
Enabling Diagnostics in User Interfaces for CAD
MASSACHUSETTS INSTfWT

Applications OF TECHNOLOGY

by JUL 2 0 2009

Alexander Bakst LIBRARIES
S.B., Massachusetts Institute of Technology (2008)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009

@ Massachusetts Institute of Technology 2009. All rights reserved.

ARCHNES

Author

Department of Electrical Engineering and Computer Science
l A - May 18, 2009

C ertified by
Daniel Philbrick

Software Development Manager, Autodesk, Inc.

,VI-A Compppy Thgsis Supervisor

Certified by
Srini Devadas

Associate Department Head, Professor of EECS
M:I.T. Thesis>SuDervisor

Accepted by (
Arthur U. Smith

Chairman, Department Committee on Graduate Theses

Enabling Diagnostics in User Interfaces for CAD

Applications

by

Alexander Bakst

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2009, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Computer aided design (CAD) applications such as Autodesk Civil 3D allow the user
to specify design constraints for a number of common geometries. These applications
typically prompt the user for the required constraints and then attempt to find a
feasible solution. When there is no feasible solution, however, there is little or no
explanation given to the user. Furthermore, given the number of degrees of freedom,
it is unreasonable to expect the user to be able to analyze the solution space of the
problem in order to correct his input. In this thesis I describe an extension to the
geometric solvers in Civil 3D that will enable new user interfaces to assist the user
in correcting his input. Furthermore I present several example user interfaces that
demonstrate these new capabilities.

VI-A Company Thesis Supervisor: Daniel Philbrick
Title: Software Development Manager, Autodesk, Inc.

M.I.T. Thesis Supervisor: Srini Devadas
Title: Associate Department Head, Professor of EECS

Acknowledgments

The opportunity to write this thesis was the result of the M.I.T. VI-A program and

an internship at Autodesk, Inc. A number of people both at Autodesk and M.I.T.

were invaluable in their support.

I would like to thank Daniel Philbrick and Bhamadipati Rao for their support and

guidance at Autodesk. Thank you to everyone at Autodesk for making me feel wel-

come during my internship.

I would like to thank Professor Srini Devadas for his recommendations and advice,

and for agreeing to be my supervisor on campus.

I would also like to thank Kathy Sullivan for telling me to fill out a VI-A application,

despite the fact that she had just informed me it was due in two hours.

Victor, thank you for driving to and from Manchester with me, and for your support

throughout.

Finally I would like to thank my family, without whom none of this would have been

possible. Hopefully I will finally be able to explain what I was working on with this

thesis.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

1 Introduction 11

2 Motivation 13

2.1 Civil3D and Road Alignment Design 13

2.2 The Problem 14

2.3 Related Work 16

2.3.1 Geometric Constraint Systems 16

2.3.2 Other Constraint Systems 17

2.3.3 Problem Solving and Visualization Techniques 17

3 Solver Interface 19

3.1 Useful Terminology 20

3.2 Solver Classes 21

3.3 New Datatypes 21

3.3.1 Constraints 21

3.3.2 Parameter Map 22

3.3.3 Parameter References 23

3.3.4 SolverResult 24

3.3.5 Error Codes 24

3.3.6 Ranges 25

3.4 Required Modifications to Existing Solvers 25

3.4.1 Solver Routines 25

3.4.2 GetRangeForParam 27

3.5 Incremental Solver

3.5.1 Assumptions About the User

3.5.2 Incremental Solver Operation

3.6 Summary

4 User Interfaces

4.1 Line-Arc Through Point

4.2 Line-SCS-Line

4.3 Line-SCSSCS-Line

5 Conclusion

5.1 Summary

5.2 Further Work

References

.....

.

.

.....

30

30

32

35

37

37

38

40

45

45

46

47

List of Figures

2-1 Rendered view of a road alignment 13

2-2 An SCS Curve Group in Civil3D 14

2-3 Illustration of the user's interaction. Top left: the user is prompted for

a radius length. Top right: the mouse is dragged to input the radius

length. Bottom left: the program indicates that for the last parameter,

the given length produces no solution. Bottom right: the user attempts

to modify the last parameter. 15

3-1 Dependency diagram of relevant classes and methods 22

3-2 Example Pre-existing Subroutine 26

3-3 Amended Subroutine 26

3-4 Pseudo-code for GetRangeForParam 29

3-5 Visualization of incrementally exploring solution space. As new param-

eters are added (edges), it is possible to solve for additional parameters.

Each circle represents a state in which enough parameters have been

given to define a component of the curve group. 31

3-6 Demonstration of how the curve group varies as the length parameter

varies 31

3-7 Pseudo-code for CheckConstraints 34

3-8 Pseudo-code for CheckConstraints 35

4-1 Pseudo code describing the basic interface implementation 38

4-2 Ranges for (a) r given p, (b) p given r 39

4-3 Ranges given for Spiral-Curve-Spiral parameters 40

4-4 SCSSCS Curve Group 41

4-5 Dialog and output after entering rl and r2 4 2

4-6 Dialog and output after entering 1 42

4-7 Dialog and output after entering all parameters. 43

4-8 Backtracking to the largest set of valid parameters 43

Chapter 1

Introduction

Computer aided design (CAD) applications are one of the essential tools in any engi-

neering firm, and since their introduction have simplified the design process consider-

ably. However, there certainly is room for improvement, especially when considering

the interaction between the user and the application. One of the problems that has

not been completely solved is the over-constraint problem - what to do when the user

specifies a design for which there is no real or feasible solution.

The over-constraint problem is of particular interest because of its complexity and

importance. Clearly any situation in which the user inputs an invalid design needs to

be addressed. However, the problems being solved by CAD applications often have

sufficiently many degrees of freedom that it is unreasonable to expect the user to be

able to navigate the solution space.

AutoCAD Civil 3D is a CAD application that is used by civil engineers. The soft-

ware contains a number of tools that solve civil engineering problems. Of particular

interest are the tools used to design roads. This is discussed in Chapter 2. In this

thesis I discuss a number of modifications to the program that enhance the user's

ability to deal with over-constrained designs.

As would be expected, the math module of Civil 3D contain solvers that are

specifically designed to solve the geometric problems encountered in civil engineering.

In this thesis I outline a method that takes advantage of the existing specialization

present in the math module of Civil3D. This "special knowledge" is used to construct

a solution that will facilitate the implementation of a user interface that will aid the

user in correcting his or her input in the event that the provided constraints are not

solvable.

The motivating example is described in Chapter 2. Chapter 3 presents the design

and implementation of the changes to the math module of Civil 3D. Chapter 4 de-

scribes several user interfaces that have been developed as demonstrative examples.

Finally, ideas for further work are discussed in Chapter 5.

Chapter 2

Motivation

2.1 Civil3D and Road Alignment Design

The programs described in this thesis were implemented for Autodesk Civil3D. Civil3D

is a CAD tool for civil engineers. A particular aspect of civil engineering is road de-

sign. An alignment is a path that describes the shape of the road. In particular, a

horizontal alignment describes the path of the road projected onto the ground plane.

An illustration of a road alignment is in Figure 2-1. In Civil3D these paths are de-

Figure 2-1: Rendered view of a road alignment

scribed by geometric entities called curve groups. A curve group is built from a set of

canonical shapes: line segments, circular arcs, and spirals. These are often abbrevi-

ated as T (for tangent), C, and S, respectively. Thus an SCS curve group is composed

of a spiral which connects to a circular arc segment, and this arc also connects to a

second spiral. An illustration of this curve group is given in Figure 2-2

. Circular Arc

pfral 1

Spiral 2

Figure 2-2: An SCS Curve Group in Civil3D

The design of these alignments is accomplished in Civil3D as follows. First the

user selects any existing geometry to which a new curve group will be attached. Then

the user is prompted for a number of parameters relating to the curve group. These

parameters include pass-through points, arc radii, spiral radii, spiral lengths, etc.

After all of the parameters have been entered by the user, the program attempts to

create a curve group satisfying these constraints. If successful, the new curve group

is added to the drawing. Otherwise, nothing is added and the user is told there is no

solution.

2.2 The Problem

From this description it is clear what the problem is. The existing interface tells

the user nothing about the problem when there is no solution. Because the user is

prompted for all of the parameters one at a time in a specific order, it is not obvious

where the mistake was made: at least one of all of the given parameters could be

wrong. For example, entering a bad parameter in the very first step could already

restrict the problem's solution space to such a degree that it is unlikely the user will

find a solution.

IN

Figure 2-3: Illustration of the user's interaction. Top left: the user is prompted for a
radius length. Top right: the mouse is dragged to input the radius length. Bottom
left: the program indicates that for the last parameter, the given length produces no
solution. Bottom right: the user attempts to modify the last parameter.

An example of the problem is illustrated in Figure 2-3. In this case, the user is

designing an SCS curve group, as described earlier. In the top row of images, the user

inputs the radius of the circular arc by dragging the mouse. This distance is displayed

as a red line. In the bottom row of images, the user inputs the last parameter of the

curve group, the length of the outgoing spiral. However, the length the user has

selected does not describe a valid solution. This is indicated by means of a red cross.

The user then attempts to modify the input by exploring longer spiral lengths, but

is met with the same results. There is no cue that indicates if the length should be

larger or smaller or if other parameters can be modified to accept the given spiral

length. In this example, there is no valid range for the second spiral's length: either

the radius or the first spiral's length needs to be modified. In fact, to modify the

other parameters, the user must cancel the current operation and enter all of the

parameters again, which can be frustrating for some of the more complicated curve

groups, which take two to three times as many parameters.

A solution to the problem must present information to the user so that he or she

can modify his or her input appropriately in these situations. This involves identifying

which parameters must be modified and how they must be modified. Ideally the

answer to the latter is provided quantitatively, but this might not be possible in all

situations, so at the very least a qualitative answer should be given'1 .

2.3 Related Work

To my knowledge, there is no related work that approaches the problem from a per-

spective similar to that outlined in this thesis. However, the over-constraint problem

is much discussed in the literature, and there are a number of different sources from

which I have attempted to extract applicable concepts. Most of these sources ap-

proach the problem in the context of geometric constraint solvers, which Civil3D is

not.

2.3.1 Geometric Constraint Systems

The authors of [9] present a constraint solver that reduces the constraint network

incrementally by analyzing the degrees of freedom of the constraint network. This

solver is able to solve the problem incrementally, which is a desirable property.

In [2], a system is described which calculates the ranges of parameters in a geo-

metric constraint network. This system decomposes a problem into sub-problems of

length and angle constraints between 3-D points. These sub-problems are then solved

in order to identify parameter ranges and critical values.

The over-constraint problem is addressed in [5]. The paper describes an algorithm

that identifies the reducible edges in a given constraint network. This algorithm

'By quantitative I mean that a range of values for the parameters is given; by qualitative I mean
that a description of how to modify the parameters (or equivalently, what the error is) is given (e.g.,
"increase x", "x is too large").

enables the user to navigate an over-constrained problem without a deep knowledge

of constraint solving mathematics, which is a desirable property.

The results of [6] and [4] describe systems that solve a system of geometry con-

straints using what can be considered a constructive technique. The system in Civil3D

resembles a constructive a technique to a degree.

Finally, in [11], a method is given that allows a user to explore the solution space

of a constraint problem. This is achieved by solving the problem incrementally, and

allowing the user to make choices during the process. As will be shown, these concepts

are taken into account in the modifications to the solvers in Civil3D.

While the subjects of these papers are in general relevant to the main topics of this

thesis, they are too general in order to be efficiently applied to the code base in Civil3D

without substantial redesign. Therefore the methods are taken into consideration, but

could not be directly implemented.

2.3.2 Other Constraint Systems

In [7], a method is proposed to calculate what is called the feasible solution space of

a problem. This method iteratively refines a set of upper and lower bounds for each

variable in a constraint system. Their method requires equations of the forms, v = e,

v < e, or v > e for each variable v. Rewriting the constraints in Civil3D, which are

often implicit, in this form is infeasible.

The methodology proposed in [1] solves a problem related to that tackled in this

thesis: the multiple solution problem. Sometimes for a set of constraints there are

multiple solutions, but the user only wants one. This system is relevant for creating

richer user interfaces that might gauge the user's intent, and would complement the

results described here.

2.3.3 Problem Solving and Visualization Techniques

A method to visualize the solution space of a problem is given in [3]. This is of

particular interest because the problems are of such a high dimension that it is difficult

for a user to reason about a failed solution or visualize the amount a particular

parameter can be varied.

Although the application was very different, the main idea described in [10] was

of particular interest in tackling the over constraint problem. The authors describe

solving a problem by breaking it into sub-problems and finding partial solutions.

The intent was to present information to the user that indicated why a solution was

selected.

In [8] the problem solving process is described as an exploration of candidate

solutions and the transitions between them. This idea is applied later in order to

construct a solver that can work incrementally (i.e., a solver that reports feedback to

the user as individual parameters are entered, rather than only after all parameters

have been entered).

Chapter 3

Solver Interface

In this section I will describe the changes to the math module of Civil 3D. The math

module contains abstractions and routines for geometric entities that are specific to

the application. These are abstractions such as 2-D and 3-D points, lines, circular

arcs, spirals, etc. The routines include calculating Euclidean distances and numerical

methods for root finding.

This module also has routines that solve compound curve types given various

parameters. These routines generally operate on geometric abstractions and return

new geometric objects on success. These specific routines, which will be referred to as

"solvers," are where the additions described in this thesis were made. Specific solvers

of interest will be discussed later in this section.

The rest of the section outlines the specific changes that were made that the user

interface will rely on. These changes were made in layers. One layer consists mainly of

modifications to existing code. Although there are many changes made, the modified

solver class still behaves more or less the same way: given a set of constraints, the

solver attempts to return a solved geometry. The second layer consists of new objects

whose behavior will be useful in the user interface.

The first set of changes is several modifications to the existing solver classes. These

include redefining the main solver routines to do more than simply indicate failure

when the solver routine fails due to poor constraints. The implications of changing

the return conditions are discussed.

The second set of changes is the addition of a new solver class that is dependent

on the existing solvers. This solver allows constraints to be specified one by one.

This new class then attempts to solve as much of the problem as it can with the

given information. In the event that the solver fails, the solver will also attempt to

backtrack to a state where less information is known but the solution space is not

empty.

3.1 Useful Terminology

There will be several concepts that are central to the presentation and discussion of

the work done to the solver interface. It will therefore be useful to give these concepts

names to make it easier to refer to them.

Geometry The term geometry will be used to refer to either the constituents of a

curve group, or the curve group itself.

Parameter In this context, a parameter can be viewed as a constraint on a geometry.

Parameters are given values by a user.

Solution Space Simply the space for which there is a feasible solution for a specific

geometry, given a set of parameters, as in [7].

Feasible Solution A feasible solution is a set of parameters that not only satisfy a

set of equations, but have values that are meaningful in the context (i.e., all

lengths greater than 0), as in [7].

Correctable Parameter Given a geometry with a null solution space, a parameter

is correctable if there is some set of ranges of values for that parameter such

that the solution space is not null when the parameter takes on values in that

set.

Solver A solver in the context of this thesis is a module that, given a set of con-

straints, returns a specific geometry that can be added to the current drawing.

3.2 Solver Classes

The objects in the Civil 3D code base that are central to the discussion are the solver

classes. The math module of the program contains several classes, each containing

specialized routines that analytically solve a set of constraints for a given type of

compound geometry. For example, given the lengths of four spirals, the radii of two

curves, and the angle of a spiral-curve-spiral group, one routine will solve for the

start and end points of a geometry that arranges the spirals and arcs in a spiral-

curve-spiral-spiral-curve-spiral order.

The format of these solver classes is largely the same. A client interacts with the

solver with one routine, solve, that takes a set of constraints as an argument. From

these constraints, the solver routine constructs a curve group that satisfies them.

In the event that the specified constraints are unsolvable, the solve routine reports

that the operation failed. This failure is reported to the user, and the command that

resulted in the call to solve terminates.

Here we see that the first step in augmenting the solver modules is changing the

type of information that the solve routine uses. First I will describe the modifications

to the data types used to specify constraints, then the modification to the return type

of solve, and finally the method used (both at a high level and in this particular

implementation) to calculate the necessary information to aid the user.

A diagram showing the relationships between the different modules is shown in

Figure 3-1. The important methods and classes that will be discussed are shown, and

I have omitted methods that are not relevant to the discussion.

3.3 New Datatypes

3.3.1 Constraints

The Constraints type is an abstract datatype that represents a collection of param-

eters, and replaces a similar, pre-existing datatype. The Constraints class enumer-

ates the different parameters that can be specified as input to the different solvers.

Figure 3-1: Dependency diagram of relevant classes and methods

These parameters include "Spiral 1 Length", "Angle 1", etc. The interface defined

by the Constraints type provides the behaviors one would expect, such as setting

and getting of parameters by name.

3.3.2 Parameter Map

The Constraints type is built on top of a mapping environment that maps pa-

rameter identifiers to a Parameter type. The Parameter type is generic with re-

spect to the underlying data type that has meaning in the program (such as float,

vector, etc.). This is useful for two reasons: (1) parameters can be manipulated

by name without having to create new accessor/mutator functions for them, and

(2) this enables the specification of arbitrary relationships between parameters. A

Parameter's value is set with set() and returns its value with eval(). The set()

method makes no guarantees about affecting other Parameters. The reason for this

will be shown in the description of the concrete Parameter types, of which there are

two: ConstantParameter and LinearParameter.

ConstantParameter is the type that would be expected in this context. The

ConstantParameter is initialized with a value. This is the value that will be returned

by eval (). This value is only changed if a call to set () replaces it with a new value.

A LinearParameter represents a fixed ratio between two Parameters. This ratio

is preserved in calls to set () on either the LinearParameter or the other Parameter.

To keep the design of the Parameter Map simple, it is up to the programmer to ensure

that there are no cycles when creating LinearParameters. The eval() method looks

up the Parameter on which it is dependent, calls eval () on it, and returns the correct

ratio of this value. Because it is possible to have one LinearParameter be a ratio of

another LinearParameter, at some point one of these Parameters must be dependent

on a ConstantParameter in order to evaluate to some value. In practice this is not

a difficult requirement to fulfill, as the most complicated solvers require only on the

order of 10 parameters.

3.3.3 Parameter References

The Constraints datatype returns ParamRefs from its get methods. A ParamRef is a

wrapper around the the Parameters in the identifier to Parameter map. These refer-

ences have the assignment operator (operator=()) and cast operator (operator() ())

overloaded. As a result, ParamRef objects can be used nearly identically to the un-

derlying data type of the represented parameter (float, vector, etc. as before). The

programmer thus does not need to worry about preserving arbitrary relationships

between parameters.

3.3.4 SolverResult

The existing interface defines the solve method to return either success or failure.

On success a geometric entity satisfying the user constraints is also returned. This

is of course satisfactory in the case where the constraints define a feasible solution.

However, for reasons that have been described, it is clearly unsatisfactory when the

constraints do not define a feasible solution. In particular, the user would like to

know, in addition to success or failure, (1) why the solver failed and (2) how the

constraints can be modified so that the user can modify his or her input to ensure

that later attempts to solve the constraints will be successful.

To facilitate the construction of a solution to these problems, I modified the return

type of the solver interface to return a simple object that either indicates success and

includes a reference to the solved geometry, or indicates failure and includes a number

of different types of Range. This object is called a SolverResult.

3.3.5 Error Codes

The first part of the SolverResult is the indication of failure. The SolverResult

object that is returned from the solve method of a particular solver contains a set

of error codes. Each of these codes is simply a value from an enumerated data type

defined in the solver class from which the object was returned. Each value corresponds

to a known cause of failure. For example, in the SCS case, a returned SolverResult

could contain the codes for the first spiral being too long, and the second radius being

too small.

Each error code is a message that is specific to the geometry being solved. The

message indicates why the solver failed to produce a solution. In particular, this

message is of the form "z too large," where x is a particular design parameter, such

as a length. In practice, there are generally several ways to correct the user's input.

That is, using the above example, it is not necessarily the case that the user must

decrease the length of the spiral and increase the size of the radius. It is most

likely that either correction will suffice. The main point is that the user is given

the complete list of options, since one correction may not be useful given a particular

construction, of which the desired solved geometry it but one part. That is, it may be

more convenient to increase parameter xl in one situation, and to decrease parameter

x2 in another situation.

3.3.6 Ranges

The second part of the SolverResult is the Range datatype. A Range is returned with

an identifier for the parameter being corrected for each correctable parameter. The

abstract Range type, and its derived types, are generic with respect to the geometry,

and are thus not dependent on any specific type of solver or geometry. There are

derived types for scalar parameters (e.g., lengths in the Civil 3D context) and vector

parameters (directions). There is also a correction type that returns the area in which

the parameter (such as a point in 2d space) could be located. These are ScalarRange,

VectorRange, and AreaRange, respectively.

3.4 Required Modifications to Existing Solvers

The datatypes Constraints, ParamRef, SolverResult, and Range have been intro-

duced. Now I will describe how the existing solver classes must be modified. This

process is done in two passes. The first pass requires changing the existing code in

order to reduce ambiguities. This can be thought of as augmenting the working set of

information at each of several key steps. The second pass leverages this new informa-

tion to create at least one new method that will be the backbone of this thesis. The

changes are actually very simple. However, this simplicity, introduced in the right

places, yield some very powerful results.

3.4.1 Solver Routines

The first pass is substantially more domain-specific than the second pass. However,

it is critical in importance. This step is identifying the points of failure in all of the

solver subroutines. An example subroutine might look as it does in Figure 3-2.

l/Rotate vector1 by theta and return result as vector2
subroutine vector_from_theta (IN vector1 , IN theta , OUT vector2):

vector2 = rotate(vector1 , theta)
value = dotproduct (vectorl , vector2)
if value < 0:

return vectorlvector2_oppositedirections
return OK

Figure 3-2: Example Pre-existing Subroutine

While there is nothing necessarily wrong with this code, the error message is not

specific to any of the given parameters. The purpose of this step, therefore, is to

replace these error messages (or codes), with codes that are specific to the input

parameters. That is, the error messages should indicate whether or not a parameter

is too big or too small, for example. Therefore, in this pass the developer replaces

the existing error codes or messages with a set of the previously defined ErrorCodes.

The code in Figure 3-2 should be amended to read as in Figure 3-3.

l/Rotate vector1 by theta and return result as vector2
subroutine vectorfromtheta(IN vector1, IN theta, OUT vector2):

vector2 = rotate(vectorl , theta)
value = dot_product(vector1 , vector2)
if value < 0:

return Set(theta_too_large)
return EmptySet

Figure 3-3: Amended Subroutine

It is almost always the case that it is impossible to identify the specific parameter'

with the bad value, given a set of possible parameters. However, it is sufficient to

simply give a "direction" (i.e., larger or smaller) for the possible parameters. This

'Certainly this should be the case, as the program has no way of knowing the relative importance
of each of the parameters to the user.

information will be enough to guide the rest of the program in determining possible

fixes to the given parameters.

At this point, the solver has been modified in such a way that it is already returning

much more information than before. However, this is mostly a consequence of domain-

specific knowledge about the problem, and is not particularly more useful than the

existing program. The rest of the modifications, and indeed the rest of the thesis,

demonstrate how this specific knowledge about the problem can be transformed to

build an interface that will greatly enhance interaction with the software. In fact,

the rest of the modifications need know very little about the actual problem they are

solving.

3.4.2 GetRangeForParam

The GetRangeForParam routine is the first step in creating a user interface with

feedback. GetRangeForParam is a routine that takes a parameter identifier as an

argument. If possible, the routine returns sets of ranges for that parameter. In

particular, it returns a set of Ranges.

The idea behind the algorithm is simple. First, the range of possible values for the

given parameter are bracketed. This is usually done with information that ensures

the solutions will be feasible. For example, an angle might be bracketed to be be-

tween 0 and 27r radians. Second, a bisection search is used to find the minimum and

maximum values for the specified parameter. This search is guided by error codes

that are returned by the solve routine. Figure 3-4 contains the pseudo-code for the

GetRangeForParam algorithm.

Analysis of Algorithm

GetRangeForParam leverages the existing solve routine in order to solve for a par-

ticular parameter. This takes advantage of two facts: (1) the analytical solvers are

relatively fast, and (2) when a set of parameters does not define a feasible solution,

the solver routines "error out," rather than complete the solution computation. The

first fact is important because the solver routine is called over and over again as part

of the bisection routine. The second fact is important for a similar reason. Because

the computation is immediately halted when it obvious that no solution exists, the

bisection search can immediately compute the next value to try.

The GetRangeForParam procedure is essentially a bisection algorithm. It is ini-

tially called with coarse bounds for the given parameter, and an empty set of Ranges.

The two while loops then refine the upper and lower bounds for the parameter. At the

end of the procedure, these bounds are checked by checking for a valid solution in the

computed range. In practice, this single check is good enough to determine whether

or not the range is valid. If the range is determined to be good, then the procedure

is called recursively to find ranges which are disjoint from the range identified by the

current procedure call.

The calls to paramTooLarge and paramTooSmall simply check the set of ErrorCodes

to see if there are any ErrorCodes that indicate the supplied parameter is too large

or too small, respectively. This is most often a very simple check, but is included to

account for cases that might require extra computation to determine if the parameter

is too small or too large.

The minimum number of iterations required for each of the bisection search is log-

arithmic2 in the size of the interval (that is, iterations > log 2(upperBound-lowerBound)

for some program specified c).

Clearly this solution works by taking advantage of the domain-specific knowledge

about the problem that is present (either explicitly or implicitly) in the program.

Perhaps most profound is that a simple transformation on the solver procedures

enables the rest of the program to exhibit powerful behaviors.

Of course, the bisection method is not explicitly required. A different numerical

algorithm could be used to solve for the desired parameter. The bisection method

has the advantage of being simple to implement and reasonably efficient. It is also

takes advantage of the information returned by the ErrorCodes.

2Actually, if the input is considered to be the number upperBound - lowerBound, then the
bisection searches are bounded by function which is linear in the number of bits of lupperBound -
lowerBoundl = log2 (upperBound - lowerBound)

GetRangeForParam(IN param, IN upperBound, IN lowerBound, IN/OUT ranges):
iterations = MAXITERATIONS
esMin = esMax = {} // empty sets of ErrorCodes
searchMax, searchMin = upperBound, lowerBound
paramMax = upperBound

while iterations > 0 and searchMin < searchMax:
setParam(Constraints , param, (searchMin + searchMax)/2)
esMax = solve(Constraints)
if paramTooLarge(param, esMax):

searchMax = eval (Constraints , paramReference)
else:

searchMin = eval(Constraints , paramReference)
iterations = iterations - 1

searchMax = paramMax = eval(Constraints , paramReference)
searchMin = lowerBound

while iterations > 0 and searchMin < searchMax:
setParam(Constraints , param, (searchMin + searchMax)/2)
esMin = solve(Constraints)
if paramTooSmall(param, esMin):

searchMin = eval(Constraints , paramReference)
else:

searchMax = eval(Constraints, paramReference)
iterations = iterations - 1

paramMin = eval (Constraints, paramReference)

if paramMin != paramMax:
setParam(Constraints , param, (paramMin + paramMax)/2);
es = solve (Constraints)
if es = {}

insert (ranges, ScalarRange(param, paramMin, paramMax))
if lowerBound < paramMin

GetRangeForParam(param, lowerBound, paramMin, ranges)
if paramMax < upperBound

GetRangeForParam(param, paramMax, upperBound, ranges)
return es

else if paramMin -- upperBound:
return esMax

else:
return esMin

Figure 3-4: Pseudo-code for GetRangeForParam

3.5 Incremental Solver

The final piece that adds significant functionality is the IncrementalSolver. This

object makes use of information from the modified solver classes in order to provide

as much information as possible, and as early as possible. The intent is to prevent

failure as soon as it is preventable. The idea is that solving the curve group problem

is composed of solving the sub-problems of the constituent curves in such a way that

there is always room to define any unsolved curves, similar to the idea described in

[10]. An illustration of this idea is in Figure 3-5.

A few assumptions need to be made in order to implement this step. I will present

the assumptions I made in my implementation for Civil 3D, justify them, and then

show how the underlying method does not rely on these assumptions. I will also show

that these specific assumptions are not critical to the operation of the program.

The IncrementalSolver has one basic method, CheckConstraints, that is called

by the client. This method takes a parameter identifier and a value as an argument.

The method will then calculate feasible ranges for the parameters which have not yet

been set by the user. The IncrementalSolver class also has a GetValidParamSets

method that can be used to find the largest subsets of the given constraints for which

there is a feasible solution.

3.5.1 Assumptions About the User

The central principle guiding the operation of the IncrementalSolver is to calculate

as much information as possible at every step. Clearly a unique solution cannot be

determined without defining all of the parameters (or restricting the domain of one

parameter to one element) for a given curve group. If the essence of the incremental

approach is to guide the design, then some assumptions must be made by the program

about what the unspecified parameters will look like.

Consider the spiral-curve-spiral group as described in Chapter 2. The user is

prompted for three parameters: S1, r 1, and S 2. The spiral-curve-spiral group is fit

between two lines such that the start point of S1 lies on the first line and the end point

Figure 3-5: Visualization of incrementally exploring solution space. As new parame-
ters are added (edges), it is possible to solve for additional parameters. Each circle
represents a state in which enough parameters have been given to define a component
of the curve group.

of S2 lies on the second line. It is generally the case that increasing the parameters

"push" the curve group along the two lines until the points no longer lie on them, and

that decreasing the parameters results in a similar effect. This is illustrated in Figure

3-6: as the spiral length is increased, the end point of the curve group slides along

the rightmost line until it is pushed past the line's endpoint, yielding no solution.

When a parameter isn't given, the assumption is that the parameter is equal to

0. The justification is found in the spiral-curve-spiral example. Assume only rl is

Figure 3-6: Demonstration
varies

of how the curve group varies as the length parameter

N

I

II

i ~

c:I ~t
I :

NL

/'

1J~

given. In theory, S1 will have the largest value when S2 is 0. Therefore, if S1 has no

valid range for a given rl, then there is no value of S1 or S2 for which there is valid

solution for the given rl. At this point the IncrementalSolver can determine that

there is no valid solution, and this is returned to the user.

However, it is possible that for some problems, the solution space appears to

be null, but a solution appears once more parameters are set. This problem can be

addressed by taking advantage of common relationships between different parameters.

By using the Parameter classes, these defaults can be set to either constant values

or functions of other parameters. For example, perhaps it is the case that it is a

reasonable assumption that ri = r 3 in the previous example. Then, if ri is given,

a nominal value for r 3 is immediately given as well. The value for r 3 can then be

refined independently of rl later. As a secondary benefit, setting default relationships

between parameters effectively reduces the search space of the problem.

3.5.2 Incremental Solver Operation

The IncrementalSolver class has two main routines that the client uses: CheckConstraints

and GetValidParamSets. The first routine takes a parameter identifier and a value

as arguments. Using any previously entered values, the routine then attempts to

determine whether or not the feasible solution space is empty. If it concludes that the

solution space isn't empty, it also uses the given information to solve for ranges of any

unspecified parameters. Otherwise it attempts to backtrack to find the largest subsets

of the given parameters for which there is a non-empty solution space. Pseudo-code

for this algorithm is given in Figure 3-7.

GetValidParamSets uses CheckConstraints as a subroutines. The function enu-

merates the subsets of the currently specified parameters which are one element

smaller. It then checks these constraints. If none of these subsets have a valid

solution space, then the backtracking algorithm is run again on these subsets until a

set of valid constraints is found. Pseudo-code is given in Figure 3-8

The first two steps are actually combined into one step. Determining whether or

not the solution space is empty is equivalent to determining valid ranges for unspeci-

fied parameters. If no such ranges exist, then the solution space is empty. Otherwise

these ranges can be returned.

In Civil 3D, curve groups are composed of several individual curves. An example is

the SCS curve group, which is composed of two spirals and one circular arc. Because

the shape of each spiral is determined by two parameters, a further complication is

added to the problem. If neither the length nor the radius are given for one of the

spirals, it doesn't make sense to search over the possible lengths or radii. This is due

to a constraint implicit in the problem that the subtended angle of the spiral can not

exceed pi/2 radians. Since the angle is related to the ratio of the length to the radius,

searching over possible lengths with the radius set to 0 is a meaningless exercise.

This issue is dealt with by defining the related sets of parameters in the Solver class.

The IncrementalSolver then uses this information to determine which parameters

to search for. In the event that there is not enough information to search for any

parameters, the CheckConstraints routine simply assumes that the solution space

is non-null and returns no parameter ranges.

Analysis of CheckConstraints

CheckConstraints must call GetRangeForParam on at most all of the unspecified

parameters. The running time is therefore 0(n) where n is the number of unspecified

parameters. Given that the current implementation of GetRangeForParam which uses

the bisection method, this means the running time of CheckConstraints is O(n log 1),

where 1 is the maximum length of the geometry3 .

Analysis of GetValidParamSets

GetValidParamSets enumerates the power set of the specified parameters in the

worst case. Therefore the algorithm makes 0(2') calls to CheckConstraints. The

number of calls that CheckConstraints will make to GetRangeForParam will almost

always decrease as the size of the sets decrease, but how the number decreases is

largely dependent on the solution, so no analysis is offered. It is important to note

3 Again, the size of the input 1 is log 1, so the function is linear in the size of this number

CheckConstraints (IN constraints , OUT solverResult):
push(constraints)
for param in getUnsetParams():

setParam(constraints , 0)

if setParams -- requiredParam:
solverResult = solve()
if isSolved (solverResult):

return solverResult
es = getErrorStatus(solverResult)

else :
solverResult = new SolverResult;
solvableParams = getSolvableParams
for param in solvableParams:

ranges - []
if not isSet(param):

es = GetRangeForParam(param,
addRangesToResult (ranges , so

(setParams)

ranges)
IverResult)

if not hasRanges(solverResult):
setErrors(solverResult , es)

pop(constraints)
return solverResult

%\end{verbatim}
%\makebox [\textwidth] {\ hr ulefill }

Figure 3-7: Pseudo-code for CheckConstraints

GetValidParamSets (IN setParams, OUT paramResultList):
paramResultList = []
paramSetsToTry = {}

for param in setParams:
insert (paramSetsToTry, remove(setParams , param))

while not empty(paramSetsToTry):
nextParamsToTry = {}
for paramSet in paramSetsToTry:

result = CheckConstraints (paramSet)
if hasRange(result):

add(paramResultList, (paramSet, result))
else if size(paramSet) > 1:

for param in paramSet:
insert (nextParamSetsToTry, remove(paramSet, param))

if empty(validParamSets):
paramSetsToTry = nextParamSetsToTry

else
return paramResultList

Figure 3-8: Pseudo-code for CheckConstraints

that although the running time is given as exponentially related to the number of

parameters, in practice there are generally on the order of 10 parameters; furthermore

the solver rarely backtracks over all of the parameter subsets.

3.6 Summary

I have shown how the existing code has been modified to satisfy the goal of enabling

user interface diagnostics. I added a new return type to the existing solver classes, and

modified the solver routines to return important information in the event of failure.

This information is also used by the solver in order to determine valid ranges for the

different solver parameters. I modified the constraint datatype in order to capture

the relationships between different parameters. Finally, I designed a new solver class

that breaks the problem into several sub-problems, and incrementally solves each of

these. This solver class also backtracks from invalid states to states which have a

feasible solution space.

In the existing code, different solver classes are associated with their own con-

straint type. The new design preserves this relationship by not radically modifying

the relationship between solvers and constraints.

Chapter 4

User Interfaces

In this section I present several examples of diagnostics that can be presented to the

user as a result of the work in Chapter 3. The first interface demonstrates ideas for

different types of visual feedback. The example geometry consists of a straight line

segment and a circular arc. The second interface illustrates the feedback mechanism

for over-constrained solutions on a problem that is slightly more complex, and finally

the third interface demonstrates the use of incremental feedback on an even more

involved problem. The third interface also demonstrates backtracking from sets of

parameters which have no solution.

Pseudo-code describing the basic implementation of the user interfaces is given

in Figure 4-1. This is the basic behavior of the user interfaces. For different types

of feedback (e.g., the first example in this chapter), the loop is modified accordingly.

User input drives the solver. At each step either a solution is found, ranges are found

for the parameters, error messages are displayed, or the system is underconstrained

(i.e., not enough parameters have been entered).

4.1 Line-Arc Through Point

The example geometry consists of a line segment and a circular arc. The arc is

constrained to be (1) tangent to the line segment, (2) of a user-specified radius r,

and (3) to pass through a user-specified point p. In Figure 4-2 (a), the location of

l/Invoked on user input
SolutionLoop () :

read_changes()
result = solver . solve (constraints)

if isSolved (result):
display "Got-a-solution ."

else if hasRanges(result):
for each range in result .correctedParameters:

display parameter.name
displayRange (range)

else if hasErrors(result):
displayErrorMessages (result)

updateDisplay ()

Figure 4-1: Pseudo code describing the basic interface implementation

p is given using the cross-hairs. When the user clicks the mouse on this location, a

tool-tip displays the range of values for r (labeled "Radius of Arc") for which there

is a solution given p. In this case the valid values for r are between 1.37 and 6.00.

In Figure 4-2 (b), r is set to 1. The solver then calculates the valid range for p.

The application displays this range as a shaded region (shown in black). If p is placed

in the black region, then it is possible to add a valid geometry satisfying p and r.

Attempting to place the point outside of this shaded region will cause the program

to accept p, and calculate a new range for r which will be presented to the user as in

Figure 4-2 (a).

4.2 Line-SCS-Line

In this example, the alignment geometry consists of two lines, and a curve group that

is fit between the two lines, L 1 and L 2. This curve consists of a spiral, S1, a circular

arc C, and another spiral S 2. S1 is constrained such that the start point of S1 lies on

L 1, and that the tangent of S 1 is parallel with L 1. Furthermore, the radius at the end

point of S1 is equal to the radius of C. S 2 is similarly constrained, with its radius at

the start point equal to the radius of C, its end point on L 2, and the tangent at its

end point parallel to L 2. Finally, the tangents of S1 and C at their intersection are

Raus of Arc: Use: [I.37, 6.00

Figure 4-2: Ranges for (a) r given p, (b) p given r

identical. The same is true for S2.

The examples given show feedback for a variety of combinations of user input.

The example interface also demonstrates the ability to link different parameters with

arbitrary ratios. In Figure 4-3 (a), Si's length and S2's length are given, and C's radius

is constrained to be equal to Si's length. This results in a state where no ranges can

be found by the solver. However, the solver was able to determine that it is likely

the case that the angle subtended by C is greater than 180 degrees, even though this

option wasn't selected. This is displayed to the user as a message. In Figure 4-3 (b)

values for Si's length and C's radius are given. S2's length is constrained to equal

that of S1. The values given in this example don't describe a valid solution. The

solver finds ranges for the correctable parameters that will produce a valid curve. In

this case, the length of S1 can take on values in the interval (0.0, 0.40), and the radius

of C can take on values in the interval (0.0, 6.96).

4.3 Line-SCSSCS-Line

The final example is built from four spirals and two arcs, in the sequence spiral-curve-

spiral-spiral-curve-spiral. This is shown in Figure 4-4. The user is prompted for spiral

lengths S, through S4, arc radii rl and r 2, and the angle ¢1 subtended by the first arc.

........7:

Degrees I

ii .. Ri us Try: (0.00, 0.40) for Spiral In Try: (0.00, 6.96) for Radius

(b)

Figure 4-3: Ranges given for Spiral-Curve-Spiral parameters

The radius at the end point and start point of S1 and S2 , respectively, are constrained

to equal rl. There is a similar constraint on S3, S4, and r2 . The problem is broken

into several sub-problems: one problem for each curve in the group.

Figure 4-5 shows the dialog for the solver and the output shown to the user. In

this case the parameters with the value of 0 are not set. Given that the two radii are

set, the solver is able to find a range for the angle of the first arc, which is given to

the user. The valid range for the angle is in the range (1.94, 2.41) radians.

After choosing a value for the first arc's angle, the problem is sufficiently con-

strained to find ranges for the lengths of the four spirals. This is shown in Figure

4-6. The output of the solver is shown as a list of four ranges that indicate valid

lengths for each of the four spirals. These ranges represent maximum ranges and are

independent of each other. Assigning a value to one of the parameters will affect the

Figure 4-4: SCSSCS Curve Group

valid ranges for the remaining parameters.

Finally, in Figure 4-7, all of the parameters have been entered. In this case, the

parameters define a valid SCSSCS group, and the solver outputs that a solution has

been found. The output shows how the ranges for the four spirals are refined as the

lengths are entered one by one. These ranges decrease in size as more information

about the problem is given. The solver outputs that a solution has been found when

all of the parameters are given.

Figure 4-8 demonstrates the results when the given parameters are not solvable.

The result was taken from a different set of entered parameters. All of the parameters

were entered, but no solution was found. This output indicates that two subsets of

the given parameters are solvable: the set containing S1,S2,S3 ,r1, and r 2, and the set

containing S2,S3 ,S4 ,r 1, and 01. If the parameters not in these sets are removed, then

ranges are given for remaining parameters. In this case, the range for 01 is given

r Le

Spiral I

\Arc 1

Spiral 2

Spiral 3

/i Pi~
rc2 2

S piral 4
... ..

Figure 4-5: Dialog and output after entering rl and r 2.

Figure 4-6: Dialog and output after entering q1.

if the parameters missing the first set are removed; the range for r 2 is given if the

parameters missing from the second set are removed.

Command: continue
Range for: Are 1 Angle: (1.94, 2.41)

Range for: Arc 1 Angle: (1.94, 2.41)
continue
Range for: Spiral 1 Length: (0.00, 2.37)
Range for: Spiral 2 Length: (0.00, 1.68)
Range for: Spiral 3 Length: (0.00, 4.90)
Range for: Spiral 4 Length: (0.00, 10.96)

LZ Add Free SCSSE

Figure 4-7: Dialog and output after entering all parameters.

Figure 4-8: Backtracking to the largest set of valid parameters

Range for: Spiral 1 Length: (0.00, 2.37)
Range for: Spiral 2 Length: (0.00, 1.68)
Range for: Spiral 3 Length: (0.00, 4.90)
Range for: Spiral 4 Length: (0.00, 10.96)
continue
Range for: Spiral 2 Length: (0.00, 1.34)
Range for: Spiral 3 Length: (0.00, 3.94)
Range for: Spiral 4 Length: (0.00, 9.08)
cont inue

Range for: Spiral 2 Length: (0.00, 1.34)
Range for: Spiral 3 Length: (0.00, 3.94)

Range for: Spiral 4 Length: (0.00, 9.08)
continue
Range for: Spiral 3 Length: (0.00, 2.53)
Range for: Spiral 4 Length: (0.00, 6.25)
continue
Range for: Spiral 3 Length: (0.00, 2.53)
Range for: Spiral 4 Length: (0.00, 6.25)
continue

Range for: Spiral 4 Length: (0.00, 5.30)
continue

Range for: Spiral 4 Length: (0.00, 5.30)
Got a solution.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 5

Conclusion

5.1 Summary

In this thesis I presented a solution to the problem of guiding the user when the

provided input has no feasible solution. This involved modifying Civil 3D in two

places: the code responsible for solving the user's input and also the interface by

which the parameters are specified. These two changes allow the user to easily go

back and modify different parts of the input out of sequence. More significantly, these

two changes enable several interfaces that give feedback to the user as the problem is

solved incrementally.

I demonstrated several examples of user interfaces that could be built as a result

of the changes described. These demonstrate the different types of feedback that

can be presented to the user, and results from the solver showing valid ranges for

user-entered parameters. Finally, these interfaces also exhibit the ability to allow

the user to enter parameters and receive feedback incrementally. This also includes

backtracking to subsets of the parameters which are valid.

The solution presented is advantageous because requires relatively few changes to

the structure of the existing program, and because it takes advantage of the existing

solver routines. This is in contrast to other methods, which take advantage of certain

structures that aren't explicit in other applications.

5.2 Further Work

There are several opportunities for further work that can build upon the results of

this thesis. The problem solved in this thesis is how to aid the user when his or her

input is invalid. The solution I presented was to show the user valid ranges for the

required parameters. This solution treats the user input as sacred: whatever is given

should not be modified (which is fairly convential in CAD).

Other methods might revolve around modifying the input based on either canon-

ical models of the geometric structures, or user input. In the first case, since the

application is often tailored to a specific field (in this case, civil engineering), it's pos-

sible that a subset of the required parameters have a much more significant impact

on the design than the rest. In that case, it is conceivable that modifying the less

important parameters without the user's explicit instruction could be done to trans-

form invalid sets of parameters into valid sets. Similarly, a user could assign weights

to parameters to indicate relative levels of importance.

Furthermore, an interface could be designed that uses an efficient multidimensional

sampling technique to explore the solution space for feasible solutions that are similar

to the user-specified unfeasible geometry. These results could be presented to the user

graphically. The user could then select a desirable solution, and either search for other

solutions close to the selected geometry, or simply use the given geometry.

References

[1] Bernhard Bettig and Jami Shah. Solution selectors: A user-oriented answer
to the multiple solution problem in constraint solving. Journal of Mechanical
Desin., 125:443-451, September 2003.

[2] Willem F. Bronsvoort and Hilderick A. van der Meiden. A constructive approach
to calculate parameter ranges for systems of geometric constraints. Computer-
Aided Design, 38:275-283, January 2006.

[3] E. S. Fraga. Generation and use of partial solutions in process synthesis. Trans
IChemE, 76:45-54, January 1998.

[4] Ioannis Fudos and Christoph M. Hoffman. A graph-constructive approach
to solving systems of geometric constraints. ACM Transactions on Graphics,
16(2):179-216, April 1997.

[5] Christoph M. Hoffman, Meera Sitharam, and Bo Yuan. Making constraint solvers
more usable: overconstraint problem. Computer-Aided Design, 36:377-399, 2004.

[6] R. Joan-Arinyo and A. Soto-Riera. Combining constructive and equational geom-
etryic constraint-solving techniques. ACM Transactions on Graphics, 18(1):35-
55, January 1999.

[7] Aylmer L. Johnson and Zhihui Yao. On estimating the feasible solution space of
design. Computer-Aided Design, 29(9):649-655, September 1997.

[8] Yehuda E. Kalay. Redifining the role of computers in architecture: from draft-
ing/modelling tools to knowledge-based design assistants. Computer-Aided De-
sign, 17(7):319-328, 1985.

[9] Lwangsoo Kim and Jae Yeol Lee. A 2-D geometric constraint solver using DOF-
based graph reduction. Computer-Aided Design, 30(11):883-896, June 1998.

[10] P. D. Martins. Windowing the solution space of an optimization problem.
Computer-Aided Design, 16(6):314-320, November 1984.

[11] Meera Sitharam, Adam Arbree, Yong Zhou, and Naganandhini Kohareswaran.
Solution space navigation for geometric constraint systems. A CM Transactions
on Graphics, 25(2):194-213, April 2006.

