
Simulating Prediction Markets That Include
MASSACHUSETTS INSTITUTE

Human and Automated Agents OF TECHNOLOGY

by JUL 2 0 2009

Wendy Chang LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009

@ Massachusetts Institute of Technology 2009. All rights reserved.

ARCHIVES

A uthor
Department of Electrical Engin~ring and Computer Science

MBy 22, 2009

Certified by
Thomas W. Malone

Director, MIT Center for Collective Intelligence
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

Simulating Prediction Markets That Include Human and

Automated Agents

by

Wendy Chang

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2009, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this work I study the interaction of sophisticated trading agents with simpler
agents in a prediction market. The goal is to simulate markets with both human
and computer agents, and investigate ways to maximize the performance of these
markets. I start with the neural net-based agent that is currently used in CCI's
collective prediction experiments on football plays. By tuning their training and risk
affinity, I configure a "smart" agent to represent the sophisticated computer traders.
I implement three types of simple agents to approximate human traders - two are
rule based, and one uses aggregate human data from lab experiments. By exploring
different combinations of smart versus simple agents, I showed that it is possible for
mixes of agents to outperform either types alone. This result is consistent with the
larger goal of the collective prediction project, which is to show that humans and
computer agents combined in a prediction market can do better than either alone.

Thesis Supervisor: Thomas W. Malone
Title: Director, MIT Center for Collective Intelligence

Acknowledgments

I would like to thank Professor Tom Malone for his constant support and warm

encouragement. This research effort has been both productive and fun under his

guidance. I would also like to thank Chris Hibbert and Yiftach Nagar, both of whom

were always available for questions, ideas and feedback. Finally, special thanks to

two people who watched football with me - Rob Laubacher for providing formation

data on the game plays, and Alvin Liang for checking the outcomes of training plays.

Contents

1 Introduction 13

1.1 Problem Statement 13

1.2 Background 13

2 System 17

2.1 System Overview 17

2.2 Computer Agents 18

3 Experiment Design 21

3.1 Controlled Parameters 21

3.2 Experimental Setup 23

3.2.1 Neural Net Training Data 24

3.2.2 Neural Net Agent Bias for Action 24

3.2.3 Mixes of Neural Net Agents and Rule-Based Agents 24

3.2.4 Mixes of Neural Net Agents and Visual Agents 25

3.2.5 Mixes of Neural Net Agents and Deterministic Agents 25

4 Results

4.1 Neural Net Training Data

4.2 Neural Net Agent Bias for Action

4.3 Mixes of Neural Net Agents and Rule-Based Agents

4.4 Mixes of Neural Net Agent and Visual Agents

4.5 Mixes of Neural Net Agent and Deterministic Agents

27

. . . . 28

. . . . 29

. . . . 31

. . . . 33

. . . . 36

5 Discussion 41

6 Conclusion and Future Work 43

A Collective Prediction System Parameters 47

A.1 System Parameters 48

A.2 Agent parameters 49

A.3 Experiment Parameters 50

B Code Excerpts: Computer Agents 51

B.1 Rule-Based Agent Using yardsToGoal 51

B.2 Rule-Based Agents Using Visual Data 53

B.3 Deterministic Agents Using Predefined Prices 55

C Experiment Software Setup Instructions 57

List of Figures

4-1 Play-by-Play Performance by Homogenous Agent Pools 32

4-2 Play-by-Play Performance, Smart-Visual Mix 35

4-3 Play-by-Play Performance, Smart-Deterministic Mix 39

A-1 Agent Launcher Window 50

10

List of Tables

Trials on Different Training Sets

Trials on Different Values of biasForAction

"Smart" versus "Dumbest" Agents

"Smart" versus "Dumb" Agents

Smart-Visual Agent Mixes

Smart-Visual Agent Mixes, Scaled Trade Sizes

Smart-Deterministic Agent Mixes

Smart-Deterministic Agent Mixes, Scaled Trade Sizes

A.1 System Parameters

A.2 Agent Parameters

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

. 28

. 29

. 31

.. 31

........ . 33

. 33

. 36

. 36

. . . 48

49

12

Chapter 1

Introduction

1.1 Problem Statement

The purpose of this study is to investigate the use of computer agents to enhance the

performance of prediction markets. Specifically, the agents are designed to aid in the

Center of Collective Intelligence's (CCI) Collective Prediction experiments.

In this study I examine the performance of our neural net-based agents using

different training data. I also examine the performance of the agents with different

risk affinity. With these parameters fine-tuned, I then use the agents to trade in the

same prediction markets used in the Collective Prediction experiments. I use three

types of simplistic agents to simulate human traders in a market: two rule-based, and

one using aggregate human data from lab experiments. I examine the effect different

mixes of neural net and simple agents have on market performance.

1.2 Background

A prediction market is a betting exchange set up for the purpose of predicting the

outcome of some future event. Prices are tied to a trader's belief of the possibility of

a certain outcome. The market setup incentivizes individuals to gather information

and make sophisticated predictions about the outcome. Like in any other market,

a trader may also operate by spotting market inefficiencies and exploiting them for

profit.

Prediction markets have been shown to be useful tools in estimating the proba-

bility of future events. Gjerstad [1] shows the market equilibrium price is close to

the mean belief of the participating traders. The information-aggregating nature of a

market and its ability to allow traders to update their beliefs are key factors of suc-

cess. This model has a lot of potential applications and documented uses. Oft-cited

examples include the outcomes of presidential races and sporting events, and sales

forecasting.

Established prediction markets include Foresight Exchange (FX), an open on-

line market where players use play money to predict future events in topics ranging

from politics to entertainment. Another well known example is Hollywood Stock Ex-

change (HSX). Players trade shares of actors, films and related options. In 2007, this

exchange correctly predicted 32 of 39 Oscar nominees in selected categories, and also

7 of 8 winners in the top categories. [2]

Automated agents using any trading strategy can be introduced to prediction

markets, in the hopes that they will augment market accuracy. Automated agents

are capable of processing large amounts of information and producing decisions based

on predetermined rules systematically. This quality may allow them to complement

human traders in the economy. Many staple Al tools are good candidates for facili-

tating the decision-making of an agent, such as support vector machines and neural

nets.

CCI runs a ongoing study on prediction markets called Collective Prediction. We

wish to demonstrate that the right mix of computer agents and human participants

will maximize the accuracy of a prediction market. We recruit subjects to trade

in a prediction market on the outcome of football plays. Automated agents trade

alongside the human traders in a portion of the markets, and we compare effect they

have on market accuracy.

16

Chapter 2

System

2.1 System Overview

The experiment is run on two separate software packages, Zocalo and Collective

Prediction. Zocalo [3] is an open source prediction market toolkit actively maintained

by Chris Hibbert. It enables prediction market trading of multiple setups: binary

vs multi-outcome markets, book orders vs market make, etc. Zocalo provides an

user interface where a human subject could trade in open prediction markets. Our

computer agents, as well as our system, communicates with Zocalo via a custom RPC

protocol.

Collective Prediction was developed by Jason Carver, designed specifically to in-

teract with Zocalo to run CCI's collective prediction experiments. [4] This system has

two major components: the news server, which controls the flow of a football experi-

ment, and the agent manager, which spawns and manages the computer agents. The

two components are designed to run independently of each other, to preserve modu-

larity and ensure graceful failure. CP is currently geared towards running experiments

on football plays, but could easily be modified to run other experiments.

To run a football experiment, the news server first resets the balance of all partic-

ipants' accounts and loads up a set of football plays. For each play, the news server

plays a video clip of the action leading up to the play, stopping right when the teams

are in formation. Then it opens up a prediction market on Zocalo for traders, both

human and computer, to trade in. Human traders use Zocalo's graphical user inter-

face to trade, while agents enter trades via RPC calls. The duration of the market

can be automatically configured, or hand-controlled by an experiment administrator.

Once the time is up the news server closes the market. At the end of all plays, the

news server records results and terminates.

Computer agents may enter at any point during the experiment. The agent man-

ager initializes the agents, then launches them in a staggered fashion. Once launched,

the agent will find the news server to enter the current market, and attempt trad-

ing at regular intervals. The agent manager provides a centralized place for keeping

track of the agents present during an experiment, and for recording data about agent

actions.

2.2 Computer Agents

A computer agent produces a single prediction for the probability of PASS for every

market that it enters. That prediction then becomes its target price for trading if it

decides to trade. Though an agent may see a market multiple times, the prediction

does not change.

We currently have four types of agents implemented - a neural-net based agent,

two simple rule-based agents, and a deterministic agent. The underlying neural nets

for the neural net agents are implemented using Joone [5], an open source neural net

toolkit. We use the JooneTools API to create a standard 3-layer neural net. We

choose to use a sigmoid transform function for our output layer, which limits the

output to within the range of 0 to 1. This is appropriate for our binary classification

problem. Using football play data as input, the neural net outputs a probability for

the play being a pass.

A parameter we call biasForAction is a key configuration for a neural net agent.

Once the underlying neural net produces a prediction, we use this parameter to

evaluate whether it is "worth it" to trade. An risk-averse agent would only enter a

trade if it's confident about the outcome - in other words, if its prediction is close

to either extreme. biasForAction specifies a range from either probability extreme in

which the agent will trade. For example, an agent with a bias of 10 will trade only if

its prediction falls in the range [90, 100], or [0, 10].

The rule-based agent asks a simple question - how many yards are left to first

down? If this parameter yards ToDown is larger than 5, the agent will predict a higher

likelihood of pass. Else if yards ToDown is < 5, the agent will predict a lower likelihood

of pass (higher likelihood of run). The agent uses a base prediction for the overall

likelihood of pass, and adds a deviation depending on the value of yards ToDown. The

pass baseline and the size of the deviation can be adjusted. Also, we have the option

of adding a small random perturbation to the deviation and to the final prediction.

Another rule-based agent uses visual information from the football videos to make

their decision. This is an effort to capture a piece of information available only to

our human traders in lab. We manually coded up the formation of the teams (e.g.

shotgun formation with one running back) for the agent to consider. The agent uses

simple rules based on this information to trade. For clarity, this paper refers to these

agents as "visual" traders, and the rule-based agents using yards ToDown as "dumb"

traders.

Finally, the deterministic agent is the simplest in concept of the agents. The agent

takes a predefined set of numbers as input, and uses them as target prices in its trades.

This construct is useful for simulating past behavior of a group in an experiment on

the same football plays.

20

Chapter 3

Experiment Design

3.1 Controlled Parameters

The experiment can be run with the presence of only human or computer traders, or

both. Full-scale experiments involving human subjects require extra procedures, such

as a live demo of the software and training rounds. In this study I focus on experi-

ments with computer traders ("agents") only. For consistency, I keep the experiment

parameters in accordance with those we use in the lab.

Each experiment consists of 20 markets, each corresponding to a football play.

The plays come from the 2008 Fiesta Bowl, between West Virginia University and

Oklahoma University (WVUvOU). Excluding plays that are neither pass nor run, and

plays used for training rounds in human experiments, we use plays number 3 through

30 in the 1st quarter. In an experiment with human traders, we show a video of the

action leading up to a play before opening the market. In agents-only experiments

this step is omitted.

Another modification that allows agents-only experiments to run much faster is

the reduction of market duration. In the mixed experiment we allow 31 minutes

per market, or 210000 ms. The agents are set to a polling period of 20 seconds or

20000 ms. In the agents-only version we reduce both times by a factor of 10, for a

market length of 21000 ms and polling rate of 20 ms. An agent can make a trade

each time it polls an open market. Each agent can buy or sell a maximum of 1000

shares per trade. This number is consistent with the setting we place on the agents

in lab experiments.

Each market is opened on Zocalo with the presence of a market maker funded with

$10000. The use of a market maker promotes more trading activity, versus using book

orders. I use a pool of 16 agents, which is close to the average number of participants

in a humans-only run. In mixed experiments, both types of traders get the same

starting balance of $10000 to be used across all 20 plays. However, for this study I

set a starting balance of $50000 to prevent agents from zeroing out during the early

rounds. This is merely a convenience measure. In practice, only one pool of agents

(the one trained with the game KUvVT) needed the extra balance to stay active.

The neural net agent takes 3 inputs for each football play: the down number

(1-4), number of yards to first down (within (0, 10] in most cases, can be larger with

penalty), and whether the previous play in the game was a pass (1, 0). The default

training data used in the lab are plays from the first quarter of a 2007 NFL game

between Washington Redskins and New York Giants (WASvNYG). For this study

we add data from the first quarters of two more games to the default training set.

For the parameter biasForAction, I set a mid-range value of 30. This filters out some

of the trading activity when the agents are less confident, while still maintaining

participation in a lot of plays.

We define two types of dumb agents for this study, "dumb" and "dumbest". Both

use the same baseline pass prediction of 54%. This number comes from Carver's

thesis and is derived from the joint statistics of WAS and NYG in 2007, the two

teams that play our default training game. The "dumbest" agent simply outputs the

pass baseline as its prediction for every play. The "dumb" agent uses a deviation of 10

- when yardsToDown is >= 5, it predicts 54 + 10 = 64% pass likelihood; otherwise,

it predicts 44%. Neither agent type uses randomness in producing predictions.

We also use the visual agent for this study. The visual agent uses the same baseline

pass prediction as the dumb agents, but only trades when it receives useful information

about a play's formation. A "shotgun" formation with one running back standing

next to the quarterback receives a deviation of 20 towards pass. A shotgun formation

with no running backs next to the quarterback is considered a strong indication of a

pass and receives a deviation of 30. Thus, the visual trader predicts 54 + 20 = 74%

pass for a "shotgun-plus-one", 54 + 30 = 84% pass for a "bare shotgun", and enters

no trades for all other formations.

The deterministic agent is initialized using aggregate data from lab experiments

run on the same 20 football plays. For its target prices, I look at the closing market

prices from 20 lab experiments. Excluding plays where computer agents participated,

I collected 10 closing prices for each play. The deterministic agent's target price of a

play is set to the average of the corresponding prices.

Collective Prediction is written with many configurable parameters to handle dif-

ferent testing situations. For a complete list, see Appendix A.

3.2 Experimental Setup

The experiments are grouped into five sets, each exploring the effect of an independent

variable on the agents' performance. The first two sets focus on fine tuning the neural

net agent's performance, and in the third set I explore the interaction of these "smart"

agents pitched against the simpler rule-based ones. The fourth set compares mixes

of smart and visual agents, and the fifth compares mixes of smart and deterministic

agents.

3.2.1 Neural Net Training Data

I experiment with different training data sets for this part. The data comes from

plays from the first quarter of three separate games. The first one is our lab training

game, WAS versus NYG. This is the training set we use for the agents in our lab

studies. The other two sets come from college games. They are the 2009 Cotton

Bowl between Mississippi and Texas Tech (MISSvTTU), and the 2008 Orange Bowl

between Kansas and Virginia Tech (KUvVT).

I compare the performance of four pools of agents: one for each of the training

sets, and one trained with all three sets.

3.2.2 Neural Net Agent Bias for Action

The parameter biasForAction can take on any value between 0 and 50. An agent

with a bias of 50 corresponds to the most risk-seeking trader - it will trade in every

single market it enters.

I compare the performance of five pools of agents, each with biasForAction values

of 10, 20, 30, 40, and 50.

3.2.3 Mixes of Neural Net Agents and Rule-Based Agents

In this part I pitch the more sophisticated neural net agents against our more simplis-

tic rule-based agents. Starting with a pool of neural net agents only, I gradually add

more "dumb" agents, keeping the total number of agents at 16. I test the performance

of "smart" versus "dumb" agents, as well as "smart" versus "dumbest" agents. For

each pairing, I tested 5 pools - 16 neural net agents, 14 smart plus 2 dumb, 12-plus-4,

8-plus-8, and finally 16 "dummies". Mixes with a large number of dumb agents versus

a few smart agents are not included because the agents are too dominant even when

there were only a few of them.

3.2.4 Mixes of Neural Net Agents and Visual Agents

In this part I substitute the dumb agents with our visual agents. Using homogenous

pools of both agent types as benchmarks, I wish to create a mix that outperforms

both. I start out with two mixes, 4-12 and 12-4. Using the same number of agents, I

then adjust the maxShares parameter, which determines the size of the trade placed

by an agent each time it sees a market. In scaling the trade sizes I hope to get the

best of both worlds - maintaining the extreme predictions when smart agents are in

the market, but still allowing small traders to determine the price when the smart

agents are absent.

I compare 4 mixes: 12-4, 4-12, and the same two mixes at scaled bet sizes (5000

for smart agents, 500 for visual agents).

3.2.5 Mixes of Neural Net Agents and Deterministic Agents

In this part I study mixes of smart agents and deterministic agents initialized with

human data. Similar to the previous part, I study 4 mixes: 12 smart plus 4 deter-

ministic, 4 smart plus 12 deterministic, 12-4 with scaled price (5000-500), and 4-12

with scaled price.

26

Chapter 4

Results

In this study as well as in full-scale CP experiments, we use root mean squared error

(rmse) as an important measure of performance. We define the error of a market as

the difference between the closing price and the price corresponding to the outcome

of the event. In particular, a pass play is represented by a price of 100 cents ($1) and

a run by 0 cents. For example, a market that closes at 70 cents has error of 30 if the

outcome is pass and 70 if it's run. We take the square of each of the errors, and get

the square root value of their average.

Due to the biasForAction parameter, a market with neural net agents can some-

times close with no trading activity. This give an error of 50 regardless of the outcome.

For each experiment, I keep track of the number of markets in which the agent pool

made trades. I also keep track of the number of markets in which the market price

was in the same direction as the actual outcome. While these are less meaningful

as measures of an agent pool's overall performance, they provide us with a way to

"characterize" a pool - risk-averse but accurate versus risk-seeking but inaccurate,

for example.

4.1 Neural Net Training Data

KUvVT MISSvTTU WASvNYG ALL

played 19 18 20 8
correct 11 13 15 7

mean rmse 54.59 43.48 43.15 42.92

Table 4.1: Trials on Different Training Sets

Table 4.1 shows the run results of agent pools trained with the different training

sets. The "# played" row shows the number of plays in which trading activity was

recorded, out of 20 plays total. The "# correct" shows the number of plays in which

the market prediction was in the correct direction (> 50 for pass, < 50 for run). I

ran multiple trials with each agent pool to obtain the average rmse. While small

deviations exist between the ending prices of each experiment, agents trained with

the same data entered the same markets each time and traded in the same direction.

By the mean rmse, I find that KUvVT is the worst (SD=0.27) training set. With

an average rmse over 50, it actually fares worse as a predictor than an agent that

performs no trades at all. A one-way ANOVA test on the data indicates a significant

difference between the sets (one-way ANOVA, F3 ,8=188.68, p < 0.0001). How-

ever, post-hoc Tukey tests show no significant difference between the rmse's of ALL

(SD=0.6), WASvNYG (SD=0.3) and MISSvTTU (SD=1.25).

While statistical tests produced no clear winner between the sets, other statistics

tell us that these sets of agents behaved very differently in experiment. The pool

trained with MISSvTTU played in 18 of the 20 plays, correctly predicting 13 of them.

WASvNYG traded in every single play, correctly predicting 15 of them. It does not

push prices to extremes as often, only going within 15 of an extreme in 4 plays.

ALL only participated in 8 plays, getting 7 of them correct. Of these 7 correct

plays, the pool posts ending prices that are close to the correct price extreme in

6. The low rmse's of these plays compensates for the plays not participated in. The

worst performer KUvVT traded in almost every play, but only predicted about half of

them correctly. Worst yet, it posted many extreme prices - 5 of its wrong predictions

have market prices within 15 of the wrong price extreme.

4.2 Neural Net Agent Bias for Action

BIAS-50 BIAS-40 BIAS-30 BIAS-20 BIAS-10
played 20 17 8 7 5

correct 14 12 7 6 5
mean rmse 42.56 43.27 42.92 43.86 44.54

Table 4.2: Trials on Different Values of biasForAction

Table 4.2 shows the results on the runs with 5 agent pools having respective

biasForAction values of 50, 40, 30, 20, and 10. The agent pools use the ALL training

set. The data set for BIAS-30 is identical to the one for ALL in the previous section.

As one would expect, as we move to smaller bias for action the accuracy of the pool

increases. At bias = 10, the pool of agents predict 5 out of 5 plays correctly. All sets

predicted these 5 plays correctly with strong closing prices. All sets with bias >=

20 also shared 2 more predictions with strong closing prices, with 1 hit and 1 miss.

These correspond to the high confidence plays.

The rmse seems to have a slightly upward trending effect as the bias decreased.

But at BIAS-40 the rmse rises up slightly higher than both of its neighbors BIAS-30

and BIAS-50. A closer look at the closing market prices reveals the intricate effect

biasForAction values can have on market performance. Of the markets that are only

played in by BIAS-40 and BIAS-50, two ended up predicting opposite outcomes. The

ending prices in both directions are weak, grouping around the middle value of 50.

The individual neural nets have a small degree of variation in their output, even

though they are trained on the same data set. In the BIAS-50 case, the ending price

showed the majority opinion from all the predictions. However, in BIAS-40 agents

whose prediction falls within [40, 60] do not trade. So a few number of traders whose

prediction falls outside of this range can single-handedly decide the outcome, which

may be opposite the majority's opinion.

There was a significant effect of the value of biasForAction on mean rmse for the 5

conditions (one-way ANOVA, F4,10=7.38, p=0.004912). Post hoc comparisons using

the Tukey HSD test indicated only significant differences between BIAS-50 (SD=0.29)

and BIAS-10 (SD=0.4), and BIAS-30 (SD=0.6) and BIAS-10. BIAS-20 (SD= 0.42)

and BIAS-40 (SD=0.66) are not significantly different from each other, or from any

other sets.

We have seen that in a pool of homogenous agents, biasForAction value alone does

not improve overall performance. However, it is a useful parameter that allows us to

represent agents with identical underlying neural nets as traders of very different be-

havior. In the next section, we simulate a "smart" agent by setting the biasForAction

at 30. In sections 4 and 5, we also experiment with increasing their trading power to

be larger than that of the less informed agents.

4.3 Mixes of Neural Net Agents and Rule-Based

Agents

16-0 14-2 12-4 8-8 0-16

played 8 20 20 20 20

#correct 7 13 13 13 13
mean rmse 42.96 43.46 45.01 47.12 48.95

Table 4.3: "Smart" versus "Dumbest" Agents

16-0 14-2 12-4 8-8 0-16

#played 8 20 20 20 20
correct 7 14 14 13 12
mean rmse 42.96 43.35 45.21 47.01 48.17

Table 4.4: "Smart" versus "Dumb" Agents

Table 4.3 and Table 4.4 show the results from runs mixing different numbers of

neural net ("Smart") agents versus rule-based ("Dumb"/"Dumbest") agents. The

groups are labeled by the numbers of each type of agent, in the pattern "Smart-

Dumb". The earlier results from a homogenous pool of 16 smart agents are included

in the first column for comparison. The last column of each table shows the perfor-

mance of the dumb agents on their own. Since the rules used by these agents are

deterministic, and their trade prices sufficiently large, they always push the market

price to their target. Therefore these results are deterministic. Figure 4-1 shows the

play-by-play error measurements of the three homogenous mixes. Notice that smart

agents finish many markets with squared error = 2500, which is equal to a ending

price of 50. These are the markets where they abstained from trading. A squared

error measure of > 2500 indicates a prediction in the wrong direction.

3250-
3000
2750
2500
2250

2000 17i

1500
3250
1000 Ai'

50

4 5 6 8 9 10 11 12 13 14 16 17 18 21 22 23 26 27 29 30

play #

Figure 4-1: Play-by-Play Performance by Homogenous Agent Pools

The "Dumbest" agents predicted all 20 plays at 54%, and was correct in 13 of

them. These include all 7 of the correct predictions by the smart agents. When these

dumb agents are present, the error measurements of these 7 markets suffered since

their predictions brought down the market closing prices from the correct extreme.

The dumb agents contributed 6 correct predictions on their own, but with weak prices.

It also added to the error with 7 wrong calls. Overall, we see a clear trend of their

negative effect: the control group with no dumb agents performed the best. The rmse

grew with the number of dumb agents in the market.

The mixes with "Dumb" agents fared only a little bit better. On their own,

the dumb agents predict 12 correct plays with a rmse of 48.17. Like the homogenous

dumbest-agent mix, they push the market price to their target in every market. They

predict all pass calls at 64% and all run calls at 44%. In this set, the smart agents differ

with the dumb ones in prediction direction in two markets. With 12 and 14 smart

agents in the mix they were able to "correct" the direction of the prediction, but not

with only 8 smart agents. With both rule-based agents, we are only able to achieve

a mix whose performance approaches that of a homogenous pool of smart agents.

There was no significant difference between the means for the 16-0 mix (M=42.96,

SD=0.6), the 14-2 mix with dumb agents (M=43.35, SD=0.5), and the 14-2 mix with

dumbest agents (M=43.46, SD=0.5) at the p<0.5 level (one-way ANOVA, F 2 ,6 =0.85,

p=0.473131).

4.4 Mixes of Neural Net Agent and Visual Agents

agent mix 16-0 12-4 4-12 0-16
#played 8 12 12 10
#correct 7 10 10 8
mean rmse 42.96 41.49 42.49 45.24

Table 4.5: Smart-Visual Agent Mixes

trade sizes 1000 5000-500 1000
agent mix 16-0 12-4 4-12 0-16

played 8 12 12 10
correct 7 9 10 8

mean rmse 42.96 44.87 41.66 45.24

Table 4.6: Smart-Visual Agent Mixes, Scaled Trade Sizes

In this section I compare mixes of smart versus visual agents. Besides simply

adjusting the ratio of smart to visual agents, I also try using different maxShares

values for each trader to control their representation in the pool. Table 4.5 shows the

results of the unscaled mixes (maxShares = 1000 for both agent types). Table 4.6

shows the result of the mixes where smart agents have mazShares = 5000, and visual

agents maxShares = 500. Values from unscaled homogenous pools are included in

both tables for comparison.

From the statistics about 0-16, we can see that the visual agents are a very different

pool than our dumb agents from previous sections. Instead of trading in a most plays

with a low hit rate, this pool trades only in 10 of the 20 plays with 8 correct calls. It

has a rmse of 45.24, compared at 48.17 for the dumb agents. Like the dumb agents,

however, this pool is also deterministic since they produce the same target prices

every time.

One-way ANOVA shows significant difference between the homogenous smart

agents (SD=0.6) and the four mixes (F4 ,10 =58.54, p<0.0001). In particular, two

mixes were better than 16-0 : 12-4 (SD=0.15) and 4-12-scaled (SD=0.11). The dif-

ference between these two mixes is nonsignificant. The mix 12-4-scaled (SD=0.24) is

significantly worse than 16-0. Finally, the mix 4-12 (SD-0.13) shows no significant dif-

ference from 16-0. However, this mix is in turn not found to be significantly different

from 4-12-scaled.

Results from comparisons against the homogenous visual pool are less convoluted.

There is a significant difference between 0-16 and the mixes (F4 ,1 0 =436.4, p<0.0001).

Three mixes are better than 0-16: 12-4, 4-12-scaled, and 4-12. There is still no

significant difference between the two best mixes 12-4 and 4-12-scaled. Our worst

mix 12-4-scaled shows nonsignificant difference from 0-16.

55000

100D

4 5 6 8 9 10 11 12 13 14 16 17 18 21 2 2 2 26 27 29 30

play #

Figure 4-2: Play-by-Play Performance, Smart-Visual Mix

Figure 4-2 shows the play-by-play performance of our best mix, 12-4, against both

homogenous pools. We can see that the two homogenous pools trade in a somewhat

similar manner. They both withhold judgement on low confidence plays, resulting in

a lot of markets closing at price = 50 (squared error = 2500). But once they decide to

enter the market they often post aggressive prices, indicated by the large peaks and

troughs in this graph. The smart agents suffer one bad call at play 29. The visual

traders have two at plays 11 and 22, with much larger penalty since their prices were

more extreme in the wrong direction.

The 12-4 mix was successful in following the better of the two homogenous pools

on almost every market. There was enough representation from both trader types to

push the prices to their targets in the absence of the other type. The mix suffers from

the large penalty of the wrong guesses on plays 11 and 22, where the smart agents

did not trade. However, it was able to choose the correct call on play 29, where the

visual agents indicated a stronger confidence than the smart agents.

The other successful mix, 4-12-scaled, has much of the same play-by-play behavior

as 12-4. 4-12 suffered from not enough smart agent representation, causing it to not

take full advantage of their correct guesses. The worst mix, 12-4-scaled, suffered from

too much smart agent representation - the visual agents were unable to reach their

target prices in two plays (9 and 11) in which they were acting alone, and they were

also unable to "correct" the call on play 29.

4.5 Mixes of Neural Net Agent and Deterministic

Agents

agent mix 16-0 12-4 4-12 0-16

played 8 20 20 20

correct 7 18 18 17
mean rmse 42.96 37.17 41.56 41.71

Table 4.7: Smart-Deterministic Agent Mixes

trade sizes 1000 5000-500 1000
agent mix 16-0 12-4 4-12 0-16

played 8 20 20 20

correct 7 17 18 17
mean rmse 42.96 39.08 37.53 41.71

Table 4.8: Smart-Deterministic Agent Mixes, Scaled Trade Sizes

Tables 4.7 and 4.8 show the results of Smart-Deterministic mixes. Table 4.7 shows

the mixes where agents have even trading power, and Table 4.8 where the trade sizes

are scaled (5000 to 500).

The first interesting thing to note is that the deterministic agents do remarkably

well. A statistical test indicates significant difference between homogenous pools

of smart and deterministic agents at the p<0.05 level (two-tailed t=3.6084, df=4,

p=0.0226). In light of this result, it is less justifiable for us to continue calling the

neural net agents the "smart" ones; but I will preserve the term for consistency. Like

the rule-based agents, the homogenous pool of deterministic agents have deterministic

end prices since they always push the price to target. This pool trades in all 20 plays

with 17 correct predictions. Although it is very adept at picking the right trade

direction, this pool is also very conservative in its betting. Only 9 of its target prices

fall outside of the range [40, 60], and only 3 outside of [30, 70]. This behavior directly

influences the choice of mixes I examine in this section - the deterministic agents

don't need a lot of representation in a mixed pool to reach their low targets. On the

other hand, the neural net agents need to have a lot of influence to be able to reach

their extreme target prices.

One-way ANOVA test indicates a significant difference between the mixes and the

homogenous smart agent pool (F 4 ,1 0 =22.87, p<0.0001). In particular, three mixes

outperform 16-0 (SD=0.6): 12-4 (SD=0.11), 12-4-scaled (SD=1.91), and 4-12-scaled

(SD=0.33). The other mix, 4-12 (SD=0.17), shows no significant difference from the

homogenous smart agent pool. Another ANOVA indicates the same results against

the homogenous deterministic pool (F 4 ,10=18.39, p=0.000133): significantly better

performance from 12-4, 12-4-scaled, 4-12-scaled, and no significant difference from

4-12. Both tests indicate no significant pairwise difference between the three best

mixes.

Looking at the plays in more detail helps us understand the difference between

the mixes' performances. The two homogenous pools differ in the direction of their

predictions in two plays, out of 8 total that smart agents trade in. In play 5, the

smart agents have the right prediction; in play 29, the deterministic agents get it

right. This is the only play that the smart agents miss. In play 29 and two more

plays, the smart agents' end price is not more extreme than the deterministic agents'

price. In the 5 other plays the smart agents post much more extreme prices than the

deterministic ones, achieving smaller rmse's.

The mix that did not outperform either homogenous pools, 4-12, suffered the same

problem as the unscaled mixed pools with dumb agents. The aggressive prices from

the smart agents were reduced down to more conservative ones, which negatively

affected the rmse's on smart agents' correct calls. The mix followed the deterministic

agents on both critical plays, getting play 5 wrong and play 29 correct.

The other three mixes overcame 4-12's deficiency by giving a bigger share of the

market to the smart agents. It turns out simply adjusting the numbers of agents to

12-4 was enough for the smart agents to push the prices to extremes, and correct

the outcome of play 5. As it happens, the smart agents don't post a very aggressive

price in play 29, so the deterministic agents are still able to override them to get the

correct prediction. Scaling the trade sizes to 5000 and 500 on 4-12 achieves similar

results. In 12-4-scaled, though, we start the see the negative effect of giving the

smart agents overwhelming influence. They are now so powerful that they override

the deterministic agents on play 29, resulting in one less correct prediction than 12-4

and 4-12-scaled.

Figure 4-3 shows the performance of 4-12-scaled against both homogenous pools.

This pool nicely captures the "best of both worlds", almost always following the better

of the two pools and avoiding both of the high-penalty spikes. It only underperformed

the better of the two homogenous pools in one play (play 11), where the smart agents

did better by not trading.

4000
3750-

325D0-

2750

200
1 2250

T

- 2000-1

1250

250

0- #T

4 5 6 8 9 10 11 12 13 14 16 17 18 21 22 23 28 27 29 30
play #

Figure 4-3: Play-by-Play Performance, Smart-Deterministic Mix

40

Chapter 5

Discussion

In the first two sets of experiments, I tested the effect of training sets and biasForAc-

tion values on neural net agent performance. I find that the neural net became more

discriminating after being trained with three sets of data instead of just one. Keeping

the value biasForAction small also keeps the agents accurate, with the tradeoff that

it will enter fewer markets. Rather than having a "best" value of biasForAction, it

is more useful to think of the parameter as a way to control agent behavior. Agents

with small biasForAction values could do well in increasing the overall accuracy of

a market with many other traders. Agents with large biasForAction values can be

useful in providing liquidity to the market.

From the results of the first two sections, I configured a "smart" neural net agent

to use in trading alongside our dumb agents. My homogenous pool of smart agents

entered few markets, but tended to push the price close to either extreme in those

markets. It was highly accurate in predicting these plays but abstained from other

plays. Even though agent mixes showed the ability to improve market price in

individual cases, overall their success was limited. In most cases, they underperformed

the homogenous smart agent pool. This is largely due to the limitations of the dumb

traders. They were simply so inaccurate that it wasn't worth introducing them.

The mixes with visual agents fared much better. The homogenous pool of visual

traders is a better predictor than the dumb agents, but worse than the smart agents.

However, with proper representation of both agent types in the mix, mixed pools

outdid either types acting alone. The two agent types have similar trading styles,

abstaining from a lot of plays but trading aggressively once they enter a market.

Together they traded in more markets and with more successes than either one alone.

Mixes with deterministic agents were also successful. On their own, they are

slightly more accurate than the smart agents. I was able to find mixed pools of smart

and deterministic agents that outperform both homogenous pools. The two agent

types were good complements, the deterministic one trading often and modestly and

the neural net agents trading infrequently but aggressively. Successful mixes combined

the correct predictions made by both agent types, and preserved the extreme prices

posted by the smart agents.

In examining the closing prices of our mixes, it would appear that the market

simply gave us a weighted average of the traders' predictions. This seems to be less

than what we expect by using a market setup. What makes a market more than an

averaging mechanism?

I used simplistic rule-based agents to simulate the presence of less knowledgeable

individuals in a prediction market. While the rules used by these agents may reason-

ably be used by a human trader, our model lacks a significant component of a real

market - that of market interaction. Both the sophisticated and simplistic agents act

oblivious to outside information. This includes trading activity in the market, results

of past markets, and knowledge about other traders in the market. But considering

these factors is essential in having the market price reach an equilibrium that rep-

resents the collective belief of its participants. Without market-aware traders, the

market will remain inefficient. Thus, the existing model has yet to fully realize the

potential of the market mechanism to generate good predictions.

Chapter 6

Conclusion and Future Work

In the first part of this study I explored the effects of different training sets and risk

affinity on the neural net agents. With the results I configured a "smart" agent,

which I then used to trade alongside three different simple agents. The simple agents

are meant to approximate the human agents in a lab study. The "dumb" agent uses

a simple rule based on the number of yards left to first down in a play. The visual

agent uses formation information. The deterministic agent trades in accordance with

the aggregate trading history of human subjects in our lab studies.

By exploring different combinations of smart versus simple agents, I showed that

it is possible for mixes of agents to outperform either types alone. I found pools of

both smart-visual and smart-deterministic agents that achieved better results than

the corresponding homogenous pools. This result is consistent with the larger goal of

the collective prediction project, which is to show that humans and computer agents

combined in a prediction market can do better than either alone.

In this study, I relied on trial and error to find good combinations of smart and

simple agents. The best mixes differed with the simple agents types, which have

different trading behaviors. The obvious next question, then, is how do we achieve

the ideal mix in every prediction market?

One approach to achieving the ideal mix is to have a "market referee" who assigns

weights to the different agents' predictions. I effectively used this approach in this

study, dictating the influence each agent type should have by adjusting their ratios

and trade sizes. As we have seen, however, crafting the ideal mix requires in-depth

knowledge of the strengths and weakness of each agent type, plus careful fine tuning

to get the best results. This may be infeasible for a real market setting, with many

more trader types and complex interactions that are absent from our simple model.

We have reasons to hope that market mechanisms will automatically keep the

price efficient. A simple agent that trades the same trade repeatedly may quickly lose

all its balance to smarter traders in the market and die out. Traders that successfully

combine their prediction and trading strategy will gain more influence over time

and bring the market to its efficient price. To capture this effect in my simulation

framework, we would need to improve our agents to be more market-aware.

It is useful to think of every trader as having two components - a "predictor",

which generates the trader's own belief about the outcome of the play, and a "con-

troller", which decides how the trader should use his/her prediction. Our neural net

agent has a form of controller in the biasForAction parameter, which prevents the

agent from trading in plays in which it has low confidence. On the other hand, our

simpler agents lack this component. Once they produce a prediction, they will repeat-

edly enter the trade regardless of what may be going on in the market. The controller

can base its rules on many factors, such as the current market price, risk affinity, bud-

get constraints, and success in past trades. Current market price and success in past

trades both affect a trader's self-confidence, which is often a key parameter in shaping

its trading strategy. An agent's self-confidence can also be affected by its perception

of other traders in the market.

Every trader should have a clearly defined goal of maximizing its own profit. To

that end, a trader may decide to act based solely on its belief of the event probability.

However, there should be other traders present who take other factors into consider-

ation. For example, an agent may speculate about the price movement of the market

rather than the outcome of the event, and attempt to capitalize on that. Another

agent may adjust its trade size according to the current market price. The presence

of a variety of traders will promote richer interaction in the market.

Another key advantage of using a market is that it allows traders to continually

update their beliefs. In lab experiments, we observe big learning effects from our

human traders. Some become better at predicting the outcome of the plays as they

build a history of plays that happened; others develop more effective strategies to

buy a prediction low and sell high to make a profit. Including learning effects in

our simple agents, which are meant to approximate human subjects, has potential

for substantially improving their performance. This can also apply to our smart

agents. A typical feature of a neural net is the ability to evolve over time. Our

neural net agent learns during the training period, but does not retain information

learned during the actual experiment. Enabling learning could add to the neural net's

accuracy over the course of an experiment as it adapts to the specific game.

The experiments in this study provide a first step in observing the effects of mixing

agents in a prediction market. To obtain a more effective prediction market, we need

to promote more interaction amongst the traders, and enhance our trader model to

include more behaviors that occur in real markets.

46

Appendix A

Collective Prediction System

Parameters

This section lists the configurable parameters of the Collective Prediction software.

Default values reflect the settings used in the experiments of this study.

A.1 System Parameters

Name Function Default
Value

RUN LOCAL Run Zocalo from a local installation, or from a remote true
server.

RUN_ WIN- Whether the software is running on Windows operating false
DOWS system. This affects the application used to play the

videos.
AGENTS_ Run experiment with only computer agents. true
ONLY
MANUAL_ Whether an experiment administrator needs to manually false
ADVANCE control when to end a market and advance to the next.

If false, the rounds advance automatically.
autoRunPause The amount of trade time (in milliseconds) per round. 21000
skipVideo Skip showing videos. Used for agent-only sessions. true
defaultGame The default experiment game. WVUvOK
MMFUNDS The amount of money available to the market maker per 10000

market.
AGENT_ The amount of money available to each trader (human 50000
START_ or computer) at the start of the experiment.
BALANCE
firstRealRound First real round of data collection, after training plays for 4

human subjects. The system automatically resets all ac-
count balances. Does not apply when AGENTSONLY
is true.

agentsFirstHall In a lab study, agents only participate in either the first true
or second 10 plays. This controls when the agents
start/stop. Does not apply when AGENTS_ONLY is
true.

Table A.1: System Parameters

A.2 Agent parameters

Name Function Default
Value

NUM_ Total number of computer agents in the experiment. 16
AGENTS
REPEAT_ Whether an agent can trade multiple times in a single true
TRADING market.
trainingGames The training sets used by the neural net agent. {WASvNYG,

MISSvTTU,
KUvVT}

global_ bias- The default bias for action of a neural net agent. 30
ForAction
global_ The default size of a neural net agent's trade. 1000
maxShares
dummy_max_ The default size of a simple agent's trade. 1000
shares
pollingRate The interval (in milliseconds) at which an agent polls for 2000 (agents-

the newest market. only) / 20000
(humans)

Table A.2: Agent Parameters

A.3 Experiment Parameters

Figure A-1: Agent Launcher Window

For the agent-only experiments in this study, I control most of the independent

variables through the small graphical interface shown in Figure A-1. The agent

launcher allows an experimenter to quickly set up mixes of different agent types.

I also include the parameters biasForAction, maxShares and dummy _max _shares

for easy access. The values default to the settings in the table above. There

is an additional parameter, "Dummies Withholding", which I did not use in this

experiment. When this value is set to true, the simple agents will withhold their

trades if the market price is in the same direction as its prediction but closer to the

extreme. We achieve a similar effect in this paper by outnumbering the simple agents

heavily.

Appendix B

Code Excerpts: Computer Agents

Much of the core code for Collective Prediction is excerpted in Carver's thesis. Here

I excerpt the code for our three simple agents, which were developed for this study.

The rule-based agent using yards ToGoal is based on an earlier version, and the other

two are new.

B.1 Rule-Based Agent Using yardsToGoal

package edu.mit.cci.predecon.agents;

/**
* Dummy Agent
* @author Jason
*

* Also referred to as Rule-based agent, it makes a very simple guess about football
* plays.
*/
public class DummyAgent extends TradingAgents {

/*
* We implement three types of "dumbness" here. (1, 2 deterministic, 3 has
* randomness)
* 1. "Dumbest": agent bets the pass baseline (54%) everytime.
* 2. "Dumb" : agent looks at yards to first down: if < 5 bet 44%, else bet 64%
* 3. "Dumb-Random": similar to "Dumb" , but uses randomness in the passBaseline
* and the deviation.

* marketaware only implemented for the market maker case.

private static final double passBaseline = 54.0;
private static final double base_deviation = 10;

private final boolean USE_RANDOMNESS;
private final boolean USE_DEVIATION;
private final boolean MARKET_AWARE;
private double expectPass;

public DummyAgent(String username, boolean useRandomness, boolean useDevia-
tion, boolean marketAware, int maxShares) {

super(username, maxShares);
USE_RANDOMNESS = useRandomness;
USEDEVIATION = useDeviation;
expectPass = USERANDOMNESS ?
passBaseline + (Math.random()-0.5)*20 : passBaseline;
MARKETAWARE = marketAware;

protected void gotNewMarket(String newMarket, FootballPlay play) {
double myEstimate = expectPass;
double deviation = USEDEVIATION ? (USE_RANDOMNESS ?

Math.random()*10 : base_deviation) : 0;
int ytf = play.getYards();
if(ytf == -1){

Util.out("yards to 1st was unusable, agent aborting trade");
return;

else if(ytf <= 5)
myEstimate -= deviation;

else
myEstimate += deviation;

//get price
double price = getMarketPrice(newMarket, PASS);

if(price == -1) { //book orders
//intended for markets with no Market Maker
int spreadAroundEstimate = 10 - (int)deviation;
placeMarketTrade(newMarket, BUY, PASS,

(int)Math. round(myEstimate - spreadAroundEstimate),maxShares);
placeMarketTrade(newMarket, SELL, PASS,

(int)Math.round(myEstimate + spreadAroundEstimate),maxShares);

}
else { //market maker

mmTrade(newMarket, (int)Math.round(price), myEstimate);

}
}

/*
* trade with the market maker.

protected void mmTrade(String newMarket, int price, double myEstimate) {
int myPrice = (int)Math.round(myEstimate);
boolean sameDirection = (price > 50) ? myPrice > 50 : myPrice < 50;
boolean withhold = MARKET-AWARE && price != 50 &&
sameDirection && ((price > 50) ? myPrice < price: myPrice > price);
if (!withhold) {

//buy up to / sell down to desired price
TradeType tradeType = price < myPrice ? BUY: SELL;
placeMarketTrade(newMarket, tradeType, PASS, myPrice, maxShares);

}
}

}

B.2 Rule-Based Agents Using Visual Data

package edu. mit.cci. predecon.agents;

/**

* Visual Agent trades according to formation information.
* If sees shotgun formation with no running backs near the quarter back,
* considers a strong visual cue for pass.
* SG formation with 1 running back - weak cue for pass.
* Other formations - do nothing.
*

* @author wendyc

public class VisualAgent extends DummyAgent {

private static final double visualdeviation_weak = 20;
private static final double visualdeviationstrong = 30;

public VisualAgent(String username, boolean marketAware, int maxShares) {
super(username, false, false, marketAware, maxShares);

}
@Override
protected void gotNewMarket(String newMarket, FootballPlay play) {

double myEstimate = getPassBaseline();
boolean willTrade = false;
switch (play.getFormation()) {
case shotgunbare :

willTrade = true;
myEstimate += visuaLdeviationstrong;
break;

case shotgunonerb :
willTrade = true;
myEstimate += visualdeviationweak;
break;

default :
break;

}
if (willTrade) {

//get price
double price = getMarketPrice(newMarket, PASS);

if (price == -1) {
//no market maker; not implemented
return;

}
mmTrade(newMarket, (int)Math.round(price), myEstimate);

}
}

}

B.3 Deterministic Agents Using Predefined Prices

package edu.mit.cci.predecon.agents;

/**
* @author wendyc

* A deterministic agent that trades based on the input prices we feed it.
* Can withhold trades using the same rules as parent.
*/

public class DeterminAgent extends DummyAgent {

public DeterminAgent(String username, boolean marketAware, int maxShares) {
super(username, false, false, marketAware, maxShares);

}

@Override
protected void gotNewMarket(String newMarket, FootballPlay play) {

int myPrice = agentPrices.get(play.getld()-1);
double price = getMarketPrice(newMarket, PASS);
if (price == -1) {

//no market maker; not implemented
return;

}
mmTrade(newMarket, (int)Math.round(price), myPrice);

}
}

56

Appendix C

Experiment Software Setup
Instructions

1. Setup Collective Prediction

* Import Eclipse project Prediction Economy Agents

svn : //portend.org/trunk/Prediction_EconomyAgents

* Settings are in ExpConstants.java. To run off of local build, set RUN_LOCAL
= true. See list of params for other settings.

* Server addresses are in RPCClient.java. If running locally, make sure the
address Zocalo_Local is is set to the proper IP.

(e.g. "http: //18.95.6.69: 8180/RPC2")
* Get football video and put in folder "football" in project folder.

2. Install Zocalo

* Download the latest copy of Zocalo. Currently at

http: //portend.org/zocalo - PM - Caching - bin.tar

* Unarchive and move resulting folder "zocalo" to convenient location.

* Setup is done through editing the file /etc/zocalo.conf. Make the follow-
ing changes:

* Add "RPC.server.enable = true" to enable RPC. This lets our system talk
to zocalo.

* Change "initial.user.funds" to 10000.

* Mail info. Fill in all relevant fields including host, user, port, secure, and
password.

* Important: If the line "useCostLimit = true" is not in the file, add it. This
configures the Zocalo UI to look the way we want it to for the experiment.

* Important: After a new install, make sure the UI looks right. A normal
user should NOT be able to see trading history and closed markets. If
this is not the case, contact Chris Hibbert for the right install package.

* Consult INSTALL and /etc/CONFIGURE for additional info.

3. Setup Play Accounts

* Go to localhost : 30000/Welcome.jsp to create the following accounts:
NewsServer, zocl - zoc20 (humans), aaO - aa9 (agents).

* Fund the market maker with extra cash. From RPCClient.java, uncomment
line in main class for granting cash and run once.

4. Create Eclipse Run Targets

* Create Java Application targets for two classes: AgentLauncher and NewsServer.

5. Start Zocalo

* From Zocalo install folder, start database by running ./bin/startDB

* Then start Zocalo by running ./bin/zocalo.sh

* To stop Zocalo properly, run ./bin/shutdown.sh

6. Start Collective Prediction

* Run target NewsServer to start experiment. Run AgentLauncher to
launch agents when desired. Be sure to give neural net agents enough time
to initialize.

Bibliography

[1] Steven Gjerstad, 2004. Risk Aversion, Beliefs, and Prediction Market Equilibrium,
Microeconomics 0411002, EconWPA.

[2] Hollywood Stock Exchange, LLC (January 23, 2008). Hollywood Stock Exchange
Traders Hit 80% of Oscar Nominations for the 80th Annual Academy Awards.
Press release. Retrieved on 2008-08-08.

[3] Hibbert, C. Zocalo: An Open-Source Platform for Deploying Prediction Markets.
CommerceNet Labs, CN-TR-05-02, February 2005.

[4] Carver, J. Architecture of a Prediction Economy. May 2008.

[5] Marrone, P. Joone - Java Object Oriented Neural Engine. August 1 2008. http:
//www. jooneworld. com/.

