
Armadillo

by

Tural Badirkhanli

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 2 0 2009

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009

@ Massachusetts Institute of Technology 2009. All rights reserved.

ARCHNES

A uthor
Departinient'6f le tr c'al Engineering and Computer Science

May 26, 2009

C ertified by
Hari Balakrishnan

Professor
Thesis Supervisor

Accepted by... (
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

Armadillo

by

Tural Badirkhanli

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2009, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

TCP was originally designed to function over static hosts. So, a connection is estab-

lished between two IP addresses which are assumed to never change of the period of

the connection. On the other hand, when TCP is deployed on mobile hosts a number
of new factors that are the results of the node's mobility, such as frequent disconnec-
tions and changing IP addresses, are introduced into the model. TCP may timeout
and quit as a response to these events and therefore yield a suboptimal performance.
This work introduces Armadillo, a protocol to hide intermittent connectivity from

TCP applications on mobile hosts to increase performance. In contrast to all the
previous work to our knowledge, our protocol requires no changes to the TCP stack
or application on the either end. In a typical scenario we assume that a mobile host

uses a WiFi access point (AP) for internet connectivity. Because of the limited range
of the AP and the mobility of the host it is going to move out of the range and
disconnect. As a consequence, the TCP connection is going to timeout and finally
quit. The two important problems we address in this report are the following: (1)
preventing the TCP application from timing out and eventually breaking as a re-
sult of disconnections and (2) handling the switching between APs so the change of
IP addresses is transparent to the TCP application. We evaluate our system under
real-world conditions and discuss results.

Thesis Supervisor: Hari Balakrishnan
Title: Professor

Acknowledgments

First, I want to thank God for giving me patience and strength to complete my work.

I am indebted to my advisor, Hari Balakrishnan, for, first, suggesting this project

idea, later guiding me at the times of uncertainty and confusion and coming up with

new ideas and even debugging code, and, finally, suggesting this awesome name

Armadillo for my thesis title. I appreciate all the time you have given me.

I am also indebted to Sivan Toledo who worked with me for long hours be it

debugging code or implementing parts of the system and never refused to help. Thank

you for all your time, Sivan. I truly appreciate it.

I would like to thank Samuel Madden for working on this project with me and his

valuable suggestions.

Finally, I would like to thank Jakob Eriksson, Hariharan Rahul, James Cowling,

Szymon Jakubczak, Asfandyar Qureshi, Jayashree Subramanian for never refusing to

help.

Contents

1 Introduction 13

1.1 M otivation 14

1.2 Problems with TCP in mobile environments 15

1.3 Related Work 16

1.3.1 Mobile IP 16

1.3.2 M-TCP 16

1.3.3 Cabernet 18

1.3.4 Indirect-TCP (I-TCP) 18

1.3.5 Freeze-TCP 19

2 Proxy System Design and Implementation 21

2.1 Overview 21

2.2 Proxy System Design 21

2.2.1 Proxy Client 22

2.2.2 Proxy Server 23

2.2.3 Potential Problems 24

2.3 System Implementation 24

2.3.1 Proxy Client 24

2.3.2 Proxy Server 26

3 Evaluation 29

3.1 Experiment 29

3.2 Results and Analysis 30

7

4 Conclusion 35

4.1 The System 35

4.2 Future Work 36

List of Figures

2-1 Proxy Client Finate State Machine Diagram 27

3-1 Experimental Setup 30

3-2 Data collected throughout the experiment 32

3-3 The dependency of the Throughput on the Length of the connection . 33

10

List of Tables

12

Chapter 1

Introduction

TCP was originally designed to function over static hosts. So, a connection is estab-

lished between two IP addresses which are assumed to never change of the period of

the connection. On the other hand, when TCP is deployed on mobile hosts a number

of new factors that are the results of the node's mobility, such as frequent disconnec-

tions and changing IP addresses, are introduced into the model. TCP may timeout

and quit as a response to these events and therefore yield a suboptimal performance.

This work introduces Armadillo, a protocol to hide intermittent connectivity from

TCP applications on mobile hosts to increase performance. In contrast to all the

previous work to our knowledge, our protocol requires no changes to the TCP stack

or application on the either end. In a typical scenario we assume that a mobile host

uses a WiFi access point (AP) for internet connectivity. Because of the limited range

of the AP and the mobility of the host it is going to move out of the range and

disconnect. As a consequence, the TCP connection is going to timeout and finally

quit. We address this problem in the following paragraph. We use the terms mobile

host and client interchangeably.

In our design, we divide the communication into two parts by introducing two

structures proxy client and proxy server. First part is between the proxy client,

which is running on the mobile host, and the proxy server and the second part is

between the proxy server and the application server. Proxy server is a machine

operating in between the mobile host (the client) and the server application and

is responsible for telling the server to go into persist mode when the mobile host

disconnects and otherwise sending the data to and from the mobile host. Proxy client

is either a process running on the mobile host or a separate machine that the mobile

host can connect and is responsible for telling the TCP on the mobile host to go into

persist mode in the absense of the internet connectivity and otherwise tunneling the

data to the server through the proxy server. TCP normally goes into persist mode

when the receiver reports a window size of zero. TCP specifications require it to

remain in this mode and keep the connection alive until the receiver opens up the

window. The two structures in our design structures make it possible to close the

receiver window on both sides and prevent them from timing out while the mobile

host is disconnected. When the connection comes back proxy client and proxy server

open up the receiver windows on the mobile host and the server respectively and the

communication continues. Note that connecting means connecting to any AP that

has access to the internet.

The two important problems we address in this report are the following: (1)

preventing the TCP application from timing out and eventually breaking as a result

of disconnection and (2) handling the switching between APs so the change of IP

addresses is transparent to the TCP application. We evaluate our system under

real-world conditions and discuss the results in chapter 3.

1.1 Motivation

Demand for mobile devices is growing strongly as they become more and more popu-

lar. Iphone, which constitutes 50% of mobile internet traffic [8], has sold 3.79 million

units in the first quarter of 2009, Apple reports [9]. This is the sign indicating the

future potential of mobile devices. These mobile devices mostly use 3G celular con-

nectivity for internet communication. However, this service costs tens of dollars a

month and is slow. On the other hand, 802.11 protocol was particularly designed for

data transfer and is cheaper and faster than 3G. Furthermore, there are a plenty of

open 802.11 access points in and around a city that have the internet access enabled

and they can be utilized at no cost. A potential problem, however, is that a typi-

cal range of an AP is relatively small. A mobile node, once connected to an AP, is

soon likely to fall out of range resulting in the connection timing out and eventually

quitting. Consequently, the application breaks and needs to be restarted. Note that

even if, as a result of falling out of range, the node reconnects to a different AP the

application behavior is still the same because the connection that the application

was using is no longer alive. The only exception is if the application is specifically

designed to operate under such conditions. Obviously, this is not a desirable behavior

as it will result in poor performance. Armadillo protocol hides disconnections from

the application and enables it to run smoothly.

Cabernet shows that there are many open 802.11 access points (APs) around a city

that can be used free of charge. In particular, they demonstrate that it is possible

to achieve long-term average transfer rate of 38 Mbytes/hour (86 Kbit/sec) [1] while

driving in and around a city. This number is promising because it lets the possibil-

ity of using a set of TCP applications over open APs and getting a good preformance.

We offer a system that will enable the application to run smoothly despite inter-

mittent connectivity.

1.2 Problems with TCP in mobile environments

TCP was originally designed to work on static hosts. Therefore, difficulties arise

when the same protocol is adapted to mobile hosts. There are several difficulties the

mobility of the host introduces. First, a mobile host is likely to use WiFi for internet

communication, which suffers from high error bit rates. Second, the mobility of the

host indicates that the host is likely to move and end up in a location with low or

no signal at all. This may result in frequent or long term disconnections. Third, the

connection is established between two IP addresses that are not expected to change.

Changing IP address causes the TCP to break.

1.3 Related Work

In this section we discuss related work on the subject.

1.3.1 Mobile IP

As mobile host moves from one network to another the corresponding IP address is

going to change. This is not a big problem for some stateless protocols such as HTTP

since two different requests can be made from two different IP addresses. But this

is a problem for SSH because the TCP connection, on top of which the application

is operating, is going to break as a result of changing IP addresses. Mobile IP is

a protocol proposed to solve this problem at the network level. The idea behind

this protocol is that the mobile host has a permanent IP address, home address,

where all the data from a fixed host is sent. This data is intercepted by home agent,

which is located on the same network, using a technique like Proxy ARP (home

agent advertises a mapping [its own physical address, home address]). Consequently,

home agent tunnels the packets to the foreign agent, a router that the mobile host is

attached while away from home network, using IP-in-IP encapsulation. Foreign agent

is responsible for delivering the packets to the mobile host. The routing in the other

direction is much simpler the mobile host simply sends the packets directly to the

fixed host and sets the from field in the IP header to be home address. This routing

scheme is often called a triangle routing.

Although this protocol hides the changing IP addresses from TCP it is not able to

hide the disconnections. As a result, the problem of TCP timing out and eventually

quitting persists.

1.3.2 M-TCP

M-TCP protocol [7] is a modified version of TCP specifically designed for TCP appli-

cations running on a mobile host (MH). M-TCP aims to improve TCP performance

for mobile clients, maintain end-to-end TCP semantics, be able to deal with problems

caused by lengthy or frequent disconnections. The traffic between MH (the receiver)

and the server (the sender) is routed through a Supervisor Host (SH) which hides the

disconnections encountered by the MH from the sender and therefore preventing it

from timing out and shrinking the congestion window. Modified TCP stack on the

MH ensures that the receiver does not timeout and nor shrinks its congestion window.

SH hides MH disconnections from the sender by advertising a zero receive window

making it appear to the sender that the receiver ran out of receive buffer space.

There is an inconsistency in M-TCP design/implementation. In particular, the au-

thors argue that since a duplicate acknowledgment packet is always ignored the zero

window advertisement will be ignored by the sender unless the advertisement ac-

knowledges new data. They address this issue by always keeping the last byte to

the sender unacknowledged. If the mobile node disconnects while in the middle of

sending ACKs the SH detects this and closes the receive window by sending a zero

window packet to the sender and ACKing the byte that was left unacknowledged.

But it is not possible to always keep the last byte unacknowledged since if the sender

is finished sending and did not receive an ACK for the last byte it will timeout and

retransmit that byte. If it nevers recieves the ACK it will eventually quit. This is

undesirable and the solution they propose is to send the ACK for the final byte if SH

believes the MH will not send any new ACKs. This is justified by that the sender

is finished sending and received all the ACKs, M-TCP will not need to close the re-

ceive window. However, if the sender decides to send more data and MH happens to

be disconnected at that time there will be no unacknowledged byte to close the re-

ceive window. According to M-TCP design the SH will not send a zero window packet

to the sender in this case and the sender will timeout, retransmit, and eventually quit.

The approach this protocol takes is similar to ours but requires modifications to

the client TCP stack and is therefore not very practical.

1.3.3 Cabernet

Cabernet [1] is designed to deliver data to and from moving vehicular devices using

opportunistic WiFi internet connection. It aims to achieve high data rate throughput

despite lengthy disconnections and short timed connections. The authors propose

QuickWiFi a single process that combines all the protocols associated with obtain-

ing connectivity and demonstrate that the time it takes to established connection

can be reduced from 12-13 seconds to 400 milliseconds on average. This optimiza-

tion provides four fold increase in the number of connection opportunities. Cabernet

Transport Protocol (CTP) is designed to achieve high throughput given the connec-

tion is established.

The experiments demonstrate that %70 of connection opportunities in and around

a city last less than 10 seconds and, therefore, given 12 seconds time (on average)

required to establish a connection one would be unable to utilize most of the connec-

tion opportunities. Once the connection is established the throughput can be decent.

The experiments demonstrate the long-term achieved throughput is 38 Mbytes/hour

per vehicle (86 Kbit/sec).

Our goals overlap with those of Cabernet in that we both aim to utilize short lived

disconnections. We utilize QuickWiFi a highly efficient technique to establish con-

nections developed by Cabernet as part of our system. QuickWiFi and Armadillo

communicates the state of the connection through an interface. QuickWiFi notifies

Armadillo when the internet connection is gone or reestablished and Armadillo closes

or opens the receiver window on the client accordingly.

1.3.4 Indirect-TCP (I-TCP)

Similar to Armadillo, this protocol [4] divides the connection into two parts: one part

from the mobile node to the a base station and the second part from the base station

to the sender. Base station receives and acknowledges all the packets destined to the

mobile node and then takes the responsible of delivering the data to the mobile node.

The protocol used between the base station and the mobile node can be TCP or

any other protocol optimized for mobile environments. This procol does not provide

end-to-end TCP semantics.

1.3.5 Freeze-TCP

Freeze-TCP [6] is another modified version of TCP for transmission control on mobile

hosts (MHs). Unlike M-TCP, I-TCP, and Armadillo, this protocol does not require

an intermediary to route packets for it. The MH monitors the signal strength and

tries to predict a disconnection or handoff. The prediction needs to be early enough

so the MH has a chance to send a zero window packet to the sender and close the

receiver window. Once the connection is back the MH sends another packet to open

up the window and continue the communication.

It is posssible the MH does not send the zero window packet on time and the sender

times out and retransmits. When the MH reconnects it sends 3 ACKs for the last

byte received to clear the retransmit timer on the sender and resume the communi-

cation fast. Note that it will not be possible to continue communication if the MH

reconnects with a different IP address. Also, since the sender times out and retrans-

mits its congestion window may shrink significantly which introduces inefficiency in

the performance.

There are a number of factors that make the protocol not fully usable or not very

practical. First, Freeze -TCP requires modifications on the TCP stack of the mobile

node. Second, this scheme is only useful if the disconnection happens in the middle

of data transfer. The authors claim this is the most interesting case. This protocol

provides end-to-end semantics.

20

Chapter 2

Proxy System Design and

Implementation

2.1 Overview

The proxy system consists of two parts proxy client and proxy server. Proxy client

is built on top of QuickWiFi [1]. Proxy client has direct connection to the client

machine where the client applications run. and hides the internet disconnectivity

from the application client.

The proxy system operates as a middleman between application client and server

and prevents the TCP connection from breaking while the client is disconnected from

the internet.

2.2 Proxy System Design

The proxy system operates in between application client and server and promises to

(1) hide the internet disconnection from both ends and (2) handle the changing IP

address of the client so the server does not notice it. To hide the internet disconnection

from the client and the server the proxy system, when a disconnection is detected and

either client or server requests data, replies with a zero window packet to the sender

reporting that there is not enough buffer space to receive the data. This technique

of hiding the disconnection preserves the congestion window size so the data flow

continues at the same rate when the connection comes back.

The proxy system solves the issue of changing client IP address by routing the

traffic through a proxy server so that to the application server it looks like the client is

running on the proxy server machine. This way the application server always receives

the packets from the same IP address the IP of the proxy server.

In addition to the proxy server which pretends to the application server to be the client

there is proxy client. Proxy client sometimes pretends to be the application server

and at other times simply forwards through proxy server. A detailed description of

proxy client and server follow below.

Note that neither the proxy server nor the proxy client buffer or acknowledge data

on behalf of the application client or server. That is, the proxy system does not take

any responsibility for delivering data to the either end. This design preserves the

end-to-end semantics of TCP.

2.2.1 Proxy Client

To obtain access to the internet one or more mobile devices that are running applica-

tion clients connect to the proxy client which is reponsible for the following: (1) make

the disconnection from the internet appear as "insufficient receive buffer space on the

server" by reporting a server receive buffer size of zero to the client application and

(2) tunnel the traffic from clients through the proxy server and deliver the data that

arrives from proxy server back to the clients.

When the application client sends a SYN request to establish a connection to the

server, proxy client forwards the SYN request to the server (by tunneling it through

proxy server) and immediately replies with SYN_ACK without waiting for the reply

from the server. This ensures that the client establishes the connection right away.

At this point, if the internet connection is not available and the client application

decides to send data to the server the proxy client immediately replies with a packet

indicating a server receive buffer size of zero (WINO from now on). As a result, the

client aplication goes halt state until an updated window size is reported. In the

meanwhile, the client may keep probing the server for more buffer space to which

the proxy client replies a WINO. Once the connection comes back the proxy client

reports a non-zero receive buffer space to the application client. The proxy client is

built on top of QuickWiFi [cite QuickWiFi and describe the interface through a small

diagram] which provides an interface to communicate the state of the connection to

the internet.

Proxy client encapsulates the IP/TCP packet from a client into another packet

and sends it to the proxy server. Similarly, proxy client extracts the original IP/TCP

packet from the packet coming back from the proxy server, modifies the destination

address and port in the IP and TCP headers and sends it to the client that is expecting

it.

2.2.2 Proxy Server

IP/TCP packets from application client are tunneled through proxy server which is

responsible for the following: (1) extract the original IP/TCP packet from the packet

received from the proxy client and send it to the respective application server and

deliver the data that arrives from the application server back to the proxy client and

(2) make the disconnected client appear as "insufficient receive buffer space on the

client" by reporting client receive buffer size of zero to the application server.

Since QuickWiFi may acquire different IP addresses as it moves from one location

to another and proxy client operates on top of it we need to tunnel traffic through

proxy server so that client application data appears to the application server as coming

from a single IP address the IP of the proxy server. The responsibility of the proxy

server is to extract the original IP/TCP packet from the encapsulated packet from

the proxy client, change the source IP and port in IP and TCP headers and send

the packet to the application server. Similarly, for the packets coming from the

application server, encapsulate the packet and send it to the last known IP for the

proxy client.

If the proxy server does not hear from a particular proxy client for some time T

it marks the proxy client as disconnected until it hears from that proxy client again.

When the proxy server receives data from application server for a disconnected client

it encapsulates and forwards the data to the last known IP of the client proxy hoping

the client will receive it and at the same time reports to the application server a client

receive buffer size of zero to prevent the application server from timing out. The

proxy server identifies packets coming from a particular proxy client by its unique ID

attached to every packet.

2.2.3 Potential Problems

We rely on the fact that RFC793 TCP specification does not say anithing about how

long the connection is kept alive while the receiver reports window size of zero. We

assume this time is long enough so we can tolerate long disconnections. On the other

hand, the application on top of TCP may keep its own timer and decide to terminate

the connection at any moment. If this happens there is not much that our protocol

can do.

2.3 System Implementation

2.3.1 Proxy Client

Proxy client is build on top of Quick WiFi and the state of the connection to the

internet is communicated through an interface.

The proxy client keeps a set of variables for every application client in a structure

called app_client. This structure is created when the proxy client sees a new SYN

request from an application client. One of the variables kept in this structure is a

state with one of the following values:

1. CLOSED

Description: connection has not yet been requested. This is the default state of the

structure when it is first created.

Entry Action: None

Exit Action: None

Transition Action:

if [receive SYN from application client] then [transition to state SYN_RCVD]

1. SYN_RCVD

Description: proxy client received a SYN request from the application client. Entry Action:

initialize a new app_client structure. Randomly generate a sequence number and reply

to the application client with S YN A OK with zero window on behalf of the applica-

tion server.

Exit Action: None

Transition Action:

if [receive SYN A CK from application server] then [transition to state SAA WAIT]

if [receive SYN ACK ACK from application client] then [transition to state SSA

WAIT]

2. SAA_WAIT

Description: proxy client received SYN A CK from the application server and waiting

for SYN ACK ACK from the application client.

Entry Action: save the difference between the sequence number from the application

server and the initially randomly generated sequence number.

Exit Action: None

Transition Action:

if [receive SYN A CK A CK from application client] then [transition to state ESTABLISHED]

3. SSA_WAIT

Description: proxy client received SYN ACK ACK from the application client and

waiting for SYN A CK from the application server.

Entry Action: None

Exit Action: save the difference between the sequence number from the application

server and the initially randomly generated sequence number.

Transition Action:

if [receive SYN A CK from application server] then [transition to state ESTABLISHED]

4. ESTABLISHED

Description: proxy client received SYN ACK ACK from the application client and

SYN ACK from the application server.

Entry Action: Send SYN ACK ACK to the application sever.

Exit Action: clean the appclient structure.

Transition Action: if [connection is finished] then [transition to state CLOSED]

The state transition diagram is described in Figure 2-1.

If there exists a connection to the internet, every time there is a packet from a

particular application client the proxy client looks up the corresponding structure,

encapsulates the packet into a UDP packet and sends it to the proxy server. Proxy

server, in turn, extracts the packet and forwards it to the application server.

If QuickWiFi reports there is no connection to the internet, for every packet

with non-zero payload from an application client the proxy client replies with a zero

window packet and to the application client it looks like there is not enough buffer

space to receive the data. When the connection comes back the proxy client sends

a notify packet with non-zero window size to all the application clients it sent zero

window packets.

Every appclient structure is idenified by a unique client_number, which is used

as a source port for outgoing UDP packets to the proxy server.

2.3.2 Proxy Server

Recall from the design section that proxy server is responsible for (1) extracting the

original TCP/IP packet from the client and sending it the application server and

encapsulating the reply from the application server into a UDP packet and sending

it back to the proxy client and (2) telling the application server to go to persist mode

SYN request
from Client App

SYN ACKACK reply SYN_ACK reply
from Client App from Server App

SYN_ACK reply SYNACKACK reply
from Server App from Client App

Figure 2-1: Proxy Client Finate State Machine Diagram

when it detects the application client is disconnected. Similar to the proxy client,

proxy server keeps a state for every TCP connection from every mobile host that it

is servicing. The finite state machine diagram for proxy server is much simpler than

that for the proxy client. The reason is that the proxy server always forwards packets

from the client to the server and vice versa except when it detects the mobile host

may be disconnected. In this case proxy server still forwards all the packets from the

server to the client but also replies to the server with zero window packet telling it

to go to persist mode.

Server proxy is implemented in three threads: (1) a thread that is listening on a

UDP port, receives packets from mobile hosts and sends them to respective applica-

tion servers, (2) a thread that is snooping replies from application server, encapsulates

the replies into a UDP packets and sends them to the respective client proxy, and (3)

a thread that wakes up once in a while to go through all the appserver states and

SAALWAITSSA WAIT

delete the ones that have not been used for a long time (10 minutes).

We have a particular design to snoop all the TCP packets that are coming from

application servers. We create a special network interface on the proxy machine where

all the replies from application servers flow. To acheive this we use a private address to

send packet to application servers and use iptables to set up a NAT (Network Address

Translator) to translate these addresses to public ones on the way out. While packets

flow from application server back the proxy server the NAT translates the address

back to the private address. We add a routing table rule to tell the kernel to send

the packets with that private address to the network interface we set up.

The code is running on a machine connected to the internet through a high band-

width wired connection.

Chapter 3

Evaluation

We perform the experiment described below to show the effectiveness of the system.

The results show Armadillo is able utilize the short lived connections by achieving

decent throughput even when the connection is as short as 10 seconds. [1] shows that

over 25% of the connections live at most 10 seconds and there are very few long-

lived connections. Therefore, it is important to be able to utilize every connection

opportunity. The results show Armadillo performs well for short lived as well as long

lived connections.

3.1 Experiment

In this section we describe the experimental setup and what we aim to achieve.

The experimental setup is as shown on Figure 3-1. An access point (AP) is turned

on (given access to the internet) for the number of seconds randomly selected between

1 and 200. Then the same AP is turned off for some time randomly selected between

1 and 200 seconds. The process that is turning the APs on and off are running

independently on both access points. The application that is running on the client is

wget that is fetching 60 MB file from somewhere on the internet over and over again

in a loop. The client machine is connected to the internet through meraki [2] with a

wire. The meraki box is running Armadillo protocol to connect to the internet. The

connection to the internet is going through the two APs, as described in Figure 3-2.

The goal of this experiment is to show that our protocol is able to achieve the

goals we discussed in the beginning of this report: (1) prevent the application from

timeing out and breaking in the face of short and long disconnection and (2) enable the

application to run smoothly (i.e. no need to restart the application) dispite jumping

from one AP to another (i.e. changing IP addresses). This is especially important for

applications like wget or youtube as the cost of the restarting the application is too

high.

Later, we discuss our experince running ssh client or youtube through Armadillo.

Figure 3-1: Experimental Setup

3.2 Results and Analysis

In this section we look at the results from the experiment, analyze them and draw

conclusions. Looking at Figure 3-2 we can see a series of short and long disconnections

as the application keeps running. The disconnections are as short as 5-10 seconds and

as long as ; 10 minutes. On average, we are able to achieve 180 KB/s throughput.

This is a relatively low throughput compared to what one can get by connecting to

an AP directly through their wireless card. We believe the throughput is limited by

the processing power of the meraki box. Some implementation specific optimizations

are possible to speed up the system. Running the system on a more powerful machine

will also yield a better throughput.

Figure 3-3 describes the relation between the connection lengths and the achiev-

able throughput. For connections as short as 10 seconds we are able to get very good

throughput value although it is variable. The throughput becomes more stable when

connections are longer. The authors in [1] talk about their experience with collect-

ing data by driving around a city and conclude more than 70% of the connections

are shorter than 100 seconds. This, once again, shows it is important to stress the

importance of being able to utilize the short lived connections and get data through.

Our graph shows Armadillo is in fact able to utilize short-lived connections to obtain

fairly high throughput.

Our experience with using ssh client through Armadillo is that immediatly switch-

ing access points is absolutely transparent to the client. The application continues to

run as if the route never changed. When the connection goes away for some longer

amount of time the client freezes. Immediatly after the connection resumes the ap-

plication resume running as well. We had a similar experience with youtube videos.

Usually the connection is fast enough to allow the buffering of some data. As a result

of switching access points the buffering continues with no disruption. If the connec-

tion is absent for several minutes and the buffered data is played already the video

resumes running right after the connection comes back.

1 121W

1000 ,1200
! i i

! i

I-

400

200

0500 1000015~~Ellime 1 s n-Fi 2 D c toliI ,,I . II' [I
0~~ ~ i 10 150

in-* fseco rids)

Figure 3-2: Data collected throughout the experiment

400

350

r

2 250

200

150I I I I I I
0 20 40 60 80 100 120 140 180 1 0

Connection perid (second)

Figure 3-3: The dependency of the Throughput on the Length of the connection

34

Chapter 4

Conclusion

In this chapter we sum up the system design and talk about future work.

In this report we describe Armadillo a protocol to hide intermittent connectivity

from TCP applications on mobile hosts. Two main goals Armadillo achieves are (1)

putting the connection into persist mode in the absence of connectivity and lets the

connection stay in that mode until the connectivity resumes and (2) making the

changing IP addresses transparent to the application. In chapter 1, we talk about the

previous work to our knowledge and discuss how Armadillo is different. We discuss

the system design and implementation in details in chapter 2. Finally, we show results

and analysis in chapter 3.

4.1 The System

In this section we talk about the results and conclusions about the system.

The two main parts of the system are proxy client and proxy server. Proxy client

is running on the client machine or on a device to which the client has a direct

access and is responsible for hiding disconnections and changing IP addresses from

the client TCP application. Proxy server is located in a fixed location somewhere on

the internet and is responsible for hiding disconnections and changing IP addresses of

the mobile host from the TCP application server. The traffic is tunneled through the

proxy system (i.e. proxy client to proxy server and back) so the disconnections and

changing IP addresses of the client machine can be made transparent to the client

TCP application.

4.2 Future Work

An extension of this work is for proxy client to try to maintain connections to mul-

tiple APs at the same time. This has the potential to drammatically increase the

throughput of TCO applications [3].

Bibliography

[1] J. Eriksson, H. Balakrishnan, S. Madden. Cabernet: Vehicular Content Delivery

Using WiFi, 14th ACM MOBICOM, San Francisco, CA, September 2008

[2] http://meraki.com/

[3] S. Kandula, K. Ching-Ju Lin, T. Badirkhanli, D. Katabi. Fat VAP: Aggregating
AP Backhaul Bandwidth, NSDI 2008

[4] A. Bakre, B.R. Badrinath. I-TCP: Indirect TCP for Mobile Hosts

[5] Routing for Mobile Hosts, Internetworking, Routing

[6] T. Goff, J. Moronski, D.S. Phatak, V. Gupta. Freeze-TCP: A true end-to-end
TCP enhancement mechanism for mobile environments, INFOCOM 2000

[7] K. B. And, K. Brown, S. Singh. TCP for Mobile Cellular Networks, ACM Com-
puter Communication Review, 1997

[8] http://admob.com/

[9] http://apple.com/

