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Abstract:

In this paper we consider a dynamic market equilibrium problem over a finite time

horizon in which a commodity is produced, consumed, traded, and inventoried over space

and time. We first formulate the problem as a network equilibrium problem and derive

the variational inequality formulation of the problem. We then propose a parallel de-

composition algorithm which decomposes the large-scale problem into T + 1 subproblems,

where T denotes the number of time periods. Each of these subproblems can then be

solved simultaneously, that is, in parallel, on distinct processors. We provide computa-

tional results on linear separable problems and on nonlinear asymmetric problems when

the algorithm is implemented in a serial and then in a parallel environment. The numerical

results establish that the algorithm is linear in the number of time periods. This research

demonstrates that this new formulation of dynamic market problems and decomposition

procedure considerably expands the size of problems that are now feasible to solve.

** corresponding author



1. Introduction

The principal issue in the study of dynamic market equilibrium problems is the compu-

tation of the optimal commodity production, consumption, trade, and inventory patterns

over space and time. Such models are inherently large-scale and, hence, the development

of efficient computational procedures is essential for the operationalism of such models.

Dynamic competitive spatial market models have their foundations in the work of

Samuelson [1] and Takayama and Judge [2] with a variety of applications, including agri-

cultural and energy markets. Early equilibrium models were reformulated as optimization

problems with the observation that in the case of "symmetric" interactions, the equilib-

rium conditions were, in fact, the Kuhn-Tucker conditions of an appropriately constructed

minimization problem. Recently, variational inequalities have been used to formulate more

general spatial equilibrium problems (see, e.g., [3], [4], [5]).

In this paper we introduce a new dynamic market equilibrium model which differs from

the ones developed in Nagurney and Aronson [6, 7] in a significant way. In particular,

although we still utilize the dynamic network introduced therein, the formulation is no

longer based on path flows, which is very memory expensive, but, rather, on link flows.

Furthermore, we develop a parallelizable variational inequality decomposition algorithm

which takes advantage of the special dynamic network structure of the problem.

The decomposition algorithm decomposes a dynamic market equilibrium problem with

T time periods into T + 1 subproblems, each of which can be allocated to a distinct

processor, and, hence, solved simultaneously and in parallel. The first T subproblems are

static spatial price equilibrium problems for which numerous efficient algorithms exist (cf.

Dafermos and Nagurney [8]), whereas the T + 1-st subproblem is the inventory problem.

Parallel computation of spatial market equilibrium problems, thus far, has focused on

decomposition by commodities ([9]).

In Section 2 we describe the model and derive the variational inequality formulation

of the governing equilibrium conditions. In Section 3 we introduce the algorithm and

establish conditions for convergence. In Section 4 we present the numerical results when

the algorithm is implemented in serial fashion and in Section 5 when the algorithm is

implemented in parallel fashion.

In Section 6 we summarize the results and present our conclusions.
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2. The Dynamic Market Network Equilibrium Model

In this Section we present the market model. This model permits inventorying at the

supply markets and trade between all pairs of supply and demand markets. It differs from

the model described in Nagurney and Aronson [6] in that the memory expensive storage

of path flows is no longer used in this formulation.

We first describe the model notation. We then review the abstract network representa-

tion. We state the equilibrium conditions and derive the variational inequality formulation

of the problem.

We consider a finite time horizon and partition the horizon into discrete time periods

t;t = 1,...,T. We assume that the commodity is produced at m supply markets and is

consumed at n demand markets. We denote a typical supply market by i and a typical

demand market by j. We number the supply markets from 1 through m and the demand

markets from m + 1 through m + n.

The state of the system will be described by a number of vectors as follows.

A supply column vector s = {sit: i = 1,... ,m;t = 1,... ,T} with nonnegative supply

quantity sit associated with supply market i at time period t.

A demand column vector d = {djt : j = m + 1,...,m + n; t = 1,...,T} with nonneg-

ative demand djt associated with demand market j at time period t.

A shipment column vector X = {Xitjt : i = 1,...,m;j = m + 1,...,m + n;t =

1,... ,T} with nonnegative commodity shipment Xitjt associated between supply market

i and demand market j in time period t.

An inventory column vector I = {Iitit+l: i = 1,...,m;t = 1,...,T-1} with nonneg-

ative total carryover quantity Iitit+l associated with supply market i between time periods

t and t + 1.

A supply price row vector r = {it: i = 1,...,m;t = 1,...,T} with rit denoting the

supply price at supply market i at time period t.

A demand price row vector p = {pjt: j = m + 1,...,m + n;t = 1,... ,T} with pjt

denoting the demand price at demand market j at time period t.

A transaction cost (which includes the transportation cost) row vector c = {cltjt i =

1,..., m; j = m+ 1,.. ., m+n; t = 1,..., T} with citjt denoting the nonnegative transaction

cost associated with shipping the commodity at supply market i to demand market j in
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time period t.

An inventorying cost row vector H = {Hitit+l: i = 1,...,m;t = 1,...,T-1)

with Hitit+l denoting the nonnegative inventory cost associated with carrying over the

commodity from time period t to t + 1 at supply market i.

We now briefly review the dynamic spatial market network (see, e.g., [6]). For a

graphical representation, see Figure 1.

For each period t; t = 1,... ,T we construct m supply market nodes, denoted by the

2-tuples It,... , mt, representing the supply markets at time period t. For each time period

t, we construct mn transaction/transportation links, a typical one originating at a node it

and terminating at a node jt. We denote such a link by itjt. Hence, the total number of

transaction links is mnT. From each supply market node it, we then construct a supply

market inventory link denoted by itit + 1, terminating in supply market node it + 1. There

are a total of mT - 1 inventory links. With each of the links (itjt'; t' = t) we then associate

the corresponding transaction cost citjt, and with each of the links (itit'; t' = t + 1) the

inventory cost Hitit,. The flows on these links correspond, respectively, to Xitjt and Iitit.

The supply and demand of the commodity must satisfy the following constraints:

n

sijt=+ 1itit+l - I(t-_)it for all i,t (1)
j=l

and
m

djt= Xitjt, for all j,t (2)
i=l

where

Xitjt > 0 and Iiti, > O, for all i,j,t. (3)

We denote the set of all feasible (s, X, I, d) satisfying (1), (2), and (3) by K.

A dynamic spatial market equilibrium consisting of commodity prices, shipments, and

quantities inventoried, is established if the following interregional/intertemporal conditions

due to Samuelson [1] and Takayama and Judge [2] are satisfied: a commodity will be

produced, traded, and consumed, between a pair of markets if the supply price at the

supply market plus the transaction cost is equal to the demand price at the demand

market. Similarly, the commodity will be inventoried between two time periods if the
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supply price at the supply maket plus the inventory cost is equal to the supply price at

the next time period.

Mathematically, the dynamic market equilibrium conditions take the form: for all

i = ,...,m;j = m + 1,...,m + n;t = 1,...,T:

> = pit, if Xitjt > 0
7tit + citjt >__ Pit, if Xtjt -- . (4)

and for all i = 1,...,m;t = 1,...,T- 1:

rit + Hi 2tt+ ={ 7tit+l, if ititit+l > 
> 7it+l, if Iitit+l = . ()

We now discuss the supply and demand price and transaction and inventory cost stucture.

We consider here the general situation where the supply price function 7rit(s) associated

with a supply market i and time period t may, in general, depend upon the quantity

supplied at every supply market in every time period. Similarly, the demand price function

pit associated with demand market j and time period t may depend upon, in general, the

demand for the commodity at every demand market in every time period.

The transaction and inventory costs citjt, Hitit+l, in turn, may depend, respectively,

upon the shipments between every pair of markets within every time period, and upon the

quantities inventoried at every supply market between every pair of time periods.

For a variety of applications of such market equilibrium problems, including agricul-

tural and energy markets, we refer the reader to the books by Judge and Takayama [10]

and Labys, Takayama, and Uri [11].

We now present the variational inequality formulation of the above equilibrium con-

ditions (4) and (5). In particular, we have the following:

Theorem 1:

A commodity pattern (, X, I, d) is in equilibrium if and only if it satisfies the varia-

tional inequality problem:

() (8 -8) + c(X) (X' -X) + H(I) (I' - I) - p(d) (d' - d) > 0 (6)

for all (s',X',I',d') E K.

Proof:
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We first establish that equilibrium conditions (4) and (5) imply (6).

Observe that condition (4) implies that for fixed market pair (i,j) and time period t:

(7it(s) + citjt(X) - pjt(d)) (Xtjt - Xitjt) > 0, for all Xt > 0. (7)

But (7) holds for all pairs (i,j) and t; hence,

T m m+n

E (7rit + Citjt(X)-- pj(d)) (Xtjt-Xitjt) > o. (8)

t=1 i=1 j=m+l

Also, we observe that condition (5) implies that

(7rit(s) + Hitit+il(I) - 7it+i(s))) (Ihii+l - Iitit+l) > 0, for all Iiztt+l > 0, (9)

and, therefore,

T-1 m

E Z(it(s) + Hii,+i(I) - 7rit+(s)) (Itit+l - Iitit+,) > 0. (10)
t=1 i=l

Combining now inequalities (8) and (10) and simplifying the resulting expression by using

(1) and (2), we obtain:

T m T m m+n

3 x rit(a) ( - sit) + E E E itjt() (Xtt - itjt
t=1 i=1 t=1 i=1 j=m+1

T-1 m T m+n

+ E E Hitit+l (I) . (Itit,+, - Iitit+) - E E pjt(d) (d' - d) > 0, (11)
t=1 i=1 t=1 j=m+1

for all (s',X',I',d') E K,

or, equivalently, (6).

We now show that variational inequality (6) implies equilibrium conditions (4) and

(5). For convenience, we use the expanded form of the variational inequality (11).

We first fix Itit+1 = Iitit+, for all i and t. Then (11) reduces to:

T m m+n

(-,(s) + Citjt(X) - pjt(d)) (Xitjt - Xitjt) > o. (12)
t=l i=1 j=m+l
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Now, setting Xkt,lt,, = Xktlt" for all kt'lt" $ itjt, (12) becomes

(Trit(s) + citjt(X) - pjt(d)) (Xtjt-Xitt) > 0, (13)

and, hence, (4) must hold.

Equilibrium conditions (5) can be shown to hold using similar arguments, but by, first,

setting Xftjt = Xitjt for all itjt.

An alternative approach to the formulation of dynamic market equilibria is that of

complementarity theory, which has been used by Takayama and Uri [12] and Takayama,

Hashimoto, and Uri [13].

Existence of a unique equilibrium pattern (s,X,I,d) can be guaranteed from the

theory of variational inequalities (cf. [14]) under the assumption of strong monotonicity,

that is,

[7r(s') - 7r(8 2 )] [S1 - S2] + [C(X) - C(X2 )] . [X - X 2 ] + [H(I1)- H(12)] [I' - I2]

- [p(d) - p(d2)] [d' - d2] > a(IIsl - 211l2 + 11X - X21ll2 +Ill _ 2112+11dl - d2112) (14)

for all (s',Xl,lI,d') and ( 2 ,X 2, I2,d 2 ) E K,

where a is a positive constant. Condition (14) will hold when the respective Jacobian

matrices [8-]r [ X [], and [ ] are positive definite over the feasible set K. This

condition is commonly imposed (cf. [4] and [5]) and means that we can expect that the

supply price at a supply market and time period will depend primarily upon the supply

of the commodity at that supply market in that time period. Similarly, we can expect

the demand price at a demand market and time period to depend primarily upon the

demand of the commodity at that demand market in that time period. The analogous

dependencies between the transaction and inventorying cost functions and the respective

commodity shipments and inventory quantities can also be expected to hold.

In the special case when the Jacobian matrices are symmetric, as assumed in the

classical models of Samuelson [1] and Takayama and Judge [2], then it is easy to see that

(s, X, I, d) satisfies (6) if and only if it minimizes the functional

O(a,XI, d) = r(a)ds + Jc(X)dX - H(I)dI - p(d)dd (15)
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over K. In the symmetric case, then, the equilibrium can be constructed by standard

convex programming algorithms. The parallel decomposition algorithm which we propose

in the subsequent section can also be applied to this problem.

Finally, we note that although the above dynamic market equilibrium model has been

presented in the framework of a single commodity, it is, in fact, more general, in that

the multicommodity problem can be studied using the above model, by constructing as

many copies of the network in Figure 1 as there are commodities and by defining the

functions on the expanded network accordingly. This kind of approach is standard in

network equilibrium theory (see, Dafermos [15]).
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3. The Decomposition Procedure

As mentioned in the Introduction, parallel computation of solutions to market equilib-

rium problems has focused on decomposition by commodities (cf. [9], [16]). The procedure

we introduce below is a decomposition by time periods, which has the notable feature that

it resolves the dynamic network equilibrium problem (cf. Figure 1) into T static mar-

ket equilibrium problems, each with mn shipment variables and with a special bipartite

network structure, for which numerous efficient algorithms exist (cf. [8] and [17]). The

T + 1-st subproblem, the inventory problem, is a very simple problem in mT - 1 variables,

to which a Gauss-Seidel method can be applied. We emphasize that although our focus is

on the parallel nature of this decomposition scheme, we note that the algorithm can also be

implemented in a serial environment using the appropriate adaptations/extensions to any

existing code for static spatial market equilibrium problems. Indeed, our computational

results in the subsequent section are for precisely such an implementation.

We first present some preliminaries. We note that in view of (1), we may define the

function it(X,I) _ rit(s) for all i and t, and in view of (2) we may define the function

Ajt(X) pjt(d) for all j and t. Hence, the variational inequality (11) is equivalent to a

variational inequality in only 2 vectors of variables X and I, that is,

T m m+n

E E E (it(X, I) + Citjt(X) - pjt(X)) (Xtjt - xitjt)
t=l i=l1 j=m+l

T-1 m

+ E (7it(X, I) + ,,,+,() - it+l(, I)) (Ii'tit+l - itt+) > (16)
t=1 i=1

for all (X',I') e K 2 ,

where K 2 = K x K 2 , where Kl _ {XIX > 0} and K 2 -- III > 0}.

The algorithm is a linearization scheme which resolves (16) into two simpler sub-

problems, each of which is a quadratic programming problem; the first subproblem is in

variables X only, and the second, in variables I, only. Each of these subproblems can be

solved simultaneously, and in parallel.

We let f(X,I) denote the mnT dimensional vector with components {*iit(X,I) +

citjt(X) - ijt(X),i = 1,...,m;j = m + 1,...,m + n;t = 1,...,T} and f 2 (X,I) the
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m(T - 1) dimensional vector with components {it(X,I) + Hitt+l(I) - irt+l(X,I),i =

1,..., m;t = 1,... ,T- 1}. Then variational inequality (16) can be written succinctly as:

f,(X,I) (X' - X) + f 2(X,I) (I' - I) > 0 for all (X,I) E K 2. (17)

We now present the algorithm and establish conditions for convergence.

Initialization Step:

Set X = 0, I = 0.

Set k = 1.

Step k:

(1). Construct the function fk(X) E RmnT which is linear and separable according

to:

fI(X) = D (Xk-1, Ik-1) . (X) + (fI (Xk-,I1 k - 1) - D1 (Xk- ,Ik- 1 ) . X) (18)

where D 1 (.) is the diagonal part of V1 fi (.), and solve the variational inequality subproblem,

f (X) . (X'- X) > O 0 for all X' E K 1 . (19)

Let the solution to (19) be Xk.

(2). Construct the function fk(I) which is linear and separable according to:

fk(I) = D 2 (Xk-1,Ik-) (I)+ (f 2(Xk-lIk-l) D 2(XIk-1) . ) (20)

where D 2 (.) is the diagonal part of V2 f 2 (.), and solve the variational inequality subproblem:

f2(I) (I'- I) > 0, for all I' E K2. (21)

Let the solution to (21) be I k .

Convergence Verification

If * it(Xk,Ik) + citjt(Xk) - (X) < , for all X > ; rit(X, I) + citjt(X)-it-ii ftjt > 0; rt(XkIk) + -

,jt(Xk) > -e for all Xijt = 0, and ifrit(Xk,Ik) + Hitit+l(Ik) - iit+l(Xk,Ik)l < , for

all tit+I > 0; *rt(Xk,Ik) + Hitit+(Ik) - rit+(Xk, I k) > -e for all Ik = then stop;

else, set k = k + 1, and go to Step k.

We emphasize that subproblem (19) decomposes into T subproblems, t = 1,...,T

each of which is a static, single commodity spatial price equilibrium problem (cf. [1],
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[2]). Each of these subproblems has a special bipartite network structure and because of

the construction of the new functions, which are linear, and separable, each subproblem

is equivalent to a quadratic programming problem. Special-purpose algorithms for the

subproblems, called market equilibration algorithms, have been developed in Dafermos and

Nagurney [8] and theoretically analyzed in Eydeland and Nagurney [16]. Subproblem (21)

is also a quadratic programming problem to which, for example, a Gauss-Seidel method

can be applied. Parts (1) and (2) of Step k can be solved simultaneously. For a graphical

depiction of the parallelism, see Figure 2.

We assume that the strong monotonicity condition (14) holds, thus guaranteeing exis-

tence and uniqueness of the equilibrium pattern. Convergence of the algorithm then holds

under the following condition (Bertsekas and Tsitsiklis [18, Proposition 5.8, Section 3.5).

Theorem 2:

Suppose that there exist symmetric positive definite matrices Gi and some 6 > 0 such

that Di(.) - Gi is nonnegative definite for i = 1,2 and E K 2 , and there exists some ca E

[0,1) such that

lIGr'(fi(x) - fi(y) - Di(y) (xi - yi))lli < at max llx - yj llj, for all x,y E K 2 (22)

where 11xilli = (xTGizxi). Then the above parallel linearization decomposition algorithm

converges to the equilibrium solution.

In subsequent sections we evaluate the numerical performance of the algorithm when

it is implemented in serial and then in parallel.

10

�__(__1�1_1__1__11_1I_· 111 ------- I I



4. Numerical Experiments - Serial

In this Section we present the results of the serial numerical experimentation. For all

the computational tests we utilized the IBM 3090/600J at the Cornell National Supercom-

puter Facility. The algorithm was coded in FORTRAN and compiled using the FORTVS

compiler, optimization level 3. The CPU times reported include the initialization and

setup times, but exclude the I/O times.

We first report the results for linear separable problems, which are equivalent to

quadratic programming problems, and then for nonlinear asymmetric problems.

We, hence, first considered large-scale dynamic market problems with supply price,

demand price, transaction cost, and inventorying cost functions which were of the form:

7rit(sit) = ritsit + uit (23)

Pj t(djt) = -mjtdjt + qjt (24)

citjt(Xitjt) = gitjtXitjt + hitjt (25)

and

Hiit+ (Iitit+ll ) = vitit+,itit+lI + witit+l, (26)

where t, uit, mjt, jt, gitt,hitjt, vtit+l, witit+l > 0. Under this assumption the equilib-

rium must be unique, since this is a stricly convex quadratic programming problem.

The supply price function coefficients rit and uit were generated randomly and uni-

formly in the ranges [3,10] and [10,25], respectively; the demand price coefficients mjt

and qjt were generated in the ranges [1,5] and [150,650], respectively; the transaction cost

coefficients g9tjt and hitjt were generated in the ranges [1,16] and [10,25], respectively;

and the inventorying cost coefficients vitit+l and rwitit+l in the ranges .075 x [3,10] and

.075 x [10,25], respectively.

We considered problems ranging in size from 5 supply markets and 5 demand markets

to 50 supply markets and 50 demand markets with the number of time periods ranging

from 5 to 50 time periods. The convergence tolerance e was set to 1 and convergence was

checked after every other iteration.

We utilized the demand market equilibration algorithm introduced in Dafermos and

Nagurney [8] for the solution of each subproblem (19).
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The results of these experiments are presented in tabular form in Table 1 and in

graphical form in Figures 3a and 3b.

The graphs reveal that the CPU time for this decomposition scheme is linear with

respect to the number of time periods. This is to be contrasted with the demand market

equilibration algorithm in time introduced in [6], which although it utilizes the underlying

network structure, it does not fully exploit the special bipartite structure as this new

algorithm does. Indeed, that algorithm is quadratic in the number of time periods, with

the CPU time on a CDC Cyber 830 for the largest problem solved therein, the one with

20 supply markets and 20 demand markets being equal to 20 seconds for 2 time periods,

80 seconds for 4 time periods, 185 seconds for 6 time periods, and 533 seconds for 10 time

periods.

We then proceeded to compute solutions to general nonlinear, asymmetric dynamic

market equilibrium problems. The functions were now of the form:

7rit(s) = rits2 + E ritjt sjt + uit (27)
jt'

pjt (d) = -mjtdt + E mjtlt, dt, + qjt (28)
It,

citjt(X) = gitjtX tjt+ + gitjt,kttit"Xkt' I It" + htjt (29)
kt' It"

Hitit+l(I) = E Uitit+lkttlhlIkvtlt + Witit+. (30)
kt'lt"

The function coefficients were generated as follows. The fixed coefficients in functions

(27)-(30) and the diagonal linear terms were generated in the same manner as their coun-

terparts in (23)- (26). The off-diagonal linear terms were then generated to ensure strict

diagonal dominance. The term rit was generated in the range l0 -5 x [3,10]; the term

mjt was generated in the range 10- 5 x [1,5]; the term 9itjt was generated in the range

10-5 x [1,16]. The same convergence tolerance as before was used.

The ranges of the market sizes and number of time periods was as before, with the

number of cross-terms in each of the functions being fixed at 5.

The results of the numerical experimentation are reported in Table 2 and the graphical

depictions are represented in Figures 4a and 4b. Even in the general nonlinear asymmetric
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case, Figures 4a and 4b demonstrate that the CPU time goes up linearly as the number of

time periods is increased for any given problem. This is to be contrasted with the behavior

exhibited with the decomposition algorithm by demand markets in time described in [6]

which is, at least, quadratic in the number of time periods, for the linear asymmetric

problems that were solved therein. The largest problem of this form computed there was

the 20 supply market, 20 demand market, and 10 time period problem which required 758.4

CPU seconds on the CDC Cyber 830. Hence, this new decomposition algorithm which fully

exploits the special network structure of the dynamic market equilibrium problem is very

effective even when implemented in serial.

In the next section we explore the parallel performance of the algorithm.

13
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5. Numerical Experiments - Parallel

In this Section we present the results of the parallel numerical experimentation. For

all of the parallel runs we utilized the multiprocessor features of the IBM 3090/600J at

the Cornell National Supercomputer Facility. The IBM 3090/600J has six processors. The

FORTRAN code for the algorithm was embedded with parallel FORTRAN (PF) constructs

for the task allocation. All of the results reported are based on standalone runs.

We selected four examples, which had been solved previously - the 50 x 50 x 25 and

the 50 x 50 x 50 examples in Table 1 and the 50 x 50 x 25 and 50 x 50 x 50 examples in

Table 2.

We parallelized both the new function construction - see parts (1) and (2) in the state-

ment of the algorithm, and the solution of the T static spatial price equilibrium problems

and the inventory problem (cf. Figure 2). The convergence check was implemented in

serial and was made after every other iteration.

The measures of the effectiveness of the parallelization that we used were the speedup

and the efficiency.

The speedup SN was defined as:

SN= T (31)
TN

where T is the elapsed time to solve the problem with the algorithm on a single processor

and TN is the elapsed time to solve the problem with the algorithm on N processors.

The efficiency EN was defined as:

N·TN
EN TN (32)

The speedups and efficiencies are reported in Table 3 in tabular form and the speedup

plotted in Figure 5.

As can be seen from the figure the algorithm exhibited substantial speedups for the

linear, separable examples, and lower speedups for the nonlinear, asymmetric examples.

This is due, in part, to the serial bottleneck of convergence verification, which is more time-

consuming for the general problems. We would like to emphasize that practitioners are,

nevertheless, interested in the solutions and, hence, convergence verification is essential.

Finally, the speedups obtained do signify a cost-savings in terms of elapsed time and should

enhance the operationalism of these very large-scale models.

14
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6. Summary and Conclusions

In this paper we have considered the formulation of dynamic market equilibrium

problems with trade between markets and inventorying at the supply markets as a network

equilibrium problem which does not rely upon path flows. We stated the equilibrium

conditions and then derived the variational inequality formulation of the problem.

We then introduced a decomposition algorithm based on the theory of variational

inequalities which resolves the T time period dynamic network equilibrium problem into

T + 1 problems with special structure. The first T problems are of the form of classical

spatial price equilibrium problems, for which numerous efficient algorithms exists. The

T+l-st subproblem is a very simple inventory problem. Each of these T+1 subproblems can

be solved simultaneously and in parallel provided that a parallel architecture is available.

That algorithm, however, exhibits desireable features even when it is implemented in a

serial environment. In particular, the CPU time for both linear, separable, and nonlinear,

asymmetric dynamic market equilibrium problems increases only linearly as the number of

time periods is increased. This is to be contrasted with earlier approaches which exhibited

at least a quadratic increase. Moreover, the dynamic problem because of the decomposition

can be now solved by adapting an existing code for static problems.

Finally, the algorithm was embedded with Parallel FORTRAN constructs and stan-

dalone runs conducted on the IBM 3090/600J.
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Table 1: Computational Results for the Decomposition Algorithm

on Large-Scale Dynamic Market Network Equilibrium Problems

Linear Separable Case

Number Percentage of
Number of CPU Number Positive Variables

of Time Time of at Solution
Markets Periods (seconds) Iterations Inventory Transshipment

5 0.1005 36 60.0 73.6
5 x 5 10 0.2114 38 68.9 66.4

25 0.5797 46 72.5 71.7
50 1.2371 54 72.2 74.2

5 0.7583 62 75.0 63.6
10 x 10 10 1.4543 62 66.7 67.2

25 4.2041 76 65.0 72.3
50 7.7656 70 69.2 67.6

5 9.0560 62 40.0 55.6
25 x 25 10 20.8145 70 32.0 60.4

25 80.3637 116 62.2 60.9
50 161.2377 110 59.0 62.7

5 88.2942 104 56.5 55.6
50 x 50 10 188.6683 122 56.9 52.7

25 470.3525 118 59.0 53.9
50 984.2568 126 58.9 53.9



Table 2: Computational Results for the Decomposition Algorithm

on Large-Scale Dynamic Market Network Equilibrium Problems

Nonlinear Asymmetric Case

Number Percentage of
Number of CPU Number Positive Variables

of Time Time of at Solution
Markets Periods (seconds) Iterations Inventory Transshipment

5 0.1385 28 65.0 76.8
5 x 5 10 0.2665 26 55.6 70.8

25 0.9402 38 60.8 78.2
50 1.9524 38 71.0 76.2

5 1.3423 50 60.0 62.8
10 x 10 10 2.4266 46 65.6 66.9

25 7.9535 60 68.8 72.0
50 15.3436 60 64.7 68.2

5 19.3264 76 72.0 56.0
25 x 25 10 50.7079 98 57.3 64.8

25 119.2013 98 56.0 62.0
50 271.3679 114 62.4 60.7

5 150.8648 114 74.5 57.6
50 x 50 10 282.5073 114 47.3 53.8

25 754.5261 118 57.0 53.1
50 1427.2461 122 58.2 53.7



Table 3: Parallel Standalone Results

(a) Linear Separable Case

Number of Number of Number of Speedup Efficiency EN
Markets Time Periods Processors SN (percentage)

2 1.58 79.12
50 x 50 25 4 2.59 64.67

6 3.31 55.21

2 1.60 80.11
50 x 50 50 4 2.68 67.02

6 3.51 58.46

(b) Nonlinear Asymmetric Case

Number of Number of Number of Speedup Efficiency EN
Markets Time Periods Processors SN (percentage)

2 1.498 74.90
50 x 50 25 4 2.271 56.77

6 2.717 45.28

2 1.498 74.91
50 x 50 50 4 2.322 58.05

6 2.823 47.06
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