
Nonlinear Filtering for Narrow-Band Time Delay

Estimation

by

T\/frLr ?\/f Tr~1anki~n

MASSACHUSETTS INSTfU-FTE
OF TECHNOLOGY

JUL 2 0 2009

.. , i. " "-'"" LIBRARIES
Submitted to the Department of Electrical Engineering and Computer

Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

February 2009

Copyright 2009 Mark M. Tobenkin. All rights reserved.

The author hereby grants to MIT permission to reproduce and to

distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

ARCHIVES

Author
Department of Electrical Engineering and Computer Science

Feb 3, 2009

Certified by...
Gerald Jay Sussman

Panasonic Professor of Electrical Engineering
- Thesis Supervisor

,- 77--

Accepted by..
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

Nonlinear Filtering for Narrow-Band Time Delay Estimation

by

Mark M. Tobenkin

Submitted to the
Department of Electrical Engineering and Computer Science

Feb 3, 2009

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents a method for improving passive acoustic tracking. A large fam-

ily of acoustic tracking systems combine estimates of the time difference of arrival

(TDoA) between pairs of spatially separated sensors - this work improves those esti-

mates by independently tracking each TDoA using a Bayesian filter. This tracking is

particularly useful for overcoming spatial aliasing, which results from tracking narrow-

band, high frequency sources. I develop a theoretical model for the evolution of each

TDoA from a bound placed on the velocity of the target being tracked. This model

enables an efficient form of exact marginalization. I then present simulation and

experimental results demonstrating improved performance over a simpler nonlinear

preprocessor and Kalman filtering, so long as this bound is chosen appropriately.

Thesis Supervisor: Gerald Jay Sussman
Title: Panasonic Professor of Electrical Engineering

Acknowledgments

First and foremost, I'd like to thank J.L., who made a great deal of this work possible.

I want to thank Gerry Sussman for providing me with a wonderful place to work,

and people to talk to. This project has gone in a lot of different directions over time,

and I greatly appreciate his flexibility, encouragement, and penchant for knowing

more about anything I express interest in than I would have ever expected.

Piotr Mitros had an uncanny ability to figure out the causes of my problems,

and was an incredibly generous advisor. He is an amazing engineer, and a constant

reminder that I should stick to software development.

I am indebted to Dany Qumsiyeh for his patience in listening to my constant

stream of consciousness about this project, but also for teaching me most of the

approach I now take to problem-solving. He has been a wonderful friend.

I want to thank Michael Mandel for knowing the name and actual theory behind

every random problem or idea I happened upon, and for taking the time to help me

proof this work.

Mark Feldmeier provided no end of encouragement and circuit design advice for

which I'm very grateful.

Alexey Radul kept me on my toes thinking about probability and the many as-

sumptions I made over the course of this work.

Tom Knight provided me with a better understanding of the "bigger picture" that

is non-elephant biology.

Finally, I want to thank my parents, and my brother Billy, both for their general

support which made any of this possible, and their direct advice and encouragement

this last month.

Contents

1 Introduction 13

1.1 Spatial Aliasing 15

1.2 Prior Work 16

2 Model of Time Difference of Arrival Estimation 21

2.1 Acoustic M odel 21

2.2 Likelihood M odel 23

2.2.1 The Generalized Cross Correlation 23

2.2.2 The GCC as a Log-Likelihood 25

3 Time Difference of Arrival Tracking 33

3.1 Tracking Framework 34

3.1.1 First-Order Filtering 35

3.1.2 First-Order Smoothing 36

3.1.3 First-Order Partial Smoothing 37

3.2 Priors 39

3.2.1 Priors by Marginalization 39

3.2.2 Bounded Velocity Priors 41

3.3 Implementation 44

3.3.1 Efficient Computation with Bounded Velocity 47

3.3.2 Overall Asymptotic Performance 48

4 Simulation and Experiment 51

4.1 Determining Position 51

4.1.1 Kalman Filter 52

4.2 Simulation 53

4.2.1 Methods Being Compared 54

4.2.2 Trial Generation 54

4.2.3 Comparison of TDoA Estimate Error 57

4.2.4 Comparison of Position Estimate Error 59

4.2.5 Velocity Bound Violation 66

4.2.6 Discussion 67

4.3 Experiment 70

4.3.1 Setup 70

4.3.2 Results 72

5 Contributions and Future Work 79

A Simulation and Experiment Code 81

List of Figures

1-1 Preview of experimental results 14

1-2 An example narrow-band GCC. 15

1-3 A systems level diagram of TDoA tracking. 16

1-4 A systems level diagram of TDoA localization and Kalman filter tracking. 18

2-1 An example GCC and likelihood. 25

2-2 The true TDoA and two aliases under spatial aliasing conditions. . . 27

2-3 The von Mises distribution, an approximate distribution for the phase

noise........... 28

2-4 The likelihood based on a single observed phase. 29

3-1 An example of First-Order Filtering. 36

3-2 An example of First-Order Smoothing. 38

3-3 An example of First-Order Partial Smoothing. 39

3-4 TDoA as a function of position, and the magnitude of the Gradient of

TDoA 42

3-5 An example set of bounded velocity priors. 43

3-6 An example prior distribution p (rk I00:k-1). 45

3-7 An example posterior p (i I 00:k) 45

3-8 The conditional distribution p (-rk I k-1) for bounded velocity dynamics. 47

4-1 An example microphone geometry. 56

4-2 True (dashed) and estimated (solid) TDoAs for various levels of error. 57

4-3 Comparison of the root mean square TDoA estimate error. 59

4-4 Histograms of the TDoA prediction error. 60

4-5 True and estimated positions for various levels of error. 61

4-6 Comparison of mean square position error.63

4-7 Histograms of the position estimate error. 64

4-8 Comparison of TDoA tracking to a Kalman Filter............. 65

4-9 Histogram of the speeds attained by the two simulations. 66

4-10 Comparison of mean square TDoA error and position error with the

velocity bound being violated. 68

4-11 Histograms of the prediction error with the velocity bound being violated. 69

4-12 The experimental apparatus. 71

4-13 A comparison of tracking results for a single stroke (duration 5.67

seconds). 73

4-14 Experimental comparison of TDoA estimates. 74

4-15 A comparison of tracking results for a single stroke (duration 2.66

seconds). 75

4-16 A comparison of tracking results for a single stroke (duration 5.01

seconds) 77

4-17 A comparison of tracking results for a single stroke (duration 2.73

seconds) 78

List of Tables

4.1 Experimental Microphone Geometry 70

4.2 Experimental Microphone Aperture. 70

12

Chapter 1

Introduction

This thesis presents a method for improving passive acoustic tracking. Passive acous-

tic tracking methods locate a moving target that emits a sound without the benefit

of control of or synchronization with this acoustic emission, or the ability to actively

probe the target. As a result, passive tracking has a broad set of applications to

disparate fields such as seismology, zoology, human computer interfaces and combat.

As sound travels at a finite speed, the acoustic emission of a target arrives at

spatially separated sensors at different times - the difference in delay for any two

sensors is known as the time difference of arrival (TDoA). A large class of passive

tracking systems attempt to estimate the TDoA for multiple pairs of sensors in order

to determine the position of the target. Determining the TDoA is particularly difficult

for high-frequency, narrow bandwidth signals as multiple TDoAs could be responsible

for the same observed data. In this work, I present a method for improving TDoA

estimates under these conditions, as a preprocessing stage to determining the target's

position.

This method involves estimating each sensor pair's TDoA by an independent

tracking process. The dynamics of the TDoA evolution are approximated from prior

knowledge of the sensor array geometry and a motion model for the target. In par-

ticular, I develop a new model for the evolution of the TDoA based on bounding the

velocity of the target being tracked. This model allows for efficient exact marginal-

ization.

TDoA Tracked Result

0.75

07

D0

05

0.35 0.4 0.45 0.5 0.5 0.6 0.65

Horizontal Position (m)

(a) Photograph of Stroke (0.37 x 0.28 m) (b) Trajectory after TDoA tracking.

Median Filtered Result Kalman Filtered of TDoA Tracked Result

0.75
0.75-

0.57 0.7

6 50 00a 0
0.3 0.4 0.45 05 01 0. 0.6 0 0.35 0.4 0.45 0.5 0.55 0.6 065

Horizontal Position (m) Horizontal Position (m)

(c) Trajectory after median filter preprocessing. (d) Kalman filter applied to TDoA tracked result.

Figure 1-1: An example of the experimental results from Section 4.3. Figure 1-1(b)

presents positions estimated after applying the TDoA Tracking in this work. Figure

1-1(c) demonstrates the failure of a simpler nonlinear preprocessing. Figure 1-1(d)

presents the trajectory of Figure 1-1(b) smoothed by a Kalman filter.

I evaluate this TDoA tracking method both via simulation and experiment. The

experimental apparatus recovers the trajectories of strokes on a chalk-board by track-

ing the acoustic emission of the chalk rubbing on the board. Six microphones were

used to generate the tracking results in Figure 1-1.

Chapter 2 describes how the phase of incoming signals can be used to estimate the

current TDoA. Chapter 3 then develops TDoA tracking from a Markov source model

in order to improve these TDoA estimates. Chapter 4 uses simulation and experiment

to compare TDoA tracking to simpler nonlinear filters, and applying Kalman filters

to the resulting position estimates. Due to the multi-modal uncertainty of TDoA

Generalized Cross Correlation

-0.5 0 0.!

Time Delay

Figure 1-2: An example narrow-band GCC; the signal's narrow bandwidth leads to

a plurality of nearby local maxima, or aliases.

estimation from narrow bandwidth sources, TDoA tracking generally outperforms

these alternatives for low signal-to-noise ratios. The remainder of this chapter details

the scope of the solution provided in this work. Section 1.1 describes the difficulty in

estimating TDoA for narrow bandwidth signals and Section 1.2 compares this work

to the existing literature.

1.1 Spatial Aliasing

The Generalized Cross Correlation (GCC) of Knapp and Carter [12] is perhaps the

most widely used technique for estimating TDoA, and in certain cases provides op-

timal estimates. The technique amounts to a cross-correlation of the signals arriving

at sensors combined with a prefilter. The location of the peak of the correlation

is the estimated TDoA. However, determining the location of narrow-band sources

can be particularly difficult. Nearby local maxima, known as spatial aliases, can be-

come global maxima in the presence of noise. Figure 1-2 plots an example GCC of a

narrow-band signal.

One solution to this problem is to narrow the aperture - that is, the spacing

between sensors. The maximum realizable TDoA is proportional to this aperture. If

less than a wavelength of the acoustic signal fits between the sensors, then spatial

aliases can be avoided. However, for high frequency sources, this can require sensors to

Figure 1-3: A systems level diagram of TDoA tracking.

be so close that very small variance in the TDoA estimation results in wildly different

predicted positions. In addition, sensor geometries with randomly distributed sensors

cannot guarantee their aperture.

Weiss and Weinstein demonstrate that correlations calculated over longer obser-

vations are less affected by these aliases [26]. However, the GCC assumes that the

target is not moving. To pretend the target is stationary when it is actually mov-

ing, the correlation is commonly evaluated over very short intervals. The faster the

target moves, the shorter these intervals must be to make this approximation. This

work presents a method for overcoming spatial aliases by combining multiple short

observations over a longer interval. Figure 1-3 sketches the systems level diagram of

the method proposed in this thesis.

1.2 Prior Work

Early work in acoustic localization focused on determining accurate time delay esti-

mates. For passive detection systems in particular, a great deal of research focused

on estimating the time difference of arrival (TDoA) of a signal to multiple pairs of

spatially separated sensors. When the signal emitted from the source travels on a

straight line path to the sensors (i.e. without reverberation or echoes) the General-

ized Cross Correlation [12] has been the estimator of choice for most TDoA based

systems. This work focuses on such anechoic environments. 1

1 Chen et al. provide a review of techniques for indoor reverberant environments [4].

Bethel and Rahikka make use of a Bayesian filter to improve TDoA estimates in

[3]. Similar to the methods in this work, Bethel and Rahikka propagate a discretized

posterior distribution for the current time difference of arrival through a first-order

Markov model. Their work uses an ad-hoc, but efficient, constant gain structure

for propagating posterior distributions forward in time. In this work, we explore

the physical motivations for determining these state transitions. Also, we explore

Bayesian smoothing, using both past and future observations to improve the current

estimate. Finally, we compare methods based not only on the accuracy of time delay

estimates, but also on the position estimates generated from those time-delays.

Several previous works improve acoustic localization by other TDoA preprocessing

techniques. Allen and King apply an adaptive Kalman-based filter in [1], however

their work assumes a broadband source far away from the sensor pair. Tung et al.

identify the relationship between continuity of motion and continuity in TDoA [21].

They label the states of a trellis with peaks of the GCC. Transitions between times are

weighted with ad-hoc penalties for discontinuity, and based on these costs a smooth

path is constructed.

By contrast, this work develops a likelihood for the current TDoA from the GCC

- the entire structure of the GCC is used as a powerful indicator of the current TDoA.

Also, the transition probabilities for this work are more closely matched to a physical

motion model. The approach in this thesis provides reasonable TDoA estimates even

if the acoustic source momentarily vanishes.

A variety of techniques exist to transform the approximate TDoAs into a position

[8], [18], [20]. Most of these methods require a least one common sensor to every

two or three sensor pairs. When this criteria cannot be met, nonlinear optimization

is often employed. When dealing with a moving source, position estimates are often

smoothed by Kalman Filter or Extended Kalman Filter [23],[11]. At the risk of

greatly oversimplifying a large body of research, Figure 1-4 sketches the general system

diagram for these approaches. Vermaak and Blake present an interesting alternative

approach, combining the determination of position and tracking using Sequential

Monte Carlo [22].

Figure 1-4: A systems level diagram of TDoA localization and Kalman filter tracking.

A different tack for improving estimates for narrow-band sources has been to

carefully choose the sensor pairs to minimize the expected error of the TDoA or

bearing estimates [27], [11], [23]. Weiss and Weinstein note that below a critical

threshold signal-to-noise ratio, the GCC's error explodes. Ash et al. experimentally

demonstrate this threshold on a distributed sensor network, and also describe how

sensor separation can contribute to lowered signal-to-noise ratios due to radiative

attenuation[2]. For a combined network of small-aperture microphone arrays and

acoustic intensity sensors, Liu et al. take another interesting approach [14], combining

sensor selection, position determination and tracking with a moving locus of sensor

fusion in a distributed sensor network. Their tracking problem did not contend with

spatial aliases.

Over the last decade attention has shifted to combining the entire observation

from all sensors in order to estimate position. One of the predominant techniques

is the Steered Response Power algorithm of DiBiase [5]. This technique steers a

beam-former over all candidate locations - the greater the energy of the resulting

signal, the higher the likelihood that the source is at that position. A variety of

structured search algorithms exist to accelerate the process of finding the energy

maximizing position [6],[28]. These beam-former techniques have also been combined

with Bayesian Filters. For example, Ward et al. apply Sequential Monte Carlo (SMC)

to meet real-time performance constraints [25],[24].

In general, methods combining all sensor data should provide better estimates

than individually tracking TDoAs. The principal advantage of the proposed method

is its parallelism and low dimensionality. Each TDoA pair can be tracked in parallel,

based on local information. Furthermore, TDoA tracking is a problem of low enough

dimension that exact marginalization is possible.

20

Chapter 2

Model of Time Difference of

Arrival Estimation

2.1 Acoustic Model

This section describes the model for acoustic propagation used by this work. It is

similar to that of Knapp and Carter [12], but accounts for a moving source. We

assume that there are M sensors with known positions, si, S ,..., SM. The target has

a time-varying position F(t), and emits a signal y(t) omni-directionally. This signal

propagates through space at a fixed speed c. The source signal arrives at each sensor,

delayed and attenuated. Because the target moves much slower than the speed of

sound, we can approximate the delay using the distance of the source from the sensor

when the signal is received:

Tlt)

Ti(t) is called the time of arrival for the i-th sensor. We similarly approximate the

attenuation using the distance to the source at the time the signal is received:

1

1 - 2

21

We model the signal received at the i-th sensor as:

xi(t) = ai(t)y(t - T2(t)) + wi(t)

where wi (t) is some additive noise. Without any prior knowledge of the time domain

characteristics of y(t), we cannot generally estimate the time of arrival. We can,

however, estimate the difference in delay between a pair of spatially separated sensors.

We call this quantity the time difference of arrival (TDoA); between the i-th and f-th

sensors, we define the TDoA to be:

Tie(t) T(t) - Te(t)

It is sometimes useful to write the TDoA as a function of the position of the source,

rather than time:

-Tt(') _ (11 - ill - 11 - 1e)
C

So, we have ie(t) = 7Te(F(t)). It is important to note that the TDoA is bounded by

the aperture, or distance, between the two sensors:

T(V) =
1

S < -(II -- e - 11) -I)
c c

T 1 ((= (fl5 11 - 11 - ~'H)l)

I I g', - S'> -(II - s (Z + I - el)) = - 11
c c

Both the upper and lower bound can be met if the target is collinear with the sensors.

This distance is important enough to the problem of estimating the TDoA that we

define a short-hand:

Lie H---II

2.2 Likelihood Model

The goal of TDoA tracking is to determine the time difference of arrival at a set of

times to < tl < ... < t, using observations of the sensor signals xx(t) and xe(t). A

crucial part of such a probabilistic tracking system is determining the likelihood -

the probability of the observed data conditioned on the TDoA.

We determine this likelihood term from a short-term Generalized Cross Correla-

tion (GCC). The Generalized Cross Correlation method assumes a constant TDoA.

When estimating ie(tk), we restrict ourselves to using only the observed data over

some short interval of time, centered at time tk. If we choose the duration of this

interval, Tw, to be short enough then we can make two simplifying approximations:

Tit) fT(t) a(t) a (tk) Vt) t E k T2 I tk + T

We define a random variable rk = Tie(tk), to be the value of the TDoA at time

tkl. At this time, we informally represent the observation at time tk (i.e. the signals

xi(t) and xt(t) observed over the interval [tk - - tk + -Tw]) by a random variable

Ok. In these terms, the likelihood this section determines can be written p (Ok Tk).

We choose to treat the Generalized Cross Correlation of Knapp and Carter [12]

as an unnormalized log-likelihood. This section describes the probabilistic model

that this choice implies, and how that differs from the true distribution under the

conditions that Knapp and Carter set out. Section 2.2.1 provides a synopsis of the

GCC. Section 2.2.2 then discusses the implications of treating the GCC as a log-

likelihood, and some of necessary considerations in doing so.

2.2.1 The Generalized Cross Correlation

The GCC principally involves taking the cross-correlation of two sensor signals com-

bined with a prefilter. Knapp and Carter provide a thorough review of the GCC in

their seminal work [12]. In that work, they unify a variety of prefilters and demon-

'The majority of this chapter is concerned with the TDoA between a single pair of sensors, so
we drop the subscript on -Ti(tk) for notational simplicity.

strate a maximum likelihood (ML) choice under a set of stationarity and Gaussianity

assumptions.

To execute the GCC we take the periodogram of each sensor signal, centered at

tk:
1W tk +

Where f(t) is an appropriately chosen window function2 . We can now examine the

Generalized Cross Correlation between the i-th and £-th sensors in the frequency

domain, and the time domain:

G(Jo) = b(w)Xi(jw)X(-j)

g(7') = G(jw)e"T'dw
_00
-oo

= G(jw)| cos(wT' + Z(G(jw))dw

Where 4'(w) is the spectral weighting function, or prefilter. Roughly speaking, the

prefilter decides the degree to which any given frequency is trusted to predict the

time difference of arrival. The estimate of the TDoA is the 7 at which the GCC

achieves a maximum:

if(tk) = argmax g(T')
1r'E[-Lif,Lij]

The Hannan-Thomson (HT) and Phase Transform (PHAT) prefilters are partic-

ularly noteworthy. The HT choice of prefilter assumes that the sensor signals are

jointly stationary, random processes and the cross spectral densities for each of these

terms is available. Let S,,,,, denote the cross spectral density between signals xi

and xe and S,,,,, denote the power spectral density of a single signal. Then the HT

prefilter is given by:

'HT(W) = (iSxix(W) 1-

2The merits of different windows functions are discussed in [9]. In this work a Hann window is
used.

Generalized Cross Correlation

Time Delay x o10
-2 -1.5 -1 -0.5 0 0.5 1 1,5 2 2.5

Time Delay x 10

(a) An example Generalized Cross Correlation. (b) An Example Likelihood.

Figure 2-1: Figure 2-1(a) plots an example Generalized Cross Correlation, evaluated
over [-Li, Lie]. Here a HT filter was used on a narrow-band signal corrupted by
small amounts of broadband noise. Figure 2-1(b) plots the same data exponentiated.

Knapp and Carter show the GCC with the HT prefilter to be a Maximum Likelihood

estimator for the TDoA under the assumption that the signal and noise processes are

zero-mean and Gaussian.

Since complete information about the cross-spectral densities is often unavailable,

other ad-hoc techniques are common in practice. The Phase Transform whitens the

signal, treating each frequency equally. Technically, the PHAT still assumes access

to the cross spectral density:

¢PHAT() =

However, a very common practice is to whiten the periodogram directly:

1
OPHAT(W) = 1

IG(jw)l

2.2.2 The GCC as a Log-Likelihood

For high signal-to-noise ratios, Knapp and Carter demonstrate that the Generalized

Cross Correlation is an unnormalized log-likelihood for TDoA [12]. This chapter

considers the implications of treating the GCC as such for low signal-to-noise ratios.

Likelihood p(y y01)

To be more concrete, we discuss the choice of modeling:

p (Ok rk = T) OC exp(Cg(T))

Where C is an important strictly positive scaling constant, discussed at the end

of this section. Figure 2-1 plots an example GCC and the resulting likelihood. In

what follows, we consider only a single observation at time tk, so we use Ti, ai and Tie

to refer to the time of arrival, attenuation and TDoA at time tk without ambiguity.

Estimation from Phase without Noise

To build intuition, we first consider determining the TDoA from the phase of a single

frequency of the GCC when there is no noise (i.e. taking wi = we = 0). If we take a

long enough window, Tw, then we can approximate the sensor periodogram in terms

of the periodogram of the source signal, Y at time tk - Ti:

Xe(jw) a Y(jw)e - j-1i

as in [12]. We can then write the difference in phase of the GCC as:

G(jw) O 4,(w)cy(Y(jw) Ti) at((_jW)e JT)

Z(d(jw)) Z((Y(jw)) - z(Y(jw)) - WT mod 27T

=- WTri mod 2x

The phase of the GCC at any given frequency provides information about the TDoA.

However, if the frequency is too high the phase does not determine the TDoA uniquely.

In particular, any TDoA T such that:

27m
S= e + - m = 0, ,+2,...

W

Candidate TDoAs under Spatial Aliasing
0.35

0.3

0.25

02

0.15

0.1

0.05

1 80 -06 -04 -0.2 0 0.2 0.4 0 6 0 8 1

Figure 2-2: The true TDoA and two aliases under spatial
w = 37r and 7Tk = 1

aliasing conditions. Lie = 1,

would result in the same phase difference. We need only consider those 7 which fit in

the bound set by the aperture, T E [-Lie, Lie]. We refer to these alternative TDoAs

that result in the same phase difference as spatial aliases. Figure 2-2 plots the true

TDoA and two aliases determined in this way. There will be no spatial aliases so long

as:

- >Lie

In practice, our periodograms are realized by sampling the sensor signals, which

are band-limited, and applying the Discrete Fourier Transform. As a result, we

consider only a set of N harmonically spaced frequencies {wo, 2wo,. . . , Nwo}. We

define a set of random variables for the phase of the GCC at these frequencies:

AL
V, = ZG(jvwo) 01:N = {01, 02, ... ON}

For this noiseless case, our p (rk 10,) is a series of delta functions, one at the true

TDoA, and the others at the spatial aliases.

.

von Mises Distribution, x= 0,. = 0 von Mises Distribution, x= 1,
=

0 von Mises Distribulon = 10, p
=

0

(a) K= 0.1 (b) = 1 (c) = 10

Figure 2-3: The von Mises distribution, an approximate distribution for the phase
noise, ,, for three values of , and p = 0.

Estimation from Phase with Noise

We now consider the case where the observed phase difference, 08, is corrupted by

some additive phase noise, 0,. We model these phase noises as independent and

von Mises distributed. The choice of the von Mises distribution is purely to be

congruent with using the GCC as a log-likelihood, as will be demonstrated shortly.

Additional motivation comes from Knapp and Carter [12], who demonstrate that

using the HT prefilter this choice tends to the true distribution as the signal-to-noise

ratio (SNR) increases, so long as the signal and noise processes are independent,

zero-mean, Gaussian and jointly wide-sense stationary.

The von Mises distribution is a circular probability distribution characterized by

a mean p and concentration K:

exp(r cos(O + p))

2rlo(r,)

Where Io is the modified Bessel function of order zero, and simply a normalizing

constant. Figure 2-3 plots the distribution for zero-mean and several values of k.

We take our observed phases to be the phase expected due to the TDoA plus some

zero-mean von Mises distributed noise, with concentration ,:

OV = VWOk + 0, mod 27r

p (, = Z(G(jv'wo))Irk = T, ,) c exp(' 1, cos(vwor + Z(G(jvwo)))

p(=1.5l tk = r)

. 8

i)0.4 0.4

0.2 02

-3 -1 0 1 2 3 -1 -08 -06 -0.4 -02 0 02 0.4 0.6 08 1

(a) p (6, = ir7k =) (b) p (O, = r ITk = r)

Figure 2-4: The likelihood based on a single observed phase, p (OV = 0rk = 7),
assuming von Mises distributed phase noise. Figure 2-4(a) plots the distribution
parameterized as a function of 0. Figure 2-4(b) plots the distribution parameterized
as a function of 7 with Lie = 1. In both cases vwo = 3r and K = 10.

Figure 2-4 plots this likelihood parameterized both by an observed phase and a

known TDoA.

Notice that the observed phases are now independent when conditioned on rk,

leading us to conclude:

N

P (I: N Irk = T, /l:N) J p (0 I Tk = T, K)
v=l

oc exp (E cos(vwor + Z(G(jvwo))

If we choose r,, = ClG(jvwo) , then our final expression is the magnitude-angle form

of the Fourier Series of the GCC, exponentiated. As an interesting example, for the

approximate PHAT filter, we have r, = C.

If we treat this set of measured phases as our observation (i.e. ok = 01:N) we

have:

p (ok I rk = T) c exp(Cg(T))

Where we have omitted mention of our prior knowledge of the concentrations. From

this formal equivalence, we arrive at one possible interpretation of treating the GCC

as a log-likelihood. We are inferring the TDoA from the phase difference of each

p(e =0| k = 0.5)

frequency of our observation and assuming that each such phase difference is corrupted

by independent, zero-mean, von Mises distributed noise.

In [16], Mandel and Ellis use a higher order model based on exponentiating trigono-

metric polynomials to fit an empirically determined phase noise model based on convo-

lutive noise. This work was later applied to an Expectation Maximization algorithm,

which also takes into account the relative attenuation (i.e. ratio of ai to at) between

sensors [15].

The Scaling Constant

The Generalized Cross Correlation furnishes a likelihood for the TDoA given the

current observation. The TDoA tracking in Chapter 3 will combine these likelihoods

over time to determine an improved TDoA estimate. The scaling constant, C in the

formula:

p (ok Ik = T) oc exp(Cg(7)) C > 0

plays an important role in how the observations are combined over time. As C

approaches zero, the distribution becomes uniform. As a result, the tracking system

will trust prior information. Similarly, as C grows arbitrarily large, the distribution

approaches a delta function at those 7 that maximize the GCC. In this case, the

tracking system will trust the current observation, and ignore prior information.

The shape of the GCC is unaffected by the scaling, so this constant is simply an

additional consideration required when exponentiating the GCC. For the maximum

likelihood conditions they set out, Knapp and Carter provide a choice for C that

allows this ad-hoc distribution to tend to the true distribution for high signal-to-

noise ratios [12]. However, this choice is of little practical value, as it requires the

cross spectral densities needed for the HT prefilter, which includes knowledge of the

attenuation of the source to each sensor. Choosing C to normalize the expected or

measured power of g has performed well in practice. However, for non-stationary

signal sources, this can lead to undesired effects. For example, consider an erasure,

where the source signal y(t) briefly vanishes. One might hope that the likelihood

would tend toward a uniform distribution in this case, but such a normalization

could prevent this. A more complete answer to this problem could combine signal

detection with the tracking developed in the next chapter.

32

Chapter 3

Time Difference of Arrival

Tracking

In general, tracking methods will reject noise and aliases which disagree with their

motion model. Ideally, one could examine data from every sensor, and then apply

exact marginalization to determine the maximum a posteriori position. This strategy

is too computationally intensive for real-time performance.

This Chapter develops a nonlinear filter which treats estimating each TDoA as

an independent tracking problem. Filtering the evolution of the TDoA is a low-

dimensional problem, making exact marginalization possible. The motion model for

tracking the target in Cartesian coordinates is used to develop a prior on the dynamics

of the TDoA evolution. These dynamics help reject spurious estimates due to noise

and spatial aliases. The improved TDoA estimates are then combined to estimate

position.

For computational tractability, we simplify the model until a recursive formulation

is possible. Section 3.1 describes the derivation of the tracking algorithm from several

Markov assumptions. We make use of the Generalized Cross Correlation as a log-

likelihood for the TDoA at any given moment, as described in Section 2.2. Next,

Section 3.2 describes how priors on the motion of the target can be transformed into

priors on the dynamics of the TDoA evolution. These algorithms involve complex

integrations, which we approximate using a grid-method: we quantize the possible

values of the TDoA. Section 3.3 describes the choice of quantization levels and an

efficient implementation of the algorithm.

3.1 Tracking Framework

Our goal in this section is to develop a maximum a posteriori estimate for the TDoA

at a set of times to < tl < ... < t, based on observations made up to the time tn.

Recall from Section 2.2 that we defined a random variable rk = Tie(tk), to be the

value of the TDoA at time tk and a variable Ok to represent the observations centered

at that time.

In this chapter, we also make use of the short-hand notation of:

A A
TO:k = {70, 71, ...) Tk} and 0 0:k = {OO, 1, ... , Ok}

to represent sets of consecutive states and observations.

The tracking problem can be formalized as determining the probability distri-

bution p (-rk IOO:n), and taking the estimated TDoA as the maximum a posteriori

value:

it e(tk)= argmax p (rk = T 00:n)
T

If k = n this is known as a Bayesian filtering problem. If k < n it is known as

smoothing [7].

To simplify the computation involved, we approximate the sequence of variables

rk as a Markov process. Section 3.1.1 derives the estimate in the case of filtering

(i.e. k = n) for a first-order Markov process. Section 3.1.2 describes the estimator

for first-order smoothing.

3.1.1 First-Order Filtering

We first consider the case where k > 0. To begin, we expand p (rk I 00:k) applying

Bayes' Rule:

S(Ik I :k) = (Ok rk, 00:k-1) P (Tk 00:k-1)

p (Ok I 00:k-1)

oc p (Ok Irk, 00:k-1) P (Tk 00:k-1)

The denominator is a normalization factor which we disregard. For computational

simplicity, we treat Ok as pair-wise independent of other observations when condi-

tioned on rk, which gives us:

p (Tk I 00:k) O(p (Ok I rk) P (k I 00:k-1)

This independence assumption is contradicted by the fact that if tk - tk-1 < Tw our

observations can overlap - however, the system still performs well despite this discrep-

ancy. The first right hand term, p (ok I k), is the likelihood detailed in Section 2.2.

We can expand the second term of the right hand side using the joint distribution

with rk-1:

p (Tk I 00:k-1) = p (Tk, Tk-1 = T 00:k-1) dr

/ p (rk Tk-1 = T, 00:k-1) P (k-1 = T I O0:k-1) dr (3.1)

= p (rk k-1 = T)P((k-1 = T I00:k-1) d

The final step of simplification comes from our first-order Markov assumption. This

formula gives us a recursive formulation of the a posteriori distribution in terms of

the likelihood, the previous distribution and p (rk 1 Tk-1), our prior on the dynamics

of the TDoA evolution:

p (rk I 00:k) o p (ok I k) (k I Tk-1 =)p (rTk1 = T I 00:k-1) d

-1.5
-15

-12

. -0.5 0.5

-1

i.5

0.1 0.2 0 .5 0. 0.7 0 0.9 1 0.1 0.2 0.3 0.4 0.5 o0. 0.7 0.8 0.9 1

Time (s) Time (s)

(a) Log-Likelihoods (b) Log-Posteriors

Figure 3-1: An example of First-Order Filtering. Figure 3-1(a) plots consecutive

log-likelihoods. Figure 3-1(b) plots consecutive log-posterior distributions. ML and

MAP estimates are indicated by stars, and ground truth by circles. An uninformative

prior, p (r0), leads to errors in early estimates.

Section 3.2 will discuss in detail the model for the TDoA dynamics, p (7rk I k-1).

When k = 0 (i.e. when we are examining p (1o I oo)) we have the base case of our

recursion:

p (ro oo0) oc p (oo0 o) P (ro)

Section 3.2 will also discuss the choice of p (T0). Figure 3-1 plots an example of

consecutive likelihoods and posteriors using Bayesian filtering on a simulated TDoA

evolution, using the priors suggested in Section 3.2.

3.1.2 First-Order Smoothing

We frame the smoothing problem as finding the TDoA which maximizes the dis-

tribution p (rk oo:n), for each 0 < k < n. A more complete answer would find

the maximum a posteriori trajectory of the TDoA by examining p (To:n I OO:n), but

maximizing p (7k I O0:n) for each k independently performs well.

For k = n, our solution is given by the filtering problem in the previous section.

For k < n we can expand the a posteriori distribution applying Bayes' Theorem and

ronn',mtiva I nn-Prtprinr
Consecutive Lo-Likelihoods

our Markov assumptions:

p (OO:k Tk, Ok+l:n) P (rk I Ok+l:n)
p (rk I 00:k, Ok+1:n)P IP (OO:k I Ok+l:n)

P (O:k I Tk) p (k I Ok+1:n)

p (o0:k I Ok+l:n)

P (Irk I 00 o0: P (00:k) p (k I Ok+:n)

p (Tk) p (OO:k I Ok+l:n)

P (Tk i O0:k) P (Tik I Ok+l:n)

p (Tk)

The expression p (Tk I O0:k) is also given by the previous section. The same algebra

as in (3.1) can also be used to determine p (rk I Ok+l:n) recursively:

S(T I Ok+:n) = P (k I rk+l = T) P (Tk+l I Ok+l:n) dr

Where the base-case of this recursion is p (rn).

Finally, we must determine p (Trk). The prior p (ro) and the transition probabili-

ties p (-rk I Tk+l) and p (7rk+1 I Tk) will be discussed in Section 3.2. Assuming we have

these distributions, we can recursively calculate p (Trk) for k > 0:

P(-rk) = J p (rk Irk- = r) p (Tkc 1 = T) dT

Figure 3-2 plots an example of consecutive likelihoods and posteriors using Bayesian

smoothing on a simulated TDoA evolution, using the priors suggested in Section 3.2.

3.1.3 First-Order Partial Smoothing

If the initial prior on TDoA (p (0o)) is uninformative, early estimates generated by

First Order Filtering can be wildly inaccurate. For example, with a uniform prior the

first estimate is based purely on the observed data. First-Order Smoothing does not

display this problem, at the cost of extra latency and greater resource requirements:

the entire history of distributions must be retained. First-Order Partial Smoothing

frnn.qrnutiva Lo-Likelihoods

0.-1.5.

0.1 0.2 0.3 0.4 05 0.6 0.7 0 .9 1 0.1 0. 2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s) TDoA (s)

(a) Log-Likelihoods (b) Log-Posteriors

Figure 3-2: An example of First-Order Smoothing. Figure 3-2(a) plots consecutive

log-likelihoods. Figure 3-2(b) plots the log-posterior distributions. ML and MAP

estimates are indicated by stars, and ground truth by circles.

smoothes only the early estimates; as a result it incurs only a fixed amount of extra

storage, and latency.

Assume that by the K-th observation, First-Order Filtering has arrived at a mean-

ingful posterior distribution. That is, we expect our estimates:

f(tk) = argmaxp (rk OO:k) V k > K

to be fairly accurate for all k > K. We now smooth our earliest estimates using only

the observations up until time K:

-(tk) = argmaxp(rk IO:K) V k < K
r

to overcome our uninformative prior, p (ro). Figure 3-3 plots an example of con-

secutive likelihoods and posteriors using partial smoothing on a simulated TDoA

evolution, using the priors suggested in Section 3.2.

Consecutive Log-Posteriors

x o- Consecutive Log-Likelihoods X 10 Consecutive Log-Posteriors

- -1 -1

-12
0.5 -0.5 0.5

-14

-16

1 0. 0 0 . 4 0. 5 0 07 0 0.9 1 0.1 0.2 0.3 0.4 0.5 0. 07 0.8 0.9 1
Time (s) Time (s)

(a) Likelihoods (b) Log-Posteriors

Figure 3-3: An example of First-Order Partial Smoothing with K = 10 (smoothing of
the first 213 ms). Figure 3-3(a) plots consecutive log-likelihoods. Figure 3-3(b) plots
the resulting log-posterior distributions. ML and MAP estimates are indicated by
stars, and ground truth by circles. Early estimates are improved compared to Figure
3-1.

3.2 Priors

This section discusses the choice of prior distributions for the initial TDoA, p (T0), and

the TDoA dynamics, p (rk I Tk-1) and p (rk I k+l). In particular, it discusses why

marginalizing these distributions from a prior distribution over TDoA and position is

not necessarily plausible. Instead we provide a simple alternative based on bounding

the first difference of the TDoA.

3.2.1 Priors by Marginalization

This section describes, at a high level, a strategy for determining the dynamics of the

TDoA from a motion model on the target being tracked. This approach is reasonable

when applying TDoA tracking to a sensor array with a known, regular geometry.

However, this is not a feasible choice for randomly distributed sensor arrangements.

We define a random variable to represent the position of the target at time tk:

Zk = Ztk)

One possible place to start for determining these priors would be a prior on the

initial position of the target, or the motion of the target in Cartesian coordinates.

Assume we have access to such a p (io). Then we can write our prior distribution1 :

p(rTo)= JP (ro, o = z) d5i

= P(o I o = 0) p (zo) dz

The position 'o determines the TDoA exactly; p (r0 o =) is a delta function:

P (To = T Iio =) = 6(- e())

Computing this integral analytically would be difficult for any complicated choice of

p (i'0) (and not necessarily easy even for simple distributions). However, computing

this integral numerically, or via a Monte Carlo strategy is plausible, as the TDoA

corresponding to any position is easy to compute.

A similar strategy can be taken for determining the dynamics of the TDoA. As-

suming access to a joint distribution p (Zk, Zk-1), we can write the TDoA dynamics

as:

p(rk, Tk-1) Z Jk = Zr k-i = z, rk-1) d'dz'

- J P(Tk, Tk-1 I = 5 ,- Zk-1- ')p P (Zk= , Zk-1 = ')dd

We can then determine the conditional distribution p (rk 'rk-1) from this joint dis-

tribution. Again, the pair of TDoAs are exactly determined by the positions, so

p (rk, rk-1 Z k, k-1) is a bivariate delta function. For similar reasons as before, nu-

merical integration is the simplest strategy.

However, the relationships between the TDoA and position (i.e. p (T0o I) and

p (ITk, Tk-1 k, k-1)) depend on the position of both sensors. Computing these in-

tegrals and determining these relationships in the field for an unknown and possibly
1The integrals in this section represent integrals over all the dimensions of the vector valued

quantity Z.

uncertain sensor array geometry could result in undesirable startup costs for track-

ing, and brittleness with respect to errors in absolute position. The next section

describes an ad-hoc technique which can be quickly computed based only on local

range information.

3.2.2 Bounded Velocity Priors

This section describes a simple alternative based on assuming a bound on the velocity

of the object being tracked. Liu et al. use a similar model for developing a Bayesian

tracking problem in [14]. Here, however, we transform this bound on the motion

model into a bound on the rate-of-change of the TDoA.

The simplified model for the TDoA dynamics is based on the following observation:

if we model the target as having a bounded velocity, then the corresponding rate-of-

change of TDoA will be bounded. Let II(t) I 5 Vmax, for some positive constant vmax-

Then2:

d d
= (e(5(t)))

= (V §if(F(t))) T 4(t)
d-(t) W _ Ilo V i((t))ll Vmax

1 g(t) T - s
i _gT (t)T -s T

I(t) - 11 I t) - 11Vmax

2
-Vma x
C

Both the upper and lower bound of dTie(t) are achievable if the target moves with

speed Vmax from one sensor directly toward the other, or vice-versa. Figure 3-4 plots

Tie and IIV lI evaluated over a range of positions.

This bound places a "band-diagonal" constraint on the support of p (rk, Tk-1).

2We use _T to indicate transpose.

TDoA as Function of Position

Horizontal Position (m)
-0.5 o o.5 1

Horizontal Position (m)

(b) IIV t(z-)ll(a) Tt (z

Figure 3-4: Circles indicate sensors at (0, 1) and (0, -1). Figure 3-4(a)
a function of position with c = 1 !. Figure 3-4(b) plots the magnitude
of TDoA as a function of position.

plots TDoA as
of the gradient

We know that:

p (Tk = 7, Tk-1 = 7T) = 0 V 7, 7' s.t. I - 7' > 2v (tk - tk-1)
C

That is, we have bounded the first-difference of rk. For many trajectories, this bound

is very conservative. If we know that the target being tracked has a limited region of

motion which does not include the line segment connecting the two sensors, then a

tighter bound can be found by examining IIV TIelI on this region. Also, it should be

noted that it requires a very particular circumstance for this bound to be achieved

by two sensor pairs simultaneously. The line segments connecting the two pairs of

sensors must be parallel and overlap. When determining position in Chapter 4, this

fact will provided added robustness to the position estimates furnished by TDoA

tracking.

We also have constraints from the aperture of the sensor pair, Lie:

p (rk = T, Tk-1) = 0

p (-7k, Tk-1 = 7T') = 0

V s.t. 11I > Lie

V T' s.t. I7/' > Lie

Support of Joint Distribution p(Tk' k-1)
x IO

"E Conditional Distribution p(rk= kI k-_l=k-1)

-1.5

-l -1

-0.5 -0.5

1 1

2
-2 -15 -1 -0. 0 05 1 1.5 2 -2 -1.5 -1 -0.5 0 0.S 1 1.5 2

k-0 .(s) to 'k-I (s) x lo

(a) Support of p (rk, rk-1). (b) Example p (ri 1"k-1).

07 * Prior Distribution p(oT)

15

0.5

1 -1 -1 -05 10 0 1 1 LS 2
"(s) xto

(c) Example p (ro).

Figure 3-5: An example set of bounded velocity priors. Figure 3-5(a) plots an outline
of the support of the joint distribution. Figure 3-5(b) plots the conditional distribu-
tion, assuming the joint distribution is uniform. Figure 3-5(c) plots the prior p (To).

Figure 3-5(a) highlights the region of the joint distribution which can be non-zero.

The band-structure arises from the velocity constraint, and the beveled edges from

the maximum and minimum possible TDoA.

A simple, and surprisingly effective choice for the joint-distribution is uniform

within this band prescribed by the velocity bound and the aperture. For the uniform

choice, Figure 3-5(b) plots the resulting conditional distribution, p (rk Tk-1). Given

this choice of conditional distribution, the integral for computing p (rk I O0:k-1) has

striking similarity to a convolution of p (rk-1I 00:k-1) with a uniformly distributed

interval (a "box"), except at the maximum and minimum values of rk. We will later

exploit this structure to efficiently approximate the integration.

We can also determine p (r 0) from this distribution (an example is plotted in Fig-

ure 3-5(c)). Figure 3-6 plots an example of applying this prior on TDoA dynamics to

develop a distribution p (Tk I 00:k-1). Figure 3-7 then continues the example, plotting

a posterior p (rk I OO0:k)-

Ideally, one could choose the width of the band of the conditional distribution

to be smaller than the distance between spatial aliases. While one cannot exert

any control over the speed of the target, or the speed of sound, the choice of the

sampling interval, tk - tk-1, allows for control over the width of the band. Choosing

(tk - k-1) < c max axfor a given maximum signal frequency fmax, will force the band

to be narrower than the delay between spatial aliases.

3.3 Implementation

This section details the necessary steps to implement First-Order Filtering using a

grid-method for computing integrals. The computation for First-Order Smoothing

and Partial Smoothing can be derived similarly. Recall that, in the case of First

Order Filtering, our estimates are given as:

<(tk) = argmaxp (-rk = T 00:k)

We break this distribution into a likelihood and recursive prior:

p (rk 1 O0:k) O P (Ok Tk) P (Tk I 00:k-1)

= p (Ok Tk) P (Tk Tk-1 = ') p (Tk-1 00:k-1) dT'

Previous Distribution p(k-1Tl YO:k-l
)

25n

1000p

500-

-2 -15 -1 -0.5 0 0.5

(a) An example p(7k-1 IOO:k-1).

Previous Distribution p(Tk_1l YI k-1
)

000

Go
CO
.0

a
254W0

200

1 1.5 2

x 10
"

-2 -1.5 -1 -0.5 0 05 1 1.5 2

x 10
"

(b) An example p(k 00:k- 1)-

Figure 3-6: Figure 3-6(a) plots an example posterior distribution at step k - 1. Fig-
ure 3-6(b) plots the prior distribution for the next step, using the bounded-velocity
dynamics.

Likelihood p(ykl'k) Posterior Distribution p('kl YO:k)

(a) An example p (Ok TI k).

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

b x 10

(b) An example p (Tk I o0:k).

Figure 3-7: Figure 3-7(a) plots a likelihood based on observation ok, and Figure 3-7(b)
plots the posterior distribution combining the data in Figure 3-6 and this observation.
The prior information helps suppress spatial aliases.

120

To implement this integral, we quantize the possible levels of TDoA to 2Q +1 separate

levels : {0, L,± 2 i,. .. , Li}. Let's define the probability mass functions:

p(k =MI0:k) (m-i1 P(Tk=-TO0:k)dT m {O0,t±1,+2,...,7±Q}

We can represent each of these PMFs as a vector in R2Q+ 1.

We discretize the integral into a summation:

Q
P (;k = m~ 0o0:k) P (ok Iik = m) p(_k = m I k-1 = m') p (k-1 = m' I 00:k-1)

ml=-Q

Where we define the PMF for the dynamics via a similar quantization.

The likelihood vector, p (Ok I = m), is taken as the exponentiation of the sam-

ples of a discrete time, prefiltered, linear cross-correlation of the sensor signals. Only

the samples corresponding to the range of realizable TDoAs, [-Lie, Lie], are used.

One simple way to choose Q is to set 2Q or 2Q + 1 equal to the number of samples

within the bounds set by the aperture. If this choice of Q does not provide suffi-

cient accuracy, then the cross-correlation can be re-sampled to accommodate finer

quantization levels.

We can also write the computation of the distribution p (i-k I 00:k-1) as a matrix

multiplication. Let II be a matrix in R 2Q+1x2Q+1:

IImm = P (;ik = m I Tik-l = m')

then:

P (?ik I 00:k-1) = H. ' (k-1 I 00:k-1) (3.2)

If we take the bounded velocity prior, explained in Section 3.2.2, as an example, we

arrive at a band-diagonal matrix.

One of the principal bounds on Q comes from the band-diagonal nature of II. If

3We assume throughout that an odd number of quantization levels is used. Without much
modification, 2Q levels can be used instead.

Conditional Distribution p(Tk=Tk Ik_k-1Tk_)

1.5 2
lo**

k o.

Figure 3-8: The conditional distribution p (rk I -rk-1) for bounded velocity dynamics.

Q is chosen to be too small, the band may shrink until II collapses into an identity

matrix. Thus, Q must be chosen sufficiently large to avoid this.

3.3.1 Efficient Computation with Bounded Velocity

Computing this matrix multiplication in (3.2) takes, in general, O(Q2) steps. With

a slight approximation, however, we can compute this update much faster for the

bounded velocity dynamics. Figure 3-8 plots again an example of the conditional

distribution p (rk I Tk-1) for the bounded velocity dynamics. The approximation is

to compute the PMF of the dynamics p (-Fk I 'k-1) by sampling instead of integration,

giving us:

IImm, = p (k = m I-1 k-= m') O Tk = Tk-1

Where we normalize each column of H. We can decompose Hl into the product of

a diagonal matrix, a convolution matrix and another diagonal matrix. As a result,

using the Fast Fourier Transform, we can compute the update in O(Q lg(Q)) steps.

Let W be the maximum width of the matrix band. Note that for a given column

of the matrix H, when computed by sampling, the non-zero elements will all have the

same value. Toward the center columns of the matrix, this value is simply -. For

the first and last column, these values are 1. For the m-th column, let this value
1+ 2

be cm.

We can represent H as another band-diagonal matrix II', whose every non-zero

entry is 1, right multiplied by a diagonal matrix D:

[c, 1

c2Q+1

Examining II', we see that it is the middle rows of the convolution matrix, H E

R2Q+Wx2Q+1, for convolving a vector in R2Q+1 with a constant vector h E RW:

h=[1 1 ... 1]T

We can thus write II in a block matrix form:

II = [0 I2Q+1 0] - H - D

Where each 0 consists of -1 zero columns4 , and I2Q+1 represents the 2Q +1 x 2Q +1

identity matrix.

3.3.2 Overall Asymptotic Performance

Let's review the sequence of steps required to compute a single TDoA estimate using

First-Order Filtering:

1. Compute the cross-correlation.

2. Re-sample the cross-correlation to fit 2Q or 2Q + 1 samples in the bounds set

by the aperture.

3. Multiply the previous posterior distribution by the diagonal matrix D.

4. Convolve this matrix product with the vector h.
4Note that W will always be odd due to the symmetry of II.

5. Select the prior vector from the middle elements of this convolution.

6. Compute the posterior vector by point-wise multiplying the likelihood and prior

vectors.

7. Determine the index of the maximum value of the posterior.

Step 1 will operate on a number of samples proportional to the observation window

duration, Tw, times the sampling rate, fs. Using the FFT, the linear cross-correlation

requires O((Twfs) log(Twf,)) operations. If the signal is up-sampled using an FIR

sinc approximation, step 2 requires only O(Q) time.

Multiplying by the diagonal matrix in step 3 requires O(Q) time. The convolution

in step 4 should require only O(Q lg(Q)) time. Selecting the appropriate elements for

step 5 requires O(Q) time, and the point-wise multiplication of step 6 and selection

of step 7 will likewise require O(Q) time.

The runtime of a single-step of the estimation is thus:

O(Q lg(Q)) + O((Twfs) log(Twfs))

For each estimate First-Order Smoothing requires a second, similar set of opera-

tions, and has the same asymptotic run-time per estimate.

50

Chapter 4

Simulation and Experiment

This chapter describes the simulations and experiments used to verify the performance

of TDoA tracking in comparison to several alternative methods. We contrast the

three methods presented in this work - First-Order Filtering, Smoothing and Partial

Smoothing - with estimates rendered by the Generalized Cross Correlation, as well

as applying a median filter to the GCC's TDoA estimates.

The simulations and experiments are performed for two-dimensional tracking ap-

plications. First-Order Smoothing and Partial-Smoothing generally out-perform the

other methods in low SNR conditions.

4.1 Determining Position

Both in experiment and simulation, we determine position from TDoA by direct

search using the Nelder-Mead simplex method [13]. While a variety of exact and

approximate alternative methods exist ([8],[18],[20]), many assume that the TDoA

estimates computed involve at least one common sensor to every three estimates.

We use the direct search as it is applicable to a more general class of microphone

geometries.

Let P be the set of all pairs of microphones being compared. Recall that je(') is

the function that gives us the TDoA associated with the position '. The estimated

position z is then approximated by the following minimization:

(tk) = argmin (()-i(t))
z (i,e)E-P

That is, we find the position which would result in TDoAs closest to the estimated

TDoAs in a mean square sense. Sometimes, erroneous TDoAs lead to wildly inaccu-

rate positions. For this reason, we constrain the search to a bounding box.

4.1.1 Kalman Filter

In both experiment and simulation, we make use of a simple inertial Kalman filter to

smooth estimated trajectories. In simulation, we present the Kalman filter applied

to the estimates generated by the GCC and median filter as alternatives to TDoA

tracking. To bias these results in favor of the Kalman filter, we generate the simulated

trajectories to match the Kalman filter's model of dynamics, and give the filter access

to the true covariance and mean of the measurement noise. For the experimental

results, ground truth is not available, so we hand-tune the measurement and process

noise covariance to give satisfactory results.

We use the same Kalman filter as [23], which has a simple inertial dynamics and

treats accelerations as process noise. The state vector of the Kalman filter is taken

to be the two dimensional positions and velocities:

q[k] = [(tk)
q[k + 1] = Fq[k] + Ga[k] p[k] = Hq[k] + w[k]

010Ta 02 1200 2 1000
F= G= H=

00 1 0 Ta 0 0100

0 0 0 1 0 Ta

Where Ta is the time elapsed between estimates. The discrete-time process a[k],

whose elements are in R12, is the Gaussian i.i.d. accelerations. In simulations, the

Kalman Filter is given the true disturbance covariance.

4.2 Simulation

This section describes the simulations used to verify the effectiveness of TDoA track-

ing. We compare a variety of TDoA estimation techniques based on the error of the

TDoA estimates and error in the resulting position estimates. The simulation places

the microphones and the moving source in a plane. We examine the error over a

thousand trials. For each trial, randomized microphone geometries, target trajecto-

ries, source signals and noise signals are generated. A wide range of signal-to-noise

ratios and both the Hannan-Thomson (HT) and Phase Transform GCC prefilters (see

Section 2.2.1) are compared. For low SNR, the First-Order Smoothing technique out-

performs the other methods, followed shortly by the First-Order Partial Smoothing.

Though not strictly necessary, the simulation was parameterized as if the discrete

time signals were the result of sampling continuous time signals at a rate of 96 kHz.

Similarly, the locations are described in terms of meters, and the delays in terms of

the speed of sound at sea level; c r0 340.29 was used. The duration of each trial

corresponds to tracking a fast moving source for approximately 1.07 seconds using

non-overlapping windows of approximately 0.02 seconds.

Section 4.2.1 will discuss the methods being compared by these simulations. Next,

Section 4.2.2 will discuss how each random trial is generated. The simulated TDoA

tracking makes use of the bounded velocity dynamics presented in Section 3.2, and

Sections 4.2.3 and 4.2.4 will present the results of the simulation in terms of error

in TDoA estimation and position estimation when the velocity bound is satisfied.

Finally, Section 4.2.5 will discuss the performance of TDoA tracking when the velocity

bound is violated.

4.2.1 Methods Being Compared

Six sets of TDoA estimates are compared for each trial. First, a quantization of

the true TDoA to the sample level is generated as a baseline for comparison. The

three methods proposed in this thesis (First-Order Filtering, Smoothing and Partial

Smoothing) are computed. Each of these methods makes use of the bounded-velocity

prior on the TDoA dynamics, with a maximum velocity vma = 1m (see Section 3.2.2).

For the TDoA tracking algorithms, we quantize the possible TDoAs to the sampling

rate. Thus, the resolution of the TDoA estimates varies with the aperture of the

microphone pair.

These methods are compared to the TDoA estimates given by the Generalized

Cross Correlation. Also, another dataset is generated by passing the GCC estimates

through a nine-tap non-causal median filter. This median filter acts as a nonlin-

ear, constant-time preprocessor to attempt to remove transient errors in the TDoA

estimates.

Two measures of estimate quality are used. First, the root mean square error of the

TDoA estimates is computed. Next, the TDoA estimates are used to generate position

estimates, and the root mean square error of the position estimates is computed.

For comparing accuracy in the final position estimates, we also compare the TDoA

tracking techniques to applying a Kalman filter to positions estimated by the GCC

and median filtering techniques. Our trial trajectories have been generated to corre-

spond to this model. Section 4.1.1 describes the model.

4.2.2 Trial Generation

The simulation consists of 1,000 trials. Each trial consists of 102,400 samples of

a simulated target trajectory and acoustic signal. The acoustic signals are broken

into 50, 2048 sample windows, rendering 50 TDoA estimates and a corresponding 50

position estimates.

Each trial consists of an independent trajectory, randomized microphone geome-

try, and noise and source signals. In what follows, we describe the choices for gener-

ating each of these elements of the simulation.

Signal Generation

Recall from Section 2.1 that our signal model is given as:

xi(t) = a (t)y(t - T (t)) + wi(t)

The source signal y(t) is modeled as shaped white noise. A Gaussian i.i.d. se-

quence of samples was generated and passed through an 8th-order IIR Butterworth

modeling filter. The filter bandwidth is equivalent to 500 Hz with a center frequency

of 750 Hz. The noise signals are uncorrelated Gaussian i.i.d. noise processes. A

variety of SNRs are compared in the experiment.

The attenuation factor, ai(t) is modeled as accurately as machine precision allows.

The time of arrival, Ti(t), was rounded to the nearest sample. Given the relatively

large aperture used in this experiment, this quantization is not expected to have a

noticeable effect on the results.

Prefiltering

Two prefilters for the Generalized Cross Correlation are compared. The first is the

approximate Phase Transform composed with a "brick-wall" filter from approximately

100-2000 Hz. The second filter is the HT prefilter. For the HT prefilter, we do not

assume a priori knowledge of the attenuation, and instead normalize the power of the

GCC.

Microphone Array Geometry

The simulated sensor array consists of 8 pairs of distinct sensors. Only two distinct

pairs are required to generate a unique position estimate. However, additional mi-

crophone pairs provide redundancy and robustness to noise. For each trial run a new

geometry was generated. The first microphone of each pair was placed with uniform

probability in the square with corners (-1, -1) and (1, 1). A random orientation was

then chosen, and a second microphone was then placed on a ray emitting from the

first in that direction. The aperture of each microphone pair was chosen uniformly on

the interval [0.4, 0.8] meters. Figure 4-1 plots an example geometry and trajectory.

Example Microphone Geometry and Trajectory
1, ...

5

0H

5-

-1 -0.5 0 0.5 1 1.5
Horizontal Position

Figure 4-1: An example randomly generated microphone array geometry. Black cir-
cles indicate sensors, blue lines indicate the sensors are a pair. The red line indicates
an example trajectory.

Trajectory Generation

The sample trajectories, F(t), were chosen to allow for easy comparison to a Kalman

filter. The initial position and velocities of these trajectories were chosen to be sam-

ples from independent Gaussian distributions. For each trajectory a sequence of 50

Gaussian i.i.d. accelerations were generated for the acceleration of both dimensions

of the source. A 2048 point zero-order hold was then used to extend the sequence

of accelerations over the duration of the simulation. These accelerations were then

integrated to give the actual trajectory.

TDoA Estimate 0.5 = 1.6809e-05
x10

2[

2
10

"

2r

0.5

o -0.5

-1

-2

1 2 3 4 5 6 7
Time (s)

(a) - - 10 - 4 .7

-2.5'
0 1 2 3 4 5 6 7 8 9 10

Time (s) xl'

(b)V 10- 4

TDoA Estimate Eo5 = 0.00058164

Time (s) xlto

(c) V/ 10-3.2

Figure 4-2: True (dashed) and estimated (solid) TDoAs for various levels of error.

4.2.3 Comparison of TDoA Estimate Error

This section describes the results of these trials in terms of TDoA error. To compare

multiple SNRs, we measure the TDoA error by the root mean square error across all

estimates. Let n + 1 be the number of observations in each trial (here 50), and P be

the set of P pairs of microphones being compared. Then the error e, is measured as:

S= E E (Tit(tk) - ie t)) 2

k= 0 (i,)E -

To give some intution for what various levels of error correspond to, Figure 4-2 plots

the estimated and true TDoA evolutions for root mean square errors of three different

orders of magnitude.

TDoA Estimate s0.5 = 9.4417e-05

i i
i i

~- ~'----- -------- IZ=-l=~=-t_______-----,,, :'':

9 10

X 10
4

o

We compare the methods based on the root mean of the error term over all

trials. Results using both the Hannan-Thompson (HT) and Phase Transform (PHAT)

prefilters were computed over a range of SNRs1 .

Figure 4-3 compares the mean square errors of the GCC, the GCC placed through

a median filter and the Bayesian filtering methods presented in this work. For low

SNR, the First-Order Smoothing and Partial Smoothing methods significantly out-

perform the alternatives. As a baseline, the error due to quantizing the TDoA to the

sample level is presented. The HT prefilter displays a distinct threshold signal-to-

noise ratio at which the error increases dramatically, as predicted by [26]. For high

signal-to-noise ratio, the median filter slightly distorts the already accurate GCC

estimates, and barely under-performs the GCC. At the threshold SNR the median

filter begins outperforming the GCC, removing occasional errors. Above the thresh-

old SNR both the GCC and median filter out perform the TDoA tracking methods.

Section 4.2.4 will compare these same results in terms of position error, and show

that this difference in TDoA error does not translate into a significant difference in

position error. A very similar structure, without the sharp threshold, is exhibited

by the PHAT prefilter simulations. As expected, First Order Partial Smoothing out-

performs First-Order Filtering by removing early transients. First-Order Smoothing

provides the most marked improvement at low SNRs.

Figure 4-4 presents histograms of the TDoA error for estimates from the GCC,

median filter, First-Order Filtering and First-Order Smoothing at the SNR of ap-

proximately 10-3.1 using the HT prefilter. These histograms are taken over all the

estimates made over all of the trials for this SNR. The GCC error exhibits multiple

modes, as expected due to spatial aliases. Secondary and tertiary aliases give the

distribution heavy tails. The median filter successfully rejects of these heavy tails,

but actually exacerbates the primary aliases. First-Order Filtering and Smoothing

suppress these aliases successfully for this SNR.

'The SNR is calculated over the pass-band of the source signal's modeling filter.

TDoA Error Comparison (HT Filter; f = 750 Hz)

SNR

(a) HT Filter

TDoA Error Comparison (PHAT Filter; f = 750 Hz)
C

SNR

(b) PHAT Filter

Figure 4-3: Comparison of mean square TDoA estimate error across all trials for
various SNR levels, and both the PHAT and HT prefilter.

4.2.4 Comparison of Position Estimate Error

This section describes the results of these trials in terms of error of estimated position.

Recall that we determine the estimated positions, 5 (tk) using the Nelder-Mead opti-

mization as described in Section 4.1. We constrain the search to a similar rectangle

Histogram of GCC Estimate TDoA Error

10 I
10,

lo,

10,

-4 -2 0 2 4

TDoA Error (s) x 1o'

(a) Histogram of GCC Error

Histogram of First-Order Filtering TDoA Error

-6T A 4 -2 0

TDoA Error (s)

Histogram of Median Filter TDoA Error

10'

1o

to

-6 -4 -2 (

TDoA Error (s)
2 4 1

X10
-

(b) Histogram of Median Filter Error

Histogram of First-Order Smoothing TDoA Error

0
TDoA Error (s)

4 6

x 10'

(c) Histogram of First-Order Filtering Error (d) Histogram of First-Order Smoothing Error

Figure 4-4: Histograms of the TDoA prediction error for the GCC, Median Filter,
First-Order Filtering and First-Order Smoothing, at the SNR _ 10-3 1 and using the
HT prefilter. The number of estimates with a particular error are plotted on a log
scale.

60

lo

io

Position Estimate E.5 = 0.043434

- - -X ground truth "'
---Y ground truth
- X estimate 'N.
- Y estimate

Time (s)

(a) V ,- 10-1.4

8 9 10

x 10,

0.55

0.5

0.45

0.4

0.35

0 0.3

0 0.25

0.2

0.15

0.1

Position Estimate O = 0.30817

- - -X ground truth
- -Y ground truth

- X estimate
- Y estimate

0.5

0.45

0.5

0.3

.2

o.2

(b) V 10- 0.5

Position Estimate E 5 = 1.4279

6 8 10 12
Time (s) 10o'

(c) v- ' 100.15

Figure 4-5: True and estimated positions for various levels of error.

to the bounding box of the microphone array geometry, with three times the width

and height. We summarize the error for multiple SNRs using the mean square error

across all estimates. Again, n + 1 is the number of observations in each trial. Then

the error Ec is measured as:

E - I 1 (tk)- (tk)I12

k=O

We take the root mean of this error term over all the trials for both the HT and PHAT

prefilters to compare the different position estimates. Figure 4-5 plots the estimated

and true trajectories for errors of three different orders of magnitude.

Figure 4-6 plots the mean square errors over all trials for the GCC, median filter

61

0 1 2 3 4 5 Ti 7
Time (s)

I
a 9 10

x 10'

and tracking methods. We also take the quantized TDoAs from Section 4.2.3 and

use them to predict positions; note that, unlike in Figure 4-3, this line no longer

represents an optimum. Similar relationships are observed as when comparing the

TDoA errors, though for high SNR the methods do not show dramatic differences in

accuracy.

Figure 4-7 plots histograms of the position error over all trials and both dimen-

sions, again for the SNR of approximately 10-3"1 and the HT prefilter. The median

filter's rejection of the heavy tails of TDoA error appears to translate to rejection

heavy tails in position error. However, the First-Order Filtering and Smoothing

clearly out-perform either, with a sharp peak near zero error.

We now compare the TDoA tracking methods to the GCC and median filter po-

sition estimates passed through a Kalman filter. Recall that the target trajectories

were generated to match the Kalman filter's motion model, and the true measure-

ment noise covariance and mean are given to these filters. We also plot the result

of Kalman filtering the position estimates from the quantization of the true TDoAs.

For high SNRs, the noise is in fact unimodal, and this prescient Kalman Filter per-

forms extremely well. First-Order Smoothing outperforms the Kalman filter, near

the threshold region of SNRs. The Kalman Filter prevents the error from exploding;

the error levels off at ez - 100. It is worth noting that this level of error corresponds

to an already wildly inaccurate estimate (see Figure 4-5 on Page 61).

Position Error Comparison (HT Filter; f = 750 Hz)

Quantized
-- GCC
---- Median Filter
- TDoA Filtering
--- TDoA Partial Smoothing

- - TDoA Smoothing

SNR

(a) HT Filter

Position Error Comparison (PHAT Filter; f = 750 Hz)
C

- Quantized
-e- GCC
--- Median Filter
--- TDoA Filtering
--- TDoA Partial Smoothing

- - TDoA Smoothing

10
-
' 10

-
10

-1

SNR
10

o
10,

(b) PHAT Filter

Figure 4-6: Comparison of mean square position error across all trials for various
SNR levels, and both the PHAT and HT prefilter.

E

w
i00

0)

CUO
0)

10

0
nE

E

0

COL,

C
CISo
0

0cc

Histogram of GCC Estimate Position Error

-5 -3 -2 -1 0 1 2 3 4

Position Error (m)

(a) Histogram of GCC Error

Histogram of First-Order Filtering Position Error

Position Error (m)

(b) Histogram of Median Filter Error

Histogram of First-Order Smoothing Position Error

1o"

to'

-5 4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5

Position Error (m) Position Error (m)

(c) Histogram of First-Order Filtering Error (d) Histogram of First-Order Smoothing Error

Figure 4-7: Histograms of the position estimate error for the GCC, median filter,
First-Order Filtering and First-Order Smoothing, for the SNR - 10-3.1 and the HT
prefilter. The number of estimates with a particular error are plotted on a log scale.

iIAI Il htf li*... i

Histogram of Median Filter Position Error

Position Error Comparison (HT Filter; f = 750 Hz)

- Quantized
-A-- TDoA Filtering
- - - TDoA Smoothing
-v- TDoA Partial Smoothing
....... Quantized+KF
-e- GCC+KF
-+- Median Filter+KF

101

E

LI2 o

r

10

ELL!wa)

t-

C,,C
C

a)
10

0

0 1010,

2o
w

a-CTC
a)

10'

0

(a) HT Filter

Position Error Comparison (PHAT Filter; f = 750 Hz)
C

Quantized
-A-- TDoA Filtering
- - - TDoA Smoothing
-- TDoA Partial Smoothing
....... Quantized+KF
-e- GCC+KF
-+- Median Filter+KF

10
3

10
-2

10'
SNR

(b) PHAT Filter

Figure 4-8: The positions estimated by the TDoA tracking methods compared to the
Kalman filter applied to GCC and median filter estimates. The Kalman filter is given
the true error covariance and mean, accounting for the large shift down in error.

10 10 10' 10 10,

SNR

10 L

10
4

3500 3500

000in this second set of simulations the assumed bound of 130 is often violated.

2500 2500

10o0 1000Figure 4-10(a) plots the error over various SNR to be compared with

500 500

Figure 0.5 1 1.5 2 23 on5 4Page 59.5

Speed (m/s) Speed (m/s)

Figure 4-9: Histogram of the speeds attained by the trajectories of the two simula-
tions. The histograms plot the number of ground truth samples which achieve any
given speed. Figure 4-9(a) presents the speeds of the simulation results presented
earlier in this chapter. A second run generated the speeds plotted in Figure 4-9(b);
in this second set of simulations the assumed bound of 100.29, is often violated.

S

4.2.5 Velocity Bound Violation

The previous results were obtained using the bounded velocity dynamics, assuming

bound is. Figure 4-9(a) plots a histogram of the velocities actually attained during

the thousand trials; for this data-set the velocity bound was very rarely violated.

To explore what happens when that bound is violated, a second simulation was run

multiplying the acceleration process noise, a[k], by four. Figure 4-9(b) plots the

histogram of speeds across the trials of this second experiment. The accuracy of the

TDoA tracking estimates were dramatically affected by these occasional violations of

the bounds. Figure 4-10(a) plots the error over various SNR to be compared with

Figure 4-3 on Page 59.

Figure 4-10(b) plots the position error results, to be compared with Figure 4-6 on

Page 63. Surprisingly, the accuracy of position estimates was affected much less by

the velocity bounds being violated. For example, at the SNR of 10, the TDoA error

is worse by an order of magnitude, whereas the position error is worse by a fraction

of that. To explore this relationship at the SNR of 10029, we plot the TDoA error

histograms for the GCC and First-Order Smoothing in Figure 4-11. When the velocity

bound is violated in this way, First-Order smoothing introduces multi-modal error in

Histogram of Trajectory Speeds Histogram of Trajectory Speeds

the TDoA estimates. This leads to heavier tails in the position estimate errors.

4.2.6 Discussion

When the bounded velocity model closely matches the motion of the target, First-

Order Smoothing and First-Order Partial Smoothing outperform the GCC and the

median preprocessor for low SNR both in the measures of TDoA and position error.

They also outperform First-Order Filtering, but Smoothing provides only a marginal

gain over Partial Smoothing. This indicates that most of the error in First-Order

Filtering comes from an uninformative prior, which Partial Smoothing corrects (see

Section 3.1.3). Plots of the position error shed a particularly favorable light on these

two tracking techniques. The Kalman Filter out performs the TDoA tracking tech-

niques, but only for high SNR. Despite having knowledge of the mean of the error,

the Kalman filter still underperforms TDoA tracking for low SNR.

The quality of the TDoA estimates rendered by TDoA tracking with bounded

velocity dynamics degrades seriously as the bound is violated. However, the position

estimates seem to degrade to a lesser degree. We conjecture that, as mentioned in

Section 3.2.2, it is uncommon for the violation of the bound to effect more than one

microphone pair at a time. As a result, when a single estimate fails, the redunant

information available due to the presence of 8 pairs of microphones helps suppress

errors.

TDoA Error Comparison (PHAT Filter; f = 750 Hz)
C

SNR

(a) TDoA Error

Position Error Comparison (PHAT Filter; f = 750 Hz)
C

101

- Quantized
-e- GCC
-*- Median Filter
-- TDoA Filtering

SI-- TDoA Partial Smoothing

10 - - - TDoA Smoothing

; 10

102
10

4
10'

SNR

(b) Position Error

Figure 4-10: Comparison of mean square TDoA error and position error using the
PHAT filter across all trials when the velocity bound being violated. The dashed line
indicates the SNR used for the histograms in Figure 4-11.

Cl)
10

0
w
a,L-
ca
U 10

C,
(O

o 10
M

Histogram of GCC Estimate TDoA Error

TDoA Error (s)

(a) Histogram of GCC TDoA Error

Histogram of First-Order Smoothing TDoA Error

Histogram of GCC Estimate Position Error

10"

10 -4 -2 -1 1 2 3 4

Position Error (m)

(b) Histogram of GCC Position Error

Histogram of First-Order Smoothing Position Error

4 -2 0 2 4 6

TDoA Error (s) x 10' Position Error (m)

(c) Histogram of First-Order Smoothing TDoA (d) Histogram of First-Order Smoothing Position
Error Error

Figure 4-11: Histograms of the TDoA and position prediction error for the GCC and
First-Order Smoothing with the velocity bound being violated (SNR = 100.29, PHAT
prefilter). TDoA tracking introduces aliases into the TDoA errors and heavier tails
in position errors. The number of estimates with a particular error are plotted on a
log scale.

Table 4.1: Experimental Microphone Geometry
Microphone X Y

1 0 0.76
2 0 0.38
3 0.32 0.03
4 0.6 0.03
5 1.02 0.38
6 1.02 0.76

Table 4.2: Experimental Microphone Aperture
Pair (3,4) (1,2) (5,6) (2,3) (4,5)

Aperture (meters) 0.279 0.381 0.381 0.478 0.55
Quantization Levels 158 215 215 269 311

4.3 Experiment

This section describes a series of experiments which demonstrate a real-world appli-

cation of TDoA tracking. The experiments attempt to recover a stroke written on

a chalk-board based on the acoustic emissions the chalk makes during writing. This

toy human computer interface was inspired by the tap-based interfaces of [10] and

[17]. Part of this work was done concurrently to the tracking research performed in

[19]. These previous works sensed vibration in a surface. This experimental setup

senses the acoustic emission through the air.

4.3.1 Setup

Figure 4-12 is a picture of the chalk-board and microphone array. Six microphones

are placed on a metal frame around the edge of the chalk-board. The geometry of the

array is given in Table 4.1. Two microphones are placed on each of the left, right and

bottom bars of the frame. These electret microphones are biased, and the resulting

signals are amplified, then sampled at 96 kHz by an off-the-shelf sound-card. The

five microphone pairs with the smallest aperture are used to calculate TDoAs. Their

apertures are given in Table 4.2. Each sketch is drawn in the box whose chalk outline

is visible in Figure 4-12(a), and whose corners are approximately (0.3, 0.48) meters

and (0.68, 0.76) meters in the coordinates of the microphone geometry.

(a) The chalk-board and microphone array.

Figure 4-12: The experimental apparatus. Six microphones line the edges of a chalk

board. The experiments consist of short, single-stroke sketches being drawn on the

board.

Cross correlations were computed from a 2048 sample window (Tw 0 21.3 ms).

The advance between TDoA estimates is a constant 512 samples (tk - tk-1 = Ta .% 5.3

ms). The frequency content of the chalk's acoustic emissions depends on many factors,

including the speed of the stroke, the shape of the edge of the chalk, the density of the

chalk, and position of contact with the board. However, we observe that a majority

of the chalk's acoustic energy lies between 1 kHz and 10 kHz. For these reasons, we

use an approximate PHAT filter combined with a 1 kHz to 10 kHz bandpass filter for

the Generalized Cross Correlations.

First-Order Smoothing is performed using the bounded velocity dynamics with

v,,ax = 1. For this smoothing, the TDoA was quantized to the sample level (i.e. to

1 s). The quantization levels for each pair are also given in Table 4.2. We contrast

the trajectories generated by this smoothing to those generated by the GCC and a

33-tap non-causal median filter applied to the GCC's TDoA estimates. Positions

are rendered from TDoA by the Nelder-Mead optimization described in Section 4.1,

constrained to the bounding box of the microphone array geometry.

(b) A single microphone and mount.

4.3.2 Results

Figures 4-13,4-15, 4-16, and 4-17 provide representative tracking comparisons, demon-

strating different features of the methods being compared. A photograph of the true

stroke is presented alongside the estimated trajectories from the GCC, median fil-

ter, and First-Order Smoothing. Also plotted are the results of applying the inertial

Kalman filter, described in Section 4.1.1, with hand-tuned process and measurement

noise covariances. The same tracking and Kalman filtering parameters were used for

all of these figures.

Figure 4-13 provides an example where the GCC provides poor estimates for the

majority of the stroke. Figure 4-14 plots consecutive Generalized Cross Correlations,

and First-Order Smoothing Posteriors for a single microphone pair observing this

stroke, along with estimates rendered by the methods being compared. In Figure 4-

14(a) we see a pattern of "salt" noise - different aliases dominant at different times.

The median filter rejects much of this aliasing, as shown in Figure 4-14(b), but fails

momentarily at around 1.5 seconds. This example demonstrates the GCC having

heavy tails, and the median filter exaggerating the error due to the primary spatial

aliases, as our simulations predicted in Figure 4-4 on Page 60.

By contrast, First-Order Smoothing rejects the aliases consistently. Notice, how-

ever, that First-Order smoothing fails at the sharp corners in the stroke. The chalk

briefly stops at these corners, and the acoustic signal disappears. In Figure 4-14(c),

at around 3.5 seconds, we see the uncertainty of the TDoA increase, as the posterior

briefly widens. In Figure 4-13(c) we see that the position estimates have increased

variance at the corners of these sharp transitions. The Kalman filter helps smooth

these corners. Figure 4-15 provides an example where this uncertainty does not arise

for every corner. In this example, we also see that the Kalman filter's smoothing can

undesirably distort and remove sharp edges. Notice that the median filter does not

display this added variance at sharp corners. It does, however, significantly distort

the overall shape of the stroke in these regions.

By contrast, Figure 4-16 provides an example where the GCC provides slightly

Median Filtered Result

Horizontal Position (m)

(a) GCC Estimates (b) Median Filter Estimates (c) First-Order Smoothing Esti-
mates

(d) Kalman Filter Applied to (e) Kalman Filter Applied to
GCC Estimates Median Filter Estimates

Horizontal Position (in)

(f) Kalman
First-Order
mates

Filter Applied to
Smoothing Esti-

(g) Photograph of Stroke (0.37 x 0.28 m)

Figure 4-13: A comparison of tracking results for a single stroke (duration 5.67 sec-
onds). The Kalman filter does not recover a meaningful trajectory from the raw GCC
estimates. Even after a median filter preprocessing, spatial aliasing seriously distorts
the resulting estimates. First Order Smoothing performs well both with smooth mo-
tions, and abrupt changes in direction.

TDoA Tracked ResultGCC Result

Consecutive GCC Estimates for Pair (1 .2

• -0.2

0a o
0.2

0.4

0.6

0.8

Time (s)

(a) GCC Estimates

-0.8

-0.4

402

o0
0

1 1.5 2 2.5 3

Time (s)

(b) Median Filter Estimates

x ,o
-

Consecutive Posteriors for Pair (1,2)

0.5 1 1.5 2 2.5 3 35 4 4.5 5

Time (s)

-0.4

-0.2

0

02

0.4

0.6

0.8

LIJ
0

Time (s)

(c) First-Order Smoothing Posteriors (d) First-Order Smoothing Log-Posteriors and
Estimates

Figure 4-14: A comparison of the TDoA estimates rendered from microphone pair
(1,2), during the stroke in Figure 4-13. Figures 4-14(a) and 4-14(b) overlay the
GCC and median filter estimates respectively on top of an image plotting consecutive
GCCs. Figure 4-14(c) plots the posterior distributions of First-Order Smoothing.
Figure 4-14(d) plots the log-probabilities of Figure 4-14(c) for easier comparison to
the consecutive GCCs.

74

-1

-0.8

-0.6

-0.4

0

- 0.2

0.4

0.6

0.8

TDoA Tracked Result

(a) GCC Estimates (b) Median Filter Estimates

Kadman Fllter of Median Fttered Results

Horizontal Posltion (m)

(c) First-Order Smoothing Esti-
mates

Kalman Filtered of TDoA Tracked Result

. HorintPotion (m)

Haozontal Poasition (m)

(d) Kalman Filter Applied to (e) Kalman Filter Applied
GCC Estimates Median Filter Estimates

to (f) Kalman
First-Order
mates

Filter Applied to
Smoothing Esti-

(g) Photograph of Stroke (0.37 x 0.28 m)

Figure 4-15: A comparison of tracking results for a single stroke (duration 2.66 sec-
onds). The Kalman filter applied to the GCC estimates fails to recover the stroke,
and the median filter fails on the earliest portion of the trajectory.

Median Filtered Result

more reasonable estimates; the rough shape of the figure is visible, and can almost

be recovered by the Kalman filter. Again, the median filter fails momentarily. Notice

also that the Kalman filter exaggerates the radius of these stroke. The ad-hoc "in-

ertial" model leads to this distortion. Figure 4-17 provides another example where

the Kalman filter exaggerates features of the stroke. Here the last two loops are

momentarily tangent, where they are not in the true stroke, or pre-Kalman filter

estimates.

Median Filtered Result

Horizontal Position (m)

(a) GCC Estimates

Kalman Filter of GCC Result

Horizontal Position (m)

(b) Median Filter Estimates

Kdman Filter of Medan Filtered Results

Horizontal Position (m)

(d) Kalman Filter Applied to (e) Kalman Filter Applied to
GCC Estimates Median Filter Estimates

TDoA Tracked Result

Horizontal Position (m)

(c) First-Order Smoothing Esti-
mates

Kalman Filtered of TDoA Tracked Result

Horizontal Position (m)

(f) Kalman Filter Applied to
First-Order Smoothing Esti-
mates

(g) Photograph of Stroke (0.37 x 0.28 m)

Figure 4-16: A comparison of tracking results for a single stroke (duration 5.01 sec-
onds). The Kalman filter recovers some of the general shape from this stroke, and
the median filter preprocessing performs well for all but a short interval of estimates.
First-Order Smoothing performs well for the entire trajectory. In the median filter
plots, the outlying estimate toward the bottom right corner is due to a lack of signal
at the beginning of the recording.

TDoA Tracked Result

Horizontal Position(m)

(a) GCC Estimates

Kalman Filter of GCC Result

Horizontal Position (m)

(b) Median Filter Estimates

Kalman Filter of Median Filtered Results
.no .

Horizontal Position (m)

(c) First-Order Smoothing Esti-
mates

Kalman Filtered of TDoA Tracked Result

(d) Kalman Filter Applied
GCC Estimates

to (e) Kalman Filter Applied
Median Filter Estimates

to (f) Kalman
First-Order
mates

Filter Applied to
Smoothing Esti-

(g) Photograph of Stroke (0.37 x 0.28 m)

Figure 4-17: A comparison of tracking results for a single chalk stroke (duration
2.73 seconds). The median filter performs well when the target remains toward the
center of the tracking area. However, First-Order Smoothing provides more consistent
results. In both cases, the inertial Kalman filter exaggerates the loops significantly.

GCC Result

Chapter 5

Contributions and Future Work

This work revisits the improvement of narrow-band passive acoustic tracking by indi-

vidually tracking the time difference of arrival for each pair of sensors in an array. I

present a new model for TDoA evolution based on bounding the velocity of the target

being tracked. This model, combined with first-order Markov assumptions, allows for

an efficient form of exact marginalization with an asymptotic runtime of O(Q lg(Q)),

where the TDoA is quantized to one of Q levels (see Section 3.3).

I compare through simulation the TDoA and position estimates rendered by this

TDoA tracking to the estimates generated by the Generalized Cross Correlation and

a median filter preprocessor. When the velocity bound is accurate, this TDoA track-

ing provides greatly improved performance for low SNRs (see Section 4.2). Error

histograms support that this performance gain was due to the rejection of spatial

aliases, and the experimental data agrees with these histograms. For a range of low

SNRs, TDoA tracking out-performs a Kalman Filter of these alternative position es-

timates, even when this filter is given the true error mean and covariance. When the

velocity bound is frequently violated, the performance of this TDoA tracking method

degrades. However, the quality of position estimates degrades substantially less than

that of the TDoA estimates.

I provide real-world verification of TDoA tracking via an experimental apparatus

(see Section 4.3). Using a six microphone array, TDoA tracking legibly recovered

strokes on a chalk-board. Thought quantitative ground-truth is not available, TDoA

tracking provides a serious qualitative improvement over the GCC, median filter pre-

processing and Kalman filtering. The experimental results also demonstrate that

TDoA tracking composes well with Kalman filtering.

TDoA tracking provides improved tracking performance using parallel computa-

tion which relies only on local information. As a result, these methods hold great

promise for application to sensor networks. Sensor networks have the requisite par-

allelism, and benefit from algorithms which use only local information due to the

communication-rate limitations. TDoA tracking could facilitate the use of sensor

nodes with larger apertures, or sensor nodes with single microphones and dynami-

cally selected pairs, as in [23].

Future work will explore the relationship between array geometry and robustness

to violation of velocity bounds. In sensor networks, this information could be used to

refine sensor selection. I will also explore combining the bounded velocity model of

this work with the constant gain structure of Bethel and Rahikka [3] to allow for looser

restrictions on TDoA evolution. Finally, the development of efficient, second-order

Markov models has shown promise in early investigation.

Appendix A

Simulation and Experiment Code

This Appendix contains the Matlab® code used for both the simulations and exper-

iments.

band_passmodeled_noise.m
% band.pass.modelednoise (N,fs ,start, stop)

% Constructs a source signal; white-noise passed through a

% bandpass modeling filter.

% N - half the number of samples.

% fs -- sampling frequency.

% start - start of pass-band.

% stop -- stop of pass-band.

% [s] = band-pass.modeled-noise(N,fs ,start ,stop);

% s - [2N 1] source signal.

function [s, b, a] = band.pass.modeled.noise (N, fs , start ,stop)

ps = randn(2*N,1);

[b,a] = butter(4,[start/(fs/2) stop/(fs/2)], 'bandpass');

s = filter(b,a,ps);

s = N*(2*(stop-start)/fs)*s./sqrt(sum(s'*s));%sum((omegas >= 1000).*(omegas <= 3000));

end

comparesdoasmoothing_brackets.m
% compare-sdoa-smoothing.brackets (-to.m , Is , pairs , z, Tw, Ta, fs , c , ...

% sigbands , nRs, psis , wf, medK, pTs,pDs,fbK)

% Compares several TDoA estimation techniques over a range of apertures

% and signal/noise/filter conditions. See compare-sdoa.smoothing.

% l.to-m -- (1 -> DxM)

% Given length scale , return positions of M microphones in D dimensional space

% Is -- lxL A number of apertures (length scales) to compare.

% pairs -- 2xP

% Indicies of microphones to compare (each elt. in (1..M), no column

% with identical numbers.

% z -- KxD

% Trajectory to track.

% Tw -- Periodogram window duration (s).

% To -- Advance between windows (s).

% fs -- sampling rate (Hz)

% c -- speed of sound

% sigbands -- Fx2 Bandpass parameters for signal source.

% nRs -- Frl Variance of noise.

% psis -- LxF Cell of GCC spectral weight functions (see psiht mn)

% wf -- Periodgram window function (e.g. @hann).

% medK -- Median Filter Order

% pTs -- Transition matrix for bounded velocity dynamics.

% fbK -- Point at which to execute partial smoothing.

% Returns:

% shat -- LxF For each aperture and SNR condition , the result of

% compare-sdoa-umoothing .

% zgt -- DxW Ground Truth for z from the center of each window.

% sgt -- PxW Ground Truth for SDoA from the center of each winow

% sdoalis -- GCC Evolution

function [shat ,sgt , zgt] = compare-sdoa-smoothing-brackets (lto.m , Is , pairs , z, Tw, Ta, fs , c ,

sigbands , nRs, psis , wf, medK, pTs,pDs,fbK)

L = size(ls ,2);

F = size(sigbands ,1);

if nargin < 16

fbK = 1;

end

shat = cell (L,F);

sgt = cell(L,1);

zgt = cell(L,1);

for 1 = 1:L

m = lto.m(ls());

for f = 1:F

[shat{l,f},sgt{l},zgt{l}] = compare-sdoa-smoothing(m, pairs, z, Tw, Ta, fs, c ,

sigbands(f,:), nRs(f), psis{l,f}, wf, medK,

pTs{1 } ,pDs{ 1 } ,fbK);

end

end

end

comparesdoa_smoothing.m
% comparesdoa-smoothing (m, pairs , z, Tw, Ta, fs , c, ...

% sigband , nR, psi, wf, medK, pT,pD,fbK)

% m -- DlxM

% Positions of M microphones in D dimensional space

% pairs -- 2xP

% Indicies of microphones to compare (each in (1..M), no column

% with identical numbers.

% z -- KxD

% Trajectory to track.

% Tw -- Periodogram window duration.

% Ta -- Advance between windows.

% fs -- sampling rate

c -- speed of sound

% sigband -- [Wstart Wstop] Bandpass parameters for signal source

% nR -- variance of noise

% psi -- GCC spectral weight function (see psi.ht .m)

% wf - Periodgram window function (e.g. @hann)

% medK -- Median Filter Order

% pT -- {P 1} cell of transition matricies for bounded velocity dynamics.

% Returns:

% There are S=6 strategies right now:

% (1) Quantize the ground truth.

% (2) GCC maximum.

% (3) Median Filter of (2).

% (4) First-Order Filtering

% (5) First-Order Smoothing

% (6) First-Order Partial Smoothing

% zhat -- DxWxS Estimates of z from the W windows for the three methods.

% shat -- PxWxS Estimates of the Sample difference of arrival for the

% three methods.

% zgt -- DxW Ground Truth for z from the begining of each window.

% sgt -- PxW Ground Truth for SDoA from the beginning of each winow

function [shat ,sgt ,zgt ,sdoa-lis ,pL,pP,pLP] = compare-sdoa.smoothing (m, pairs , z, Tw, Ta, fs , c

sigband , nR, psi , wf, medK, pT,pD,fbK)

% Isolate parameters

D = size(m,1);

M = size(m,2);

P = size(pairs ,2);

K = size(z,1);

us = 1;

if nargin < 15

fbK = 1

end

% Generate signals

s = band.pass.modeled-noise (2*K, fs ,sigband(1), sigband (2));

x = positions.and-source-to-sensors(m,z,s,nR,fs ,c);

sgt = (fs/c)* positions-to-ddoas (m, pairs ,z');

% Compute GCC

dmax = pairs-to-distances (m, pairs);

sdoa-lis = recording-to-sdoa-log-likelihoods.ab (x, pairs ,dmax,Tw,wf,wf,Ta,fs ,c,us,psi);

% Sample out the Ground Truth

K = size(sdoa-lis {1} ,2);

advance = Ta* fs;

sgt = sgt ((0:K-1)*advance+l + advance/2 ,:);

zgt = z((0:K-1)*advance+l + advance/2 ,:)';

% Make Sample Difference of Arrival Estimates

shat = zeros([size(sdoa_.lis{1},2) P 6]);

% Quantization

shat(: ,: ,1) = round(sgt);

% Just GCC maximized

shat (: ,: ,2) = sdoa.distb..to-max (m, pairs , sdoalis);

% Median Filter

shat (: ,: ,3) = medfiltl (shat (: ,: ,2) ,medK);

[pL,pP,pLP] = first.difference-map (m, pairs , sdoa-lis ,pT,c, fs*us ,pD,fbK);

% Forward

shat (: ,: ,4) = sdoa_distbto-max (m, pairs ,pL);

% Forward-Backward

shat (: ,: ,5) = sdoadistb-to.max(m, pairs ,pP);

% Forward-Back the front up.

shat (: ,:,6) = sdoa-distbto-max (m, pairs ,pLP);

end

compare_tracking_brackets.m
% m -- DxM

% Positions of M microphones in D dimensional space

% pairs -- 2xP

% Indicies of microphones to compare (each elt. in (1..M), no column

% with identical numbers.

% z -- KxD

% fs -- sampling rate

% c -- speed of sound

function [zhat] = compare-trackingbrackets(m, pairs ,shat ,c,fs)

L = size(shat ,1);

F = size(shat ,2);

zhat = cell(L,F);

for I = I:L

for f = 1:F

[zhat { 1 , f })] = compare-tracking (m, pairs , shat { 1 ,f } ,c , fs);

end

end

end

compare_tracking.m
% m -- DxM

% Positions of M microphones in D dimensional space

% pairs -- 2xP

K Indicies of microphones to compare (each elt. in (1..M), no column

% with identical numbers.

% z -- KxD

% fs -- sampling rate

% c -- speed of sound

function [zhat] = compare-tracking (m, pairs , shat , c , fs)

D = size (m,1);

K= size(shat,1);

S = size(shat ,3);

zhat = zeros ([D K S]);

for str = 1:S

zhat (: ,: , str) = sdoas-to-positions-nm (m, pairs , shat (: ,: , str) ,c, fs ,1);

end

end

distanceto_samples.m
% Distance to Samples

% distance.to.samples(ds,fs ,c,us): ds is a vector of distances, c is the

% speed of sound, fs is the sampling frequency, us is an upsampling

% factor. Returns a vector of the number of samples which will elapse in

% the time for sound to travel the distance.

% works so long as units match (e.g m/s Hz m)

function sdoas = distance-to.samples(ds ,fs ,c,us)

if nargin < 4

us = 1;

end

sdoas = round(us.*ds*fs/c);

end

first_difference-map.m
% first-difference-map (m, pairs , sdoa-lis ,pT, c, fs ,pD, k)

% Applies first-order filtering , smoothing and partial smoothing.

% For each pair of sensors, finds the maximizing indicies.

% m - DM

% Positions of M microphones in D dimensional space

% pairs -- 2xP

% Indicies of microphones to compare (each in (1..M), no column

%with identical numbers.

% sdoa-lis -- {P 1} cell of [Q(p) K] matricies; K is the number of

% windows, Q(p) is the quantization level of pair p.

% pT -- {P 1} cell of transition matricies for bounded velocity dynamics,

% each [Q(p) Q(p)], where Q(p) is the number of quantization levels of

% sensor pair P.

%c -- speed of sound.

% fs -- sampling frequency (Hz)

% pD -- {P 1} cell of initial priors on TDoA, each [Q(p) 1]

% k - number of steps for partial smoothing.

% Returns:

% Three {P 1} cells of [Q(p) K] matricies.

% First , the posteriors from filtering , then smoothing , then partial

% smoothing.

function [pL,pP,pLP] = first-differencemap (m, pairs ,sdoa-lis ,pT,c,fs ,pD,k)

if nargin < 8

k = 0;

end

T = 1/fs;

M = size(m,2);

dim = size(m,1);

P = size(pairs ,2);

dmax = pairs-to-distances (m, pairs);

smax = distance-to.samples (dmax, fs ,c);

if nargin < 7

pD = cell(1,size(pairs ,2));

for p = 1:size(pairs ,2)

pD{p} = ones(1+2*smax(p),1)/(1+2*smax(p));

end

end

wins = size(sdoa-lis {1} ,2);

pL = cell(1,size(pairs ,2));

pPr = cell(1,size(pairs ,2)); % priors

pP = cell(1,size(pairs ,2));

pLP = cell(1,size(pairs ,2));

for p = I:P

pL{p} = zeros(size(sdoalis{p}));

pPr{p} = zeros(size(sdoalis{p}));

pLi = exp(sdoa-lis{p});

pPr{p}(:,1) = pD{p};

for w = 2:wins

pPr{p}(:,w) = pT{p}*pPr{p}(:,w-1);

end

for w = 1:wins

pD{p} = (pT{p}*pD{p}) .* pLi(:,w);

pD{p} = pD{p}./sum(pD{p});

pL{p}(:,w) = pD{p};

end

pP{p} = ones(size(sdoa-lis{p}));

pP{p} = ones(size(sdoa-lis{p}));

pP{p}(:,wins) = pPr{p}(:,wins);

for w = wins-l:-1:1

pP{p}(:,w) = pT{p}*(pLi(: ,w+l).*pP{p}(: ,w+l));

pP{p}(:,w) = pP{p}(:,w)./sum(pP{p}(:,w));

end

for w = 1:wins

pP{p}(:,w) = (pLp}(: ,w).*pP{p}(:,w))./(pPr{p}(:,w));

pP{p}(: ,w) = pP{p}(: ,w)./sum(pP{p}(: ,w));

end

pLP{p} = pL{p};

pLP{p}(:,k) = pPr{p}(:,k);

for w = (k-1:--1:1)

pLP{p}(: ,w) = pT{p}*(pLi(: ,w+l).*pLP{p} (: ,w+l));

pLP{p}(: ,w) = pLP{p}(: ,w)./sum(pLP{p}(: ,w));

end

for w = (1:k)

pLP{p}(:,w) = (pL{p}(:,w).*pLP{p}(:,w))./(pPr{p}(:,w));

pLP{p}(:,w) = pLP{p}(:,w)./sum(pLP{p}(:,w));

end

end

end

kalmanfilter.m

function xhatm = kalman.filter(xO,zhat ,A,R,H,Q,QO)

if nargin < 7

Q0 = Q;

end

Pkm = QO;

xhat = xO;

xhatm = zeros (4 ,length (zhat));

for i = 1:length(zhat)

K = Pkm*H'*inv(H*Pkm*H' + R);

xhat = xhat + K*(zhat(:,i) - H*xhat);

Pk = (eye(4) - K*H)*Pkmn;

Pkm = A*Pk*A' + Q;

xhat = A*xhat;

xhatm(:,i) = xhat;

end

end

kalmanpath.m
function [z,v,a] = kalman.path(procsig ,wins,advance,fs ,zO ,v0)

%a = resample (randn(wins ,2)* procsig ,advance, 1);

a = randn(1,wins,2)*procsig;

a = reshape(repmat(a,[advance 1 1]), [advance*wins 21);

v = repmat(vO',wins*advance ,1) + cunsum(a,1);

z = repmat(zO',wins*advance,1) + cumsum(v,1);

end

pairs_to_distances.m
% Pairs to Distances

% pairs.to-distance(ms, pairs):

% Returns a row vector of the distances between microphone pairs.

% ms is an DxM matrix of microphone locations. There are M

% microphones located in a D dimensional space.

% pairs is a 2xP matrix of microphone pairs.

% 1 <= pairs(i, j) <-= M, pairs(1,j) =/= pairs(2,j).

function dmax = pairs_to-distances (ms, pairs)

P = size(pairs ,2);

dmax = zeros (1P);

for p = 1:P

dmax(p) = positionstodoas (ms(:, pairs (1 ,p)) ,ms(: ,pairs(2,p)));

end

end

positionsandsourcetosensors.m
% [x,w] = positionsandsource.to-sensors (m,z,s, noisesig ,fs ,c)

% Generate sensor signals from geometry, trajectory etc

% m -- DxM

% Positions of M microphones in D dimensional space.

z -- KxD

% Trajectory to track.

% noisesig -- Standard Deviation of gaussian noise processes.

% fs -- sample rate (Hz).

% c -- speed of sound.

function [x,w] = positions-and-source-to-sensors (m,z,s, noisesig ,fs ,c)

M = size(m,2);

N = size(z,1);

w = noisesig*randn(N,M);

c = 340.29;

d = positionsto-doas(m,z ');

tau = d/c;

sam = tau*fs;

x = s(repmat((1+N/2:3*N/2)',[1 M]) - round(sam)) + w;

end

positionsto_ddoas.m
% Positions to DDoAs

% positions-toddoas (ms, pairs ,pts):

ms is an DxM matrix of sensor locations. There are M

sensors located in a D dimensional space.

% pairs is a 2xP matrix of microphone pairs.

% 1 <= pairs(i,j) <= M, pairs(1,j) =/= pairs(2,j).

% pts is a DxT matrix of points

% Returns an TxP array of the DDoA from each point to the P different

% pairs of sensors.

function ddoas = positions.toddoas (ms, pairs ,pts)

P = size(pairs ,2);

T = positions_todoas (ms, pts);

% distance difference of arrival

for p = 1:P

ddoas(: ,p) = T(:, pairs(1l,p)) - T(: ,pairs(2,p));

end

end

positionstodoas.m
% Positions to DoAs

% positions.todoas (ms, pairs ,pts):

% ms is an DxM matrix of microphone locations. There are M

% microphones located in a D dimensional space.

% pts is a DxT matrix of points.

% Returns an TxM array of the distance from each point to the M different

% sensors.

function doas = positions.to-doas (ms, pts)

M = size(ms,2);

D = size(pts ,2);

% compute distance of arrival

doas = zeros(D,M);

for m = 1:M

doas(: ,m) = sqrt(sum((pts - repmat(ms(: ,m),1 ,D)).^2 ,1));

end

end

psi.ht.m
% Psi - PHAT and Bandpass

% psi = psi-phat-band (start , stop)

% start is the beginning of the passband in Hz

% stop is the end of the passband in Hz

% Returns a function psi(X,Y,fs):

% X,Y are FxW matricies. Each column is the result of an FFT.

% fs is the sampling frequency of the pre-FFT signal , in Hz.

% returns an FxW matrix of spectral weights. The weights normalize

% the magnitude of X(f,w)*Y(f,w) to one in the pass band, and are

% zero outside the passband.

function filt = psi-ht(sigpsd ,nlpsd ,n2psd ,kappa)

if nargin < 4

kappa = 1

end

function psi = filter(X,Y,fs)

F = size(X,1);

Gss = sigpsd(F/2+1);

Gnl = nlpsd(F/2+1);

Gn2 = n2psd(F/2+1);

psiht = Gss./(Gss.*(Gnl+Gn2) + Gnl.*Gn2);

psi = repmat(psiht , 1, size(X,2));

norm = sqrt(sum(abs([psi ; flipud(psi (2:F/2 ,:))].*X.*Y). 2 ,1));

%norm = max(abs(X).* abs(Y),[],1);

%size (norm)

psi = kappa*F*psi./repmat(norm,[1+F/2 1]);

end

filt = @filter;

end

psi_phat_band.m

% Psi -- PHAT and Bandpass

psi = psi_phat.band(start ,stop)

% start is the beginning of the passband in Hz

stop is the end of the passband in Hz

% Returns a function psi(X,Y,fs):

% X,Y are FxW matricies. Each column is the result of an FFT.

% fs is the sampling frequency of the pre-FFT signal , in Hz.

% returns an FxW nmatrix of spectral weights. The weights normalize

% the magnitude of X(f,w)*Y(f,w) to one in the pass band, and are

% zero outside the passband.

function filt = psi-phat.band(start ,stop ,kappa)

if nargin = 2

kappa = 1

end

function phi = filter(X,Y, fs)

F = size(X,1);

phi = kappa./(abs(X(1:F/2+1 ,:)).*abs(Y(1:F/2+1,:)));

f = (O:F/2)*(fs/F);

phi((f < start) I (f > stop),:) = 0;

end

filt = @filter;

end

recordingtosdoaloglikelihoodsab.m
% Recordings to SDoA Log Likelihoods A/B

% Iterates sdoaloglikelihoods.ab over multiple microphones pairs , but

% with arguments in terms of distances and times instead of samples.

function sdoa-lis = recording-to-sdoa1loglikelihoods ab (xs ,pairs ,dmax,window,wfa, wfb,...

advance ,fs ,c,us,filt)

P = size(pairs ,2);

sdoa-lis = cell(P);

if nargin < 8

us = 1;

end

smax = distance-to-samples (dmax, fs ,c,us);

swin = fix(fs*window);

if numel(swin) == 1

swin = swin*ones(P,1);

end

if numel(us) = 1

us = us*ones(P,1);

end

sadv = fix(advance*fs);

for p = 1:P

sdoalis{p} = sdoalog_likelihood ab (xs (:,pairs (1 ,p)) ,xs (:,pairs (2 ,p)) ,smax(p) ,swin(p) .

wfa ,wfb ,sadv ,fs ,us(p), filt);

end

end

recordingtosdoaloglikelihoods.m
% recordingto.sdoa-log_.likelihoods (xs ,pairs ,dmax,window,wf, advance ,fs ,

% c,us, filt)

% Invokes recording-tosdoalog-likelihoods.ab with the same a and b window

% function.

function sdoa-lis = recording-to-sdoa-log-likelihoods (xs ,pairs ,dmax,window,wf,advance ,fs ,c,us,filt)

sdoa-lis = recording-to-sdoa-log-likelihoods.ab(xs, pairs ,dmax,window,wf,wf,.

advance , fs , c,us, filt);

end

sdoaloglikelihood_ab.m
% x - Nxl matrix of sensor one 's recording.

% y -- Nx1 matrix of sensor two 's recording.

% smax -- distance between sensors in terms of samples.

% W-- duration of window in terms of samples.

% M-- advance between windows in samples.

% fs -- sampling frequency

% us -- upsampling factor to be applied.

% wfa - window function to use on x

% wfb - window function to use on y

% filter -- prefilter (see psi.hi.m)

% Returns:

% [smax K] matrix of consecutive log likelihoods (K is the number of

% windows processed).

function Li = sdoa-log-likelihoodab(x,y,smax,W,wfa,wfb,M,fs ,us,filter)

N = length(x);

no.wins = floor((N - W)/M);

xwins = zeros(2*W, no.wins);

ywins = xwins;

apoda = repmat(wfa(W) ,1 ,no-wins);

apodb = repmat (wfb(W) ,1,nowins);

ind = repmat(1+(M-1)*(1:nowins),W, 1) + repmat((1:W)',1,no-wins);

xwins(W/2+1:3*W/2 ,:) = x(ind).*apoda;

ywins(W/2+1:3*W/2,:) = y(ind).*apodb;

F = size(xwins ,1);

X = fft(xwins);

Y = fft(ywins);

phi = filter(X,Y,fs);

Xz = [phi(:,:) .* X(1:F/2+1,:); zeros((us-1)*F,no.wins);...

flipud(phi(2:F/2,:)) .* X(F/2+2:F,:)];

Yz = [Y(1:F/2 ,:); zeros((us-1)*F,no.wins); Y(F/2+1:F,:)];

corrs = fftshift(ifft(Xz(:,:) .* conj(Yz(: ,:)),'symmetric'),l);

W = W*us;

Li = (corrs((W-smax): (Wrsmax) ,:));

end

sdoaloglikelihood.m
% sdo alog.likelihood (x,y, smax,WM, fs ,us, wf, filter)

% Calculate the unnormalized likelihood from a particular

% TDoA from recordings.

% Invokes sdoa-loglikelihood.ab with the same a and b window function.

function Li = sdoa-log-likelihood (x,y,smax,W,M, fs ,us,wf, filter)

Li = sdoa_loglikelihoodab(x,y,smax,W,W,M,fs ,us,wf,filter);

end

sdoa_distb_tomax.m
% sdoadistbtomax (m, pairs , sdoalis)

% For each pair of sensors, finds the maximizing indicies

% m-- DxM

% Positions of M microphones in D dimensional space

% pairs -- 2xP

% Indicies of microphones to compare (each in (1..M), no column

% with identical numbers.

% sdoalis -- {P 11 cell of [Q(p) K] matricies; K is the number of

% windows, Q(p) is the quantization level of pair p.

% Returns

% [K P] array of the indicies which achieve the maximums in sdoalis

function sdhat = sdoa.distbto-max (m, pairs , sdoalis)

P = size(pairs ,2);

sdhat = zeros([size(sdoa-lis{1},2) P]);

for p = 1:P

[a,nhat] = max(sdoa-lis{p});

sdhat(:,p) = (nhat - ceil(size(sdoa-lis{p} ,1)/2));

end

end

sdoa_velocity_transition.m
function P = sdoa-velocitytransition(d, vmax, T, fs , c,us)

smax = distance-to-samples (d, fs ,c,us);

V = distance-to-samples (2*vmax*T, fs, ,us);

TT = smax * 2 + 1;

P = sparse(zeros(TT,TT));

P = repmat(-smax:smax, [TT 1]);

P = P - repmat((-smax:smax) ',[1 'IT]);

P = sparse(abs(P) < V);

P = P ./ repmat(sum(P,1),[T'T 1]);

end

sdoa_velocitytransitions.m
function M = sdoa.velocitytransitions(ms, pairs , vmax, T, fs , c,us)

P = size(pairs ,2);

if nargin < 7

us = 1;

end

if numel(us) == 1

us = us*ones(P,1);

end

M = cell(P);

dmax = pairs-todistances (ms, pairs);

for p = 1:P

M{p} = sdoa-velocity-transition(dmax(p), vmax, T, fs, c,us(p));

end

end

sdoas_topositionsnm.m
% DDoAs to Position - Nelder-Mead

% ddoas-to-positions-nm (ms, pairs , dhat)

% Calculates approximate positions from DDoA estimates using

% fminsearch.

% ms is an DxM matrix of microphone locations. There are M

% microphones located in a D dimensional space.

% pairs is a 2xP matrix of microphone pairs.

% 1 <= pairs(i,j) <= M, pairs(l,j) =/= pairs(2,j).

% dhat is a PxD matrix of DDoA estimates. dhat(p,:) are the estimates

% for pairs(:,p).

function zhat = sdoasto-positions-nm (ms, pairs ,shat ,c,fs ,B)

% shat = sdoa-distb.to.max (ms, pairs , sdoa-lis);

if nargin < 6

B = 10;

end

dim = size(ms,l);

M = size(ms,2);

D = size(shat ,1);

P = size(pairs ,2);

zhat = zeros(dim,P);

dhat = samples-to-distance (shat ,fs ,c);

d = 0;

ds = 0;

box = [min(ms(i,:)) min(ms(2,:)); max(ms(1,:)) max(ms(2,:))];

center = mean(box,l);

span = box(2,:) - center;

lb = [center - B*span]';

ub = [center + B*span]';

ind = repmat([1;2] ,[I M]);

function w = objective(p)

doas = sqrt(sum((ms - p(ind)).2 ,1));

ddoas = doas(pairs(1 ,:)) - doas(pairs(2 ,:));

w = sum((ds - ddoas).^2);

%if max(abs(p)) > 10*max(abs(ms(l:prod(size(ms)))))

% w = w + exp(I + (10*max(abs(ms(1:prod(size(ms))))) - max(abs(p))));

%end

if sum(p < lb I p > ub)

w = Inf;

end

end

for d = 1:D

ds = dhat(d,:);

zhat (: ,d) = fminsearch(@objective ,center ',optimset ('MaxFunEvals ',1000));

end

end

circuit-l.m
inm = 0.0254;

m [=(O0 15 ; 40 15 ; 23.5 1; 12.5 1; 40 30 ; 0 30]'*inm;

pairs = [1 6; 4 1; 3 4; 2 3 ; 5 2]';

D = size(m,1);

M = size (m,2);

P = size(pairs ,2);

fs = 96000;

advance = 512;

win = 2048;

Tw = win/fs;

Ta = advance/fs;

clear x;

xbnd = [12 12+11*4/3]*in.m;

ybnd = [19 30]*in m;

xbndp = xbnd;

ybndp = ybnd;

%xbndp = 1.1*(xbnd(2) - xbnd(1))/2*[-0.5 0.5] + (xbnd(2) + xbnd(1))/2;

%ybndp = 1.1*(ybnd(2) - ybnd(1))/2*[-0.5 0.5] + (ybnd(2) + ybnd(1))/2;

output = 'circuit';

stem = 'rec/final -circuit--';

for i 1= :M

x(: ,i) = wavread([stem int2str(i)]);

end

%if output == 'face' / 'circles '

% x = x(200*advance: size(x,1)-200* advance ,:);

%end

%if output == 'jags '

% x = x(1: size (,1)-30* advance,:);

%end

%x = z(40000:size(x,1) ,:);

c = 340.29;

wf - @hann;

psi psphat-band(1000,10000,40);

%psi = psiband(1000,10000,4);

dmax = pairsto_distances (m, pairs);

sdoalis = recordingto.sdoaloglikelihoodsab(x, pairs ,dmax,Tw,wf,wf,Ta,fs ,c,1 ,psi);

% GCC

shat = sdoadistb-tomax (m, pairs , sdoalis);

zhat = sdoas-topositions-nm (m, pairs ,shat ,c,fs ,1);

standardizecfigure (figure (1))

plot(zhat(1 ,:) ,zhat (2,:))

xlim (xbndp)

ylim (ybndp)

title ('GCC-Result ' , 'FontSize ' ,18)

xlabel('Horizontal Position_(m) ' , 'FontSize ' 18)

ylabel('Vertical Position _(m) ' , 'FontSize ' ,18)

print('-dpdf' , 'thesis-final/figures/experiment/gcc-' output '.pdf']);

% Median

shatmed = medfiltl(shat ,33);

zhatmed = sdoas-to.positions.nm (m, pairs ,shatmed,c,fs ,1);

plot (zhatmed(1 ,:) ,zhatmed(2 , :))

xlim (xbndp)

ylim (ybndp)

title ('Median-Filtered-Result ' , 'FontSize ' ,18)

xlabel('Horizontal -Position (m) ' , 'FontSize ' ,18)

ylabel('Vertical Position._(m) ' , 'FontSize ' ,18)

print('-dpdf' ,['thesis-final/figures/experiment/med-' output '.pdf']);

% Probabalistic

vmax = 1;

pT = sdoa.velocity-transitions(m, pairs , vmax, Ta, fs , c);

pD = cell(size(pT,1),1);

for p = 1:P

pD{p} = sum(pT{p} > 0,1)'./sum(sum(pT{p} > 0,1),2);

end

[pL,pP,pLP] = first-difference-map (m, pairs , sdoaJlis ,pT,c,fs ,pD,9);

shat2 = sdoa.distb.to-max (m, pairs ,pP);

zhat2 = sdoas-to.positions-nm (m, pairs ,shat2 ,c,fs ,1);

standardize-figure (figure (1));

plot(zhat2(1 ,:) ,zhat2(2 ,:))

xlim (xbndp)

ylim (ybndp)

title('TDoA-Tracked-Result' , 'FontSize ' ,18)

xlabel('Horizontal-Position_(m) ' , 'FontSize ' ,18)

ylabel(' Vertical .Position...(m) ' ,' FontSize ' ,18)

print('-dpdf' ,['thesis-final/figures/experiment/tdoa-' output '.pdf']);

% Kalman Filter

procsig = 1/5e8;

QO = diag([0.5 ,0.5 ,0,0]);

G = [0.5*Ta^2 0 ; 0 0.5*Ta^2 ; Ta 0 ; 0 Ta];

H = [1 0 0 0 ; 0 1 0 0];

A = eye(4) + [0 0 Ta 0 ; 0 0 Ta; zeros(2 ,4)];

Q = G*[procsig*win 0 ; 0 procsig*win]*G';

R = [5e-5 0 ; 0 5e-5]*(0.5*Ta^2);

kssgcc = kalmanfilter(zeros(size(m,1)*2,1),zhat(:,:),A,R,H,Q,QO);

kss = kalmanfilter(zeros(size(m,1)*2 ,1) ,zhat2 (: ,:) ,A,R,H,Q,QO);

kssmed = kalmanfilter(zeros(size(m,1)*2,1),zhatmed(:,:),A,R,H,Q,Q);

standardize-figure (figure (2));

plot (kss(1 ,:), kss (2 ,:))

xlim (xbndp)

ylim (ybndp)

title ('Kalman-Filtered-of-TDoATracked -Result ' , 'FontSize ' ,18)

xlabel('Horizontal Position-(m) ' , 'FontSize ' ,18)

ylabel('Vertical Position (m) ' , 'FontSize ' ,18)

print('-dpdf',['thesis_final/figures/experiment/kalman-' output '.pdf']);

standardize-figure (figure (2));

plot(kssmed (1 ,:), kssmed(2 ,:))

xlim (xbndp)

ylim (ybndp)

title ('Kalman-Filter-of-Median.-Filtered-Results ', 'FontSize ' ,18)

xlabel('Horizontal-Position-(m) ' ,'FontSize ' ,18)

ylabel('Vertical-Position_(m) ' ,'FontSize ' ,18)

print('-dpdf' ,['thesisfinal/figures/experiment/kalman-med-' output '.pdf']);

standardizefigure (figure (2));

plot(kssgcc (1 ,:) ,kssgcc (2,:))

xlim (xbndp)

ylim (ybndp)

title('Kalman-Filter of-GCC-Result' ,'FontSize ',18)

xlabel('Horizontal Position_(m) ', 'FontSize ' ,18)

ylabel('Vertical-Position_(m) ' , 'FontSize' ,18)

print('-dpdf' ,['thesisfinal/figures/experiment/kalman-gcc-' output '.pdf']);

job.m
function [zgtsave ,sgtsave ,zhatsave ,shatsave] = job(I ,seed)

['starting-job' datestr(now)]

if nargin < 1

I = 1;

end

if nargin < 2

seed = sum(100*clock);

end

v = version;

if v(1:3) = '7.7'

RandStream . setDefaultStream (RandStream (' mt19937ar ' , ' seed ' , seed));

else

rand('twister' ,seed);

randn('seed ' ,seed);

end

% Parameters

fs = 96000;

advance = 2048;

win = 2048;

wins = 51;

Tw = win/fs;

Ta = advance/fs;

c = 340.29;

d = 1/sqrt(2);

lto-m = @(1) [l--d -d; -d l-d; d-l d ; d d-l; 1-d d; -d d-l; d- -d; d I-d]';

pairs = [1 2; 3 4; 5 6; 7 8]';

pairs = [2 1; 4 3; 6 5; 8 7]';

P = size(pairs ,2);

D= 2;

% Path Generation

procsig = 1/4e9;

QO = diag([0.5 ,0.5 ,0,0]);

G= [0.5*Ta^2 0 ; 0 0.5*Ta^2 ; Ta 0 ; 0 Ta];

H= [1 0 0 0 ; 0 1 0 0];

A = eye(4) + [0 0 Ta 0 ; 0 0 0 Ta; zeros(2,4)];

Q = G*[procsig*win 0 ; 0 procsig*win]*G';

R = [5e-5 0 ; 0 5e-5]*(0.5*Ta^2);

% Filter Parameters

wf = Ohann;

psi = psi-band(1000,10000,4);

% Smoothing Parameters

vmax = 1;

medK = floor(1 + 4*(Tw/Ta));

medK = 9;

M = 16;

%pairs = [M/2+(1:M/2);1:M/2 j;
% alternate pairs to avoid bias in TDoA error

pairs = [[1:M/4; M/2 + (1:M/4)] [M*3/4 + (1:M/4); M/4 + (1:M/4)]];

P = size(pairs ,2);

Is = [0.4 0.4];

L = length(Is);

% Brackets

fstart = 1000;

nRs = logspace(-1,2,15);

bands = 500*ones(size(nRs))'*[O 1];

sigbands = fstart*ones(size(bands)) + bands;

%nRs = repmat(nRs,[1 L]);

sigbands = [500 1000];

sigbands = reshape(repmat (sigbands ',[15 1]),[2 15])';

F = size(sigbands ,1);

%nRs = [6 6 6 6];

%bands = 5*logspace (2, 3,5) '*[O0 1];

%nRs = 0. I*ones(size (bands));

%sigbands = fstart*ones(size(bands)) + bands;

%psi = psi-phatband(1000,10000,1);

psis = cell(L,F);

for f = 1:F

[s,b,a] = band-pass-modeled-noise(1 ,fs ,sigbands(f,1), sigbands(f ,2));

psis {2,f} = psiht(@(W) abs(freqz(b,a,W)).^2 ,...

@(W) nRs(f)^2*ones(W,1),@(W) nRs(f)^2*ones(W,1),1/4);

psis{1,f} = psiphatband(100 ,2000,40);

end

% CONSTANTS

QNT = 1;

GCC = 2;

MED = 3;

FDT = 4;

FDS = 5;

FDTS = 6;

S = FDTS;

pTu = cell(L,1);

pDu = cell(L,1);

% pTu{2} = pTkf{1};

% pDu{2} = pDkf{1};

%pTu{2} = pTu{1};

%pDu{2} = pDu{1};

%pTu{3} = pTu{11};

%pDu{3} = pDu{1};

% Run the simulations

zgtsave = zeros(I,D,wins-1);

sgtsave = zeros(I,wins-1,P);

zhatsave = zeros(L,F,I,D,wins-1,S);

shatsave = zeros(L,F,I,wins-1,P,S);

for iter = 1:I

mO = 2*(rand(2,M/2) - 0.5);

theta = 2*pi*rand(1,M/2); r = Is(l) + 0.5*rand(1,M/2);

md = [r.*cos(theta) ; r.*sin(theta)];

m = [mO mO+md];

for I = 1:L

pTu{ 1} = sdoa.velocitytransitions (m, pairs , vmax, Ta, fs, c);

pDu{l} = cell(size(pTu{l} ,1),1);

for p = 1:P

pDu{l}{p} = sum(pTu{l}{p} > 0,1)'./sum(sum(pTu{l}{p} > 0,1),2);

end

end

Lto-m = @(1) m;

% start

xO = QO*rand(4,1);

% path

[z,v,a] = kalmanpath(procsig ,wins,advance,fs ,xO((1:2)'),x0((3:4)'));

% signals and TDoA estimates

[shat ,sgt ,zgt] = compare-sdoa-smoothing_brackets (Lto_ , Is , pairs , z, Tw, Ta, fs , c, ..

sigbands , nRs, psis , wf, medK, pTu,pDu,9);

% position estimates

[zhat] = compare-trackingbrackets (m, pairs ,shat c fs);

zgtsave(iter ,::) = zgt{1};

sgtsave(iter,:,:) = sgt{1};

for 1 = I:L

for f = 1:F

zhatsave(,f,iter ,:,:,:) = zhat{l,f};

shatsave(1,f,iter ,:,:,:) = shat{l,f};

end

end

end

['done-job!-' datestr(now)]

end

100

Bibliography

[1] M.R. Allen and L.A. King. An adaptive two stage Kalman structure for passive
undersea tracking. Acoustics, Speech and Signal Processing, IEEE Transactions
on, 36(1):3-9, Jan 1988.

[2] Joshua N. Ash and Randolph L. Moses. Acoustic time delay estimation and sen-
sor network self-localization: Experimental results. The Journal of the Acoustical
Society of America, 118(2):841-850, 2005.

[3] R.E. Bethel and R.G. Rahikka. An optimum first-order time delay tracker.
Aerospace and Electronic Systems, IEEE Transactions on, AES-23(6):718-725,
Nov. 1987.

[4] Jingdong Chen, Jacob Benesty, and Yiteng Huang. Time delay estimation in
room acoustic environments: an overview. EURASIP J. Appl. Signal Process.,
(1):170-170, January 2006.

[5] Joseph Hector DiBiase. A High-Accuracy, Low-Latency Technique for Talker
Localization in Reverberant Environments Using Microphone Arrays. PhD thesis,
Brown University, Provdence, Rhode Island, March 2000.

[6] Hoang Do, H.F. Silverman, and Ying Yu. A Real-Time SRP-PHAT Source
Location Implementation using Stochastic Region Contraction(SRC) on a Large-
Aperture Microphone Array. Acoustics, Speech and Signal Processing, 2007.
ICASSP 2007. IEEE International Conference on, 1:1-121-1-124, April 2007.

[7] Arnaud Doucet, Nando De Freitas, and Neil Gordon, editors. Sequential Monte
Carlo methods in practice. Birkhiuser, 2001.

[8] M.D. Gillette and H.F. Silverman. A linear closed-form algorithm for source
localization from time-differences of arrival. Signal Processing Letters, IEEE,
15:1-4, 2008.

[9] F. J. Harris. On the use of windows for harmonic analysis with the discrete
Fourier transform. Proceedings of the IEEE, 66(1):51-83, 1978.

[10] Hiroshi Ishii, Craig Wisneski, Julian Orbanes, Ben Chun, and Joe Paradiso.
Pingpongplus: design of an athletic-tangible interface for computer-supported
cooperative play. In CHI '99: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 394-401, New York, NY, USA, 1999. ACM.

101

[11] L.M. Kaplan. Local node selection for localization in a distributed sensor net-
work. Aerospace and Electronic Systems, IEEE Transactions on, 42(1):136-146,
Jan. 2006.

[12] C. Knapp and G. Carter. The generalized correlation method for estimation
of time delay. Acoustics, Speech and Signal Processing, IEEE Transactions on,
24(4):320-327, Aug 1976.

[13] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright.
Convergence properties of the nelder-mead simplex method in low dimensions.
SIAM Journal on Optimization, 9(1):112-147, 1998.

[14] Juan Liu, James Reich, and Feng Zhao. Collaborative in-network processing for
target tracking. EURASIP J. Appl. Signal Process., 2003(1):378-391, 2003.

[15] Michael I. Mandel and Daniel P. W. Ellis. EM Localization and Separation using
Interaural Level and Phase Cues. Applications of Signal Processing to Audio and
Acoustics, 2007 IEEE Workshop on, pages 275-278, Oct. 2007.

[16] Michael I. Mandel and Daniel P.W. Ellis. A probability model for interaural
phase difference. In Bhiksha Raj, Daniel P. W. Ellis, Paris Smaragdis, and Mal-
colm Slaney, editors, Workshop on Statistical and Perceptual Audio Processing
SAPA2006, Pittsburgh, PA, October 2006.

[17] J.A. Paradiso, Che King Leo, N. Checka, and Kaijen Hsiao. Passive acoustic
sensing for tracking knocks atop large interactive displays. Sensors, 2002. Pro-
ceedings of IEEE, 1:521-527 vol.1, 2002.

[18] S.S. Reddi. An exact solution to range computation with time delay information
for arbitrary array geometries. Signal Processing, IEEE Transactions on [see also
Acoustics, Speech, and Signal Processing, IEEE Transactions on], 41(1):485-,
Jan 1993.

[19] G. De Sanctis, D. Rovetta, A. Sarti, G. Scarparo, and S. Tubaro. Localization
of Tactile Interactions Through TDOA Analysis: Geometric vs. Inversion-Based
Method. Proceedings of EUSIPCO-06, Florence, Italy, September 2006, 2006.

[20] J. Smith and J. Abel. The spherical interpolation method of source localization.
Oceanic Engineering, IEEE Journal of, 12(1):246-252, Jan 1987.

[21] Tai-Lai Tung, Kung Yao, C. W. Reed, Ralph E. Hudson, Da-Ching Chen, and
James Chen. Source localization and time delay estimation using constrained
least-squares and best-path smoothing. In Franklin T. Luk, editor, Advanced
Signal Processing Algorithms, Architectures, and Implementations IX. SPIE, Jul
1999.

102

[22] J. Vermaak and A. Blake. Nonlinear filtering for speaker tracking in noisy and
reverberant environments. Acoustics, Speech, and Signal Processing, 2001. Pro-
ceedings. (ICASSP '01). 2001 IEEE International Conference on, 5:3021-3024
vol.5, 2001.

[23] M. Walpola, Hao Zhu, and Jinsong Zhang. Self organization algorithm for unat-
tended acoustic sensor networks in ground target tracking. Wireless Communi-
cations and Networking Conference, 2007. WCNC 2007. IEEE, pages 2350-2354,
March 2007.

[24] D.B. Ward, E.A. Lehmann, and R.C. Williamson. Particle filtering algorithms
for tracking an acoustic source in a reverberant environment. Speech and Audio
Processing, IEEE Transactions on, 11(6):826-836, Nov. 2003.

[25] D.B. Ward and R.C. Williamson. Particle filter beamforming for acoustic source
localization in a reverberant environment. Acoustics, Speech, and Signal Pro-
cessing, 2002. Proceedings. (ICASSP '02). IEEE International Conference on,
2:1777-1780, 2002.

[26] A. Weiss and E. Weinstein. Fundamental limitations in passive time delay
estimation-Part I: Narrow-band systems. Acoustics, Speech and Signal Process-
ing, IEEE Transactions on, 31(2):472-486, Apr 1983.

[27] Ying Yu and H.F. Silverman. An improved TDOA-based location estimation
algorithm for large aperture microphone arrays. Acoustics, Speech, and Signal
Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference
on, 4:iv-77-iv-80 vol.4, May 2004.

[28] D.N. Zotkin and R. Duraiswami. Accelerated speech source localization via a
hierarchical search of steered response power. Speech and Audio Processing, IEEE
Transactions on, 12(5):499-508, Sept. 2004.

103

