement frequency was roughly hourly. It is necessary to know the background

concentration of hydrocarbons entering the sample area, as they will influence the time

evolution of local hydrocarbon levels. To minimize the effects of the background (of

whose level we are somewhat uncertain), we tried to choose pollution spikes which

were orders of magnitude above background. Depending on the compound, we can

follow the decay in concentration over several hours until they approach background.

Unfortunately, the calculation is quite sensitive to the value chosen for Km which is why

we use three separate calculated values. Ethane background concentrations and maximum
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concentrations at the initial time differ by two orders of magnitude while propane

background and maximum concentrations differ by as many as four orders of magnitude.

The source of the polluted plumes was rich primarily in propane, 2-methylpropane and

butane, so these three gases all have very large differences between the peak measured

mole fractions and the background level. We therefore use calculations for Km from

propane when deriving OH levels for 2-methylpropane and butane. We took the 25th

percentile value from all measurements as being true background levels for the forest.

Since many of the measurements used in compiling percentiles were from the polluted

plumes, it is quite possible that the 10th percentile value would be even more

appropriate. The magnitude of the difference between background and maximum ethane

are similar to those for the butenes, propene and the pentanes so the Km values used for

those species were calculated using ethane. In the August 8 case, propene was used to

determine Km for the butenes.

The solution to equation 2.2.1 is

[HC], = C + ([HC], - C) -exp(-t -(K, + kHc[OH])) (3.6.1)

where

C = K,[HCb] (3.6.2)
K,,, +kH[OH]

Solving for Km is simplified if we assume that Km >> kHc[OH]. In that case, the constant

C simplifies to [HC]b which is the hydrocarbon mixing ratio of the background. Km is on

the order of 4 x 104 s' or larger for most cases and [OH] can be conservatively given a

maximum concentration of 1 x 107 molecules cm-3. For ethane, we expect Km to be more

than 100 times kHc[OH] and solving for Km is trivial. For propane, the factor drops to

50 and the error in [OH] from the assumption that Km >> Kpropane[OH] is about 1%.

Propene is not an ideal candidate for determining Km since its reaction rate with OH

times [OH] is of the same order as Km (about half). To determine Km accurately from
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propene, it is necessary to use a calculated value of [OH] from other longer-lived

hydrocarbons in equations 3.6.1 and 3.6.2.

Once we have determined the value for Km, we proceed to solve for [OH] using

eight species which were seen to jointly increase as they apparently had a common

source. The results of several of these calculations for different times are given in Table

3.6.1. Often a trend for the estimated OH values arises from this type of analysis such

that the more reactive species indicate lower OH levels than the less reactive ones

(McKeen et al, 1990 and references therein). In their theoretical study of the problem,

McKeen et al. (1990) demonstrate that it is not valid to separate the transport and

chemistry processes in many cases. They specifically label vertical mixing and

horizontal diffusion as inseparable from chemistry when the hydrocarbon source is

continuous in time; spatial gradients caused by chemistry also play a role. They claim

separability should be acceptable for single pulse emissions. They also state that the

Table 3.6.1 Results of OH calculations based on time evolution of reactive hydrocarbon concentrations.
Ten species are used: the eight listed here in addition to ethane and propane from which the mixing
coefficients were derived. The average value for [OH] is given here (molecules cm3). The slight increase
in PAR may indicate more radiation available for OH production through photolysis of ozone, yielding a
greater concentration on August 28 versus August 8. Wind velocity is an instantaneous measurement at
the hour nearest to the sampling time.

Compound August 5 August 8 August 28

[OH] Km specie [OH] Km specie [OH] Km specie

propene 1.9 ethane 8.0 ethane

2-methylpropane 9.6 propane 6.1 propane 5.2 propane

butane 10.0 propane 8.4 propane 9.3 propane

t-2-butene 2.9 ethane 2.5 propene 2.6 ethane

1-butene 5.4 ethane 4.2 propene 10.4 ethane

c-2-butene 3.0 ethane 2.7 propene 2.9 ethane

2-methylbutane 8.1 propane 6.2 ethane

pentane 4.0 propane 6.3 ethane

Average value 5.6 + 3.2 x 107 5.2 + 2.2 x 106  6.4 + 3.3 x 10
molecules cm3  molecules cm3  molecules cm -'

Wind Velocity 0.6 m s' west calm 0.6 m s' west southwest

PAR Not available 1.28 tmol s- m2 1.38 ltmol s' m
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results of this indirect OH radical determination method are most accurate when the time

period studied is short and the OH reactivity of the sampled hydrocarbon is low. Other

researchers conclude that the discrepancy is due to unaccounted for chemical

interactions (Blake et al., 1993). The latter authors also note that predicted OH levels

from hydrocarbons with significant 03 reaction rates will be lower than those determined

by considering chemical loss through reaction with OH alone. Kramp and Volz-Thomas

(1997) follow a plume and take advantage of an approximate Lagrangian reference frame

which largely eliminates the advective part of the flux divergence. We tried to minimize

these transport effects by choosing sample times with low wind values.

Our results show the trend found in earlier studies to some extent with the more

reactive species predicting lower OH levels The criteria outlined by McKeen et al.

(1990) for OH agreement among a set of reactive hydrocarbons seem to be met for our

case. The sampling time is short and the source should also be short-lived as it is derived

from a local propane stove. Possibly the assumption of a short-lived source is in error or

a second puff emission occurred. Also, since the spatial gradients of species within the

plume may change with time due to chemistry, the diffusion characteristics may not be

exactly the same for the relatively non-reactive specie used to determine Km and the

reactive compounds. Quantitatively, our results show fair agreement with OH

predictions made for a region outside of London (Blake et al., 1993) and in Germany

(Kramp et al., 1997). The predicted concentrations were 1.7-4.1 x 106 and 5-8 x 106

molecules cm-3 respectively. Model studies of the Amazon predicted lower levels of OH

in the boundary layer, with a maximum of 2.4 x 106 molecules cm-3 reached mid-

afternoon (Jacob and Wofsy, 1990). Our average value was 5.7 x 106 molecules cm 3

with a range of 1.9-10.4 x 106 molecules cm-3 and standard deviation of 2.8 x 106

molecules cm'3 .

3.6.2 Estimation ofIsoprene Flux

We can use our estimates of OH concentrations along with our isoprene

measurements to calculate the isoprene flux from the surface by equating the flux to the
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column destruction rate due to OH and 03 We must make an assumption about the

height of the boundary layer as well. The equation to be solved is

h

= f (ko [OH]+ ko, [O]) [Is]dz (3.6.3)
0

(kon [OH] + k03 [03]) [MhX1  (3.6.4)

where

koH, ko3= isoprene rate constants for reaction with OH and 03
h = height of the mixing layer

[ ] represents average value over the altitude range 0 to h

We take h to be 1.5 ± 0.5 kilometers. We only have surface measurements of

isoprene and predicted OH (5.7 ± 2.8 x 106 molecules cm-3). Using vertical profiles of

isoprene from Ayers and Gillett (1988) and Zimmerman et al. (1988), we assume that

isoprene concentrations at h will be roughly half those seen at the surface. The average

value and standard deviation of isoprene concentrations from our daytime measurements

are 1.91 ± 1.19 ppbv. We estimate average isoprene levels in the boundary layer will be

75% of that value. Our experiments measuring OH occurred in mid-afternoon and would

be representative of maximum daytime OH concentrations. A reasonable estimate of the

daytime average OH would be half of our maximum measured concentration. The

altitude average of molecular density [M] is about 2.42 x 1025 molecules m3 . Rate

constants for reaction of isoprene with OH and 03 are 1.01 x 10-10 and 1.43 x 10- 7 cm 3

molecules" s-' respectively (Atkinson, 1990). Evaluation of equation 3.6.4 yields an

isoprene flux of 5.6 + 4.9 mg C m-2 h-'. If there are other processes causing the removal

of isoprene, such as deposition or other chemical loss pathways, the flux could be

underestimated. At the same time, the OH values we have estimated may be near

maximum values for a typical afternoon, which could bias the result high. Despite the
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many assumptions used to determine OH with equation 3.6.4, our value determined by

this method compares remarkably well to our estimate of 8.6 + 6.1 mg C m-2 h-' which

we derived from the enclosure experiment.

3.6.3 Impact of biogenic NMHC on local OH

Nonmethane hydrocarbons play an important role in the HOx budget of the

troposphere and partitioning within the family between OH and peroxy radicals.

Modeling studies of the 1993 Tropospheric OH Photochemistry Experiment gave 110%

greater OH than the in situ measurements when the runs included only CO and CH4

hydrocarbon chemistry. This highlights the importance of NMHC as an OH sink in the

troposphere (Mount and Williams, 1997; Goldan et al., 1997). Young et al. (1997)

report that isoprene can reduce the oxidative capacity of the local atmosphere in the

boreal forest they studied when NOx levels are low. The chemical loss rate of OH

outweighs its production and recycling through HO2 + NO. Results from a second

modeling study (Fehsenfeld et al., 1992) confirm that in low NOx environments, a

reactive NMHC like isoprene can lead to a five-fold decrease in OH. At appreciable

NOx levels the reduction in OH is less than 50%. Modeling of terpene chemistry in a

coniferous forest revealed that near surface OH levels could be suppressed by a factor of

five when terpenes were included (Hov et al. 1983).

We can assess the impact of biogenic nonmethane hydrocarbons on local atmospheric

chemistry by investigating the loss frequency of OH due to each species. The reaction

rate times the concentration of each hydrocarbon gives this loss frequency. In Figure

3.6.1 we have plotted the relative impacts of 52 species that were measured at

Dinghushan. Hydrocarbon concentrations were taken as the mean values obtained over

the summer. Those species whose OH removal frequency was low were grouped with

other like species. The Figure displays the ratio of the loss rate due to an individual

hydrocarbon or group of hydrocarbons to the loss rate obtained for CO at its median

value of 152 ppbv. The relative impact of isoprene and the terpenes is quite large.
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Figure 3.6.1 Ratio of the loss frequency of OH (s-l ) with the median value(s) of an individual or
sum of hydrocarbons to loss frequency with median CO concentration 152 ppbv. Loss frequency is
caluculated as <[trace gas]>k where k is the rate constant for reaction with OH (from Atkinson, 1990)
and <[trace gas]> is the mean concentration detected. The Y-axis shows the specie(s) included with the
total number of species in parentheses. TNMHC is total non methane hydrocarbons. Note that isoprene
and the terpenes account for over 80% of the potential OH loss from hydrocarbons. This percentage
would be even higher were the median concentrations of anthropogenics reflective of "background" air.

Isoprene is five times more efficient at removing OH than CO. In sum, isoprene and

terpenes account for over 80% of the loss frequency for all hydrocarbons combined;

they are five times more effective than CO at OH removal. The impact of these biogenic

hydrocarbons may actually be even greater than that for two reasons. First, the frequent

pollution events raised the median level of many of the anthropogenic hydrocarbons. We

would expect the real background median for non-terpenic and non-isoprene NMHC to

be considerably lower. If this is true, the relative biogenic impact would obviously be

heightened. Second, the isoprene OH reaction products methylvinylketone (MVK) and

methacrolein also efficiently consume OH, further amplifying the impact of isoprene. In
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addition, much of the carbon in the NMHC may end up as CO, which will further react

with OH.

3.6. 4 Multi-gas Correlations

High frequency in situ measurements have a distinct advantage over flask

measurements. Many different gases can be measured simultaneously as we have done

in this study. Since ozone and nitrogen oxides are not stable in canisters, those species

are not appropriate for a flask sampling effort. We observed several different categories

of air masses as determined by a variety of correlations between measured species. We

classify the main types as background, regional anthropogenic pollution, local propane

pollution and biomass burning. Figures 3.6.2 and 3.6.3 display nineteen hydrocarbons,

NOx, and CO over a six and five day period respectively.

We used several approaches to identify air masses of different origins.

Inspection of the trace gas plots over time provided an initial indication of which species

were related. Also, correlation coefficients were determined for each pair of species,

indicating groups of compounds that moved in concert. A third technique, principle

component analysis was performed on a subset of seventeen representative species. The

final piece of information used was wind data from NCAR reanalyzed wind fields.

These four means of data inspection were used to identify the different types of air

masses observed at DHSBR.

The simplest method, aligning all species in time, gave the first indication that we

sampled several distinct air mass types. The first most obvious features were the data

spikes for the alkanes, propene and the butene isomers. There were little or no changes

seen for NOx, CO or the aromatic compounds. These episodes were undoubtedly due to

an immediately local propane source as our inspection of the local area within several

hundred meters of our sample inlet revealed that propane was used for cooking. The

second relevant features were NO and CO pollution spikes. The largest of these were

accompanied by increased concentrations of a broad variety of hydrocarbons: aromatics,

hexane isomers, light alkenes and acetylene. These air masses based on their duration and
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composition seemed to be derived from a broad anthropogenic source, most likely from

the coastal cities of Guangzhou and Hong Kong. Our wind data confirms this. A third

group of related species was also observed which contained many of the same

compounds as the anthropogenic air masses. The major differences were that the

concentrations of methylpentanes were not enhanced and increases in CO and NO were

not as pronounced. Based on reports of the most common hydrocarbons present in

biomass burning plumes (Ayers and Gillett, 1988, Blake et al, 1994; Mauzerall et al.,

1998) and the knowledge that local residents collect leaf litter and branches for fuel, we

identified these samples as air influenced by biomass burning. Those measurements that

were not identified as one of the above three categories are assumed to be background.

We chose the days for Figures 3.6.2 and 3.6.3 to reflect the three major pollution types.

As a result, very little of the plotted points are representative of background air.

We next performed correlations between each pair of species. To investigate the

propane pollution events, we split the data into two groups, one with propane levels

above 4 ppbv ( 365 points) and the other with propane below that level (657 points). In

the high propane group, the correlation coefficients (p) between the light alkanes ethane,

propane, 2-methylpropane, butane, and 2-methylbutane were all above 0.87. This

compares to a p less than 0.4 for the relationship in the low propane group. For c-2-

butene and t-2-butene, the p value is 0.6-0.7 with the light alkanes in the high propane

case and is close to 0.2 in the low propane case except for ethane, whose correlation

rises to almost 0.8. In contrast, p is generally less than 0.1 between the alkanes and

ethene, propene, 1-butene, 1,3-butadiene, acetylene, NOx and CO. The correlation

between these two groups is greater (as high as 0.3) in the low propane case, though

only for ethane do the coefficients reach values greater than 0.5. For the other species, in

general, the correlations are stronger in the low propane case. We take the strong

correlations seen among the light alkanes and to a lesser extent, between alkanes and the

2-butenes for the high propane samples as an indication that these species are all derived

from a common source.
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We also split our CO observations into three regimes, very clean air (CO<I 10

ppbv with 69 samples), average background CO (11 Oppbv < CO <200 ppbv with 122

samples) and polluted air (CO>200 ppbv with 79 samples). The first two cases had p

< 0.2 between CO and all hydrocarbons and NO. For the polluted cases, significant

Biomass Average Biomass s.d. Anthropogenic Anthropogenic
AHC/AC 2H 2  Average s.d.

AHC/AC 2H2
ethane 3.11 0.87 0.66

ethene 3.64 1.78 1.16
propane 0.92 1.15 0.76 1.85
propene '1 1.62 0.67 0.73
2-methylpropane 0.44 0.69 0.35 0.89
utane 3 2.40 0.73 1.92

t-2-butene 0.12 0.12 0.08 0.11
1-butene g6 0.27 0.12 0.13
c-2-butene 0.09 0.09 0.09 0.17
2-methylbutane 0.03 0.18 0.35
pentane 0.07 0.08 15 0.16
1,3-butadiene MT 0.33 0.08 0.08
3-me-1-butene 0.02 0.05 0.01 0.01
cyclopentene 0.02 0.02 0.01 0.02
t-2-pentene 0.03 0.04 0. 0.09
2-me-2-butene 0.08 0. 16 0.06 0. 11
1-pentene 0 I I i 0.07 0.04 0.02
2-me-l-butene 0.02 0.04 0.03 0.03
-2-pentene 0.02 0.02 0.01 0.04

cyclohexane 0.00 0.01 0 .0 3  0.05
2-methylpentane 0.00 0.04 0.17 0.17
3-methylpentane 0.00 0.02 0 2 0.15
hexane 0.02 0.02 0.17 0.17
3-methylhexane 0.01 0.02 0 ..;io , 10 : C ..1 0. 11
benzene 0.21 0.46 0.13 0.64
toluene 0.09 0.23 8 0i 0.96
NO 0.35 0.81 3.7. 4.38

Table 3.6.2 Ratio summary for biomass and regional anthropogenic episodes. The ratio is determined
by taking the difference between peak and minimum episode concentration for each species divided by the
difference in acetylene concentrations for the same two samples. This "enrichment factor" aids in the
characterization of both air mass types. Shaded values indicate a higher factor, representative of the
particular air mass type. Relative enhancements of the light species are seen in biomass samples. Greater
enhancements of the heavier alkanes, toluene and NO are observed for anthropogenic samples. Note the
ratio of benzene to toluene in the biomass average is 2.3 which is similar to that observed by Blake et al.
(1994). The standard deviations (s.d.) for the ratios are quite high, which may limit the significance of
these results.
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correlations (p > 0.6) were seen between CO, NO, the pentene isomers, the hexane

isomers, 3-methylhexane and toluene. This category corresponds to our regional

anthropogenic air masses.

Principle component analysis was performed with seventeen species (16

hydrocarbons and NO). The first three eigenvalues/eigenvectors accounted for almost

90% of the variance. The primary eigenvector (59% of the variance) had essentially the

same weightings for each species. The three primary axes showed three consistent

groupings: (1) propane, 2-methylpropane and butane; (2) ethene, propene and 1-butene;

(3) hexane, 3-methylhexane, toluene and NO. This information confirms our groupings

of these species from the simple time series analysis.

To better understand the differences between those events that we labeled as

regional anthropogenic and biomass burning, we looked at hydrocarbon ratios derived

from samples of both types. The first step was to identify a species that had similar

behavior for both types of events. We looked at two points in each individual event, the

sample with maximum concentrations and one with minimum concentrations. The

maximum is relatively easy to determine. The sample chosen as minimum may not have

been the true minimum as there was no definite way to identify the true beginning or end

of an episode. We took the difference in acetylene concentrations between the two

points and determined that the relative enrichment factor of acetylene for both biomass

and anthropogenic events were similar (1.96 ± 1.59 ppbv for 12 biomass episodes and

1.93 ± 1.60 ppbv for 16 anthropogenic episodes, where the uncertainty is one standard

deviation). We then took the difference in concentrations for each hydrocarbon in the

same maximum and minimum samples to obtain AHC/AC 2H2.

The results of our ratio analysis are shown in Table 3.6.2. The average ratio plus

the standard deviation is given for both biomass and anthropogenic episodes. Shaded

values in the Table indicate a high enrichment factor for that hydrocarbon relative to the

enrichment factor for the other episode type. For biomass burning episodes, the species

ethane, ethene, propene, 1-butene, 1,3-butadiene, butane and 1-pentene all show higher
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Figure 3.6.4 NCAR reanalyzed winds for JD 196-202 and JD 232-237 at 0, 6, 12 and 18 z. The top
polar plot are winds from just west and south of DHSBR. The bottom plot are winds from just north and
east of Guangzhou. Triangles are winds corresponding to anthropogenic events as labeled in Figures 3.6.2
and 3.6.3. Squares correspond to biomass burning events. The crosses are winds when neither
designation is made. In general, when the wind is a primarily easterly (between 1500 and 2100) from the
near Guangzhou wind measurement site, there is a corresponding easterly at the near DHS wind
measurement site. Pollution is derived from either Guangzhou or Hong Kong in those cases. The point in
the top graph that is a westerly corresponds to the brief event around 6 AM on JD 236. This could
represent pollution from Zhaoqing. The biomass burning points are primarily associated with local winds
(top graph). The southeasterly direction would be consistent with pollution from the temple or the town
of Dinghushan at the base of the mountain near the entrance to the biosphere reserve.
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Figure 3.6.5 NCAR reanalyzed winds for three muliple day periods of "background" air masses at
DHSBR (8 day period given by plusses, 4 day period by diamonds and 5 day period by triangles). (A)
gives the magnitude and direction of winds just west of the reserve while (B) gives the winds east of
Guangzhou. Primarily, the local winds are southwesterly.
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ratios than their anthropogenic episode counterparts. Enhancement of all of these

species is noted by Blake et al. (1994) in their analysis of biomass burning plumes in

Canada. The enhancement in biomass samples of benzene to toluene (a factor of 2.3)

also agrees with that seen in the Canadian study. The heavier alkanes, toluene and NO

all have greater enhancements in the anthropogenic events.

The final indicator that we used to look at air mass origins was wind velocity.

We made use of NCAR's reanalyzed winds for two sites (23.30 N, 114.40 E; 23.00 N,

112.00 E). Recall that the biosphere reserve is at 23.16 0 N, 112.50 E with Zhaoqing, a

city of roughly 200,000 inhabitants 19 km to the west, and Guangzhou, with over 2

million people 86 km to the east. Hong Kong is also close by, to the south and east of

Guangzhou. The winds are given as instantaneous values four times daily (0, 6, 12 and

18z) We have plotted these values on a polar graph for the eleven days of measurements

given in Figures 3.6.2 and 3.6.3 (Figure 3.6.4). In general, winds were easterly at both

analysis locations when NO levels were observed to be much higher than background

values (refer to Figures 3.3.1a and 3.3.1b for these high NO periods). Figure 3.6.5

displays wind information for three periods where background air masses were

measured. It is apparent that the local wind direction at DHSBR for those times are

primarily southwesterly.

Figure 3.6.2 shows two regional anthropogenic episodes, three biomass burning

periods and two high propane events. The first event on JD 196 has winds from the

southeast in the early morning. These could be bringing air masses that originated around

Hong Kong. For the three biomass burning events on JDs 197, 198 and 199, the winds

at both stations were from the south or southeast which imply the observed air masses

would have traveled over the town of Dinghushan at the entrance to the reserve. The

NO spike on day 201 is likely due to pollution from the Guangzhou region. Winds from

the station nearby are eastsoutheasterly and easterly at 18 z on day 200 and 0 z on day

201. Wind speed is about 4 m s' which would imply a six hour travel time between the

populated coastal region and our sampling site. The maximum NO occurs roughly six
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hours after the winds blow directly over the cities toward DHSBR. Local winds are also

eastsoutheasterly or easterly for the period.

The situation in Figure 3.6.3 is much the same. Here we have five periods listed

as regional anthropogenic. The first four all have similar wind patterns implying air

masses passing over the coastal cities as they move inland and over our observation site

at the biosphere reserve. The final event on day 236 has local winds from the west. This

implies sampled air had recently passed over Zhaoqing City. The increases in

concentrations are much less than increases observed for coastal city influence.

In summary, we were able to categorize our measurements at DHSBR due to our

high frequency sampling of many trace gases. Wind data helped to confirm our belief

that high NO periods were a result of regional anthropogenic pollution. Enrichment

ratios aided in our identification of air masses likely influenced by biomass burning. Our

correlation analysis showed that the light alkanes had very strong relationships when

propane levels were well above background, with a p more significant than the lower

propane periods. The periods not corresponding to these three categories may be

considered background levels for the Dinghushan region and represented 38% of the

measurements. The breakdown for the polluted samples were 30% propane, 20% urban

and 12% biomass burning.

3.7 Comparison of flask and in situ measurements

We were able to take flask samples during the intensive campaign which were

sent to MIT for future analysis. In Figure 3.7.1 we show the results of two flask

samples taken on August 1 in comparison to the bracketing real time measurements. Not

every specie reported for the seasonal flask measurements is reported on this Figure.

Since the flask runs were performed without a Nafion dryer, we were able to obtain

results for the terpenes camphene, carene and ox-pinene. Also, the xylenes suffered from

contamination problems at Dinghushan on the day these samples were taken. We can

see from the graphs that some results compare quite favorably while others do not. It
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should be recalled that the time to fill a flask is about two minutes whereas the real time

sample was collected over a sixteen minute interval. Additionally, there is some

difference in the time of sampling, as the flasks were filled sometime between the real

time runs.

Alkanes show the most consistent results, with flask concentrations differing at

most 20% from the range of the bracketing in situ runs when the concentration did not

fall between the two in situ runs. The results for the cyclic species except for

cyclohexane were not as consistent, sometimes falling 50% outside of the in situ

bracketing range. Butadiene was lower in the flask than in situ, raising the issue of its

stability in the sampling canisters. Isoprene, on the other hand, showed higher values in

the flasks. Other alkene species show varied results. For 2-methylpropene, the flask

results were lower but this difference could be made up for by subtracting possible

contamination from the in-line traps used in Dinghushan. The mole fractions for the 1-

alkenes and methyl-1-butenes tend to be higher in the flasks while 2-methyl-2- butene is

lower. Gong and Demerjian (1995) report that Nafion dryers may cause rearrangement

in alkenes having four and five carbons when the dryer is heat cleaned between

collections. We did not heat our Nafion dryer but some of the variation seen might be

caused by interactions with the dryer. The results for our standard analyses in China

which included runs with and without the dryer did not reveal problems for those

species in the standard, namely the butenes and 1-pentene. However, we cannot rule out

interactions with the other alkenes as being responsible for the above discrepancies in

concentration determination between flask and real time samples. Finally, those species

near the detection limit (20 pptC) tend to display higher levels of disagreement. For

example, the detection limit for ethane is about 10 ppt whereas for pentane it is closer to

2 ppt. This is a result of the FID response toward carbon. Since our accuracy near these

detection limits is only ± 50%, this is not surprising.
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Chapter 4: Conclusions

Nonmethane hydrocarbons play a significant role in the chemistry of the

troposphere. This thesis has focused on vegetative emissions from a heretofore

uninvestigated subtropical evergreen broad-leafed forest in Southern China. Our

preliminary measurements in June 1994 indicated that biogenic emissions could

dominate the chemistry in the local forest. With the advent of more sophisticated

chemical and transport models, accurate regional emissions estimates for biogenic

hydrocarbons have become a necessity. We set out to assess through multi-gas

measurements the extent that biogenic NMHC influence the local tropospheric

chemistry in rural Southern China.

To begin our study, we initiated a flask sampling campaign in June 1995. Bi-

monthly samples were obtained over a fifteen month period at the Dinghushan

Biosphere Reserve in Guangdong, China and analyzed at MIT with a GC-FID. The end

of this study was overlapped by an in situ measurement effort over the summer of 1996

which included the hourly measurements of NMHC, CO, temperature, relative humidity

and wind velocity. In addition, continuous monitoring of NOx, and PAR was performed.

An enclosure study allowed us to estimate the emission rates of important biogenic

NMHC from the dominant local vegetation.

The nine weeks of high frequency measurements we report for this ecosystem

are unique both in the length of the study and in the wide array of species observed,

including alkanes, alkenes, alkynes, aromatics and cyclic hydrocarbons. In addition to

detailed information on locally emitted biogenic species, a variety of anthropogenic

hydrocarbons were identified (and certain species have both biogenic and anthropogenic

sources). The reactivities of these hydrocarbons vary widely and the presence of

appreciable levels for many short-lived alkenes indicates a source near our sampling area.

To accurately portray the regional chemistry in the terrestrial boundary layer it is vital
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to know the abundance of the reactive NMHC. This data set will prove invaluable to

chemical modelers of this region by providing information on the concentrations of such

a wide variety of hydrocarbons. During the summertime, our results indicate significant

biogenic emissions may dominate the hydrocarbon chemistry. During colder months we

would expect anthropogenic hydrocarbons to play a greater role.

Seasonal variations in both biogenic and light NMHC were observed at DHSBR.

Isoprene and terpenes exhibited maximum concentrations (7 ppbv and 3 ppbv

respectively) during the warm summer months and minimums (100 pptv and 40 pptv)

during the cooler winter season as we would expect from their emission dependence

upon temperature. We plotted log [isoprene (ppbv)] versus temperature which gave a

regression line slope of 0.072 per oC. This corresponds to a doubling of isoprene

concentration for an increase of four degrees Celsius which agrees quite well with

measurements of other investigators for U. S. ecosystems (Fehsenfeld et al., 1992). The

concentrations of biogenic gases reported from this ecosystem are near the maximum

values reported from any biome. The terpene concentrations are consistent with

measurements performed in Japan whereas isoprene concentrations are much greater at

DHSBR (Yokouchi and Ambe, 1988; Yokouchi et al., 1983). This result is most likely

due to the species compositions of the respective forests studied. Summertime levels of

isoprene at DHSBR are also much greater than those found in boreal regions (Jobson et

al., 1994) but are only somewhat above levels reported in the Amazon (Jacob and

Wofsy 1988) and similar to those found in a mid-latitude forest (Goldan et al., 1995).

Unlike the biogenic hydrocarbons, background mole fractions of light NMHC

showed wintertime maxima and summertime minima. The magnitude of the seasonal

cycle at DHSBR is not as great as that observed at higher latitudes (Goldstein et al,

1994b; Laurila and Hakola, 1996) as would be expected due to their different seasonal

OH variations. We used ratios of light hydrocarbon measurements to investigate the

photochemical age of sampled air masses and to determine the relative effects of

transport and chemistry on the species concentrations. Our results compared favorably
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with those obtained by other researchers (Table 2.2.3). Plotted ratios do not fall along

either the pure chemistry or the pure dilution slopes. Our analysis showed that mixing

processes were responsible for about 70% of the changes in hydrocarbon ratios. When

investigating two species with like chemical loss with OH, it was apparent that two

distinct sources were present for the butane isomers, apparently there was a local source

relatively more rich in i-butane than n-butane.

We conducted dynamic flow through enclosure experiments of six different

species in the DHSBR to determine the emission fluxes of isoprene and terpenes from

the forest. Two of the tree species had significant standard isoprene emission rates over

50 gg C g-' h-1. These values are on a par with those reported for oak species which are

considered high isoprene emitters (K6nig et al. (1995). Total standard terpene emission

rates for species measured ranged from 0.05-0.55 gg C g-' h-'. Our calculated biomass

factor of 1410 ± 170 g m-2 was used to estimate the emission from the forest region. The

flux of isoprene and terpenes from DHSBR over the summer of 1996 was 8.6 ± 6.1 and

0.08 ± 0.10 mg C m-2 h-' respectively. The isoprene emission rate reported from the

Amazon was 3.2 ± 1.2 mg C m-2 h-' and from Alabama, 3.9 ± 2.9 mg C m-2 h-' (Davis et

al., 1994). The terpene flux from the same study in Alabama was 2.2 ± 1.4 mg C m-2 h'1

which agrees with the estimate of Hov et al. (1983) for a coniferous forest in Norway.

Our emission estimate for terpenes is not truly representative of the forest at DHSBR

as our in situ measurement system did not properly measure the three most abundant

terpene species measured from flasks. We obtained a second estimate of isoprene

emission from the forest by an alternative method. By computing the column rate of

destruction of isoprene, we determined the isoprene flux to be 5.6 ± 4.9 mg C m-2 h1,

which compares favorably to our direct measurement from vegetation.

Hourly in situ measurements of NMHC enabled us to get a clearer picture of the

different types of air masses prevalent at DHSBR which was not possible from our

infrequent flask analyses. Measurements of CO and NO were also helpful in

determining air mass histories. In addition to background air (or non-polluted), we
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observed three other distinct types: local propane pollution plumes, biomass burning

plumes and anthropogenic pollution plumes. The propane plumes were characterized by

high levels of propane and other light NMHC without significantly increased levels of

NO or CO. The primary difference between the biomass burning plumes and

anthropogenic plumes were in the relatively higher levels of NO, toluene and hexane

isomers in the latter.

The local propane pollution plumes afforded us the opportunity to indirectly

determine OH concentrations using a simplified equation to represent the effects of

chemistry and mixing processes on the hydrocarbons in the plume. By designating

relatively unreactive NMHC as tracers, we were able to estimate [OH] from as many as

eight different hydrocarbons on three separate occasions. According to our calculations,

afternoon [OH] is 5.7 ± 2.8 x 106 molecules cm-3. This result is near those obtained by

similar methods in Europe (Blake et al., 1993; Kramp et al., 1997).

We have determined that biogenic emissions from this ecosystem are significant.

Based on a simple analysis of the loss frequency of OH, we can see that the biogenic

NMHC may dominate the local boundary layer tropospheric chemistry, accounting for

over 80% of OH removal. This local OH depletion may enable transport of other less

reactive anthropogenic hydrocarbons farther afield. Sufficient NOx exists (sources are

both natural and anthropogenic) such that the biogenic hydrocarbons may contribute to

increased local ozone. Jacob and Wofsy (1988) report that vegetative NMHC in the

tropics account for increased ozone levels of 30-40 ppbv. They also found that isoprene

oxidation enhanced local CO by up to 70 ppb. In addition, the biogenic hydrocarbons

may act to sequester nitrogen oxides and enable long distance transport of NOx. For

these reasons, it is important that we continue to investigate the natural background

emissions of NMHC so we may improve our understanding of tropospheric chemistry.

In this investigation, we have determined that high frequency measurements are

necessary to obtain an accurate picture of local background levels of NMHC at DHSBR.

In situ measurements, though more demanding in resources than flask samples, yield a
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much greater wealth of information. Further investigation at DHSBR could prove useful.

The most advantageous approach would be to move the monitoring station below the

existing meteorological observation tower. Since this tower is hundreds of meters further

away from the temple complex and the living quarters of the residents, the number of

high local pollution measurements that we observed would be minimized. This is

extremely important as a high percentage of our light hydrocarbon measurements were

directly affected by this pollution and other measurements may have been indirectly

affected. The tower should be equipped with anemometers and other meteorological

instruments to properly characterize ambient conditions. Our estimates of significant

biogenic emissions indicate a more in depth study of fluxes would be productive. Such

an effort would better constrain the emission flux than our simple approach. The tower

could be used for this flux estimation by relaxed eddy accumulation or another

micrometeorological method. Additionally, chemical modeling should be employed to

help better understand the impact of local biogenic emissions on tropospheric

chemistry.
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Appendix

A. Absolute Calibration Methods:

In order to accurately measure atmospheric hydrocarbons, one needs to calibrate

the analysis system with appropriate standards. We used two different standards for

this purpose: 34 liter standard tanks produced by volumetric static dilution, and

permeation devices. Each standard preparation method possesses advantages and

disadvantages. By using both, they offer independent calibrations of the system which,

if in agreement, help verify the quality of the calibration. Ideally, the concentration of

compounds in the standards will be orders of magnitude greater than that in the field (on

the order of 100 ppbv). This allows us some flexibility in the field when running

standards. We are able to dynamically dilute the standard to whatever level observed in

the field. We try to mimic actual atmospheric hydrocarbon levels in our standard runs,

treating them as if they are whole air samples. In this way we hope to minimize

unanticipated effects of sample collection which may vary with the hydrocarbon mixing

ratio in the sample gas stream. A second advantage of these higher standard

concentrations relates to long-term stability concerns. Standard concentrations near the

detection limit could effectively disappear due to wall interactions for unstable

compounds; higher concentrations allow tracking of unstable species over time and with

close monitoring of these possible losses, accurate calibration is still possible. Luckily,

previous work has shown that most hydrocarbons up to C6 are stable over time

(Donahue, 1991; Sprengnether, 1992). My standards build on this previous work to

show long term stability (on the order of a year) of all of our standard hydrocarbons.

Permeation devices, which are essentially a pure reservoir of a compound in a

two phase equilibrium between gas and liquid (or solid) phases contained in a small,

inert, permeable walled capsule, offer flexibility in standard sample mixture and

concentration. You can change the mix of hydrocarbons sampled with permeation tubes
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as needed. Also, by varying their storage temperature or the exposed teflon area, you

can alter the relative concentrations of hydrocarbons in your standard gas stream. On the

other hand, once the tank mixture is produced, you are limited to changing mole fraction

uniformly. The primary uncertainties associated with these two types of standards are

distinctly different. For the tank mixture at 100 ppb levels, uncertainly is dominated by

limitations in the pressure measurements during production. Permeation tube

uncertainty in contrast arises from the mass loss measurements. In general, these

uncertainties in both cases are greater for heavier NMHC since their volatility is lower.

Pressure differentials in tank standard production are lower for heavy hydrocarbons as

are mass loss rates in the permeation devices.

A. 1 Tank Mixtures

A static dilution system developed by Sprengnether (1992) was used to prepare

absolute mixtures of hydrocarbons in tanks. The stainless steel tanks used are 34 liter,

type 304 military oxygen tanks, cleaned and electropolished commercially

(Electromatic, CA). The filling procedure commenced with a series of UHP N 2 flushes

and evacuations. The tanks were monitored for leaks and then weighed empty. Water

vapor (roughly 10 Torr) introduced into the tanks neutralized (but does not wet) the

walls. The tanks were hooked up to the manifold and each hydrocarbon was added

successively as follows:

1. The manifold and mixing volume were evacuated.

2. The liquid constituents were prepared for addition by placing a few milliliters

in a glass bulb attached to the manifold, followed by alternating UHP nitrogen

flushes and evacuations. After three flushes,.the liquid was degassed and

allowed to boil for a short time. The bulb was then evacuated twice more to

ensure that only hydrocarbon was present. Gases at room temperature were

added directly from the gas cylinder which was attached to the manifold. All
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volumes were evacuated up to the valve between pure hydrocarbon vapor and

the manifold before addition.

3. After addition to the mixing volume and manifold, the pressure was monitored

for fifteen minutes to detect pressure changes due to wall adsorption.

4. Once pressure stablilty was confirmed and recorded, the mixing volume was

closed off and the manifold was again evacuated and flushed three times with

UHP N2.

5. Next, the manifold and mixing volume were filled to approximately 350 Torr

with UHP nitrogen.

6. The volume was isolated from the manifold which was then evacuated. The

mixture was allowed to homogenize for one hour.

7. The mixture was reintroduced to the manifold, pressure recorded (allowing

calculation of moles of nitrogen added in the previous step), and the two

chambers were again isolated.

8. A small quantity of the mixture was injected into the tank via an isolated tee

and the resulting pressure change in the manifold was noted. For some

compounds, this step was repeated to obtain the desired tank mole fraction.

9. After all of the desired species were added, the tank was pressurized to about

400 psig with UHP nitrogen and weighed again.

This procedure relies on accurate measurements of the mixing manifold volume and

pressure. These measurements contribute most to the uncertainty of the mole fraction of

tank constituents. Other significant errors may have been introduced due to a small leak

in the teflon valve used to connect the addition bulb with the manifold. The leak should

not have signficantly effected concentrations of the more volatile liquids but may have

been sufficient to contribute to bulb pressure as heavier hydrocarbons, particularly >C 7,

were volatilized. (Leak rate, though very slow, was a function of differential pressure

between atmospheric and internal bulb pressure). Another factor for certain
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Table A.1 Manufacturers' listed purity of hydrocarbons introduced into standard tanks.

COMPOUND PURITY (%)

myrcene 90
1-decene 94
3-carene 95

cyclopentane 95

y-terpinene 95
limonene 97

cycloheptane 98
1-octene 98

(x-pinene 98

hydrocarbons was the available purity levels. With the exception of those values noted

in Table A. 1, the stated manufacturer's purity was >99%.

Following Sprengnether (1992), we can formally estimate the mixing ratio

uncertainty for each individual hydrocarbon in our standard by using the expression:

dXf 2  2

Xf Xi

(dp)2 + (dPf)2

(P -p,) 2
+( V 2

V

dn d T
+(-2 +(-)

n T

where

Xf = final molar mixing ratio of an individual hydrocarbon

X, = molar mixing ratio of hydrocarbon at stage one dilution
P, = initial manifold pressure
Pf = final manifold pressure after addition to tank
V = manifold volume
n = mass of nitrogen added to tank
T = temperature

The first term on the right hand side of equation A. 1 is the most complicated and

also contributes the greatest uncertainty to our final mixing ratio assignment. This term

can be expanded further yielding:

Xj§d1d 2 +7 2

X, 11 P6
+(

(drb
+ i

where the subscripts a and b refer to the initial measurements with only hydrocarbon in

the bulb and final measurements after the addition of nitrogen. The pressure sensor used
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Table A.2 Comparison of original and recalibrated mole fractions of NMHC in standard tanks 5199 and
5200 Percent deviation is calculated as the difference between original and new mole fraction (X)
assignments divided by the original. The new values were obtained by using the average RMR of
compounds through toluene based on standard analyses over a one year period.

Tank 5200 Tank 5199
Compound original X new X % original X new X % Deviation

assignment assignment Deviation assignment assignment
Ethane 2.03E-06 2.28E-06 -12% 1.66E-06 1.78E-06 -7%
Ethene 1.78E-06 1.87E-06 -5% 2.29E-06 2.29E-06 0%
Propane 1.64E-06 1.77E-06 -8% 1.31E-06 1.40E-06 -7%
Propene 1.25E-06 1.25E-06 0% 1.05E-06 1.05E-06 0%
2-mepropane 8.71E-07 9.12E -07 -5% 9.30E-07 9.65E-07 -4%
Butane 8.68E-07 8.95E-07 -3% 9.04E-07 9.32E-07 -3%
t-2-Butene 5.26E-07 5.26E-07 0%
1-Butene 9.88E-07 9.83E-07 1% 9.82E-07 9.87E-07 0%
2-mePropene 9.56E-07 8.89E-07 7% 1.06E-06 9.82E-07 8%
c-2-Butene 5.51E-07 5.40E-07 2% 2.87E-07 2.84E-07 1%
Pentane 8.59E-07 8.88E-07 -3% 5.85E-07 6.18E-07 -6%
CycloPentane 5.41E-07 5.34E-07 1% 5.91E-07 5.70E-07 3%
1-Pentene 3.62E-07 3.71E-07 -2% 3.98E-07 4.14E-07 -4%
Cyclohexane 4.20E-07 3.98E-07 5% 4.58E-07 4.31E-07 6%
Hexane 3.11E-07 3.22E-07 -3% 3.20E-07 3.28E-07 -3%
Isoprene 4.58E-07 4.38E-07 4% 8.45E-07 7.96E-07 6%
1-Hexene 3.83E-07 3.84E-07 0% 3.86E-07 3.86E-07 0%
3-meHexane 2.34E-07 2.48E-07 -6% 2.55E-07 2.63 E-07 -3%
Heptane 3.25E-07 3.32E-07 -2% 3.38E-07 3.43E-07 -1%
CycloHeptane 2.07E-07 1.81E-07 13% 2.09E-07 1.91E-07 9%
Benzene 2.97E-07 3.45E-07 -16% 3.14E-07 3.85E-07 -23%
1-Heptene 2.14E-07 2.16E-07 -1% 2.16E-07 2.13E-07 1%
Octane 1.84E-07 1.76E-07 5% 1.81E-07 1.69E-07 7%
cycloOctane 1.11E-07 9.71E-08 12% 1.27E-07 1.00E-07 21%
Toluene 2.64E-07 2.84E-07 7% 2.78E-07 2.50E-07 10%
1-Octene 2.48E-07 2.25E-07 9% 2.58E-07 2.23E-07 13%
Nonane 1.28E-07 1.06E-07 18% 1.31E-07 8.99E-08 32%
a-Pinene 1.45E-07 6.47E-08 55% 1.46E-07 7.28E-08 50%
1-Nonene 1.36E-07 1.22E-07 11% 1.53E-07 1.20E-07 21%
Camphene 2.64E-07 1.30E-07 51%
Carene 1.00E-07 5.01 E-08 50% 1.04E-07 3.95E-08 62%
Decane 1.69E-07 1.13 E-07 33% 1.76E-07 7.04E-08 60%
Sabinene 1.04E-07 3.27E-08 68% 1.57E-07 3.30E-08 79%
y-Terpinene 1.08E-07 5.80E-08 46% 1.06E-07 3.86E-08 64%
Limonene 1.76E-07 1.23E-07 30% 1.89E-07 8.29E-08 56%
1-Decene 1.13E-07 9.48E-08 17% 1.33E-07 7.54E-08 43%
Myrcene 1.66E-07 3.46E-08 79% 1.77E-07 3.65E-08 79%
3-Pinene 5.20E-08 7.16E-08 -38% 4.21E-08 8.33E-08 -98%
Undecane 7.31E-08 3.97E-08 46% 8.08E-08 2.44E-08 70%
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is rated for +/- 0.5 torr. The percentage error for the final pressure reading should be

small (on the order of 0.2%) while that of the initial pressure measurement depends on

the vapor pressure of the constituent. The percentage error for volatile compounds (C2-

C5) is less than one percent. This error grows with increasing carbon number to roughly

3% for C7 compounds and higher than 10% for some Clo0 species. The percentage error

for all temperature terms should contribute less than 0.2%. The pressure drop

measurements in A. 1 may add as much as 2% error though for most compounds this

term is 1% or less. Finally, manifold volume and nitrogen mass terms should both be

significantly less than 1%. At best, preparative accuracy is expected to be 2% for the

most volatile species and as poor as 15 % for the heavy hydrocarbons. Several of those

species have the added error term from initial purity levels.

Based on this analysis we estimate error in the initial standard's mole fractions

to be as high as 20-25% for some terpene species. In practice, using the Relative Molar

Response Model (RMR), we can estimate errors in our initial NMHC mole fraction

assignments within 10 %. Ackman (1968) defines relative molar response as:

C%;
RMRi = 100 *" C# (C% ) (A.2)

C%hept

where

C#i = the carbon number of i
C%i = the mass fraction of carbon in i

C%hept = the mass fraction of carbon in heptane (0.839)

Table A.2 displays the original mole fraction assignments for standard tanks 5199 and

5200. Using RMR it was possible to check the relative assignments. This check is

performed by mutiplying the moles of hydrocarbon sampled by its RMR factor and

dividing by the area response from the chromatographic peak. If the model is obeyed,

the values arrived at by this calculation for each species should be within 10%. Once we

were convinced the light hydrocarbons followed RMR, adjustments to the heavier
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hydrocarbons could be made. With the exception of benzene (and ethane for tank 5200),

the original assignments agreed within 10% of the mole fraction predicted from RMR.

The responses from runs performed over a year were averaged for each species in both

tanks. The average of all species through toluene was taken, yielding a value of 4.63 x

10- 14 and 4.71 x 10-14 (mole x RMR/Area) for tanks 5200 and 5199 respectively. This

average response was then used to calculate the new mole fraction for each hydrocarbon

in the tank. We simply multiplied this common factor by the area response for each

species and then divided by the appropriate RMR factor to obtain the number of moles

hydrocarbon injected. Since we also knew the total volume injected, we can determine

the mole fraction in the sampled gas and tank. For the purposes of calibration, the

original values were used with hydrocarbons having seven or fewer carbons and the new

concentrations based on RMR were used for species with eight or more carbon atoms.

A. 2 Permeation Devices

Permeation devices consist of a reservoir of pure compound separated from a

dilution flow by a permeable membrane, in our case one made of Teflon. When the

device is kept at a constant temperature, the concentration of compound in the dilution

flow is controlled by the rate of dilution flow. At constant temperatures we expect that

the vapor pressure of the compound, its solubility in Teflon, and its diffusion constant

through the teflon are also constant. By measuring the mass loss of the permeation

device, the permeation flow out of the device can be determined. Besides changing

storage temperature, rate loss can be manipulated by varying the length and wall

thickness of the teflon enclosure.

Two designs have been used in the past for permeation devices in our lab. The

original design consisted of a stainless steel union filled with the desired liquid with a

teflon tube running through. This allowed for permeation into the teflon tubing where

the dilution flow passes. Many of these devices may be place in series so any number of

constituents may be part of the standard. Unfortunately, difficulty in sealing the device

leads to unwanted leaks, sometimes causing as much flow to the atmosphere as to the
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dilution flow. Leaks of this type may be detected by enclosing the entire device

(capping its ends) and passing a flow over the outside and analyzing the resulting flow.

To eliminate this leakage problem, We used a Teflon reservoir capped at the ends. The

devices were placed inside another container where the dilution flow passed through.

This method guaranteed that all of the compounds lost from the device entered the

dilution flow, but thorough, reproducible mixing may not occur. In practice, runs were

reproducible providing the permeation tubes were left undisturbed for several hours at a

constant permeation flow. The outward flow design also suffers from the constraint of

the size of the enclosing volume, limiting the number of compounds which may be

sampled at one time. We circumvented this issue by using multiple enclosures. This also

allowed us to store the devices at different temperatures, enabling a comparable mole

fraction to be achieved for species having from four to ten carbons without requiring

extremely large variations in device size.

A distinct advantage of permeation devices is that they are easy to produce and

maintain. The mass loss rate is essentially the only thing to be measured. The lighter

compound permeation tubes generally need to be replaced every nine months to a year

depending on the diffusion rate through the teflon. Some permeation tubes have lasted

for 4 years and are still emitting at a constant rate. It is trivial to change the mixture and

ratio of hydrocarbons sampled. This versatility enables one to tailor the calibration to

the analysis at hand.

Errors in standard concentrations produced using permeation tubes are primarily

a function of mass measurement uncertainties. With a Mettler balance (2 x 10 -5 g

sensitivity), a weekly mass loss of 2 x 10 -4 g can be determined. This means for a

compound of molecular weight 72, the lower limit of measurable loss rate is on the order

of 1 x 10 -5 cc per minute. Varying the dilution flow allows a range of concentrations of

compounds to be produced. The mole fraction of the resulting standard is given by
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xi +xfd)

fP+ fd
or Xi = - + Xd

fd

(A.3)

assuming that the dilution flow fd is much greater than the permeation flow fp. Xd

represents the concentration of hydrocarbon present in the dilution gas. Using UHP

Nitrogen, it is generally true that this term is less than 1% of the resultant dilution mole

Table B.1 This table summarizes the results of standard intercalibration runs performed from
September 1994 through May 1997. Responses from the entire period for each compound are
given as the average value RMR*mole HC/ area. The 95% column shows the the confidence
limit in the mean response, calculated as 2*sigma/(sample number)o5

Tank 5200 Tank 5199 Tank 5125 Tank 5145 Perm Tubes Yi Tang
Tank

# of samples 38 35 36 19 8 5
Date range of Sept. 1994- Jan. 1995- Sept. 1994- June 1995- Sept. 1995- July 1995
samples May 1996 May 1997 May 1996 Nov. 1996 March 1996
Compound Response 95% Response 95% Response 95% Response 95% Response 95% Response 95%

5200 5199 5125 5145 PT Yi Tang

Ethane 4.14E-14 1% 4.39E-14 4% 5.04E-14 2% 5.06E-14 5% 4.72E-14 1%

Ethene 4.41E-14 1% 4.71E-14 4% 5.39E-14 3% 5.51E-14 4%

Propane 4.28E-14 1% 4.39E-14 3% 4.90E-14 2% 5.39E-14 4% 4.67E-14 1%

Propene 4.62E-14 1% 4.73E-14 3% 5.80E-14 2% 4.64E-14 1%

Cyclopropane 4.78E-14 3% 5.18E-14 8%

2-mepropane 4.43E-14 1% 4.55E-14 3% 5.28E-14 3% 5.81E-14 9% 4.70E-14 1%

Butane 4.50E-14 1% 4.57E-14 3% 5.39E-14 3% 5.75E-14 9% 4.70E-14 1%

t-2-Butene 4.71E-14 3% 5.10E-14 3% 5.62E-14 9% 4.66E-14 1%

I-Butene 4.66E-14 1% 4.69E-14 3% 4.47E-14 1%

2-mePropene 4.99E-14 1% 5.11E-14 3% 5.66E-14 3% 6.21E-14 9% 4.66E-14 1%

c-2-Butene 4.73E-14 1% 4.76E-14 5% 5.60E-14 3% 6.09E-14 9% 4.81E-14 1%

2-meButane 5.40E-14 3% 5.61E-14 10% 4.77E-14 23% 5.60E-14 1%

Pentane 4.48E-14 2% 4.46E-14 4% 7.81E-14 3% 8.27E-14 9% 4.58E-14 8% 4.57E-14 2%

CycloPentane 4.70E-14 2% 4.88E-14 3% 6.80E-14 4% 7.99E-14 11% 5.26E-14 9% 5.19E-14 9%

1,3-Butadiene 5.85E-14 3% 5.94E-14 9%

3-me-1-Butene 5.83E-14 3% 6.18E-14 10% 4.70E-14 1%

Cyclopentene 5.22E-14 10% 6.45E-14 9%

t-2-pentene 5.75E-14 6% 5.94E-14 10% 4.40E-14 7% 4.79E-14 1%

1-Pentene 4.53E-14 1% 4.53E-14 3% 7.13E-14 7% 4.08E-14 11% 2.61E-14 1%
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Compound Response 95% Response 95% Response 95% Response 95% Response 95% Response 95%
5200 5199 5125 5145 PT Yi Tang

2-me-2-Butene 8.40E-14 4% 4.76E-14 9% 3.11E-14 1%

2-me-1-Butene 5.64E-14 3% 5.90E-14 10% 5.69E-14 0% 7.17E-14 1%

c-2-Pentene 5.81E-14 3% 5.87E-14 10% 4.82E-14 6% 3.74E-13 2%

2,2-dimebutane 5.13E-14 11%

2-Butyne 5.84E-14 4% 6.36E-14 9%

1,4-Pentadiene 7.43E-14 5% 9.13E-14 9% 5.10E-14 2%

2,3-dimebutane 4.29E-14 24%

2-me-pentane 3.91E-14 11%

3-me-pentane 4.44E-14 5%

Cyclohexane 4.90E-14 2% 5.01E-14 4% 4.84E-14 10%

Hexane 4.49E-14 2% 4.59E-14 3% 4.66E-14 8%

Isoprene 4.86E-14 1% 5.01E-14 4% 4.98E-14 3% 6.15E-14 9% 4.25E-14 8%

cycloHexene 5.13E-14 0%

1-Hexene 4.63E-14 2% 4.71E-14 3% 3.59E-14 12% 2.22E-14 28% 4.19E-14 16%

2-Pentyne 7.84E-14 3% 8.46E-14 9% 4.87E-14 7%

1-Pentyne 2.68E-14 3% 6.23E-14 10% 4.96E-14 6%

3-meHexane 4.37E-14 2% 4.58E-14 9% 4.46E-14 9%

Heptane 4.54E-14 3% 4.65E-14 5% 4.53E-14 6%

CycloHeptane 5.30E-14 5% 5.17E-14 4% 5.14E-14 19%

Benzene 3.99E-14 3% 3.85E-14 4% 6.62E-14 4% 6.84E-14 9% 5.36E-14 2%

1-Heptene 4.61E-14 3% 4.78E-14 5% 4.45E-14 13%

Octane 4.86E-14 6% 5.05E-14 5% 4.32E-14 7%

cycloOctane 5.30E-14 9% 5.98E-14 10%

Toluene 4.98E-14 6% 5.24E-14 7% 5.88E-14 7% 5.70E-14 10% 4.52E-14 5%

Propyl 4.28E-14 7%
Cyclohexane

1-Octene 5.11E-14 5% 5.44E-14 6%

Nonane 5.63E-14 11% 6.89E-14 12% 4.23E-14 9%

a-Pinene 1.04E-13 9% 9.44E-14 10% 4.46E-14 15%

EthylBenzene 4.69E-14 11%

p-Xylene 4.55E-14 12%

1-Nonene 5.19E-14 11% 6.00E-14 16%

Camphene 9.60E-14 13% 6.11E-14 35%

o-Xylene 4.81E-14 12%

Carene 9.25E-14 17% 1.24E-13 19% 4.63E-14 8%
Decane 6.96E-14 17% 1.18E-13 20% 3 83E-14 7%

Sabinene 1.47E-13 14% 2.25E-13 21% 5.01E-14 53%

y-Terpinene 8.63E-14 18% 1.29E-13 26% 4.48E-14 9%

Limonene 6.65E-14 18% 1.07E-13 22% 4 61E-14 10%

1-Decene 5.57E-14 32% 8.29E-14 22%

Myrcene 2.22E-13 16% 2.28E-13 17%

1-Pinene 3.37E-14 9% 2.38E-14 10%

Undecane 8.54E-14 19% 1.56E-13 29%

cx-terpinene 6.17E-14 22%

Average up to 4.64E-14 4.76E-4 514 5.77E-14 6.10E-14 4.70E-14 4.78E-14

Toluene
Average all 6.04E-14 7.08E-14 4.72E-14 6.51E-14

The average response of all species for each calibration standard is given in the final row. These values are
somewhat higher due to the inclusion of the heavier hydrocarbons. The original calibration scale, which
in general had incorrect mole fractions for heavier hydrocarbons, was used in the production of the average
responses, yielding response factors well above the average. A more appropriate average was taken
using species up through toluene for the first four tanks. The Yi Tang average listed in that column does
not include the final four species. Note the average for the permeation tubes is essentially the same for
both. This lends credence to the belief that heavy hydrocarbons from tanks 5199 and 5200 have
misassigned mole fractions.
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fraction. From Donahue (1991), uncertainty can be estimated as:

(oXd) 2
(dln(X))2 = (dln(fp))2 +(dln(fd))2 + (X) 2  (A.4)

where

1ln(fp)= percentage uncertainty in permeation flow

aln(fd)= percentage uncertainty in the dilution flow

aXd = uncertainty of the contamination level in the dilution gas

Dilution flow is known to better than one percent using mass flow controllers and

generally the dilution gas contamination term X, is much less than one percent of the

actual hydrocarbon mole fractions for UHP N2 (at most a few ppt). The permeation

flow term varies depending on the tube in question. In general, the mass loss rate of our

tubes is so great that the percentage uncertainty is no more than one percent. By this

analysis, our expected uncertainty for mole fractions in the standard (on the order of 100

ppb) is less than two percent.

B. Standard Intercomparison

B. 1 Internal Intercomparison

Our laboratory produced two sets of NMHC standard tanks and maintained a

collection of permeation tubes for calibration while I was at MIT. In 1991 tanks 5125

and 5145 were made for the MAGE II field campaign. These tanks contain 28 and 29

hydrocarbons from ethane to toluene. Tanks 5199 and 5200 were made with 39 and 37

species respectively, including eight terpenes and undecane. Fourteen species are in

common. For the purposes of this intercomparison, data exists for 39 permeation tubes.

Five tubes are common with all four standard tanks and nine are not present in any. In

total, we have sixty-four distinct species represented. An additional set of samples was

taken from a tank produced prior to my tenure at MIT.
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Remarkably, the intercomparisons agree well. Table B. 1 summarizes information

about the intercomparison. The total number of samples and the sampling time span are

listed along with the average RMR*mol HC/area response for each hydrocarbon present

in the tanks and permeation tubes. At the bottom of the table, two average values of this

response are given, first the best average, which includes compounds from ethane

through toluene for all sample types with the exception of the "Yi Tang" tank, where

the last four outlier species are removed. The other row shows the true average of all

species represented. Since the two permeation tube averages showed no real difference,

it was deemed that RMR yields good results over the entire carbon range we consider.

Based on this observation, it seemed reasonable that the heavier hydrocarbon mole

fractions in tanks 5199 and 5200 were assigned incorrectly. This result is not entirely

unexpected based on our error analysis for standard tank production, though the error in

mole fraction assignment for some species is outside the bounds that we predicted.

Recalibration of those compounds was shown in Table A.2.

B. 2 External Intercomparison.

The Nonmethane Hydrocarbon Intercomparison Experiment (NOMHICE)

(Apel and Calvert, 1994) was begun in an effort to evaluate the consistency of NMHC

analysis results around the globe. The National Center for Atmospheric Research

(NCAR) serves as the referee laboratory and prepared several tasks for the participating

research groups. Each laboratory was expected to analyze the tank for a given task using

its particular detection and calibration system. Our lab performed relatively well in

comparison to other labs. One important observation to be made in this experiment is

that many researchers use the same National Institute of Standards (NIST) traceable

standards in their analyses as used at NCAR whereas our lab prepares our own standard

gases.

An example of our performance is shown in Table B.2. Analysis was performed

by Dr. Xian Shi using tank 5145 as a standard. The second and third columns give the

NCAR analysis for mole fraction in the phase 3 tank, the second column measured
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before the tank left their lab and the third upon its return from our analysis. As can be

seen, there is very little change in these two measurements. The fourth column gives our

results, which are generally higher than those of NCAR; the average percent difference

defined as ((NCAR-Our result)/NCAR) of the fifteen compounds is 13.29 and 12.51 for

before and after. Before refers to the initial analysis performed at NCAR before sending

the tank to our laboratory and after is their analysis upon return of the sample tank. The

next two columns give values for the response factors as caluclated with RMR (mole

HC*RMR/Area) of standard tanks 5145 and 5199. By taking the response ratios

(5199/5145), which on average are 25% higher for tank 5145, and multiplying by the

value obtained in Shi's analysis, we can estimate the mole fraction that would have been

reported had tank 5199 been used. This value is in the seventh column. The percent

differences for recalibration using tank 5199 on average (shown in the final two columns)

are a little closer to NCAR values than those obtained with tank 5145. Agreement is

better for the light hydrocarbons and isoprene specifically and poorer for the butenes

Table B.2 Phase 3 NOMHICE results comparing our original reported values and recalibrated values
calculated using the response ratio from tanks 5145 and 5199. Concentrations listed are in ppbv. The
percent difference is calculated as (NCAR result - our result) / (NCAR result). Before and after refer to
NCAR's initial analysis before sending the tank and the analysis upon return of the tank. The percent
difference is comparing our mole fraction assignment to NCAR's before and after assignments.

Compound NCAR NCAR Shi values Response Response 5199 % diff % diff
Before After with 5145 5145 5199 value Before After

Ethane 10.20 10.57 11.52 5.06E-14 4.39E-14 9.99 -2.04 -5.47
Ethene 18.22 19.49 20.94 5.51E-14 4.71E-14 17.90 -1.78 -8.18
Propane 25.29 25.51 31.50 5.39E-14 4.39E-14 25.66 1.46 0.59
Propene 9.59 9.76 11.94 5.52E-14 4.73E-14 10.23 6.64 4.78
2-mePropane 20.28 20.43 22.02 5.81E-14 4.55E-14 17.23 -15.02 -15.64
Butane 30.91 31.17 36.06 5.75E-14 4.57E-14 28.68 -7.23 -8.00
t-2-Butene 9.58 9.62 9.84 5.62E-14 4.71E-14 8.25 -13.84 -14.20
1-Butene 9.39 9.48 10.26 5.62E-14 4.69E-14 8.56 -8.81 -9.68
2-mePropene 9.95 10.07 10.92 6.21E-14 5.11E-14 8.98 -9.80 -10.87
c-2-Butene 7.66 7.69 7.38 6.09E-14 4.76E-14 5.77 -24.67 -24.96
Pentane 12.52 12.62 18.18 8.27E-14 4.46E-14 9.81 -21.63 -22.25
CycloPentane 4.20 4.23 4.73 7.99E-14 4.88E-14 2.89 -31.16 -31.65
Isoprene 5.76 5.24 6.48 6.15E-14 5.01E-14 5.27 -8.44 0.65
Benzene 8.73 8.80 8.46 6.84E-14 5.24E-14 6.48 -25.81 -26.40
Toluene 5.36 5.39 6.00 5.70E-14 5.24E-14 5.52 2.89 2.32
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and benzene. One observation can be made about tank 5145 from this table. Using

RMR, it would appear that pentane and cyclopentane may have incorrect mole fraction

assignments. The response factor for both species is around 8E-14 whereas that for the

other hydrocarbons is closer to 6E-14. If you were to use the average response (5.79E-

14) of the other compounds in the tank to calibrate, the concentrations would be 12.73

and 3.43 ppbv for pentane and cyclopentane. These numbers are obtained by

multiplying the reported value of Shi by the average response and dividing by the

reported response factor for pentane and cyclopentane in the response 5145 column.

The pentane result is within 1% of NCAR in that case, which is a great improvement in

agreement over the actual reported value. However, cyclopentane then would have a

negative 19% difference, which is somewhat worse than the 12% difference using the

original calibration.

Multiplication of our reported concentrations by the ratios given in Table B.3

converts them to the NCAR (NIST) scale. Those species not represented in the Table

Table B.3 The ratio of NCAR (NIST) to Dinghushan (Tank 5199) concentrations obtained from Phase

3 of NOMHICE. Multiplication of the ratio by reported concentrations in this thesis will convert the
mole fraction to the NCAR calibration scale. The mean value may be used to convert species not listed in
the Table. This conversion relies on relative molar responses obtained from analysis of MIT standard
tanks 5145 and 5199 as summarized in Table B.3.

compound NCAR/Dinghushan
Ethane 1.04
Ethene 1.05
Propane 0.99
Propene 0.95
2-mepropane 1.18
Butane 1.08
t-2-Butene 1.16
1-Butene 1.10

2-mePropene 1.12
c-2-Butene 1.33
Pentane 1.28

CycloPentane 1.46
Isoprene 1.04
Benzene 1.35
Toluene 0.97

mean 1.14
St. Deviation 0.15
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can be multiplied by the mean value. Note that this conversion is at best accurate to ±

15% as that is the variation in the molar response for Tank 5145. This is reflected in the

standard deviation for the converstion ratios.

C. Standard Stability

From September 1994 through May 1996, Tank 5200 analyses were performed

on the HP-5890a to monitor standard stability and instrumental performance. Thirty-

seven measurements were taken on eight different days. All but one were made over the

course of the first year, in groups of three to seven reproducible runs. The final analysis

occurred in May 1996 just prior to departure for China to show that no significant

change in detector response had occurred over the preceding eight months assuming the

tank concentrations did not vary. If we make the assumption that detector response did

not change, then we can say that no appreciable changes in tank mole fractions occurred

for the lighter compounds. It seems unlikely that both detector response and constituent

concentrations would have moved in a similar manner, resulting in consistent results.

Table C. 1 shows the confidence limits for each compound in standard 5200. As can be

seen from the table, in general, light NMHC show a more stable area response.

Essentially, the results in the Table give a rough measure of precision for our analysis

over the period. Variations in integration, separation and peak widths lead to lower

precision for the heavier hydrocarbons. On the analysis system, the four peaks from

sabinene to 1-decene experience incomplete separation, causing heightened variability in

the peak area assigment. Retention time also influenced peak area. Later eluting (heavier)

compounds were subject to more deviation and broader peaks. Over the testing period,

response to ethane changed on the order of 1%. The variation in the heaviest species is

more pronounced. Despite the low precision for those compounds, we can show that

the average variation from year to year is not as large by looking at information from all

four standard tanks. Figure C. 1 displays the trends of area ratios of individual species to

ethane over time. An advantage of this comparison is that we may ignore drift in the
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instrument response (assuming that such drift affects each species in the same way). We

also eliminate uncertainty arising from volume calculations since each ratio arises from

an individual run. In Table C.1 we normalized the area responses as some run volumes

were different from others, but uncertainty in collected volume could still affect results.

Table C.2 gives the percent annual change obtained from the linear fit to the curves in

Figure C.1.

Variations in standard tank concentrations are negligible over the two week time

span of our in situ measurements. For the flask measurements, performed over one year,

we expect variations in standard concentrations to account for less than two percent of

error in mole fraction assignments for all reported species with the exception of toluene

(within 6%) and cx-pinene (within 5%).
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Table C.1 Results from the analysis of standard tank 5200 from September 1994 through May 1996.
The first three months contain 19 runs and the 20 month span has 38 data points. Shown are the 95%
confidence limits for the area response normalized to a one scc injection volume.

Compound first 3 months (+/-) 21 month span (+/-)
Ethane 1.1% 1.4%

Ethene 0.9% 1.3%

Propane 1.4% 1.2%

Propene 0.9% 1.1%

2-mepropane 1.1% 1.2%

Butane 1.2% 1.3%

1-Butene 0.9% 1.1%

2-mePropene 1.1% 1.2%

c-2-Butene 1.2% 1.3%

Pentane 1.2% 1.9%

CycloPentane 1.6% 1.6%

1-Pentene 1.3% 1.5%

Cyclohexane 1.6% 2.2%

Hexane 1.0% 1.8%

Isoprene 1.1% 1.5%

1-Hexene 1.1% 1.8%

3-meHexane 1.2% 2.4%

Heptane 1.2% 3.0%

CycloHeptane 1.3% 4.5%

Benzene 1.2% 2.9%

1-Heptene 1.3% 2.7%

Octane 1.7% 5.8%

cycloOctane 4.8% 9.2%

Toluene 2.3% 6.1%

1-Octene 1.7% 5.2%

Nonane 4.0% 10.9%

xo-Pinene 5.1% 9.0%

1-Nonene 3.6% 10.7%

Carene 8.8% 16.4%

Decane 10.3% 16.6%

Sabinene 12.6% 13.8%

y-Terpinene 11.6% 17.8%

Limonene 11.1% 18.2%

1-Decene 9.2% 31.6%

Myrcene 26.3% 15.7%

P-Pinene 13.5% 11.5%

Undecane 27.4% 22.3%
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Table C.2 Regression line slopes from Figure C. 1

Compound % annual change
Tank 5199 Tank 5200 Tank 5125 Tank 5154

Ethene 0.51 0.20 -1.59 -3.78
Propane -1.92 1.67 -0.84 -4.30
Propene -0.64 0.54 -3.52 0.00
cycloPropane -8.73 -15.31
2-mePropane -1.18 0.25 -8.05 -12.77
Butane -1.27 0.55 -8.84 -13.26
t-2-Butene -0.60 -8.36 -13.69
1-Butene -1.21 -1.16
2-mePropene -1.17 0.26 -7.33 -10.52
c-2-Butene -0.29 0.82 -7.91 -10.09
2-meButane -2.63 -4.85
Pentane -1.85 0.87 -6.06 -3.84
cycloPentane -1.24 0.33 -3.90 -7.49
1,3-Butadiene -2.55 -3.33
3-me-l-Butene -8.25 -12.33
cycloPentene -12.22 -1.54
t-2-Pentene 7.49 -3.17
1-Pentene -0.61 0.82
2-me-2-Butene -16.39 -40.84
2-me-I -Butene -1.25 2.80
c-2-Pentene -0.76 -1.31
2-Butyne -10.75 -9.75
1,4-Pentadiene -2.98 -37.14
cyclohexane -1.27 0.01
Hexane -0.72 -2.27
Isoprene -1.86 1.43 0.20 -0.33
1-Hexene -0.69 0.47 -8.69 -6.31
2-Pentyne -1.29 -2.95
1-Pentyne -6.79 -6.58
3-meHexane -1.34 -0.39
Heptane -1.24 0.18
CycloHeptane 0.50 -0.87
Benzene 2.40 2.17 -3.52 -3.44
1-Heptene -0.79 0.24
Octane -0.59 -0.88
cycloOctane 5.67 -0.88
Toluene -6.35 2.08 1.66 -0.61
1-Octene -1.03 -1.17
Nonane -0.33 -1.42
a-Pinene -4.95 -2.10
1-Nonene -1.50 -2.12
Camphene -0.76 0.00
Carene -1.06 -1.23
Decane -1.73 -1.00
Sabinene -0.67 -2.80
y-Terpinene 5.08 5.66
Limonene -1.49 2.18
1-Decene -11.13 1.45
Myrcene -4.63 7.44
Undecane -17.84 24.12
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Figure C.1 Shown are peak area ratios of individual hydrocarbon to ethane over the period
October 1994 to May 1997. Analyses of four standard tanks were performed on the HP-5890a GC.
Symbol and trendline legend is below. The unit of the x-axis is given in days.
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