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Abstract

LatticeFS is a namespace unification system designed to merge multiple source file
systems into a single working file system. LatticeFS can be used to merge multiple
software package directories, work with multiple file systems as if they are one, and
share a single storage medium among multiple machines. On a high level, LatticeFS
takes as input an arbitrary number of file system paths, and mounts a new virtual
drive that will appear to the user as a union of the input file systems.

Of course, attempting to combine multiple file systems will inevitably be met with
conflicts. Situations in which multiple input file systems contain files/directories with
the same name will be common in large systems; which file/directory should the user
be exposed to in this case? Previous work such as UnionFS solved the problem by
giving each input file system a strict priority value, and when a conflict occurred, the
file/directory with the highest priority was the one shown to the user. In LatticeFS, we
have introduced a plug-in system in which different strategies for resolving conflicts
can be easily swapped in and out; additionally, handlers for special file types can
also be "plugged" into the system. This paper describes and evaluates all aspects of
LatticeFS in detail.
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Chapter 1

Introduction

LatticeFS is a new file system unification tool that seeks to solve the problems that

plague other systems of the same type. The motivations behind file system unifica-

tion are many; for example, if a user wishes to work with different sets of files and

directories which are inconveniently located on many different volumes, he or she can

simply use our system to create a virtual volume that contains all of the required files

and directories conveniently located in one place. LatticeFS also introduces the idea

that since some special file types (tar archives, virtual machine images) are hierar-

chical just like traditional file systems, it should be possible to merge the contents of

these files during file system unification. In this paper, we explore the technical de-

tails and rationale behind the implementation of LatticeFS, its strengths, weaknesses,

performance, and future work.

1.1 What is File System Unification?

A file system unification tool is something that can take as input multiple file systems,

and output a new file system that is a unified, or merged, view of the contents of all

of the input file systems. One difficulty in file system unification is that the input file

systems may be either read-write or read-only. Of course, we wish to give the user

the impression that the virtual file system is write capable; thus, most file systems of

this type use the idea of copy-on-write. The idea is that whenever the system needs



to modify a file within a a read-only directory, it copies the file into a write-capable

file system, and modifies it there; as long as the modified copy is of higher priority

than the original copy, the user should see no difference. Another difficulty with file

system unification is conflict resolution. For example, if an input file system has some

file/directory with the same absolute pathname as that of another input file system,

then it is unclear as to which one should be exposed to the user. LatticeFS differs

from other file system unification tools primarily in this area.

1.2 Other File System Unification Tools

As stated in the previous section, conflict resolution is the main hurdle to clear when

building a file system unification tool. UnionFS[1], arguably the most established

unification tool, adopts the idea of a priority queue to resolve conflicts. Within

UnionFS, each input file system is given a priority value, and, when a conflict occurs,

the file/directory from the highest priority input FS is the one shown to the user.

The Union Mount system[3] is another file system unification tool and works as

follows: the first mounted file system behaves as normal, and every subsequent file

system mounted on top of it simply adds to the original file system its own contents.

When a conflict occurs, the newly mounted file system takes precedence. Thus, we can

think of it as a priority queue with the highest priority given to the newest mounted

file systems.

The problem with UnionFS and Union Mount's approach is that the newly created

file system may not work correctly; for example, if some program depended on a set

of files that were not exposed to the user (as a result of lower priority), then the

program would not behave as expected. To solve this problem within LatticeFS,

we have implemented a plug-in architecture that supports easy swapping of conflict

resolution techniques from simple priority queues like UnionFS to one in which the

user is prompted when a conflict is met.

Another difference between LatticeFS and previous implementations of file system

unification is that all input FS are treated as read-only in LatticeFS. Of course,



LatticeFS allows user modification, but any changes are kept in a separate storage

directory. Additionally, LatticeFS allows for a set of special file handlers that resolve

certain file types differently. For example, if we had two "conflicting" archive files,

an easy way to resolve this conflict is to create a new archive file with the contents

of both conflicting files.

1.3 Thesis Outline

Chapter 2 will be on related work. Chapter 3 summarizes the original design goals set

for LatticeFS, and the challenges met along the way. The subsequent two chapters

address the final design and implementation of LatticeFS, and Chapter 6 discusses

its performance. Finally, Chapter 7 discusses future work and ideas for improvement.
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Chapter 2

Related Work

File system unification has existed since at least the Translucent File Service (TFS)

[4], written around 1988 for Sun OS. The first similar system for Linux was the

Inheriting File System (IFS) [5]. Then there was UnionFS (2003), Union Mounts

(2004), and AUFS (2006) [2], as well as FUSE (File system in User SpacE) [6]. In

this chapter, we will briefly examine these previous attempts at file system unification,

and their impact on LatticeFS.

2.1 TFS

TFS, or Translucent File Service, was developed so that some set of files could be

shared among many people. During the time that it was developed, storage space

was not nearly as abundant as it is now, so instead of replicating a large set of files

that all users within a given network needs on each individual machine, TFS was

developed so that these files can be used by everyone on the network.

Within TFS, shared files that everyone has access to would coexist among files

private to each user. If the user wishes to modify a shared file, then the file is copied

over to the user's private directory, and modified there. This feature is called copy-

on-write. TFS utilizes two priority levels: a higher priority for the user's private

data, and a lower priority for the shared data. Any duplicates within the two sets of

data will be resolved by showing the user the copy of the file within the user's private



data. Thus, when a file is modified through the use of copy-on-write, the modification

is seen by the user. For deletions, TFS utilizes an object called a white-out, which

is something that designates a file as non-existent. Thus, if a user wishes to delete

/a/b/c that exists within the read-only shared data section, TFS simply creates a

white-out for /a/b/c that designates it as being deleted. From then on, the user is

no longer shown the "deleted" file.

2.2 IFS

IFS, or the Inheriting File System, was inspired by TFS. It was designed such that

instead of being able to support two unified file systems like TFS's shared/private

data, it could support an arbitrarily large number of file systems. Conflict resolution

was also similar: the input file systems were all given a priority level, and the file

with the highest priority would be the one exposed to the user. IFS also utilized

white-outs and copy-on-write.

Unfortunately, the creator ceased development on IFS because it became much

too complex.

2.3 UnionFS

UnionFS is a unification file system designed to virtually unify different input file

system while preserving UNIX semantics. It is able to combine an arbitrary number

of branches by assigning each branch a priority, and resolve naming conflicts by the

use of these priority assignments.

UnionFS was designed to address four important problems in file system unifica-

tion: one, if the unified file system contains files and/or directories with the same

name, it is unclear which one should be kept. Two, it is unclear how the file system

should behave when one of the duplicate files are removed; it would be confounding

to the user if the lower-priority file/directory were suddenly to appear after the higher

priority file/directory is removed. Three, when read-only and read-write directories



are mixed in the union, modifying arbitrary files will be problematic; if the user wishes

to modify a file in a read-only directory, the file would have to be copied to a read-

write capable and higher priority directory to be modified. The final problem is with

cache coherency. The unionized file system should allow additions and removals from

the unified virtual file system. Arbitrary insertions/deletions may cause incoherency

of the directory name-lookup cache. We now examine how UnionFS has solved these

problems.

To be as useful to as wide an audience as possible, UnionFS places very few

restrictions on the number and types of branches allowed. Each branch can be read-

write or read-only, and can be of any file system type. Dynamic insertion and removal

of branchs are also allowed. The only restriction is that the top priority branch must

be read-write. Many operations in UnionFS may be performed on multiple branches

and file systems, so in order to adhere to UNIX semantics, they are designed to be

atomic. If any part of an operation fails, it will fail as a unit.

The structure of UnionFS can be thought of as a fan-shape, with the leftmost

branches having the highest priority; thus, as stated above, the leftmost branch is

read-write, while the other branches can be of any type. It is very easy in this

scheme to resolve naming conflicts. If there are multiple files/directories with the

same absolute pathname, then the file/directory that is the leftmost in the fan (and

thus has the highest priority) will be the one presented to the user.

If the user wishes to modify a file that resides within a read-write file system,

then UnionFS simply allows the user to do so. If, however, the user wishes to modify

a file that is within a read-only file system, the UnionFS has to complete an oper-

ation called a copyup, which is, in essence, a copy-on-write as described previously.

In this operation, UnionFS essentially copies the file to be modified into a higher-

prioirity branch that is also read-write (which is why the highest-priority must be

read-write). During the copyup procedure, UnionFS may create an entire directory

structure. When the copy is complete, the user is allowed to modify the file. Any

modifications will be seen by the user because the newly modified file will mask the

previous unmodified one.



When the user wishes to remove a file within a read-only branch, UnionFS creates

a whiteout, similar to TFS, in a higher priority branch. Essentially, a whiteout in

UnionFS is a zero-length file that lets the file system know that the whited out file

should be treated as if it does not exist. A whiteout is named as .wh.F, where F is the

name of the file/directory to be hidden. For example, a .wh.filel tells the file system

to not show filel to the user, even if it exists.

2.4 AUFS

AUFS began as a modification of UnionFS (AUFS stands for Another UnionFS), but

quickly grew into an independent project. It makes a number of improvements over

UnionFS.

AUFS largely follows the same design as UnionFS, and improves upon its relia-

bility and performance. We will not discuss the specifics of AUFS's implementation,

but some of the notable improvements include: using an external inode number table

to assign inode numbers, keeping the timestamps of file/directory during a copyup,

and a seekable directory that supports NFS readdir.

2.5 Union Mounts

Union Mounts are another attempt at file system unification, and work as follows:

the user first mounts a single file system, and then mounts another file system on top

of the first. If there are any conflicts, the files/directories within the file system that

is mounted later is given priority.

Traditionally, when a file system is mounted on top of a directory, everything

within the directory is masked, and the user is given zero access to items within the

directory until the masking file system is unmounted. This happens because within

the kernel, the file systems are organized in the order that they are mounted. The

file system that is mounted first is at the bottom of the stack, and grows from there.

Only the files and directories within the top mounted file system is shown to the user.



With Union Mounts, the user is able to access information on all mounted file sys-

tems, as long as they are not masked by a later-mounted file system. Union Mounts,

unlike other implementations such as UnionFS, do all of the directory merging within

the VFS layer instead of creating an entirely new file system. The advantages of this

are that the system is very simple and lightweight, and does not need to keep external

metadata (such as whiteouts).

Currently, Union Mounts do not support writing to the unified file system as there

are many implementation issues that need to be solved. Even so, it is a worthy player

in the realm of file system unification.

2.6 Relation to LatticeFS

In building LatticeFS, we've adopted a number of innovative ideas from other union

file systems. First, we adopted the fan-out branches scheme, but we do not modify

any of our input branches. Instead, LatticeFS utilizes a store directory that is used

when any file modification is required. Second, we also adopted the copyup idea

during file modification, and finally, we utilize the white-out as a way to hide lower

priority files and directories.
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Chapter 3

Goals and Challenges

In this chapter, we outline the design goals and identify some of the challenges that

were identified during the development of LatticeFS.

3.1 Goals

The initial motivation for creating LatticeFS was to solve the problem of virtual ma-

chine images. Suppose we begin with a virtual machine image A. From here, we

modify A by adding/removing files and directories, which results in B (a modified

image of A). Then, we modify A in a similar manner, but with different addition-

s/removals, this time resulting in C (another modified image of A). From here, we'd

like to be able to combine B and C into a new virtual machine image D such that it

reflects all the changes that were made in both B and C. See 3-1.

Realizing that a virtual machine image is essentially a file system, we decided

to design a filesystem unification tool that builds on existing system, and allow for

novel ways for conflict resolution. We knew that while there were many file system

unification tools in existence, none of them offered conflict resolution that was more

clever than a simple priority queue. Additionally, existing tools did not handle special

files any differently than normal files; files such as tarballs and virtual machine images

are essentially directories in themselves, and could be conflict resolved in the same

way. We therefore decided upon two main goals of LatticeFS:



Figure 3-1: The lattice structure.

1. Design a system that would allow for conflict resolution techniques other than

using priority assignments.

2. Design a system that is able to perform conflict resolution on file types that

represent directories (such as tarballs and VM images).

When designing LatticeFS, we wanted the system to be able to support many

different conflict resolution techniques and special file types; thus, we wanted the

system to be as modular as possible. A new conflict resolution technique could

be easily written and simply "plugged in". Additionally, the interface between .the

conflict resolution code and the rest of LatticeFS must be very simple so that a new

technique could be written very easily. We have the same requirements of modularity

and simplicity for the special file handlers.

Finally, we required that LatticeFS have two of the primary features of UnionFS:

1. LatticeFS must support an arbitrary number of input file systems.
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2. LatticeFS must allow a branch to be read-only or read-write.

A few of the features of UnionFS (UNIX semantics, dynamic insertion/removal of

branches) that we would have liked in LatticeFS proved be very difficult to implement

in our design; we address this in the following section.

3.2 Challenges

One primary challenge lies in fulfilling the goal of sophisticated conflict resolution

techniques. Going back to our original example of the virtual machines A, B, C, and

D: suppose now that we have a conflict resolution scheme that will allow us to create

virtual machine image D from B and C; now suppose that certain programs in image

B and C had dependencies that conflicted. Clearly, there is no correct solution here:

whatever LatticeFS chooses, at least one of the programs will break. In other words,

it is extremely difficult to implement a conflict resolution scheme that will always "do

the right thing". We therefore decided that, in general, the user knows best, and thus

we designed the system to allow the user to choose file/directory that he/she deems

correct. Additionally, we designed the system to be very modular, so if a resolution

algorithm that always does the right thing is indeed possible, we may simply plug it

in to our system without trouble.

The next challenge lies in the fulfillment of the goal of the special file handler.

Archive files such as .tar and .zip files are fairly easy to handle, as they are simply

represented as a directory. Additionally, there are modules written for most program-

ming languages that allow easy interface with archive files. Virtual machine images,

however, are much more difficult. Due to the scarcity of modules that interface with

VM images, we may have to write our own interface, which would require copious

amounts of difficult low-level system programming. Again, our system's modularity

would allow us to "plug in" a solution in case we are unable to implement this in the

relevant timeframe.

Finally, we identify two important features present in UnionFS that are very diffi-

cult to implement in LatticeFS. The first is adherence to UNIX semantics, specifically,



atomicity. The second is the dynamic insertion and removal of branches. Atomicity

is very difficult to uphold due to the fact that many LatticeFS system calls will re-

quire multiple underlying file system calls. We need to somehow group these calls in

such a way that one failure among the group will reverse the effects of any previously

completed calls. Finally, LatticeFS cannot support the dynamic addition/removal of

branches because it is built under FUSE, which is missing such a feature.



Chapter 4

Design

In this chapter, we give an overview of LatticeFS's design considerations.

4.1 VFS

VFS, or the Virtual Filesystem Switch, is a subsystem built into all Unix-based oper-

ating systems; it is the reason that Unix is able to easily coexist with other operating

systems' file formats, and it is the reason that we are able to build LatticeFS.

The idea behind VFS is that, during each file system call (read, write, etc), the

kernel substitutes in the system call pertaining to the file system in questions, and

is thus able to interface with a wide variety of different file system types. In other

words, it is an abstraction layer between the high level system calls and the low level

hardware interfaces.

For example, suppose we wish to copy a file from a directory that is on an NTFS

disk to another directory that is on an EXT3 disk. The copy, or cp, system call would

then be translated by the VFS layer, and the corresponding NTFS "version" of the

system call will be invoked. The results are correspondingly passed on to the EXT3

directory. See 4-1.



Figure 4-1: The VFS layer.

4.2 Fuse

LatticeFS is built on fuse (Filesystem in UserSpacE). Fuse is essentially a loadable

kernel module that allows non-privileged users to create their own file systems. Fuse

allows us to easily create our own file systems without having to work with the VFS

layer ourselves; all of the interface between user-level code and the VFS are taken

care of by fuse.

A transaction between the fuse module and the VFS layer works as follows: first,

our custom file system residing in userspace makes a call to the fuse library, which

in turn calls the fuse module residing in kernel space. This module in turn interacts

with VFS. A simple diagram of this interaction can be seen in 4-2.

4.3 Two Versions of LatticeFS

Initially, we designed a version of LatticeFS that handles conflict resolution at run-

time; we later wrote another version of LatticeFS for comparison; this time, we pre-
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compute all potential conflicts and resolve them before runtime. In the following

sections, we compare and contrast the designs of the two.

4.3.1 Storage

In the previous chapter, we stated that LatticeFS assumes that all input file systems

are read-only, but nonetheless supports read-write capabilities on the newly created

virtual file system. To accomplish this task with the runtime version of LatticeFS,

we decided to enlist the use of a "store" directory. If the user wishes to modify

a file/directory residing within a read-only file system, LatticeFS first copies that

file/directory to the store directory, and then allows the user to edit the copied version.

We considered many different structures for the store directory. One potential

implementation was to store all files within the root of the store directory. Each

file would be named by its absolute pathname, so a file copied from /dirl/filel would

actually have the string "/dirl/filel" as its name. This implementation would be very

simple; there would be very little computation overhead, and the implementation of

the required fuse system calls would be easy. However, we would not be able to

support directories, and there are serious scaling issues with placing a very large

number of files into a single directory. A frequently used file system could easily have

more than ten thousand edited files, which would slow this implementation to a crawl.

In the end, we settled upon a design that we felt optimized the difficulty of imple-

mentation versus its scalability and performance. In this implementation, we require

that the store directory mirror the structure of the input file systems. In order to

simplify the implementation of most of the required fuse file system calls, we lazily

maintain the required structure. In other words, when we need to copy a file or di-

rectory over to store for editing, we create the underlying directory structure as well

(but none of the files). For example, suppose that at some point in time, the store

directory is empty, and that we wish to edit the file /dirl/dir2/filel. We would first

create /dirl within store, then /dirl/dir2, then we finally copy over /dirl/dir2/filel.

If, say, there exists a /dirl/filel, we would NOT copy this file over to store.

In fact, the runtime version LatticeFS's structure is very similar to that of UnionFS.



Figure 4-3: The Fan-out Structure.

We also adopt a fan-out shape for our input file systems; the difference is that we

treat all input file systems as read-only, and we add the store directory into the left-

most position as the highest-priority file system. This way, when a file is copied over

for editing, the changes would be seen by the user because the store directory is of a

higher priority than all input file systems. See 4-3.

The same read-write requirement holds for the pre-compiled version of LatticeFS.

For the pre-compiled version of LatticeFS, we also considered many different designs

for the store directory structure. The first idea was that we use a hash table data

structure where the key is the absolute pathname of a file/directory, and the value

attached to that key is the actual location of the item that we're looking for. We

would use this hash table along with a storage directory. For example, suppose that

we create a Lattice file system from the directory /A. LatticeFS would then create

a storage directory called, say, /A-store. Initially, we create a single entry in the

hash table: (/, /A). This designates that all files within the root directory are to be

found in /A, which is exactly what we want. If we then modify a file within /A, say

/A/filel, we would copy /A/filel into /A-store/filel, and update the hash table with

the entry (filel, /A-store). This designates that filel is located within /A-store.



The preceding idea is fairly simple to implement, and conflict resolution can also

be implemented easily. Unfortunately, it also does not scale very well. A frequently

used system could have tens of thousands of entries in the hash table, which would

make memory requirements skyrocket, as well as the runtime of many required system

calls.

We then decided on the current version of the store directory. In this version,

the store directory contains two subdirectories: one is named "pointers", and the

other is named "data". The pointer directory lazily replicates the directory structure

of the mounted file systems, and contains files of a specific type. Each file within

the pointer directory can be thought of as a "pointer", but instead of containing

the memory addresses of objects as they normally would, our pointers contain the

absolute pathname of the actual location of a file/directory. For example, suppose a

file called "filel" exists in the pointer directory; further suppose that filel contains

the string "/dirl/filel". This tells LatticeFS that the actual file "filel" is located at

/dirl/filel.

The previously described structure has many benefits: first, there is no need to

implement a white-out system because we can represent the removal of a file/directory

by simply removing the pointer from the pointer directory. Second, conflict resolution

will be fairly straightforward to implement because we can simply combine the two

store directories' pointer directories. Third, the structure allows us to implement an

important optimization: when the file system is first created, no files will have been

edited, and all files will be exactly as they are on the input file systems. At this

point, we can simply create pointers for the files/directories in the root directory.

When the user wishes to edit a file deeper in the directory tree, we simply replicate

the directory structure up to that file within the pointer and data directories, copy

the file into the data directory, and finally create a pointer file that points to the just-

copied file within the data directory. This system will be covered in greater detail in

the following chapter.



4.3.2 Conflict Resolution

One of the primary goals of the Lattice file system is to explore more interesting

ways of doing namespace conflict resolution. Most current namespace unification

systems, including Union FS, use a simple priority queue to determine which of a set

of duplicate files would be exposed to the user. The first iteration of Lattice FS did

use such a system, in which priority was given to one of the two source file systems;

in the beginning, this was simply hard-coded into the Fuse implementation. For the

next iteration of Lattice FS, we decided to modularize the conflict resolution code

by encapsulating it in a class called Resolver. The constructor for Resolver takes in

a Policy class, which determines how each conflict is resolved. The Policy object is

responsible for determining the absolute path of the file to be exposed to the user;

thus, if we wished to implement a different conflict resolution policy, we can simply

create another Policy object.

For the compile-time version of LatticeFS, we also explored the realm of resolving

special files whose internal structure was essentially that of a directory tree. Such

files include archives (zip or tar) and virtual disk images. In our implementation of

LatticeFS, we are able to support the resolution of .tar files. The primary goal for

the design of this system is modularity; it should be very simple to write a plug-

in that interfaces with LatticeFS, and is able to "decode" a special file type into a

simple directory structure to be resolved. The special file handler is called by the

pre-compilation conflict resolution tool.

The runtime version of LatticeFS creates a Resolver during initialization, and calls

on it upon reaching a conflict. The compile-time version of LatticeFS calls upon the

resolver during the pre-compilation conflict-resolution phase.

4.3.3 Comparison

In this section, we compare and contrast the two implementations of LatticeFS, and

attempt to assess the pros and cons of each.

The runtime version of LatticeFS will be slower in most cases due to the fact that



it has to resolve conflicts during runtime. However, it is also easier to use because

there is no need to run pre-compilation code to merge store directories. Additionally,

unlike the compile-time version, it does not require that, given multiple inputs, each

input must be a Lattice file system, thereby expediting the process of setting up a

multiple-input virtual file system. The compile-time version is also more "fragile". It

is required that no changes be made to the store directories once they are mounted;

otherwise, the file system could be internally inconsistent, and errors will undoubtedly

occur.

As stated above, the compile-time version of LatticeFS is able to resolve special

file types with directory tree-like internal structures. Unfortunately, this did not seem

extensible enough in the runtime version of LatticeFS; for some filetypes, the amount

of computation required could be significant, which would simply not be permissible

at run-time. For example, if there are two conflicting tar archives that are very large,

there would be a significant delay during which the combined tar archive is being

created during runtime; the user experience would therefore be negatively impacted.



Chapter 5

Implementation

In this chapter, we explore in detail the inner workings of LatticeFS in its two im-

plementations: the version with runtime conflict resolution and the version with

pre-computed conflict resolution.

5.1 Code Structure

As stated in the previous chapter, we chose to implement LatticeFS using Fuse. Fuse

file systems can be written in any language that has the required bindings to the

Fuse libraries. Python is the language of choice for our needs; it is easy to work with,

good for prototyping, and boasts very good Fuse bindings. To implement a Fuse file

system, we simply have to implement a number of required methods. We will look at

these implementations in greater detail in a later section.

The code structure of the runtime version of LatticeFS is fairly simple. The

main class is called LatticeBindings, and implements the Fuse object. Within Lat-

ticeBindings, we define the Fuse file system's required methods. Each method calls

the classes that handle conflict resolution and white-out handling as required. The

conflict resolution system is encapsulated in two classes: the Resolver class and the

Policy class. The Resolver class serves as a simple wrapper that takes as input a

conflict resolution policy (as represented by the Policy class), and outputs the result

of conflict resolution. The whiteout system is implemented as the WhiteOut class. It
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Figure 5-1: The code structure of the two types of LatticeFS; the runtime version is

on the left, and the compile-time version is on the right.

has methods to create and remove whiteout, and to change the absolute pathname

of the file/directory in question.

The code structure of the compile-time version of LatticeFS is slightly more com-

plicated. In this version, the LatticeBindings class still implements Fuse, but does

not interact with any other class due to the fact that all conflict resolution has been

handled by runtime. We define a new class called pcresolvetool to be run before

mounting LatticeFS, the purpose of which is to resolve any potential conflicts. The

pcresolvetool in turn calls two classes: the Resolver class, and the special file handler

class. The resolver class behaves as before, while the special file handler class takes

as input two absolute pathnames, and determines whether they represent special files

that LatticeFS can handle; if so, then the file handler attempts to resolve them. See

5-1.



5.2 Whiteout Implementation

LatticeFS assumes that all input file systems are read-only, so it is prohibited from

removing files and directories. As stated in the previous chapter, we solve this problem

through the use of white-outs.

Within Union FS, a whiteout is represented as a zero-length file that resides within

the same directory as the file to be whited out. The file name takes the form .wh.F,

where F is the name of the file to be whited out. For the runtime version of Lattice

FS, we originally implemented the whiteout using the same method, but decided that

this method would effectively restrict the users ability to name arbitrary files, since

all file names of the form .wh.* are taken. We then decided to move all whiteout files

into a directory of their own. The directory structure would reflect exactly that of

the unified file system, and would contain only whiteout files; this implementation

did solve the namespace restriction problem, but was not very elegant. Additionally,

it introduces the overhead of having to maintain the exact directory structure of

the underlying file system. Finally, we decided upon the current implementation:

essentially, we keep a dictionary of all whiteouts. Each time a whiteout is required,

the absolute pathname to the file to be erased is written into the dictionary as a key.

The value associated with the key is 0. Thus, it is a simple matter to determine if

a file has an associated whiteout: we simply check for existence of a key equal to

the file pathname. When a whiteout is added/removed, we propagate the in-memory

dictionary into a file on disk through the use of Python's Pickle package, which allows

us to write arbitrary in-memory objects to disk. The file is reloaded when the system

is re-mounted.

The WhiteOut object has five methods: the constructor, set_path, haswhiteout,

makewhiteout, and removewhiteout. The constructor takes as input the location

of the pickled dictionary, and, if required, initializes a new dictionary. The set_path

method takes as input the pathname of a file/directory, and sets the internal stored

pathname to be the input. The haswhiteout, makewhiteout, and removewhiteout

methods all work with the internally stored path set by set_path. Haswhiteout simply



checks for existence of the pathname within the dictionary. Make_whiteout inserts a

new entry into the dictionary; the entry has the pathname as the key, and zero as the

value. Removewhiteout will delete the entry whose key is the pathname, and then

propagate the altered dictionary to disk using pickle.

5.3 Conflict Resolution

Conflict resolution is handled by two classes: the Resolver and the Policy. The Policy

class embodies the different conflict resolution strategies that we can use, while the

Resolver class is essentially a wrapper for the different policies.

The Policy class defines three methods: the constructor, set_path, and resolve.

The constructor takes as input the pathnames of the input file systems, the pathnames

of the two files/directories in conflict, and the whiteout object that we have previously

discussed. The set_path method sets the internally maintained pathname to be the

input. The resolve method returns the pathname of the file/directory that should

take priority. We designed the conflict resolution system to be very modular; thus,

if one wishes to implement a new Policy for conflict resolution, one simply has to

write a new class that overloads the resolve method of the Policy base class. We

have written a sample Policy named PriorityPolicy. Essentially, it reads the set of

input file systems as a priority queue, and returns the file/directory located in the

file system closest to the front of the list; this is the UnionFS policy. We have also

written a Policy that queries the user whenever a conflict is met; this policy would

not work very well in the runtime version of LatticeFS, so we have implemented it

only for the compile-time version.

The Resolver wrapper class contains three methods that are identical to that of

the Policy class: the constructor, setpath, and resolve. The constructor takes as

input a Policy object, and the other two methods simply invoke the corresponding

methods of the internally kept Policy object.

For the compile-time version of LatticeFS, we added the conflict resolution tool

that is to be run before mounting our file system. The resolution tool consists of a



main class and a helper function called combine_db. The main function takes as input

a set of directories that represent the file systems to be merged. If the number of of

inputs is one, then it is assumed that the one directory is not, in fact, a LatticeFS, so

a store directory will be created for it. The newly created store directory will be the

input for the main LatticeFS class, and the resulting mounted file system will mirror

exactly the file system that the store directory was created from.

If the number of inputs to the resolution tool is more than one, then the helper

function combine_db is called. The following pseudocode describes the combine_db

function's operation:

COMBINEDB(sources)

1 Recursively copy directory tree of sources[0] into new_store

2 for sourceEsources[1:]

3 do outstanding +-all items in source's root directory

4 while outstanding is not empty

5 do c +- outstanding.pop()

6 if c is a file

7 then if there is already something with c's pathname

8 then call special file handler to see if it applies

9 call resolver to see which file/directory we keep

10 else copy c into newstore

11 else if there is already something with c's pathname

12 then call resolver to see which file/directory we keep

13 if we keep c

14 then outstanding-outstanding + all items in c

15 else copy c into new_store

16 outstanding-outstanding + all items in c

The combine_db method is fairly simple: we take the first input source, and copy

its entire directory tree (line 1) to our new store directory. We then crawl breadth-



first through each other input source, and at each file/directory, determine whether

it conflicts with another file/directory that is already in the new store directory. If

there is indeed a conflict, we check to see if the special file handler applies; if not,

then we call on the resolver to determine which of the files/directories will be copied

to the new store directory.

The compile-time version of LatticeFS also boasts the special file handler. Cur-

rently, we have implemented the handler for tar archives using Python's tarfile mod-

ule. Since archive files have essentially the same tree structure as that of file systems,

we use the same idea to create a new .tar file from two conflicting .tar files.

5.4 Runtime Implementation

In the following sections, we discuss implementation details of a number of repre-

sentative methods within the main class: LatticeBindings. We first examine the

implementation of the runtime version.

5.4.1 getattr

The getattr method is a good example of the layout of most of the methods in Lattice-

Bindings. First, we create a Policy object. Then, we create a Resolver object, with

input as the Policy that we have just created. We then use the resolver to determine

the correct pathname. We then create a fuse.Stat object from this pathname and

return it to the user.

5.4.2 readdir

The readdir system call has the task of compiling the set of all items contained within

the given directory. The following pseudocode describes its operation:

READDIR(path)

1 policy --new policy object



2 resolver <-new resolver object

3 paths <-entries in path, for each root location (the input file systems and store)

4 entries <- []

5 for pEpaths

6 do if p should be show according to resolver

7 then entries.add(p)

8 for entryEentries

9 do yield fuse.Direntry(entry)

The readdir method first gathers the set of all potential entries to be returned. It

does this by looking through all directories with the given input pathname, located

in any of the input file systems, or in store. All of these are then checked by the

resolver; we then create fuse.Direntry objects for each file/directory that the resolver

determines.

5.4.3 rename

The rename system call is arguably the most difficult and complicated to write. It

takes in a source and destination, and should rename the file/directory at source to

that of destination. We have available to us the Python os module, which includes

a rename system call. We need to determine, however, the location of the source; if

it resides within one of the read-only input file systems, then the situation becomes

much more compilcated. The following pseudocode describes its operation:

RENAME(source, destination)

1 policy <-new policy object

2 resolver --new resolver object

3 resolvedpath +- resolver.resolve()

4 if resolved_path is in store

5 then call os.rename on source and destination

6 else for s Esource file systems



7 do if resolved_path is in s

8 then create the underlying directory structure if it does not exist

9 copy over the file/directory in question to the store directory

10 call os.rename on the newly copied file/directory

The rename method begins in the same way as the other system calls: the creation of

a Policy and Resolver. It then calls Resolver's resolve() method, thereby determining

which file system the file/directory to be renamed is located. If the location is our

store directory (which is read-write), then we can simply call the os.rename() method,

and we're done. If, however, the location is one of the read-only input file systems,

then we have to create the necessary directory structure in store (remember we do

this only when we need to), and then copy the file/directory over. When this is done,

we can simply call rename on the newly copied over object.

5.4.4 unlink

The unlink call takes as input a pathname, and attempts to remove the correspond-

ing file/directory from the file system. The following is pseudocode for the unlink call:

UNLINK(path)

1 policy -new policy object

2 resolver +-new resolver object

3 resolvedpath +- resolver.resolve()

4 if resolved_path is in store

5 then call os.unlink on path

6 for s Esource file systems

7 do if path exists in s

8 then create a whiteout for path

9 else for s Esource file systems

10 do if resolved_path is in s

11 then create a whiteout for path



Again, unlink begins in the same way as before: the creation of Resolver and Policy.

We then check the resolved path (which is the return value of the resolver) against

the store directory and the source file systems. If resolved path is in store, then we

call os.unlink() on path. We then have to check if path occurs in any of the source

file systems; if so, then we have to create a whiteout to hide them. If resolved path

points to a source file system, then we have to make a whiteout for it (remember that

source file systems are all read-only, so we cannot actually unlink anything).

5.5 Compile-time Implementation

We now discuss the implementation of the above system calls within the compile-time

version of LatticeFS. In general, the system call implementations are more complex.

5.5.1 getattr

The getattr method, again, is a good example of the layout of most of the methods

in LatticeBindings. In this version, all of the conflict resolution is complete, so we do

not instantiate any Policy or Resolver objects. The following is pseudocode for the

getattr method:

GETATTR(path)

1 components --tokenize path and return a deque

2 pointerpath +-path to our store's pointer directory

3 while components is not empty

4 do if pointerpath is not a directory

5 then break

6 else pointerpath +-pointer_path concatenated with components.pop()

7 realpath <-contents of file at pointer_path

8 while components is not empty

9 do real-path +-realpath concatenated with components.pop()



10 create fuse.Stat object from realpath and return

The getattr method includes a subroutine that we will see again and again: we

tokenize the input full pathname into a set of directory names, and progressively add

each "piece" to our pointer path until we determine that the resulting pathname is no

longer a directory. This is because the pointer directory holds "pointer" files whose

contents are the actual locations of the files/directories that we are looking for. These

pointer files can occur at any point in our pathname, so we must check them all. Once

the pointer file is found, we read it to determine the actual path, and create a Stat

object from it.

5.5.2 readdir

The compile-time implementation of readdir contains the same subroutine described

above for getattr. The following details its operation:

READDIR(path)

1 components +-tokenize path and return a deque

2 pointer path +-path to our store's pointer directory

3 while components is not empty

4 do if pointerpath is not a directory

5 then break

6 else pointerpath +-pointer_path concatenated with components.pop()

7 realpath +-contents of file at pointer_path

8 while components is not empty

9 do realpath --realpath concatenated with components.pop()

10 entries +-contents of directory at realpathfor entryeentries

11 do yield fuse.Direntry(entry)

The readdir method runs the subroutine to determine the real location of our directory

in question; we then create fuse.Direntry objects for each file/directory that resides



within this real location.

5.5.3 rename

The following is pseudocode for rename:

RENAME(source, destination)

1 components +-tokenize source and return a deque

2 pointerpath +-path to our store's pointer directory

3 while components is not empty

4 do if pointer_path is not a directory

5 then break

6 else pointer path +pointerpath concatenated with components.pop()

7 realpath +-contents of file at pointer_path

8 while components is not empty

9 do realpath --realpath concatenated with components.pop()

10 components +-tokenize source and return a deque

11 temppath ""

12 while components has more than one item

13 do temp-path --temppath concatenated with components.pop()

14 if temp_path is a file

15 then actualpath <--contents of file at temp_path

16 unlink temp_path

17 make a directory at temppath

18 for item Edirectory at actual_path

19 do itempath +-concatenation of actualpath and item

20 write item_path into contents of corresponding pointer file

21 call os.rename on the data directory's source and destination

22 call os.rename on the pointer directory's source and destination

23



The rename call begins as before, with the subroutine to determine the real location of

the input pathname. It then creates the directory structure within the store directory,

and updates the pointer files' contents to reflect the new location. Finally, it calls

os.rename to move the files/directories to be renamed to their correct positions.

5.5.4 unlink

The unlink call operates as detailed by the following:

UNLINK(path)

1 components --tokenize path and return a deque

2 pointerpath +-path to our store's pointer directory

3 while components is not empty

4 do if pointerpath is not a directory

5 then break

6 else pointerpath +-pointer_path concatenated with components.pop()

7 realpath --contents of file at pointerpath

8 while components is not empty

9 do realpath +-realpath concatenated with components.pop()

10 components <-tokenize source and return a deque

11 temppath +- ""

12 while components has more than one item

13 do temppath +-temppath concatenated with components.pop()

14 if temppath is a file

15 then actual-path --contents of file at temp_path

16 unlink temppath

17 make a directory at temp_path

18 for item Edirectory at actualpath

19 do itempath --concatenation of actualpath and item



20 write itempath into contents of corresponding pointer file

21 call os.unlink on the data directory's path

22 call os.unlink on the pointer directory's path

23

Unlink begins with the subroutine that has been common to all of the previous system

calls, and also utilizes the rename system call's subroutine of creating the necessary

directory structure. It then calls unlink on the appropriate path within both the

pointer and data directories.
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Chapter 6

Performance Evaluation

In this chapter, we evaluate both versions of LatticeFS on a set of benchmarks that

are designed to determine the performance cost of basic file access tasks. Since there

is some overhead to running LatticeFS versus other more conventional file systems,

we aim to determine whether the performance cost is prohibitive to everyday use. We

first describe the testing methodology, and then present the results.

6.1 Testing Methodology

We have written a set of python scripts that perform basic file access tasks such as

open, close, read, and write. Each command was run one hundred times, and the

loop was timed using python's time module. There are two dimensions to the test.

In one dimension, we examine the performance of the two versions of LatticeFS as

they compare to a conventional Unix ext3 file system. By this comparison, we aim

to evaluate whether the overhead in running LatticeFS is prohibitively high.

In the second dimension, we run each set of file access tasks on three volumes:

one is very small, and only has two directory levels; one is medium sized, with one

more directory level, and twice the number of files and directories. Finally, one is the

largest of the three, and has one more directory level, and twice the number of files

and directories as the medium sized one. The file used for our testing is located in

the directory that is the farthest down the directory tree. Here, we aim to evaluate



whether the implementation of LatticeFS scales well, and is able to handle very large

systems.

The machine that we use has a 3.0ghz pentium 4 processor with hyperthreading,

one gigabyte of RAM, and a 100gb 7200 RPM IDE hard disk. It is running Ubuntu

Linux version 8.04.

We have benchmarked five tasks:

1. Open a file for reading, and then close it (no reading is done).

2. Open a file for writing, and then close it (no writing is done).

3. Open a file for reading, read its contents, and then close it.

4. Open a file for writing, write about 100 bytes to it, and then close it.

5. Open a file for with the write and creation flags, write about 100 bytes to it,

close it, and unlink it.

6.2 Results

Figure 6-1 summarizes our results: the numbers are the average amount of time taken

with each task, in milliseconds. The read only, write only, and unlink only times are

calculated by subtracting the read, write, and unlink times from the top two rows.

For benchmark 1 (open a file for reading, and then close it), we can see that

both versions of LatticeFS are much slower than the regular ext3 file system. The

compile-time version is about 50 times slower, while the runtime version is around

30 times slower (6-2). We can see a similar problem with benchmark 2 (6-3, open

a file for writing, and then close it), in which the results are essentially the same.

The reason for this is twofold: first, in order to open a file within LatticeFS, we

must first create a LatticeFile object which supports the use of multiple input file

systems; this introduces significant overhead to the action of opening a file. The

second reason is that we have implemented LatticeFS using Fuse, and in Python.

Python is fairly slow because it is an interpreted language, and Fuse simply adds
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Figure 6-1: Benchmark results. The last six columns are of LatticeFS
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Figure 6-2: Benchmark 1: open for read

another layer of abstraction between our file system and hardware, which requires

overhead to maintain.

For benchmark 3 (6-4, read a file), we test the speed of file reading. Here, Lat-

ticeFS fares much better than before, and is about 20 times slower for the compile-time

version, and 17 times slower for the runtime version. The speed gain seems to be from

the fact that there is no longer overhead in creating a LatticeFile object.

The results of benchmark 4 (6-5, write to a file) are rather surprising; here, both

versions of LatticeFS are about half of the speed of ext3. This is a very good result

considering the significant overhead in utilizing Fuse. It seems that it is using soft

updates, and not all writes are being propagated immediately to disk; thus, we no

longer have the overhead that we did before.

For benchmark 5 (6-6, unlink a file), the compile-time version of LatticeFS is

around 20 times slower, while the runtime version is a massive 60 times slower. This

is due to the difference in the unlink implementations. For the compile-time version,

we simply unlink the pointer file, and we are done. For the runtime version, however,

we must pinpoint its location (store or one of the input file systems), and then either

create a whiteout or remove the file, depending on its location.
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From the above results, we can gather that the Python and Fuse overhead makes

operations around 20 times slower. Additional computation required for opening a

file and unlinking brings the time required for those operations up to 60 times slower

than a normal ext3 file system. Nevertheless, basic file operations are still less than

1 millisecond on either version of LatticeFS, and the system is acceptable for simple

I/O tasks. For I/O intensive applications, however, the current implementations

probably will not do. Python was chosen for its ease of use, and if we wished to

create a significantly faster version of LatticeFS, we would have to re-implement it

in a compiled language. Additionally, we can see that even though LatticeFS is

slower than a conventional Unix file system, it scales fairly well. The differences in

performance on the small, medium, and large directories are essentially non-existent;

however, the fact that LatticeFS is about 20 times slower than a traditional Unix file

system suggests that it will not do for large systems.
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Chapter 7

Conclusion

7.1 Future Work

In order for LatticeFS to be usable as a fully functional file system, there is more

work to be done. The nature of the LatticeFS project was to explore different aspects

of file system unification and conflict resolution; thus, certain system calls that were

not required were, in fact, not implemented (chmod, chown, utime). Implementing

these functions would be the first step in making LatticeFS into a fully functional file

system. Additionally, as can be seen in the previous chapter, LatticeFS is significantly

slower than a conventional Unix file system, and while it is acceptable for basic

I/O tasks, I/O intensive applications would have trouble on LatticeFS. To solve this

problem, we can re-implement LatticeFS using a compiled language, thereby speeding

it up significantly.

For a performance-oriented version of LatticeFS, a language such as C++ would

be ideal. It is significantly faster than python, and is similar enough in syntax so

a rewrite of the code would be fairly simple. As stated in the previous chapter, an

additional cost in performance comes from the Fuse system itself. For our faster

version of LatticeFS, we could directly interface with VFS instead of going through

the Fuse module; this should eliminate significant overhead.

We have designed a very modular conflict resolution system for LatticeFS in which

it is very easy to implement novel resolution algorithms. Currently, we have imple-



mented some very simple ones, and developing more sophisticated algorithms will be

a priority for the future. For example, utilizing the lattice structure of our file system,

we can determine the case in which a file has been modified from its original state in

one input file system, but was left alone in a different input file system. In this case,

it would be logical to automatically keep the changed file without having to query

the user to make a decision.

Finally, we have implemented a special file handler that is able to resolve certain

file types that exhibit directory-tree structure. Currently, LatticeFS supports only

the tar archive file; for the future, we aim to support many more file types.

7.2 Conclusion

In this thesis, we have examined our implementation of LatticeFS, a tool designed

to merge an arbitrary number of input file systems into a single usable file system.

File system unification is useful for a myriad of tasks from database maintenance to

system updates. We have focused our attention on the conflict resolution aspect of

file system unification.

Specifically, we have explored different strategies for conflict resolution and spe-

cial file handling; LatticeFS is designed to be very modular with respect to conflict

resolution strategies, and, in this regard, we believe that we have succeeded. As a

proof of concept, we have implemented a few very simple resolution strategies, and

support the handling of tar archive files. As shown by performance testing, while

LatticeFS is slower than conventional Unix file systems, it is nonetheless usable for

everyday tasks.



Bibliography

[1] Charles P. Wright, Jay Dave, Puja Gupta, Harikesavan Krishnan, Erez Zadok,

and Mohammad Nayyer Zubair Versatility and Unix Semantics in a Fan-Out

Unification File System. Technical Report FSL-04-01b, Stony Brook University,

2004

[2] Junjiro Okajima Another UnionFS http://aufs.sf.net, 2006

[3] Jan-Simon Pendry, Marshall Kirk McKusick Union Mounts in 4.4BSD-lite In

Proceedings of the USENIX 1995 Technical Conference, page 3. USENIX Asso-

ciations, 1995.

[4] David Hendricks, Evan Adams, Tom Lyon, Terrence C. Miller. Method and

Apparatus for Translucent File System United States Patent 5,313,646, May 17,

1994

[5] Werner Almsberger Inheriting File System

http://icapeople.epfl.ch/almsber/ifs.html, 1993

[6] Dobrica Pavlinusic, Csaba Henk, Miklos Szeredi, Richard Dawe, Sebastien De-

lafond Filesystem in Userspace http://fuse.sourceforge.net/, 2008

[7] Goldwyn Rodrigues Unifying Filesystems with Union Mounts

http://lwn.net/Articles/312641/ December 24, 2008

[8] Valerie Aurora Unioning File Systems: Architecture, Features, and Design

Choices http://lwn.net/Articles/324291/ March 18, 2009



[9] The python language. http://www.python.org/.

[10] Various Merge Algorithms http://revctrl.org/CategoryMergeAlgorithm/

[11] Daniel P. Bovet, Marco Cesati The Virtual Filesystem Understanding the Linux

Kernel, 303-342, September 2000


