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Abstract

Weber and Stidham (1987) used submodularity to establish transition monotonic-
ity (a service completion at one station cannot reduce the service rate at another
station) for Markovian queueing networks that meet certain regularity conditions
and are controlled to minimize service and queueing costs. We give an extension of
monotonicity to other directions in the state space, such as arrival transitions, and to
arrival routing problems. The conditions used to establish monotonicity, which deal
with the boundary of the state space, are easily verified for many queueing systems.
We also show that, without service costs, transition-monotone controls can be de-
scribed by simple control regions and switching functions, extending earlier results.
The theory is applied to production/inventory systems with holding costs at each
stage and finished goods backorder costs.
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1 Introduction

The optimal control of arrival and service rates in networks of queues has been the

topic of considerable research (see Stidham 1985, 1988 and the references therein).

Most studies have dealt with specific network structures or systems with only two

queues. Even in these special cases and with memoryless arrival and service processes,

one usually must resort to numerical dynamic programming techniques to compute

the optimal control. Alternatively, a certain form of control can be analyzed; examples

include end-to-end controls for communication systems, and kanban and base stock

controls for manufacturing systems.

Another fruitful line of research has been to study the structure of optimal poli-

cies. In many cases, the optimal policy has been shown to have intuitive monotonicity

properties. Weber and Stidham (1987) use the preservation of submodularity under

dynamic programming value-iteration to prove transition monotonicity: service com-

pletion at one station cannot reduce the optimal service rate at another station. Their

result applies to a fairly broad class of queueing networks, which are assumed to be

Markovian with all service rates controllable, controllable and uncontrollable arrival

rates, and discounted or long-run average costs. In a series system with service rate

control, service costs and convex holding costs, for example, they show that upon

the addition of a customer to a queue, the optimal service rates at that queue and

at downstream queues do not decrease and the optimal service rates upstream do

not increase. Several other papers have used submodularity to establish some form of

monotonicity (see, for example, Rosberg, Varaiya, and Walrand 1982 and Beutler and

Teneketzis 1989). Hajek (1984) uses submodularity, which he calls multimodularity

in Hajek (1985), to establish monotonicity for a system of two interacting queues with

arrival routing, service rate control, and server allocation.

However, most proofs using submodularity are problem-specific. Weber and
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Stidham's result, though it addresses general network structures, does not seem

strong enough to produce monotonicity for Hajek's (1984) problem and the produc-

tion/inventory model that motivated our research. We give an extension of mono-

tonicity to other directions in the state space such as arrivals: an arrival cannot

reduce the optimal service rates. Some arrival routing problems are also included in

our model. The following assumptions are required:

1. Holding costs satisfy a submodularity condition (related to convexity),

2. The boundaries of the state space satisfy a geometric condition: only one control

(or other vector used as a monotone direction) can cross each boundary in each

direction, and

3. Service and arrival rates are either controllable to zero or are uncontrolled and

state-independent.

Controls that choose between two directions, such as routing arrivals to one of two

queues, are allowed but must meet an additional boundary crossing condition. The

theory is powerful in the sense that it can be used to easily prove monotonicity for

a variety of queueing control problems. We have used it to reproduce some of the

two-station monotonicity results of Rosberg, Varaiya, and Walrand (1982) and Hajek

(1984). Our theorem does not apply to routing decisions within a network or to server

allocation (scheduling) problems. Since Hajek proved monotonicity for an allocation

problem using submodularity, it seems likely that the assumptions could be weakened

to include some of these problems.

Our monotonicity results apply to the following production/inventory problem.

Items pass through a sequence of production stages before being placed in finished

goods inventory, which is used to meet a Poisson demand. Each stage is modelled

as an exponential single-server queue. Demand that cannot be met from inventory
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is backordered and met by the next available finished item. Production and holding

costs are incurred at each stage, as well as finished goods backorder costs. The

problem is to control the production rates to minimize discounted or average costs.

For a series system, we show that upon the addition of an item between stages, the

production rates downstream do not decrease and the production rates upstream do

not increase; also, a demand does not decrease production rates.

We also give some simplifying characterizations of the optimal policy under tran-

sition monotonicity. It is well-known that, in the absence of service costs, these

problems have all-or-nothing (bang-bang) optimal policies. We show that they are

characterized by switching functions with certain slope restrictions that bound a re-

gion in which all servers work at full capacity. When the system state reaches a

boundary, one or more servers turn off. This simplification should ease the task of

numerically computing optimal policies. Switching functions are also discussed in

Hajek (1984), Stidham (1985, 1988), and Chen, Yang, and Yao (1991) for specific

two-station networks. Developing numerical techniques that exploited these switch-

ing functions to compute optimal policies would be a useful area for further research.

We define a general queueing control problem in Section 2, then present mono-

tonicity theorems in Section 3. Applications to production/inventory systems and to

two interacting queues are discussed in Section 4. We will use the term increasing

(decreasing) in the weaker sense of nondecreasing (nonincreasing) and denote a unit

vector whose ith component is one by ei.

2 Problem Desciption

We are primarily concerned with arrival rate, service rate, and routing control prob-

lems for queueing networks and related models of production/inventory systems.
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However, the method being used to obtain monotonicity results applies to a broader

class of Markov decision processes, so we will follow Weber and Stidham and use a

more general notation. To accommodate certain routing problems, we define con-

trols that choose between two transitions. If, instead, the rate of each transition is

controlled independently, set d = 0 in what follows. Consider a continuous time

Markov decision process with state x = (,... , Xm) E X C Zm. The decision space

is {y = (,... , ) : 0 < < 77i} and, given a control /1 in state x, the transition

x --+ x + dl occurs at rate pi while the transition x - x + do occurs at rate i - pi, for

i E C = {1,..., q}. Let di = di -do; the control pi pushes in the direction dc. Because

the system is memoryless, an optimal control need only depend on the current state

x; we denote this control #(x). Also, if x + dil V X, then Ii(x) = 0.

Let dq+l,... , dq+p be the uncontrolled transitions with index set U = {q+l,..., q+

p}. To prevent transitions out of the state space, define the transition function

Dix = x + d, if x + di E X and Dix = x otherwise; Di occurs at the constant rate Ai.

The cost rate is a separable, nonnegative function of the state,

m

h(x) = E hk(Xk)
k=1

with certain restrictions defined later, plus a continuous, separable function of the

control,

c(H) = E (pi)'
iEC

The functions ci are assumed to be convex; if they are not, an equivalent optimization

problem results when ci is replaced by its convex lower envelope on [0,jTi]. The

objective is to minimize the expected discounted cost. An average cost criterion will

be considered in Section 3.5.

In a queueing network control problem, xi is the queue length (including customers

in service) at queue i; X = Z; C consists of a customer moving from queue j to
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queue k (d = ek- ej,di = 0), a customer departing the network from queue j

(d = -ej,d = 0), controlled arrivals at queue j (d = ej,d = 0), and routing

arrivals to queue j or k (di = ek, di = ej); i is a service, arrival, or routing rate

control; U may contain uncontrolled arrivals or departures; hk(Xk) is the cost of

holding xk customers at queue k; and c(/i) is the cost of service (or arrivals) at rate

[i.

In production/inventory models, one of the state variables, say x measures fin-

ished goods inventory and is allowed to be negative, representing backorders. The

uncontrolled transitions are demands which decrease the finished goods inventory.

The controls ui are production rates with costs c; the costs hk are holding costs

at each station k i n and h, is the finished goods holding and backorder cost. A

complete description is given in Section 4.1.

For the infinite-horizon problem with discount rate a > 0, the minimum expected

cost is

V(x) = Ex j e-t[h(x(t)) + c(i(t))]dt,

where Ex denotes expectation given the initial state x(O) = x. We will uniformize

the process as in Lippman (1975) by defining the potential event rate

A= + Ai.
iEC iEU

Let Vn(x) be the minimum n-stage expected discounted cost for the embedded discrete-

time Markov decision process. Then V, is well-defined and satisfies the dynamic

programming equation

(a + A)Vn+l(x) = h(x) + E AiVn(Dix)
iEU

+ E min {c/(yi) + iVn(x + d) + (i- i)Vn(x + )}, (2.1)
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where we define Vo(x) = 0 and Vn(x) = oo, x ' X.

3 General Monotonicity Results

3.1 Transition Monotonicity

Monotonicity results will be obtained by investigating the effect on the optimal con-

trol of moving in certain directions in the state space.

Definition. The control p(x) is D-monotone if

pj(x) < j(x + di)

for all controls j E C and direction vectors di E D such that di $ dj.

We will only consider direction sets D that contain all of the control directions

di,i e C. If D {di: i E C} and d = 0 (i.e., D is the set of control transitions), we

will say that (x) is control-monotone; if D = {di: i C U U} and cdi = 0 (i.e., D is

the set of all transitions), we will say that (x) is transition-monotone. For a queueing

system with uncontrolled arrivals and controlled servers, control monotonicity means

that after a service completion the service rate of other servers increases; transition

monotonicity means that the service rate of all servers also increases after an arrival.

Remark. Under transition monotonicity, yj is increasing in every other transition.

If {x(t),t > 0} is an irreducible Markov chain under some control (x), then we can

write -dj = iili, di for some sequence of transitions not including d; hence, j

is decreasing in dj. This monotonicity result might be called a law of diminishing
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returns. Weber and Stidham use this reasoning for a cycle of queues.

Considering the minimization in (2.1), if

V(x + ) - V(x + d°) > V(x + d + dj) - V(x + d + dj) (3.1)

for all i E C, di $ dj C D, and x such that all four points are in X, then the future

cost of control i decreases when transition dj occurs. Because ci is convex, a D-

monotone optimal control must exist at stage n + 1. For simplicity, change x in (3.1)

and write

V (x + di) - V (z) > V( + di + dj) - V(x + dj). (3.2)

Since V = lim,,,O Vn, if (3.2) holds with Vn replaced by V then D-monotonicity also

holds for the infinite-horizon problem. Condition (3.2) is an example of submodular-

ity of a function on a lattice (Topkis 1978).

Definition. The function f X - R is submodular w.r.t. D on X if

f(x + di) + f(x + dj) - f(x) - f(x + di + dj) > 0 (3.3)

for all di $ dj E D and x such that all four points are in X.

The following condition will be used to guarantee that (3.2) holds sufficiently close

to the boundary of X.

Definition. D is compatible with X if for all di clj E D, x + di and x + dj E X

implies x and x + di + dj X.

For most queueing control problems, we can think of X as the discrete equivalent

of a polyhedral set and give a simple interpretation of compatibility: only one di can
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cross each bounding hyperplane in each direction. Let D(x) = {d E D: x + d E X}

be the set of feasible directions from state x. If D is compatible with X and f is

submodular w.r.t. D on X, we will say that f is submodular w.r.t. D(x), since (3.3)

holds for all x E X and di dj E D(x).

Weber and Stidham establish submodularity of V by showing that submodular-

ity is preserved under value-iteration. The key step is the following lemma, which

is proven in the Appendix (their proof is very similar but does not include choice

controls).

Lemma If D contains all control directions di, i E C,

(i) f(x) is submodular w.r.t. D(x), with f(x) = oo, x X,

(ii) D is compatible with X, and

(iii) d is always feasible, i.e., x + d E X whenever x E X,

then for each dk, k E C,

g(x) = min {Ck(I) + !f(x + d}) + (k - #)f(x + do)}

is also submodular w.r.t. D(x).

Submodularity must also be preserved by uncontrolled transitions (the first sum

in Equation 2.1). One type of transition that preserves submodularity is a state-

independent transition, Dix = x + di for all x E X, i.e., Poisson arrivals. Some other

transitions also work, depending on the geometry of D and X.

Definition. The uncontrolled transition Di, i E U, preserves submodularity w.r.t.

D(x) if f(Di(x)) is submodular whenever f(x) is submodular.

Monotonicity now follows easily from the lemma.
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Theorem (Monotonicity) If D contains all control directions di, i E C,

(i) h(x) is submodular w.r.t. D(x),

(ii) D is compatible with X,

(iii) d? is always feasible, and

(iv) all uncontrolled transitions preserve submodularity w.r.t. D(x)

then there exists a D-monotone optimal control.

Proof. First show that Vn(x) is submodular w.r.t. D(x) using induction on n. Initially

Vo(x) = 0 is submodular. In (2.1), h(x) is submodular by (i), the first sum by (iv),

and the second sum by the lemma and the inductive hypothesis. Since Vn -- V, it

follows that V is submodular w.r.t. D(x) and a D-monotone optimal control exists.

Note that the inductive proof establishes monotonicity for finite and infinite-horizon

problems.

Weber and Stidham's monotonicity result is equivalent to the following special-

ization of our theorem.

Corollary (Control Monotonicity) If D = {di : i C},d° = 0 for all i E C,

and (i), (ii), and (iv) above, then there exists a control-monotone optimal control.

The generalization of adding other directions to D is very useful in some problems

because it strengthens the monotonicity result; the strongest way to use this general-

ization is to consider one additional direction at a time. For systems with uncontrolled

transitions, transition monotonicity (if it holds) tends to be a much stronger result

than control monotonicity. The next two subsections describe some of the useful im-

plications of transition monotonicity. Choice controls with d -$ 0 are useful in some

arrival routing problems. We have not been able to establish monotonicity without

condition (iii); with this condition, the theorem does not apply to problems with
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server allocation or routing between servers.

Not all networks of interest display monotonicity. In a tandem queue example

of Weber and Stidham, where arrivals and the second server are controlled, but the

first server is not controlled, the optimal arrival rate increases when a customer is

added to the first queue. This behavior is not control-monotone; the theorem does

not apply because condition (iv) is violated.

3.2 State Space Monotonicity

If D-monotonicity holds with ek or -ek in D, it can be used to establish monotonicity

with respect to the Xk axis. Depending on the geometry of the problem, it may be

possible to infer state space monotonicity from other direction sets. D-monotonicity
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establishes that the optimal control for a transition di increases after any other tran-

sition in D. It will also increase after any sequence of transitions in D; hence, the

convex cone Ci of D \ {di } is a set of directions in which it is increasing and the neg-

ative convex cone CT is a set of directions in which Hi is decreasing. Figure 1 shows

these cones for the two-stage production/inventory system of Section 4.1 under tran-

sition monotonicity, where D = {dl,d 2,d 3 }. If the vector ek, giving the direction

of the xk-axis, lies within Ci or C-, then monotonicity holds with respect to the Xk

coordinate. For example, the control dl (and d2) in Figure 1 is monotone with respect

to both xl and x2. Control monotonicity corresponds to the convex cones generated

by smaller sets D. If only control monotonicity is established in Figure 1, the convex

cone of p1 is the single direction d2, which is not sufficient to establish state space

monotonicity.

3.3 Control Regions and Switching Functions

It is well known that if the service cost c in (2.1) is linear, then an all-or-nothing

(bang-bang) control is optimal, with pi(x) = 0 or j7i. Bang-bang, transition-monotone

controls can be characterized very simply as a control region. Let Si = {x E X :

pi(x) = ji}, S = {x + d: x E Si}, and Bi = S \ Si for i E C. In queueing

terminology, Si is the region where server i is on. As illustrated in Figure 2, Bi

contains points on the boundary of Si that are reached by one transition di. For any

x E Si, consider the cone Ci for control iu/ with vertex x. Since pi is on at x, it

must be on in all of Ci (similarly, if ii were off at x, it would be off in all of C-);

i.e., Ci n X Si. But all transitions other than di lie in Ci, so they cannot cause

the system state to leave S. By a translation argument, these transitions cannot

leave Si' either. Under such a control, the system never leaves the control region

S' = niec Si. This region consists of an interior S = niEc Si in which all controls are
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Figure 2: The cone C1 (to the left of the dashed line) is contained in the interior
region S1 (to the left of the solid line); B 1 contains the points outside of S1 .
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Figure 3: Switching Functions and the Interior Region

on and boundaries in which one or more controls are off. The system can only enter

a boundary in which pi is off through the transition di.

The control region can usually be defined using a switching function for each

control #s. Hajek proves that switching functions exist for a system of two inter-

acting queues; we give sufficient conditions for the existence of switching functions

in general D-monotone systems. If the direction ek lies in the cone Ci or C; for

control i, then S can be defined by a switching function si(x(k)), where x(k) =

(x 1 ,... Z-,Xk+, ... ,Xm), such that i(x) = if and only if Xk >(<) si(x(k)). In

this case, the interior S is simply a subset of X bounded by the switching functions

si. Moreover, the function s must lie between Ci and C- for the control pi. Figure 3

gives an idealization of these regions (the si are actually step functions). In queueing

applications, these controls turn a server off when a boundary is reached; such con-

trols have been analyzed on a continuous state space as reflected Brownian motion
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(Harrison 1985).

3.4 Some Generalizations

Although compatibility is a useful condition because it is easily verified, other condi-

tions can be used in the theorem. Let X = {x + d: x E X, d E D, and x + d X}.

If it is possible to extend the cost function h onto the boundary SX in a way that

preserves the submodularity of h and makes h arbitrarily large on 5X, then h acts as

a barrier and the optimal control for the unconstrained problem (Vo(x) = 0 for all x)

will be feasible for the original problem. Since there are no boundaries, compatibility

is not needed to prove the lemma for the unconstrained problem and establish tran-

sition monotonicity. Hajek uses this approach to prove monotonicity in a two-station

network. However, extendibility of the cost function is at least as strong a condition;

it implies compatibility, as the following argument shows.

Suppose that h is submodular w.r.t. D on X and that for any M there exists

an extension h: X U SX -- R of h that is submodular on X U SX with h(x) > M,

x E X. Given di, dj G D, i j, and x such that x, x + di, x +dj, x + di + d E X U X,

the submodularity condition is

h(x+ d) + h(x + dj) - h(x) - h(x + d + dj) > 0. (3.4)

If x (or x + d + dj) is in X, so that h(x) > M, then in order for (3.4) to hold for

large M, x + di or x + dj must be in X. The contrapositive of this statement is

compatibility.

The compatibility condition can be weakened slightly if there are no service costs.

Given four points in X on which f is submodular, as in (3.3), g(x) in the lemma is

only submodular on these points if certain combinations of the four points obtained
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Table 1: Comparison of Boundary Conditions

Case Points in X Compatible g Submodular
1 b,d,f,h / V
2 d,f,h
3 b,f,h /
4 b,d,h V
5 b,d,f
6 f,h / /
7 d,h V V
8 d,f
9 b,h V

10 b,f
11 b,d
12 h / V
13 f
14 d
15 b V
16 - V /
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Figure 4: Points at which f is Evaluated

by adding dk, k f i or j, are in X (i.e., points (b), (d), (f), and (g) in Figure 4).

Writing

g(x) = Ik min{f(x), f(x + dk)},

a case-by-case analysis reveals that nine of the 24 possibilities guarantee submodu-

larity. In contrast, compatibility allows only five of these possibilities (Table 1) and

must hold for any four points x, x + di, x + dj, and x + di + dj, not just those defined

as (b), (d) , (f), and (g) are. If k = i, a similar analysis shows that compatibility is

as weak as possible, allowing three out of 22 possible combinations of points in X.

However, we have not found any meaningful examples where g(x) is submodular and

conditions (i), (iii), and (iv) hold but compatibility does not hold.

We have assumed that the lower control limits are zero. Positive lower control

limits Li. < i < 7i can be modelled by introducing a duplicate uncontrolled transition

dj = di,j E U,i E C, and resetting the control limits to Ak = t. and 0 < i < i --..
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However, the duplicate transition in D adds the following conditions to the theorem:

1. By submodularity, 2h(x + di) - h(x) - h(x + 2di) > 0; i.e., h is convex in the

direction di.

2. By compatibility, if x + di E X then x, x + 2di E X; i.e., X has no boundaries

in the directions +di.

3.5 Long-Run Average Costs

Monotonicity can be extended to the long-run average cost setting; the proof given by

Weber and Stidham applies directly. If the state space X is finite (or h is bounded),

well-known methods can be applied to let a --+ 0. In practice, this is not much

of a restriction because it is usually clear how to truncate the state space. Note,

however, that monotonicity holds for discounted optimal controls even when the sys-

tem is unstable and cannot be truncated. For unbounded h we need the following

assumptions:

1. There exists a policy with finite average cost.

2. For all x, y G X, there exists a policy under which the undiscounted cost until

first passage from x to y is finite.

3. The cost functions hk are bounded below.

4. For some ordering of the states x G X, h(x) --+ oo.

The second assumption is a stronger form of irreducibility and the fourth guarantees

that there are only finitely many good states. With these additional assumptions,

the theorem holds for average cost optimal policies.
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Figure 5: Series Production/Inventory System

4 Applications

4.1 Series Production/Inventory Systems

Consider an n-stage series production system in a make-to-stock environment with

complete backordering (Figure 5). Each stage contains a single machine that operates

as a ./M/1 queue. Items are released into the system, processed at each stage, then

placed in a finished goods inventory that services a Poisson demand. Demand that

cannot be met from inventory is backordered and recorded as a negative inventory.

Denote the system state by x = (x1,... ,xn), where xi is the number of items at

stage i + 1, i = 1,..., n -1 and xn is the finished goods inventory. Because the supply

of raw material is unlimited, there is no queueing and no state variable at stage 1.

Stage i has production rate i controlled between 0 and >i, with transitions dl = el

and di = ei- ei-l, i = 2,... ,n. Demand is an uncontrolled transition d+l = -en

with rate A. These transitions are illustrated in Figure 1 for a two-stage system. The

state space is X = {x E Zn : Xi > 0i = 1,...,n - 1}. There is a work-in-process

holding cost hk after stage k (items available to stage k + 1), k = 1,... , n - 1, a

finished goods holding cost h, and a finished goods backorder cost b; i.e.,

n-1

h(x) = E hkxk + hnXn+ + bxn. (4.1)
k=l

18



No holding cost is assessed at stage 1 because it will contain at most one item in

production and none queued. The production cost c(pu) is approximately the same

for all stable controls, and so is assumed to be zero. It is interesting to note that this

production/inventory system differs from a series queue only in the removal of one

boundary from X, the convex (as opposed to increasing) cost function, and which

transition is uncontrolled. To establish transition monotonicity, we check the following

conditions with D containing all transitions.

1. h is submodular w.r.t. D(x). The submodularity condition (3.3) clearly holds

when all four points lie on the same linear segment of h. The exception involves the

transitions e, - e,_ and -en at x, = 0; here (3.3) is

h(x + e, - e_) + h(x - e,) - h(x) - h(x - e,_) > 0.

Substituting (4.1) into the above gives

h(x) h - hn-_ + h(x) + b - h(x) - h(x) + h = hn- hn + b O.

2. D is compatible with X. The only transitions that cross the boundary k =

0, k < n, are ek - ekl in the positive direction and ek+l - ek in the negative direction,

so the geometric condition for compatibility is satisfied. A case-by-case check of

compatibility can also be performed.

There are no choice controls (do = 0) and Poisson demand preserves submodu-

larity, so we conclude that there exists a transition-monotone optimal control. To

determine state space monotonicity, note that

ek = dl + " + dk

= -(dk+l + ' + dn + d+l).
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Figure 6: Assembly Production/Inventory System

For k < j, the first equality implies that ,ui is increasing in Xk (upstream inventory);

for k > j, the second equality implies that j is decreasing in xk (downstream inven-

tory). Furthermore, the optimal control is bang-bang with the following switching

functions: stage i is on when xi < s(x()) and off otherwise (recall that xi is the

inventory immediately downstream from stage i and that x(i) is the vector of state

variables other than xi). The rates of change of the switching functions are also

constrained because the corresponding regions Si must contain the cones Ci. In the

two-stage system of Figure 3, s has a slope no greater than -1 (more precisely, the

step function si is decreasing and has no horizontal segment of length greater than

one) and s2 is increasing. It is interesting to note that the base stock policy that has

been proposed for this system (see Buzacott, Price, and Shanthikumar 1991) uses the

limiting slopes of -1 for sl and zero for s2. Similar characterizations of the optimal

control of arrivals to two queues are given in Ghoneim and Stidham (1985).

4.2 Assembly and Disassembly Systems

For production/inventory systems with network topologies that include assembly,

such as in Figure 6, arguments very similar to those in the last section can be used.

Each stage except finished goods has a boundary Xk > 0 which is crossed exactly once
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in the increasing direction and once in the decreasing direction, so compatibility holds.

The cost function h(x) is submodular as before. Transition monotonicity implies that

yj is increasing in upstream inventory and inventory in other branches, and decreasing

in downstream inventory. For the example in Figure 6, 1l is increasing in xl and x2

and decreasing in x3 and x4; /g3 is increasing in xl, x 2, and x3 and decreasing in x 4.

Reversing the above network topology gives a disassembly system, which might

arise when a single production process yields multiple products. Similar arguments

show that vj is increasing in upstream inventory and decreasing in downstream inven-

tory and inventory in other branches. Analogous results hold for queueing networks

with assembly or disassembly topologies.

It should be noted that these results do not apply to systems with more than one

transition in or out of a station. For example, if stations 1 and 2 in Figure 6 supply

the same part to station 3, d3 = e3 - el - e2 is replaced by two transitions, e3 - el

and e3 - e2, and compatibility is lost. A distribution network with more than one

retail location supplied by a single supplier is also not compatible.

4.3 Two Interacting Queues

Most, but not all, of the monotonicity results of Hajek (1984) for two interacting

queues follow from the general theory of Section 3. We discuss the application of the

theorem to this problem to illustrate its limitations and a strategy that can sometimes

be used when the conditions of the theorem are not met. In several simple networks,

the uncontrolled transitions do not meet condition (iv) even for the minimal direction

set D. However, the submodularity conditions (iv) reduce to certain other conditions

on Vn(x), such as convexity. If these auxilliary conditions on Vn(x) can be shown to

hold, D-monotonicity can be established.
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Figure 7: Transitions for Hajek's Two Interacting Queues

In Hajek's model (Figure 7) there are uncontrolled arrivals (A 1,A 2) and depar-

tures (D1 , D 2) from each queue. The controls route customers from queue 1 to queue

2 (R 1 2) and vice-versa (R 21 ), choose where to route an arrival (A 2 - A1 ), and choose

which queue to service departures from (D 1 - D2 ). As usual, the state space is

X = R2 and h(x) is a linear holding cost; there are no service costs. Several spe-

cial cases are of interest. If R 12 and D 2 are considered controls and A1 the only

uncontrolled transition, the system is a tandem queue with service rate control and

the theorem establishes {R1 2, A 1, D 2 }-monotonicity as discussed in Weber and Stid-

ham. Tedious but straightforward arguments show that the theorem also establishes

{R12, A 1, D 2}-monotonicity when the controls R 12 and R 21 and the uncontrolled tran-

sitions A1 , A 2, and D 2 are considered. D-monotonicity has the same implications here

as for the two-stage production/inventory system, i.e., the rate of R1 2 is increasing in

x1 and decreasing in x 2.
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Another special case is arrival routing: the control A 2 -A 1 = R12 chooses between

d = Al and d = A 2; the uncontrolled transitions are D 1 and D 2. Again let D =

{R12, A 1 , D2 }. Then D 1 and D 2 do not preserve submodularity for general functions

f(x); the submodularity conditions for f(Dix) require that f be convex and increasing

in the xl and x2 directions at points on the boundary (xl = 0 or x2 = 0). Hajek notes

that submodularity w.r.t. D(x) implies convexity; a stochastic coupling argument

shows that Vn(x) is increasing in Xk. With these auxilliary conditions, D 1 and D2

preserve submodularity of V,(x) and D-monotonicity is established. This argument

is very reminiscent of the approach used by Hajek (1984), Ghoneim and Stidham

(1985), and Beutler and Teneketzis (1989) when they prove that submodularity plus

auxilliary conditions are preserved under value-iteration. Condition (iv) identifies a

candidate auxilliary condition.

When all of the transitions in Hajek's system are considered, our theorem does

not seem to help in establishing monotonicity because the server allocation control

(D 1 - D 2) does not satisfy condition (iii).
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Appendix - Proof of Lemma

We need to show that, for x E X and di $ dj E D(x),

A = g(x + di) + g(x + dj) - g(x) - g(x + di + dj) > O. (A.1)

Let (x) be the control that minimizes g(x). Assume ,ak(x + di) > /k(x + dj).

Case I: dk dj. If no boundaries are hit, submodularity of f and convexity of ck

give

Pk(X + di + dk) > _k(X + di) > Pk(X + dj) > Pk(X),

or for brevity, i+j > i > ,j _> L, motivating us to approximate uik+j by pi and #u by

/j. Substituting into (A.1) and rearranging terms,

A > k(i) + Iif(x + di+d)+ (- i)f(x + di +d)

+Ck(/ij) + ljf(x + dj + d) + (- ILj)f(x + dj + dk)

-Ck(pj) - jf (x + d ) -( - j)f(x + dk)

-Ck(pi) - pif(x + di + dj + dk) - ( - ij)f(x + di + dj + d)

= (F- j)[f(x d + dd) + f(x + dj + do) - f(x + dk) - f(z + d + dj + d)]

+(l.i - pj)[f(x + d + di + d) + f(x + di + di ) - f(x + di + d) - f(x + di + d + d)]

+j[f(x + di+ d) + f(x + dj + d) - f(x + d) - f(x + di + dj + d)].

By assumption (iii), all four points in the first bracketed expression are in X; hence, it

is nonnegative by the submodularity of f w.r.t. d and dj. For the second expression,

i > 0 implies x + di + d C EX. Also, x + di + dj + d C X by assumption (iii).

Then, by compatability of dj and dk, all four points are in X and the expression

is nonnegative. Similarly, j > 0 implies x + dj + d EC X and, since pi > j >

0, x + di + di · X. Compatability of di and dj requires that all four points be in X,
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and the third expression is also nonnegative by the submodularity of f w.r.t. di and

dj.

Case II: dk = dj. Approximating ki+j by #lj and p by pui in (A.1) gives

iA > (- i)[f(x + di + d) + f(x+dj + d) - f(x + do) - f(x + d + dj + d)]

+(1i - pj)[f(x + di + d}) + f(x + dj + d) - f(x + d) - f(x + di + d + d)]

+lj[f(x + di + d}) + f( + + ) - f( + d) - f(x + di + dj + d)].

The first and third terms are nonnegative as before; the second term is zero, since

dk = dj.rE
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