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Abstract

In this thesis, I proposed and implemented a methodology to perform preemptive
quality control on low-tech industrial processes with abundant process data. This
involves a 4 stage process which includes understanding the process, interpreting
and linking the available process parameter and quality control data, developing an
exploratory data toolset and presenting the findings in a visual and easily imple-
mentable fashion. In particular, the exploratory data techniques used rely on visual
human pattern recognition through data projection and machine learning techniques
for clustering. The presentation of finding is achieved via software that visualizes
high dimensional data with Chernoff faces. Performance is tested on both simulated
and real industry data. The data obtained from a company was not suitable, but
suggestions on how to collect suitable data was given.
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Chapter 1

Introduction

1.1 Purpose

The purpose of this thesis is to present the theoretical background and methodology

for the linking of process data with output data via exploratory analysis in order to

detect defective product early. The process that will be used is the indigo dyeing range

of a denim production factory. The methodology is implemented on simulated data

verifying its validity. These methods are then applied in industry and the findings

are presented. Our results from looking at Company X data showed clearly that the

data did not allow for the proper analysis of inputs and outputs. We explored various

reasons for this, which are summarized in the conclusion. Suggestions as to how to

obtain best results are given.

1.2 Statement of Problem

Current quality control techniques for manufacturing often utilize a strategy known

as PDCA (Plan-Do-Check-Act) or the Deming cycle [2]. This strategy may be con-

sidered a posteriori quality control because the manufacturing process is designed

and carried out before the quality of the product is checked. If the product fails to

perform within specifications (determined by a variety of statistical methods) this

triggers action on the part of the manufacturer to look into the process and figure out



the problem. While extensive literature exists on this technique and the associated

statistical methods are applied in many industries with great effect (e.g. Motorola's

six-sigma strategy), they do not prevent certain inefficiencies.

Specifically, the PDCA technique relies on checking products as they come out of

the assembly line. Thus, if a systemic error has occurred, this error will be detected

only after a number of faulty products have accumulated to reveal the error. This

accumulation of faulty product leads to inefficiency of the assembly line and wastes

valuable time and resources.

The problem of wasted resources becomes particularly pronounced in industry

settings that incorporate one or more of the following:

High Production Lead Time: The longer a faulty product stays in de-

velopment the more time/resources it wastes.

Multiple Stages of Production: The later the product is checked for

quality in multi-stage production, the more unnecessary processing

it goes through.

Single or Few Lines of Production: Faulty products take up valuable

resources and capacity.

The primary underlying motivator of PDCA quality control, particularly as it applies

to low-tech production companies, is the lack of data recording and in-depth statistical

analysis of the production process. While process controllers are experts at keeping

inputs within specifications; numerical methods that span multiple parameters and

define the process mathematically often do not exist in low-tech industries. This leads

to the requirement of careful a posteriori quality control.

An example of this, which will be explored in depth throughout this thesis, is the

dyeing process in a denim production mill. The engineers that control the process are

experts in chemistry and the indigo color. However, a multivariate analysis on how

temperature, acidity, dye flow etc. collectively affect the color has never been per-

formed. Therefore, while each parameter is kept in a certain range (often determined



by the experience of the engineer rather than a prescription) the understanding of

effects on color are limited to variations in single variables. This forces the mill to

implement precise quality control at various stages in production, checking the color

for accuracy and discarding fabric in large quantities that do not meet specifications.

We may state the problem of quality control in low-tech industries as the following:

* PDCA quality control accounts for a large amount of lost production

and wasted machine time

* PDCA quality control is necessitated due to the lack of well-defined

numerical characterization in the production process.

The goal of this thesis is to explore data-driven techniques which may be utilized in

low-tech industries to limit the requirement for a posteriori checks through enhanced

in-process quality control.

1.3 Objective

If we are to prevent or preemptively identify faulty end product, we must be able

to identify complex patterns in the production process, taking into account multiple

variations in production parameters. To do this, we must first obtain informative data

that link process parameters to desirable and undesirable output values. Second we

must employ both linear and nonlinear, multivariate statistical techniques to identify

patterns in the data. Finally, we must interpret the results to identify sound decision

strategies for process controllers. Below is a summary discussion of what may be

expected - and is carried out throughout the thesis- of the three components to

accomplish our objective.

1.3.1 Data

Obtaining appropriate data in low-tech settings is often more challenging than it

appears. Especially in low-tech settings, in which processes are not well-defined nu-



merically, data recording is often done for purposes other than research. The data

that satisfies our needs would need to have the following properties:

Links process measurements to output results: Required to estab-

lish correlation between inputs and outputs.

Matching input, output granularity Ensures that there is a one-to-

one assigment between process measurements and output measure-

ments.

Unique sets of input and output data: Eliminates redundancy or the

possibility of ambiguous results.

It is desirable that the above properties be satisfied in order to produce meaningful

results from the analysis. As this thesis will show, it is sometimes not possible to

obtain such data in real settings due to a number of physical and technical factors.

1.3.2 Exploratory Data Analysis

Process controllers are often aware of linear or single variable effects of process pa-

rameters on output results. However, it may also be beneficial to look at multivariate

effects. This thesis focuses on this idea to identify numerical results that were pre-

viously unknown in such processes. Therefore the focus of the analysis is on the

following techniques:

The Common Methods: These incorporate the most common of sta-

tistical methods (i.e. regression, principal component analysis)

Multivariate Linear Projection: This technique uses optimal linear

projections to derive the most meaning from available data.

Recursive Software Optimization: This exploration is more in the

spirit of chance encounters with better than random results. It im-



plements software that tries projections onto lower dimension spaces

for optimal separation of the data into meaningful clusters.

Support Vector Machines: SVM is used primarily in machine learning

to classify various data sets. The power of the technique is that it

can separate data in various non-linear forms.

These techniques allow for both a linear and non-linear exploration of the data. It

is important to note that the primary objective for the exploratory data analysis is

identifying clusters or separations in the data that may account for within spec vs.

out of spec output.

1.3.3 Decision Strategies

Finally, the result of the analysis must be presented in a format that allows for

controllers to utilize. The strategies put forth must therefore be mathematically

sound, yet easily employed. While this thesis does not suggest a decision strategy for

the industrial example explored, a generic form for a decision boundary as well as a

supporting visual application is presented. The decision strategy objective is twofold:

Decision Boundary: A mathematical basis for in-process quality con-

trol setting multivariate limits to the process.

Visual Presentation: The user-friendly presentation of the mathemat-

ical basis so that it may be easily applied by process controllers.

The objectives of this thesis are:

* Decide upon and test applicability of exploratory data analysis tech-

niques on the given problem.

* Employ these techniques on available data in a setting representative

of low-tech industries.



* Derive a strategy to establish in-process quality control.

* Implement a visual application to facilitate preemptive quality con-

trol.

This thesis will be successful if it can provide and test the applicability of a set of

methodologies in identifying patterns that may enable in-process quality control and

compare the effectiveness of said methodologies for different data sets and industries.

1.4 Terminology

This thesis incorporates terminology as used in the research. Referrals to the following

terminology will be made throughout the thesis:

Input, Output: These refer to the process measurements and the output

values of the end product respectively

Go, No-Go: The data is explored and separated according to whether

it produces a within spec (go) or out of spec (no-go) end product



Chapter 2

Background

2.1 Literature Review

The technical work of this thesis consists of two primary goals: Exploratory data

analysis (EDA) and developing decision strategies. There is extensive literature in

EDA methods as well as both the mathematical basis of and visual applications for

decision making.

EDA is a set of statistical analysis methods that are applied to find cause and effect

patterns in data. In many ways this is similar to hypothesis testing but involves more

complicated techniques to reduce dimensionality or identify multivariate patterns.

The primary task is to reduce the dimensionality of the data while simultaneously

grouping it in order to derive meaningful patterns from 2D or 3D plots. One of the

often used techniques for reducing dimensionality is principal component analysis

(PCA) [6]. PCA is a linear transformation of the data points. This method uses

eigenvalue decomposition of the multidimensional data and applies a linear orthogonal

transformation to capture the lower order components. If the original data consists of

p dimensions, PCA reduces this to q <= p dimensions, where each dimension in q is a

linear combination of each of the p dimensions and orthonormal to other dimensions in

q. Reduction from p to q dimensions is done along the vectors of maximum variance

in the data. As such, it captures the most amount of information. While this is

desirable in most applications, PCA reduces data that is initially homogeneous (i.e.



belong to a single cluster or group). This differs from our goals because we are

primarily concerned in grouping data into clusters which we may then identify as Go

and No-Go.

However, PCA is in line with our task of capturing information in data. There

is extensive literature on various forms of information and methods to find it. Out

of this literature, the most general form of discovering such patterns is projection

pursuit techniques. Projection pursuit is a group of techniques that linearly project

high-dimensional data onto lower dimensions. These techniques differ in the types of

projections, or goals of projections used. PCA and regression are two special cases of

projection pursuit.

The most important advantages of projection pursuit are its ability to avoid the

curse of dimensionality, provide multivariate analysis and ignore irrelevant dimen-

sions and noise [4]. In these ways, we may view projection pursuit as a method to

increase the likelihood of finding interesting patterns. An example of this would be to

project high-dimensional data along axes that best capture a deviation from normal

distribution. If we accept normal distribution as the least interesting distribution (as

random noise is distributed in this manner), then a deviation from this distribution

would be a benchmark for finding interesting distributions. The chi-square test for

normality would then provide us with a valid metric to test for the best projection

axes.

Within the literature on information retrieval from data, the following techniques

are most often utilized: PCA, regression and chi-squared deviation. In this thesis, we

will explore a unique linear projection technique developed specifically to separate the

data into two clusters. This, for our purposes, is the information of our data. We will

further explore software that utilizes projection pursuit to find the best separation of

two clusters.

The literature thus far reduces dimensionality via linear and nonlinear projec-

tions. However, as stated, these projections serve to increase the likelihood of finding

interesting patterns -or identifiable clusters in our case. As such, further techniques

are necessary to find the best clusters and boundaries.



Clustering techniques belong in two groups: Hierarchical clustering and parti-

tional clustering. Hierarchical clustering is based on the premise that two clusters

already exist and new members must be classified, further adjusting the cluster and

its boundaries. Therefore, it is progressive and continuously adjusting. While the

progressive nature may be appealing to us to refine clusters, we are also required to

define the clusters given our current data. As such, the more appealing clustering

methods fall under partitional clustering, which are techniques that fit current data

into two clusters. Both groups are further separated by the metrics they use.

One example of a progressive clustering algorithm would be K-means clustering.

This algorithm assigns points into K clusters according to their Euclidian distance

from the mean of the clusters [3]. The algorithm then recalculates and adjusts the

means of the clusters. The initialization occurs with the generation of two random

clusters that later conform to the data as new points are generated. The disadvantage

of this is that the end result is greatly dependant on the initial clusters and the order

at which points are introduced.

Most clustering techniques are derivatives of k-means, or work similarly in in-

troducing new data. In this way, most clustering techniques do not fit well with our

purposes, as we would prefer a method that looks at extensive data as a whole, rather

than introduce new data one by one. Indeed, dynamic adaptability is not a primary

concern for our objective, as this would only serve to refine our result because low-tech

industrial processes are unlikely to change spontaneously.

Support vector machines are an effective and flexible classification tool often used

in machine learning. It is particularly in line with the objectives of this thesis as it is

primarily concerned with the separation of two classes of data. SVM finds the best

separation hyperplane from the two classes of data, where best means the maximum

distance of separation between the closest neighboring data points of the two classes

[5].

The power of SVM arises from solely depending on the dot product of points to

be classified. As such, it allows for the use of kernel methods: the mapping of the

original data set onto higher or transformed dimensions. This allows SVM to capture



patterns in linear, quadratic, cubic, radial and many more types of functions.

2.2 Company and Industry Background

As previously stated, this thesis aims to improve quality control via statistical analysis

of low-tech industries. The definition of low-tech in this case does not imply that the

production technology is primitive, but rather that the technology lacks, or does not

require numerical and mathematical precision in process control. As an example, we

may compare textile mills to microchip production. While spinning, weaving and

dyeing technologies are quite advanced with precision machines, the control process

for these machines does not require expert systems or significant numerical control.

On the other hand, however, microchip production requires precise measures, careful

regulation of the production environment and checking of the process. As such, it is

likely that such production is already under intense mathematical scrutiny, whereas

low-tech industries such as textile, infrastructure and construction materials are less

so. The company that will be explored as a representative of the low-tech industry,

is Company X, a large capacity denim production mill.

2.2.1 Company History

Company X was established as a cotton yarn spinning and weaving firm in 1953.

It was restructured in 1986 as a denim production mill and has grown significantly

through the 1990s, to reach a production capacity of 45 million meters of denim per

year with 1170 employees. Company X is renowned in the world as a leading denim

producer, with worldwide customers such as Levis, GAP, Diesel and Replay. Company

X has always been an industry leader in utilizing the latest technology, with many

machines being developed by companies on site. As such, the machines in the weaving

and dyeing range are on the cutting edge of textiles. Yet, even as the machines are

advanced and very efficient, mathematical understanding of process behavior - in the

dyeing range in particular- is not on par with the technology. Moreover, with the

mission of being the preferred denim supplier worldwide, Company X is committed



to impeccable quality in its product. As such, human process control measures are

in place after the dyeing range.

2.2.2 Denim Production Industry

Company X is on the cutting edge of denim production. While new technologies

provide for more efficient and less error prone processes, the basic production process

has remained unchanged for decades. Denim goes through six stages of production.

The progression through these stages is described in the figure and the stages are as

follows:

* Cotton selection and filtering

* Spinning

* Indigo dyeing

* Weaving

* Finishing

* Quality control

2.2.3 Cotton Selection and Filtering

Cotton has many technical properties that affect the end product in various ways.

These include stretch, strength, coloring and feel. Various types of cotton are selected

and mixed according to their technical qualities, which differ widely according to

region. Once mixed, the cotton then goes through a filtering and cleaning process,

removing the impurities and weak fibers. What is left at the end of this process is

the strong and pure cotton fiber that is used as the core element in denim fabric.

Yarn Spinning

The second stage in the process is the spinning of cotton yarn. The collected fibers

are spun with fine tuned machines to produce thick and less dense yarn. This yarn



Figure 2-1: The 6 Stages of production in denim manufacturing

is then compressed by a second set of machines to produce strong and dense cotton

string.

Indigo Dyeing

The indigo dyeing process is the most crucial, technical and difficult part of the denim

production process. Indigo is the signature blue color that we are accustomed to see

on blue jeans. This color is given to cotton yarn via the indigo dyeing process. A

single long dyeing machine stretches out the cotton yarn and dips it in and out of

large tubs of indigo dye, subjecting it to various treatments along the process. This

complicated process requires great balance in its parameters (temperature, acidity,

indigo flow etc.) and timing. Overall, there are eleven parameters and large tubs

that take up to an hour to reach a homogenous state (if, indeed, they ever do).

Thus, the ability of a controller to alter the state of the process as well as derive

information from it is quite limited. This is one of the primary challenges that was

prevalent throughout the research. Further detailed discussion of the process and the

complications arising from it will be presented later in this thesis.



Weaving

Weaving is the process of producing denim fabric from cotton yarn. The machines that

weave the fabric do so in the age old technique, with the aid of modern technological

features such as air-jet technology: Yarn is thrown together via high pressure air

jets. While this may seem as the most complicated aspect of denim production, the

technique and technology is relatively simple and efficient.

Finishing

In denim, finishing is fashion. This is the stage at which the fabric is washed using

different techniques, detergents, chemicals and stones. These products are combined

in different ways to give stretch, worn-out and similar effects, anti-shrinkage properties

and various color effects. While washing techniques as well as shrinkage protection

are utilized throughout the industry, fashion and trends are often set by the different

techniques in coating and application of various chemicals for design.

Quality Control

Quality control in Company X is done in various stages. This stage presents an

important bottleneck for the mill, as every meter of fabric produced is checked for

physical defects by human eyes. There is ongoing research to find an efficient com-

puterized solution to detect defects in the material. A second type of quality control

occurs directly after weaving, where the color of the fabric is tested for conformity to

specification levels. This quality control is the primary concern of the thesis. Most

quality screening and rejection occurs at this stage simply because the indigo dyeing

process is volatile and little is understood about the effects of the process on the dye.

If we are to limit the rejection of denim fabric based on color quality, we must obtain

a statistical and numerical understanding of the process at the multivariate level so as

to assure quality in-process, rather than solely relying on a posteriori quality control

and wasting material.



2.3 Technical Approach

Our analysis techniques focus on two primary tasks:

* Reducing Dimensionality

* Clustering

Why is it essential that we reduce the dimensionality of the data? There are many

techniques that cluster data in higher dimensions. The necessity arises from two

factors: the curse of dimensionality and human pattern recognition.

First, higher-dimensional data is usually sparse. Unless there is an extensive

collection of data, higher-dimensional space is mostly empty and small features in

data points are often missed. Working in lower dimensions eliminates this problem.

Second, humans have the ability to instantly recognize patterns in visual data. To

do this however, data must be presented in 2D or 3D. Higher dimensions than this

may be represented with various techniques such as color and time (and indeed we

will explore such a technique in this thesis) but pattern recognition becomes increas-

ingly difficult. As such, reducing dimensionality- especially to the more meaningful

dimensions- provides a great advantage in terms of detecting patterns.

Shaping data so that patterns may easily be recognized by humans is particularly

advantageous in our endeavor, as the end-users of the techniques presented here are

likely to be process controllers or industry specialists that would prefer ease of use to

complicated equations.

Following dimension reduction is the task of clustering. The primary motivation to

use discrete clustering, rather than continuous number techniques such as regression

is once again related to the end-user. Preemptive quality control defines quality in a

binary way: within specifications or not. As such, our interpretation of the data must

be along the lines of Go, No-Go decisions. Defining a Go, No-Go decision boundary

simplifies the mathematical basis of the task.

Finally, a presentation of findings must also be accompanied by a methodology

that process controllers can easily follow without getting bogged down in the cum-



bersome mathematics. This may be most effectively accomplished by supporting

computer software possibly with intuitive visual displays. An important idea towards

this end is presented by Chernoff. He claims that humans are most apt at recogniz-

ing faces [1]. Moreover, faces have several identifiable features. Therefore, he came

up with a method -Chernoff faces- that allows for the mapping and visualization of

high-dimensional data via the use of faces: one face for each data point. The location

of the point in any one dimension is characterized by the range of a feature. For

example, the temperature variable (among the 11 distinct parameters in the indigo

dyeing range), may be represented by the slant angle of the eyebrows. The hotter

the temperature, the more slanted and angry the face looks.Chernoff faces are a good

technique to intuitively recognize patterns and will be explored in this thesis as a

simple visual software solution for pattern recognition and process control.
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Chapter 3

Methods

This section will include a presentation of the different methods of exploratory data

analysis used as well as testing and discussions of performance on simulated data.

As the primary task of the thesis, careful thought and testing of these processes will

ensure robust or dependable results in the best case. In the worst case, testing will

show that the techniques work well, but require a more informative data set.

The four categories of exploratory data analysis techniques along with discussion

of visual patterns are included in this section with an exploration of various simulated

data distributions. In each case, the techniques we use will attempt to divide the data

set into two distinct classes. Half of the data will be used to train - where required-

while the other half will be for testing.

3.1 The Common Methods

Every statistical inquiry is likely to include techniques of this group to quickly identify

more obvious patterns. Linear regression is among the first methods to be used. It

generates a linear formula which predicts the value of a dependant variable, given

the values of a set of independent variables. While this technique is not used for

binary separation of the data, it is one of the easier and most informative techniques

-if successful. As such, it is a good starting point for all exploratory data analysis.

Linear regression attempts to find the minimum least squares function plane



through the available data. Once this plane is found, another value that is generated

through this method is the R-squared value. This value is a statement in fractions

of the amount of explanation in the variation of the dependant variable explained by

the independent variables considered. If this number is high, this implies that the

variables explain a large amount of the variance. A low number indicated that there

are other variables and considerations that effect the dependant variable more than

the independent variables considered.

A second form of regression, logistic regression, may be used to represent the

binary nature of the problem. Logistic regression enables the use of binary variables,

while trying for linear combinations. It determines the probability that a binary event

will occur, given the values of the independent variables. This is done by the logistic

function:

f(z) = e-

The logistic function output f(z) is a value in the range [0, 1]. The output f(z)

is the probability of an event occuring given the input z. The input to the function

is a linear combination of factors:

z = /o +131X1 +02x2 + - + ixi

where 1 ... i are the regression coefficients and /0 is the intercept

A third method to use in mainstream techniques would include principal compo-

nent analysis. While PCA may be considered among the more complicated linear

techniques, it falls under the usual category as it is used frequently and isn't partic-

ularly aligned with our goals. PCA, like regression, generates a linear combination.

PCA however attempts to restructure the dimensions of the problem, as orthonormal

linear combinations of the original axes. This restructuring is done along the direction

of maximal variation [6]. Once this direction is found, the data is projected onto the

remaining dimensions normal to this direction and the process is repeated.

Thus the end result of PCA is generating dimensions in a hierarchical order of

relevance, in terms of variance. This enables us to throw away the higher order



dimensions and analyze only the relevant ones. In that way, unless the projections

yield good results, a secondary technique -or visual inspection- would be needed to

define the emerging patterns in reduced dimension space.

3.2 Recursive Linear Optimization using Software

While utilizing the computer for extensive blind searches lacks the refinement and

certainty of most statistical techniques, it is closest to the human ability to recognize

patterns that are intricate enough to be lost in more complicated methods.

As such, a MATLAB software was modified to fit our goals in searching for a pat-

tern. The exploratory data analysis software for MATLAB analyzes data in various

forms. One such form is projection pursuit which looks for interesting patters via the

projection pursuit technique, with the supplies metric. While most projection pursuit

defines interestingness as a departure from normal distribution, and thusly uses the

chi-squared metric, our rewrite of the software incorporates the use of clusters: Trying

to find the projection with the greatest separation of the two groups, normalized by

the standard deviations according to the following.

We have two samples of data, the "go" and the "no-go." We define the "go"

sample as

{Xl, ... ,Xn}

and the "no-go" sample as

{yi, y Im}

where xi, y ER for all i and j.

Let us define the sample means as:

In

S i=

and

=1m
j= - 1y



Likewise, let us define the sample variances as

nd
S- d i=-i1

and
1 m

S = m;--dZ(yJy )(Y-)

j=1

Finally, let us define

and
n-d m-d

n + m - 2d n + m-2d

Then our best 2-group clustering metric is given by

PUE-1WLT

This metric is useful because it maximizes the separation of the means normalized

by standard deviations. As such it ensures groups that are separate and tightly

clustered together.

The software picks up a projection into 2D or 3D space at random and refines it to

the best value of the metric via rotating through 360 degrees in 10 degree increments.

The best value is then recorded and the projection moves to a neighboring projection,

where neighboring is defined as a tilting of the hyper plane along one dimension. If

an improvement is not found in a tilt in either direction, the process moves to another

neighboring projection. The method is carried out until all tilts are exhausted with

no improvement, or a maximum number of trials are reached.

As many exhaustive techniques of the sort, this method is quick to arrive at local

maxima or minima, yet may get stuck locally and is not likely to find the absolute

maxima or minima. Yet, for our purposes, while better projections may exist, any

projection that does an adequate job at separation is informative enough: It provides

us with a basic improvement and better understanding of the model.



3.3 Multivariate Linear Analysis

This method is a stepwise optimized linear projection developed for this research.

It attempts to project the optimal separation of two classes of data onto a single

dimension. The steps are described below. The advantage of the technique is that it

can be applied recursively allowing the projection of the data onto as many dimen-

sions as wanted and, similar to PCA, it finds projections in order of importance and

information.

Suppose we wish to reduce the dimension of the measurement space to 1. We can

achieve this by using the vector a E Rd and calculate the samples

laT x, ... , aTxn}

and

{aTy,... ,aT Ym}

Given the metric as defined in the software technique, our goal is to find the optimal

a such that

PT a(aTEa)-laT T

is maximized. Another way of stating this is that we want to solve the constrained

optimization problem

max (aT p )2
aEi

d

subject to the constraint

aT a = K

for some arbitrary but fixed scalar K.

Using a Lagrange multiplier A, we can rewrite this as

max J
aE33
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where

J = (a T/t) 2 - A(aTEa - K)

Then, we differentiate and set the derivatives equal to zero:

VaJ = 2(aT t)pj - 2AEa = 0

and

- -aTEa +K = 0

Premultiplying the first equation by aT, we get

(aT[1) 2 - AaTEa = 0

(aT p) 2 - AK = 0

from the second equation. Thus,

A- (aT 1) 2

K

Substituting into the first equation, we get

(aTi) 2

(aT) (ap Ea = 0
K

Then, either aTz = 0 (which can't be optimal since then the objective function, which

is nonnegative, would be identically zero), or

- Ea = 0
K

so that
aTKa



Noting that the magnitude of a is arbitrary, as is the value of K, we choose

This is the optimal a if we wish to project d-dimensional measurements onto 1-

dimensional space.

Notice that this analytical solution only applies to a 1D projection. Expanding

this to 2D requires a recursive application of the same technique and does not provide

the ideal 2D projection but rather the best two 1-D projections. As such, the recursive

software optimization of the previous section is required to find better 2D and 3D

solutions.

The next necessary step is to identify the decision boundary between the two

clusters formed by the projection. We will explore two methods to do this: One

statistics and one probability approach.

First, if we want to get as much separation between the clusters, the best decision

boundary would be equidistant from the two means. Yet, we must also account

for the variance in the clusters. Indeed, a higher variance in one cluster should

push the decision boundary more towards the tighter cluster. The following method

incorporates both the means and variances to create the optimal boundary.

Given two 1-d clusters X and Y, the means of the two clusters are p,, and py.

The variances are oa and 02. We want a line an equal distance of standard deviations

away from either mean. This is given by

[x + bu = Py - buy

The unknown variable b enables separation with an equal number of standard devia-

tions away from each cluster center. Therefore, we have

b Py -=IP
cx + ory
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and the decision boundary is

Ipx + bQ-

The second method to generate a decision boundary is to minimize the probability

of misclassification. We may do this as follows.

First, let us assume that a decision boundary has been placed.

Let us define Nx as the number of data points in cluster X and Ny as the number of

points in Y

Let us further define M, and My as the misclassified data points in X and Y respec-

tively. Thus, M is the number of points in X that have been incorrectly classified

as points in Y and visa versa.

Now, we must define the probabilities of various events as follows.

The probability of being in X or Y respectively is

Nx

P=
S Nx + N,

The probability of misclassification of points in X and Y respectively are

Mx
N i

Ny

Therefore, the overall probability of misclassification is given as

PM = P(misclassified XI in X)*P(in X)+P(misclassified Y in Y)*P(in Y)

PM = PmxzPx + PmyP

Simplifying

PM = ( )(
Nx

Nx
Nx + N,

+M N
+( ")( " )

N, Nx + N,



PM =
Nx + Ny

The decision boundary, then, is the line that minimizes PM, the total probability of

misclassification. Because the denominator is constant, this is the same as minimizing

the absolute number of misclassified points.

3.4 Support Vector Machines

SVM is a classification technique often used in machine learning. The strengths of

the technique can be listed as follows:

* Attempts to classify each point into one of two classes

* Provides both linear and nonlinear decision boundaries

* Allows the adjustment of how closely decision boundaries are fit.

A point that we have not stated previously is that in determining a decision

boundary for classification one must often decide on the tightness of fit. If we were

to mark points individually as members of two separate groups, and drew a line

to encompass solely one group, we will have perfectly separated the data. Yet this

separation will yield in too specific a fit and is likely to be uninformative. Conversely,

too loose a fit is likely to provide information with ambiguous results, and accurate

grouping may not be possible.

The SVM algorithm tackles this problem quite elegantly by using margins. While

finding a decision boundary on the training data, SVM considers the most closely

neighboring data points of the two groups as the margins of the data. These mar-

gins -also called the support vectors- determine the decision boundary: The decision

boundary is the curve that is equidistant from the support vectors. The algorithm

thus tries to find the widest street that separates the two sets of data, with the center

of the street being the decision boundary. While ideally we would like perfect separa-

tion from SVM, we may also allow for more flexibility and limit SVM in other ways



to enable other goals. For example, establishing a minimum width for the margin

distances ensures that the fit is not too tight and there is adequate room for closer

test data to be classified accurately [5].

The SVM algorithm is as follows: We divide the available data into two groups

at random; training and testing data.

We define all training data as

{x 1 ,..., xn}

where xi E (Ed for all i

We further define the class affiliation (1 for group 1, -1 for group 2) of each data

point as

{gi,..., gn}

where gi E -1, 1 for all i

Also note that a hyperplane may be described by

w-x - b = 0

where w is a normal vector to the hyperplane.

In the linear case, we want to choose w and b so as to maximize the margins. The

hyperplanes for this are

w-x - b = 1

and

w-x - b = -1

The distance between these two hyperplanes is then found as 2 Note that the

minimum length of w may be constrained to allow for less tight fits as discussed

above.

We must also make sure that

w-xi - b > 1
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for all xi with gi - 1 and

w-xi - b < -1

for all xi with g = -1

We may write these constraints as

gi(w-xi - b) > 1

Now, in order to find the maximum width margins, we write the optimization problem

min ||w|

s.t.

gi(w-xi - b) > 1

This optimization problem is hard to solve and may be modified in the following

manner to use Quadratic Programming techniques

1
min 1 w |2

s.t.

gi(w-x i - b) > 1

Extensions of this linear SVM exist. Most importantly, it may be expanded to

polynomial and radial solutions. Also, the optimization constraints may be relaxed

for both faster computation time and allowing for near solutions if exact ones are

not possible. Furthermore, slack variables may be introduced into the constraints to

allow for misclassification of points at a certain cost.

One really powerful property of SVM is its sole reliance on dot products. As

the formal presentation outlines, SVM requires only the dot product calculation of

classification points with the weight vectors. The power in this -as I will demonstrate-

is that it allows mapping to alternative kernel space using solely dot products. Explicit



mapping of points need not be calculated or even known, but rather may be implicitly

obtained through dot products [5]. As such, transforming the points into another

kernel only requires that we obtain the same dot product in kernel space, essentially

removing the requirement to transform each data point.

Let us define a mapping as

x.-* #(x)

Then the quantities required for our optimization are constraints that depend on:

4 (w). - (x)

This dot product may be supplied by a function as follows

(w)- 4(x) = K(w,x)

Therefore, we require only the original vectors w and x to calculate the dot product

in this kernel space.

Possible kernel examples:

Polynomial:

K(w,x) = (w.x+l)

Radial:
- w-xl

2

K(w,x) = e F

The use of different kernel spaces is a powerful tool. While it is often thought

that the curse of dimensionality serves only to diminish information in the data due

to sparsity of points in high-dimensional space, the converse may be true. Expanding

a data set to higher dimensions or a simpler function space may produce simpler

patterns that were previously obscured by complexity. Therefore, we may say that

it is not the dimensionality but the complexity that defines the correct approach [5]

(projection vs kernel techniques). In our investigation of SVM on simulation data we

explore how different kernels change the classification of points.



3.5 Simulations

In this section our methods are tested under various 2-D and 3-D distributions of

two classes of data. Each class of data is characterized by two quantities: Mean and

covariance matrix. These are used in our random number generator to produce m-

dimensional normally distributed data with mean and covariance matrix as specified.

The methods to be tested are logistic regression, multivariate linear method and

SVM for 2-D simulations and logistic regression, multivariate linear method, SVM and

Exhaustive Computer Projections for 3-D simulations. This is because the projection

system used in the exhaustive program projects onto 2-D space. Thus, it does not

make sense to find a projection of a 2-D simulation.

We will only be testing these three techniques because the basic techniques such

as regression and PCA do not provide decision boundaries either visually or math-

ematically. They merely serve to capture the directions of maximum variation in

univariate data. As such, they may provide valuable information in exploratory data

analysis, but not decision boundaries between clusters. Logistic regression is a step

above this, in that while it does not present a decision boundary, the probabilistic

description may serve as a decision boundary at the equal probability point.

3.5.1 2-D Simulations: The Basic

Non-overlapping samples of normal distributions, separated along axis

This is the most basic simulation of two normal distribution clouds on the plane. The

clouds are adjusted so that they can be linearly separated along the x or y axis. Visual

inspection shows clearly that this distribution is easily separable linearly. Therefore,

we expect that both methods will work well.

The linear method produces a projection onto a single dimension. As such, we

must view the points as a histogram of the values they are projected to along a line

and the frequency of these incidences. Total separation of the distributions, and the

Gaussian shape indicated that both our simulation and method work effectively in

separating the two groups.



Table 3.1: Parameters for non-overlapping, vertically separated simulation data

X1 yl x 2  Y2

P 1 0 10 0
Ex 1 0 1 0
Ey 0 1 0 1

Table 3.2: Performance comparison of methods on non-overlapping vertically sepa-
rated simulation data. Each method does equally well for the given data.

Log.Reg. Linear SVM
Number classified 1000 1000 500
Correctly classified 1000 1000 500
Incorrectly classified 0 0 0
Fraction correct 1 1 1

SVM also provides a good solution. While the expectation was that the decision

boundary would be a vertical line, the random data provided support vectors that

yielded in a slightly slanted separation. However, SVM managed to classify all of the

test data accurately after processing the training data. No modification of the kernel

or optimization method was necessary for this operation.

Note that while each method accurately classifies 100% of the data, SVM requires

half of the data as training points. In this way, the other methods are able to classify

more points as they look at the data as a whole rather than separating training and

testing data.

Non-overlapping normal distributions, separated along a diagonal

Visual inspection shows clearly that this distribution is easily separable by a diagonal.

Therefore, we expect that all methods will work well.

We notice that the methods provide very good but imperfect separation. This,

however, is not due to the diagonal but rather because the two clusters have been

brought closer together. This was done as a precursor to the next group of simulations

which will present overlapping data. From the results obtained, it is quite evident

that diagonal vs. vertical separation does not create an obstactle for either method.



Non-overlapping normal distributions, separated along axis
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(a) Simulated data non-overlapping, sep-
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(c) SVM separation on training data
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Figure 3-2: Simulated non-overlapping, vertically separated data. Each method does
a good job on separating this data.

Table 3.3: Parameters for non-overlapping, diagonally separated simulation data
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Figure 3-3: Simulated non-overlapping, diagonally separated data.

Table 3.4: Performance comparison of methods on non-overlapping diagonally sepa-
rated simulation data.

Log.Reg. Linear SVM
Number classified 1000 1000 500
Correctly classified 1000 1000 499
Incorrectly classified 0 0 1
Fraction correct 1 1 0.998



Table 3.5: Parameters for overlapping simulation data

X1 yl X2  Y2

At 4 4 6 0
Ex 2 0.5 2 0.5

,y 0.5 2 0.5 2

Table 3.6: Performance comparison of methods for overlapping simulation data.
Log.Reg. Linear SVM Quadratic SVM

Number classified 1000 1000 500 500
Correctly classified 916 932 460 465
Incorrectly classified 84 68 40 35
Fraction correct 0.916 0.932 0.92 0.93

Overlapping normal distributions

This data involves overlapping points as well as a linear separation of the main clus-

ters. As such, the methods may be expanded to attempt better classifications. While

the linear method is fixed as to its adaptability, we may explore various non-linear

SVM techniques to capture more than a basic level of linear separation.

As seen in the figures, a quadratic kernel for the SVM improves classification by

1%. This is not much of an improvement, and in fact given the linear nature of the

data may be misleading. Yet, it serves to illustrate the power of SVM Kernel methods

as we expand our distributions further.

3.5.2 2-D Simulations: Complicated Distributions

The following cases will have clusters in various forms that are, for the most part,

non-linear. Many of these are likely collections from industrial settings.

Circle-in-circle

This distribution assumes that one cluster encapsulates the other as a circular crust.

This is a likely form for data, in particular if we reject outlier point as No Go. That

is, given that Go points are within specifications, all points that lie outside these

specifications would be No Go points. Thus, the collection of these points -no matter
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(a) Simulated data, Circle-in-circle.
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Figure 3-5: Radial basis kernel transformation

Table 3.7: Performance comparison of methods for circle-in-circle data.
Linear Linear SVM Quadratic SVM Radial Basis SVM

Number classified 1000 500 500 500
Correctly classified 634 343 494 495
Incorrectly classified 366 157 6 5
Fraction correct 0.634 0.686 0.988 0.99

the direction of their deviation from specifications- will form an outer crust on the

inner Go points.

As we may guess, linear methods are unlikely to produce reliable decision bound-

aries as the boundary we wish to impose is likely to be circular. The power of SVM

Kernel methods becomes apparent in this type of distribution. Namely, a radial basis

kernel or a polynomial kernel is much more likely to wrap around the inner circle as

a decision boundary. The visualization of the kernel transformation is shown below.

The linear separator for the radial kernel space becomes a radial separator in the

original space.
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(b) The Radial Basis Kernel transforma-
tion of circle-in-circle data
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Chapter 4

Case Study: Company X

So far we have developed the technical approach and methods that are to be applied

in industrial cases. As part of this thesis and research project, we endeavor to achieve

our objective: To preemptively identify faulty end product via in-depth analysis of

process data. As discussed previously this will be done in three steps:

* Obtaining and processing data

* Performing Exploratory Data Analysis

* Developing decision strategies

We systematically applied the three stages necessary for our objective, to Com-

pany X. The following chapters will present our approach, results and discussion.

4.1 The Indigo Dyeing Process

The process for which we are applying exploratory data analysis may be collectively

described as the coloring of denim fabric. Many different colors may be used in

coloring. In order to focus the study, analysis will be based on the pure indigo

coloring process.

The collective coloring process consists of two main parts; dyeing and washing.

Both of these parts play a role at creating the final outcome color. Therefore, it is



evident that the study must deal with different sets of parameters in both parts in

relation to the collective outcome parameters.

If we are to produce meaningful correlations between input parameters and out-

comes, we must gain an understanding of the process and how it relates to data

obtained from the plant. The following sections will describe the characteristics of

indigo dye, the process and the data derived from the process. I will then conclude

with the difficulties, approach and goal of the study in relation to the process and

data.

4.1.1 Indigo Dye

Indigo is a unique dye used in the coloring of denim. Unlike many different types

of dye, indigo is known to be flexible in color and often unpredictable. These same

qualities that make it flexible also make it difficult to achieve consistency in coloring.

For these reasons there exists an entire field of indigo engineering, dedicated to the

methodology and production of various colors and characteristics of this versatile dye.

Several tools are available for the indigo engineer to manipulate the color charac-

teristics of indigo. First, and most relevant to our study, is the dyeing process in which

many parameters contribute to the outcome color. Second, the post-dye washing of

denim fabric allows for different characteristics to be imbued into the dye giving it dif-

ferent appearances. In general, we may say that the dyeing process provides the first

order color properties (blue, blue-green black etc.) and the washing process provides

second order properties (brightness, shine, ageing and wearing effects).

While indigo engineers are able to achieve the colors and effects they desire through

previous knowledge, experience and trial and error, there is great variance in the end

results often falling out of standard. The aim of this case study, then, is to facilitate

the production of consistent coloring and develop a higher level of understanding

between the correlation of parameters and outcomes. In this way, the thesis provides

a mathematical approach to solve a low-tech industrial problem. As such, the indigo

dyeing process at Company X provides an excellent test.



4.1.2 The Coloring Process

Below we outline the general indigo dyeing process. The process is complicated in

many ways, primarily in the interchanging units of production and the bundling of

product. Below are a few of the terms and their size:

Work order The biggest unit containing a set of coloring characteristics

and process parameters - Over 10000 meters of yarn

Line: A line goes through a single dyeing machine in one go (although

consecutive lines often follow directly as well) - 1000 to 2000 meters

of yarn

Ball: Dyed yarn is spun onto balls for transport - 100 to 200 meters of

yarn

As stated there are two components to the coloring process; dyeing and washing.

Each coloring process starts with a work order that specifies a length in tens of

thousands of meters of yarn and a color for the yarn to be dyed. Also specified in the

work order are the variance standard and rejection criteria for the coloring. The work

order is the largest unit of production for the dyeing process. It contains a single

set of target color values and a prescription of process parameter values to reach this

color.

The work order is then split into lines for coloring, where each line is approximately

1000 to 2000 meters of yarn that goes through the dyeing machine in one session.

After a line of yarn is dyed, it is spun into balls of yarn which are actually cylindrical

containers each containing around 100 to 200 meters of dyed yarn.

Dyeing occurs as yarn is continuously dipped into and out of very large tubs of

indigo dye. It is further treated by chemicals and steam along the way. The process

is controlled by the specified prescription in the work order. Control is exerted over

11 parameters via a computerized system. It is essential to note that the procedure

for altering the parameters is very slow. The dyeing range consists of very large tubs



of dye that take up to an hour to homogenize. As such, the effect of any controlling

action takes up to an hour to be homogenously distributed throughout the tubs.

Therefore, yarn dipped at a certain point is not subject to the same conditions as yarn

further down the line. Moreover, the point of measurement taken for the controlling

system is placed arbitrarily and does not necessarily reflect stable and homogenous

conditions in the tub.

After dyeing, the balls of yarn are then washed according to washing prescrip-

tions. The washing process parameters are very approximate and are often changed

manually via controllers without accompanying records. After this washing, the yarn

is assumed to have the appropriate color characteristics and is sent to weaving. Dif-

ferent washing prescriptions are often used within the same work order as the quality

of the color and its conformity to standards is only checked after the end product

denim is produced.

Quality control is achieved as follows. Every work order for dyeing is accompanied

by a master sample. This master was previously developed under the same factory

dyeing and washing conditions and selected by the customer as the target color for

the denim. This master sample specifies for the dye and washing range both the

target color values and the necessary process parameters and washing prescription to

get to this target.

After the end product is produced, the balls of yarn are now balls of denim. A

sample patch of denim from each ball is taken and affixed to the master sample to

form a blanket. This blanket thus contains samples from various points in time in

the process. Each sample is then compared with the master according to the output

parameters outlined below. If deviations in parameters are acceptable the balls are

shipped to the customer, if not they are recycled into the washing stage until they

become acceptable for shipping to a customer in Company X's portfolio or sold on

the spot market.



4.1.3 Process Parameters

OUTCOME PARAMETERS:

The outcome parameters of the coloring process consists of three variables collectively

defining the quality of color in the fabric; L,a,b.

L: Dark-Light fabric and varies from 0 (darkest) to 100 (lightest)

a: Red-Green fabric that varies from 0 (green) to 100 (red)

b: Blue-yellow fabric varying from 0 (yellow) to 100 (blue)

The three variables constitute the standards in judging the coloring quality. The

master sample sets specific values for L,a,b and the other samples in the blanket are

measured for deviation (A) from these set values.

INPUT PARAMETERS - DYEING:

The dyeing range has many input parameters, each of which greatly effect color. The

parameters considered are:

Indigo Concentration: The amount of indigo in the dye baths in grams

per liter

Hydro Concentration: Amount of water in the dye baths in grams per

liter

Caustic Concentration: The caustic concentration in the baths in grams

per liter

pH: The pH value of the dye mixture in the baths

Hydro Flow: The flow of water into and around the dyeing range in

liters per minute



Figure 4-1: Color Quality Chart: L,a,b are the three variables which quantify and
characterize indigo color quality



Indigo Flow: The flow of indigo into and around the dyeing range in

liters per minute

Pre-processing Temperature: The temperature of washing and pro-

cessing prior to coloring in centigrade

Indigo dye temperature: Temperature of dye mixture in baths in centi-

grade

Speed: The speed at which the yarn travels through the system in meters

per minute

Humidity: The amount of humidity in and around the dyeing range

Conductivity: The conductivity in the baths due to dissolved inorganic

salts

INPUT PARAMETERS - WASHING:

The washing process is carried out according to a fixed prescription. While the

parameters in the process are likely to vary, data on this variance is not available.

This is mostly due to the nature of the data. For example, stones are often used as

part of the washing process but the exact amount, size and distributions of stones in

the washing machine is subject to great and unmeasured variability.

Prescription Code: The prescription code is the only recorded param-

eter in the washing process.

4.1.4 Target Analysis and Issues

According to the indigo engineers at Company X, there are three main forms of unex-

plained variance of color outcome. Each of these are possible targets for exploratory

data analysis and the reduction of variability.



1) Same Prescription, same blanket: The samples on the blanket have

a certain A from the master sample despite having been through the

same dyeing and washing procedure. This variance may be analyzed

and explained by variance of dyeing process measurements.

2) Same Prescription, different blanket: It can be seen that differ-

ent blankets of the same prescription have different master sample

values after washing as well as different delta patterns. This implies

that although the same procedures are carried out for two blankets

formed of the same balls of denim, an additional variance is intro-

duced in washing.

3) Different Prescription: When comparing two different blankets from

two different prescriptions, it can be seen that the A from the master

sample of the other samples follow a certain pattern in one blanket

and a completely different pattern in the other. This difference may

be explained through dyeing parameters as well as the unique inter-

action of these parameters under different prescriptions. Identifying

such interactions may allow for the reduction of variance. An ex-

ample of this variance may be that the trend of samples may be

an increasing A(L) for prescription 1 and a decreasing A(L) for pre-

scription 2. If prescriptions did not uniquely interact with the dyeing

process then the A(L) trends would have been in the same direction.

However, controllers have informed us that this is often not the case.

Therefore, it is important to understand how the washing prescrip-

tion can change the direction of deviation in a given L,a,b value.

Given the availability of data, the case study was aimed towards the analysis

of 1) and 3). The primary analysis holds prescriptions and washing constant while

performing analysis on the dyeing process parameters as they apply to A variances.

The secondary analysis was meant to identify relations of specific dyeing process

conditions as they apply uniquely and differently to different prescriptions. However,



as we will discuss in the following sections, the available data prevented most objective

analyses.

4.2 Data

The first step in our three step objective was to obtain and process data into a form

in which we may perform our exploratory data analysis. Below is a description on

how the data was obtained and modified to achieve this as well as a discussion of

shortcomings.

4.2.1 Sources

The data received from Company X is contained in three main files as follows. Sample

sections of each may be found in the appendix:

Process Measurements: This is the data that contains the parameters

during indigo dyeing

Output Results: This is the color result data after dyeing and washing,

at a point which the fabric is ready to be shipped

Line Data: This is additional data used to linked the process parameters

with the outputs. It contains lengths of all lines of all work orders

I shall refer to process parameters as input, output results as output and line data as

linking data.

4.2.2 Approach

The data as given must be manipulated in order to be ready for exploratory data

analysis. The task is to accurately match the process parameters with the results

they produce (the input with the output). Moreover, the goal is to derive meaning



from the input parameters that will identify parameters that yield acceptable outputs

and unacceptable outputs.

There are several challenges that relate both to the physics of the system and to

the presentation of available data.

Matching input and output:

The input and output data do not correspond directly. That is, input measurements

are taken every hour and recorded with a time value, while output is analyzed in

blankets spaced evenly among different balls of fabric and recorded with a length

value, with no particular time spacing.

The essential variable used to tackle this problem is the meters/minute recording

of the speed at which a line of fabric goes through the process. This, multiplied by

the amount of minutes, accurately calculates the length for which a particular process

parameter recording is valid for. From this point, the method has two versions that

match this length value with the length value in the output data.

First, the output data contains the length for each roll of fabric. Moreover, only

one output measurement is taken from a single roll of fabric. Thus, we may associate

each sample with a certain length in the process assuming that the balls of fabric are

continuous products coming from each line. While this assumption seems valid, it is

also possible that there are missing balls of fabric that would offset the matching of

lengths in the production line with the lengths of end product.

Second, and more effectively, we may use the linkage data that presents the length

of each line in production. From this information we may extrapolate which line

contains what length range. This information links the line numbers to the input

data via the meter/minute measurement. Moreover, output results contain the line

number that each result is a part of. Thus through the line data as the linkage, an

association between input and output is achieved.

Input data can be accurately estimated through meters/minute data as to which

measurement corresponds to which line. As each measurement corresponds to roughly

1 line, we can match each record to one or two lines.



Granularity:

Granularity is a significant issue in the data. Input parameters are measured once

every hour, and therefore correspond to more than one of the output records. This is

not due to insufficient bookkeeping but is an inherent problem in the process. Because

each dye range contains large containers of dye, the process parameters homogenize

at a very slow pace (a modification to the input parameters takes approximately an

hour to be assumed to be homogenously distributed).

Because each input corresponds to several outputs, it is often the case that one set

of input parameters have outputs of greatly varying measures. This results in many

points that are both good and bad data points. As such, grouping and clustering

analysis to separate good results from the bad becomes challenging.

There are a few ways to tackle this problem. First, rather than using a binary

measure of end result as good or bad, we derive a continuous variable representing

the goodness of output. Second, for a given set of results representing the same input

parameters, we may take the majority result as the overall result for the parameters.

Indeed, bad results are much rarer than good results. As such, if a given set of inputs

produce even one bad output, they may be classified as bad inputs.

Note that while granularity mismatch is a concern for creating unique data points,

it is an advantage in matching inputs and outputs. This is because there is a large

margin for error as the input measurement is valid for a large range of lengths due to

the difference in granularity.

Cluster Classification:

Another task required to prepare the data for analysis is classification. As previ-

ously motivated, using clustering techniques on classified data is the best approach to

understanding the data. This is because, rather than trying to establish direct rela-

tionships between inputs and outputs, our target industries are primarily concerned

with products being within specifications or not. As such, the quality control decision

is often binary with a clear decision boundary.



We attempt to establish this boundary, which is normally a function of the out-

puts, as a function of the inputs. The linear and SVM clustering techniques require

that we divide the data into two clusters, as Go and No-Go.

There are several approaches towards this end. First, the obvious method would

be to use master sample specifications as a cutoff point for go no-go values. The

problem with this is that the specifications in the sample are flexible. That is, while

prescriptions and ideal color values may be the same under two work orders, each

order might have a different tolerance for error entirely due to the customer. These

arbitrary differences will create inconsistent clustering throughout our data.

The second approach to take is similar to standard quality control techniques. 3a

quality control assumes that if products are three standard deviations or more away

from the mean, the process is faulty and must be checked for systematic errors. If we

assume the same as being true in indigo dyeing, our classification would be to mark

all inputs that correspond to greater than three standard deviations of variance as

No-Go. This deviation is measured as the difference from master sample values for

each work order. Thus, we may say:

For a given work order with N data points, let xi be the vector of input parameters

associated with yi the vector of output parameters such that the inputs are

{X1, . .,XN}

and the output vectors as A's from the master sample are

{Y1,..-,YN}

Our matching function X(x) maps the inputs to the outputs as follows.

X(Xi) = Yi



The mean and standard deviation of the output L,a,b A's are given by

N

i=

1-Ni=1

At this point the standard deviation classification may vary according to a few con-

siderations. First, the number of standard deviations may be varied. As 3a is the

most common discriminator between acceptable and unacceptable results, we will use

this in our research. Second, the classification may be made for one dimension of the

vector yi such that if one dimension is more than 3a away, the vector yi may be

considered No-Go, or we may require all dimensions to deviate such that all of E, is

more than 3a away. We may define the distinction as:

Let a be Go points and 3 be No-Go points. Then a and 0 are given by:

Vi Yij - Yj > 3
yj

Vij - j
l Yj

-- + (xi E /)

-* (xi c a)

for classification through only single dimensions, and:

Vi, j Yi - >e3 (xi Ef)Ey

Vij Yi-Y <e3 -) (Xi E a)Ey

for classification through

is elementwise.

entire vector. Note that the division and inequality above

Our approach will be primarily a 3a deviation and single dimension classification.



4.2.3 Methods

Assembling Unified Data

Microsoft Excel and Visual Basic were used to match the input and output data

according to the two techniques described (using ball length data and line length

data)

The code for the roll of fabric lengths follows the following algorithm:

(1) For each row of output record,

For each work order,

(2) If current input meter count > current total ball meter count

Copy current input parameter row to current output row

Advance to next output row and loop to (1)

Else

Advance to next input row

increment current input meter count and loop to (2)

The Line of Fabric lengths matching method requires two separate pieces of visual

basic code. First, we must identify the starting and ending line for each input param-

eter record. Also, we must calculate the fraction of each line that a given parameter

is part of. Second, given the start, end and fraction data, we must match the output

records to each of the input records. The output records are assumed to be evenly

distributed along each line.

The first task is accomplished in Visual Basic as follows:

For each row of input parameters,

For Each work order,

Reset current line number and meters-to-process (mtp) variables

Get the meters per line (mpl) and meters of production (mop) of given row

Record start line number

If mtp - mop < 0



Increment current line number, record end line number

Fraction of end line produced = (Mtp-mop) / mpl

Else mtp = mtp - mop

Increment current line number

Loop to start

The second task involves different cases of where the input parameters lie in re-

lation to lines. A single record might encompass an entire line, start a line but not

finish it, or finish a line and start the next. As such the code ensures that each case

is covered while assigning the input to the output.

Classification

Classification of data points to prepare for clustering takes into account the techniques

described in the approach as well as the shortcomings in the data: granularity and

redundancy. First, as discussed, the input and output granularity don't match. One

input corresponds to many output values and as such the same inputs may be classified

as both Go and No-Go due to differing output values. Second, the data is highly

redundant. In fact, while an initial sample of the data contained over 3000 input data

points, only 550 of these points were unique. This also may cause the classification

of same input values to different outputs and classifications.

The methods used to tackle these issues in conjunction with the classification tech-

nique are twofold: Homogenize or cascade. Homogenizing the data involves making

one decision -Go or No-Go - for each unique input data. This ensures that we will

not have ambiguous points to cluster. In terms of the decision, given our 3 sigma

classification boundary, No-Go points are considerably rarer than Go points. In fact,

if any set of inputs yield in a No-Go point; we assume that this set is a bad set because

it is a rare case that produces such outlier outputs.

The cascade technique attempts to separate the data further by generating several

classes rather than a binary Go, No-Go. Data points are classified according to the



number of standard deviations they are away from the mean. After cascading the

points as such, we take the highest standard deviation output result and generalize it

to the entire set of identical inputs. In a way, the cascade technique may be thought of

as an expansion of the homogenizing method but is middle grounds between individual

classification of points and completely reclassifying a great number of points.

The algorithm for both techniques involves going through each output produced by

the same input and associates the entire group to one class. This algorithm eliminates

ambiguity due to granularity but does not eliminate redundancy. Redundancy is a

difficult issue to tackle as each data point needs to be compared to the entire set

of data points, creating an algorithm that grows exponentially. A basic technique

would generalize to one class -Go by default and No-Go if it is ever found- by looking

through the data and eliminating all points of the other class.

4.3 Exploratory Data Analysis

The second, and most important, step in our three step objective is to perform ex-

ploratory data analysis on the data using the various methods explored in the previous

chapter. We present this using the same categories discussed in the methods.

* The usual

* Exhaustive software

* Multivariate linear analysis

* Support Vector Machines

Essentially, this approach ensures a look at the data in increasing detail. First,

we provide a general look using common techniques such as regression. Second, we

attempt non-specific and non-precision computational techniques. Following this, we

employ mathematical techniques of increasing complexity and pattern recognition

ability.



Table 4.1: Mean and Variences of input parameters

Ind. Conc. H20 Conc. Caustic pH H20 flow Ind. Flow Temp

Mean 1.3228 0.3929 0.8375 12.5183 1.0181 1.4404 39.5226
Varience 0.0093 0.0057 0.0252 0.0027 0.0723 0.881 206.85

Ind. Temp Speed Humidity Conductivity
Mean 26.8985 20.0987 6.3488 54.0343

Varience 0.3045 0.1891 3.3548 65.6837

An essential part of this process is recognizing that humans are the most efficient

pattern recognizers. Therefore, our efforts will be primarily based on reducing di-

mensionality in a way that preserves the most amount of information we want, in

order that we may visually recognize patterns. Thus, the task is to rely on statistical

techniques that facilitate easy visual pattern recognition. Much of the analysis will,

therefore, be presented visually and comments will be based primarily on the visual

appearance of graphs.

4.3.1 The Common Methods

In order to understand the data more thoroughly we must first explore individual

parameters and their relationships to other parameters. The aim of this is to identify

particular elements of variance as well as any patterns that are prevalent or obvious.

A Look at Means and Variances

As seen in the table, the parameters with the most amount of variance are Indigo

Flow, Temperature, Humidity and Conductivity. In fact, the other parameters have

negligibly small variance from their mean values. As such, these four parameters may

be thought to be primarily responsible for variations in outputs.

2-Dimensional relationships of parameters

Looking at patterns also involve the 1-to-1 correlations of the parameters. The fol-

lowing figure is a comparison of the parameters in this way.
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Figure 4-2: 1-to-1 Comparison Graphs. Individual histograms shown along diagonal.

Table 4.2: R 2 values of linear regressions

L a b

Deltas 0.1828 0.1602 0.0565

Absolute Values 0.0541 0.0534 0.0405

Linear Regression

In order to determine the possibility of a linear relationship between the inputs and

outputs, we performed linear regression on the inputs for each output L,a,b. As

expected, the outcome proved that a linear relationship did not exist, given the low

R2 values.

We consider both the deltas and the absolute L,a,b values in the regression, neither

of which provides high R2. This result also discourages linear projection methods to

obtain results. It is likely that non-linear patterns - if any - would emerge from the

detailed analysis.
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Principal Component Analysis

Another method often used in multivariate analysis is Principal Component Analy-

sis. This technique will provide us the most basic method of projecting onto lower

dimensions and visualizing data. PCA enables us to select the axes with the most

amount of information in terms of variance. It transforms the data onto the same

number of dimensions as the original, but with projection axes that contain the most

amount of variance to the least. Thus, we may throw away the lower axes and still

preserve the most informative axes.

As seen in the figure, this yields two clusters, however given our classification of

the data No-Go and Go points are very evenly divided among the two clusters. As

such, PCA does not yield in an informative result for our purposes.

4.3.2 Projection Pursuit via Recursive Software Optimiza-

tion

The second stage of analyzing the data involves non-specific software analysis. As

outlined in the methods, software analysis involves an iterative procedure in which

the software attempts to find the projection with the most optimal value of a specified

metric. We had developed the metric as follows:

Running the software over 30 trials on our cluster separation metric, the figure

below shows the optimal 2-D projection found. As can be seen, the projections yield

no separation of the Go, No-Go points.

4.3.3 Multivariate Linear Analysis

Multivariate linear analysis attempts to find the best 1-d projection that separates

the two clusters. The technique may be used to find n-d projections via recursively

applying the same method to the subspace that is orthogonal to the 1-d projections.



3-D Principal Components
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Figure 4-3: Principal Component Analysis projecting the data onto 3-D space. The
clusters have similar amounts of Go and No-Go points



2-D Projection Pursuit
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through 30 trial runs
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Correct
Rate 0.5524
Amount 2762

Table 4.3: Linear SVM performance
Incorrect Total

0.4476 1
2238 5000

Results reveal no separation of the histograms.

4.3.4 Support Vector Machines

Given that the other methods have failed to produce patterns or cluster separation,

support vector machines provide a final detailed look into possible non-linear sep-

arations. Below we explore a variety of non-linear kernels in an attempt to find a

non-standard separation of the clusters.

Note that half of the data is chosen at random to train and the other half is used

to test the classification. If a high level of correct classification is achieved, we may

assume that the SVM decision boundary has found an optimal separation of the two

clusters.

Linear Kernel

This is the basic linear separator. The SVM algorithm tries to separate the clusters

via an 11-d hyperplane. The results confirm that no linear separation of the data is

possible (as was observed in previous methods).

Polynomial Kernel

This is the polynomial kernel separator. The SVM algorithm tries to separate the

clusters via an 11-d hyperplane in the transformed polynomial Kernel Space given

by:

K(w,x) = (w-x+ 1)

While it is possible to try many orders, testing reveals all orders to show similar

performance. The results for polynomial of order 3 shown below.

I I
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Figure 4-5: 1-D Linear Projection for cluster separation: There is no separation of
clusters as seen in the histograms

Table 4.4: Polynomial order SVM performance
Correct Incorrect Total

Rate 0.5166 0.4834 1
Amount 2583 2417 5000



Correct
Table 4.5:
Incorrect

Radial Basis SVM performance
Total

Rate 0.5472 0.4528 1
Amount 2736 2264 5000

Radial Basis Kernel

This is the radial basis separator. The SVM algorithm tries to separate the clusters

via an 11-d hyperplane in the transformed radial Kernel Space given by:

- 11w-x112

K(w, x) = e7

This kernel is particularly useful in radially separated data.

We conclude from the many trials performed that SVM methods fail to identify

a linear or non-linear pattern in the data. In all cases the test data is classified with

around 50% accuracy, very close to classifying at random.

4.3.5 Mean and Variance Space Analysis

One final method used in the analysis is to analyze the mean and variance space of

L,a,b values. The motivation behind this takes into account the granularity issue: If

we are to make sense of output data that originates from the same input data, we

may group the output and represent the group with two identifying quantities, the

mean and variance. In this way, every input will have one group of 6 variables (the

mean and variance of each of L,a,b) rather than a set of 6 to 8 vectors of 3 dimensions.

Moreover, this 6 variable group will be a consistent representitive of the group, which

is an improvement over the generalization technique used previously for Go, No-go

clusters.

The handicap of this technique however, is that it prevents us from using binary

clustering and decision boundaries. To tackle this, we utilize a 2-means clustering

technique. The task then is to identify the clusters that have the greatest separation

of means and the smallest variance (i.e. distant and tight clusters). In this way we



6 to 10 L,a,b Values

Means -> PIL , Ila, Jb

Variances -> o?, oa , O b

Figure 4-6:
surements

Each process measurement corresponds to 6-10 continuous L,a,b mea-
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(a) 2-Means clusters on L,a,b mean space (b) 2-Means clusters on L,a,b variance
space

Figure 4-7: 2-Means Clustering on mean and variance data

will have obtained the maximum separation of in spec and out of spec groups, which

we may then associate with the inputs that lead to them. 2-means clustering in this

manner leads to the figures below.

The two figures are the 3-D mean space and variance space. As seen, the clusters

are separated as blue and green. Assuming that the blue cluster is for points within

spec and green for points out of spec the figures can be explained as follows: The blue

cluster is separated into two groups. This separation is owing to the fact that there

are 2 washing prescriptions that yield in 2 areas in which the L,a,b values can be

within spec. This is because the different washes yield in different L,a,b value ranges

that are within specifications for that type of wash. The green cluster is everything

outside of these two within spec regions. As can be seen in the variance space, the

blue cluster has minimal variance and green has high variance, as may be expected

of within spec and out of spec clusters respectively.

The 2-means clustering technique works well to provide us with a logical pattern.

The next step, however, is to associate the findings in mean space and variance space

with the actual 11 dimensional measurement vectors. This will allow us to identify

Mern S"rce



10 9

(a) 3-D Plot of Indigo Conc.
and Caustic Flow

Hydro Conc

1.2126
08

4 12.4 0.2 01 .

3

(b) 3-D Plot of Indigo temp, Speed and
Humidity

_i* IL;
_-AAL-i dAL.

-7:iic
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Figure 4-8: Plots of the cluster correspondance between mean-variance space clusters
and the 11-D measurement vectors

which measurements correspond to the in spec cluster and which are linked to the

out of spec clusters. We therefore associate the blue and green clusters with the

11-D measurement points that they relate to. This association does not result in an

identifiable pattern. As seen in the figures below (which are a few sample 3-D plots

chosen from the 11 dimensions and a 2-D plot of each 2 variable combination) the

distribution of the clusters in the 11-D vector measurement space is not correlated

with the results in mean and variance space.

This random distribution is likely due to the measurement points being snapshots

in time that are distanced by an hour. In order to come up with meaningful results,



more frequent and representitive measurements are required.

4.4 Developing Decision Strategies

As our data has provided little information and the methods have not revealed a

sound classification or decision boundary, we will not be able to provide a decision

strategy for the firm. Instead, however, this thesis explores a possible implementation

of decision strategy in the form of visual software.

4.4.1 Motivation

While it would be possible to supply businesses with raw data results and mathemat-

ical decision boundaries to base their preemptive quality control on, we believe that

this is not desirable for many reasons. First, process controllers are often under time

constraints and lack the mathematical expertise to decode the decision boundary and

make decisions. Second, as our aim is to facilitate and improve production processes,

it would be advantageous to provide easy to use decision tools. Finally, we would

want a tool that is generic and modifiable as decision strategies change, to continue

to function as a decision maker.

4.4.2 Approach

If we are to provide factories with easy to implement and use decision making software,

we must leverage the power of software with the strengths of humans. Namely, we

will once again utilize the human pattern recognition ability in order to facilitate

easy decision making. However, because our decision boundaries will often occur in

high-dimensional space, it would not be possible to use traditional graphs in making

process decisions.

Chernoff faces provide a very intuitive method to visualize higher dimensions. As

humans are very good at recognizing faces and emotions, representing each variable

with a facial feature will allow very quick recognition of the state of the process.
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For example, let us explore three random variables -temperature, acidity and

pressure (T, a, p) - for a given process. Let us assume that each of the three variables

is undesirable at higher levels. Then let us make the following assignments:

* Slope of eyebrows oc T

* Upcurve of mouth are oc a

* Separation of lips oc I

In this case we see that low values of all will yield in a laughing face whereas high

values of all will yield in a frowning face. More important than these two end states,

however, is the partial states.

For example, if only temperature increases the face will look mischievous, while

if only pressure increases the laugh will transform into a contented smile. Therefore,

each change gives a clear picture of a different state as well as a gradual change from

laugh to frown. These changes would allow quick interpretation by controllers of the

condition of the process.

4.4.3 Method

We develop the Chernoff Face software in Java. The software involves a few compo-

nents.

* Data input and output

* Modeling the face and associating variables

* Establishing decision boundary and face states

Data Input and Output

The software is required to take in process data and use it to determine the state of

the face. We use comma deliminated text format in order to take in the input process



parameters. The software accepts updates to the document as it is modified in real

time by the process measuring instruments. The updates are taken into account at

time intervals that are synced with data recording times.

Output data includes both a visual representation of the current state as well as

the states of the face drawn on 2-D axes that show both the current length of fabric

and time stamp. (Note that these axes are industry specific).

Modeling the face and variable association

Our Chernoff Face Model takes up to 10 parameters of facial features and 1 parameter

for color. The features are:

* Head Eccentricity

* Eye eccentricity

* Pupil Size

* Eyebrow Slope

* Nose Location

* Mouth Curl

* Eye Spacing

* Eye Size

* Mouth Size

* Mouth opening

Each feature may take a parameter from the inputs. However, given that decision

boundaries may have more complicated mathematical equations, the features may be

associated with a function of the inputs rather than the inputs themselves.

The features change on a scale from 0 to 1, therefore the variable must be trans-

formed onto this scale. This transformation is done in conjunction with the decision

boundary and will be explained below. Establishing decision boundary and face states



Given our variable associations, our facial features will change on a scale from 0 to

1. The most generic form of the software will set the features to be 0.5 on the decision

boundary, and depending on the emotions we wish to reflect, will tend towards 0 or

1 as we get further away from the decision boundary in either direction.

The most generic form of face states will reflect a smiley face when within spec-

ifications and a frown when outside. Thus, when inside the decision boundary for

in-specification producing inputs the face will smile (usually implying features close

to 0) and outside the decision boundary will yield a frown (close to 1).

The face software is open to modification and customization to change features,

establish decision boundaries and emotions to reflect various states of the process.

4.4.4 Generic Example

Let us explore the case with the three assignments to eyebrow slope, mouth openness

and curl. As described, the faces will transition between states depending on the level

of the variables. The figure below shows the transitions for single variables and all

three variables.
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Chapter 5

Conclusion

5.1 Results

As presented, our results from looking at Company X data showed clearly that the

data did not allow for the proper analysis of inputs and outputs. We explored various

reasons for this that may be summarized as follows:

Granularity Many L,a,b values corresponed to few process parameter

sets. In fact, there were very few process measurement recordings

and these recordings were too scarce (around 10 per work order).

Under these conditions it is unlikely to derive meaningful relation-

ships between inputs and outputs.

Redundancy Both L,a,b values and process parameters have little vari-

ance. Due to this, there is a lack of unique data points in the data

set. Roughly 1 in 10 data points provided are actually unique. Given

that we are working in higher dimensional space, and have to deal

with the granularity issue, redundancy in data makes it even more

scarce and difficult to identify patterns.

Confounding Variables While non-linear dependancy might be the rea-

son for the lack of good regression results, it is also likely that there



are significant confounding variables that are not recorded and, thus,

cannot be considered. Examples of this might be the type and quality

of the cotton mix in the yarn, or various ambient condition variables.

Problems Linking the data Finally, it must also be noted that the

linking done between inputs and outputs have a significant draw-

back. While the input data is linked to certain length values through

our extrapolation technique, these length values are in yarn length

whereas the L,a,b values correspond to lengths in fabric length. Be-

cause of this, a direct association between the two length values could

not be made. It may be thought to be approximately correct due to

granularity issues. This is because due to the granularity issue, one

process point is likely to correspond to large batches of yarn, which

is likely to translate entirely into a batch of fabric such that a one-

to-one correspondance between the two may be made. However,

this approximation is not a reliable one and we would like to have

a method of associating the two length values, which is not possible

under current data recording in the factory.

5.1.1 Suggestions for Company X

From the summary of issues presented above, some of them can be prevented or

improved upon, while others are inherent to the system. As far as improvements we

suggest enhancements to the data collection process.

First, it is important that the granularity issue be solved. It is understood that the

granularity issue arises from and is linked to the lack of homogeneity in the tanks and

process parameters throughout the process. The solutions to this are twofold: im-

provement in measurement methods and improvement in dyeing technology. During

visits with Company X, it was observed that the factory works closely with machine

design firms to improve upon current technology. In this sense, it may be possible

to improve the machines to introduce homogenizing techniques. This would aid both



in rapid response making the technology more efficient as well as allowing for the

accumulation of more data points. Given that this is a more complicated progress,

perhaps more achievable is an improvement in measurement. Measurement points

may be made to coincide with the exact locations that yarn is dyed. In this way,

even if the tank is not homogenous, we may be able to identify the exact conditions

under which the yarn is exposed to the dye. This will give us more confidence in

obtaining more frequent measures. Another way to accomplish this would be to add

more sensors in the tanks.

A final suggestion in obtaining frequent measures is the discovery of the time

constant with which the tank propagates the parameters and homogenizes. If we can

model this spread, then it will be possible to extrapolate true parameter values from

the measurements, even though they do not represent the state of the entire tanks.

This discovery may be obtained through further research into the dyeing process.

Having more frequent measurements (despite the inherent error) would also aid in

this research as well as ours.

Secondary to the granularity issue is a way to link quality control data with various

points in process. It is evident from our study that, while records of data are kept

dilligently within each process, there is very little tracking done across processes.

There are many factors that confound the tracking process. For example, while it

is possible to extrapolate length data for the yarn, this does not correlate directly

with lengths of fabric post-weaving. Tracking methods need to be implemented to

solve this problem so that a given unit may be tracked throughout the process -

from the point at which the cotton is spun to the quality control station. One way

to accomplish this would be to identify a small unit (such as a certain length) and

assign it serial numbers. At each processing point, the effects of the process must be

thought out and an association between incoming serial numbers and outgoing serial

numbers must be made.

Third, the process parameters are likely to be insufficient in explaining L,a,b

variability. This may be solved by careful thought as to what other pre-dyeing factors

may be affecting the dyeing process. Examples of this may be the quality and type of



cotton mixed into the yarn, conditions under which it is spun and variables relating

to the ambient conditions throughout the process. This collection of data would be

greatly assisted by the second suggestion of having a standardized way to track data.

5.2 Contributions

With this thesis I accomplished the following:

* Proposed a methodology and framework to achieve preemptive qual-

ity control

* Suggested improvement in Company X data collection that would

enable the achievement of preemptive quality control

* Compared various techniques for multivariate analysis of industrial

processes with an emphasis on machine learning techniques and vi-

sual pattern recognition

* Implemented a decision strategy support vector allowing visualiza-

tion of high-dimensional state changes



Appendix A

Tables
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Figure A-i: The input process parameters for the indigo dyeing process: There are

11 parameters with associated work order and timestamp
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Figure A-2: The output L,a,b values at color quality control: The L,a,b values have
both the master value and the delta from the master value for the given sample as
well as associated work order, line no. and ball no.



Appendix B

Code

B.1 Visual Basic for Excel

Below is the Visual Basic code used to link input and output data

Sub Generator()

Dim isemri As Long

Dim currentmeter As Long

Dim counter As Integer

isemri = 0

For counter = 0 To Range("statdata").Rows.count

If Range("statdata") .Cells(counter + 1, 1) = isemri Then

Call processor(counter , currentmeter)

Else

isemri = Range("statdata").Cells(counter + 1, 1)

currentmeter = 0

Call processor(counter , currentmeter)

End If

Next counter

End

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23



24

25

26

27

28 End Sub

29

30 'This subroutine processes the output data and associates them with the input -'

parameters

31 'associations are done via calculating the ball meters and production speeds

32

33 Sub processor(counter As Integer, currentmeter As Long)

34

35 Dim i As Integer

36 Dim j As Integer

37

38 Dim isemri As Long

39 Dim line As Integer

40 Dim top As Long

41 Dim meter As Double

42 Dim blanket As Long

43 Dim sira As Integer

44 Dim yikama As String

45

46 isemri = Range("statdata").Cells(counter + 1, 1)

47 line = Range("statdata").Cells(counter + 1, 2)

48 top = Range("statdata").Cells(counter + 1, 12)

49 meter = Range("statdata").Cells(counter + 1, 13)

50 blanket = Range("statdata").Cells(counter + 1, 8)

51 sira = Range("statdata").Cells(counter + 1, 15)

52 yikama = Range("statdata").Cells(counter + 1, 14)

53

54 If sira = 1 Then currentmeter = currentmeter + meter

55

56 For i = 0 To Range("processdata").Rows.count

57 If Range("processdata"). Cells(i + 1, 1) = isemri Then

58 For j = 0 To 20

59 If Range("processdata" ).Cells(i + 1 + j , 1) = isemri Then

60 If Range("cumulmeter").Cells(i + 1 + j, 1) >= currentmeter Then

61 Range("tocopy").Offset(i + 1 + j, 0) .Copy

62 Range ("topaste") . Offset (counter , 0) . PasteSpecial (4-

xlPasteValuesAndNumberFormats)

63 Exit Sub

64 End If

65 End If

66 Next j



67 End If

68 Next i

69

70 End Sub

71

72 'this subrouite processes the output data and associates with input parameters via t-

calculating the line associations and dividing input parameter rows evenly i-

amont each associated line

73

74 Sub lineprocess()

75

76 Dim i As Integer

77 Dim j As Integer

78 Dim amountline As Integer

79 Dim isemri As Long

80 Dim currentline As Integer

81

82 currentline = 1

83 amountline = 0

84 isemri = 0

85

86 For i = 0 To Range("statdata").Rows.count

87 If Range("statdata") .Cells(i + 1, 1) <> isemri Then

88

89

90 isemri = Range("statdata").Cells(i + 1, 1)

91 currentline = 1

92

93 End If

94

95 amountline = Range("linecount").Cells(i + 1, 1)

96

97 Call processinline (isemri , amountline , currentline , i)

98

99 i = amountline + i - 1

100 currentline = currentline + 1

101

102 Next i

103

104

105 End Sub

106

107 Sub processinline(isemri As Long, numofline As Integer, currentline As Integer,

rowloc As Integer)

108 Dim i As Integer



109 Dim j As Integer

110 Dim k As Integer

111 Dim totalfrac As Double

112

113

114 Dim starter As Integer

115 Dim middle As Integer

116 Dim ender As Integer

117

118 starter = 0

119 ender = 0

120 middle = 0

121

122 Dim startfrac As Double

123 Dim midfrac As Double

124 Din endfrac As Double

125

126 startfrac = 0

127 endfrac = 0

128 midfrac = 0

129

130 Dim startloc As Integer

131 Dim endloc As Integer

132

133 endloc = 0

134 startloc = 0

135

136

137 totalfrac = 0

138

139 For i = 0 To Range("startline").Rows.count

140 If Range("processdata").Cells(i + 1, 1) = isemri Then

141 Do Until Range("processdata" ). Cells(i + 1, 1) <> isemri

142 If Range("startline").Cells(i + 1, 1) = currentline And Range("endline"--

).Cells(i + 1, 1) = currentline Then

143 middle = middle + 1

144 midfrac = midfrac + Range("fracline").Cells(i + 1, 1)

145 ElseIf Range("startline").Cells(i + i, 1) = currentline Then

146 starter = starter + 1

147 startloc = i

148 ElseIf Range("endline").Cells(i + 1, 1) = currentline Then

149 ender = ender + 1

150 endfrac = endfrac + Range("fracline").Cells(i + 1, 1)

151 endloc = i

152 End If



153 i = i +l 1

154 Loop

155 If (endfrac + midfrac) <= 1 Then

156 startfrac = 1 - (endfrac + midfrac)

157 Else

158 midfrac = 1 - endfrac

159 End If

160 Exit For

161 End If

162 Next i

163

164 If CInt(numofline * endfrac) + CInt(numofline * startfrac) + CInt(numofline * *-

midfrac) < numofline Then

165 startfrac = startfrac + 1 / numofline

166 End If

167

168 j = 0

169

170 If endfrac > 0 Then

171 For j = 0 To CInt(numofline * endfrac) - 1

172 Range("tocopy") .Offset(endloc , 0) .Copy

173 Range("topaste2").Offset(rowloc + j, 0).PasteSpecial (xlPasteValues)

174 Next j

175 End If

176

177 If midfrac > 0 Then

178 For k = 0 To middle - 1

179 For j = j To ((CInt(numofline * midfrac) / (middle)) + j - 1) + k

180 Range("tocopy") .Offset (endloc + k, 0) .Copy

181 Range("topaste2") .Offset(rowloc + j, 0) .PasteSpecial (xlPasteValues)

182 Next j

183 Next k

184 End If

185

186 If startfrac > 0 Then

187 For j = j To CInt(numofline * startfrac) + j - 1

188 Range("tocopy").Offset(startloc, 0) .Copy

189 Range("topaste2").Offset(rowloc + j, 0).PasteSpecial (xlPasteValues)

190 Next j

191 End If

192

193 End Sub

194

195 Function countline(i As Integer)

196 Dim j As Integer



197 Dim theline As Integer

198 theline = Range(" linesof").Cells(i + 1, 1)

199 j = 0

200 Do Until theline <> Range("linesof") .Cells(j + i + 1, 1)

201 j =j +1

202 Loop

203 countline = j

204

205 End Function

206

207

208

209

210 'this subroutine is used to delete data that is corrupted or unusable

211

212 Sub deletor()

213

214 Dim i As Integer

215

216 For i = 0 To Range("statdata").Rows.count

217 If Range (" zeros") .Offset (i + 1, 0).Value = 1 Then

218 Range("todelete").Offset(i + 1, 0).Delete

219 i = 0

220 End If

221 Next i

222

223

224 End Sub

225

226 Sub generalize()

227

228 Dim i As Integer

229 Dim count As Integer

230

231 Dim time As Double

232 Dim amount As Integer

233 Dim j As Integer

234

235 count = 0

236 time = Range("linetiming") .Cells(1, 1)

237 amount = 0

238

239 For i = 0 To Range("totalgo").Rows.count

240 If time = Range("linetiming") .Cells(i + 1, 1) Then

241 amount = amount + Range("totalgo") .Cells(i + 1, 1)



242 count = count + 1

243 Else

244 If amount < count Then

245 For j = 0 To count - 1

246 Range("linegeneral").Cells(i + j + 1 - count, 1) = 0

247 Next j

248 Else

249 For j = 0 To count - 1

250 Range("linegeneral").Cells(i + j + 1 - count, 1) = 1

251 Next j

252 End If

253

254 time = Range("linetiming").Cells(i + 1, 1)

255 count = 0

256 amount = 0

257 i = i -1

258 End If

259 Next i

260

261

262 End Sub

263 Sub generalize2()

264

265 Dim i As Integer

266 Dim count As Integer

267

268 Dim time As Double

269 Dim amount As Integer

270 Dim j As Integer

271

272 count = 0

273 time = Range("linetiming").Cells(1, 1)

274 amount = 0

275

276 For i = 0 To Range("bgo").Rows.count

277 If time = Range("linetiming").Cells(i + 1, 1) Then

278 amount = amount + Range("bgo").Cells(i + 1, 1)

279 count = count + 1

280 Else

281 If amount < count Then

282 For j = 0 To count - 1

283 Range("bgen").Cells(i + j + 1 - count, 1) = 0

284 Next j

285 Else

286 For j = 0 To count - 1



287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

Range("bgen").Cells(i + j + 1 - count, I) =

Next j

End If

time = Range("linetiming").Cells(i + 1, 1)

count = 0

amount = 0

End If

Next i

End Sub

Sub processdelta()

Dim isemri

isemri = 0

For i = 0 To Range("linecount").Rows. count

If Range("topaste2").0Offset(i, 0) = isemri Then

Range("topaste3").Offset(i, 0).PasteSpecial (xlPasteValuesAndNumberFormats)

Else

isemri = Range("topaste2").Offset(i, 0)

For j = 0 To Range(" processcount") .Rows.count

If Range("processref") .Offset(j, 0) .Cells (1 , 1) = isemri Then

Range(" processref") .Offset (j , 0) .Copy

Exit For

End If

Next j

Range("topaste3").0Offset(i, 0).PasteSpecial (xlPasteValuesAndNumberFormats)

End If

Next i

End Sub

Sub seperate()

current = 0

For i = 0 To Range("sepdata").Rows.count

If Range("sepdata").Cells(i + 1, 4) = 1 Then

Else



332 Range("sepcopy").Offset(i, 0) .Copy

333 Range(" start") .Offset(current , 0) .PasteSpecial (xlPasteValuesAndNumberFormats)

334 current = current + 1

335 End If

336 Next i

337

338

339 End Sub

340

341

342 Function getmeter(isemri)

343

344 For i = 0 To Range(isemri).Rows.count

345 If Range(isemri).Cells(i + 1, 1) = isemri Then

346 getmeter = Range(linemeters).Cells(i + 1, 1)

347 Exit For

348 End If

349 Next i

350

351 End Function

352

353 'This subroutine is used to associate process parameters with the production lines -

they are associated to

354 'It outputs the associated start and end line of each line of parameters as well as+-

the amount in fractions of the end line completed under these parameters

355

356 Sub lineassoc()

357

358 Dim i As Integer

359 Dim lineno As Integer

360 Dim toprocess As Long

361 lineno = 1

362 toprocess = 1000

363

364 For i = 0 To Range("processdata").Rows.count

365 If Range(" processdata") .Cells(i + 1, 4) =1 Then

366 lineno = 1

367 toprocess = Range("perline").Cells(i + 1, 1)

368 Range("startline").Cells(i + 1, 1) = lineno

369 End If

370

371 Range("startline").Cells(i + 1, 1) = lineno

372 toprocess = toprocess - Range(" processmeters") .Cells(i + 1, 1)

373

374 If toprocess <= 0 Then



375 lineno = lineno + Int(Abs(toprocess) / Range(" processmeters") .Cells(i + 1, 1))>-

+1

376 Range(" fracline"). Cells(i + 1, 1) = (Abs(toprocess) iMod Range(" processmeters") .+-

Cells(i + 1, 1)) / Range("perline").Cells(i + 1, 1)

377 toprocess = Range("perline").Cells(i + 1, 1) + (toprocess M\od Range("+--

processmeters") .Cells (i + 1, 1))

378 End If

379

380 Range("endline") .Cells(i + 1, 1) = lineno

381

382 Next i

383 End Sub

B.2 Chernoff Faces Software in Java

Below is the Chernoff Face application code that relies on the face drawing method

provided by John Wiseman [7] Implements Swing GUI.

1

2

3

4

5

6

7 package cfaces;

8

9 public class Ofaces extends javax.swing.JFrame {

10

11 private int mode;

12 /** Creates new form CfacesGUI */

13 public Cfaces() {

14 initComponents();

15 mode = 0;

16 }

17

18 /** This method is called from within the constructor to

19 a initialize the form.

20 * WARNJNG: Do NOT modify this code. The content of this method is

21 * always regenerated by the Form Editor.

22 */

23 @SuppressWarnings("unchecked")
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24 // <editor-fold defaultstate="collapsed" desc="Generated Code">

25 private void initComponents() {

26

27 beginMonitor = new javax.swing.JToggleButton();

28 borders = new javax.swing.JPanel();

29 theFace = new FacePanel();

30 setMode = new javax.swing.JCheckBox() ;

31

32 setTitle("CFace Process Controller");

33 setDefaultClose0peration(javax.swing.WindowConstants .EXIT_0NCLOSE);

34

35 beginMonitor. setText ("Begin Monitoring");

36 beginMonitor.addActionListener(new java.awt.event.ActionListener() {

37 public void actionPerformed(java. awt .event .ActionEvent evt) {

38 try {

39 beginMonitorActionPerformed(evt)

40 } catch (java.io.IOException e)

41 {}
42 catch (java.lang.InterruptedException f) {}

43 }

44 });

45

46 borders.setBackground(new java.awt.Color(255, 255, 255));

47 borders.setBorder(javax.swing.BorderFactory.createTitledBorder("Process t-

Status"));

48

49 javax.swing.GroupLayout theFaceLayout = new javax.swing.GroupLayout(theFace+-

50 theFace.setLayout(theFaceLayout);

51 theFaceLayout.setHorizontalGroup(

52 theFaceLayout .createParallelGroup(javax.swing.GroupLayout.Alignment. -

LEADING)

53 .addGap(0, 266, Short.MAXVALUE)

54 );

55 theFaceLayout .setVerticalGroup(

56 theFaceLayout.createParallelGroup(javax.swing.GroupLayout.Alignment. -

LEADING)

57 .addGap(0, 262, Short.MAX_VALUE)

58 );

59

60 setMode. setText ("Test Mode");

61 setMode.addItemListener(new java.awt.event.ItemListener() {

62 public void itemStateChanged(java.awt.event.ItemEvent evt) {

63 setModeItemStateChanged(evt);

64 }
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65 });

66

67

68 javax.swing.GroupLayout bordersLayout = new javax.swing.GroupLayout(borders+-

69 borders.setLayout(bordersLayout);

70 bordersLayout.setHorizontalGroup(

71 bordersLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.-

LEADING)

72 .addGroup(bordersLayout.createSequentialGroup()

73 .addContainerGap()

74 .addComponent(theFace , javax.swing. GroupLayout.PREFERREDSIZE, +-

javax.swing.GroupLayout.DEFAULT_SIZE , javax.swing.GroupLayout .*-

PREFERRED_SIZE)

75 .addContainerGap())

76 );

77 bordersLayout.setVerticalGroup(

78 bordersLayout.createParallelGroup(javax.swing.GroupLayout.Alignment .<-

LEADING)

79 .addGroup(bordersLayout.createSequentialGroup()

80 .addContainerGap()

81 .addComponent(theFace , javax.swing.GroupLayout .PREFERREDSIZE , +--

javax.swing.GroupLayout.DEFAULT_SIZE , javax.swing.GroupLayout.--

PREFERRED_SIZE)

82 .addContainerGap())

83 );

84

85

86 javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());

87 getContentPane().setLayout(layout);

88 layout.setHorizontalGroup(

89 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

90 .addGroup(layout.createSequentialGroup()

91 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.*--

Alignment.LEADING)

92 .addGroup(layout.createSequentialGroup()

93 .addContainerGap()

94 .addComponent(beginMonitor))

95 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING , layout .+-

createSequentialGroup()

96 .addGap(25, 25, 25)

97 .addComponent(setMode)

98 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement+-

.RELATED , 209, Short.MAX_VALUE)

99 .addComponent(borders , javax.swing.GroupLayout . -
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PREFERRED_SIZE , javax.swing. GroupLayout .DEFAULT_SIZE , -

javax.swing.GroupLayout.PREFERRED_SIZE)))

100 .addContainerGap())

101 );

102 layout.setVerticalGroup(

103 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

104 .addGroup(javax.swing.GroupLayout .Alignment.TRAILING , layout .+-

createSequentialGroup()

105 .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.+-

Alignment .LEADING)

106 .addGroup(layout.createSequentialGroup()

107 .addContainerGap()

108 .addComponent(borders , javax.swing.GroupLayout . -

PREFERRED_SIZE , javax.swing.GroupLayout.DEFAULT_SIZE , t-

javax.swing.GroupLayout.PREFERREDSIZE))

109 .addGroup(layout.createSequentialGroup()

110 .addGap(26, 26, 26)

111 .addComponent(setMode)))

112 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED -

, 44, Short.MAX_VALUE)

113 .addComponent (beginMonitor , javax.swing.GroupLayout.PREFERREDSIZE+-

, 36, javax.swing.GroupLayout.PREFERREDSIZE)

114 .addContainerGap())

115 );

116 pack();

117 }// </editor-fold>

118

119 private void beginMonitorActionPerformed(java.awt .event .ActionEvent evt) throws+-

java.io.IOException, java. lang.InterruptedException {

120

121 if (mode == 1) {

122 theFace.run();

123 }

124 else {

125 theFace.go();

126 }

127

128 private void setModeItemStateChanged(java.awt.event.ItemEvent evt) {

129 if (evt.getStateChange() == java.awt.event. ItemEvent .DESELECTED)

130 mode = 0;

131 else if (evt.getStateChange() == java.awt.event.ItemEvent.SELECTED)

132 mode = 1;

133 }
134

135 /*

103



136 * @param args the command line arguments

137 */

138 public static void main(String args[]) {

139 java.awt.EventQueue.invokeLater(new Runnable() {

140 public void run() {

141 Cfaces frame = new Cfaces();

142 frame.setVisible(true);

143 }

144 });

145 }
146

147 // Variables declaration - do not modify

148 private javax.swing.JToggleButton beginMonitor;

149 private javax.swing.JPanel borders;

150 private FacePanel theFace;

151 private javax.swing.JCheckBox setMode;

152 // End of variables declaration

153

154 }
155

156

157

158 package cfaces;

159

160 import java.util.Random;

161

162

163 public class Face {

164

165 /*

166 * The dimensions of facial characteristics as follows:

167 * 1 : head eccentricity

168 * 2 : eye eccentricity

169 * 3 : pupil size

170 * 4 : eyebrow form

171 * 5 : nose location

172 * 6 : mouth curl

173 * 7 : eye spacing

174 * 8 : eye size

175 * 9 : mouth size

176 * 10: mouth opening

177 */

178 public double dim[] = new double[11];

179

180
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181 public Face() {

182 int i;

183 Random r = new Random();

184

185 for (i = 1; i < 11; i++) {

186 dim[i] = r.nextDouble();

187 }

188 }
189

190 public Face(String[] dims) {

191 int i;

192 for (i = 0; i < dims.length;i++) {

193 dim[i+1] = Double.parseDouble(dims[i]);

194 }

195 }
196

197 public Face (double diml, double dim2, double dim3, double dim4, double dim5,

double dim6, double dim7, double dim8, double dim9, double diml0) {

198 dim[1] = dimi;

199 dim[2] = dim2;

200 dim[3] = dim3;

201 dim[4] = dim4;

202 dim[5] = dim5;

203 dim[6] = dim6;

204 dim[7] = dim7;

205 dim[8] = dim8;

206 dim[9] = dim9;

207 dim[10] = diml0;

208 }

209

210 public double distance(Face f) {

211 int i;

212 double total = 0;

213 double dif;

214

215 for (i = 1; i < 11; i++){

216 dif = dim[i] - f.dim[i];

217 total = total + dif * dif;

218 }

219 return Math.sqrt(total);

220

221

222 public int direction(Face f) {

223 double dif;

224 double dir;
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225 int i;

226

227 dir = 0;

228

229 for (i = 1; i < 11; i++) {

230 dif = dim[i] - f.dim[i];

231 dir = dir + dif;

232 }

233

234 if (dir >= 0)

235 return 1;

236 else

237 return -1;

238 }

239

240 public double size() {

241 int i;

242 double tot;

243 tot = 0;

244

245 for (i=l; i<ll; i++) {

246 tot = dim[i] * dim[i];

247 }

248 return tot;

249

250

251

252 package cfaces;

253 import javax.swing.JPanel;

254 import java.awt.Color;

255 import java.awt.Graphics;

256 import java.awt.Image;

257 import java.io.IOException;

258 import java.io.StreamTokenizer;

259 import java.io.StringBufferInputStream;

260

261

262

263

264 class FacePanel extends JPanel implements Transition {

265

266 Graphics offscreenContext;

267 Image offscreenImage;

268

269
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270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314
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TFace facev = new TFace();

TFace fbound = new TFace();

FaceDraw face = new FaceDraw();

Color foregroundColor = Color.blue;

Color badColor = Color.red;

Color backgroundColor = Color.white;

int speed = 100;

int fps = 100;

public void run() {

Motion motion = new Motion(this);

fbound = new TFace(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5);

TFace facel , face2;

int i;

motion.FPS = fps;

facel = new TFace();

for (i=O; i < 8; i++) {

face2 = new TFace ();

motion.doTransition(facel , face2 , ((double) 1.0 / speed));

facel = face2;

public void go() throws IOException, InterruptedException {

Motion motion = new Motion(this);



315 Input inputs = new Input();

316 fbound = new TFace(0.8, 0.5, 1, 0.5, 0.5, 0.5, 0.5, 1, 1, 0.5);

317 int i;

318 TFace facel , face2;

319 facel = fbound;

320 motion.FPS = fps;

321 for (i=O; i < 8; i++) {

322 String [] dimensions = inputs.regetInput(inputs.getCurrent ());

323 face2 = new TFace(dimensions);

324 motion.doTransition(facel , face2, ((double) 1.0 / speed));

325 facel = face2;

326 inputs .setCurrent(inputs.getCurrent ()+ 1);

327 Thread.sleep(3000);

328 }

329

330

331

332

333 public void change(FaceState state) {

334 facev = (TFace) state;

335 this.paint(this.getGraphics());

336

337

338

339

340 public void paint(Graphics g) {

341

342

343 offscreenImage = this.createImage(size() .width, size() .height);

344 offscreenContext = offscreenImage.getGraphics();

345

346 if (facev != null) {

347 if (offscreenContext != null && offscreenImage != null) {

348

349 offscreenContext.setColor(backgroundColor);

350 offscreenContext . fillRect (0 , 0 , size () . width , size-

().height);

351

352

353 offscreenContext.setColor(foregroundColor)

354

355 if (facev.distance(fbound) > 0 && facev.direction(fbound) == -1)

356 offscreenContext.setColor(badColor);

357

358 face.draw(offscreenContext , facev, 0, 0, size().+-
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width, size() .height);

g.drawlmage(offscreenImage , 0, 0, this);

} else {

face.draw(g, facev, 0, 0, size().width, size().-

height);

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395
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}
}

public void update(Graphics g) {

paint (g);

}

class TFace extends Face implements FaceState {

public TFace (double pl, double p2, double p3, double p4, double p5, double

p6, double p7, double p8, double p9, double p10) {

super(pl, p2, p3, p4, p5, p6, p7, p8, p9, p10);

}

public TFace(String[] s) {

super(s);

public TFace() {

super();

public FaceState translate(FaceState start, FaceState end, double t) {

int i;

TFace interpolated = new TFace--

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);

for (i = 1; i < 11; i++) {
interpolated.dim[i] = ((Face) start).dim[i] + (((Face) end)+-

.dim[i] - ((Face) start).dim[i]) * t;



399 }

400 return interpolated;

401

402

403

404

405

406

407

408 package cfaces;

409

410 interface Transition {

411 public void change(FaceState state);

412 }

413

414 interface FaceState {

415 public FaceState translate(FaceState start, FaceState end, double time);

416 }

417

418 class Motion implements Runnable {

419 protected Transition transend;

420 protected FaceState start;

421 protected FaceState end;

422 protected double duration;

423 public int FPS = 10;

424 protected boolean done = true;

425

426 public Motion(Transition t) {

427 this.transend = t;

428 }

429

430 public boolean isDone(){

431 return done;

432 }

433 public void doTransition(FaceState start, FaceState end, double duration) {

434 this.start = start;

435 this.end = end;

436 this.duration = duration;

437 action();

438

439

440 public void action() {

441 FaceState current;

442 int delay = 1000 / FPS;

443 double delta = duration;
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444 double d;

445

446 for (d = 0.0; d < 1.0; d = d + delta ) {

447 current = start .translate (start , end, d);

448 transend .change (current);

449 try {

450 Thread. sleep(delay);

451 }
452 catch (InterruptedException e){

453 }

454

455

456

457

458 public void run() {

459 action() ;

460 done = true;

461 }

462
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