
A Versatile Internet-Accessible Electronics

Workbench with DC Domain Experimentation and

Troubleshooting Capabilities

by

Rahul Shroff

S.B., Massachusetts Institute of Technology (2008)

"MASSACSU.ETTS INSTITUE
OF TECHNOLOGY

JUL 2 0 2009

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009

@ Massachusetts Institute of Technology 2009. All rights reserved.

ARCHIVES

A uthor ............ .....

Department of Electrical Elgineering and C iputer Science
May 22, 2009

Certified by.

Associate Director, Center for Educational

Accepted by.......

V. Judson Harward
Computing Initiatives

Thesis Supervisor

Arthur C. Smith

Chairman, Department Committee on Graduate Theses





A Versatile Internet-Accessible Electronics Workbench with

DC Domain Experimentation and Troubleshooting

Capabilities

by

Rahul Shroff

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2009, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

iLabs are online laboratories that give students access to various experimental se-
tups enabling them to conduct experiments based on real equipment via the Internet,
remotely from any part of the world. The MIT iLab Project is dedicated to the propo-
sition that iLabs can enrich science and engineering education by greatly expanding
the range of experiments that students are exposed to. Using iLabs students comple-
ment their theoretical calculations and results with real data, providing them with a
better understanding of a wide range of engineering concepts. Most recently, the iLab
Project has focussed on building remote laboratories around the National Instruments
Educational Laboratory Virtual Instrumentation Suite (ELVIS), a cost-effective, all-
in-one electronics workstation. This thesis documents my efforts in extending the
ELVIS iLab framework by enabling the investigation of the Direct Current domain
through the addition of a new instrument, the Digital Multimeter. Using an aug-
mented version of switching, this new instrument provides students with real-time,
dynamic circuit testing and troubleshooting capabilities, unprecedented in an iLab.
This significantly enhances an iLab's value as a versatile educational tool and rep-
resents a considerable step forward in bridging the gap between conventional and
remote laboratories.

Thesis Supervisor: V. Judson Harward
Title: Associate Director, Center for Educational Computing Initiatives
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Chapter 1

Introduction

A student's curiosity is often left unsatisfied with a classroom education. In most

cases, science and engineering courses in schools and colleges are taught with a si-

multaneous laboratory component. These laboratory experiments provide students

with important hands-on, practical experience to give more credibility to the theories

and methods taught in class. Further, they equip students with a variety of skills

necessary for them to be successful in the real world. A purely theoretical education

would shield students from the inevitable discrepancies they would face when apply-

ing that knowledge to solve actual problems they wish to tackle after their education.

These inconsistencies are often a result of noisy data, inefficiencies of components

and sometimes even a failure to setup the problem correctly. An education's labo-

ratory component provides students with real data and enables them to deal with

these issues in an amicable setting so that they can overcome these problems more

competently in the future.

However, students often don't have sufficient access to state of the art laboratories.

This is because traditional lab facilities are expensive to set up and maintain. Further,

large class sizes and limitations in class time and equipment availability have led to

many institutions around the world neglecting this necessary component of their

students' education.

Moreover, traditional laboratories where available, rarely reach their full potential.

This is because, for the most part, they are available to students only during regular



business hours. This presents a considerable inconvenience for students, who are

often so engaged in setting up and troubleshooting an experiment that they are not

left with enough time to absorb the crucial concepts the assignment was designed to

demonstrate.

1.1 Background on the iLabs Project

In 1998, Professor Jesus A. del Alamo created the concept of iLabs - an attempt

to bridge the challenges and inefficiencies of using traditional laboratories. iLabs

are online laboratories that give students access to various experimental setups thus

enabling them to conduct experiments based on real equipment via the Internet,

remotely from any part of the world. Such a setup bypasses a large number of the

typical problems of conventional laboratories. Most importantly, iLabs greatly reduce

the cost of setting up a laboratory for each user because only one piece of equipment

that can be shared by multiple users is required. As a result, students don't have

to wait in long queues to use equipment because they can access the setups at their

convenience from their own homes. Thus, while iLabs provide unlimited access, only

a few institutions need to invest in costly equipment. This immense scalability of

the iLabs framework lends itself to the project's vision: A global network of insti-

tutions creating and sharing cross-disciplinary iLabs for use by each others'student:

and faculty.

Starting with the Microelectronics Device Characterisation lab in 1998, several

iLabs in diverse disciplines have been developed at MIT (Figure 1-1). These and other

remote labs have been used in 18 universities throughout Africa, Asia, Europe and the

United States [4]. In addition to using iLabs developed at MIT, many of our partner

universities have created iLabs better suited for use in their own curricula. With the

help of these universities, the remote laboratory concept is spreading throughout the

world as a versatile educational tool, especially in areas where traditional lab facilities

are lacking.



1998: Microelectronics Device
Characterisation

2006: ELVIS Electronics Lab 2009: Force on a Dipole

2004: Dynamic Signal Analyser 2008: Nuclear Reactor

Figure 1-1: Timeline of iLabs development

1.2 iLabs in Sub-Saharan Africa

It is easy to see that the scalability and economically efficient nature of iLabs makes

it an ideal concept for students in developing countries around the world, specifically

in Africa [2]. Several African countries are on the verge of an internet revolution

with some (e.g. Ghana) even encouraging the purchase and retail of Internet band-

width. Moreover, African institutions are eager to forge partnerships with foreign

establishments of higher education. This tremendous growth in the accessibility of

the internet and enthusiasm to foster new relationships is conducive to setting up

iLabs in these countries. Institutions in many African countries are unable to provide

their students with the extent of lab experience that is necessary for effective learning.

This is mostly due to large class sizes, financial impediments and sometimes even be-

cause of the inability to overcome the bureaucracy of the government. In these cases,

iLabs can substitute for physical laboratories and provide students with some degree

of familiarity with real experiments and results.

With this in mind the MIT iLabs Project, in conjunction with the Carnegie Corpo-

ration of NY, formed a partnership with three leading African Universities: Makerere



University (MUK) in Kampala, Uganda, Obafemi Awolowo University (OAU) in Ile-

Ife, Nigeria, and University of Dar es Salaam (UDSM) in Dar es Salaam, Tanzania.

Although this partnership began with the sharing of the Microelectronics Laboratory

and other iLabs where the actual setup was housed at MIT, gradually our partner

universities were able to duplicate some of these experimental setups at their own

campuses to cope with the lack of a high bandwidth fibre-optic cable connection to

the Internet. This in turn led to the replacement of the high-end equipment used by

the Microelectronics Lab with a relatively low cost, all-in-one electronics workbench:

the National Instruments Educational Laboratory Virtual Instrument Suite (ELVIS).

An unintended, though highly beneficial side-effect of this transition was the emer-

gence of the ELVIS as a common platform for development between these and other

universities, leading to a more systematic, modular and somewhat generic apporach

towards creating iLabs.

Work on the iLabs project in Africa has been extremely successful with students

and faculty at the various partner universities taking a great interest in its devel-

opment. Starting with Albert Lumu's visit in 2004, numerous developer exchanges

have been made between the four universities resulting in the training of new team

members and in gaining a general understanding of the needs and challenges of each

university

1.3 Frequent Concerns about iLabs

The iLabs project is a means of non-traditional education that was conceived strictly

as a complement to more traditional teaching methods. Like many other varieties of

alternative education, it has inevitably faced its share of criticism. I would like to take

this opportunity to clear some misconceptions about the iLabs concept, which from

my conversations and interactions with people in the field, seem fairly widespread.

Although an iLab is web-based, the graphcial user interface (GUI) an iLab user

interacts with is nothing but a virtual representation of a real experiment. Students

use this GUI to configure and troubleshoot a real, physical apparatus and once the



experiment is performed, can view real results. It is imperative to realise that iLabs

do not perform any simulations. Users are presented with actual results, replete

with real world considerations. Thus, iLabs represent a significant value-added over

simulating programmes such as SPICE or ModelSim which merely provide textbook-

like simulations of engineering concepts under ideal conditions. These programmes

are indeed valuable in reinforcing concepts already learnt in a classroom, but they

do little to expose students to how experiment components behave in the presence of

imperfect conditions.

It is important to note, however, that iLabs are not a perfect replacement for the

traditional laboratory. Students using solely iLabs are unable to physically experience

wiring a circuit on a prototyping board, or gain the valuable skills of setup config-

uration. However, these skills can be acquired in a relatively cost effective manner.

Once students have acquired the necessary proficiency, teachers can use iLabs as a

substitute for the costly equipment required to analyse these setups. Thus iLabs are

best suited as a supplement to exercises that may still include elementary hands-on

laboratory assignments and as a replacement only in cases where no other options

are available.

1.4 Overview of Thesis

The focus of my research has been to improve the ELVIS-iLab platform to provide stu-

dents and faculty with a richer pedagogical experience. In this thesis I document my

efforts in introducing DC-domain experimentation and troubleshooting capabilities

into the iLabs framework.

In Chapter 2, I provide a description of various components constituting the iLab

framework. These include the iLab Shared Architecture, the NI-ELVIS hardware and

the LabVIEW programming environment.

Chapter 3 provides a high-level description of past developments on the ELVIS

iLab. In this chapter I also examine what piece of functionality is exposed in each

new version and how every iteration of the ELVIS iLab overcomes the limitations of



its predecessors. Finally, this chapter provides some motivation for my contribution

to the project and details how it improves the iLab user experience.

In Chapter 4 I provide a detailed description of the design for ELVIS v4.0. This

chapter also discusses the testing and deployment of this new version.

Chapter 5 gives an udpate on the current status of the iLabs Africa partnership

and the creation of the iLab Consortium. Finally, I enlist my contributions to the

iLab Project and express some of the limitations that still exist in ELVIS v4.0. This

sets the stage for a discussion on the future of iLabs and also recommendations for

future work.



Chapter 2

Description of Components

2.1 The iLabs Shared Architecture

iLab Service Broker

---Campus Network

I I
Campus Network

------ -------
Lab Servers

Clients

Database

Figure 2-1: iLabs Shared Architecture

Early in the iLab development effort, a Java based web Client communicated

directly with a server connected to the hardware being investigated. This server

also provided an administrative interface, managing student accounts and logins.

However, as the iLab project grew and more labs were created, this approach led

-I ----- ---...... ..



to a divergence in development efforts with each lab having its own unique code

structure. The iLabs shared architecture was introduced in 2002 in an effort to create

a standardised infrastructure which could be used by developers around the world.

[6]

As can be seen in Figure 2-1, the iLab architecture is split into three major

components: a lab client, a service broker and a lab server which interact with each

other using web-based service calls [3]. Each of these components is described in

detail in this section.

2.1.1 Lab Client

Schematic
Panel

Instrument
Label

Results
Panel

Figure 2-2: ELVIS v1.0 Lab Client

The client provides a graphical user interface through which a student accesses and

interacts with an iLab. In essence, the client is nothing but a virtual representation of

a real setup. As seen in Figure 2-2, the Client consists of primarily two components:

the Schematic Panel and the Results Panel.



The Schematic Panel presents a graphical representation of the experiment being

run. Students can configure the experiment to their liking by entering appropriate

parameter values for each instrument visible on the panel.

The Results Panel plots the data vectors returned from a particular run of the

assigned experiment. The graphing utility on the Results Panel allows students to

concurrently plot two data vectors enabling easy comparison and analysis. Students

are also provided with scaling and tracking facilities. In case users wish to further

scrutinise the results, the Client provides an option to export the actual data vectors

as a list of comma separated values.

2.1.2 Service Broker

My Groups
Select the group you would like to use for this session.

Available Groups and Lbs M o

Pot a a test group for weblab developers

SMcroelectronicWeblab Cl c Cliet - a classic-stole Interface to the MITMicroetectronics
Weblab

* gecroeleroicM WelbiGrap i Client - a graphical Interface to the MIT Microselectronlcs
Weblab

* Aicrolectronics Web Grapi Na wevelopment) - Microeectronics 6-0 Graphical

* rmic) Sll Anmer Lob CHt - A graphical Irderface to the MIT Dynamic SignalAnayzer

WeotLab

* Dynamic Signal Anaer Daylopmsc Cle - OSA Client connecton to development Lab
Server

* ELIS Lab Client - ELVS Board Lab Client

• 31roledroel ics taulor - perform characterization experiments on simulated

microelectronics devices

* ELVIS Cler (Deelopmet) - ELVIS Board Lab Client

* W dlab 7.0 test cle - testinstallation for Weblab 7.0 clientdevelopment

* roelectronics Dece wacer n Lab Cltv. 7.0 - A new client versionfor the

Figure 2-3: Screenshot of MIT iLab Service Broker. This page indicates the groups a user

is a member of and the iLab clients the user has access to.

The Service Broker forms the core of the ISA and is the main point of differentia-

tion between this and previous versions of the iLab architecture. The service broker

is a web-based portal which plays the role of an intermediary between labs servers

and clients connected to it. As we will see in Section 2.1.4 communication between



lab servers and clients is limited to the exchange of XML documents. The service

broker negotiates these exchanges, ensuring that each dispatched document reaches

its intended destination. This is guaranteed by the fact that within the service broker,

each client must be coupled to a particular lab server. Due to the fact that the service

broker is laboratory independent, several lab servers and clients maybe be linked to

one service broker.

In addition to overseeing these exchanges, the service broker also manages stu-

dent accounts and groups which usually correspond to classes using the iLabs. An

administator is provided with complete flexibility in handling group logistics. He may

categorise students by section, course or year and specify permissions such that each

iLab is accessible only to its intended audience. Finally, the service broker also stores

experiment data such as setups, results, time and date information etc. which can

be retrieved by administrators and students as needed. Although theoretically, one

service broker is sufficient to manage every combination of lab server and client, typi-

cally, each institution (or course) provides its own service broker for greater efficiency

and autonomy.

Two types of service brokers have been developed at MIT: the batched and inter-

active service brokers. The batched architecture is distinct in that users are presented

with an experimental setup and asked to input the required parameters without ac-

tually utilising hardware resources until the definition is complete. Each student's

experiment specification is then queued to be executed in the lab server, following a

firt-in-first-out discipline. After execution, the results are conveyed to the client for

display. In this model each student only utilises lab equipment for a couple of sec-

onds and thus the batched service broker is ideal for significantly large classes. Due

to the fact that a student's interaction with the physical equipment is limited in this

version of the service broker, its bandwidth requirement per experiment run is low.

However, this limited interaction is also a potential drawback of using the Batched

Service Broker.

On the other hand, the interactive service broker gives students exclusive, real-

time, dynamic access to laboratory equipment. Users shedule time-blocks during



which solely they can access the lab equipment. While this unlimited control and

flexibility can be a considerable improvement over the batched model it is not viable

in situations involving large classes or when investigating time-intensive experiments.

Furthermore, since the interactive service broker provides continuous access to equip-

ment for students, its use is bandwidth intensive. These issues have led to the de-

ployment of the Batched service broker with the ELVIS iLabs in East Africa, where

low-bandwidth and unreliable power have made the use of the interactive architecture

impractical.

2.1.3 Lab Server

The Lab Server is the part of the ISA which interacts directly with laboratory equip-

ment. Specifications for each experiment, entered in the client by students, are sent to

the lab server via the service broker. Analogously, once the experiment is performed

the lab server sends the results back to the client through the service broker.

Another important function of the lab server is to serve as an administrative

interface to the lab equipment. Lab administrators enter the desired configuration

for each experiment by choosing which instruments they wish to include in a particular

setup. Administrators are also given the opportunity to specify the allowable range

of input values for each required parameter. Any values entered by the user outside

this range are rejected. This ensures the safety of laboratory equipment and helps

prevent potentially hazardous situations.

To facilitate the sharing of labs between institutions each lab server can interact

with several service brokers. It must, however, be noted that each lab server is

equipment specific, and as such, we need a different lab server to interact with each

piece of hardware.

2.1.4 Data flow within the iLabs Shared Architecture

Information is exchanged between the various components of the ISA using three

unique XML documents namely, LabConf iguration. xml, ExperimentSpecif ication. xml



and ExperimentResult. xml. One complete run of an iLab experiment involves the

creation, transfer and deciphering of each of these documents. This exchange is de-

picted in Figure 2-4.

iLab Service Broker

------------
- - - - - - - - - - -

- ----Exp-rimentSpcxm

T------------

ExperimntReutultx
•_ Client

Lab Server

Figure 2-4: XML transfer within the ISA

Initially, when a user selects the lab he wishes to run in the service broker,

the LabConfiguration. xml document is created by the lab server and sent via

the service broker to the client. This document encapsulates information about

which instruments on the ELVIS are required in the present setup. On parsing

LabConfiguration. xml, the client retrieves the data it carries and displays the ap-

propriate instruments on its Schematic Panel.

Once the assignmnent is displayed to the student, he configures the various in-

struments visible on the panel by inputting appropriate parameter values. These

values are compiled into the ExperimenSpecif ication. xml document which is sent

to the lab server where it is parsed. Once the experiment is conducted as per the

user's specifications, the results are stored in vectors in ExperimentResult. xml. This

document is then sent to the client where the relevant information is extracted and

graphed.

2.2 National Instruments Educational Laboratory

Virtual Instrumentation Suite (NI-ELVIS)

The NI-ELVIS as seen in Figure 2-5(a) is an electronic workbench which can be used

to design and test circuits. This all-in-one device allows students to perform electronic

experiments on a supplied (detachable) prototyping board (Figure 2-5 (b)) using a



(a) NI-ELVIS Workbench (b) Close-up of Prototyping board

on ELVIS

Figure 2-5: The National Instruments Educational Laboratory Virtual Instrumentation

Suite

suite of twelve Virtual Instruments (VIs) which include a function generator (FGEN),

oscilloscope (SCOPE), Digital Multimeter (DMM), and others. The ELVIS hardware is

connected to a computer via a Data Aquistion (DAQ) card.

Instruments on the ELVIS can be accessed using the knobs and switches on its

face. The ELVIS is also highly customisable using the LabVIEW programming envi-

ronment, which also allows its features to be accessed remotely. Thus this workbench

fits nicely into the iLab context.

The NI-ELVIS was designed to be used primarily in a university setting. It com-

bines the 12 most commonly used instruments in electrical engineering experiments.

Further, students are not limited to experiments involving circuits. National Instru-

ments provides several boards which can be used to replace the standard prototyping

board seen in Figure 2-1(b). These include the EMONA board for telecommunca-

tion experiments and the Quanser Rotary Inverted Pendulum Bundle for experiments

involving control design.

As mentioned earlier, slow internet speeds as a direct result of low bandwidth and

high latency proved to be an impediment to the use of iLabs in East Africa. The

cost effective ELVIS provided a solution. Since the ELVIS retails at a relatively cheap

$2000, each university can be provided with its own system. Students can then use the

high-speed campus intranet to access iLabs, which can also be specifically designed



to suit each university's curricular needs. This obviates the need for our partners to

access equipment housed at MIT over slow, low-bandwidth networks. Further, since

this all-in-one device is sufficient to perform a wide array of engineering experiments,

other, expensive equipment need not be bought. Owing to the highly scalable nature

of iLabs, this one piece of hardware can cater to an entire department and thus

overcomes the problem of creating the infrastructure to house several sets of identical

equipment.

Although low internet speeds and high costs were a major factor in the introduc-

tion of the ELVIS at our African partner universities, its use led to a framework that

provided for easy exchange and reusability in iLab development efforts. This has in-

spired the creation of an MIT managed iLab forum which, in addition to the several

National Instrument controlled fora that already exist, provides iLab developers with

extensive technical assistance and support.

2.3 LabVIEW

Figure 2-6: Screenshot of the NI-ELVIS Instrument Launcher which provides users access

to the 12 instruments on the ELVIS



The National Instruments Laboratory Virtual Instrumentation Engineering Work-

bench (LabVIEW) is a platform and development environment for a visual, dataflow

programming language. LabVIEW provides programmers with an intuitive approach

to programming by directly linking the creation of user interfaces into the develop-

ment process.

LabVIEW programs and subroutines are called virtual instruments (VIs). Each

VI consists of three distinct components: a back-end block diagram, a front panel and

a connector panel. The front panel is essentially a graphical user interface that allows

users to input data into controls and extract information from indicators in a VI. The

connector panel is used to represent the virtual instrument in the block diagrams of

other, parent VIs. LabVIEW is so powerful because it allows each Virtual Instrument

not only to be run as an autonomous program, but also permits its easy incorporation

into higher level, parent programs. This concept of encapsulation allows for the reuse

of code and the creation of modular, robust programmes.

LabVIEW provides users with access to the twelve instruments on the ELVIS. An

Instrument Launcher (Figure 2-6) enables users to control each instrument individ-

ually. If developers wish to create more involved programs they may make use of

LabVIEW's Express VIs as a basis. An ExpressVI is a high level API which encom-

passes most of the common functionality for any given instrument while automatically

handling lower level functions such as device initialisation.

While using ExpressVIs can make development quicker and easier, they are not

always the most suitable option. Using lower level VIs, though potentially tedious,

can have the advantage of providing more flexibility in implementation and design. A

balanced approach, developing with ExpressVIs along with lower level VIs as appro-

priate, should provide the best of both cases. Overall development can be reasonably

quick while taking advantage of as much of the ELVISs functionality as possible.
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Chapter 3

Previous Versions of ELVIS iLab

and Motivation for ELVIS v4.0
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used to power ELVIS-based iLabs. Each of these versions has provided faculty at MIT

and our partner universities with greater flexibility in designing meaningful assign-

ments for use in engineering curricula. At every iteration, particular attention was



paid towards overcoming limitations of previous versions of the ELVIS, as exposed by

students and faculty alike. The following section details the ELVIS iLab development

trajectory (Figure 3-1) and also provides some motivation for my contribution.

3.1 ELVIS v1.0

The first version of the ELVIS iLab was completed in 2006 by Samuel Gikandi in

fulfilment of his Master of Engineering thesis at MIT [5]. Gikandi used the Micro-

electronics iLab's general framework as a basis for its development. However, to make

ELVIS-based iLabs more natural to use, a specifically tailored client was developed.

The lab server was also appropriately modified to effectively communicate with the

new hardware while the original service broker was used. ELVIS v1.0 exposed the

SCOPE and FGEN functionalities of the ELVIS enabling users to study single input

circuits. A screen shot of the ELVIS v1.0 client is seen in Figure 2-2.

Owing to the fact that only two of the ELVIS's instruments were exposed in v1.0,

it did not support a very wide range of experiments. More specifically, ELVIS v1.0

could only handle time-domain experimentation. No frequency- or digital-domain

analysis could be performed. This was a considerable limitation of this version, given

the fact that these concepts form an integral part of most undergraduate level elec-

trical engineering courses. Almost all iLabs using ELVIS v1.0 consisted of simple

operational amplifier characterisation experiments involving a single input/output

configuration. Further, due to its inability to handle more than one input or output,

or switch between existing setups, v1.0 only supported a single circuit configuration

per board. This meant that if several courses at the same university wished to use

iLabs as part of their curriculum, a new set of hardware would be needed for each

course. This, in a way, belied the ELVIS's reputation as a low cost replacement for

higher end equipment. Another implication of the inability to switch between points

on the proto-board was that every setup was fixed, i.e., a user could only analyse a

previously wired circuit. For example, if he wished to measure input voltage instead

of output voltage, it would not be possible. This would require the physical circuit to



be rewired by an administrator. In other words, a student had absolutely no control

over the apparatus.

Despite all these limitations, EVLIS v1.0 was a great success. Its cost effective

nature implied that our African partners would no longer have to rely on slow, low-

bandwidth networks to access equipment housed at MIT. iLabs based on this version

were extensively used at MIT and other universities. ELVIS v1.0 also provided a

robust platform conducive to subsequent development.

3.2 ELVIS v2.0

This version of the ELVIS provided iLab developers with greater flexibility by expos-

ing three new instruments: The Arbitrary Waveform Generator (ARB) which allowed

students to explore the response of circuits to arbitrary input waveforms, the Bode

Analyser (BODE) which enabled frequency domain study, and the Variable Power Sup-

ply (VPS) which could produce an output voltage between -12V and 12V. Thus, this

version took significant steps in overcoming the limitations of its predecessor.

A considerable limitation of the older ELVIS v1.0 was its inability to perform

frequency-domain analysis. This was overcome by the addition of the BODE instru-

ment in v2.0, which allowed the creation of iLabs to study transfer functions of simple

LTI systems.

Through the addition of the Single Pull Single Throw switching hardware, ELVIS

v2.0 provided iLabs with an important component switching capability. Users could

now study the behaviour of a particular setup as a function of its components. For

example, consider the schematic shown in Figure 3-3 which shows an inverting op-

erational amplifer. We see that by throwing appropriate switches, the value of the

feedback resistor can be set to 10K, 20K or 200K. In the client, a user can select

which resistor he wishes to use and by studying the transfer function of the circuit

for different values of this resistor can determine how output voltage changes with

respect to feedback resistance.. Thus, the addition of the switching matrix provided

students with a certain degree of real-time control over the configuration of a circuit,



Figure 3-2: Screenshot of ELVIS v2.0 Lab Client. Each red box represents a switchable

component
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Figure 3-3: OpAmp circuit schematic simplified using ELVIS v2.0 switching capability

previously unavailable in an iLab. Further, from a financial perspective, the integra-

tion of switching facilitated greater hardware utilisation by allowing numerous setups

per board.

The ARB and BODE features were added in Summer 2008 and formed the bulk of

Adnaan Jiwaji's M. Eng. Thesis [8]. The switching component was added by Bryant

J. Harrison in 2008 in completion of his M. Eng. Thesis [6].

We can see an example of a v2.0 ELVIS Lab Client in Figure 3-2. Note the COM

boxes in the circuit. Each of these represents a switchable component.

3.3 Unification of parallel development efforts in

the iLabs project

Branches in the development effort led to the emergence of two separate versions of the

ELVIS iLab, each with its own functionality and distinct approach to the underlying

LabView Virtual Instrument (VI) structure. For example, James Hardison's MATEC

version did not incorporate any switching capabilities. However, this version used



Figure 3-4: Screenshot of ELVIS v3.5 Client representing all exposed functionality. The

COM dialogue box is seen on the right and represent how a user chooses a switchable

component.
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ExpressVIs to drive the hardware, as opposed to the other versions which used lower

level virtual instruments. Thus, to prevent further divergence and inconsistencies,

the creation of a consolidated codebase was imperative.

Working with fellow M. Eng. student, Hamidou Soumare, my initial task was

to create a new version of the ELVIS iLabs, v3.5, which packaged all previous work

into one new version, thus creating a robust release from which further development

could be undertaken. This new version enabled instructors and developers to use the

entire breadth of exposed ELVIS functionality to create new and more meaningful

labs. Further, ELVIS v3.5 also enabled our partner institutions to benefit from work

done for individual cases.

A screenshot of the the ELVIS v3.5 Lab Client is seen in Figure 3-5.

3.4 Motivation for ELVIS v4.0

To enable a greater variety of experiments to be run on the ELVIS iLabs, the next

step was to increase the number of the instruments available on the ELVIS that

could be accessed by iLab developers. One such functionality still not exposed was

the Digital Multimeter (DMM). The DMM instrument can perform a wide range

of basic measurments - DC voltage, AC voltage, current (AC and DC), resistance,

capacitance, and inductance as well as perform diode and continuity tests.

The Digital Multimeter is extremely useful in the testing and debugging of an elec-

tronic circuit and is most often used in physical labs for this purpose by connecting it

to various points in a circuit. Within the iLabs context, its use would only be justified

if we were able to move its position within the circuit. Now with switching integrated

into the latest version of the ELVIS iLab, this usage model could be implemented,

enabling a variety of remote experiments that were previously unavailable.

It is important to realise that although the SCOPE instrument gives us some mea-

surement capability, it is limited in the sense that it deals only with time-domain,

voltage-related measurements. Measuring current for example requires the tedious

procedure of having to fit a small resistor in the circuit and programme the ELVIS



control software with its value in order to measure the Ohmic drop across it. Per-

forming the same measurement with the DMM is much more streamlined. While

integrating the DMM increases the complexity of the overall system, it enables a

variety of measurements in a more robust fashion.

My work on the ELVIS v4.0, described in depth in the next chapter, introduces

the Digital Multimeter, and by combining it with an adapted version of the switching

capabilities introduced in v2.0, enables students to examine dynamically configured

circuits.



Chapter 4

ELVIS v4.0 Detailed Design

This chapter gives a detailed outline of ELVIS v4.0 and sequentially describes its

development process. Owing to the deliberate compartmentalisation of components

in the ISA, the process of adding the Digital Multimeter instrument into the already

existing framework was very modular. The entire operation was extremely iterative,

with several preliminary versions being tested and subsequently fine-tuned to provide

the optimum user experience.

4.1 XML Specification Documents

We saw in Section 2.1.4 that components in the ISA communicate with each other

solely through the use of three XML documents: LabConfiguration. xml,

ExperimentSpecification.xml and ExperimentResult.xml. All information rele-

vant to a particular run of an experiment is relayed between the client and lab server

via the service broker using these documents. Each of these specification files has a

unique structure which dictates what and how information is represented, accessed

and stored in the client and server. To preserve this structure, each document has

associated with it a Document Type Definition (DTD). A DTD is primarily used

to define contraints on the format of an XML document. Specifically tailoring each

DTD file ensures that only valid XML files are exchanged by components of the ISA.

In this section, I describe the changes that were made to these XML documents and



their corresponding DTD files to account for the addition of a new instrument, the

Digital Multimeter.

4.1.1 Lab Configuration

LabConfiguration. xml (Appendix B), encapsulates all information pertaining to

a laboratory setup. More specifically, it contains a list of all terminals that will

be present in that setup along with each terminal's associated information (such as

name, icon pixel location and serial number etc.). It also provides a brief description

of the setup and a file path for its schematic representation. LabConfiguration.xml

is generated in the lab server after querying the database to see which instruments

will be used in a given experiment.

LabConfiguration. xml needed to be modified to account for the new DMM in-

strument. As a result, Labconfiguration. dtd (Appendix C) was also updated to

allow for the creation of a new terminal block corresponding to the DMM. It should

be noted that LabConfiguration. xml segments instruments into modes correspond-

ing to domains of operation of the ELVIS. As we will discuss in more detail later, the

DMM creates a new mode of experimentation on the ELVIS: the DC mode. Accord-

ingly, the DTD file was also changed to allow for DC experimentation.

4.1.2 Experiment Specification

ExperimentSpecification. xml (Appendix D), packages all the information a user

enters into the client while configuring an experiment to his liking. This XML docu-

ment contains several blocks of input parameter values for each terminal in an active

setup.

Once again, the DTD file associated with experiment specifications (Appendix E)

needed to be updated to account for the input parameters of the Digital Multimeter.

The generated DMM block from ExperimentSpeciciation.xml is seen below.

<terminal instrumentType="DMM" instrumentClass="input" instrumentNumber="7" setupTermID = " 7">

<function type= "DMMFunction">



<udm>Resistance</udm>

<rangeid>3</rangeid>

<position>101010101010101010101010101</position>

</function>

</terminal>

We see that the DMM has three inputs: a user desired measurement, a range ID

and a position. Each of these is explained in great detail in the following sections.

4.1.3 Experiment Result

ExperimentResult. xml (Appendix F), contains data vectors representing output val-

ues and measurements for an experiment. These data vectors are not specific to a

particular instrument, and as such, only one set of vectors is required. Due to its

generic nature, no changes needed to be made to this document to account for the

addition of the Digital Multimeter.

4.2 Lab Server

The lab server plays a crucial role in the creation and execution of experiments. The

flowchart in Figure 4-1 illustrates its various components and portrays their mutual

interaction. Briefly, the lab server is composed of:

* Back-end code, which can be further categorised into:

- a Validation Engine, which ensures the validity of input parameters both

in value and in format,

- an Experiment Engine, which continuously runs in the background during

the execution of an experiment, interfacing with the service broker on one

end and a DLL Wrapper function on the other,

- the DLL Wrapper function which gets parameter values from the Experiment

Engine and presents them to the corresponding LabVIEW VI for execu-

tion,
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Figure 4-1: ELVIS iLab Development Trajectory

- a LabVIEW virtual instrument which interacts directly with laboratory

hardware (ELVIS and Switch) to carry out an experiment. Once the ex-

periment has been executed, empirical results are sent via the DLL Wrap-

per to the Experiment Engine from where it is conveyed to the client for

display.

* an Administrative Interface where faculty can design and activate labs.

* a comprehensive Database which stores all information pertinent to the execu-

tion of experiments in the lab server.

Due to its equipment specific nature, the lab server is arguably the least generic

of the three components in the ISA. In this section I elaborate on how each of the

above components of the lab server was changed to incorporate the Digital Multimeter

instrument.



4.2.1 LabVIEW

As explained in Section 2.3, LabVIEW is a graphical programming environment which

directly, or through the (adapted) use of Express Virtual Instruments gives developers

access to the EVLIS instrumentation suite.

4.2.1.1 ELVIS v3.5 Main2.vi

Figure 4-2: Flowchart illustrating code heirarchy in ELVIS v3.5 Main2. vi

Taking advantage of LabVIEW's ability to represent a VI using its associated

input and output channels (as defined on each VI's connector panel), ELVIS v3.5

was powered by an all inclusive program, Main2.vi, containing instances of all vir-

tual instruments that had previously been developed for ELVIS-based iLabs. The

schematic shown in Figure 4-2 illustrates the code heirarchy in Main2. vi. Each VI

within Main2.vi is categorised as being either part of the frequency-domain , the

time-domain or common to both. This separation into mutually exclusive cases was



necessary to prevent any resource conflicts on the ELVIS. For example, Bode. vi had

to be placed in a separate case within the code because its Express VI uses the FGEN

and SCOPE to input a time-varying signal and to read a circuit's frequency response

respectively.

4.2.1.2 DMM. vi

Figure 4-3: Screenshot of GUI for Digital Multimeter

DMM.vi was designed keeping its end use in mind. Simply put, by itself, DMM.vi

allows users to input a measurement type and performs that desired measurement on

the ELVIS. This is accomplished using seven different instances of the DMM Express

VI, each conducting the following seven, distinct measurements: Resistance, Capac-

itance, Inductance, DC Voltage, DC Current, AC Voltage amd AC Current. I used

a simple case structure, triggered by the User Desired Measurement control variable

to separate each kind of measurement. LabVIEW code for the case controlling a DC

Voltage measurement is seen in Figure 4-4(a).

DMM. vi has two inputs relevant to its use: a User Desired Measurement and a

Range ID. The Range ID is used to specify the range of values a user expects his

desired measurement to fall within. For simnplicity, I represent this Range ID as an

integer number, which once inputted is translated into a valid range corresponding



(a) DMM.vi Back Panel

(b) DMM.vi Front Panel

Figure 4-4: Screenshot of LabVIEW code for DMM. vi



to each measurement type.

Analogously, DMM. vi has two related outputs: Measurement and Overrange. Once

the underlying VI performs the desired measurement on the ELVIS, its result is stored

in indicator variable Measurement. Overrange is used to indicate to the user whether

or not the conducted measurement is within the earlier specified range.

It may be noted that when accessing the DMM instrument directly through Lab-

VIEW's instrument launcher, a user is given the option to allow the ELVIS to auto-

matically determine each measurement's range. However, this feature is not available

when using the DMM Express VI and thus needed to be added as an input. From

my experience, for most measurement types (with the possible exception of Voltage),

even inputting an incorrect range gives an extremely accurate measurement. Range

ID was made visible to the user more as a learning tool, enabling a student to reason-

ably estimate what range a measurement might fall within based on other information

he is provided with.

4.2.1.3 Resource Conflicts and ELVIS v4.0 Main2.vi

Once DMM.vi had been created and tested thoroughly, it had to be placed in the

larger framework of iLab LabVIEW code. The placement of DMM.vi in Main2.vi

was influenced by resource conflicts on the ELVIS I. These resource conflicts are a

result of the fact that some analogue input channels on the ELVIS are used by the

internal circuitry for other instruments. Further, some instruments depend on others

to function. A list of resource conflicts can be found in Appendix A. We see that

all DMM component type measurements conflict with the Function Generator. All

other DMM measurements conflict with the Oscilloscope and Bode Analyser on the

ELVIS I.

To avoid these resource conflicts, I placed DMM. vi in its own case within Main. vi,

separate from the time- and frequency-domain cases where it would conflict with

FGEN and BODE respectively. I called this case the DC (Direct Current or Static)

domain. This nomenclature is a bit of a misnomer in the sense that DMM. vi does not

only perform DC measurements. However, once placed in this framework, to avoid
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Figure 4-5: Flowchart illustrating code heirarchy in ELVIS v4.0 Main2. vi

resource conflicts only DC power sources can be used in conjunction with the DMM.

The only time-varying source the ELVIS provides is the FGEN with which the DMM

conflicts. I did however choose to expose the AC measurement capabilities of the

DMM in DMM. vi. What prompted me to do this was the fact that the next logical

step in the iLab development cycle is to upgrade our hardware to the newer ELVIS

II. This revamped workbench uses completely different underlying circuitry and, as

a result, does not present any resource conflicts with the DMM. Once adapted for

use with the ELVIS II, the DMM could be used to perform an even wider array of

measurements.

To faciliate the creation of a new case, and to preserve the inherent structure of

Main2.vi I created another virtual instrument, DMM_parse.vi. This helper module

bundles the two DMM inputs User Defined Measurement and Range ID into an

output cluster of comma separated values which is then inputted into Main2.vi.

LabVIEW only allows each VI to have thirty nodes on its connector panel and by



condensing the number of inputs into the VI, nodes can be preserved for future use.

A flowchart depicting the various modules that comprise the latest version of

Main2.vi is seen in Figure 4-5.

4.2.2 Experiment Engine

The Experiment Engine is an executable that runs in the background of the lab server,

waiting for activity from the service broker. Its operation can be broadly categorised

into three distinct steps executed in its Main() method.

1. When the service broker passes a request from a user for a particular laboratory,

the loadjob() function is called. This function queries the databases for active

setups, and, using the information it retrieves, it creates LabConf iguration. xml.

As mentioned earlier, the lab configuration file is separated into cases corre-

sponding to modes of operation in the ELVIS. This segmentation is necessary

to avoid any resource conflicts. When modifying loadjob to handle the DMM

instrument, I added a new case, the DC case, to enable the creation of a new

mode in the generated XML document.

2. Once loadjob creates LabConfiguration.xml it is submitted to the client.

The experiment engine then waits for configured experiments to be submitted

by users. These submitted experiments are then de-queued from the SQL server

and must be parsed in the experiment engine to translate each user's experiment

specification. This is accomplished using the ParseExperimentSpec () method

in the experiment engine. This method reads ExperimentSpecif ication.xml

and stores all the information it contains in two matrices, terminfo Table and

functinfo Table. terminfo Table contains information about the terminals present

in a particular setup, while functinfo Table matches each terminal with its input

parameter values. Both these tables needed to be extended to account for the

DMM instrument. I also added a block to the actual parsing subroutine enabling

it to identify the DMM instrument from a list of terminals, and load its three

parameter values into the matrix.
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3. Once ExperimentSpecification.xml has been successfully parsed, the execu-

tion engine calls RunExperiment (). This method uses the information stored

in functinfoTable to create a list of user defined input parameters. Once this

has been created it calls RunELVISExp.exe, an executable file, to instantiate

the ELVISWrapper class which subsequently calls a LabVIEW DLL to run the

experiment on the ELVIS hardware. Once the experiment has been executed

the DLL returns an interleaved array of output data from the EVLIS. Using this

data, RunExperiment compiles the ExperimentResult. xml file summarising all

the results. This file will eventually be sent to the client where it is parsed to

reveal the experiment's results to the user.

I added a new case in RunExperiment to handle the execution of DC-domain

experiments. This allows me to effectively separate instruments used in time-

and frequency-domain study while using the DMM and thus prevents any re-

source conflicts. Within this case I added functionality to extract DMM related

input information from the abovementioned tables and to create a parameter

list to be sent to the DLL . I also handled the deinterleaving of data once it had

been received from the DLL and the creation of ExperimentResult. xml.

4.2.3 Adapting Switching for use with the Digital Multime-

ter

The machinery described in the preceding two sections allows users of ELVIS v4.0 to

take a wide array of elementary, point-to-point measurements. However, due to the

nature of iLabs, students are only exposed to a diagrammatic representation of the

circuit schematic they are examining. They do not have the opporunity to physically

change the actual configuration of a circuit. Given this limitation, in the version

described before, the probes of the DMM had to be connected to two fixed points

in a circuit. Using this model, students would only be able to take measurements

across two previously selected circuit points. Consider the simple RLC circuit seen

in Figure 4-6. In the existing model, an administrator would connect the DMM



across, say the capacitor, and students would only be able to make voltage or current

measurements across it. For example, if a student wanted to find the value of R

as labelled in the figure, it would be impossible without physically reconfiguring the

circuit.

R

IN A OUT
A+ A-

B+

C
B-

C+

L

C-

Figure 4-6: A simple RLC circuit

I chose to expose the ELVIS's DMM functionality with the aim of providing stu-

dents with troubleshooting capabilities previously unavailable on ELVIS-based iLabs.

This implies that students should have complete flexibility in dynamically changing

the location of the DMM in a circuit. This would, to a certain degree, replicate what

he or she would do while examining a circuit in a traditional laboratory setting.

To overcome this limitation of single point investigation, I combined the switching

introduced by Harrison [6] in ELVIS v2.0 with the DMM functionality. Due to the

fact that ELVIS v2.0's switching focussed primarily on multiple component use, it

needed to be modified for use with the DMM.

4.2.3.1 Switching Layers

To facilitate switching withing the DMM framework I introduced the concept of

switching layers. As depicted in Figure 4-7 there are four switching layers that assist

with DMM measurements:

1. As seen in the figure, the first layer consists of switches defining measurement
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Figure 4-7: RLC circuit with switching to enable multipoint measurement

category. This level is necessary because the ELVIS uses different resources

to conduct, what it calls, 'Current Type' and 'Voltage Type' measurements.

Simply put, when conducting voltage measurements of any sort, the points

under investigation must be connected to the VOLTAGE HI and VOLTAGE LO

terminals of the DMM on the ELVIS bread board. For all other measurements

we connect to the CURRENT HI and CURRENT LO terminals on the proto-board.

2. The next layer of switching is related to measurement position. This is the layer

of switching which is used to specify where exactly the user wishes to place the

DMM. Points of interest are marked on the circuit schematic displayed in the

client to the user. Points labelled with a + or - indicate connections for the

DMM's positive or negative terminal respectively. For example, if the user

wishes to connect the DMM across the resistor, he would close switch #14 and



#20 as seen in Figure 4-7.

3. Another layer of switching is used to facilitate branch current measurements.

Typically, while taking current measurements, the branch being investigated

is disconnected from the circuit. The terminals of the DMM are then used

to bridge the resulting open circuit. This third layer of switching is used to

simulate this behaviour as illustrated in Figure 4-7.

4. The final layer of switching deals with peripheral instruments. As seen in the

figure these are switches connected to various sources and grounds which are

part of the circuit. Correctly switching these components is extremely necessary.

For example, it can be seen from Figure 4-6 that the inductor, L, is connected to

ground. If we did not open this connection to ground while taking an Inductance

measurement across C+ and C-, we could get an inaccurate value.

The actual switch hardware consists of a chasis which houses a switch module.

This module is connected to a terminal block containing several pairs of nodes, each

of which represents a typical switch. Circuits like the one seen in Figure 4-7 can be

created by connecting each node pair on the terminal block to points on the ELVIS

prototyping board.

Thus, by wiring a given circuit in a manner analogous to the schematic shown

in Figure 4-7 and by throwing the appropriate switches, users can take any type of

measurement, across any combination of points using the DMM.

4.2.3.2 Switch String

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
F V G

V+ID+ C+E+ V- D- C- E- G II 12 N 1 3 A+ 14 B+ SI C+ S2 A- S3 B- S4 C-
N S D

Figure 4-8: Illustrative switch string

ELVIS v2.0 used a switch string, i.e., a continous string of 25 characters, to rep-

resent the 25 switches (switch 0 to 24) contained in the switching module. Each



Bit # Content Interpretation
0 V+ DMM VOLTAGE HI on ELVIS protoboard

1 D+ Connection point for DMM HI probe as defined on circuit schematic

2 I+ DMM CURRENT HI on ELVIS protoboard

3 E+ Connection point for DMM HI probe as defined on circuit schematic

4 V- DMM VOLTAGE LO on ELVIS protoboard

5 D- Connection point for DMM LO probe as defined on circuit schematic

6 I- DMM CURRENT LO on ELVIS protoboard
7 E- Connection point for DMM LO probe as defined on circuit schematic

8 FGEN ELVIS Function Generator connection to circuit

9 11 Status of branch in circuit (for branch current measurement)
10 VPS ELVIS Variable Power Supply connection to circuit

11 12 Status of branch in circuit (for branch current measurement)

12 GND OV connection to circuit

13 13 Status of branch in circuit (for branch current measurement)
14 A+ Connection point for DMM HI probe as defined on circuit schematic

15 14 Status of branch in circuit (for branch current measurement)

16 B+- Connection point for DMM HI probe as defined on circuit schematic

17 S2 Switchable component 1
18 C+ Connection point for DMM HI probe as defined on circuit schematic

19 S3 Switchable component 2
20 A- Connection point for DMM LO probe as defined on circuit schematic

21 SC4 Switchable component 3
22 B- Connection point for DMM LO probe as defined on circuit schematic

23 SC4 Switchable component 4
24 C- Connection point for DMM LO probe as defined on circuit schematic

Table 4.1: Description of each bit in Switch String

character takes a 0 or 1 value representing the open and closed positions of each

switch respectively. To prevent confusion and maintain consistency, I introduced a

standard whereby each bit of the switch string represents a particular switch in each

switching layer. This standard should be adhered to when wiring circuits containing

switches for use with the DMM. A figurative switch string, with labels for each bit,

specifying the standard is seen in Figure 4-8. Table 4-1 provides a detailed explana-

tion of what each bit in the switch string represents. Thus, an administrator may

specify up to five points of connection for each of the DMM's terminals allowing 25

distinct points of measurement.



It may be noted that this standard only needs to be maintained when an active

setup contains the DMM instrument.

4.2.3.3 Changes made to the Lab Server to incorporate Switching

The primary aim of adapting switching for use with the Digital Multimeter is to

allow for complete flexibility in the placement of the virtual DMM probes within

a circuit. Since we are trying to replicate a conventional laboratory experience it

is important to keep users unaware of the underlying switching mechanism used to

accomplish this. Thus, a student is presented with a circuit schematic similar to

the one in Figure 4-6 and asked to choose the points between which he wishes to

place the DMM. These coordinates are translated into a switch string in the client

and sent to the lab server (in the position field of ExperimentSpecification.xml)

where it is stored in functinfo Table. The RunExperiment () method in the experiment

engine of the lab server then updates the already existing switch string with the new

information using two procedures (Figure 4-9):

* resetSwitchstr which resets all DMM related bits to the open position before the

switch string is updated. This ensures that only the switches needed for this run

of the experiment are closed. It must be noted that simply resetting all bits to

zero does not accomplish this because each switch string also stores information

related to switchable components. This information must be preserved to make

an accurate measurement.

* updateSwitchstr, which parses the information received from the client and

copies it into the DMM related bits of the switch string. Care was taken not to

overwrite the bits corrresponding to switchable components.

Finally, an administrator can specify the branching factor for each terminal of the

DMM i.e., to how many points in a circuit he wishes to connect each of its terminals.

To enable this, the database and some of its stored procedures needed to be updated.

This information is stored in the dmmConnections column of the database.



New switch string generated in client

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

S 00010 1 1 1 0 1 0 01 01011  011 01

i..L......~.. 
................ ....... . ............

Switch string present in lab server

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

resetswitchstr

Intermediate switch string I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

S0 0 0 0000 00 0 1 0 0 10 1

updateSwitchstr

Final switch string I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

o[ io11 o0 11 1 1 o11 000o 1 1 1 1

Figure 4-9: Switch string creation in the Lab Server

4.2.4 Validation Engine

The Validation Engine's primary function is to parse an experiment specification

and ensure its correctness. It contains an experimentValidate () method which

performs this function. The validation engine needed to be updated to reflect the

addition of the DMM instrument. Since the DMM cannot be used in either the time-

or frequency-domains, I created a new DC-domain case for it. This ensures that if an

administrator mistakenly designs an experiment using the DMM in the time-domain,

execution would stall before the lab is sent to the ELVIS. This final check guarantees

that no resource conflicts will occur once the lab has been submitted to be run.

4.3 Weblab Client

For ELVIS-based iLabs using the batched architecture, a user's interaction with an

experiment is limited to his communication with the client. Thus, from a user-



experience point of view, the client is probably the most important part of the iLabs

Shared Architecture. The original v1.0 weblab client was inspired greatly by the

GUI on the microelectronics weblab. As we have seen in Chapter 3, this client has

transformed over the years to reflect added functionality and make the iLab experience

as intuitive to a student as possible.

4.3.1 General Structure of the Client

The client is written in Java and has an extremely modular structure. It has generic

graphing, xml and server interfaces which were inspired by the Microelectronics we-

blab client. Each instrument in the client is characterised by its name, information

parameters, schematic panel icon and associated dialog box. When a user launches

the client, a Java Applet window pops up showing a schematic and results panel.

Users can configure each instrument by clicking its icon on the schematic panel and

entering appropriate values into the dialog box that appears. Once the student is sat-

isfied with his specifications, he submits the experiment for execution to the server.

After the experiment has been run to completion, the client displays the data on

its results panel. The user may then use the client's graphing utilities to scale the

graph or track individual points. Users are also given the option to save or retrieve

experiments or to export results for further analysis.

4.3.2 Changes made to client to incorporate the DMM

The client weblab package which contains a majority of the user interface code, needed

to be modified to include the DMM. Classes such as DMM, DMMFunction, DMMLabel

and DMMDialog were added to expose the new functionality. Further, superclasses

such as Instrument, Terminal etc. were appropriately modified.

We saw in Section 4.1 that each of the three XML documents were updated during

the addition of the DMM into the system. Two of these namely, LabConf iguration. xml

and ExperimentResult. xml, are sent by the lab server and parsed in the client. The

two Java classes accomplishing this needed to be amended to account for the changed



strcuture of these documents. The third document, ExperimentSpecification. xml,

is generated within the client before it is sent to the server. The class responsible

for this, ExperimentSpecification was also extended to enable the conversion of user

inputted parameter values for the DMM into legitimate XML blocks, in adherence

with the schema dictated in ExperimentResult. dtd (Appendix G).

4.3.2.1 Representation of Circuit Schematics

The above changes although significant, only created the skeletal framework needed

to support DMM use in the client. A considerable amount of time was spent making

Digital Multimeter based iLabs more user friendly. The DMM provides students with

a slightly different user experience as compared to other instruments on the ELVIS.

For the first time, users are given complete flexibility regarding where they wish to

connect an instrument. Further, the results sent back after computation on the ELVIS

are scalar values which need to be displayed in the client rather than plotted, as had

previously been the case.
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(a) Previous RLC Circuit (b) RLC Circuit with coloured clusters
representing ekectrical nodes

Figure 4-10: RLC Circuit Schematic

In addition to making iLabs involving the DMM natural to use, the client's design



was greatly influenced by the need to always present an electrically accurate circuit

to the user. Several improvements were made to facilitate this. Consider the circuit

schematic seen in Section 4.2.3, which has been replicated in Figure 4-10(a). The

added switching functionality enables users to choose which points (A+, A-, B+

etc) to investigate on this circuit. However, a student is completely oblivious to

the machinery used to achieve this. Due to this, the schematic seen in (Figure 4-

10(a)) might be potentially confusing for students. For example, the wire connecting

one end of the resistor to the capacitor in the circuit represents one electrical node.

However, to facilitate flexibility in measurement there exist two distinct points (A-

and B+) on this wire to which the DMM terminals can connect. From the DMM

point of view, having these two points is absolutely necessary since we must be able

to physically connect both its positive and negative terminals to an electrical node

for analysis. However, since the user only sees a virtual representation of the circuit

and is unaware of the switching mechanism used to take multipoint measurements,

seeing nodes labelled as in Figure 4-10(a) might be disconcerting.

Doing away with these point labels would greatly reduce the flexibility of taking

measurements with the DMM. Users would now only be able to take measurements

across points previously selected by an administrator. To prevent this, I chose to

represent these electrical nodes as distinctly coloured clusters. As seen in Figure 4-

10(b), each cluster consists of three points (a '+' and '-' representing connection

points for the DMM's virtual probes, and a coloured circle representing the actual

node) and together they represent an electrical node. This approach preserves the

inherent usability of the system while making clear that each wire can indeed be

represented by a single node. To make it even more clear to students, once the DMM

has been configured in the client, its icon morphs to reflect which points on the circuit

it is connected to and also what type of measurement it is taking.

I also udpated the Variable Power Supply (VPS) instrument in the client to cor-

rectly change its representation in the schematic panel based on its value and use. A

screenshot of the ELVIS v4.0 client is seen in Figure 4.



4.3.2.2 Dialog Box for User Configuration

The dialog box created for the DMM is seen in Figure 4-11(a). It contains several

drop-down menus from which users can select desired measurement type, range and

position of the DMM terminals. Although users are ignorant of switch use in taking

measurements, it is important that they are made conscious of the changes in the

configuration of the circuit required to take certain readings (Switch Layers 3 & 4).

To realise this, I include a note in the dialog box apprising students of exactly how

the circuit has been altered. This note is displayed as soon as the user selects a

measurement type.

4.4 Testing and Deployment

Several tests were performed using single/multiple circuit components (resistors, ca-

pacitors etc.) as well as simple circuits to ensure that the DMM was indeed making

accurate measurements. The circuit depicted in Figure 4-10(b) was conceived to in-

troduce students to frequency- and DC-domain analysis. The setup was thoroughly

tested for both modes of use. The entire iLabs team contributed to making the DMM

user experience as streamlined and enjoyable as possible. Further, the iLab was test-

ing by members of the MIT undergraduate community, whose inputs helped improve

the overall user interface.

Extensive testing revealed several issues with preliminary versions of the iLab. For

example, it was noticed that some sequences of measurement types led to readings

that were extremely inaccurate. This was later attributed to the fact that the switch

chasis was not reinitialising in time. This prompted the addition of the resetting

mechanism described in Section 4.2.2.3 which rectified the problem. Further, it was

seen that the client was not effectively handling infinity measurement values. These

and several other problems were identified and corrected. The resulting product is

seen in Figure 4-12 - Figure 4-15.



(a) Dialog Box showing configuration of a Resis-
tance measurement

(b) Dialog Box showing configuration of a Current
Measurement

Figure 4-11: Dialog Box for DMM
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Figure 4-12: Phase plot for the frequency characterisation of an RLC circuit
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Figure 4-13: Result for measurement of resistance across the capacitor in DC mode. The

capacitor behaves as an open circuit in DC and hence the measured value is infinity.
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Figure 4-14: Result for the measurement of AC current in the series circuit. Since there
is no time varying source, the value is zero.
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Chapter 5

Closing Remarks

5.1 Contributions

Detractors of the iLab concept have always been quick to point out that using iLabs,

students are unable to test or troubleshoot a circuit. Although conceived as a comple-

ment to hands-on laboratory exercises, given their cost-effective nature it is inevitable

that in certain situations iLabs will be used to completely replace their traditional

counterparts. In these situations students using earlier versions of ELVIS-based iLabs

would never exposed to these invaluable skills. ELVIS v4.0 takes a step forward in

overcoming this disability by introducing the Digital Multimeter and coupling its use

with an augmented version of the already existing switching. However, the multime-

ter's use is not limited to debugging. A wide range of laboratories, ranging from a

simple experiment involving series resistance to much more complex circuits can be

designed around this instrument.

I would like to take this opportunity to summarise my contributions to the iLab

Project:

* Created an all-encompassing, consolidated codebase to facilitate further devel-

opment.

* Extended the iLabs Shared Architecture to include the Digital Multimeter.



* Used switching to enable real-time, dynamic circuit testing and troubleshooting,

unprecedented in an iLab.

* Made changes to the client to improve the schematic representation of circuits.

* Co-taught a training programme at Makerere University, Kampala introducing

new members to the iLab concept.

5.2 Recommendations for Future Development

ELVIS-based iLabs have greatly matured since their introduction in 2006. Constant

development has seen a two instrument setup trying to mimic the Microelectronics

Weblab transform into a compelling platform supporting time-, frequency-, and DC-

domain analysis, digital experimentation and now, troubleshooting mechanisms.

However, in a bid to add new functionality some aesthetic details have been over-

looked by developers. Although I have done some work in trying to improve circuit

representation, what the iLab client really needs is the ability to change the way

a circuit looks in real-time. For example consider the physical changes in a circuit

that occur when taking measurements with the DMM. Ideally, these changes (such

as sources being shorted when taking component measurements, or branches being

opened when taking current measurements) should be made visible to users on the

client's schematic panel. A further improvement would be to allow the position of

the DMM icon to dynamically change based, on a user's selection. Changes of this

nature require a complete revamp of the weblab package. Although this will take a

significant effort, I believe its completion will be vital in furthering the iLab notion.

A different approach towards future development could involve incorporating one

of the many third party plug-in boards that can be used with the ELVIS. Telecom-

munication experiments using the EMONA board are already being developed by

students at Makerere University. Several other boards exist which could potentially

be explored. This would greatly increase the breadth of ELVIS-based iLabs.

As of now, eight of the twelve instruments on the ELVIS workstation have been



exposed. This leaves us with the Two and Three wire voltage analyser, the Dynamic

Signal Analyser and the Impedance Analyser which are still to be made available

to educators. It may be noted that although highly sophisticated versions of these

instruments are already part of the iLabs framework, their addition is merited by the

ELVIS's cost effective nature.

As mentioned earlier, National Instruments has released a much enhanced version

of the ELVIS, the ELVIS II. This new workbench provides more accurate measure-

ments at low voltages (a major flaw in the ELVIS I) and has a frequency range twenty

times greater than its predecessor. Most importantly, it uses an entirely different un-

derlying circuitry that prevents many of the resource conflicts inherent in the ELVIS I

[10]. Some of our African partners have already experimented with the new ELVIS. A

huge step forward would be to rework the entire ISA so that it can be used with this

new hardware. While this may not be something visible to users directly, its successful

implementation would in my opinion be of greatest value to the iLab Project.

5.3 Status of iLabs in Africa

The iLabs Africa partnership has flourished under the benevolence of the Carnegie

Foundation and National Instruments. Bi-annual developer exchanges have further

strengthened our relationship and contributed to our partners' progress.

In January 2009, Hamidou Soumare and I visited Makerere University in Kampala

to conduct a training programme for new developers. We were astonished to find

that in the period of six months since the annual iLab Conference, the MUK team

had grown from a three member unit to one that had fourteen energetic students

yearning to be exposed to iLabs. While the training programme itself was a great

success, probably a greater achievement was the fact that we were able to facilitate

an exchange of students between Makerere University and the University of Dar

es Salaam (UDSM). Three students from UDSM attended a week of the two week

long training. Further, two students from MUK will travel to UDSM this June.

This helped to initiate a system whereby these universities no longer need to rely



on MIT for technical assistance and support. Helping each other will not only save

expensive trips overseas, but will give them the confidence to make even more valuable

contributions to the project. The next step would be for our partners to represent MIT

within the African community and help spread the notion of iLabs by recruiting new

partners. Given the respect, enthusiasm and commitment shown by both these teams

I have reason to believe that the future of iLabs in Africa is extremely promising.

/



Appendix A

Resource Conflicts
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Figure A-1: Resource Conflicts on ELVIS I [9]
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Appendix B

Lab Configuration XML document

<?xml version='1.0' encoding='utf-8' standalone='no' ?>

<!DOCTYPE labConfiguration SYSTEM 'http://localhost/labserver/xml/labConfiguration.dtd'>

<labConfiguration lab='MATEC ESyst iLab' specversion='0.1'>

<setup id='9'>

<name>Audio System</name>

<description>multistage audio system</description>

<imageURL>http://olid.mit.edu/images/setups/9RLcircuit.PNG</imageURL>

<mode type='TD' enabled='true'>

<terminal instrumentType='FGEN' instrumentClass='input' instrumentN
um
ber=

'l
' setupTerm

ID = 'l
'>

<label>FGEN Input</label>

<pixelLocation>

<x>123</x>

<y>
4 3

</y>

</pixelLocation>

</terminal>

<terminal instrumentType='ARBO' instrumentClass='input' instrumentNumber='2' setupTermID='2'>

<label>ARB Input</label>

<pixelLocation>

<x>45</x>

<y>
3 4

</y>

</pixelLocation>

<enabledModes>SINE,SQUARE,SAWTOOTH,TRIANGULAR,WAVEFORM,FILE</enabledModes>

<file WAVID='1'>

<name>Speech Sample</name>

<description>this is a sample of speech, 2 seconds long</description>

<URL>[WAVfile location on LS]</URL>

<length>2</length>

<recSamplingRate>20000</recSamplingRate>

<recTotalSamples>40000</recTotalSamples>

</file>

<file WAVID='2'>

<name>Music Sample</name>

<description>this is a sample of a song, 4 seconds long</description>

<URL>[WAVfile location on LS]</URL>

<length>4</length>

<recSamplingRate>20000</recSamplingRate>

<recTotalSamples>80000</recTotalSamples>

</file>

</terminal>

<terminal instrumentType='SCOPE' instrumentClass='output' instrumentNumber='3' setupTermID='3'>

<label>Oscilloscope</label>



<source name='Circuit Output' channel='ACHO'>

<pixelLocation>

<x>45</x>

<y>
34

</y>

</pixelLocation>

</source>

<source name='Amp Stage Out' channel='ACH1'>

<pixelLocation>

<x>23</x>

<y>
5 6

</y>

</pixelLocation>

</source>

<source name='FGEN' channel='FGEN'>

<pixelLocation>

<x>123</x>

<y>
4 3

</y>

</pixelLocation>

</source>

<source name='ARBO' channel='ARBO'>

<pixelLocation>

<x>45</x>

<y>
34
</y>

</pixelLocation>

</source>

<source name='Mixer Stage Out' channel='ACH2'>

<pixelLocation>

<x>78</x>

<y>457</y>

</pixelLocation>

</source>

<postProcessOptions>SPEC,DIST</postProcess0ptions>

</terminal>

<terminal instrumentType='VPSPos' instrumentClass='control' instrumentNumber='4' setupTermID='4'>

<label>Var Power Supply +</label>

<pixelLocation>

<x>166</x>

<y>84</y>

</pixelLocation>

</terminal>

<terminal instrumentType='VPSNeg' instrumentClass='control' instrumentNumber='5' setupTermID='5'>

<label>Var Power Supply -</label>

<pixelLocation>

<x>345</x>

<y>23</y>

</pixelLocation>

</terminal>

<terminal instrumentType='DOUT' instrumentClass='control' instrumentNumber='6' setupTermID='6'>

<label>Digital Out</label>

<pixelLocation>

<x>2</x>

<y>45</y>

</pixelLocation>

</terminal>

<terminal instrumentType='COM' instrumentClass='control' instrumentNumber='7' setupTermID='0'>

<label></label>

<pixelLocation>

<x>100</x>

<y>
150

</y>

</pixelLocation>

<subCOM subCOMType ="horizR" instrumentNumber='7' setupTermID='7'>

<label>100 K</label>



</subCOM>

<subCOM subCOMType ="horizR" instrumentNumber='7' setupTermID='8'>

<label>200 K</label>

</subCOM>

</terminal>

</mode>

<mode type='FD' enabled='true'>

<terminal instrumentType= 'BODE' instrumentClass='output' insturmentNumber='8' setupTermID='9'>

<label>Bode Analyzer</label>

<pixelLocation>

<x>64</x>

<y>
78
</y>

</pixelLocation>

</terminal>

<terminal instrumentType='VPSPos' instrumentClass='control' instrumentNumber='4' setupTermID='4'>

<label>Var Power Supply +</label>

<pixelLocation>

<x>166</x>

<y>
84
</y>

</pixelLocation>

</terminal>

<terminal instrumentType= 'VPSNeg' instrumentClass='control' instrumentNumber='5' setupTermID='5'>

<label>Var Power Supply -</label>

<pixelLocation>

<x>345</x>

<y>23</y>

</pixelLocation>

</terminal>

<terminal instrumentType='DOUT' instrumentClass='control' instrumentNumber='6' setupTermID='6'>

<label>Digital Out</label>

<pixelLocation>

<x>2</x>

<y>
4 5

</y>

</pixelLocation>

</terminal>

<terminal instrumentType='COM' instrumentClass='control' instrumentNumber='8' setupTermID='O'>

<label></label>

<pixelLocation>

<x>100</x>

<y>150</y>

</pixelLocation>

<subCOM subCOMType ="horizR" instrumentNumber='8' setupTermID='7'>

<label>100 K</label>

</subCOM>

<subCOM subCOMType ="horizR" instrumentNumber='8' setupTermID='8'>

<label>200 K</label>

</subCOM>

</terminal>

</mode>

<mode type='DC' enabled='true'>

<terminal instrumentType='DMM' instrumentClass='output' insturmentNumber='8' setupTermlD='9'>

<label>Digital Multimeter</label>

<pixelLocation>

<x>64</x>

<y>78</y>

</pixelLocation>

<numConnections> 2 </numConnections>



</terminal>

<terminal instrumentType='VPSPos' instrumentCla
ss=

'control' instrumentNumber='4' setupTerm
ID=

'4'>

<label>Var Power Supply +</label>

<pixelLocation>

<x>166</x>

<y>
8 4

</y>

</pixelLocation>

</terminal>

<terminal instrumentType='VPSNeg' instrumentCla
ss=

'control' instrumentNumber='5' setupTer
mID =

'5'>

<label>Var Power Supply -</label>

<pixelLocation>

<x>345</x>

<y>
23
</y>

</pixelLocation>

</terminal>

<terminal instrumentType='DOUT' instrume
nt
Cla

ss=
'control' instrumentNumber='6' setupTerm

ID =
'6'>

<label>Digital Out</label>

<pixelLocation>

<x>2</x>

<y>45</y>

</pixelLocation>

</terminal>

<terminal instrumentType='COM' instrumentClass
=
'control' instrumentNumber='8' setupTerm

ID =
'O'>

<label></label>

<pixelLocation>

<x>100</x>

<y>150</y>

</pixelLocation>

<subCOM subCOMType ="horizR" instrumentNumber='8' setupTermID='7'>

<label>100 K</label>

</subCOM>

<subCOM subCOMType ="horizR" instrumentNumber='8' setupTermID='8'>

<label>200 K</label>

</subCOM>

</terminal>

</mode>

</setup>

</labConfiguration>



Appendix C

Lab Configuration DTD File

<!ELEMENT labConfiguration (setup*)>

<!ATTLIST labConfiguration lab CDATA #REQUIRED

specversion CDATA #REQUIRED>

<!ELEMENT setup (name, description, imageURL, mode+)>

<!ATTLIST setup id CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT imageURL (#PCDATA)>

<!ELEMENT mode (terminal*)>

<!ATTLIST mode type (TD I FD I DC) #REQUIRED

enabled (true I false) #REQUIRED>

<!ELEMENT terminal (label, pixelLocation?,subCOM*, ((source+, postProcessOptions?) I(enabledModes, file*)))>

<!ATTLIST terminal instrumentType (FGEN I SCOPE I ARBO I VPSPos I VPSNeg I DOUT I COM I BODE IDMM) #REQUIRED

instrumentClass (input I output I control I switch) #IMPLIED

instrumentNumber CDATA #REQUIRED

setupTermlD CDATA #REQUIRED>

<!ATTLIST subCOM subCOMType CDATA #REQUIRED

instrumentNumber CDATA #REQUIRED

setupTermlD CDATA #REQUIRED>

<!ELEMENT numConnections (#PCDATA)>

<!ELEMENT subCOM (label)>

<!ELEMENT label (#PCDATA)>

<!ELEMENT pixelLocation (x, y)>

<!ELEMENT x (#PCDATA)>

<!ELEMENT y (#PCDATA)>

<!ELEMENT source (pixelLocation)>

<!ATTLIST source name CDATA #REQUIRED

channel CDATA #REQUIRED>

<!ELEMENT postProcess0ptions (#PCDATA)>

<!ELEMENT enabledModes (#PCDATA)>

<!ELEMENT file (name, description, URL, length, recSamplingRate, recTotalSamples)>

<!ATTLIST file WAVID CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT URL (#PCDATA)>

<!ELEMENT length (#PCDATA)>

<!ELEMENT recSamplingRate (#PCDATA)>

<!ELEMENT recTotalSamples (#PCDATA)>
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Appendix D

Experiment Specification XML

Document

<?xml version="i1.0" encoding="utf-8" standalone="no" ?>

<!DOCTYPE experimentSpecification SYSTEM "http://localhost/xml/ExperimentSpecification.dtd">

<experimentSpecification lab="MATEC ESyst iLab" specversion="0.1">

<setupID mode='DC'>10</setupID>

<terminal instrumentType="DMM" instrumentClass="input" instrumentNumber="7" setupTermID = "7" >

<function type="DMMFunction">

<udm>Resistance</udm>

<rangeid>3</rangeid>

<position>101010101010101010101010101</position>

</function>

</terminal>

<terminal instrumentType="VPSPos" instrumentClass="control" instrumentNumber="4" setupTermID = "4"

<function type="VPSFunction">

<value>5.0</value>

</function>

</terminal>

<terminal instrumentType="VPSNeg" instrumentClass="control" instrumentNumber="5" setupTermID = "5"

<function type="VPSFunction">

<value>-5.5</value>

</function>

</terminal>



<terminal instrumentType="DOUT" instrumentClass="control" instrumentNumber="6" setupTermID = "6">

<function type="DOUTFunct ion" >

<byte>01100111</byte>

</function>

</terminal>

<terminal instrumentType="COM" instrumentClass="control" instrumentNumber="7" setupTermID = "0">

<function type="subCOM" setupTermID = "73">

<subCOM>horizR</subCOM>

<label>100k</label>

</function>

</terminal>

</experimentSpecification>



Appendix E

Experiment Specification DTD File

<!ELEMENT experimentSpecification (setupID, terminal+)>

<!ATTLIST experimentSpecification lab CDATA #REQUIRED

specversion CDATA #REQUIRED>

<!ELEMENT setupID (#PCDATA)>

<!ATTLIST setupID mode (TD I FD IDC) #REQUIRED>

<!ELEMENT terminal (function+)>

<!ATTLIST terminal instrumentType (FGEN I SCOPE I ARBO I VPSPos I VPSNeg I DOUT I DMM I BODE I COM) #REQUIRED

instrumentClass (INPUT I OUTPUT I CONTROL ) #IMPLIED

instrumentNumber CDATA #REQUIRED

setupTermID CDATA #REQUIRED>

<!ELEMENT function ((waveformType, frequency, amplitude, offset)

(scope+, samplingRate, samples, trigger) I

(mode, arbSamplingRate, arbSamples, ((frequency, amplitude, offset, phase, dutyCycle?) I

(waveform) I

(fileID))) I

(value) I

(byte,input, output) I

(udm, rangeid) I

(subCOM, label) Il

(startFreq, stopFreq, stepsPerDec, inputAmp))>

<!ATTLIST function type (WAVEFORM I SAMPLING I ARB I BODE I VPSFunction I DOUTFunction I DMMFunction I subCOM) #REQUIRED>

<!ELEMENT waveformType (#PCDATA)>

<!ELEMENT frequency (#PCDATA)>

<!ELEMENT amplitude (#PCDATA)>

<!ELEMENT offset (#PCDATA)>

<!ELEMENT scope (name?, source, paSpec, paDist)>

<!ATTLIST scope channel (A I B) #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT source (#PCDATA)>

<!ELEMENT paSpec EMPTY>



<!ATTLIST paSpec perform (true I false) #REQUIRED>

<!ELEMENT paDist EMPTY>

<!ATTLIST paDist perform (true I false) #REQUIRED>

<!ELEMENT samplingRate (#PCDATA)>

<!ELEMENT samples (#PCDATA)>

<!ELEMENT trigger (source, slope?, level?)>

<!ELEMENT source (#PCDATA)>

<!ELEMENT slope (#PCDATA)>

<!ELEMENT level (#PCDATA)>

<!ELEMENT mode (#PCDATA)>

<!ELEMENT arbSamplingRate (#PCDATA)>

<!ELEMENT arbSamples (#PCDATA)>

<!ELEMENT frequency (#PCDATA)>

<!ELEMENT amplitude (#PCDATA)>

<!ELEMENT phase (#PCDATA)>

<!ELEMENT dutycycle (#PCDATA)>

<!ELEMENT waveform (#PCDATA)>

<!ATTLIST waveform dt CDATA #REQUIRED>

<!ELEMENT fileID (#PCDATA)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT byte (#PCDATA)>

<!ELEMENT input (#PCDATA)>

<!ELEMENT output (#PCDATA)>

<!ELEMENT udm (#PCDATA)>

<!ELEMENT rangeid (#PCDATA)>

<!ELEMENT position (#PCDATA)>

<!ELEMENT startFreq (#PCDATA)>

<!ELEMENT stopFreq (#PCDATA)>

<!ELEMENT stepsPerDec (#PCDATA)>

<!ELEMENT inputAmp (#PCDATA)>

<!ELEMENT subCOM (#PCDATA)>

<!ELEMENT label (#PCDATA)>



Appendix F

Experiment Result XML

Document

"<?xml version='1.0' encoding='utf-8' standalone='no' ?>

<!DOCTYPE experimentResult SYSTEM 'http://localhost/xml/experimentResult.dtd'>

<experimentResult lab='MATEC ESyst iLabI specversion='0.1'>

<datavector name='Measurement' units='meas' scalable='true' type='vector'>9848.46525562889 0</datavector>

<datavector name='Range?' units='range' scalable='false' type='vector'>1 O</datavector>

<datavector name='DMMExtra' units='none' scalable='false' type='vector'></datavector>

<datavector name='DOUT' units='bool' scalable='false' type='vector'></datavector></experimentResult>";
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Appendix G

Experiment Result DTD File

<!ELEMENT experimentResult (datavector+)>

<!ELEMENT datavector (#PCDATA)>

<!ATTLIST experimentResult lab CDATA #REQUIRED

specversion CDATA #REQUIRED>

<!ATTLIST datavector name CDATA #REQUIRED

units CDATA #REQUIRED

scalable (true I false) #IMPLIED

type (vector I scalar) #IMPLIED>
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